WO2004046943A1 - Signal processing circuit - Google Patents

Signal processing circuit Download PDF

Info

Publication number
WO2004046943A1
WO2004046943A1 PCT/JP2002/012069 JP0212069W WO2004046943A1 WO 2004046943 A1 WO2004046943 A1 WO 2004046943A1 JP 0212069 W JP0212069 W JP 0212069W WO 2004046943 A1 WO2004046943 A1 WO 2004046943A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
signal
identification
phase shift
data
Prior art date
Application number
PCT/JP2002/012069
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Rokugawa
Masaaki Kawai
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2002/012069 priority Critical patent/WO2004046943A1/en
Publication of WO2004046943A1 publication Critical patent/WO2004046943A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines

Definitions

  • the present invention relates to a signal processing circuit, and more particularly, to a signal processing circuit that can efficiently realize synchronous processing of parallel signals.
  • ⁇ signals form a meaningful information sequence by using multiple signals such as pite.
  • a technology for transmitting large-capacity signals at high speed there is a technology to collectively parallelize multiple signals.
  • the receiving unit is affected by the propagation time of each ⁇ 3 ⁇ 4 media.
  • the clock signal is transmitted from the speaker side in parallel and used in the receiving unit for signal identification. Since the temporal phase condition of the propagated signal is unknown in the receiving unit, it is unknown. In some cases, data cannot be received in the correct phase.
  • the transmission / reception system for parallel signals especially the receiver, receives the transmitted signal correctly.
  • FIG. 1 shows an example of a configuration for performing parallel signal reception and synchronization processing.
  • the propagation delay time of each transmission medium varies, so that a finite variation (skew) occurs in the phase of the received data on the receiving side.
  • skew finite variation
  • the phase of the signal input to the receiver differs according to the transmission characteristics of the channel, and the phase of the output signal after data identification corresponds to the used identification (acquisition) phase. Will be different.
  • a method is conceivable in which a FIFO for converting the identification signal into a signal having a phase corresponding to the clock signal on the system side of the receiving unit is provided after the ⁇ ⁇ processing in the receiving unit.
  • a FIFO for converting the identification signal into a signal having a phase corresponding to the clock signal on the system side of the receiving unit is provided after the ⁇ ⁇ processing in the receiving unit.
  • a FIFO when a FIFO is applied, a large number of memory areas are required to absorb the phase difference between signals, and the FIFO has a structural write / read speed limit. The processing speed is reduced. Disclosure of the invention
  • the present invention considers that when receiving parallel signals for each channel, After identifying the received data with a clock signal that has a unique phase, the signal processing circuit is simplified to perform synchronization processing that aligns the phase of the identified signal to the extent that signal processing with a common clock signal is possible. It is intended to provide a simple circuit configuration.
  • the present invention has a configuration in which a phase relationship between parallel input data signals is detected, and each data signal is phase-shifted by a phase shift amount corresponding to the detected phase relationship. With this configuration, it becomes possible to synchronize parallel data signals at high speed with a simple configuration.
  • FIG. 1 is a diagram for explaining synchronization of parallel data signals.
  • FIG. 2 is a schematic block diagram of a signal processing circuit according to one embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of each identification / phase shift unit in FIG.
  • FIG. 4 is a diagram showing an example of a circuit configuration applicable to the identification / phase difference detection unit in FIG. 5A and 5B are diagrams for explaining the principle of detecting a data signal change point by the circuit example shown in FIG.
  • FIG. 6 is a circuit diagram (part 1) illustrating a circuit configuration example of the phase difference control unit in FIG.
  • FIG. 7 is a circuit diagram (part 2) illustrating a circuit configuration example of the phase difference control unit in FIG.
  • FIG. 8 is a diagram for explaining the operation of shifting the phase of the data signal after identification to the phase of a predetermined synchronization signal.
  • FIG. 9 is a time chart as an example in which phase information is represented by digital values.
  • FIGS. 10A and 10B are diagrams for explaining a configuration example of the phase shift unit in FIG.
  • FIG. 11 is a circuit diagram showing a general circuit example applicable to the flip-flop circuit shown in FIG. 10B.
  • FIG. 12 is a diagram for explaining a cook signal applicable to the embodiment of the present invention.
  • FIG. 13 is a circuit diagram showing an example of a counter circuit for expressing the phase of the click signal shown in FIG. 12 by a digital value.
  • FIG. 14A is FIG. 14B
  • FIG. 14C is the digitally expressed phase information of the click signal shown in FIG. 12 which can be applied to the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining an example of a control signal and a phase shift control signal, and an example of a rule for determining assignment of a phase shift amount of a two-stage phase shift unit.
  • FIG. 15 is an operation flowchart for explaining the operation of the embodiment of the present invention.
  • FIG. 16A, 16B, 16C, 16D, 17A, 17B, and 17C show the detection of the phase relationship between the identification data signals and the amount of phase shift according to the embodiment of the present invention. It is a time chart for explaining the determination and the phase shift operation by the two-stage phase shift unit.
  • FIG. 2 shows a schematic configuration of a signal processing circuit according to one embodiment of the present invention.
  • the signal processing circuit includes an IJ / phase shift processor 3, a synchronization processor 4, and a clock generator / separator 2.
  • the circuit collectively receives n-channel parallel signals DA-1, DA-2,..., DA-n transmitted in parallel via a predetermined transmission medium in a communication network, an information processing circuit, or the like. This is a circuit for performing data m and synchronization processing.
  • these parallel signals are signals having a predetermined relationship with each other, for example, bit information, and proper processing can be obtained by being processed in synchronization with each other. Then, the circuit performs synchronization processing, that is, the phase difference between them is kept within a predetermined range, so that when a predetermined signal processing is performed in a signal processing circuit in a subsequent stage, processing using a common clock signal is performed. It becomes possible.
  • n-channel parallel signals DA-1, DA-2,..., 0-11 are first processed by the phase shift processing unit 3.
  • the processing unit 3 is composed of n key IJ / phase shift processing units 3-1, 3-2,..., 3-n as many as the number of parallel signal channels. Each time, the data of the received signal is changed by a clock signal, and the phase of the signal of the shifted data is shifted by a predetermined amount as described later.
  • the clock generation distribution unit 2 obtains the clock signal for data identification by internally generating or inputting the clock signal from outside, and distributes the clock signal to a predetermined circuit block including the phase shift processing unit.
  • the synchronization processing unit 4 converts the modulation data signal output from the phase shift processing unit 3 into a clock signal having a common phase. Synchronization between signals is achieved by performing identification processing.
  • FIG. 3 is an internal block diagram of the unit 3-1 in the identification / phase shift processing unit.
  • the other units 3-2, 3-3,..., And 3-n have the same configuration as the unit 31, and a duplicate description will be omitted.
  • the identification / phase shift processing unit 3-1 includes an identification Z phase difference detection unit 21, a phase control signal generation unit 22, and a phase control unit 23-1, 23-2, 23. —3, a phase shift control signal generator 24, and phase shifters 25-1, 25-2.
  • the received data is subjected to clock generation in each of the identification / phase shift processing units 3-1, 3 -2,. Each of them is identified by the clock signal generated / distributed by the / distribution unit 2. Further, in each of the identification / phase shift processing units 3-1, 3-2,..., 3-n, the signal is processed to the extent that the synchronous identification processing can be performed by the common synchronization signal in the subsequent synchronization processing section 4. Adjust the data signal phase after identification so that the inter-channel phase difference is small and ideally zero. In the synchronization processing unit 4, the identification data signals from the identification / phase shift processing unit units 3-1, 3-2,..., 3-n are synchronously identified by a common clock signal.
  • the phase of the data signal after identification in the identification / phase shift processing unit 3-1, 3-2 is shifted and output until it has an appropriate relationship with the phase of the cook signal.
  • the operation of the identification / phase shift processing unit 3-1 will be described with reference to FIG.
  • the other units 3-2 to 3-n also operate in the same manner as the unit 3-1, and duplicate explanations are omitted.
  • an identification / phase difference detection unit 21 identifies input data and determines the phase relationship between a data signal DA-1 and a clock signal CL-1 with a reference clock signal. It is detected as a relative phase relationship.
  • the phase control signal generation unit 22 performs the identification Z based on the phase relationship information between the data DA-1a and the clock signal CL-1 output together with the identification data signal from the identification / phase difference detection unit 21. It generates phase control information of the identification cook signal CL-11 to be supplied to the phase difference detection section 21.
  • the phase control unit 23-1 is the clock signal CL input to the identification / phase difference detection unit 21. -Controls the phase of 1 based on the phase control information generated by the phase control signal generator 22.
  • the phase shift control signal generation section 24 calculates the phase shift amount for the data identified and output by the identification Z phase difference detection section 21 based on the phase control information output from the phase control signal generation section 22. , And outputs it as a control signal to control the phase of the feedback signal supplied to the phase shifters 25-1, 25-2. Then, the phase control units 23-2 and 23-3 output the above-described cook signal having a phase according to the phase control signal generated by the phase shift control signal generation unit 24.
  • the phase shift units 25-1, 25-2 are adapted to output the clock signals output from the phase control units 23-1, 23-2 to the identification data signal output from the identification / phase difference detection unit 21.
  • the data identification processing is performed by the clock signal, and as a result, the phase of the input data signal is shifted according to the phase of the clock signal.
  • the phase of the coupled signal is determined based on the phase information of the identified coupled signal. And the phase difference between the reference clock signal and the base phase of the predetermined clock signal.
  • the phase information in this case may be analog information, but is digitalized in this embodiment in order to pursue easiness of processing and the like.
  • the phase control signal generator 22 Based on this phase information, the phase control signal generator 22 generates a control signal for controlling the phase of the clock signal identifying the data so that it has a more appropriate relationship with the phase of the data to be identified. Is generated and supplied to the phase control unit 23. As a result, the identification cook signal CL-1 can always perform identification with the data signal DA-1 in an appropriate position correlation. At this time, a phase control signal is supplied from the phase control signal generator 22 to the phase shift control signal generator 24.
  • phase shift control signal generation section 24 the phase of the cook signal used to identify the current data in the identification / phase difference detection section 21 is immediately identified and output. Obtains the phase difference between the data signal itself and the phase of a reference clock signal. Then, based on this phase difference information, the phase shift control signal generator 24 determines how much the identification data signal DA-1a is shifted in each of the phase shifters 25-1, 25-2. Equivalent The phase shift control signal is input to the phase control units 23-1, 23-2, and thereby the phase of the clock signal supplied to the two phase shift units 25-1, 25-2 is changed. Control.
  • phase of the identification data signal DA-1b output from the phase shifters 25-1, 25-2 is within the phase difference within a certain range from the phase of the predetermined reference cook signal. Controlled to fit.
  • the other identification / phase shift sections 3-2, 3-3,..., And 3-n respectively correspond to the identification data signals DA-2b, DA-3b,.
  • this series of operations makes it possible for the subsequent synchronization processing section 4 to perform synchronization identification processing on all data signals with a common clock signal.
  • the phase control of the clock signal in the phase controller 23-1 is controlled by a digital code. That is, the phase control signal S pc input to the phase control unit 23-1 is based on a digital code. Also, the phase difference information output from the identification / phase difference detection unit 21 is determined by checking whether the phase of the identification cook signal CL-1 is behind the phase of the data signal DA-1. Is output as a logical operation result, and the phase control signal S pc based on the digital signal is generated based on the advance / delay (E / L) information.
  • FIG. 4 shows an example circuit diagram. That is, as shown in FIG. 5A, for example, the data DA is different in phase by 1/2 time slot from each other by D-F / F (D flip-flop) 31-1, 31-2, 32 as shown in FIG. 5A. It is identified by three types of clocks CLa, CLb, and CLc. Then, the result of the identification is logically operated by the exclusive OR circuits 33-1a, 33-lb, 33-1c, and the pulsing circuits 33-2a, 33-2b, 33-2c are calculated based on the result. Drive.
  • the exclusive OR circuits 33-1a, 33-lb, 33-1c the exclusive OR circuits 33-2a, 33-2b, 33-2c are calculated based on the result. Drive.
  • phase of the signal CLb may be detected as a transition point of the data DA, that is, a cross point. Further, if the identification result by the intermediate clock signal CLb is the same sign as the identification result by the preceding clock signal CLa (that is, in the case of the solid line in FIG. 5B), the phase of the clock signal CLb becomes the data signal DAb. Can be determined to be advanced. Similarly, if the identification result is the same as that of the subsequent clock signal CLc (in the case of FIG.
  • the phase of the clock signal CLb is behind the data signal DA.
  • the pulse EZL-1 and EZL-2 are output and input to the up / down counter 22.
  • the data signal DA is actually identified appropriately. By delaying / advancing the phase of the clock signal to be used, it is possible to always perform data identification with the clock signal of the appropriate phase.
  • the noise generating circuit 33-2c is configured to output a pulse when the input value is H, while the pulse generating circuits 33-2a and 33-2b are each configured to output a pulse.
  • a configuration is adopted in which a pulse is output when a pulse from c is input and an H input is supplied from each of the exclusive OR circuits 33-1a and 31-1b.
  • a pulse is output as the signal E / L-1 when the above-mentioned mouth signal is in the advanced state, and conversely, as the signal E / L-2 in the case of the delayed state. Is output.
  • the up / down counter 22 counts up when the advance signal pulse (pulse of signal E / L-11) is received, and counts up the delay signal pulse (pulse of signal EZL-2). In such a case, it is configured to count down. At the time of counting, the phase of the identification feedback signal used is delayed, and conversely the power down occurs. In some cases, the control is performed such that the phase of the identification cook signal is advanced.
  • the phase controller 23-1 receives a peak signal having a phase number of m, and combines the peak signals in a vector manner to generate a peak of a desired phase.
  • Configuration That is, a clock signal having each phase obtained by dividing one time slot by 2 m is generated in accordance with the m-bit digital code.
  • a circuit as shown in FIG. 6 is considered as the phase control unit 23-1.
  • the circuit consists of four differential transistor pairs, to which clock signals ⁇ 0 and ⁇ ⁇ and clock signals / ⁇ 0 and ⁇ ⁇ with opposite phases are input, respectively.
  • the clock signals ⁇ 0 and ⁇ 1 have a phase difference of 1/4 of the signal period from each other.
  • a clock signal of an arbitrary phase is generated by using the respective positive or negative phase signals, adding weights and summing them. It is possible. That is, a composite cook signal represented by C (t; — a. (1 — ⁇ ⁇ ⁇ ⁇ + ax cos co t ⁇ ®) is obtained.
  • the weights p, q, r, and s for the current sources of the differential transistor pairs in FIG. 6 are realized by, for example, the configuration shown in FIG. That is, in this case, p and q, and r and s form catches with each other because of the opposite phases. Therefore, the current source to be turned on is represented by 2-bit digital data, and the current value is represented by a 2-bit code in units of current i as shown in Fig. 7.
  • the four-stage weighted synthesis of the supply signal waveforms having the above four types of phases makes it possible to realize the above-described formula (1) of the composite signal.
  • the phase of the peak signal is represented by the m-bit digital code, for example, the reference peak signal is defined as the peak signal corresponding to the code “0000”, and All n-channel parallel signals should be synchronized to this phase Just fine.
  • the phase of the lt3 ⁇ 4fj output data DAa in which the phase of the identification clock signal CL d matches the phase of the change point is shifted to the phase of the clock signal CL s to be synchronized.
  • the maximum amount of phase shift required for this is less than one time slot, that is, the amount of phase full of the phase corresponding to the elapsed time between adjacent transition points of the data signal DAa. Therefore, it is necessary for each of the phase shift sections 25-1, 25-2 in FIG. 3 to have a configuration in which each of them shifts a maximum of a half time slot at most, for example, a D-F / F.
  • the required shift amount is digitally compared and calculated by the phase shift control signal generator 24 with the above code “0000” and the code of the clock signal actually used for identification. It is easy to get. As a result, as shown in FIG. 9, for example, the phase of each post-identification signal DAa can be shifted so as to match the synchronous clock signal CLs “0000”.
  • the phase of the data signal after identification is It will be identified near the mouth point, which may lead to incorrect identification.
  • a phase shift operation is performed in which the identification is always performed near the center of the eye pattern, so that data identification can be performed correctly.
  • the desired phase If the shift amount exceeds 1/2 time slot, the first-stage phase shifter 25-1 shifts the phase by 1Z2 time slot, and then the second-stage phase shifter 25-2 shifts the remaining amount. Let's shift the phase. If the phase shift amount is less than 1/2 time slot, the desired phase may be shifted only by the first phase shift means 25-1 or the second phase shift means 25-2.
  • each of the identification / phase shift processing unit units 3-1, 3-2 in the schematic block diagram shown in FIG. 2, each of the identification / phase shift processing unit units 3-1, 3-2,.
  • the configuration shown in Fig. 4 is applied, and the circuit shown in Fig. 4 is applied to the identification / phase difference detection unit 21 in each of the identification Z phase shift processing units 3-1, 3-2 ⁇ ⁇ ⁇ 3- ⁇
  • the circuits described in Figs. 6 and 7 can be applied to each of the phase control units 23-1, 23-2, and 23_3.
  • FIG. 10A a DF / F as shown in FIG. 10A can be applied to each of the phase shift units 25-1 and 25-2.
  • FIG. 10B the input data DAa is identified by the phase shift clock signal CLs, and as a result, DAa, whose ⁇ phase is delayed from DAa, is obtained.
  • FIG. 11 shows a specific circuit example of the phase shift units 25-1, 25-2. Since this circuit example has the same configuration as a general F / F (flip-flop) circuit, the description of the circuit operation is omitted.
  • phase shift control signal producing there can be various concrete configurations such as Narita 23, but here is an example. explain.
  • the number of phases of the clock signal for the time slot is set to 4 for simplicity, and the phase of each corresponding clock signal is set to CO , C1, C2, C3.
  • a clock signal having a corresponding phase may be referred to as CO, C1, C2, or C3.
  • the phase control signal for specifying the phase of the cook signal for data identification which should be actually supplied from the phase controller 23-1 to the identification / phase difference detector 21.
  • the digital code supplied from the generation unit 22 to the phase control unit 23-1 is also the same four types, and corresponds to “0”, “1”, “2”, “3” corresponding to C0, C1, C2, and C3, respectively. ".
  • FIG. 13 shows a circuit example of a four-stage shift register type counter applicable to the phase control signal generator 22.
  • 14A, 14B, and 14C show the output of each stage from the left of the shift register of FIG. 13 and the corresponding digital code when the configuration of FIG. 13 is applied, and the phase control signal generation unit 22 based on these.
  • the rules are illustrated below. Here, an example in which the phases of all data are synchronized with the clock signal C0 having the phase code "0" will be described.
  • the identification / phase shift unit cuts 3-1, 3-2,..., And 3-n identification / phase difference detection unit 21, four types of clock signals CO and C shown in FIG.
  • the identification is currently performed by any of the clock signals 1, 2, and 3, and the information of the iigij clock signal phase is supplied to the phase control signal generation unit 22 as digital phase information. Is done.
  • the following method can be considered. That is, specifically, for example, in the circuit as shown in FIG. 4, CLa, CLb, and CLc are adjacent to each other around the four types of clock signals CO, C1, C2, and C3.
  • the counter shown in Fig. 13 is a so-called cyclic counter.
  • the output of each stage of the four-stage shift register is sequentially counted up from “0" to "1 J" by the clock input, and is "1" up to the highest level (right end). , The output of all stages is reset to “0” at the next clock input. Thereafter, the above operation is repeated according to the clock input. As a result, as shown in "Output of each stage of counter" shown in FIG.
  • the code “0” is the phase of C 0 in FIG. 12.
  • the phase of the clock signal currently used as the identification clock signal is CO
  • the code “0” that is, the same phase, as described above.
  • a phase shift of approximately one time slot is required. That is, in this case, it is determined that the identification result data signal D Aa requires the maximum amount of phase shift.
  • the change point of the data signal DA a after the identification in that case, that is, the cross point is As described above, in order to synchronize with the code “0”, that is, the phase CO that occurs immediately after, a phase shift of about 1 Z4 of one time slot is required. That is, in this case, it is determined that the identification result data signal D Aa requires a minimum amount of phase shift.
  • phase shift control signal generation section 24 generates a phase shift control signal Sps as shown in FIG. 14B. More specifically, as shown in the figure, this can be generated by a complementary code of the output value of each stage of the corresponding counter. Also, the allocation of the phase shift amount to each of the phase shift units 25-1, 25-2 by the phase shift control signal Sps is as shown in FIG. 14C. That is, in the case of this example, the shift amount corresponding to the total value of the upper two digits of the phase shift control signal Sps is allocated to the first-stage phase shift unit 25-1, and the shift amount corresponding to the lower two digits is calculated. The shift amount is assigned to the first-stage phase shift section 25-1.
  • FIG. 15 is an operation flowchart showing the operation of each identification / phase shift unit 3-1: 3-2,..., 3 _n shown in FIG. 3 of the embodiment of the present invention. That is, after the input of the data signal of step S1, the data of the input data signal is identified by the identification clock signal phase-controlled by the identification clock (signal) phase control of step S3 (step S2). From the identification result of step S2, the phase relationship between the phase of the reference cook signal and the phase of the received data signal DA is detected by the configuration shown in FIG. 4 (step S4). In step S3, the phase of the identification cook signal to be used is determined based on the detected phase relationship, and data identification is performed using the identification cook signal of the determined phase (step S3). 2).
  • phase relationship detected in step S4 is based on the phase of the identification data signal among the identification Z phase shift units 3-1, 3-2,..., 3-n for each channel shown in FIG.
  • the phase of the synchronization signal having a predetermined phase to be synchronized with the phase of each of the identification / phase shift units 3-1, 3-2,..., 3-n is currently used for identification.
  • the phase difference between the phase of the identification cook signal and the phase of the identification cook signal is detected (step S5). More specifically, in the examples of FIGS. 14A, 14B, and 14C, the above-described phase difference is obtained by obtaining the complementary code of the value of each stage of the counter of FIG. Is detected.
  • phase difference for shifting the phase of the identification data DAa and the phase shift amount for the two-stage phase shift units 25-1 and 25-2 are determined by a predetermined rule. (For example, Norail shown in Fig. 14C) (step S6).
  • steps S7 and S9 signals for specifying the phase of the phase-shifting identification cook signal are generated in order to perform the phase shift processing for the phase shift amount thus distributed.
  • steps S8 and S10 the desired phase shift is performed by identifying the data signal DAa with the phase shift identification cook signal of the designated phase in this manner (see FIG. 10 A, 1 OB configuration). The data signal thus phase-shifted is output to the synchronization processing unit 4 (step S11).
  • FIG. 16A shows the waveforms of the input data D1, D2, and D3 (corresponding to the received data DA-11, DA-2, and DA-3 in FIG. 2, respectively).
  • FIG. 16B shows the above-mentioned identification clock signal CO. , C1, C2, and C3 are shown.
  • the optimal clock signals for identifying these data signals Dl, D2, and D3 are Cl, C3, and C2, respectively. That is, a clock signal in which a clock pulse rises near the center of the time slot of a data signal is most suitable for identifying the data signal.
  • FIG. 16C shows the results of discriminating the data signals Dl, D2, and D3 using these optimal discrimination clock signals (the output signals DA-1a, DA-2a, DA-3 of the discrimination Z phase difference detection unit 21).
  • the clock signal C 0 is used as a reference clock signal, and the phase thereof is used for the entirety of the identification / phase shift units 3-1, 3-2,.
  • the output signal is synchronized.
  • the distance between the phase of each of the signals D 1, D 2, and D 3 after identification shown in FIG. 16C that is, the phases C 1, C 3, and C 2) and the base ⁇ (the vertical phase C 0) is +3, +1, and +2, which correspond to the values of the second, fourth, and third stages of the phase shift control signal Sp s in FIG.
  • each phase shift unit 25-1 The phase shift amount assigned to 25-2 is “+1, +2” for D1, “0, +1” for D2, and “0, +2” for D3.
  • FIG. 16D is a waveform diagram of each of the clock signals C0, C1, C2, and C3, and shows that a delay occurs with respect to that shown in FIG. 16B. That is, since a delay occurs in the circuit shown in FIG. 2, the phase relationship between the clock signal and the data signal after identification varies depending on the circuit characteristics.
  • the absolute phase between the data signal and the peak signal need not always be constant. That is, the purpose of this embodiment is to synchronize the data signals between the respective channels 1 to n (corresponding to the data signals DA-1 to DA-n) in the circuit in FIG. 2 only. Perform the necessary phase shift for each channel. In other words, the absolute phase is not an essential problem as long as synchronization between channels can be achieved.
  • FIG. 17B shows a waveform of each data signal after the phase shift unit 25-1 has shifted the phase by the above-mentioned assigned shift amount by the clock signal shown in FIG. 17A. That is, since the data signal D1 performs a phase shift of distance +1 at the first stage, the phase shift is performed from the original C1 to C2. Therefore, it is identified by the clock signal C2. On the other hand, D2 and D3 each perform a phase shift of a distance of 0 at the first stage, so they are re-identified by the original C3 and C2, respectively. That is, since the phase relationship between the data signal and the clock signal can fluctuate due to the delay in the circuit as described above, each data signal is identified again by the predetermined clock signal in the phase shift unit 25-1. By compensating for the change in the above-mentioned phase relation, it is compensated.
  • FIG. 17C shows the waveform of each data signal after the phase shift by the above-mentioned assigned shift amount by the second-stage phase shift unit 25-2. That is, the data signal D1 is phase-shifted from the previous C2 to CO in order to perform a phase shift of distance +2 in the second stage, that is, is identified by the clock signal CO. D2 is phase-shifted (+1) from the previous C3 to CO, that is, identified by the clock signal CO. D3 is phase shifted (+2) from the previous C2 to CO, that is, identified by the clock signal C0. In this way, all data signals are finally synchronized with the phase C0.
  • the reception processing corresponding to the skew in the receiving unit is performed in the batch transmission of the parallel signal in the large-capacity signal transmission in the communication device.
  • This enables parallel processing of parallel signals without slowing down with a simple configuration.
  • the circuit size of the receiving unit can be greatly reduced, the device size can be reduced, and power consumption can be reduced, and an efficient large-capacity information network can be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

Data identification is performed for each of parallel input data signals by a predetermined clock signal. From the phase of the clock signal used for the data identification, a phase relationship with a predetermined phase is calculated. The parallel input data signals after the aforementioned identification are phase-shifted by a predetermined amount decided according to the detection phase relationship.

Description

明細書 信号処理回路 技術分野  Description Signal processing circuit Technical field
本発明は信号処理回路に係り、 特に並列信号の同期処理を効率的に実現し得る 信号処理回路に関する。 背景技術  The present invention relates to a signal processing circuit, and more particularly, to a signal processing circuit that can efficiently realize synchronous processing of parallel signals. Background art
通信技術の発展に伴い, 高速信号伝送技術は幹線系のみならず, 局内や加入者 系へも導入されるようになりつつあり, その結果動画像などの広帯域情報伝送の 適用領域が飛躍的に広がりつつある。 それに伴い, 通信システムのみならず情報 システムにおいても, 大容量の信号をシステム内, あるいは装置内で伝送する技 術が重要になりつつある。  With the development of communication technology, high-speed signal transmission technology is being introduced not only in trunk systems but also in offices and subscriber systems, and as a result, the application area of broadband information transmission such as moving images has been dramatically increased. Is spreading. Along with this, the technology for transmitting large-capacity signals in systems or equipment is becoming important, not only in communication systems but also in information systems.
通信 ·情報システムにおいては, 多くの^^信号はパイトなどの複数信号を単 位に意味のある情報列を形成する。 この:^、 大容量の信号を高速に伝送するた めの技術として、 複数信号を一括して並列^!する技術がある。 しかしながら, 多数の並列信号を一括して複数の伝送媒体を通して伝送する , 並置された複 数の β¾媒体をィ5¾される信号間では, 各々の^ ¾媒体の伝搬 時間のパラッ キにより, 受信部において信号を受信した際、 データ信号と figijクロック信号と の間の位相を合わせてデータ を行うことが困難となる。 即ち、 仮に 言側か らクロック信号を並行して伝送することによって受信部においてこれを信号識 別に用いる 、伝搬されてくる信号の時間的な位相条件力受信部においては未 知であるため, そのままでは正しい位相でデータを受信することが出来ない がある。  In communication and information systems, many ^^ signals form a meaningful information sequence by using multiple signals such as pite. As a technology for transmitting large-capacity signals at high speed, there is a technology to collectively parallelize multiple signals. However, between a signal that transmits a number of parallel β-mediums and a number of parallel signals are transmitted at once through a plurality of transmission media, the receiving unit is affected by the propagation time of each ^ ¾ media. When a signal is received at, it is difficult to perform data by matching the phases between the data signal and the figij clock signal. That is, if the clock signal is transmitted from the speaker side in parallel and used in the receiving unit for signal identification. Since the temporal phase condition of the propagated signal is unknown in the receiving unit, it is unknown. In some cases, data cannot be received in the correct phase.
このため, 並列信号の送受信系, 特に受信部においては, 伝搬されてくる信号 を正しく受信 .
Figure imgf000003_0001
カゝっ受信した後に当該信号に対して適切に信号処理を行 うため、 共通のク口ック信号での信号処理を可能とすることが必要である。 そし てそのため、 予め並列したデータ間の位相を揃える所謂同期処理を行うことが必 要となる。
For this reason, the transmission / reception system for parallel signals, especially the receiver, receives the transmitted signal correctly.
Figure imgf000003_0001
In order to properly perform signal processing on the signal after receiving it, it is necessary to enable signal processing with a common mouth signal. Therefore, it is necessary to perform a so-called synchronization process for aligning the phases between the parallel data in advance. It becomes important.
図 1は並列信号の受信と同期処理を実施する構成の一例を示す。 一般に並列伝 送系におレヽては, 前述の通り伝送媒体毎の伝搬遅延時間にバラツキがあるため, 受信側での受信データの位相に有限のパラツキ (スキュー) が生じる。 又、 受信 部においてこの並列信号を受信する際には, 識別ク口ック信号として受信データ に対して適正な位相関係を有するものを適用して識別処理を行うことが必要であ る。  FIG. 1 shows an example of a configuration for performing parallel signal reception and synchronization processing. In general, in a parallel transmission system, as described above, the propagation delay time of each transmission medium varies, so that a finite variation (skew) occurs in the phase of the received data on the receiving side. When the receiver receives this parallel signal, it is necessary to apply a signal having an appropriate phase relationship to the received data as the identification cook signal to perform the identification processing.
このとき, 受信部に入力する信号の位相は, 云送路の伝送特性に応じて相異 なるため, データ識別後の出力信号の位相は、 その使用された識別 (取り込み) 位相に対応して相異なるものとなる。 通常の伝送系においては, 上記の如く、 受 信した並列信号を共通位相のクロック信号で識別処理した上で次段の処理回路に 転送するための同期処理を行う必要がある。 しかしながら先に述べたように, 相 異なる位相を有する識別信号に対し、 そのままでは共通の位相を有するクロック 信号で同期処理をすることは事実上不可能となる場合がある。  At this time, the phase of the signal input to the receiver differs according to the transmission characteristics of the channel, and the phase of the output signal after data identification corresponds to the used identification (acquisition) phase. Will be different. In a normal transmission system, as described above, it is necessary to identify the received parallel signal with a clock signal of a common phase and then perform synchronization processing for transfer to the next processing circuit. However, as described above, it may be practically impossible to perform synchronization processing on an identification signal having a different phase with a clock signal having a common phase as it is.
このため、 各伝送路 (チャンネル) の信号毎に受信信号を一旦個別に低速 (低 レート) 信号に分離する分離処理を行った後, チャンネル間の同期合わせ処理を 行う方法がある。 しかしながらこの場合、 多数の低速信号中で共通位相のク口ッ ク信号によつて処理可能なビットを探索する同期処理実施のために大規模な回路 が必要となる。 このような傾向は特に各伝送路のデータの高速化が進むにつれて ますます顕著となる。  For this reason, there is a method in which the received signal is separated into low-speed (low-rate) signals for each signal on each transmission line (channel) once, and then synchronization processing between channels is performed. However, in this case, a large-scale circuit is required for performing a synchronization process for searching for a bit that can be processed by a common-phase clock signal in many low-speed signals. Such a tendency becomes more remarkable especially as the speed of the data on each transmission path increases.
又、 このような方法の他に、 受信部での ϋ ^処理の後段に, 識別信号を受信部 のシステム側のクロック信号対応の位相を有する信号に変換するための F I F O を設ける方法が考えられる。 しかしながら F I F Oを適用する場合, 信号間の位 相差を吸収するために多数のメモリ領域を必要とすると共に、 F I F Oには構造 上書き込み/読み出しの速度の限界があるため、 通常のシフトレジスタ適用時よ りも処理速度が低下してしまう。 発明の開示  In addition to such a method, a method is conceivable in which a FIFO for converting the identification signal into a signal having a phase corresponding to the clock signal on the system side of the receiving unit is provided after the 段 ^ processing in the receiving unit. . However, when a FIFO is applied, a large number of memory areas are required to absorb the phase difference between signals, and the FIFO has a structural write / read speed limit. The processing speed is reduced. Disclosure of the invention
本発明はこのような状況に鑑み、 並列信号をチャンネル毎に受信する際、 適正 な位相を有するクロック信号で受信データを識別した後、 識別後の信号に対して 共通のク口ック信号による信号処理が可能な程度に位相を揃える同期処理を実施 するため信号処理回路を簡易な回路構成にて提供することを目的とする。 In view of such a situation, the present invention considers that when receiving parallel signals for each channel, After identifying the received data with a clock signal that has a unique phase, the signal processing circuit is simplified to perform synchronization processing that aligns the phase of the identified signal to the extent that signal processing with a common clock signal is possible. It is intended to provide a simple circuit configuration.
本発明は上記目的達成のため、 並列入力データ信号の位相関係を検出し、 当該 検出位相関係に応じた位相シフト量分各データ信号を位相シフトさせる構成を有 する。 この構成により、 簡易な構成で高速に並列データ信号を同期化することが 可倉 gとなる。 図面の簡単な説明  In order to achieve the above object, the present invention has a configuration in which a phase relationship between parallel input data signals is detected, and each data signal is phase-shifted by a phase shift amount corresponding to the detected phase relationship. With this configuration, it becomes possible to synchronize parallel data signals at high speed with a simple configuration. BRIEF DESCRIPTION OF THE FIGURES
図 1は並列データ信号の同期化について説明するための図である。  FIG. 1 is a diagram for explaining synchronization of parallel data signals.
図 2は本発明の一実施例による信号処理回路の概略プロック図である。  FIG. 2 is a schematic block diagram of a signal processing circuit according to one embodiment of the present invention.
図 3は図 2中の各識別/移相部ュニットの構成を示すプロック図である。 図 4は図 3中の識別/位相差検出部に適用可能な回路構成例を示す図である。 図 5 A, 図 5 Bは、 図 4に示す回路例によるデータ信号変ィ匕点検出原理を説明 するための図である。  FIG. 3 is a block diagram showing the configuration of each identification / phase shift unit in FIG. FIG. 4 is a diagram showing an example of a circuit configuration applicable to the identification / phase difference detection unit in FIG. 5A and 5B are diagrams for explaining the principle of detecting a data signal change point by the circuit example shown in FIG.
図 6は図 3中の位相差制御部の回路構成例を示す回路図 (その 1 ) である。 図 7は図 3中の位相差制御部の回路構成例を示す回路図 (その 2 ) である。 図 8は識別後データ信号の位相を所定の同期ク口ック信号の位相迄シフトする 動作を説明するための図である。  FIG. 6 is a circuit diagram (part 1) illustrating a circuit configuration example of the phase difference control unit in FIG. FIG. 7 is a circuit diagram (part 2) illustrating a circuit configuration example of the phase difference control unit in FIG. FIG. 8 is a diagram for explaining the operation of shifting the phase of the data signal after identification to the phase of a predetermined synchronization signal.
図 9は位相情報をディジタル値で表して示した例としてのタイムチヤートであ る。  FIG. 9 is a time chart as an example in which phase information is represented by digital values.
図 1 0 A, 図 1 0 Bは図 3中の位相シフト部の構成例について説明するための 図である。  FIGS. 10A and 10B are diagrams for explaining a configuration example of the phase shift unit in FIG.
図 1 1は図 1 0 Bに示すフリップフロップ回路に適用可能な一般的な回路例を 示す回路図である。  FIG. 11 is a circuit diagram showing a general circuit example applicable to the flip-flop circuit shown in FIG. 10B.
図 1 2は、 本発明の実施例に適用可能なク口ック信号について説明するための 図である。  FIG. 12 is a diagram for explaining a cook signal applicable to the embodiment of the present invention.
図 1 3は、 図 1 2に示すク口ック信号の位相をディジタル値で表現するための カウンタ回路例を示す回路図である。 図 1 4 Aは、 図 1 4 B, 図 1 4 Cは、 本発明の実施例に適用可能なディジタル 表現された、 図 1 2に示すク口ック信号の位相情報、 これに対応する位相制御信 号、 及び位相シフト制御信号の例、 並びに 2段の位相シフト部の位相シフト量の 割り当てを決定する規則の例を説明するための図である。 FIG. 13 is a circuit diagram showing an example of a counter circuit for expressing the phase of the click signal shown in FIG. 12 by a digital value. FIG. 14A is FIG. 14B, and FIG. 14C is the digitally expressed phase information of the click signal shown in FIG. 12 which can be applied to the embodiment of the present invention. FIG. 7 is a diagram for explaining an example of a control signal and a phase shift control signal, and an example of a rule for determining assignment of a phase shift amount of a two-stage phase shift unit.
図 1 5は本発明の実施例の動作を説明するための動作フローチヤ一トである。 図 1 6 A, 1 6 B , 1 6 C, 1 6 D, 1 7 A, 1 7 B, 1 7 Cは、 本発明の実 施例による識別データ信号の位相関係の検出、位相シフト量の決定並びに 2段の 位相シフト部による位相シフト動作を説明するためのタイムチヤ一トである。 発明を実施するための最良の形態  FIG. 15 is an operation flowchart for explaining the operation of the embodiment of the present invention. FIG. 16A, 16B, 16C, 16D, 17A, 17B, and 17C show the detection of the phase relationship between the identification data signals and the amount of phase shift according to the embodiment of the present invention. It is a time chart for explaining the determination and the phase shift operation by the two-stage phase shift unit. BEST MODE FOR CARRYING OUT THE INVENTION
図 2は本発明の一実施例による信号処理回路の概略構成を示す。 当該信号処理 回路は識 IJ/移相処理部 3, 同期処理部 4及ぴクロック生成/分離部 2を含む。 当該回路は、 通信網、 情報処理回路等において所定の伝送媒体を介して並列に伝 送されてきた nチャネルの並列信号 D A— 1, DA—2 , . . . 、 DA—nを一 括受信してデータ m¾及ぴ同期処理を施すための回路である。  FIG. 2 shows a schematic configuration of a signal processing circuit according to one embodiment of the present invention. The signal processing circuit includes an IJ / phase shift processor 3, a synchronization processor 4, and a clock generator / separator 2. The circuit collectively receives n-channel parallel signals DA-1, DA-2,..., DA-n transmitted in parallel via a predetermined transmission medium in a communication network, an information processing circuit, or the like. This is a circuit for performing data m and synchronization processing.
ここでこれらの並列信号は互いに所定の関連性を有する信号、 例えばパイト情 報等であり、互いに同期して処理されることによって適正な処 果が得られる ものである。 そして当該回路によって同期処理、 即ち互いの位相差が所定の範囲 内におさめられることにより、 後段の信号処理回路にて所定の信号処理を行う際、 共通のク口ック信号にての処理が可能となる。  Here, these parallel signals are signals having a predetermined relationship with each other, for example, bit information, and proper processing can be obtained by being processed in synchronization with each other. Then, the circuit performs synchronization processing, that is, the phase difference between them is kept within a predetermined range, so that when a predetermined signal processing is performed in a signal processing circuit in a subsequent stage, processing using a common clock signal is performed. It becomes possible.
図 2中、 nチャネルの並列信号 D A— 1, DA- 2 , . . .、 0 ー11は先ず、 翻【 移相処理部 3にて処理される。 当該処理部 3は並列信号のチャネル数と同 数の n個の鍵 IJ/移相処理部ユニット 3— 1, 3 - 2 , · · · 3— n力ら成り, 各々のュニットにて、 チャネル毎に受信信号のデータをクロック信号で ϋ¾する と共に, 後述する如く ϋ ^したデータの信号の位相を所定量シフトさせる。  In FIG. 2, n-channel parallel signals DA-1, DA-2,..., 0-11 are first processed by the phase shift processing unit 3. The processing unit 3 is composed of n key IJ / phase shift processing units 3-1, 3-2,..., 3-n as many as the number of parallel signal channels. Each time, the data of the received signal is changed by a clock signal, and the phase of the signal of the shifted data is shifted by a predetermined amount as described later.
又、 クロック生成ノ分配部 2では、 上記データ識のためのクロック信号を内 部生成または外部から入力することによつて得、 上記 移相処理部ュニット を含む所定の回路ブロックに分配する。 又、 同期処理部 4では、識1 移相処理 部 3から出力されてくる調データ信号を, 共通の位相を有するクロック信号で 識別処理することによつて信号間の同期をとる。 Further, the clock generation distribution unit 2 obtains the clock signal for data identification by internally generating or inputting the clock signal from outside, and distributes the clock signal to a predetermined circuit block including the phase shift processing unit. The synchronization processing unit 4 converts the modulation data signal output from the phase shift processing unit 3 into a clock signal having a common phase. Synchronization between signals is achieved by performing identification processing.
図 3は上記識別/移相処理部ュニットの内の、 ユニット 3— 1の内部ブロック 図である。 尚、 他のユニット 3— 2, 3— 3, . . . 、 3— nもこのユニット 3 一 1と同様の構成を有するものであり、 重複説明を省く。 識別/移相処理部ュニ ット 3— 1は、 識別 Z位相差検出部 2 1と、 位相制御信号生成部 2 2と、 位相制 御部 2 3— 1, 2 3 - 2 , 2 3— 3と、 位相シフト制御信号生成部 2 4と、 位相 シフト部 2 5— 1, 2 5— 2とを含む。  FIG. 3 is an internal block diagram of the unit 3-1 in the identification / phase shift processing unit. The other units 3-2, 3-3,..., And 3-n have the same configuration as the unit 31, and a duplicate description will be omitted. The identification / phase shift processing unit 3-1 includes an identification Z phase difference detection unit 21, a phase control signal generation unit 22, and a phase control unit 23-1, 23-2, 23. —3, a phase shift control signal generator 24, and phase shifters 25-1, 25-2.
本実施例による信号処理回路では、 受信データは, 識別/移相処理部 3を構成 する各々の識別/移相処理部ユニット 3— 1 , 3 - 2 , · · · 3— nにおいて、 クロック生成/分配部 2で生成/分配されたクロック信号によつて夫々識別され る。 更に各識別/移相処理部ュニット 3— 1, 3— 2, · · · 3 - nでは, 後段 の同期処理部 4において共通のク口ック信号で同期識別処理が可能な程度に信号 のチャネル間位相差を小さく、 理想的には 0となるように、 識別後のデータ信号 位相を調整する。同期処理部 4においては,各識別/移相処理部ユニット 3— 1, 3 - 2 , · · · 3— nからの識別データ信号を共通のクロック信号にて同期識別 する。  In the signal processing circuit according to the present embodiment, the received data is subjected to clock generation in each of the identification / phase shift processing units 3-1, 3 -2,. Each of them is identified by the clock signal generated / distributed by the / distribution unit 2. Further, in each of the identification / phase shift processing units 3-1, 3-2,..., 3-n, the signal is processed to the extent that the synchronous identification processing can be performed by the common synchronization signal in the subsequent synchronization processing section 4. Adjust the data signal phase after identification so that the inter-channel phase difference is small and ideally zero. In the synchronization processing unit 4, the identification data signals from the identification / phase shift processing unit units 3-1, 3-2,..., 3-n are synchronously identified by a common clock signal.
上述の本発明の一実施例では,後述の如く、識別/移相処理部ュニット 3— 1, 3 - 2 , · · · 3— nにおいて識別後のデータ信号の位相を, 特定の基準となる ク口ック信号の位相と適切な関係になる迄、 その位相をシフトして出力する。 以下、 図 3と共に識別/移相処理部ュニット 3— 1の動作を説明する。 尚、 他 のュ-ット 3— 2乃至 3— nもユニット 3— 1と同様の動作を行うため、 重複説 明を省  In the above-described embodiment of the present invention, as described later, the phase of the data signal after identification in the identification / phase shift processing unit 3-1, 3-2,. The phase is shifted and output until it has an appropriate relationship with the phase of the cook signal. Hereinafter, the operation of the identification / phase shift processing unit 3-1 will be described with reference to FIG. The other units 3-2 to 3-n also operate in the same manner as the unit 3-1, and duplicate explanations are omitted.
同図中、 識別/位相差検出部 2 1では、 入力データを識別すると共に, データ 信号 DA— 1とクロック信号 C L—1との間の位相関係を, ある基準となるクロ ック信号との相対的な位相関係として検出する。 位相制御信号生成部 2 2は、 識 別/位相差検出部 2 1から識別データ信号と共に出力されるデータ DA— 1 aと クロック信号 C L— 1との間の位相関係情報を基に, 識別 Z位相差検出部 2 1に 供給すべき識別ク口ック信号 C L一 1の位相制御情報を生成する。  In the figure, an identification / phase difference detection unit 21 identifies input data and determines the phase relationship between a data signal DA-1 and a clock signal CL-1 with a reference clock signal. It is detected as a relative phase relationship. The phase control signal generation unit 22 performs the identification Z based on the phase relationship information between the data DA-1a and the clock signal CL-1 output together with the identification data signal from the identification / phase difference detection unit 21. It generates phase control information of the identification cook signal CL-11 to be supplied to the phase difference detection section 21.
位相制御部 2 3— 1は、 識別/位相差検出部 2 1に入力するクロック信号 C L - 1の位相を, 位相制御信号生成部 2 2で生成される位相制御情報を基に制御す る。 位相シフト制御信号生成部 2 4は、 位相制御信号生成部 2 2から出力される 上記位相制御情報を基に, 識別 Z位相差検出部 2 1で識別出力されたデータに対 する位相シフト量を, 位相シフト部 2 5— 1 , 2 5 - 2に供給するク口ック信号 の位相を制御する制御信号として出力する。 そして位相制御部 2 3— 2, 2 3 - 3は、 位相シフト制御信号生成部 2 4で生成された位相制御信号に従った位相の 上記ク口ック信号を出力する。 The phase control unit 23-1 is the clock signal CL input to the identification / phase difference detection unit 21. -Controls the phase of 1 based on the phase control information generated by the phase control signal generator 22. The phase shift control signal generation section 24 calculates the phase shift amount for the data identified and output by the identification Z phase difference detection section 21 based on the phase control information output from the phase control signal generation section 22. , And outputs it as a control signal to control the phase of the feedback signal supplied to the phase shifters 25-1, 25-2. Then, the phase control units 23-2 and 23-3 output the above-described cook signal having a phase according to the phase control signal generated by the phase shift control signal generation unit 24.
位相シフト部 2 5— 1, 2 5 - 2は、識別/位相差検出部 2 1から出力された 識別データ信号に対し、 上記位相制御部 2 3— 1, 2 3— 2から出力されたクロ ック信号によってデータ識別処理を行い, 結果として当該クロック信号の位相に 従って入力データ信号の位相をシフトさせる。  The phase shift units 25-1, 25-2 are adapted to output the clock signals output from the phase control units 23-1, 23-2 to the identification data signal output from the identification / phase difference detection unit 21. The data identification processing is performed by the clock signal, and as a result, the phase of the input data signal is shifted according to the phase of the clock signal.
以下に更に具体的に図 3に示す各部の動作について説明する。 識別/位相差検 出部 2 1では入力データ DA— 1をクロック信号 C L一 1で識別する際、 データ を識別したク口ック信号の位相情報を基に, 当該ク口ック信号の位相と所定のク ロック信号の基 立相との位相差を検出する。 この場合の位相情報は、 アナログ 的情報であっても良いが、 処理の容易性等を追求するために本実施例ではディジ タル化した情報としている。  Hereinafter, the operation of each unit shown in FIG. 3 will be described more specifically. When the input data DA-1 is identified by the clock signal CL-11 in the identification / phase difference detection unit 21, the phase of the coupled signal is determined based on the phase information of the identified coupled signal. And the phase difference between the reference clock signal and the base phase of the predetermined clock signal. The phase information in this case may be analog information, but is digitalized in this embodiment in order to pursue easiness of processing and the like.
この位相情報から位相制御信号生成部 2 2では, データを識別しているクロッ ク信号の位相が、 識別すべきデータの位相に対して、 より適正な関係となるよう に制御するための制御信号を生成し、 これを位相制御部 2 3に供給する。 その結 果、 識別ク口ック信号 C L— 1がデータ信号 DA— 1に対して常に適正な位相関 係で識別を実施することが可能となる。 又、 このとき, 位相制御信号生成部 2 2 からは, 位相シフト制御信号生成部 2 4へ位相制御信号が供給される。  Based on this phase information, the phase control signal generator 22 generates a control signal for controlling the phase of the clock signal identifying the data so that it has a more appropriate relationship with the phase of the data to be identified. Is generated and supplied to the phase control unit 23. As a result, the identification cook signal CL-1 can always perform identification with the data signal DA-1 in an appropriate position correlation. At this time, a phase control signal is supplied from the phase control signal generator 22 to the phase shift control signal generator 24.
その結果、 位相シフト制御信号生成部 2 4においては, 識別/位相差検出部 2 1において現在データを識別するために使用されているク口ック信号の位相, 即 ち識別されて出力されるデータ信号そのものの位相が, ある基準となるクロック 信号の位相とどれだけの位相差を持つてレ、るかを得る。 そしてこの位相差情報を もとに, 位相シフト制御信号生成部 2 4は, 位相シフト部 2 5— 1, 2 5— 2の 夫々において識別データ信号 D A— 1 aをどの程度位相シフトさせるかに相当す る位相シフト制御信号を位相制御部 2 3— 1, 2 3 - 2に入力し, これによって 2つの位相シフト部 2 5— 1, 2 5 - 2に供給されるク口ック信号の位相を制御 する。 As a result, in the phase shift control signal generation section 24, the phase of the cook signal used to identify the current data in the identification / phase difference detection section 21 is immediately identified and output. Obtains the phase difference between the data signal itself and the phase of a reference clock signal. Then, based on this phase difference information, the phase shift control signal generator 24 determines how much the identification data signal DA-1a is shifted in each of the phase shifters 25-1, 25-2. Equivalent The phase shift control signal is input to the phase control units 23-1, 23-2, and thereby the phase of the clock signal supplied to the two phase shift units 25-1, 25-2 is changed. Control.
これにより, 位相シフト部 2 5— 1, 2 5— 2から出力される識別データ信号 D A— 1 bの位相は上記所定の基準ク口ック信号の位相と一定の範囲内の位相差 内に収まるように制御される。  As a result, the phase of the identification data signal DA-1b output from the phase shifters 25-1, 25-2 is within the phase difference within a certain range from the phase of the predetermined reference cook signal. Controlled to fit.
同様に他の識別/移相部 3— 2, 3— 3, . . . 、 3— nの夫々の対応する識 別データ信号 D A— 2 b, DA- 3 b , . . . , D A— n bの夫々の位相も上記 のものと同じ所定の基準ク口ック信号の位相と一定の範囲内の位相差内に収まる ように制御される。 即ち、 識別/移相部 3から出力される全てのデータ信号が, 共通の基準ク口ック信号から一定の位相差を持つク口ック信号に同期している状 態となるように制御される。  Similarly, the other identification / phase shift sections 3-2, 3-3,..., And 3-n respectively correspond to the identification data signals DA-2b, DA-3b,. Are also controlled so as to fall within a certain range of phase difference from the phase of the predetermined reference cook signal as described above. That is, control is performed so that all data signals output from the identification / phase shift unit 3 are in synchronization with a common signal having a certain phase difference from a common reference signal. Is done.
従ってこの一連の動作により, 後段の同期処理部 4において, 共通のクロック 信号で全てのデータ信号を同期識別処理することが可能となる。  Therefore, this series of operations makes it possible for the subsequent synchronization processing section 4 to perform synchronization identification processing on all data signals with a common clock signal.
尚、 実際にはアナ口グ的な演算で上記のようなクロック信号位相情報を処理す ることも原理的には可能であるが, 回路規模, および回路特性の変動やバラツキ 等を考慮した場合の精度等の点ではこの場合不確定要素が多レヽ。 従つて本発明の 実施例では, 位相情報および位相制御信号をディジタル的な情報とすることでこ のような課題を解決するようにした。  In practice, it is theoretically possible to process the clock signal phase information as described above by an analog-like operation. However, when the circuit scale and the fluctuations and variations of the circuit characteristics are considered. In this case, there are many uncertainties in terms of accuracy of the data. Therefore, in the embodiment of the present invention, such a problem is solved by converting the phase information and the phase control signal into digital information.
そのため、 先ず位相制御部 2 3— 1におけるクロック信号の位相の制御をディ ジタルコ一ドによって行うこととした。 即ち, 位相制御部 2 3— 1に入力する位 相制御信号 S p cをディジタルコ一ドによるものとする。 又識別/位相差検出部 2 1カ ら出力される位相差情報を, 識別ク口ック信号 C L― 1の位相がデータ信 号 DA— 1の位相に対して進んでいるカゝ遅れているかを論理演算結果として出力 し, この進み/遅れ (E/L) 情報を基にディジタノ 夺号による位相制御信号 S p cを生成する。  Therefore, first, the phase control of the clock signal in the phase controller 23-1 is controlled by a digital code. That is, the phase control signal S pc input to the phase control unit 23-1 is based on a digital code. Also, the phase difference information output from the identification / phase difference detection unit 21 is determined by checking whether the phase of the identification cook signal CL-1 is behind the phase of the data signal DA-1. Is output as a logical operation result, and the phase control signal S pc based on the digital signal is generated based on the advance / delay (E / L) information.
更に具体的には, 識別/位相差検出部 2 1から出力するクロック信号の進み Z 遅れ情報 (EZL) をパルス.とし, 位相制御信号生成部 2 2を, あるビット数 m を有するアップダウンカウンタによって実現する。 図 4は、 このような場合の一 例の回路図を示す。 即ち、 同図中、 例えば D— F/F (Dフリップフロップ) 3 1-1, 31-2, 32により、 データ D Aを、 図 5 Aに示す如く、 互いに 1/ 2タイムスロットずつ位相の異なる 3種類のクロック CLa, CLb, CLcに よって識別する。 そして、 その識別結果を排他的論理和回路 33—1 a、 33— l b、 33— 1 cで論理演算し、 その結果によってパルス化回路 33— 2 a、 3 3— 2b、 33— 2 cを駆動する。 More specifically, the advance / delay information (EZL) of the clock signal output from the identification / phase difference detection unit 21 is set to a pulse, and the phase control signal generation unit 22 is set to an up-down counter having a certain number of bits m. It is realized by. Figure 4 shows one such case. FIG. 4 shows an example circuit diagram. That is, as shown in FIG. 5A, for example, the data DA is different in phase by 1/2 time slot from each other by D-F / F (D flip-flop) 31-1, 31-2, 32 as shown in FIG. 5A. It is identified by three types of clocks CLa, CLb, and CLc. Then, the result of the identification is logically operated by the exclusive OR circuits 33-1a, 33-lb, 33-1c, and the pulsing circuits 33-2a, 33-2b, 33-2c are calculated based on the result. Drive.
即ち、例えばクロック信号 CL a、CL cで隣り合った 2つのデータを識別し, このデータが互いに符号が異なる場合、即ち例えば図 5 Aに示される状態の場合、 これらの中間の位相にあるクロック信号 CLbの位相をデータ D Aの変化点、 即 ちクロスポイントとして検出すればよい。 更に、 中間のクロックノ、レス CLbに よる識別結果が先行するクロック信号 C L aによる識別結果と同符号であれば (即ち図 5 Bにおける、 実線の場合) 、 クロック信号 CLbの位相がデータ信号 D Aに対して進んでいると判定出来る。 同様に後方のクロック信号 CL cによる 識別結果と同符号であれば (図 5B©«の場合) 、 クロック信号 CLbの位相 がデータ信号 D Aに対して遅れていると判定される。 そして、 夫々の場合に, パ ルス EZL— 1, EZL— 2を出力してアップダウンカウンタ 22に入力する構 成し、 このクロック信号の進み/遅れ情報に従って適宜実際にデータ信号 DAの データ識別に使用するクロック信号の位相を遅らせ/進ませることで常に適正な 位相のクロック信号にてデータ識別を行なうことが可能となる。  That is, for example, two adjacent data are identified by the clock signals CLa and CLc, and when these data have different signs from each other, that is, for example, in a state shown in FIG. The phase of the signal CLb may be detected as a transition point of the data DA, that is, a cross point. Further, if the identification result by the intermediate clock signal CLb is the same sign as the identification result by the preceding clock signal CLa (that is, in the case of the solid line in FIG. 5B), the phase of the clock signal CLb becomes the data signal DAb. Can be determined to be advanced. Similarly, if the identification result is the same as that of the subsequent clock signal CLc (in the case of FIG. 5B), it is determined that the phase of the clock signal CLb is behind the data signal DA. In each case, the pulse EZL-1 and EZL-2 are output and input to the up / down counter 22. According to the advance / delay information of the clock signal, the data signal DA is actually identified appropriately. By delaying / advancing the phase of the clock signal to be used, it is possible to always perform data identification with the clock signal of the appropriate phase.
具体的には、 ノ ルス化回路 33— 2 cは、 その入力値が Hの場合パルスを出力 する構成とし、 他方パルス化回路 33-2 a, 33— 2bは各々、 パルス化回路 33— 2 cからのパルスが入力され且つ夫々排他的論理和回路 33— 1 a、 33 一 1 bから Hの入力が供給された際にパルスを出力する構成とする。 その結果、 上記ク口ック信号が進み状態の場合には信号 E/L— 1としてパルスが出力され, 逆に遅れ状態の場合には信号 E/L— 2としてノ、。ルスが出力される。 そしてその パルスを受けてアップダウンカウンタ 22にて、 上記進み信号パルス (信号 E/ L一 1のパルス) を受けた場合にはカウントアップし、 遅れ信号パルス (信号 E ZL— 2のパルス) の場合にはカウントダウンするよう構成する。 そして、 カウ ントァップ時には使用する識別ク口ック信号の位相が遅れ、 逆に力ゥントダウン 時には識別ク口ック信号の位相が進むように制御されるよう構成する。 More specifically, the noise generating circuit 33-2c is configured to output a pulse when the input value is H, while the pulse generating circuits 33-2a and 33-2b are each configured to output a pulse. A configuration is adopted in which a pulse is output when a pulse from c is input and an H input is supplied from each of the exclusive OR circuits 33-1a and 31-1b. As a result, a pulse is output as the signal E / L-1 when the above-mentioned mouth signal is in the advanced state, and conversely, as the signal E / L-2 in the case of the delayed state. Is output. When the pulse is received, the up / down counter 22 counts up when the advance signal pulse (pulse of signal E / L-11) is received, and counts up the delay signal pulse (pulse of signal EZL-2). In such a case, it is configured to count down. At the time of counting, the phase of the identification feedback signal used is delayed, and conversely the power down occurs. In some cases, the control is performed such that the phase of the identification cook signal is advanced.
即ち、 位相制御部 2 3— 1においては, 位相数 mのク口ック信号を入力し, こ のク口ック信号をべクトル的に合成して所望の位相のク口ックを生成する構成と する。 即ち、 mビットのディジタルコードに対応して 1タイムスロットを 2 m分 割した夫々の位相を有するクロック信号を発生する。 ここで, m= 4とした場合 の構成例について, 図 6, 図 7と共に説明する. That is, the phase controller 23-1 receives a peak signal having a phase number of m, and combines the peak signals in a vector manner to generate a peak of a desired phase. Configuration. That is, a clock signal having each phase obtained by dividing one time slot by 2 m is generated in accordance with the m-bit digital code. Here, an example of the configuration when m = 4 is described with reference to Figs. 6 and 7.
即ち、 位相制御部 2 3— 1として、 図 6に示すような回路を考える。 同回路は 4つの差動トランジスタ対からなり, それぞれにクロック信号 φ 0, φ ΐ及びそ れらの逆位相のクロック信号/ φ 0, φ ΐが入力される。 ここで上記クロック 信号 φ 0、 φ 1は、 互いに信号周期の 1 / 4分の位相差を有するものとする。 そ の場合、 これらは c o s ω t、 s i η ω tに夫々相当するため、 夫々の正相また は逆相の信号を使い、 重みを付けて和をとることによって任意の位相のクロック 信号を生成可能である。 即ち、 C ( t ; — a. ( 1— ε ΐ η ω ΐ + a x c o s co t · · · ® で表される合成ク口ック信号が得られる。  That is, a circuit as shown in FIG. 6 is considered as the phase control unit 23-1. The circuit consists of four differential transistor pairs, to which clock signals φ 0 and φ ΐ and clock signals / φ 0 and φ 逆 with opposite phases are input, respectively. Here, it is assumed that the clock signals φ 0 and φ 1 have a phase difference of 1/4 of the signal period from each other. In this case, since these correspond to cos ω t and si η ω t, respectively, a clock signal of an arbitrary phase is generated by using the respective positive or negative phase signals, adding weights and summing them. It is possible. That is, a composite cook signal represented by C (t; — a. (1 — ε η η ω ΐ + ax cos co t ··· ®) is obtained.
その際、 図 6における差動トランジスタ対の電流源への重み p, q , r , sを 例えば図 7に示す構成にて実現する。 即ち、 この場合, pと q , rと sとは逆位 相のため、 互いに捕符号を成す。 そのため、 2ビットのディジタルデータによつ てどの電流源をオンにするかを表し, 更に電流値を図 7に示すように, 電流 iを 単位として 2ビットのコードで表す。 その結果、 上記 4種類の位相を有する供給 信号波形の 4段階の重み付け合成により、 上記①式のク口ック信号合成を実現す ることが可能となる。 尚、 このときクロック信号の位相は, 4ビットのディジタ ルコードと一対一に対応しており, 2 4 = 1 6種類のクロック信号の位相がディ ジタルコ一ドに対応して生成可能となる。 At this time, the weights p, q, r, and s for the current sources of the differential transistor pairs in FIG. 6 are realized by, for example, the configuration shown in FIG. That is, in this case, p and q, and r and s form catches with each other because of the opposite phases. Therefore, the current source to be turned on is represented by 2-bit digital data, and the current value is represented by a 2-bit code in units of current i as shown in Fig. 7. As a result, the four-stage weighted synthesis of the supply signal waveforms having the above four types of phases makes it possible to realize the above-described formula (1) of the composite signal. At this time the phase of the clock signal is one-to-one correspondence with Digitally Rukodo of 4 bits, 2 4 = 1 6 types of clock signals of the phase is enabled generated corresponding to Di Jitaruko one de.
このように, mビットのディジタルコ一ドでク口ック信号位相が表現されるた め,例えば基準ク口ック信号をコード「 0 0 0 0」に対応するク口ック信号とし, nチャネルの並列信号全てをこのク口ック信号位相に同期させるように構成すれ ばよい。 この場合, 図 8に示すように, 識別クロック信号 C L dの位相が変化点 位相と一致した lt¾fj出力データ D A aの位相を、 同期すべきクロック信号 C L s の位相迄シフトする。 As described above, since the phase of the peak signal is represented by the m-bit digital code, for example, the reference peak signal is defined as the peak signal corresponding to the code “0000”, and All n-channel parallel signals should be synchronized to this phase Just fine. In this case, as shown in FIG. 8, the phase of the lt¾fj output data DAa in which the phase of the identification clock signal CL d matches the phase of the change point is shifted to the phase of the clock signal CL s to be synchronized.
そのために必要となる最大の位相シフト量は 1タイムスロット弱、 即ち、 デー タ信号 D A aの隣接する変ィ匕点間の経過時間に対応する位相 満の位相量であ る。 従って, 図 3の位相シフト部 2 5— 1, 2 5— 2としては, 各々で最大 1 / 2タイムスロット強をシフトさせる構成を有する必要があり、 例えば D— F/F で構成する。ここで所要のシフト量は,位相シフト制御信号生成部 2 4において, 上記コード 「0 0 0 0」 と, 現在実際に識別に使用されているクロック信号のコ 一ドとをディジタル的に比較演算すれば容易に得られる。 これにより, 例えば図 9に示すように, 同期クロック信号 C L s 「0 0 0 0」 に合致するように各識別 後信号 DA aの位相をシフトすることが可能になる。  The maximum amount of phase shift required for this is less than one time slot, that is, the amount of phase full of the phase corresponding to the elapsed time between adjacent transition points of the data signal DAa. Therefore, it is necessary for each of the phase shift sections 25-1, 25-2 in FIG. 3 to have a configuration in which each of them shifts a maximum of a half time slot at most, for example, a D-F / F. Here, the required shift amount is digitally compared and calculated by the phase shift control signal generator 24 with the above code “0000” and the code of the clock signal actually used for identification. It is easy to get. As a result, as shown in FIG. 9, for example, the phase of each post-identification signal DAa can be shifted so as to match the synchronous clock signal CLs “0000”.
例えば図 9の例では、 識別ク口ック信号 C L— 1 dの位相を示すコードが 「 0 1 0 0」 であるとき, 基準クロック信号 C L sのコード 「0 0 0 0」 迄どれだけ 離れているかを計算して結果的に加算結果が 「0 0 0 0」 となるコードを求め、 そのコードに対応する位相シフト量分、 信号 D A— 1 aの位相シフトを行う。 こ こで位相シフトは, 前述の通り D— F/Fを使用して 1 / 2タイムスロット程度 ずつシフトさせることが可能であるため、 図 3に示す実施例の如く、 2段 (2 5 一 1, 2 5 - 2 ) あれば実現できる。  For example, in the example of Fig. 9, when the code indicating the phase of the identification cook signal CL—1d is “0 1 0 0”, how far away from the reference clock signal CL s is the code “0 0 0 0”. Is calculated to obtain a code whose addition result is “0 0 0 0”, and the signal DA-1a is phase-shifted by a phase shift amount corresponding to the code. As described above, the phase shift can be shifted by about 1/2 time slot using the D / F / F, as described above. Therefore, as shown in FIG. 1, 2 5-2) can be realized.
即ち、 仮に識別後のデータ信号の位相と同期すべき位相との間の距離が 1タイ ムスロット分程度であった場合、 その分の位相シフトを 1回で行おうとすると、 識別後のデータ信号のク口スポィント付近で識別することになり、 誤った識別を 行う可能性が生ずる。 これに対して所割立相シフト量を分割して複数回に分けて 行うことによって常にアイパターンの中央付近で識別を行なう位相シフト動作と なるため、 データ識別を正しく行なうことが可能となる。  In other words, if the distance between the phase of the data signal after identification and the phase to be synchronized is about one time slot, and if the phase shift is performed by one time, the phase of the data signal after identification is It will be identified near the mouth point, which may lead to incorrect identification. On the other hand, by dividing the allocated phase shift amount into a plurality of times, a phase shift operation is performed in which the identification is always performed near the center of the eye pattern, so that data identification can be performed correctly.
ここで上記 2段の位相シフト部 2 5— 1, 2 5 - 2の夫々でどのように位相シ フトを実現するかについては様々な演算方法によるものが考えられる。 これは回 路を形成する際のプロセスの特性に依存してその遅延時間が変わるため、 そのよ うなファクタに合わせて最適化すればよレヽ。 最も単純な方法として、 所望の位相 シフト量が 1/2タイムスロットを越える場合には, 1段目の位相シフト手段 2 5—1で 1Z2タイムスロット分位相シフトし, その後 2段目の位相シフト手段 25— 2で残りの分の位相をシフトさせることとすればよレ、。 又位相シフト量が 1/2タイムスロット以下の場合には, 1番目の位相シフト手段 25—1または 2番目の位相シフト手段 25-2のみで所望の位相をシフトさせることとすれば よい。 Here, various calculation methods are conceivable as to how to realize the phase shift in each of the two-stage phase shift units 25-1, 25-2. This is because the delay time varies depending on the characteristics of the process when forming the circuit, so it is best to optimize it for such factors. In the simplest case, the desired phase If the shift amount exceeds 1/2 time slot, the first-stage phase shifter 25-1 shifts the phase by 1Z2 time slot, and then the second-stage phase shifter 25-2 shifts the remaining amount. Let's shift the phase. If the phase shift amount is less than 1/2 time slot, the desired phase may be shifted only by the first phase shift means 25-1 or the second phase shift means 25-2.
従ってこの一連の動作により, 後段の同期処理部 4において, 共通のクロック 信号で全てのデータを正しく同期処理することが可能となる。  Therefore, with this series of operations, it becomes possible for the subsequent synchronization processing section 4 to correctly perform synchronous processing on all data with a common clock signal.
尚、 上記の如く、 本発明の実施例では、 図 2に示す概略ブロック図中、 識別/ 移相処理部ユニット 3— 1, 3-2 · · · 3— nの各々のユニットとして、 図 3 に示す構成を適用し、 更に識別 Z移相処理部ュ-ット 3— 1, 3— 2 · · · 3— ηの各々における識別/位相差検出部 21中に図 4に示す回路を適用し、 位相制 御部 23— 1, 23-2, 23_ 3の各々には, 図 6, 図 7にて説明した回路を 適用可能である。  As described above, in the embodiment of the present invention, in the schematic block diagram shown in FIG. 2, each of the identification / phase shift processing unit units 3-1, 3-2,. The configuration shown in Fig. 4 is applied, and the circuit shown in Fig. 4 is applied to the identification / phase difference detection unit 21 in each of the identification Z phase shift processing units 3-1, 3-2 · · · 3-η However, the circuits described in Figs. 6 and 7 can be applied to each of the phase control units 23-1, 23-2, and 23_3.
又、 上述の実施例では, m= 4の場合について示しているが, mはこれに限定 されるものではなく,一般的に該当するシステム要件に応じたものとすればよい。 次に、 図 3に示す上記位相シフト部 25— 1, 25-2の具体的構成例につい て説明する。 上述の如く、 各位相シフト部 25— 1, 25— 2としては図 10A に示す如くの D— F/Fを適用可能である。 この場合、 図 10Bに示す如く、 入 力データ D A aは、 位相シフト用クロック信号 C L sで識別され、 その結果 D A aより φ位相が遅延した DA a, が得られることになる。 図 11は位相シフト部 25-1, 25— 2の具体的回路例を示す。尚、この回路例は一般的な F/F (フ リップフロップ) 回路の構成と同様であるため、 その回路動作についての説明は 省略する。  Further, in the above-described embodiment, the case where m = 4 is shown, but m is not limited to this, and may be generally set according to the corresponding system requirements. Next, a specific configuration example of the phase shift units 25-1 and 25-2 shown in FIG. 3 will be described. As described above, a DF / F as shown in FIG. 10A can be applied to each of the phase shift units 25-1 and 25-2. In this case, as shown in FIG. 10B, the input data DAa is identified by the phase shift clock signal CLs, and as a result, DAa, whose φ phase is delayed from DAa, is obtained. FIG. 11 shows a specific circuit example of the phase shift units 25-1, 25-2. Since this circuit example has the same configuration as a general F / F (flip-flop) circuit, the description of the circuit operation is omitted.
次に、 上述の本発明の実施例における、 位相制御、 位相シフト制御におけるデ イジタル化処理について具体的に説明する。 尚、 図 3に示す位相制御信号生成部 22としてアップダウンカウンタ等を適用した場合、 カウンタの種類、 カウンタ の出力信号の構成等に依存して位相制御信号生成部22, 位相シフト制御信号生 成部 23等の具体的構成は様々なものが考え得るが、 ここではその一例について 説明する。 Next, the digitizing process in the phase control and the phase shift control in the above-described embodiment of the present invention will be specifically described. In the case of applying the up-down counter such as a phase control signal generation unit 22 shown in FIG. 3, the type of the counter, the phase control signal generation unit 2 2 depending on the configuration of the counter output signal, a phase shift control signal producing There can be various concrete configurations such as Narita 23, but here is an example. explain.
先ず、 タイムスロットに対するクロック信号の位相数について、 ここでは図 1 2に示す如く、 簡単のためク口ック信号の位相数を 4とし、 更に、 夫々の対応す るクロック信号の位相を、 CO, C 1, C2, C 3と称することにする。 又、 対 応する位相を有するクロック信号そのものについても同様に CO, C 1, C2, C 3と称する場合がある。 更に、 このとき、 実際に識別/位相差検出部 21に対 して位相制御部 23— 1から供給すべき、 データ識別のためのク口ック信号の位 相を特定するために位相制御信号生成部 22から位相制御部 23-1に供給する ディジタルコードも同じく 4種類となり、 夫々上記 C0, C 1, C2, C3に対 応して 「0」 、 「1」 、 「2」 、 「3」 と称する。  First, regarding the number of phases of the clock signal for the time slot, as shown in FIG. 12, the number of phases of the clock signal is set to 4 for simplicity, and the phase of each corresponding clock signal is set to CO , C1, C2, C3. Similarly, a clock signal having a corresponding phase may be referred to as CO, C1, C2, or C3. Further, at this time, the phase control signal for specifying the phase of the cook signal for data identification, which should be actually supplied from the phase controller 23-1 to the identification / phase difference detector 21. The digital code supplied from the generation unit 22 to the phase control unit 23-1 is also the same four types, and corresponds to “0”, “1”, “2”, “3” corresponding to C0, C1, C2, and C3, respectively. ".
図 13は、 上記位相制御信号生成部 22に適用可能な 4段のシフトレジスタ型 カウンタの回路例を示す。 図 14A, 14B, 14Cは、 図 13の構成を適用し た場合の、 図 13のシフトレジスタの左からの各段の出力、 対応するディジタル コード、 これらを基に位相制御信号生成部 22にて生成される位相制御信号 S p c、 更には位相シフト制御信号生成部 24で生成される位相シフト制御信号 S p s、 並びに位相シフト部 25— 1, 25-2の夫々に対する位相シフト量の割り 振りの規則について、 夫々例示する。 尚、 ここでは上記位相コード 「0」 のクロ ック信号 C 0に全データの位相を同期する例について説明する。  FIG. 13 shows a circuit example of a four-stage shift register type counter applicable to the phase control signal generator 22. 14A, 14B, and 14C show the output of each stage from the left of the shift register of FIG. 13 and the corresponding digital code when the configuration of FIG. 13 is applied, and the phase control signal generation unit 22 based on these. The generated phase control signal S pc, the phase shift control signal S ps generated by the phase shift control signal generation unit 24, and the allocation of the phase shift amount to each of the phase shift units 25-1 and 25-2. The rules are illustrated below. Here, an example in which the phases of all data are synchronized with the clock signal C0 having the phase code "0" will be described.
即ち、 各識別/移相部ュ-ット 3— 1, 3— 2, · . · 、 3-nの識別/位相 差検出部 21では、 現在図 12に示す 4種類のクロック信号 CO, C 1, C2, c 3のうちの何れのクロック信号によつて現在識別がなされており、 この iigijク 口ック信号位相の情報が位相制御信号生成部 22に対してディジタル位相情報と して供給される。 この現在識別に使用されている位相を有するクロック信号の特 定方法としては、 例えば以下の方法が考えられる。 即ち、 具体的には例えば図 4 に示される如くの回路に対し、 CLa、 CLb、 C L cとして上記 4種類のクロ ック信号 CO, C 1, C 2, C 3の各々を中心とした隣接する 3種類のクロック 信号の組を順次選択して識別動作を行い、 その両端のク口ック信号 C L a、 C L cによる識別結果の符号が異なる場合に、 その中心のク口ック信号 C L bが該当 ' する識別クロック信号と認識出来る。 図 1 3に示すカウンタは所謂循環型カウンタであり、 クロック入力によって 4 段のシフトレジスタの各段の出力が順次「0」から「1 Jにカウントアップされ、 最上位 (右端) 迄 「1」 が到針ると、 次のクロック入力にて各段全ての出力が 「0」 にリセットされる。 そして以降、 クロック入力に応じて上記動作を繰り返 す。 その結果、 図 1 4 Aに示す 「カウンタ各段の出力」 の通りに順次コード 0乃 至 3を夫々表す糸且み合わせの 4桁の出力が得られる。 従ってこのようにして識別 /位相差検出部 2 1において認識された現在の識別位相に応じて図 1 3のカウン タに対するクロック入力を行なレヽ、 結果的に該当する識別位相を表す力ゥンタ出 力が得られるように制御すればよい。 That is, in the identification / phase shift unit cuts 3-1, 3-2,..., And 3-n identification / phase difference detection unit 21, four types of clock signals CO and C shown in FIG. The identification is currently performed by any of the clock signals 1, 2, and 3, and the information of the iigij clock signal phase is supplied to the phase control signal generation unit 22 as digital phase information. Is done. As a method of specifying a clock signal having a phase currently used for identification, for example, the following method can be considered. That is, specifically, for example, in the circuit as shown in FIG. 4, CLa, CLb, and CLc are adjacent to each other around the four types of clock signals CO, C1, C2, and C3. If a set of three types of clock signals are sequentially selected to perform the identification operation, and the sign of the identification result by the mouth signals CLa and CLc at both ends is different, the center mouth signal CL b can be recognized as the corresponding identification clock signal. The counter shown in Fig. 13 is a so-called cyclic counter. The output of each stage of the four-stage shift register is sequentially counted up from "0" to "1 J" by the clock input, and is "1" up to the highest level (right end). , The output of all stages is reset to “0” at the next clock input. Thereafter, the above operation is repeated according to the clock input. As a result, as shown in "Output of each stage of counter" shown in FIG. 14A, a four-digit output of thread combination representing codes 0 to 3 is sequentially obtained. Therefore, according to the current discrimination phase recognized by the discrimination / phase difference detection unit 21 in this manner, clock input to the counter of FIG. 13 is performed, and as a result, a counter output representing the corresponding discrimination phase is output. What is necessary is just to control so that a force may be obtained.
ここで、 コード 「 0」 は図 1 2の C 0の位相であり、 例えば仮に現在識別ク口 ック信号として使用されているクロック信号の位相が C Oであったとすると、 そ の場合の識別後のデータ信号 D A aの変化点、 即ちクロスポィントを上記の如く コード 「0」 、 即ち同じ位相に同期させるためには、 略 1タイムスロット分位相 シフトが必要である。 即ち、 この場合、 識別結果データ信号 D A aは、 最大量の 位相シフトを必要としていると判断する。  Here, the code “0” is the phase of C 0 in FIG. 12.For example, if the phase of the clock signal currently used as the identification clock signal is CO, after the identification in that case, In order to synchronize the change point of the data signal DAa, that is, the cross point, with the code “0”, that is, the same phase, as described above, a phase shift of approximately one time slot is required. That is, in this case, it is determined that the identification result data signal D Aa requires the maximum amount of phase shift.
他方、 逆に現在識別ク口ック信号として使用されているク口ック信号の位相が C 3であったとすると、 その場合の識別後のデータ信号 D A aの変化点、 即ちク ロスポイントを上記の如くコード 「0」 、 即ち直後に発生する位相 C Oに同期さ せるためには、 1タイムスロットの略 1 Z4の位相シフトが必要である。 即ち、 この場合、 識別結果データ信号 D A aは、 最小量の位相シフトを必要とすると判 断する。  On the other hand, if the phase of the peak signal currently used as the identification peak signal is C 3, the change point of the data signal DA a after the identification in that case, that is, the cross point, is As described above, in order to synchronize with the code “0”, that is, the phase CO that occurs immediately after, a phase shift of about 1 Z4 of one time slot is required. That is, in this case, it is determined that the identification result data signal D Aa requires a minimum amount of phase shift.
又、 位相シフト制御信号生成部 2 4では、 図 1 4 Bに示す如くの位相シフト制 御信号 S p sを生成する。 具体的には図示の如く、 これは対応するカウンタ各段 の出力値の補符号によって生成可能である。 又、 この位相シフト制御信号 S p s による各位相シフト部 2 5— 1, 2 5— 2に対する位相シフト量の割り振りにつ いては図 1 4 Cに示される如くである。 即ち、 この例の場合、 位相シフト制御信 号 S p sの上位 2桁の合計値に対応するシフト量を 1段目の位相シフト部 2 5— 1に割り振り、 下位 2桁の合計値に対応するシフト量を 1段目の位相シフト部 2 5—1に割り振る。 例えばコード 「0」 、 即ち図 14 Cの最上段の場合、 上位 2桁が 「1、 1」 な ので、 1 + 1 = 2、 即ち図 12に示すク口ック信号位相の刻み分である 1 / 4タ ィムスロットの 2倍である 1/2タイムスロット分の位相シフトカ S1段目の位相 シフト部 25— 1に割り振られる。 又、 下位 2桁も 「1、 1」 なので、 1 + 1 = 2、 即ち同じく 1Z2タイムスロット分の位相シフトが 2段目の位相シフト部 2 5— 2に割り振られる。 Further, the phase shift control signal generation section 24 generates a phase shift control signal Sps as shown in FIG. 14B. More specifically, as shown in the figure, this can be generated by a complementary code of the output value of each stage of the corresponding counter. Also, the allocation of the phase shift amount to each of the phase shift units 25-1, 25-2 by the phase shift control signal Sps is as shown in FIG. 14C. That is, in the case of this example, the shift amount corresponding to the total value of the upper two digits of the phase shift control signal Sps is allocated to the first-stage phase shift unit 25-1, and the shift amount corresponding to the lower two digits is calculated. The shift amount is assigned to the first-stage phase shift section 25-1. For example, in the case of the code “0”, that is, in the uppermost row of FIG. 14C, since the upper two digits are “1, 1”, 1 + 1 = 2, that is, the step of the click signal phase shown in FIG. Phase shifter for 1/2 time slot, which is twice as large as 1/4 time slot, is assigned to the phase shifter 25-1 in the first stage. In addition, since the lower two digits are also “1, 1”, 1 + 1 = 2, that is, a phase shift of 1Z2 time slot is allocated to the second-stage phase shift unit 25-2.
同様にコード 「1」 、 即ち図 14 Cの 2段目の場合、 上位 2桁が 「0、 1」 な ので、 0 + 1 = 1、 即ち 1/4タイムスロット分の位相シフトが 1段目の位相シ フト部 25— 1に割り振られる。又、下位 2桁は「1、 1」なので、 1 + 1 = 2、 即ち 1Z2タイムスロット分の位相シフトが 2段目の位相シフト部 25— 2に割 り振られる。  Similarly, in the case of the code “1”, that is, in the second stage of FIG. 14C, since the upper two digits are “0, 1”, 0 + 1 = 1, that is, the phase shift of 1/4 time slot is the first stage. Is assigned to the phase shift section 25-1 of Since the lower two digits are “1, 1”, 1 + 1 = 2, that is, the phase shift of 1Z2 time slot is allocated to the second-stage phase shift unit 25-2.
図 15は上述の本発明の一実施例の図 3に示す各識別/移相部ュニット 3— 1: 3— 2, . . . 、 3 _nの動作を示す動作フローチャートである。 即ち、 ステツ プ S 1のデータ信号の入力後、 当該入力データ信号のデータが、 ステップ S 3の 識別クロック (信号) 位相制御によって位相制御された識別クロック信号で識別 される (ステップ S 2) 。 ステップ S 2の識別結果から図 4に示される構成によ つて基準ク口ック信号の位相と受信データ信号 D Aの位相との間の位相関係を検 出する (ステップ S 4) 。 ここで検出された位相関係を基にステップ S 3では使 用する識別ク口ック信号の位相を決定し、 決定された位相の識別ク口ック信号に てデータ識別を実施する (ステップ S 2)。  FIG. 15 is an operation flowchart showing the operation of each identification / phase shift unit 3-1: 3-2,..., 3 _n shown in FIG. 3 of the embodiment of the present invention. That is, after the input of the data signal of step S1, the data of the input data signal is identified by the identification clock signal phase-controlled by the identification clock (signal) phase control of step S3 (step S2). From the identification result of step S2, the phase relationship between the phase of the reference cook signal and the phase of the received data signal DA is detected by the configuration shown in FIG. 4 (step S4). In step S3, the phase of the identification cook signal to be used is determined based on the detected phase relationship, and data identification is performed using the identification cook signal of the determined phase (step S3). 2).
又、 ステップ S 4によって検出された位相関係は、 図 2に示す各チャネル毎の 識別 Z移相部ュニット 3— 1, 3-2, . . . 、 3-n間で識別データ信号の位 相を同期させるべき所定の位相を有する同期ク口ック信号の位相と、 夫々の識別 /移相部ュニット 3— 1, 3-2, . . . 、 3-nで現在識別に使用されている 識別ク口ック信号の位相との間の位相差を検出する (ステップ S 5 ) 。 具体的に は、 図 14 A, 14 B, 14 Cの例では識別ク口ック信号の位相を示すディジタ ルコードを示す図 13のカウンタの各段の値の補符号を求める事によって上記位 相差を検出する。 更に、 その位相差分、 識別データ D A aの位相をシフトするた めの位相シフト量を 2段の位相シフト部 25— 1, 25— 2に対し、 所定のルー ル (例えば図 14 Cに示すノレール) に従って分配する (ステップ S 6)。 ステップ S 7, S 9では、 夫々、 このように分配ざれた位相シフト量分の位相 シフト処理を実施するために位相シフト用識別ク口ック信号の位相を指定する信 号を生成する。 そして、 ステップ S8, S 10では、 このようにして指定された 位相の位相シフト用識別ク口ック信号でデータ信号 D A aを夫々識別することに より、 所望の位相シフトを実施する (例えば図 10 A, 1 OBの構成による) 。 そしてこのようにして位相シフトされたデ一タ信号を同期処理部 4へと出力する (ステップ S 11)。 Further, the phase relationship detected in step S4 is based on the phase of the identification data signal among the identification Z phase shift units 3-1, 3-2,..., 3-n for each channel shown in FIG. The phase of the synchronization signal having a predetermined phase to be synchronized with the phase of each of the identification / phase shift units 3-1, 3-2,..., 3-n is currently used for identification. The phase difference between the phase of the identification cook signal and the phase of the identification cook signal is detected (step S5). More specifically, in the examples of FIGS. 14A, 14B, and 14C, the above-described phase difference is obtained by obtaining the complementary code of the value of each stage of the counter of FIG. Is detected. Further, the phase difference for shifting the phase of the identification data DAa and the phase shift amount for the two-stage phase shift units 25-1 and 25-2 are determined by a predetermined rule. (For example, Norail shown in Fig. 14C) (step S6). In steps S7 and S9, signals for specifying the phase of the phase-shifting identification cook signal are generated in order to perform the phase shift processing for the phase shift amount thus distributed. In steps S8 and S10, the desired phase shift is performed by identifying the data signal DAa with the phase shift identification cook signal of the designated phase in this manner (see FIG. 10 A, 1 OB configuration). The data signal thus phase-shifted is output to the synchronization processing unit 4 (step S11).
以下に、 図 16 A乃至図 17 Cと共に本発明の一実施例の識別/移相部ュニッ ト 3— 1, 3— 2, 3— 3, . · · 、 3 _nにおける処理過程の一例について説 明する。 図 16 Aは入力データ D 1, D2, D3 (夫々図 2中の受信データ D A 一 1, DA-2, DA— 3に相当する) の波形を示し、 図 16Bに上記識別用ク ロック信号 CO, C 1, C2, C 3の波形を示す。  Hereinafter, an example of a processing process in the identification / phase shift unit 3-1, 3-2, 3-3,..., 3 _n according to an embodiment of the present invention will be described with reference to FIGS. 16A to 17 C. I will tell. FIG. 16A shows the waveforms of the input data D1, D2, and D3 (corresponding to the received data DA-11, DA-2, and DA-3 in FIG. 2, respectively). FIG. 16B shows the above-mentioned identification clock signal CO. , C1, C2, and C3 are shown.
同図から明らかなように、 これらデータ信号 Dl, D2, D 3の識別用の最適 なクロック信号は、 夫々 Cl, C3, C2である。 即ち、 データ信号のタイムス 口ットの中央付近でク口ックパルスが立ち上がるクロック信号が、 そのデータ信 号の識別に最適であるからである。  As is clear from the figure, the optimal clock signals for identifying these data signals Dl, D2, and D3 are Cl, C3, and C2, respectively. That is, a clock signal in which a clock pulse rises near the center of the time slot of a data signal is most suitable for identifying the data signal.
図 16 Cはこれら最適な識別クロック信号によってデータ信号 Dl, D2, D 3を夫々識別した結果 (上記識別 Z位相差検出部 21の出力信号 D A— 1 a, D A-2 a, DA— 3 aに相当する) を示す。 ここで、 上記の場合同様にクロック 信号 C 0を基準ク口ック信号とし、 その位相を図 2の識別/移相部ュニット 3— 1, 3-2, . . .、 3— n全体の出力信号を同期させる位相とする。その場合、 図 16 Cに示す識別後の各信号 D 1, D 2, D 3の位相 (即ち位相 C 1, C 3, C 2 ) と上記基^ (立相 C 0との距離は、 夫々 + 3, + 1, + 2である。 これは上 記図 14 Bの位相シフト制御信号 Sp sの第 2, 第 4, 第 3段目の値に夫々該当 する。  FIG. 16C shows the results of discriminating the data signals Dl, D2, and D3 using these optimal discrimination clock signals (the output signals DA-1a, DA-2a, DA-3 of the discrimination Z phase difference detection unit 21). a). Here, similarly to the above case, the clock signal C 0 is used as a reference clock signal, and the phase thereof is used for the entirety of the identification / phase shift units 3-1, 3-2,. The output signal is synchronized. In this case, the distance between the phase of each of the signals D 1, D 2, and D 3 after identification shown in FIG. 16C (that is, the phases C 1, C 3, and C 2) and the base ^ (the vertical phase C 0) is +3, +1, and +2, which correspond to the values of the second, fourth, and third stages of the phase shift control signal Sp s in FIG.
即ち、 対応する位相シフト制御信号 S p sは、 データ信号 D 1に対して 「0, 1, 1, 1」 、 D 2に対して 「0, 0, 0, 1」、 D 3に対して 「0, 0, 1, 1」 となる。 従って図 14 Cに示すルールに従うと、 各位相シフト部 25— 1, 25— 2に割り振られる位相シフト量は、 D1に対して 「+1, +2」、 D2に 対して 「0, +1」、 D3に対して 「0, +2」 となる。 That is, the corresponding phase shift control signal Sps is “0, 1, 1, 1” for the data signal D 1, “0, 0, 0, 1” for D 2, and “0, 0, 0, 1” for D 2, 0, 0, 1, 1 ". Therefore, according to the rule shown in Fig. 14C, each phase shift unit 25-1, The phase shift amount assigned to 25-2 is “+1, +2” for D1, “0, +1” for D2, and “0, +2” for D3.
又、図 16Dは、上記各クロック信号 C0, C 1, C2, C3の波形図であり、 図 16 Bに示すものに対して遅延が生じていることを示している。 即ち、 図 2に 示す回路中で遅延が発生するため、 これらクロック信号と識別後のデータ信号と の間の位相関係は回路特性によって変動する。 しかしながら本実施例ではデータ 信号とク口ック信号との間の絶対位相は必ずしも一定である必要はなレヽ。 即ち、 本実施例では、 あくまで図 2中の回路における夫々のチャネル 1乃至 n (データ 信号 D A— 1乃至 D A— nに相当する) 間でデータ信号の同期をとることが目的 であり、 そのために各チャネルに対して必要な位相シフトを行う。 即ち略チヤネ ル間同期さえ達成出来ればその絶対位相は本質的問題ではない。  FIG. 16D is a waveform diagram of each of the clock signals C0, C1, C2, and C3, and shows that a delay occurs with respect to that shown in FIG. 16B. That is, since a delay occurs in the circuit shown in FIG. 2, the phase relationship between the clock signal and the data signal after identification varies depending on the circuit characteristics. However, in this embodiment, the absolute phase between the data signal and the peak signal need not always be constant. That is, the purpose of this embodiment is to synchronize the data signals between the respective channels 1 to n (corresponding to the data signals DA-1 to DA-n) in the circuit in FIG. 2 only. Perform the necessary phase shift for each channel. In other words, the absolute phase is not an essential problem as long as synchronization between channels can be achieved.
図 17Bは図 17 Aに示すクロック信号にて位相シフト部 25—1によって上 記割り当てシフト量分位相シフトした後の各データ信号の波形を示す。 即ち、 デ ータ信号 D 1は一段目で距離 + 1分の位相シフトを行うため、 元の C 1から C 2 へと位相シフトすることとなる。 そのためクロック信号 C 2で識別している。 他 方、 D2、 D 3は各々一段目で距離 0分の位相シフトを行うため、 元の C3, C 2で夫々識別し直す。 即ち上述の如く回路中の遅延によってデータ信号とクロッ ク信号との間の位相関係は変動し得るため、 位相シフト部 25— 1において各デ ータ信号を再度所定のク口ック信号で識別し直すことによって上記位相関係の変 動分を補償する。  FIG. 17B shows a waveform of each data signal after the phase shift unit 25-1 has shifted the phase by the above-mentioned assigned shift amount by the clock signal shown in FIG. 17A. That is, since the data signal D1 performs a phase shift of distance +1 at the first stage, the phase shift is performed from the original C1 to C2. Therefore, it is identified by the clock signal C2. On the other hand, D2 and D3 each perform a phase shift of a distance of 0 at the first stage, so they are re-identified by the original C3 and C2, respectively. That is, since the phase relationship between the data signal and the clock signal can fluctuate due to the delay in the circuit as described above, each data signal is identified again by the predetermined clock signal in the phase shift unit 25-1. By compensating for the change in the above-mentioned phase relation, it is compensated.
次に図 17 Cでは 2段目の位相シフト部 25— 2によつて上記割り当てシフト 量分位相シフトした後の各データ信号の波形を示す。 即ち、 データ信号 D1は二 段目で距離 +2分の位相シフトを行うために前回の C 2から COへと位相シフト し、 即ちクロック信号 COで識別する。 D 2は前回の C 3から COへと位相シフ ト (+1) し、 即ちクロック信号 COで識別する。 D 3は前回の C 2から COへ と位相シフト (+2) し、 即ちクロック信号 C0で識別する。 このようにして全 てのデータ信号は最終的に位相 C 0に同期されることとなる。  Next, FIG. 17C shows the waveform of each data signal after the phase shift by the above-mentioned assigned shift amount by the second-stage phase shift unit 25-2. That is, the data signal D1 is phase-shifted from the previous C2 to CO in order to perform a phase shift of distance +2 in the second stage, that is, is identified by the clock signal CO. D2 is phase-shifted (+1) from the previous C3 to CO, that is, identified by the clock signal CO. D3 is phase shifted (+2) from the previous C2 to CO, that is, identified by the clock signal C0. In this way, all data signals are finally synchronized with the phase C0.
以上説明したように, 本発明によれば, 通信'情報装置内の大容量信号伝送に おける並列信号の一括伝送にぉレ、て, 受信部におけるスキューに対応した受信処 理を可能にするとともに, 簡易な構成で低速化することなく並列信号を同期処理 することが出来る。 その結果受信部の回路規模を大幅に縮小することが可能とな り, 装置規模の小型化'消費電力の低減が実現出来, 効率的な大容量情報ネット ワークの形成が可能となる。 As described above, according to the present invention, the reception processing corresponding to the skew in the receiving unit is performed in the batch transmission of the parallel signal in the large-capacity signal transmission in the communication device. This enables parallel processing of parallel signals without slowing down with a simple configuration. As a result, the circuit size of the receiving unit can be greatly reduced, the device size can be reduced, and power consumption can be reduced, and an efficient large-capacity information network can be formed.
本発明の実施例は上述のものに限られず、 本発明の技術思想に従った様々な実 施例が導出可能であり、 それらも本発明の範囲に含まれる。  The embodiments of the present invention are not limited to those described above, and various embodiments according to the technical idea of the present invention can be derived, and they are also included in the scope of the present invention.

Claims

• 請求の範囲 • The scope of the claims
1 · 並列入力データ信号の各々の位相関係を求める位相関係検出手段と、 当該検出位相関係に基づいて決定される所定量並列入力データ信号を夫々位相 シフトさせる位相シフト手段とよりなる信号処理回路。 1 · A signal processing circuit comprising: a phase relation detecting means for calculating a phase relation of each of the parallel input data signals; and a phase shift means for phase-shifting the parallel input data signals by a predetermined amount determined based on the detected phase relation.
2. 並列入力データ信号の各々に対して所定のク口ック信号にてデータ識別を 行なうデータ識別手段と、 2. data identification means for performing data identification for each of the parallel input data signals with a predetermined peak signal;
上記データ識別に使用されたク口ック信号の位相から所定の位相との位相関係 を求める位相関係検出手段と、  Phase relationship detection means for determining a phase relationship with a predetermined phase from the phase of the cook signal used for the data identification,
当該検出位相関係に基づいて決定される所定量上記識別後の並列入力データ信 号を位相シフトさせる位相シフト手段とよりなる信号処理回路。  A signal processing circuit comprising phase shift means for shifting the phase of the identified parallel input data signal by a predetermined amount determined based on the detected phase relationship.
3. 上記位相シフト手段は、 所要の位相シフト量を分割して複数回で所要の位 相シフト量の位相シフトを達成する構成の請求の範囲 1又は 2に記載の信号処理 回路。 3. The signal processing circuit according to claim 1, wherein the phase shift means divides a required phase shift amount to achieve a required phase shift amount in a plurality of times.
4. 上記位相シフト手段は、 所定の位相のクロック信号にてデータ識別動作を 行なうことによって所要の位相シフトを達成する構成の請求の範囲 1乃至 3のう ちの何れかに記載の信号処理回路。 4. The signal processing circuit according to any one of claims 1 to 3, wherein the phase shift means achieves a required phase shift by performing a data identification operation using a clock signal having a predetermined phase.
5. 立相情報はディジタルデータとされ、 前記位相関係検出手段は位相関係 をディジタル論理演算にて算出し、 前記位相シフト手段はディジタルデータの位 相関係情報に従って所要の位相シフト動作を実行する構成の請求の範囲 1乃至 4 のうちのいずれかに記載の信号処理回路。 5. The phase information is digital data, the phase relation detecting means calculates the phase relation by digital logic operation, and the phase shift means executes a required phase shift operation according to the phase relation information of the digital data. A signal processing circuit according to any one of claims 1 to 4.
PCT/JP2002/012069 2002-11-19 2002-11-19 Signal processing circuit WO2004046943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/012069 WO2004046943A1 (en) 2002-11-19 2002-11-19 Signal processing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/012069 WO2004046943A1 (en) 2002-11-19 2002-11-19 Signal processing circuit

Publications (1)

Publication Number Publication Date
WO2004046943A1 true WO2004046943A1 (en) 2004-06-03

Family

ID=32321497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012069 WO2004046943A1 (en) 2002-11-19 2002-11-19 Signal processing circuit

Country Status (1)

Country Link
WO (1) WO2004046943A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211558A (en) * 1984-04-06 1985-10-23 Oki Electric Ind Co Ltd Data transfer system
JPH0738432A (en) * 1993-07-16 1995-02-07 Sony Corp Phase comparator circuit
EP0884732A2 (en) * 1997-06-12 1998-12-16 Fujitsu Limited Timing signal generating circuit, semiconductor integrated circuit device and semiconductor integrated circuit system to which the timing signal generating circuit is applied, and signal transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211558A (en) * 1984-04-06 1985-10-23 Oki Electric Ind Co Ltd Data transfer system
JPH0738432A (en) * 1993-07-16 1995-02-07 Sony Corp Phase comparator circuit
EP0884732A2 (en) * 1997-06-12 1998-12-16 Fujitsu Limited Timing signal generating circuit, semiconductor integrated circuit device and semiconductor integrated circuit system to which the timing signal generating circuit is applied, and signal transmission system

Similar Documents

Publication Publication Date Title
CN109586692B (en) FPGA dynamic phase adjustment method applied to AD source synchronous data receiving
JP4652261B2 (en) Parallel conversion circuit
US8411782B2 (en) Parallel generation and matching of a deskew channel
US6862296B1 (en) Receive deserializer circuit for framing parallel data
TWI399956B (en) Serial protocol for agile sample rate switching
US10257795B2 (en) Signal conversion apparatus, signal restoration apparatus and information processing apparatus
US9952281B2 (en) Clock jitter and power supply noise analysis
JP2955576B1 (en) Digital communication system, transmitter and receiver thereof, and frame synchronization detection circuit
US6985546B2 (en) Transmitting circuit and method thereof, receiving circuit and method thereof, and data communication apparatus
KR101076109B1 (en) Skew correction method of received data using pattern insertion and apparatus thereof
WO2004046943A1 (en) Signal processing circuit
RU2003136099A (en) METHOD AND SCHEME OF SYNCHRONOUS RECEPTION FOR HIGH-SPEED DATA TRANSFER FROM SUBSCRIBER TO THE CENTRAL NODE IN THE OPTICAL DATA TRANSFER SYSTEM
US10598776B2 (en) Method for determining sampling phase of sampling clock signal and associated electronic device
JP3597142B2 (en) Center phase determination circuit and center phase determination method
US20050169414A1 (en) Transmitting circuit and method thereof, receiving circuit and method thereof, and data communication apparatus
JP6360578B1 (en) Deskew circuit and deskew method
US20080107138A1 (en) Method and apparatus for recognizing n channels according to n multi-channel signals
JP3038948B2 (en) Frame synchronization circuit
RU2660831C1 (en) Converter binary code - probabilistic display
KR100684564B1 (en) Frame synchronization method and apparatus therefor
JP2000332741A (en) Communication apparatus
JPS63245032A (en) High speed frame synchronizing system
CN117294412A (en) Multi-channel serial-parallel automatic alignment circuit and method based on single bit displacement
US10069513B2 (en) High-speed serial data receiving apparatus
KR100205284B1 (en) Block synchronized circuit of digital microwave transmission apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP