WO2004046619A1 - Batiments thermosolaires a masse radiante - Google Patents

Batiments thermosolaires a masse radiante Download PDF

Info

Publication number
WO2004046619A1
WO2004046619A1 PCT/IB2002/004877 IB0204877W WO2004046619A1 WO 2004046619 A1 WO2004046619 A1 WO 2004046619A1 IB 0204877 W IB0204877 W IB 0204877W WO 2004046619 A1 WO2004046619 A1 WO 2004046619A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
solar
thermosolar
air conditioning
thermal
Prior art date
Application number
PCT/IB2002/004877
Other languages
English (en)
Inventor
Abdou-Nebi Mezri
Original Assignee
Abdou-Nebi Mezri
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abdou-Nebi Mezri filed Critical Abdou-Nebi Mezri
Priority to PCT/IB2002/004877 priority Critical patent/WO2004046619A1/fr
Priority to AU2002347477A priority patent/AU2002347477A1/en
Publication of WO2004046619A1 publication Critical patent/WO2004046619A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/003Central heating systems using heat accumulated in storage masses water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S10/753Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations the conduits being parallel to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/66Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • F24S90/10Solar heat systems not otherwise provided for using thermosiphonic circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/18Solar modules layout; Modular arrangements having a particular shape, e.g. prismatic, pyramidal
    • F24S2020/183Solar modules layout; Modular arrangements having a particular shape, e.g. prismatic, pyramidal in the form of louvers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention essentially belonging to the housing, tertiary and industrial sectors.
  • Thermosolar Buildings with radiant mass are particularly intended to innovate the technical and architectural design of constructions with the aim
  • Thermosolar buildings object of the invention by exploiting solar energy, clean, powerful and durable, and using the Thermosolar construction technique, remedy the above-mentioned ecological drawbacks by reducing emissions of polluting gases including C02 or degrading the layer of Ozone such as CFCs.
  • polluting gases including C02 or degrading the layer of Ozone such as CFCs.
  • thermosolar construction technique which technique respects the environment would allow to design and realize the buildings of tomorrow differently. Resistant, comfortable buildings, energy efficient and non-polluting.
  • the innovative thermosolar technique therefore offers specific scientific, technological and industrial solutions which can now be applied to any building whatsoever: individual or collective, existing or to be built, depending on use and geographic location, particularly regions. sufficiently sunny. Presentation of the invention
  • the invention is the industrial application of a series of scientific, technical and artistic research entitled: Thermosolar.
  • Thermosolar is the thermal regulation by solar energy of any inert or living material body, of determined mass, shape and color. It is inspired by observations made by the inventor on organic creatures with hyper-resistant structures to constraints, using for their thermal regulation, solar energy.
  • thermosolar buildings with radiant mass are inspired by the physical principles used by certain plant and animal creatures very resistant to stresses, dependent on solar energy. This is the case of shells with organic structures in shells adapted to extreme natural dynamic and static stresses including pressures and earthquakes; and this is also the case, cold-blooded reptiles, such as: lizards, turtles, snakes or even crocodiles ... whose thermal regulation is made by solar energy and by aquatic frigories (water ) and terrestrial (soil).
  • reptiles therefore, in this case crocodiles, to regulate their body temperature, with their dermal skin covered with tiny scales assimilated to solar collectors, collect solar infrared (heat) and transmit it by epidermal blood thermocirculation to all of their body mass to heat it.
  • amphibians With their same dermal skin, draw aquatic frigories by conduction and convection by bathing in water or by fleeing into the ground.
  • the reptiles resume the solar heating operation, alternating with that of cooling and the cycle continues.
  • any thermosolar building like a seashell, is designed with a structure in decreasing section from the ground; and like a reptile, captures radiant solar energy with its outer envelope (dermal skin) partially or completely covered with solar thermal collectors.
  • the heat produced by these sensors is then transmitted to a heat transfer fluid (liquid and / or gaseous) circulating between the sensors and a heating or cooling network distributed throughout the load-bearing mass of the structure, thus cooling the interior with thermal radiation. of the building.
  • Thermosolar buildings are divided into two families of constructions: curved buildings whose supporting structure is in shell (curved shape) elongated or flattened and buildings cubists with load-bearing plate structure (straight walls). Depending on the use, each family is divided into Thermosolar buildings with a heavy load-bearing structure and Thermosolar buildings with a light or mixed structure (light and heavy).
  • Thermosolar buildings with radiant mass are characterized by their load-bearing structure in a specific ellipsoid shell, elongated or flattened depending on the nature of the structure. A hull whose horizontal section from the ground to the top is constant or gradually decreasing.
  • thermosolar building in a shell with balanced structural and thermal inertia allowing, on the one hand, to store and distribute heat by uniformly stabilizing the temperature of the room, and, on the other hand, to effectively resist thermal and mechanical constraints.
  • internal and external of seismic and cyclonic origin for example - even in the most extreme climatic and sunshine conditions: strong wind, heat, cold, humidity, hurricane, landslide -
  • a curved thermosolar building is ideal for the sector individual residential (villas and houses) but also collective tertiary and prestige for use: commercial, tourist, sports, cultural or even industrial technological ... The cost of these achievements is reduced by comparison with a cubic building of the same volume.
  • the croaker buildings are inspired by croaker art and therefore creatures in curved shapes adapted to their natural environment.
  • the structures of these buildings in homogeneous hulls have remarkable mechanical resistance and thermal and acoustic behavior. With their convex outer wall reflect thermal and sound waves to the outside, while with their concave inner wall converge them while exchanging heat with the interior of the building, thus establishing general acoustic, hygrometric and thermal comfort harmonious and balanced.
  • Cubist radiant thermosolar buildings are constructions whose peripheral load-bearing envelope is made of plates (straight walls) not having the same properties as the aforementioned curved supporting structure. Only the geometric shape differs from them.
  • Cubist thermosolar buildings are similar to traditional buildings using conventional energies, but are distinguished by their load-bearing structure with constant or decreasing structural-thermal inertia allowing the storage of solar energy and air conditioning.
  • thermosolar construction technique concerns any individual or collective building with floors or isolated on the ground.
  • This building can be fixed or mobile, with or without a roof, prefabricated or made in situ, with a heavy or light structure - this depending on: the architectural design, the volume, the floor space and the geographic location of the site in high snow-capped mountains or in the middle of the desert.
  • Thermosolar buildings for industrial use are mainly those used for the production, storage and thermal and sanitary conditioning of products sensitive to heat, humidity and convection of ambient air.
  • the electronics, chemistry and fine technology laboratories are examples.
  • Thermosolar buildings for industrial use concern the storage and conditioning of agricultural and forestry, land and aquatic products, but also greenhouses for crops, drying of wood and its derivatives, dehydration of citrus fruits, etc.
  • Thermosolar buildings with natural thermal regulation comprising neither complicated installations leading to energy losses and an obvious drop in efficiency, nor uncomfortable devices generating noise disturbances and electromagnetic and electrostatic residual radiation.
  • Thermosolar buildings with curved or cubist radiant mass provide occupants with an exceptional feeling of natural body comfort, especially in the residential and tertiary sector for night and / or day use; ranging from simple houses to high-end villas through special works such as: clinics and hospitals, residential complexes, hotel, commercial, and university complexes, etc.
  • Any material body whatever it is natural or artificial, inert or living, absorbs, uses, stores and restores solar energy. Electromagnetic energy allowing photosynthesis of plants to produce organic energy, sugar, and / or produce thermal energy, heat. These solar reactions depend not only on the chemical nature of this body, but also and above all on its physical and dimensional characteristics in this case its mass and its optimal envelope surface, border between this mass and the external environment. Bodies with particular spherical, cubic and ellipsoid shapes are examples. Optimal forms used in the architectural design of thermosolar buildings with radiant mass exposed in the invention.
  • a solar thermal building is similarly made up of a mass (M) commonly called load-bearing structure and an optimal envelope (S) (facades) materialized by modular solar collectors.
  • M mass
  • S optimal envelope
  • the collector envelope collects and absorbs solar energy (Ga) which the carrier mass stores and diffuses to cool the interior of said building.
  • Ga solar energy
  • T thermosolar energy equation
  • OT Qk represents the quantity of thermal energy stored in the load-bearing mass (M) allowing to cool the building
  • Qa is the quantity of global solar energy captured by the envelope of solar collectors (S), penetrating through the supporting structure (M) in the building.
  • the negative sign of this term means in equation (E) called heat, that the room gains radiant energy.
  • Qp represents the amount of energy transmitted and reflected by the sensor envelope (S) to the outside.
  • the positive sign means that this energy is lost.
  • Qi is the amount of additional air conditioning energy created in the building to compensate for the missing solar energy in cloudy weather for example. The above four energies are expressed in watt hours.
  • c specific heat in (Watt / kg / ° C).
  • T air conditioning temperature in the building in degrees Celçus (° C).
  • t duration of sunshine in seconds (s).
  • dv volume element in (m) of the carrier mass (M).
  • coefficient of absorption of the solar collector envelope without unit ⁇ 1.
  • ⁇ a D + ⁇ l: global solar radiation captured and absorbed by the envelope of solar collectors.
  • D flux of diffuse solar radiation including the Albedo expressed in (Watt / m).
  • I direct solar radiation flux in (Watt / m. ⁇ : solar distribution coefficient without unit.
  • Ds surface element of the solar collector envelope in (m)
  • heat loss flux expressed in (Watt / m .: flux of solar radiation reflected by the collector envelope (S) in (Watt / m).
  • thermosolar energy equation expressing the building's thermal and solar balance is a homogeneous expression which, by simplifying the time variable (dt), leads to a thermosolar power equation in (watt) such that:
  • thermosolar building we thus find in this expression of temperature (T) the main physical and dimensional variables mentioned above characterizing a thermosolar building that are: the absorbed solar energy captured (Ga), the envelope surface (S) materialized by the solar collectors, the mass of the supporting structure (M) and finally the specific heat (c) of the construction materials used by this structure such as: concrete, stone, brick, etc.
  • T the main physical and dimensional variables mentioned above characterizing a thermosolar building that are: the absorbed solar energy captured (Ga), the envelope surface (S) materialized by the solar collectors, the mass of the supporting structure (M) and finally the specific heat (c) of the construction materials used by this structure such as: concrete, stone, brick, etc.
  • T the main physical and dimensional variables mentioned above characterizing a thermosolar building that are: the absorbed solar energy captured (Ga), the envelope surface (S) materialized by the solar collectors, the mass of the supporting structure (M) and finally the specific heat (c) of the construction materials used by this structure such as: concrete
  • thermosolar energy equation (E) amplify the global solar radiation (Ga) captured and absorbed by the sensor envelope (S) using the complementary reflector of solar rays, -or increase the envelope surface (S) capturing the radiation (Ga). or the carrier mass (M) of thermal storage is reduced, on which the structural-thermal inertia and the mass heat (c) depend.
  • the surface area of the solar collectors in facades and / or the mass of the load-bearing structure (M) of the construction is increased or decreased in proportion to the global solar energy (Ga) received, thus making it possible to create in the residential, tertiary or industrial building, the ideal temperature (T) of air conditioning desired.
  • T A temperature on which not only the energy yield but also the economic and ecological value of the building depend.
  • thermosolar building with radiant mass characterized in that it is technically the scientific application of the above-mentioned thermosolar energy equation (E), making it possible as a function of the carrier mass (M) to be air-conditioned and envelope of solar collectors (S) capturing solar energy (Ga), establishing by means of a thermosolar installation the ideal air conditioning temperature (T) in the building.
  • E thermosolar energy equation
  • thermosolar building is a self-storing solar energy collector and self-regulating thermal.
  • thermosolar building By analogy with the dermal skin of a reptile made up of small scales heated by the sun's rays, the outer envelope (S) of a thermosolar building is also made up of specific solar collectors covering totally or partially the sunny facades. These compact modular collectors produce heat or cool by capturing solar infrared to produce hot water and cool the building.
  • the load-bearing structure of a thermosolar building is also air-conditioned with the calories and frigories produced in these same places by solar collectors.
  • the load-bearing structure of a building is that materialized by all of the horizontal load-bearing elements (floors and ceilings) and vertical (peripheral master walls and partitions) but also stairs and all similar massive material bodies.
  • These elements generally made of heavy materials such as: concrete, stones, bricks, concrete blocks, etc., traditionally ensuring the mechanical and dynamic stability of the structure, are now used to store solar calories and frigories drawn from the ground, for example for air condition the building.
  • the load-bearing elements Due to their imposing mass, the load-bearing elements, whose high specific heat and thermal inertia, behave as air conditioners, radiating with their large internal walls, the warmth and freshness previously stored inside the room. Hence the qualifier of the supporting structure of "radiant mass".
  • the load-bearing mass plays two complementary "structural-thermal" roles inseparable in the mechanical and thermal balance of construction. On the one hand it can withstand external stresses and internal constraints, and on the other hand stores solar energy and freshness to establish the general thermal balance of the building.
  • the radiant mass behaving like a thermal battery therefore stores solar photons and frigories, and like an enormous air conditioner, diffuses comfortably, by thermal radiation, the heat and the freshness in the room including the northern part of the building.
  • the temperature radiated by the load-bearing mass in the building and the prevailing humidity remain day and night regularly stable - this because of the uniformly identical temperature of all the load-bearing elements such as: floors, walls, partitions, stairs. .. Elements firmly linked together by embedding, thus promoting the uniform propagation of isotherms by conduction throughout the radiant mass.
  • the heating mode by thermal radiations of these "radiant elements" excludes any movement of air by convection in the room - thus avoiding the untimely circulation of microbial agents or pollutants between the various compartments of the construction.
  • the temperature radiated by the load-bearing elements in the building remains stable, however, even when opening and closing alternately and repeatedly doors and windows for air renewal or due to the activity of the occupants.
  • This increases thermal and sanitary comfort and maintains the longevity of the structure.
  • Such thermal comfort would be particularly suitable for so-called sensitive residential and tertiary buildings but also industrial buildings with fine technology requiring a strictly stable thermal, hygrometric, acoustic or even sanitary balance.
  • the air-conditioning heat transfer fluid By analogy with the blood fluid of a reptile carrying heat from the epidermis of the animal to its body to be heated, for a thermosolar building with radiant mass, the air-conditioning heat transfer fluid, also consists of a thermodynamic fluid (liquid or gaseous) autonomous in closed circuit.
  • the role of this heating and cooling fluid is to transmit by convection according to the principle of thermosiphon the heat and the freshness of the sensors external to the carrying structure with decreasing inertia (M) by means of thermal air conditioning networks distributed in the building.
  • the heat transfer fluid circulating in the supporting structure eliminates the residual moisture in the supporting elements, often centers of proliferation of infectious microorganisms and parasites such as fungi.
  • this air-conditioned structure increases thermal and sanitary comfort for the occupants, limits heat loss and therefore reduces energy consumption as well as carbon dioxide emissions by the conventional energy back-up heating used.
  • Figure 1a embodiment of a thermosolar building with curving radiant mass whose • hull is of decreasing structural-thermal inertia, elongated at several levels or flattened.
  • Figure 1b example of a thermosolar building with a collective cubist radiant mass in plates, with decreasing or constant structural-thermal inertia at several levels.
  • Figure 1c embodiment of a thermosolar building with cubist radiant mass in plates, individual, with decreasing or constant structural-thermal inertia without levels.
  • FIG. 2 vertical section of a thermosolar building with collective cubist radiant mass with plate floors, with constant structural-thermal inertia, showing the essential elements of the thermosolar installation, namely: the envelope (S) of collectors 13 to any lower stage connected to the air conditioning elements 19a, 19b in the carrier mass (M) of any corresponding upper stage.
  • Figure 3 vertical section of a thermosolar building with radiant mass with individual cubist roof without plate floors, with constant structural-thermal inertia, showing the essential elements of the thermosolar installation, namely: the envelope (S) of collectors 13 provided at their base with a solar reflector 14, connected in the same level to the air conditioning elements 19a, 19b in the load-bearing mass (M) of the building.
  • FIG 4 vertical section of a Thermosolar building with collective radiating mass curved with hull floors, with decreasing structural-thermal inertia, showing the essential elements of the Thermosolar installation, namely: the envelope (S) of collectors 13 on any lower floor connected to the air conditioning elements 19a, 19b in the carrier mass (M).
  • Figure 5 vertical section of a thermosolar building with curved hull radiating mass, with decreasing structural-thermal inertia, showing the essential elements of the thermosolar installation, namely: the envelope (S) of sensors 13 connected to the elements conditioners 19a, 19b in the carrier mass (M).
  • Figure 6 symbolic horizontal sectional plan of a thermosolar building with or without floors, making it possible to note: the replacement air conditioning elements 11 running along the interior base of the carrier envelope 9a in which the air conditioning network 19a is embedded connected to the sensors 13 in exterior facades.
  • Figure 6a section of the air conditioning element 11.
  • Figure 7 vertical partial section in close-up of the thermosolar installation made between two floors of the thermosolar building illustrated by figures 2 and 4. Note the pipes 7a and 7b connecting the absorber 12 of the solar thermal collector 13 to the air conditioning networks 19a, 19b, 11 on the floor above.
  • FIG 8 close-up perspective showing in detailed section the main elements characterizing the solar thermal building, namely: the solar collectors comprising the window 10, the mirror screen 15, and the absorber 12 connected with the pipe 7 to the air conditioning networks 19a , 19b, 11, respectively in the slab 9a, the carrying envelope 9b and inside the building 20.
  • FIG. 9 Vertical section of the solar thermal collector 13 comprising: the window 10, the screen in superimposed horizontal mirror strips 15 orienting the solar rays R into Rb on the absorber 12, separated from the carrier envelope 9a by thermal insulation acoustics 16.
  • FIG. 9a close-up of the mirror strips of the screen 15 of FIG. 9 showing a partial orientation of the incident solar rays R on the absorber 12 of the sensor 13.
  • FIG. 9b close-up of the mirror slats of the screen 15 of FIG. 9 showing a total orientation of the incident solar rays R into Rb on the absorber 12 of the sensor 13.
  • Figure 10 cross section of the solar thermal collector 13 comprising: the window 10, the screen in aligned vertical mirror strips 15 allowing the orientation of the solar rays R in Rb on the absorber
  • Figure 11 vertical section of the absorber 12.
  • the upward arrows indicate the natural convection by thermosyphon of the heat transfer fluid 2 from the lower part 23 to the upper part 22 between the air conditioning networks 19a, 19b, 11 and the external sensors 13.
  • Figure 11a vertical section of the absorber 12.
  • Figure 11b cross section of the absorber 12 showing the section of the round profiles with their flat edges 24 and the space 21.
  • Figure 11c perspective diagramming the modular sensor of height H and width L.
  • Figure 12 detail in partial section of the air conditioning networks 19a or 19b housed with adjustment in a heat conductive sheath 17 to allow heat exchange with the carrier mass (M).
  • Figure 12a partial longitudinal section of the tubular air conditioning network 9b embedded in a layer of heat-conducting fine sand inside the horizontal floor / slab 19b.
  • Figure 12b partial cross section of the tubular air conditioning network 9a embedded in a tubular layer of fine heat conductive sand inside the carrier envelope 19a.
  • Figure 12c longitudinal partial section of the tubular air conditioning network 9a embedded in a tubular layer of fine heat conductive sand inside the vertical carrier shell or shell 19a.
  • 11a Heat diffuser with large heat exchange surface of the element 11.
  • 11b Tubular heat collector of the element 11.
  • 15- Solar orientation screen in superimposed horizontal slats with mirror faces.
  • 15b- Solar orientation screen in vertical strips aligned with opposite faces.
  • thermosolar building with radiant mass relates to sectors such as: housing, the tertiary sector or even industry. It can be depending on the sector of use: individual or collective, of a curved nature in a flattened shell or elongated at several 40 levels or cubist in multi-storey plates.
  • This is the example of the X-ray thermo-solar building with a curving mass illustrated by the figure: 1a, but also the cubist building with multi-storey plates in the figure: 1b, or the example of the house or individual villa represented by the figure: 1c.
  • thermosolar constructions designed according to the technique set out in the invention give a real idea of thermosolar architecture in the construction field.
  • thermosolar building with radiant mass characterized in that it is air-conditioned (heated or cooled) with global solar energy (G) by a thermosolar installation comprising : internal thermal air conditioning (heating or cooling) networks 19a and horizontal 19b in the support structure (M), distributed respectively in the support envelope 9a and in the floors / slabs on the floors and ceilings 9b; 50 networks connected directly together or separately to an external enclosure (S) made up of solar thermal collectors 13 covering part or all of the facades of said building - thus allowing, according to the physical principle of thermosiphon, a heat transfer fluid 2 (liquid or gaseous) in closed circuit in said installation, to convey by means of pipes 7 (a , b) the calories and the frigories produced by the aforementioned sensors towards the air-conditioning networks in the named building.
  • a thermosolar installation comprising : internal thermal air conditioning (heating or cooling) networks 19a and horizontal 19b in the support structure (M), distributed respectively in the support envelope 9a and in the floors / slabs on the
  • the aforementioned air conditioning networks are then located in any upper floor and the solar thermal collectors installed on the facades of any corresponding lower floor, thus allowing, thanks to the level difference between these floors, convection between the same stages in the installation.
  • the difference in level therefore between the air conditioning thermal networks in the building and the external solar collectors is at the origin of this free convection by thermal capillarity of the heat transfer fluid in the installation to cool the building adequately without interruption as the solar rays R light up the sensors.
  • figure: 2 we notice on the ground floor of the building, the absence of the air conditioning networks 19a and 19b while they are present on the upper floors; only the solar thermal collectors 13 are exposed on the exterior facades of the same floor at ground level. This is to show that convection in thermosiphon takes place between the floors below and the floors above to allow the best possible air conditioning of the entire building.
  • the incident solar rays R refracted by the glass 10 are oriented by the mirror screen 15 on the absorber 12 which, by capturing them with its selective black face, absorbs them and converts them into heat to heat or cool the heat transfer fluid 2 which it contains.
  • the same fluid 2 after having released its calories in the upper stage, returns by means of the conduits 7b to the absorbers 12 of the sensors in the facades of the lower stage to heat or cool again and the cycle continues. All floors are naturally heated at the same time in this way thereby establishing a general air conditioning temperature (T) inside the building.
  • T general air conditioning temperature
  • thermosolar building without a curve (s) (Fig: 5) or cubist (Fig: 4) floor the installation is combined differently: the air conditioning elements 19a, 19b, 11 internal and the sensors 13 in external facades are located on the same floor - normally connected to the supply lines 7a and return 7b to the external sensors.
  • the circulation of the heat transfer fluid 2 can naturally remake by thermosyphon or mechanically - but less efficiently than a building where the difference between these stages is greater to accelerate the rapid convection of the heat transfer fluid 2 in the installation.
  • the air conditioning networks (heating and cooling) 19a or 19b are housed in ducts 17 (Fig: 12) conductive of heat, embedded in the supporting envelope 9a and in the floors / slabs on the floors and ceilings 9b, thus allowing the extraction and replacement of these air conditioning thermal networks without difficulty in the event of incidents.
  • the air conditioning network 19b is embedded in a layer of tubular fine sand or not arranged in length or distributed over the entire surface of the floors / slabs 9b of the building, thereby avoiding thermo-mechanical stresses due to shrinkage and alternating expansion by the air conditioning fluid (hot and cool) in circulation.
  • the tubular air conditioning network 19a is embedded in a layer of tubular or non-fine sand 25 at floor level in the peripheral bearing envelope 9a to be air conditioned by the heat transfer fluid (liquid or gaseous) 2, thereby allowing better heat exchange while avoiding thermo-mechanical stresses due to alternating withdrawals and expansions by the air conditioning fluid (hot and cool) circulating in the installation.
  • the heat transfer fluid liquid or gaseous
  • the load-bearing mass (M) has a decreasing structural-thermal inertia, translated by a gradual decrease, from the ground to the top, of the horizontal section of the load-bearing envelope 9a and of the thickness of the floors and ceilings 9b, together materializing the load-bearing structure of the building.
  • Such a decrease in the carrier mass allows better resistance to thermal, dynamic and mechanical stresses and a balanced distribution of the air conditioning temperature (T) throughout the structure - radiated by all the internal walls of this same mass called radiant.
  • the facades of solar thermal collectors 13 have at their base a veil 14 (Fig: 3) incorporated whose unwinding allows, according to a length (x), the adjustment of the reflecting surface and therefore of the flux of solar rays R to reflect on the collectors in addition to the other direct solar rays R incident on these same collectors.
  • the reflective veil particularly concerns duplex or storyless buildings like the one illustrated in Figure 3.
  • the outer envelope (S) of the thermosolar building consists of modular thermosolar sensors 13 (Fig: 9, 10) each comprising a frame chassis 18 provided internally with grooves 18a making it possible to guide and easily position the interchangeable elements such as: the glass 10, the screen 15, the absorber 12 and the thermal-acoustic insulation 16.
  • These same grooves reduce the thermal stresses due above all to expansion by heat and cold of these elements which are now assembled freely without embedding.
  • the same grooves also allow, in the event of a technical incident, for example, the easy replacement of these same elements of the sensor, namely: the absorber 12, the mirror screen 15, the glass 10 or even the thermal-acoustic insulation 16 .
  • the window 10 is a plate permeable to natural light refracting the maximum of incident solar rays R on the screen 15 and the minimum of loss towards the outside.
  • Which screen (Fig: 9a, 9b) is made up of superimposed horizontal or vertical aligned slats whose permanent orientation or not in the sun, allows the front and rear faces notice screws mirroring these slats, to guide on the one hand by reflection the solar rays (R) refracted by the glass in oriented rays (Rb) on the selective black absorbent face of the absorber 12 to heat or cool the heat transfer fluid 2 which it contains, and on the other hand, for reason aesthetic, making invisible from the outside said black face by interposing in front of said absorber, thereby improving the apparent architectural appearance of the facades of the building.
  • the mirror slats have a fixed or mechanically automatic orientation to the sun.
  • the slats are constantly oriented towards the star in its trajectory with their faces incident to the sun's rays, thus allowing the perfect orientation of these rays refracted by the glass 10 on the absorber 12 throughout the day. sunshine.
  • the strips 15 are kept closed to reduce the heat losses between the absorber 12 and the ambient outside by reflecting with their mirror faces the infrared emitted by this absorber.
  • the same closed position also allows total or partial reflection (Fig: 9a) of the incident solar rays R, thus reducing the overheating of the same absorber.
  • the slatted screen 15 plays an important role in the adaptation of the sun's rays to air conditioning and to the thermal-acoustic insulation of the building. Such properties are distinguished from a normal curtain screen used to simply provide shade by masking the sun's rays.
  • the thermal-acoustic insulation 16 between the absorber 12 and the load-bearing envelope 9a of the building can be eliminated depending on the degree of sunshine of the site.
  • the absorber 12 (Fig: 11) consists of profiles with parallelepipedic or round hollow sections of height (H) and wall thickness (e), provided at the front and at the rear with flat edges 24 allowing: on the one hand the rapid heating of the heat transfer fluid 2 by the solar rays Rb and on the other hand the pipe in the hollow 21 of another gaseous fluid for example to be heated or cooled.
  • the high conical part 22 of this same absorber facilitates the flow by natural convection (thermal capillarity) of the heat transfer fluid by means of the outward pipe 7a (FIG: 9) channeling it between the exterior solar collectors 13 and the interior air conditioning networks 19a and 19b in the building.
  • the conical lower part 23 it allows the diffusion of the same fluid channeled through the return pipe 7b air conditioning networks towards the absorber 12 to heat up by the solar rays oriented Rb.
  • the heat transfer fluid activated by the sun's rays thus circulating freely by natural convection without turbulence in the solar thermal installation, improves the general thermal efficiency of the building.
  • the arrows in the illustrative figures indicate the route of the heat transfer fluid in thermosyphon convection between the external solar collectors and the internal air conditioning networks.
  • the air conditioning thermal networks 19a and 19b are replaced or seconded by an air conditioning thermal network (heating and / or cooling) 11 consisting for example of a tubular lower part 11a and an upper part 11 b with a large surface area. facilitating heat exchange with the interior of the building (Fig: 6a).
  • This complementary or substitution network runs along the interior of the building at the base of the peripheral load-bearing envelope 9a by connecting by means of the conduits 7 (a, b) to the external thermal solar collectors 13.
  • thermosolar building can, according to the choices and according to the degree of sunshine, be air-conditioned with a thermosolar installation comprising the air conditioning networks 11, 19a, 19b combined together or separately according to the nature, the use and the place of the building to to air-condition.
  • the solar thermal installation can work with only the supply lines 7b (Fig: 9) - the return lines 7a can be omitted.
  • Such a design allows the heat transfer fluid 2 to transfer, by conduction and free convection (thermosiphon) without turbulence, the heat to the air conditioning networks 19a, 19b, 11 in the buildings.
  • thermosolar building In winter, for example, calories (heat) are supplied by solar rays to solar thermal collectors (13) which, like reptiles, by means of a heat transfer fluid, transmit them naturally by thermosyphon to the heating networks 19a, 19b, 11 in the carrier mass (M) which heats the building by thermal radiation (4).
  • solar thermal collectors In summer, the same solar rays allow the abovementioned collectors to draw outside or ground refrigeration (6) for example to cool said supporting structure and therefore the construction.
  • large quantities of hot water and possibly electricity are produced daily by a thermosolar building in all sectors, this for all useful purposes: domestic, food or even industrial and agricultural.
  • the coefficient G is, let us recall, the value commonly used in the regulation and calculations of the heat losses of buildings mainly tertiary and residential.
  • This coefficient expressed as (W / m K) does not t j ent com pt e d e is the effective energy consumed by the construction, but makes it possible to determine the heat loss through the shell of the room according to: by a coefficient of transmission (k), the living space (v) and the temperature difference (DT) between the interior and exterior of the building.
  • the coefficient G of the load-bearing envelope is always positive.
  • thermosolar building with radiant mass object of the invention is more efficient, economically profitable and ecologically less polluting than a building traditional heated by an internal heat source using conventional energies.
  • the solar thermal collectors 13 can be made of prefabricated modular elements or made in situ.
  • the air conditioning thermal networks 19a, 19b, 11 can be replaced by other equivalent air conditioning systems allowing the thermal regulation of the building.
  • the pipe system 7a and 7b to allow convection of the fluid 2 between the solar thermal collectors 13 and the networks 19a, 19b, 11 can be replaced by another equivalent system of thermal transfer by convection.
  • the air conditioning elements 11 can be replaced by different heating and / or cooling systems and otherwise placed together or separately throughout the building.
  • the heat transfer fluid 2 can be replaced or seconded by another liquid or gaseous fluid allowing the air conditioning of the building.
  • the mirror strips 15 between the window 10 and the absorber 12 can be designed and used otherwise. They can be replaced by an equivalent system allowing the partial or total orientation of the sun's rays on the absorber 12 and their total reflection towards the outside.
  • the absorber 12 can be replaced by another equivalent, having sections allowing the convection of the fluid which it contains - the free convection of the heat-transfer fluid 2 between the sensor 13 and the networks 19a and 19b can be transformed into mechanically forced convection .
  • the solar thermal installation described in this invention is compatible with traditional heating and air conditioning installations equipping existing or future buildings.
  • thermo-acoustic insulation 16 of the absorber can be replaced by equivalent insulating means.
  • the reflector 14 can be designed and used differently, flexible such as a sail which is rolled up and unrolled or else, rigid in the form of foldable panels on the windows 10 ' . Such a reflector allows the reflection of the solar rays R on the collectors 13 or to cover the latter totally or partially to avoid overheating of the building or to reduce losses, especially at night.
  • the solar thermal building object of the invention if it has floors. it can be air conditioned (heated or cooled) like a building without floors - that is to say: the collectors 13 in facades and the air conditioning elements 19a, 19b , 11 in the carrier mass are at each same level.
  • the carrier mass (M) can, according to this design, be cooled with the cold from the ground or from the outside drawn by mechanical convection or natural by means of the sensors 13 on the facades.
  • the heat transfer fluid 2 can be replaced or seconded by other liquid or gaseous heating and / or cooling fluids.
  • thermo-acoustic insulation 16 covered with protection.
  • the coating of fine siliceous sand for example, can be provided for differently and replaced by another equivalent heat-conducting material such as earth, for example.
  • the air conditioning networks 19a, 19b, 11 are used and connected together or separately to the solar thermal collectors 13 by means of the conduits 7 (a, b) by welding, threading or even by clamps.
  • the sensors 13 like the air conditioning elements 1 1 possibly include an exchanger allowing the supply of hot or fresh water for sanitary, food or industrial purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Building Environments (AREA)

Abstract

Un bâtiment Thermosolaire qu'il soit individuel ou collectif, caractérisé en ce qu'il est climatisé (chauffé ou rafraîchi) à l'énergie solaire (G) par sa masse porteuse au moyen d'une installation comportant des éléments climatisants internes (19a, 19b) répartis respectivement dans l'enveloppe porteuse (9a), dans les planchers/dalles aux sols et plafonds (9b) et à l'intérieur du local. Ces éléments sont raccordés à des capteurs thermosolaires (13) externes sans face apparente noire, couvrant en partie ou en totalité les façades extérieures du bâtiment. Un bâtiment Thermosolaire dont la régulation thermique par rayonnement R est établie par toutes les parois internes climatisées par un fluide caloporteur en circulation, permettant le transfert par thermosiphon, de la chaleur et de la fraîcheur entre les étages dans l'installation.

Description

DESCRIPTION
Titre e l'invention : Bâtiments Thermosolaires à masse radiante
Domaine d'application
L'invention appartenant essentiellement au secteur de l'habitat, du tertiaire et de l'industrie. Inspirés des phénomènes physiques naturels, les Bâtiments Thermosolaires à masse radiante sont particulièrement destinés à innover la conception technique et architecturale des constructions dans le but
: de renforcer la résistance surtout sismique, d'améliorer le confort thermique et sanitaire, de maîtriser l'énergie mais aussi et surtout de réduire la concentration du dioxyde de carbone et de l'ozone émis dans l'atmosphère par les bâtiments utilisant les gaz réfrigérants et les énergies carbonifères.
L'invention et l'environnement A l'ère du troisième millénaire, pendant que l'homme lutte pour son confort, la Terre paradoxalement se mutile et lentement se détruit. Prenons l'exemple du bâtiment, alors que la population mondiale ne cesse de croître, le besoin en logements proportionnellement augmente et l'atmosphère se sature en dioxyde de carbone dégagé quotidiennement par entre autres les appareils et les installations de climatisation et de chauffage utilisant les énergies carbonifères comme le pétrole, le gaz, le bois et les charbons, etc.. Des énergies certes utiles, ayant rendu d'inestimables services à l'humanité, mais hélas épuisables, coûteuses et surtout polluantes, sources de problèmes écologiques, de désordres politico-financier et de conflits inutiles.
Pour ralentir la machine infernale de la pollution, les énergies renouvelables deviennent désormais une nécessité voire une urgente priorité pour se substituer graduellement aux énergies organiques non renouvelables et polluantes... Les bâtiments Thermosolaires objet de l'invention, en exploitant l'énergie solaire, propre, puissante et durable, et en utilisant la technique de construction Thermosolaire, remédient aux inconvénients écologiques précités en réduisant les émissions des gaz polluants dont le C02 ou dégradant de la couche d'Ozone comme les CFC. Ces corps chimiques conjugués, en s'accumulant dans les couches atmosphériques, amplifient les ultraviolets particulièrement destructeurs des organismes cellulaires et piègent les infrarouges solaires qui réchauffent la planète par effet de serre, entraînant inévitablement le dérèglement climatique et avec la biodiversité.
Techniques antérieures à l'invention
Selon les techniques antérieures, la régulation thermique (chauffage et climatisation) des bâtiments est assurée avec des installations utilisant les énergies conventionnelles. Des installations souvent bruyantes, basées sur la thermocirculation d'air et la convection forcée... Le confort thermique, sonore et sanitaire de ces bâtiments pourraient s'améliorer de même le coût et le degré de pollution de ces installations se réduiraient par l'application de la -technique de construction thermosolaire exposée dans l'invention. Laquelle technique respectueuse de l'environnement permettrait de concevoir et de réaliser les bâtiments de demain autrement. Des bâtiments résistants, confortables, maîtrisant l'énergie et non polluants. La technique thermosolaire innovante, propose donc des solutions scientifiques, technologiques et industrielles spécifiques s'appliquant désormais à tout bâtiment quel qu'il soit : individuel ou collectif, existant ou à réaliser, ceci selon l'usage et le lieu géographique, particulièrement les régions suffisamment ensoleillées. Présentation de l'invention
L'invention est l'application industrielle d'une série de recherches scientifiques, techniques et artistiques intitulée : Thermosolaire. De travaux ayant permis la mise au point d'une nouvelle génération de bâtiments résistants, confortables, à haut rendement énergétique, maîtrisant l'énergie et non polluants : les bâtiments Thermosolaires à masse radiante. Par définition, le Thermosolaire est la régulation thermique par l'énergie solaire de tout corps matériel inerte ou vivant, de masse, de forme et de couleur déterminées. Il est inspiré d'observations faites par l'inventeur sur des créatures organiques à structures hyperésistantes aux contraintes, utilisant pour leur régulation thermique, l'énergie solaire.
Les bâtiments Thermosolaires à masse radiante, objet de l'invention, sont inspirés des principes physiques utilisés par certaines créatures végétales et animales très résistantes aux contraintes, dépendantes de l'énergie solaire. C'est le cas des coquillages à structures organiques en coques adaptées aux sollicitations naturelles extrêmes dynamiques et statiques dont les pressions et les séismes; et c'est le cas aussi , des reptiles à sang froid, tels que : les lézards, les tortues, les serpents ou encore les crocodiles... dont la régulation thermique est faite par l'énergie solaire et par les frigories aquatiques (eau) et terrestres (sol). Ces reptiles donc, en l'occurrence les crocodiles, pour réguler la température de leur corps, avec leur peau dermique couverte de minuscules écailles assimilées à des capteurs solaires, captent les infrarouges solaires (chaleur) et les transmettent par thermocirculation sanguine épidermique à toute leur masse corporelle pour la chauffer. Pour se rafraîchir, les amphibiens, avec leur même peau dermique, puisent par conduction et convection les frigories aquatiques en se baignant dans l'eau ou en s'enfuyant dans le sol. Pour se réchauffer de nouveau, les reptiles reprennent l'opération de chauffage solaire, alternée de celle de rafraîchissement et le cycle continue. Par analogie avec les coquillages et les reptiliens précités, un bâtiment Thermosolaire quel qu'il soit, comme un coquillage, est conçu avec une structure à section décroissante à partir du sol; et comme un reptile, capte l'énergie solaire rayonnante avec son enveloppe extérieure (peau dermique) couverte partiellement ou totalement de capteurs Thermosolaires. La chaleur produite par ces capteurs est alors transmise à un fluide caloporteur (liquide et/ou gazeux) en circulation entre les capteurs et un réseau chauffant ou réfrigérant réparti dans toute la masse porteuse de l'ouvrage, climatisant ainsi par radiations thermiques l'intérieur du bâtiment.
Afin d'harmoniser et diversifier l'architecture ainsi que le paysage urbain et l'environnement, les bâtiments Thermosolaires se divisent en deux familles de constructions : les bâtiments courbistes dont la structure porteuse est en coque (forme courbe) allongée ou aplatie et les bâtiments cubistes à structure porteuse en plaques (murs droits). Chaque famille se répartit, selon l'usage, en bâtiments Thermosolaires à structure porteuse lourde et en bâtiments Thermosolaires à structure légère ou mixte (légère et lourde). Les bâtiments Thermosolaires à masse radiante se caractérisent par leur structure porteuse en coque ellipsoïdique spécifique allongée ou aplatie selon la nature de l'ouvrage. Une coque dont la section horizontale du sol jusqu'au sommet est constante ou progressivement décroissante. On parle alors de bâtiment Thermosolaire en coque à inertie structuro-thermique équilibrée permettant d'une part, d'emmagasiner et de répartir la chaleur en stabilisant uniformément la température du local, et d'autre part, de résister efficacement aux contraintes thermiques et mécaniques internes et externes d'origine sismique et cyclonique par exemples - ceci même dans les conditions climatiques et d'ensoleillement les plus extrêmes : vent violent, chaleur, froid, humidité, ouragan, glissement de terrain- Un bâtiment Thermosolaire courbiste est idéal pour le secteur résidentiel individuel (villas et maisons) mais aussi collectif tertiaire et de prestige à usage : commercial, touristique, sportif, culturel ou encore technologique industriel... Le coût de ces réalisations est réduit par comparaison avec un bâtiment cubique de même volume.
Les bâtiments courbistes sont inspirés de l'art courbiste et donc des créatures en formes courbes adaptées à leur milieu naturel. Les structures de ces bâtiments en coques homogènes, ont une résistance mécanique et une tenue thermique et acoustique remarquables. Avec leur paroi externe convexe réfléchissent les ondes thermiques et sonores vers l'extérieur, alors qu'avec leur paroi interne concave les convergent tout en échangeant par radiations la chaleur avec l'intérieur du bâtiment, établissant ainsi un confort acoustique, hygrométrique et thermique général harmonieux et équilibré. Les bâtiments Thermosolaires à masse radiante cubistes sont des constructions dont l'enveloppe porteuse périphérique est en plaques (murs droits) n'ayant pas les mêmes propriétés que la structure porteuse courbiste précitée. Seule la forme géométrique les diffère. Les bâtiments Thermosolaires cubistes s'apparentent aux bâtiments traditionnels utilisant les énergies conventionnelles, mais se distinguent par leur structure porteuse à inertie structuro-thermique constante ou décroissante permettant le stockage de l'énergie solaire et la climatisation.
Secteurs d'utilisation
La technique de construction Thermosolaire concerne tout bâtiment individuel ou collectif à étages ou isolé au sol. Ce bâtiment peut être fixe ou mobile, avec ou sans toiture, préfabriqué ou réalisé in-situ, doté d'une structure lourde ou légère - ceci selon : la conception architecturale, le volume, la surface au sol et le lieu géographique du site en hautes montagnes enneigées ou en plein désert. Les bâtiments Thermosolaires à usage industriel par exemple, sont principalement ceux utilisés pour la production, le stockage et le conditionnement thermique et sanitaire des produits sensibles à la chaleur, à l'humidité et à la convection de l'air ambiant. Les secteurs de l'électronique, de la chimie ou encore les laboratoires à technologies fines en sont les exemples.
Les bâtiments Thermosolaires à usage industriel concernent le stockage et le conditionnement des produits agricoles et forestiers, terrestres et aquatiques, mais aussi les serres de cultures, le séchage du bois et ses dérivés, la déshydratation des agrumes, etc....
Les bâtiments Thermosolaires dont la régulation thermique est naturelle, ne comportant ni installations compliquées entraînant des pertes d'énergie et une baisse évidente du rendement, ni d'appareils générateurs de nuisances sonores et de radiations électromagnétiques et électrostatiques résiduelles inconfortables.
Les bâtiments Thermosolaires à masse radiante courbistes ou cubistes procurent aux occupants une sensation de confort corporel naturelle exceptionnelle, surtout dans le secteur résidentiel et tertiaire à usage nocturne et/ou diurne; allant de la simple maison aux villas de hautes gammes en passant par les ouvrages spéciaux comme : les cliniques et les hôpitaux, les ensembles résidentiels, les complexes hôteliers, commerciaux, et universitaires, etc..
Aspect scientifique de l'invention
Tout corps matériel quel qu'il soit naturel ou artificiel, inerte ou vivant, absorbe, utilise, stocke et restitue l'énergie solaire. Une énergie électromagnétique permettant la photosynthèse des plantes pour produire l'énergie organique, le sucre, et/ou produire l'énergie thermique, la chaleur. Ces réactions solaires dépendent non seulement de la nature chimique de ce corps, mais aussi et surtout de ses caractéristiques physiques et dimensionnelles en l'occurrence sa masse et sa surface enveloppe optimale, frontière entre cette masse et le milieu extérieur. Les corps à formes particulières sphériques, cubiques et ellipsoidiques en sont les exemples. Des formes optimales utilisées dans la conception architecturale des bâtiments Thermosolaires à masse radiante exposés dans l'invention. Par analogie avec le corps précité, un bâtiment thermosolaire est pareillement constitué d'une masse (M) appelée couramment structure porteuse et d'une enveloppe optimale (S) (façades) matérialisée par des capteurs solaires modulaires. L'enveloppe de capteurs capte et absorbe l'énergie solaire (Ga) que la masse porteuse stocke et diffuse pour climatiser l'intérieur dudit bâtiment. La température idéale de climatisation (T) ainsi créée dans le local, est déterminée à partir de l'équation énergétique Thermosolaire (E) suivante.
Qk - Qa - Qi + Qp = 0
c èT dm dt = +τ grad Ga s dt - (φ + φ) dt
Ôt Qk : représente la quantité d'énergie thermique stockée dans la masse porteuse (M) permettant de climatiser le bâtiment
Qa : est la quantité d'énergie solaire globale captée par l'enveloppe de capteurs solaires (S), pénétrante à travers la structure porteuse (M) dans le bâtiment. Le signe négatif de ce terme signifie dans l'équation (E) dite de chaleur , que le local gagne l'énergie rayonnante.
Qp : représente la quantité d'énergie transmise et réfléchie par l'enveloppe de capteurs (S) vers l'extérieur. Le signe positif signifie que cette énergie est perdue.
Qi : est la quantité d'énergie d'appoint de climatisation créée dans le bâtiment pour compenser l'énergie solaire manquante par temps nuageux par exemple. Les quatre énergies précitées sont exprimées en wattheure.
Paramètres et variables avec leurs unités cités dans l'équation Thermosolaire (E) dm = r dv : élément de la masse porteuse (M). r : exprimée en (kg / m ), est la densité de matière dont dépend l'inertie thermique de la masse porteuse . c : chaleur massique en (Watt / kg / ° C). T : température de climatisation dans le bâtiment en degrés Celçus (° C). t : durée d'insolation en secondes (s). dv : élément de volume en (m ) de la masse porteuse (M). τ : coefficient l'absorption de l'enveloppe de capteurs solaires sans unité < 1.
^a = D + βl : rayonnement solaire global capté et absorbé par l'enveloppe de capteurs solaires. D : flux de rayonnement solaire diffus dont l'Albédo exprimé en (Watt / m ).
I : flux de rayonnement solaire direct en (Watt / m . β : coefficient de répartition solaire sans unité. ds : élément de surface de l'enveloppe de capteurs solaires en (m ) φ : flux de déperditions thermiques exprimé en (Watt / m ). φ: flux de rayonnement solaire réfléchi par l'enveloppe de capteurs (S) en (Watt / m ).
L'équation énergétique thermosolaire exprimant le bilan thermique et solaire du bâtiment est une expression homogène qui, en y simplifiant la variable temps (dt), on aboutit à une équation de puissance Thermosolaire en (watt) telle que :
c Û-L dm - τ grad Ga ds - φj + φp = 0 δt A partir de cette expression de puissance, on extrait par identification l'expression finale de la température de climatisation (T) de la masse porteuse (M) du bâtiment vérifiée par celle des unités (°C) correspondantes à cette température.
~~ ! M °C m2 . Watts . nr2
Watts . kg- °CA . kg
On retrouve donc dans cette expression de température (T) les principales variables physiques et dimensionnelles citées plus haut caractérisant un bâtiment thermosolaire que sont : l'énergie solaire absorbée captée (Ga), la surface enveloppe (S) matérialisée par les capteurs solaires, la masse de la structure porteuse (M ) et enfin la chaleur massique (c) des matériaux de construction utilisée par cette structure comme : le béton, la pierre, la brique, etc.... Ces variables Thermosolaires sont extrêmement importantes. Car elles permettent en fonction de l'expression de température (T) précitée, de réaliser la température de climatisation idéale créer dans tout bâtiment Thermosolaire quel qu'il soit à réaliser à condition de respecter les trois cas fondamentaux suivant :
-soit on amplifie le rayonnement solaire global (Ga) capté et absorbé par l'enveloppe de capteurs (S) en utilisant au réflecteur complémentaire de rayons solaires, -soit on augmente la surface enveloppe (S) captant le rayonnement (Ga). -soit on diminue la masse porteuse (M) de stockage thermique, dont dépendent l'inertie structuro- thermique et la chaleur massique (c). Ces trois cas extrêmement importants, en application de l'équation énergétique Thermosolaire (E) précitée, permettent désormais de concevoir et de réaliser tout bâtiment Thermosolaire quel qu'il soit et de quantifier les énergies solaires et thermiques en jeux. Pour se faire, en fonction de l'énergie solaire reçue, selon la latitude du lieu, on augmente ou on diminue la superficie des capteurs solaires en façades et/ou la masse de la structure porteuse (M) de la construction proportionnellement à l'énergie solaire globale (Ga) reçue, permettant ainsi de créer dans le bâtiment d'habitation, tertiaire ou industriel, la température (T) de climatisation idéale souhaitée. Une température dont dépendent non seulement le rendement énergétique mais aussi ceux économique et écologique du bâtiment.
Description technique générale
Selon l'invention, un bâtiment Thermosolaire à masse radiante caractérisé en ce qu'il est techniquement l'application scientifique de l'Equation Énergétique Thermosolaire (E) précitée, permettant en fonction de la masse porteuse (M) à climatiser et de l'enveloppe de capteurs solaires (S) captant l'énergie solaire (Ga), d'établir au moyen d'une installation Thermosolaire la température de climatisation (T) idéale dans le bâtiment.
Un bâtiment Thermosolaire est un capteur auto-stockeur d'énergie solaire et autorégulateur thermique.
Les capteurs Thermosolaires
Par analogie avec la peau dermique d'un reptile constituée de petites écailles chauffées par les rayons solaires, l'enveloppe extérieure (S) d'un bâtiment Thermosolaire est pareillement constituée elle aussi de capteurs solaires spécifiques couvrant totalement ou partiellement les façades ensoleillés. Ces capteurs compacts modulaires, produisent la chaleur ou la fraîcheur en captant les infrarouges solaires pour produire l'eau chaude et climatiser le bâtiment.
L'aspect apparent de ces capteurs est clair, donc non noir, comme le sont les capteurs solaires traditionnels, ceci grâce à un écran en lamelles à face vis à vis miroir, interposé devant l'absorbeur à surface sélective noire. Aussi esthétiques que fonctionnels et performants, ces capteurs mettent les façades extérieures du bâtiment Thermosolaire en harmonie avec le paysage urbain et l'environnement.
La masse radiante
Par analogie avec le corps d'un reptilien chauffé par le soleil ou rafraîchi par les frigories puisées dans l'eau et dans le sol, la structure porteuse d'un bâtiment Thermosolaire est elle aussi climatisée avec les calories et les frigories produites dans ces mêmes lieux par les capteurs solaires. II est à rappeler que la structure porteuse d'un bâtiment est celle matérialisée par l'ensemble des éléments porteurs horizontaux (sols et plafonds) et verticaux (murs maîtres périphériques et cloisons) mais aussi escaliers et tous corps matériels massifs similaires. Ces éléments généralement en matériaux lourds tels que : bétons, pierres, briques, parpaings..., assurant traditionnellement la stabilité mécanique et dynamique de l'ouvrage, sont désormais utilisés pour stocker les calories solaires et les frigories puisées dans le sol par exemple pour climatiser le bâtiment. En raison de leur imposante masse, les éléments porteurs dont la chaleur massique et l'inertie thermique élevées, se comportent en climatiseurs, rayonnant avec leurs larges parois internes, la chaleur et la fraîcheur préalablement stockée à l'intérieur du local. D'où le qualificatif de la structure porteuse de "masse radiante". La masse porteuse joue deux rôles "structuro-thermique" complémentaires indissociables dans l'équilibre mécanique et thermique de la construction. D'une part elle permet de résister aux sollicitations extérieures et aux contraintes internes, et d'autre part emmagasine l'énergie solaire et la fraîcheur pour établir l'équilibre thermique général du bâtiment. La masse radiante se comportant comme une batterie thermique, stocke donc les photons solaires et les frigories, et comme un énorme climatiseur, diffuse confortablement, par rayonnement thermique, la chaleur et la fraîcheur dans le local y compris la partie nord du bâtiment. Selon la saison, la température rayonpée par la masse porteuse dans le bâtiment et l'hygrométrie régnante demeurent jour et nuit régulièrement stables - ceci en raison de la température uniformément identique de tous les éléments porteurs tels que : sols, murs, cloisons, escaliers... Des éléments solidement liés entre eux par encastrement, favorisant ainsi la propagation uniforme des isothermes par conduction dans toute la masse radiante. Le mode de chauffage par radiations thermiques de ces "éléments radiants", exclue tout mouvement d'air par convection dans le local - évitant de la sorte la circulation intempestive d'agents microbiens ou polluants entre les différents compartiments de la construction. La température rayonnée par les éléments porteurs dans le bâtiment demeure cependant stable, même en procédant aux ouvertures et fermetures alternées et répétées des portes et des fenêtres pour le renouvellement d'air ou en raison de l'activité des occupants. Ceci accroît le confort thermique et sanitaire et maintient la longévité de l'ouvrage. Un tel confort thermique conviendrait surtout aux bâtiments dits sensibles résidentiels et tertiaires mais aussi industriels à technologie fines nécessitant un équilibre thermique, hygrométrique, acoustique voire sanitaire rigoureusement stable. Tel l'exemple des résidences et des complexes hôteliers ou encore et surtout des écoles, laboratoires, cliniques, hôpitaux, ..., souvent affectés par la Légionellose, un germe infectieux proliférant dans les canalisations des installations de chauffage traditionnelles.
Le fluide caloporteur
Par analogie avec le fluide sanguin d'un reptile véhiculant la chaleur de l'épiderme de l'animal vers son organisme é chauffer, pour un bâtiment Thermosolaire a masse radiante, le fluide caloporteur climatisant, est également constituée d'un fluide thermodynamique (liquide ou gazeux) autonome en circuit fermé. Le rôle de ce fluide chauffant et rafraîchissant, est de transmettre par convection selon le principe de thermosiphon la chaleur et la fraîcheur des capteurs extérieurs à la structure porteuse à inertie décroissante (M) par l'intermédiaire de réseaux thermiques climatisants répartis dans le bâtiment. Le fluide caloporteur circulant dans la structure porteuse éliminent l'humidité résiduelle dans les éléments porteurs, souvent foyers de prolifération de micro-organismes infectieux et de parasites tels les champignons. En même temps, cette structure ainsi climatisée, accroît le confort thermique et sanitaire pour les occupants, limite les déperditions et donc réduit la consommation d'énergies ainsi que les émissions du dioxyde de carbone par le chauffage d'appoint à énergies conventionnelles utilisé.
Figures représentatives de l'invention
Figure 1a : exemple de réalisation d'un bâtiment Thermosolaire à masse radiante courbiste dont la coque est à inertie structuro-thermique décroissante, allongé à plusieurs niveaux ou aplatie. Figure 1b : exemple de réalisation d'un bâtiment Thermosolaire à masse radiante collectif cubiste en plaques, à inertie structuro-thermique décroissante ou constante à plusieurs niveaux . Figure 1c : exemple de réalisation d'un bâtiment Thermosolaire a masse radiante cubiste en plaques, individuel, à inertie structuro-thermique décroissante ou constante sans niveaux .
Figure 2 : coupe verticale d'un bâtiment Thermosolaire à masse radiante collectif cubiste à étages en plaques, à inertie structuro-thermique constante, faisant apparaître les éléments essentiels de l'installation Thermosolaire, à savoir : l'enveloppe (S) de capteurs 13 a tout étage inférieur connectés aux éléments climatisants 19a, 19b dans la masse porteuse (M) de tout étage supérieur correspondant. Figure 3 : coupe verticale d'un bâtiment Thermosolaire à masse radiante avec toiture individuel cubiste sans étages en plaques, à inertie structuro-thermique constante, faisant apparaître les éléments essentiels de l'installation Thermosolaire, à savoir : l'enveloppe (S) de capteurs 13 pourvus à leur base d'une réflecteur solaire 14, connectés dans un même niveau aux éléments climatisants 19a, 19b dans la masse porteuse (M) du bâtiment. Figure 4 : coupe verticale d'un bâtiment Thermosolaire à masse radiante collectif courbiste à étages en coque, à inertie structuro-thermique décroissante, faisant apparaître les éléments essentiels de l'installation Thermosolaire, à savoir : l'enveloppe (S) de capteurs 13 à tout étage inférieur connectés aux éléments climatisants 19a, 19b dans la masse porteuse (M) . Figure 5 : coupe verticale d'un bâtiment Thermosolaire à masse radiante courbiste en coque, à inertie structuro-thermique décroissante, faisant apparaître les éléments essentiels de l'installation Thermosolaire, à savoir : l'enveloppe (S) de capteurs 13 connectés aux éléments climatisants 19a, 19b dans la masse porteuse (M) . Figure 6 : plan en coupe horizontale symbolique d'un bâtiment Thermosolaire à étages ou non, permettant de remarquer : les éléments climatisant de substitution 11 longeant la base intérieure de l'enveloppe porteuse 9a dans laquelle est noyé le réseau climatisant 19a connectés aux capteurs 13 en façades extérieures.
Figure 6a : coupe de l'élément climatisant 11. Figure 7 : coupe partielle verticale en gros plan de l'installation Thermosolaire réalisée entre deux étages du bâtiment Thermosolaire illustré par les figures 2 et 4. On remarque les conduites 7a et 7b reliant l'absorbeur 12 du capteur Thermosolaire 13 aux réseaux climatisants 19a, 19b, 11 à l'étage au dessus.
Figure 8 : perspective en gros plan montrant en coupe détaillée les principaux éléments caractérisant le bâtiment Thermosolaire, à savoir : les capteurs solaires comportant la vitre 10, l'écran miroir 15, et l'absorbeur 12 connecté avec la conduite 7 aux réseaux climatisants 19a, 19b, 11 , respectivement dans la dalle 9a, l'enveloppe porteuse 9b et à l'intérieur du bâtiment 20.
Figure 9 : Coupe verticale du capteur Thermosolaire 13 comportant : la vitre 10, l'écran en lamelles miroir horizontales superposées 15 orientant les rayons solaires R en Rb sur l'absorbeur 12, séparé de l'enveloppe porteuse 9a par l'isolation thermo-accoustique 16. Figure 9a : gros plan des lamelles miroir de l'écran 15 de la figure 9 montrant une orientation partielle des rayons solaires incidents R sur l'absorbeur 12 du capteur 13.
Figure 9b : gros plan des lamelles miroir de l'écran 15 de la figure 9 montrant une orientation totale des rayons solaires incidents R en Rb sur l'absorbeur 12 du capteur 13.
Figure 10 : coupe transversale du capteur Thermosolaire 13 comportant : la vitre 10, l'écran en lamelles miroir verticales alignées 15 permettant l'orientation des rayons solaires R en Rb sur l'absorbeur
12 séparé de l'enveloppe porteuse 9a par l'isolation thermo-accoustique 16.
Figure 11 : coupe verticale de l'absorbeur 12. Les flèches vers le haut indiquent la convection naturelle par thermosiphon du fluide caloporteur 2 de la partie basse 23 vers celle haute 22 entre les réseaux climatisants 19a, 19b, 11 et les capteurs 13 extérieurs. Figure 11a : coupe verticale de l'absorbeur 12.
Figure 11 b : coupe transversale de l'absorbeur 12 montrant la section des profilets ronds avec leur bordures plates 24 et l'espace 21.
Figure 11c : perspective schématisant le capteur modulaire de hauteur H et de largeur L.
Figure 12 : détail en coupe partielle des réseaux climatisants 19a ou 19b logés avec ajustement dans une gaine conductrice de chaleur 17 pour permettre l'échange thermique avec la masse porteuse (M).
Figure 12a : coupe partielle longitudinale du réseau climatisant tubulaire 9b noyé dans une couche de sable fin conducteur de la chaleur à l'intérieur du plancher/dalle horizontal 19b.
Figure 12b : coupe partielle transversale du réseau climatisant tubulaire 9a noyé dans une couche tubulaire de sable fin conducteur de la chaleur à l'intérieur de l'enveloppe porteuse 19a. Figure 12c: coupe partielle longitudinale du réseau climatisant tubulaire 9a noyé dans une couche tubulaire de sable fin conducteur de la chaleur à l'intérieur de l'enveloppe porteuse verticale en coque ou en plaques 19a.
Références et désignations des éléments de l'invention.
R - Rayons solaires incidents.
Ra, Rb - Rayons solaires orientés.
G - Énergie solaire globale incidente.
Ga - Énergie solaire globale absorbée par les capteurs 13.
M - Masse de matière à climatiser ou structure porteuse. S - Enveloppe de la masse M.
T - Température de la masse M ou de climatisation dans le bâtiment.
H - Hauteur du capteur thermosolaire modulaire 13.
L - Largeur du capteur thermosolaire modulaire 13.
X - Longueur variable de déroulement du réflecteur 14. e - Épaisseur de l'absorbeur 12.
1 - Milieu extérieur.
2 - Fluide caloporteur climatisant.
3 - Toiture éventuelle.
05 4 - Chaleur émise par rayonnement thermique.
5 - Chaleur émise par convection libre.
6 - Sol naturel.
7a- Conduites aller raccordant l'extrémité conique basse 23 de l'absorbeur 12 avec les réseaux climatisants 19a, 19b, 11. 10 7b- Conduites retour raccordant l'extrémité conique haute 22 de l'absorbeur 12 avec les réseaux climatisants 19a, 19b, 11.
8 - Gaine isolante des conduites 7 (a, b).
9a - Enveloppe porteuse du bâtiment.
9b - Planchers/dalles aux sols et plafonds. 15 10- Vitre extérieure du capteur 13.
11- Éléments thermiques climatisants dans le bâtiment.
11a - Diffuseur de chaleur à large surface d'échange thermique de l'élément 11. 11b - Collecteur tubulaire de chaleur de l'élément 11.
12- Absorbeur du capteur thermosolaire 13. 20 13- Capteurs Thermosolaires.
14- Réflecteur de rayons solaires sur les capteurs thermosolaires 13.
15- Écran d'orientation solaires en lamelles horizontales superposées à faces miroir. 15b- Écran d'orientation solaire en lamelles verticales alignées à faces vis à vis miroir.
16- Isolation thermo-accoustique. 25 17- Gaine conductrice de la chaleur.
18- Cadre du capteur Thermosolaire.
18a - Rainures de guidage et de positionnement à l'intérieur du cadre 18. 19a - Réseau thermique climatisant vertical dans l'enveloppe porteuse 9a. >
19b - Réseau thermique climatisant horizontal aux sols et plafonds 9b. 30 20 - Intérieur du bâtiment.
21 - Conduite d'un fluide gazeux.
22 - extrémité conique haute.
23 - extrémité conique basse.
24 - Ailettes d'échange thermique.
35 25 - Sable fin, siliceux par exemple, hautement conducteur de la chaleur.
Description technique détaillée
En référence aux figures d'ensemble : 1a, 1b, 1c, un bâtiment Thermosolaire a masse radiante concerne les secteurs tels que : l'habitat, le tertiaire ou encore l'industrie. Il peut être selon le secteur d'utilisation : individuel ou collectif, de nature courbiste en coque aplatie ou allongée à plusieurs 40 niveaux ou cubiste en plaques à étages. Tel est l'exemple du bâtimentXhermosolaire à masse radiante courbiste illustré par la figure : 1a, mais aussi le bâtiment cubiste en plaques à étages en figure : 1b, ou encore l'exemple de la maison ou villa individuelle représentée par la figure : 1c. Ces trois exemples de réalisations thermosolaires conçus selon la technique exposée dans l'invention, donnent une idée réelle de l'architecture Thermosolaire dans le domaine de la construction.
45 En référence aux figures d'ensemble : 2, 3, 4, 5, un bâtiment Thermpsolaire à masse radiante caractérisé en ce qu'il est climatisé (chauffé ou rafraîchi) à l'énergie solaire globale (G) par une installation Thermosolaire comportant : des réseaux thermiques internes climatisants (chauffants ou rafraîchissants) verticaux 19a et horizontaux 19b dans la structure porteuse (M), répartis respectivement dans l'enveloppe porteuse 9a et dans les planchers/dalles aux sols et plafonds 9b; des 50 réseaux raccordés directement ensemble ou séparément à une enveloppe (S) externe constituée de capteurs thermosolaires 13 couvrant en partie ou en totalité les façades dudit bâtiment - permettant ainsi, selon le principe physique de thermosiphon, à un fluide caloporteur 2 (liquide ou gazeux) en circuit fermé dans ladite installation, de véhiculer au moyen des conduites 7(a, b) les calories et les frigories produites par les capteurs précités vers les réseaux climatisants dans le nommé bâtiment. Ce dernier, s'il comporte des étages, les réseaux climatisants précités sont alors situés dans tout étage supérieur et les capteurs Thermosolaires installés sur les façades de tout étage inférieur correspondant, permettant ainsi, grâce à la différence de niveau entre ces étages, la convection naturelle du fluide caloporteur entre ces mêmes étages dans l'installation. La différence de niveau donc entre les réseaux thermiques climatisants dans le bâtiment et les capteurs solaires extérieurs est à l'origine de cette convection libre par capillarité thermique du fluide caloporteur dans l'installation pour climatiser convenablement sans interruption le bâtiment à mesure que les rayons solaires R éclairent les capteurs. En figure : 2, on remarque au rez de chaussée du bâtiment, l'absence des réseaux climatisants 19a et 19b alors qu'ils sont présents aux étages supérieurs; seuls les capteurs Thermosolaires 13 sont exposés sur les façades extérieures du même étage au niveau du sol. Ceci, pour montrer que la convection en thermosiphon s'effectue entre les étages de dessous et les étages de dessus pour permettre la meilleure climatisation possible de l'ensemble du bâtiment.
En référence aux figures : 7, 8, représentant l'installation Thermosolaire du bâtiment en gros plan, selon le principe physique du thermosiphon, durant la phase de chauffage du bâtiment, les rayons solaires incidents R réfractés par la vitre 10 sont orientés par l'écran miroir 15 sur l'absorbeur 12 qui, en les captant avec sa face noire sélective, les absorbe et les convertit en chaleur pour chauffer ou rafraîchir le fluide caloporteur 2 qu'il contient. Sous l'effet combiné de la température et de la pesanteur, les particules les plus chaudes de ce fluide (liquide et/ou gazeux), en diminuant de densité, se concentrent par ascension (principe d'Archimède) vers la zone conique supérieure 22 de l'absorbeur, puis se canalisent par les conduites 7a isolées par avec la gaine 8 vers les réseaux climatisants 19a et 19b situés à l'étage supérieur du bâtiment. Cette opération de transfert de chaleur naturelle, sans pompe, uniquement par convection libre, se poursuit naturellement sans interruption à mesure que les rayons solaires R chauffent les absorbeurs des capteurs solaires extérieurs. La chaleur ou la fraîcheur ainsi accumulée dans les éléments climatisants, est transmise à la masse porteuse qui la diffuse par convection 5 et rayonnement thermique 4 dans le local. Le même fluide 2, après avoir libérer ses calories dans l'étage supérieur, retourne au moyen des conduites 7b vers les absorbeurs 12 des capteurs en façades de l'étage inférieur pour se réchauffer ou se rafraîchir à nouveau et le cycle continue. Tous les étages sont chauffés en même temps naturellement de cette manière établissant ainsi une température de climatisation (T) générale à l'intérieur 20 du bâtiment.
Selon une conception et principe de fonctionnement différents, dans le cas d'un bâtiment Thermosolaire sans étage(s) courbiste (Fig : 5) ou cubiste (Fig : 4), l'installation est combinée différemment: les éléments climatisants 19a, 19b, 11 internes et les capteurs 13 en façades externes sont situés sur le même étage - raccordés normalement aux conduites d'arrivée 7a et de retour 7b aux capteurs extérieurs. Selon cette disposition différente, la circulation du fluide caloporteur 2 peut refaire naturellement par thermosiphon ou mécaniquement - mais moins efficacement qu'un bâtiment où la différence entre ces étages est plus importante pour accélérer la convection rapide du fluide caloporteur 2 dans l'installation.
Les réseaux climatisants (chauffants et rafraîchissants) 19a ou 19b sont logés dans des gaines 17 (Fig : 12) conductrices de la chaleur, noyées dans l'enveloppe porteuse 9a et dans les planchers/dalles aux sols et plafonds 9b, permettant ainsi l'extraction et le remplacement de ces réseaux thermiques climatisants sans difficulté en cas d'incidents.
En référence figure : 12a, quel que soit le bâtiment courbiste ou cubiste, selon une conception différente, le réseau climatisant 19b est noyé dans une couche de sable fin tubulaire ou non disposée en longueur ou répartie sur toute la superficie des planchers/dalles 9b du bâtiment, évitant de la sorte les contraintes thermo-mécanique dues aux retraits et aux dilatations alternés par le fluide climatisant (chaud et frais) en circulation.
En référence aux figures en coupe partielle transversale 12c et longitudinale 12b, selon une conception particulière différente, le réseau climatisant tubulaire 19a est noyé dans une couche de sable fin tubulaire ou non 25 à hauteur d'étage dans l'enveloppe porteuse périphérique 9a à climatiser par le fluide caloporteur (liquide ou gazeux) 2, permettant de la sorte un meilleur échange thermique tout en évitant les contraintes thermo-mécanique dues aux retraits et aux dilatations alternés par le fluide climatisant (chaud et frais) en circulation dans l'installation.
La masse porteuse (M) a une inertie structuro-thermique décroissante, traduite par une diminution progressive, du sol jusqu'au sommet, de la section horizontale de l'enveloppe porteuse 9a et de l'épaisseur des sols et plafonds 9b matérialisant ensemble la structure porteuse du bâtiment. Une telle décroissance de la masse porteuse permet une meilleure résistance aux contraintes thermiques, dynamiques et mécaniques et une répartition équilibrée de la température de climatisation (T) dans l'ensemble de l'ouvrage - rayonnée par toutes les parois internes de cette même masse dite radiante.
Les façades de capteurs thermosolaires 13 comportent à leur base un voile 14 (Fig : 3) incorporé dont le déroulement permet, selon une longueur (x), l'ajustement de la surface réfléchissante et donc du flux de rayons solaires R à réfléchir sur les capteurs en plus des autres rayons solaires R directs incidents sur ces mêmes capteurs. Le voile réflecteur concerne particulièrement les bâtiments en duplexe ou sans étages comme celui illustré par la figure 3.
L'enveloppe externe (S) du bâtiment Thermosolaire est constituée de capteurs Thermosolaires modulaires 13 (Fig : 9, 10) comportant chacun un châssis cadre 18 pourvu intérieurement de rainures 18a permettant de guider et de positionner aisément les éléments interchangeables tels que : la vitre 10, l'écran 15, l'absorbeur 12 et l'isolation thermo-accoustique 16. Ces mêmes rainures réduisent les contraintes thermiques dues surtout aux dilatations par la chaleur et le froid de ces éléments assemblés désormais librement sans encastrement. Les mêmes rainures permettent également, en cas d'incident technique par exemple, le remplacement aisé de ces mêmes éléments du capteur à savoir : l'absorbeur 12, l'écran miroir 15, la vitre 10 ou encore l'isolation thermo-accoustique 16 .
La vitre 10 est une plaque perméable à la lumière naturelle réfractant le maximum de rayons solaires incidents R sur l'écran 15 et le minimum de déperditions vers l'extérieur. Lequel écran (Fig : 9a, 9b) est constitué de lamelles horizontales superposées ou verticales alignées dont l'orientation permanente ou non au soleil, permet aux faces avant et arrières vis avis faisant miroir de ces lamelles, d'orienter d'une part par réflexion les rayons solaires (R) réfractés par la vitre en rayons orientés (Rb) sur la face noire absorbante sélective de l'absorbeur 12 pour chauffer ou rafraîchir le fluide caloporteur 2 qu'il contient, et d'autre part, pour raison d'esthétique, rendre invisible de l'extérieur ladite face noire en s'interposant devant ledit absorbeur, améliorant ainsi l'aspect architectural apparent des façades du bâtiment.
Les lamelles miroir ont une orientation au soleil fixe ou mécaniquement automatique. Selon ce dernier cas, les lamelles s'orientent en permanence vers l'étoile dans sa trajectoire avec leurs faces incidentes aux rayons solaires, permettant ainsi l'orientation parfaite des ces rayons réfractés par la vitre 10 sur l'absorbeur 12 durant toute la journée d'ensoleillement. Par absence de rayonnement solaire la nuit ou par ciel couvert par exemple, les lamelles 15 sont maintenues fermées pour réduire les déperditions thermiques entre l'absorbeur 12 et l'extérieur ambiant en réfléchissant avec leur faces miroir les infrarouges émis par cet absorbeur. La même position fermée permet d'autre part la réflexion totale ou partielle (Fig : 9a) des rayons solaires incidents R réduisant ainsi la surchauffe du même absorbeur . On constate que l'écran en lamelles 15 joue un rôle important quant à l'adaptation des rayons solaires à la climatisation et à l'isolation thermo-accoustique du bâtiment . De telles propriétés Se distinguent d'un écran rideau normal servant à simplement faire de l'ombre en masquant les rayons solaires.
Selon la nature du bâtiment Thermosolaire à réaliser, l'isolation thermo-accoustique 16 entre l'absorbeur 12 et l'enveloppe porteuse 9a du bâtiment, peut être selon le degré d'ensoleillement du site, supprimée. L'absorbeur 12 (Fig : 11 ) est constitué de profilets à sections creuses parallélépipèdiques ou rondes de hauteur (H) et d'épaisseur de paroi (e), pourvues à l'avant et à l'arrière de bordures plates 24 permettant : d'une part le chauffage rapide du fluide caloporteur 2 par les rayons solaires Rb et d'autre part la canalisation dans le creux 21 d'un autre fluide gazeux par exemple à chauffer ou à rafraîchir. La partie haute conique 22 de ce même absorbeur facilite l'écoulement par convection naturelle (capillarité thermique) du fluide caloporteur au moyen de la conduite aller 7a (Fig : 9) le canalisant entre les capteurs solaires extérieurs 13 et les réseaux climatisants intérieurs 19a et 19b dans le bâtiment. Quant à la partie basse conique 23, elle permet la diffusion du même fluide canalisé par la conduite retour 7b des réseaux climatisants vers l'absorbeur 12 pour se réchauffer par les rayons solaires orientés Rb. Selon cette conception, le fluide caloporteur activé par les rayons solaires, circulant ainsi librement par convection naturelle sans turbulences dans l'installation thermosolaire, améliore le rendement thermique général du bâtiment. Les flèches sur les figures illustrantes, indiquent l'itinéraire du fluide caloporteur en convection par thermosiphon entre les capteurs solaires externes et les réseaux climatisants internes.
Selon une conception différente, les réseaux thermiques climatisants 19a et 19b sont substitués ou secondés par un réseau thermique climatisant (chauffant et/ou rafraîchissant) 11 constitué par exemple d'une partie basse tubulaire 11a et d'une partie haute 11 b à grande surface facilitant l'échange thermique avec l'intérieur du bâtiment (Fig : 6a). Ce réseau complémentaire ou de substitution, longe à l'intérieur du bâtiment la base de l'enveloppe porteuse périphérique 9a en se connectant au moyen des conduites 7(a, b) aux capteurs Thermosolaires extérieurs 13 extérieurs. De la sorte, le bâtiment Thermosolaire peut aux choix et selon le degré d'ensoleillement, être climatisé avec une installation Thermosolaire comportant les réseaux climatisants 11 , 19a, 19b combinés ensemble ou séparément selon la nature, l'usage et le lieu du bâtiment à climatiser.
L'installation Thermosolaire peut fonctionner avec seulement les conduites aller 7b (Fig : 9) - les conduites retour 7a peuvent être supprimées. Une telle conception permet au fluide caloporteur 2 de transférer, par conduction et convection libre (thermosiphon) sans turbulences, la chaleur vers les réseaux climatisants 19a, 19b, 11 dans le bâtiments.
Régulation thermique d'un bâtiment thermosolaire
Par analogie avec le principe de régulation thermique corporelle d'un reptile par l'énergie solaire et par les frigories dans l'eau ou dans le sol cité au début de la description, la climatisation (chauffage et rafraîchissement) d'un bâtiment Thermosolaire à masse radiante quel qu'il soit, est elle aussi établie par les photons solaires et les. frigories du soi. Une climatisation qui s'effectue, selon le lieu géographique et le degré d'ensoleillement du site, en deux phases, dont l'une de chauffage en saison froide et l'autre de rafraîchissement en saison chaud.
En hiver par exemple, les calories (chaleur) sont fournies par les rayons solaires aux capteurs thermosolaires (13) qui, comme les reptiles, au moyen d'un fluide caloporteur, les transmettent naturellement par thermosiphon au réseaux chauffants 19a, 19b, 11 dans la masse porteuse (M) qui chauffent par radiations thermiques (4) le bâtiment. En été, les mêmes rayons solaires permettent aux capteurs précités de puiser les frigories extérieures ou du sol (6) par exemple pour rafraîchir ladite structure porteuse et donc la construction. Durant les phases de chauffage et de rafraîchissement, d'importantes quantités d'eau chaude et éventuellement d'électricité sont quotidiennement produites par un bâtiment Thermosolaire tout secteur confondu, ceci à toutes fins utiles : domestiques, alimentaires ou encore industrielles et agricoles.
Le coefficient G
Le coefficient G est, rappelons le, la valeur couramment utilisée dans la réglementation et les calculs des déperditions thermiques des bâtiments surtout tertiaires et d'habitation. Ce coefficient exprimé en ( W/ m K) ne tjent pas compte de l'énergie effective consommée par la construction, mais permet de déterminer les déperditions thermiques à travers l'enveloppe du local en fonction : du coefficient résultant de transmission (k), du volume habitable (v) et de l'écart de température (DT) entre l'intérieur et l'extérieur du bâtiment. Dans le cas d'un bâtiment classique, le coefficient G de l'enveloppe porteuse est toujours positif. - alors que dans le cas d'un bâtiment Thermosolaire à masse radiante courbiste ou cubiste, ce même coefficient G diurne de l'enveloppe porteuse (M) est en revanche négatif. Cette différence, extrêmement importante, s'explique par le fait que, dans le cas d'un bâtiment traditionnel, la source de chaleur est interne - fournie par une installation de chauffage par radiateurs ou par thermocirculation d'air par exemple. La chaleur est donc diffusée dans le local et transmise à travers les parois de l'enveloppe porteuse vers l'extérieur. Donc le local perd de l'énergie thermique qui se traduit par une chute de la température intérieure et donc une baisse du rendement énergétique du bâtiment, entraînant une surconsommation d'énergie et une pollution supplémentaire inévitable par le Cθ2._ Alors que dans le cas d'un bâtiment Thermosolaire, l'enveloppe porteuse est chauffée de l'extérieur par les capteurs solaires (13) . Par comparaison avec le bâtiment traditionnel précité chauffé de l'intérieur, c'est le phénomène inverse qui se produit, puisque la chaleur solaire est entrante de l'extérieur vers l'intérieur du bâtiment qui gagne l'énergie thermique solaire, Les essais sur un bâtiment expérimental réel, confirment ce comportement thermique durant la phase de chauffage. Le signe négatif du coefficient G diurne de l'enveloppe porteuse Thermosolaire, prouve désormais sur le plan thermique, qu'un bâtiment Thermosolaire a masse radiante objet de l'invention est d'avantage performant, économiquement rentable et ecologiquement moins polluant qu'un bâtiment traditionnel chauffé par une source de chaleur interne utilisant les énergies conventionnelles.
Modes particuliers de réalisation et de fonctionnement
- les capteurs Thermosolaires 13 peuvent être réalisés en éléments modulaires préfabriqués ou réalisés in-situ.
- les réseaux thermiques climatisants 19a, 19b, 11 peuvent être remplacés par d'autres systèmes climatisants équivalents permettant la régulation thermique du bâtiment.
- le système de conduites 7a et 7b pour permettre la convection du fluide 2 entre les capteurs Thermosolaires 13 et les réseaux 19a, 19b, 11 peut être remplacé par un autre système équivalent de transfert thermique par convection.
- les éléments climatisants 11 peuvent être remplacés par des systèmes chauffant et/ou réfrigérant différents et placés autrement ensemble ou séparément dans tout le bâtiment.
- pour la régulation thermique du bâtiment Thermosolaire, le fluide caloporteur 2 peut être remplacé ou secondé par un autre fluide liquide ou gazeux permettant la climatisation du bâtiment. - les lamelles miroir 15 entre la vitre 10 et l'absorbeur 12 peuvent être conçues et utilisées autrement. Elles peuvent être remplacées par un système équivalent permettant l'orientation partielle ou totale des rayons solaires sur l'absorbeur 12 et leur totale réflexion vers l'extérieur.
- l'absorbeur 12 peut être remplacé par un autre équivalent, ayant des sections permettant la convection du fluide qu'il contient - la convection libre du fluide caloporteur 2 entre les capteur 13 et les réseaux 19a et 19b peut être transformer en convection forcée mécaniquement.
- l'installation Thermosolaire décrite dans cette invention est compatible avec les installations de chauffage et de climatisation traditionnelles équipant les bâtiments existants ou à réaliser.
- l'isolation thermo-accoustique 16 de l'absorbeur peut être substituée par un moyen isolant équivalent . - le réflecteur 14 peut être conçu et utilisé différemment, souple telle qu'une voile qui s'enroule et se déroule ou encore, rigide en forme de panneaux rabattables sur les vitres 10'. De tel réflecteur permet la réflexion des rayons solaires R sur les capteurs 13 ou de couvrir ces derniers totalement ou partiellement pour éviter la surchauffe du bâtiment ou réduire les déperditions surtout la nuit.
- le bâtiment thermosolaire objet de l'invention, s'il comporte des étages.il peut être climatisé ( chauffé ou rafraîchi) comme un bâtiment sans étages - c'est à dire : les capteurs 13 en façades et les éléments climatisants 19a, 19b , 11 dans le masse porteuse sont à chaque même niveau.
- en supprimant l'isolation thermo-accoustique 16 entre l'absorbeur 12 et l'enveloppe porteuse 9a, la masse porteuse (M) peut, selon cette conception, être rafraîchie avec les frigories du sol ou de l'extérieur puisées par convection mécanique ou naturelle au moyen des capteurs 13 en façades. - le fluide caloporteur 2 peut être remplacé où secondé par d'autres fluides liquides ou gazeux chauffants et/ou réfrigérants.
- les façades du bâtiment non couvertes de capteurs Thermosolaires 13 sont couvertes d'isolation thermo- accoustique 16 couverte de protection.
- l'enrobage de sable fin 25 siliceux par exemple, peut être prévu différent et remplacé par un autre matériau conducteur de la chaleur équivalent telle la terre par exemple.
- les réseaux climatisants 19a, 19b, 11 sont utilisés et connecté ensemble ou séparément aux capteurs Thermosolaires 13 au moyen des conduites 7(a, b) par soudure, filetage ou encore par colliers.
- les capteurs 13 comme les éléments climatisants 1 1 comportent éventuellement un échangeur permettant la fourniture de l'eau chaude ou fraîche à des fins sanitaire, alimentaires ou industrielles.

Claims

Revendications
1/ Bâtiment Thermosolaire à masse radiante d'habitation, tertiaire ou industriel, à inertie structuro-thermique décroissante, parasismique non polluant inspiré des créatures biologiques comme les reptiles, caractérisé en ce qu'il est climatisé (chauffé ou rafraîchi) à l'énergie solaire globale (G), comportant des réseaux thermiques climatisants (chauffants ou rafraîchissants) internes verticaux 19a et horizontaux 19b répartis respectivement dans l'enveloppe porteuse 9a et dans les planchers/dalles aux sols et plafonds 9b - des réseaux raccordés directement, ensemble ou séparément, à une enveloppe externe (S) constituée de capteurs thermosolaires 13 couvrant en partie ou en totalité les façades de là structure porteuse (M) - permettant ainsi au moyen des conduites 7a seules ou 7(a, b) à un fluide caloporteur 2 en circuit fermé dans l'installation, de véhiculer les calories et les frigories produites par les capteurs sur les façades de tout étage inférieur vers les réseaux climatisants dans tout étage supérieur correspondant, assurant de la sorte, grâce à la hauteur (H) séparant chacun de ces étages, la convection naturelle sans turbulences par thermosiphon, du fluide climatisant précité entre tous les étages du bâtiment. La conception technique et la régulation thermique (climatisation) du bâtiment Thermosolaire à masse radiante sont l'application de l'Equation Énergétique Thermosolaîre (E), permettant de réaliser tout bâtiment individuel ou collectif quel qu'il soit, en déterminant avec précision en fonction donc de cette équation : sa masse porteuse de stockage thermique (M) à climatiser proportionnellement à son enveloppe optimale de capteurs solaires (S) captant l'énergie solaire globale (G) pour établir, au moyen des réseaux climatisants précités, la température de climatisation idéale (T) dans l'ensemble dudit bâtiment.
2 / Bâtiment Thermosolaire à masse radiante selon la revendication 1 caractérisé en ce que le capteur Thermosolaire modulaire 13 comporte un châssis cadre 18 pourvu intérieurement de rainures 18a permettant le guidage et le positionnement des éléments interchangeables tels que, entre autres, l'écran en lamelles horizontales superposées 15 ou verticales alignées 15a, dont les faces miroirs avants et arrières vis à vis, permettent l'orientation par réflexion des rayons solaires (R) réfractés par la vitre 1 0 en rayons orientés (Rb) sur la face absorbante noire sélective de l'absorbeur 12 pour chauffer ou rafraîchir le fluide caloporteur 2 qu'il contient - donnant désormais en même temps aux façades des capteurs précités un aspect miroir apparent agréable, améliorant de la sorte l'esthétique architectural extérieur du bâtiment.
3 / Bâtiment Thermosolaire à masse radiante selon la revendication 2 caractérisé en ce que l'absorbeur 12 est constitué de profilets à sections creuses parallélépipèdiques ou rondes pourvus d'ailettes plates 24 à l'avant et à l'arrière permettant l'échange thermique et la canalisation d'un autre fluide gazeux par exemple, un absorbeur dont les parties basses 23 et hautes 22 coniques facilitant la convection sans turbulences du fluide caloporteur 2 entre les capteurs solaires extérieurs 13 en façades et les réseaux climatisants intérieurs 19a et 19b dans le bâtiment.
4 / Bâtiment Thermosolaire à masse radiante selon la revendication 1 caractérisé en ce que les façades de capteurs thermosolaires 13, de hauteur d'étage (H), comportent un réflecteur 25 incorporé à leur base, dont la face incidente au flux de rayons solaires R, permet selon la longueur de déroulement (x), l'orientation de ces rayons sur les capteurs qui s'ajoutent aux autres rayons solaires R directs sur ces mêmes capteurs rendant ainsi ledit bâtiment plus performant.
5 / Bâtiment Thermosolaire à masse radiante selon la revendication 1 caractérisé en ce que les réseaux thermiques climatisants 19a et 19b sont substitués ou secondés par un réseau thermique climatisant (chauffant ou rafraîchissant) 1 1 , longeant dans le bâtiment, la base intérieure de l'enveloppe porteuse périphérique 9a et se connectant au moyen des conduites 7a seules ou 7(a, b) aux capteurs Thermosolaires extérieurs 13 permettant de la sorte la circulation par thermosiphon du fluide caloporteur climatisant 2 dans l'installation. 6 / Bâtiment Thermosolaire à masse radiante selon la revendication 1 caractérisé en ce que les réseaux climatisants (chauffants et rafraîchissants) 19a et 19b sont, selon une première conception, logés avec ajustement dans des gaines 17 conductrices de la chaleur, noyées dans les éléments porteurs tels que : l'enveloppe porteuse 9a et les planchers/dalles aux sols et plafonds 9b, ou, selon une autre conception différente, lesdits réseaux climatisants sont noyés dans du sable fin tubulaire ou non et alignés ou répartis autrement dans les éléments porteurs précités dudit bâtiment.
7 / Bâtiment Thermosolaire à masse radiante selon la revendication 1 caractérisé en ce que la masse porteuse (M) possède une inertie structuro-thermique décroissante traduite par une diminution progressive, du niveau du sol jusqu'à son sommet, de la section horizontale de son enveloppe porteuse 9a et de l'épaisseur de ses sols et plafonds 9b matérialisant la structure porteuse dudit bâtiment - permettant ainsi à ce dernier, une résistance mécanique meilleure et une répartition équilibrée de la température de confort (T) dans l'ensemble du local, rayonnée par toutes les parois internes de ladite masse porteuse (M) qualifiée désormais de masse radiante.
PCT/IB2002/004877 2002-11-21 2002-11-21 Batiments thermosolaires a masse radiante WO2004046619A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/IB2002/004877 WO2004046619A1 (fr) 2002-11-21 2002-11-21 Batiments thermosolaires a masse radiante
AU2002347477A AU2002347477A1 (en) 2002-11-21 2002-11-21 Solar-energy air-conditioned buildings with radiant mass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2002/004877 WO2004046619A1 (fr) 2002-11-21 2002-11-21 Batiments thermosolaires a masse radiante

Publications (1)

Publication Number Publication Date
WO2004046619A1 true WO2004046619A1 (fr) 2004-06-03

Family

ID=32321344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2002/004877 WO2004046619A1 (fr) 2002-11-21 2002-11-21 Batiments thermosolaires a masse radiante

Country Status (2)

Country Link
AU (1) AU2002347477A1 (fr)
WO (1) WO2004046619A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1038348C2 (nl) * 2010-11-01 2012-05-02 Laurentius Leonardus Berg Opslag en benutting van zonne-energie door middel van voorzetramen, gebruik van vloeistofkoelleidingen. raamdorpelkappen, voorzetramen in de vorm van folie op rol en voorzetramen in de vorm van doorzichtige rolluiken.
WO2012127451A3 (fr) * 2011-03-23 2013-11-07 Gutai Matyas Système d'énergie calorifique pouvant servir à chauffer ou à maintenir un équilibre thermique à l'intérieur de bâtiments ou de parties de bâtiments
US20140345207A1 (en) * 2011-07-13 2014-11-27 OREGON HEALTH & SCIENCE UNIVERSITY a university High efficiency scalable structure
EP4293292A1 (fr) * 2022-06-17 2023-12-20 Bruno Chavanne Bâtiment hydrosolaire nomade, générateur d'eau et d'électricité

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2261488A1 (en) * 1974-02-20 1975-09-12 Chavin Philippe Fluid based solar heating system - circulates and accumulates heat in building walls
US4006856A (en) * 1974-03-27 1977-02-08 Aktiebolaget Svenska Flaktfabriken Arrangement for utilizing solar energy for heating buildings
DE3141931A1 (de) * 1981-10-22 1983-05-05 Harry Fred 4000 Düsseldorf Tiefenthaler Sonnenkollektor
FR2709319A1 (fr) * 1993-08-24 1995-03-03 Mezri Abdou Mebi Les bâtiments thermo-actifs.
DE19850289A1 (de) * 1998-10-30 2000-05-11 Enerlyt Potsdam Gmbh En Umwelt Heizvorrichtung
US6201313B1 (en) * 1997-10-04 2001-03-13 Yoshiro Nakamats Convection energy generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2261488A1 (en) * 1974-02-20 1975-09-12 Chavin Philippe Fluid based solar heating system - circulates and accumulates heat in building walls
US4006856A (en) * 1974-03-27 1977-02-08 Aktiebolaget Svenska Flaktfabriken Arrangement for utilizing solar energy for heating buildings
DE3141931A1 (de) * 1981-10-22 1983-05-05 Harry Fred 4000 Düsseldorf Tiefenthaler Sonnenkollektor
FR2709319A1 (fr) * 1993-08-24 1995-03-03 Mezri Abdou Mebi Les bâtiments thermo-actifs.
US6201313B1 (en) * 1997-10-04 2001-03-13 Yoshiro Nakamats Convection energy generator
DE19850289A1 (de) * 1998-10-30 2000-05-11 Enerlyt Potsdam Gmbh En Umwelt Heizvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCOTT MORRIS: "Radiant Heating Balloons to Blockbeds", SOLAR AGE, vol. 7, no. 8, August 1982 (1982-08-01), Harrisville, New Hampshire, USA, pages 16 - 20, XP002247445 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1038348C2 (nl) * 2010-11-01 2012-05-02 Laurentius Leonardus Berg Opslag en benutting van zonne-energie door middel van voorzetramen, gebruik van vloeistofkoelleidingen. raamdorpelkappen, voorzetramen in de vorm van folie op rol en voorzetramen in de vorm van doorzichtige rolluiken.
WO2012127451A3 (fr) * 2011-03-23 2013-11-07 Gutai Matyas Système d'énergie calorifique pouvant servir à chauffer ou à maintenir un équilibre thermique à l'intérieur de bâtiments ou de parties de bâtiments
US20140345207A1 (en) * 2011-07-13 2014-11-27 OREGON HEALTH & SCIENCE UNIVERSITY a university High efficiency scalable structure
US9404265B2 (en) * 2011-07-13 2016-08-02 Oregon Health & Science University High efficiency scalable structure
US20170108232A1 (en) * 2011-07-13 2017-04-20 Oregon Health & Science University High efficiency scalable structure
US9933173B2 (en) * 2011-07-13 2018-04-03 Oregon Health & Science University High efficiency scalable structure
US10845071B2 (en) 2011-07-13 2020-11-24 Oregon Health & Science University High efficiency scalable structure
EP4293292A1 (fr) * 2022-06-17 2023-12-20 Bruno Chavanne Bâtiment hydrosolaire nomade, générateur d'eau et d'électricité
WO2023242386A1 (fr) * 2022-06-17 2023-12-21 Bruno Chavanne Bâtiment hydrosolaire nomade, générateur d'eau et d'électricité

Also Published As

Publication number Publication date
AU2002347477A1 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
Cabeza et al. Technological options and strategies towards zero energy buildings contributing to climate change mitigation: A systematic review
Ahmadi et al. Recent residential applications of low-temperature solar collector
Ahamed et al. Energy saving techniques for reducing the heating cost of conventional greenhouses
Hu et al. A review on the application of Trombe wall system in buildings
Chel et al. Renewable energy technologies for sustainable development of energy efficient building
Allen How buildings work: the natural order of architecture
WO2009025786A1 (fr) Moyeux/structures géodésiques à énergie radiante omnidirectionnelle continue-c.o.r.e.
Al-Shamkhee et al. Passive cooling techniques for ventilation: an updated review
Lavafpour et al. Passive low energy architecture in hot and dry climate
KR101480303B1 (ko) 1-자연에너지 생산 시설과 생활 편의시설 및 인체건강 시설이 주변과 내부로 설치된 자연환경 조립식 건축물.
Tiwari et al. Photovoltaic Thermal Passive House System: Basic Principle, Modeling, Energy and Exergy Analysis
WO2004046619A1 (fr) Batiments thermosolaires a masse radiante
Vukadinović et al. Sunspaces as passive design elements for energy efficient and environmentally sustainable housing
Gorjian et al. Solar Powered Greenhouses
Thantong et al. Study of Solar–PCM Walls for domestic hot water production under the tropical climate of Thailand
KR20110132259A (ko) 2-친환경 조립식 텐트와 가 건물.
Bastien Methodology for Enhancing Solar Energy Utilization in Solaria and Greenhouses
Teshaboeva Increasing the Energy Efficiency of Buildings
Wachenfeldt et al. Building Integrated Energy Systems in Smart Energy Efficient Buildings–A state-of-the-art
Vasilevich et al. The Use of Solar Energy for Ventilation System of Cult Buildings
Bansal et al. Energy Requirements and Alternate Energy Uses in the Residential Sector of India
Goodman Building interior evacuated tubes and reflectors
Manqerios Solar Power Utilization as an Alternative Energy Resource for Disaster Relief
Ayatollahi The passive solar of Yazd: Reflections and performance evaluation after 10 years use
Ashrafian et al. Sustainable energies in desert climate buildings

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP