WO2004042112A1 - Cvd method using metal carbonyl gas - Google Patents

Cvd method using metal carbonyl gas Download PDF

Info

Publication number
WO2004042112A1
WO2004042112A1 PCT/JP2003/014152 JP0314152W WO2004042112A1 WO 2004042112 A1 WO2004042112 A1 WO 2004042112A1 JP 0314152 W JP0314152 W JP 0314152W WO 2004042112 A1 WO2004042112 A1 WO 2004042112A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
supply
metal
vacuum chamber
exhaust
Prior art date
Application number
PCT/JP2003/014152
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Hatano
Hideaki Yamasaki
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2004042112A1 publication Critical patent/WO2004042112A1/en
Priority to US11/119,906 priority Critical patent/US7427426B2/en
Priority to US12/193,370 priority patent/US7879399B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD

Definitions

  • the present invention relates to a CVD (Chemical Vapor Deposition) method for forming a metal film such as tungsten (W) on a substrate to be processed using a metal carbonyl gas, and more particularly, to a semiconductor processing method for manufacturing a semiconductor device.
  • CVD Chemical Vapor Deposition
  • semiconductor processing refers to the definition of semiconductor layers, insulating layers, conductive layers, etc. on substrates to be processed, such as semiconductor wafers and glass substrates for LCDs (Liquid Crystal Displays) and FPDs (Flat Panel Displays).
  • tungsten is used as a wiring material of a wiring structure or a material of an interdiffusion barrier.
  • the W film fills a contact hole or a via hole formed in an interlayer insulating film on a semiconductor wafer as a substrate to be processed, or covers an inner surface of these holes. It is formed as follows.
  • PVD Physical Vapor Deposition
  • sputtering a method of forming a W film. It is difficult to accommodate the ledge. Such reason force, near In recent years, CVD has been used as a method for forming the W film, which can sufficiently cope with miniaturization of devices.
  • fusiden tungsten (WF e) and H 2 gas, which is a reducing gas are used as a processing gas for forming a W film by CVD.
  • WF e fusiden tungsten
  • H 2 gas which is a reducing gas
  • Patent Documents 1, 2, and 3 below disclose tungsten compound luponyl (w (CO) 6), which is an organic compound gas, as a processing gas containing no F in order to form a W film by CVD. It is stated that it is used. Also, Non-Patent Document 1 below describes that a metal film is formed by CVD using a metal force luponyl such as W (co) 6. Further, in Patent Document 4 below,
  • Patent Document 1 Japanese Patent Application Laid-Open No. H02-202570
  • Patent Document 2 Japanese Patent Application Laid-Open No. H4-17-139776
  • Patent Document 3 Japanese Patent Application Laid-Open No. Hei 21-136
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2000-112
  • Non-Patent Document 1 J. Vac. Scl. Technol., 14 (2), Mar / Apr, pp. 415 -424
  • An object of the present invention is to provide a CVD method using metal-powered gas, which has a low electric resistance without causing an adverse effect due to a decomposition gas such as CO generated by the decomposition of metal-powered gas. Consists of forming a film on a substrate to be processed
  • First aspect of the present invention Is a CVD method for forming a predetermined metal film on a substrate to be processed using a metal gas.
  • a second aspect of the present invention relates to a CVD method for forming a predetermined metal film on a substrate to be processed by using a metal gas, such as a metal gas, and setting a vacuum pressure in a vacuum chamber for accommodating the substrate.
  • the vacuum chamber is evacuated at the first exhaust capacity while the HU metal canopy is inserted into the vacuum chamber.
  • the supply of the metal-powered non-repellent gas is stopped, and the inside of the vacuum chamber is evacuated with the second exhaust power while By purging by supplying a purge gas into the vacuum chamber, a removal process for removing a decomposition gas generated by the decomposition of the metal calporal gas,
  • FIG. 1 is a diagram schematically showing a CVD device according to one embodiment of the present invention.
  • FIG. 2 is a flowchart showing a CVD method according to an embodiment of the present invention.
  • Figures 3A and 3B illustrate the film formation state of the conventional CVD method.
  • 4A to 4D are schematic views for explaining a film formation state by the CVD method according to one embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a CVD device according to another embodiment of the present invention.
  • Figure 6 is a graph showing the resistivity of the W film formed under different conditions.
  • FIG. 1 is a view schematically showing a CVD apparatus according to one embodiment of the present invention.
  • the o-film forming apparatus 100 is a substantially air-tightly formed, substantially cylindrical-, empty channel (processing chamber). ) Has one.
  • a susceptor 2 for horizontally supporting a substrate W to be processed is disposed in the processing chamber 1.
  • the susceptor 2 is supported by a cylindrical support member 3 provided at the lower center thereof.
  • a resistance heating type heater 5 is embedded in the susceptor 2.
  • the heater 5 heats the susceptor 2 by means of the heater power supply 6 and heats the heat of the susceptor 2 and heats the substrate W to be processed. (CO) 6 gas is thermally decomposed
  • the container 2 is 300 to 600, which is convenient for film formation. Heated to a predetermined temperature of c.
  • a heater (not shown) is connected to the heater power supply 6.
  • the output of the heater 5 is controlled according to the signal of the ijm. degree sensor (not shown).
  • a heater (not shown) is also embedded in the wall of the processing room 1. With this heater, the wall force of the processing chamber 1 is 0 to 80. Heated to about c.
  • -y 10 is installed to the shower.
  • a pipe 12 for supplying a processing gas, for example, a W (Co) 6 gas is connected.
  • a space 10 c for diffusing the light is formed.
  • the gas discharge port 11 communicates with the space 10 c to uniformly supply the processing gas into the processing 1.
  • a concentric refrigerant flow passage 10b is formed to prevent the decomposition of the W (cO) 6 gas in the shower head 10. .
  • a coolant such as cooling water is supplied to the coolant flow path 10b from a coolant supply (not shown), and the coolant is controlled to a shear plate 10a power S20-: L00 ° C.
  • the other end of the pipe 12 is inserted into a film forming material container 13 containing a solid W (CO) 6 material S as a film forming material.
  • the carrier 13 also includes a carrier gas pipe 14. From the carrier gas supply source 15, for example, an Ar gas is blown into the film forming material container 13 as a carrier gas via a pipe 14. By supplying the carrier gas, the solid W (C O) 6 raw material S is sublimated to W (CO) 6 gas. The w (c O) 6 gas is carried by the carrier gas and supplied to the shower head 10 via the pipe 12, is diffused in the space 10 c, and is discharged into the gas discharge hole 11. Is supplied to processing chamber 1 via
  • the piping 14 is provided with a mass flow controller 16 and valves 17 before and after the mass flow controller 16. Also, for example, W (C
  • a pre-flow line 41 is connected downstream of 45.
  • the pre-flow line 41 is connected to an exhaust pipe 24 described later.
  • the pre-flow line 41 is provided with a valve 42 immediately downstream of a branching point from the W (CO) 6 gas pipe 12. Piping 1 2, 1 4,
  • a heater (not shown) is provided around 1.
  • the heater is at a temperature at which the W (CO) 6 gas does not solidify, for example, 20 to 1.
  • a purge gas pipe 18 is connected to the pipe 12.
  • Nono 0 one purge gas and the other end of the pipe 1 8 Pas one purge gas supply source 1 9 connected to a purge gas supply source 1 9, and a purge gas, eg if A r gas, H e gas, which N two gas Supply inert gas, ⁇ 2 gas, etc.
  • the purge gas pipe 18 is provided with a mass controller 20 and valves 21 before and after it.
  • the flow meter 45 for grasping is also connected to the controller 40, and the control port 40 is provided with a flow meter so that a desired W (CO) 6 gas flow value can be obtained. 45 Controls the carrier flow mass flow ⁇ 16 based on the value of 45
  • a circular opening 22 is formed at the center of the bottom wall 1 b of the processing chamber 1.
  • the bottom wall 1b is provided with an exhaust chamber 23 communicating with the opening 22 and protruding downward.
  • An exhaust pipe 24 is connected to the side of the exhaust 23.
  • the exhaust pipe 24 has a valve 25a for adjusting the pressure and exhaust capacity inside the processing chamber 1 and a high-speed vacuum pump.
  • Discharge device 25 including 25 b is connected. By operating the exhaust device 25, it is possible to rapidly reduce the pressure in the processing chamber 1 to a predetermined degree of vacuum.
  • the susceptor 2 is provided with three support pins 26 (only two are shown) for supporting and raising and lowering the wafer w.
  • Support pins 26 are provided with three support pins 26 (only two are shown) for supporting and raising and lowering the wafer w.
  • Reference numeral 26 denotes a susceptor 2 which is provided so as to be able to protrude and retract with respect to the surface thereof.
  • the lower end of the support pin 26 is fixed to the support plate 27.
  • Support pin 2
  • a driving mechanism 28 such as an air cylinder via a support plate 27.
  • a loading / unloading port 29 for loading / unloading the wafer W with respect to a transfer chamber (not shown) adjacent to the film forming apparatus 100 is formed on the side wall of the processing chamber 1.
  • the loading / unloading port 29 is opened and closed by a gate valve 30.
  • FIG. 2 is a flowchart showing a CVD method according to one embodiment of the present invention, in which a W film is formed using such a film forming apparatus.
  • the gate knob 30 is opened and the loading / unloading port 29
  • the wafer W is loaded into the processing chamber 1 and placed on the susceptor 2 (step S 1).
  • the susceptor is heated by the heater 5, and the wafer W is heated to 300 to 600 ° C. by the heat (step S 2).
  • the inside of the processing chamber 1 is evacuated by the exhaust device 25, and the pressure in the processing chamber 1 is evacuated to a predetermined pressure, for example, 6.7 Pa or less (step S3).
  • a W film is deposited on the surface of the underlying film formed on the wafer W.
  • the W film is deposited by using a W (CO) 6 supply step (step S4) and a CO removal step (step S5).
  • a carrier gas for example, Ar gas is blown into the solid W (CO) 6 raw material S stored in the film forming raw material container 13, and W (CO CO) 6 Sublimates the raw material S. Then, the generated W (CO) 6 gas is carried by the carrier gas and introduced into the processing chamber 1 through the pipe 12 and the shower head 10.
  • the exhaust unit 25 is operated at the first exhaust speed (first exhaust capacity) to exhaust the inside of the processing chamber 1. At this time, while the vacuum pump 25b is operated with the same output as in the step S3, the necessary first pumping capacity is obtained by adjusting the valve 25a.
  • step S5 After supplying the W (CO) 6 gas to the surface of the wafer W for a predetermined time, the process shifts to a CO removal step (step S5).
  • the CO removal process process S5
  • the supply of W (CO) 6 gas is stopped (the supply of carrier gas is stopped), and the exhaust device 25 is set to a sufficiently higher speed than the first exhaust speed described above.
  • Operate at the second pumping speed (second pumping capacity) to rapidly exhaust the inside of the processing chamber 1.
  • vacuum port By operating the pump 25b with the same output as in the step S4, the necessary second exhaust capacity is obtained by adjusting the valve 25a.
  • the CO gas generated by the decomposition of the W (CO) 6 gas is removed from the processing chamber 1.
  • the second exhaust capacity is preferably 3 to 700 times, more preferably 3 to: L00 times the first exhaust capacity.
  • a pump that can provide a difference in exhaust capacity of 700 times or more has a high cost and is not preferable.
  • the exhaust capacity of the exhaust pump is preferably 1 OOOOLZ sec or less.
  • the number of repetitions of the step of supplying W (CO) 6 (step S 4) and the step of removing CO (step S 5) depends on the final thickness of the W film to be formed, but usually at least. Repeat 10 times or more. At this time, supply, stop, and control of the flow rate of the W (CO) 6 gas, and adjustment of the valve 25a of the exhaust device 25 are performed in accordance with a predetermined program previously input to the controller 40. U.
  • W (CO) 6 gas is continuously supplied into the processing chamber until the final thickness of the W film is reached.
  • the W (CO) 6 gas reaches the surface of the base film on the wafer W (FIG. 3A).
  • the W (CO) 6 gas is decomposed, and the decomposed CO is quickly adsorbed on the site where W should be adsorbed (Fig. 3B).
  • CO is taken into the W film, the electrical resistance increases, and the film quality deteriorates.
  • step S4 alternating and removal by high-speed exhaust of CO gas supply and W (CO) 6 gas W (CO) 6 gas against the wafer W is generated by decomposition Do to
  • step S4 as shown in FIGS. 4A and 4B, The W (CO) 6 gas reaches the surface of the underlayer on the wafer W, and the decomposed CO is adsorbed on the site where W is to be adsorbed in a short time.
  • step S5 Co is quickly removed by the high-speed exhaust as shown in FIG. 4C.
  • FIG. 4D when the next W (CO) 6 gas is supplied, W (Co) 6 is adsorbed on the adsorption site from which ⁇ CO has been removed.
  • The-step is repeated to form a w film having a predetermined thickness, so that deterioration of the film quality due to CO incorporation can be prevented.
  • step S4 the pressure in the processing chamber 1 is 0.10 to o66.
  • step S5) the exhaust capacity of the exhaust device 25 is maintained substantially constant, and the required process can be performed only by switching the gas.
  • the same gas as the carrier gas supplied into the processing chamber 1 together with the W (CO) 6 gas can be used.
  • the pressure in the processing chamber 1 is Since it is preferable to exhaust the gas to the same pressure as at the time, for example, the gas supply amount and the exhaust gas per unit time
  • step S 4 In the supply step (step S 4) and the removal step (step S 5).
  • the valve 25a is opened normally (with the vacuum pump 25b operated at a constant output) and the exhaust capacity of the exhaust 25 May be increased. By introducing the purge gas in this way, it becomes possible to expel the adsorbed CO more quickly.
  • the gas may be introduced while the exhaust is performed at a high rate, as described above, in the process of removing co (step S5).
  • the pressure in the processing chamber 1 at the time of the purging is set to be approximately the same as the pressure in the supply step (step S4).
  • Jeha W When removing Co, it is preferable to make Jeha W relatively high.
  • the wafer temperature when supplying W (Co) 6 gas is set to 1
  • the temperature By setting the temperature to about 0 to 600 ° C., a good film forming process can be performed. In this case, ⁇ ⁇ It is necessary to switch the wafer temperature in a short period of time. Therefore, it is preferable to use A 1 N or the like with high thermal conductivity as the susceptor 2 and make it as thin as possible.
  • a lamp heating type heating With a heat source the temperature can be changed in a short time.
  • the supply amount of the six gases at one time corresponds to the thickness of the w film of 2 nm or less. If the thickness of the film formed at one time is about this, the amount of generated co is taken in less, and it is more preferable.
  • the time for one time of the CO removal process (step S5) is from 2 seconds to
  • the CO on the wafer W can be effectively removed. More preferably, it is 3 seconds or more.
  • step S5 The displacement per cycle in the C ⁇ removal process is 30
  • this displacement is less than 40 L and even more than 45 L and less than 30 L.
  • the carrier gas is not limited to the Ar gas, and another inert gas may be used. Further, it is preferable that the carrier gas is a gas capable of suppressing the temperature of the processing gas to a low level. Examples of such gas include N 2 gas, H 2 gas, and He gas power s.
  • Step S6 The residual gas in the processing chamber 1 is exhausted by exhausting gas.
  • a purge gas may be supplied from the purge gas supply source 19 as a post flow.
  • the gate knob 30 is opened, and the wafer w is unloaded from the loading / unloading port 29 (Step S7).
  • FIG. 5 is a diagram schematically showing a CVD device according to another embodiment of the present invention.
  • This film forming apparatus 100 ′ has the same structure as that of FIG. 1, but is different from the apparatus of FIG. 1 only in that a reducing gas can be supplied. That is, the reducing gas pipe 31 is connected to the pipe 12, and the other end of the reducing gas pipe 31 is connected to the reducing gas supply 32.
  • the reducing gas supply source 32 supplies, for example, H 2 gas, SiH 4 gas, or the like as a reducing gas.
  • the vat gas pipe 31 is provided with a muff outlet 3r and a noreb 34 before and after the muffler outlet. This is the downstream side of the ⁇ 1 controller 33. Is connected to the pre-flow line 43.
  • the pre-flow line 43 is connected to the pre-flow line 41.
  • a valve 44 is provided immediately downstream of the branching point with the gas pipe 31.
  • the mass controller 33 and the valves 34 and 44 are also controlled by the ⁇ inlet port 40, and the supply, stop, and flow of the 3S gas are controlled.
  • step S5 When a W film is formed using such a film forming apparatus shown in FIG. 5, the CO removal process (step S5) shown in FIG. Supply of reducing gas This promotes decomposition of adsorbed W (CO) 6 and removal of C o, and can further increase the deposition rate
  • a W film was formed under different conditions.
  • the pressure in the processing chamber 1 was set at 66.7 ⁇ a
  • the wafer temperature was set at 44 ° C
  • a W film with a thickness of about 30 nm was formed under the following six film forming conditions. .
  • a W (CO) 6 gas was continuously supplied at a gas flow rate of 0.5 L / min to form a W film of 35 nm.
  • the supply and rapid evacuation as if high-speed evacuation were performed at an evacuation speed of 50 L / sec were repeated 190 times to form a w film of 30 ⁇ m.
  • Ii) 6 gases were supplied (corresponding to a 0.17-nm-thick W film. Subsequently, the W (CO) 6 gas was stopped, and A r Purging was performed at a gas flow rate of 0.5 L min (pumping speed 15.3 L / sec). Such supply and purging were repeated 190 times to form a 32 nm W film.
  • W (CO) 6 gas was supplied at a gas flow rate of 0.5 L / min for 1.5 seconds (corresponding to a ⁇ film having a thickness of 0.16111111). Subsequently, the W (CO) 6 gas was stopped, and purging was performed at an Ar gas flow rate of 0.5 L / min for 10 seconds (exhaust speed: 15.3 L / sec;). . Such supply and knowledge. The process was repeated 190 times to form a 30 nm W film.
  • W (CO) 6 gas was supplied at a gas flow rate of 0.5 LZ min for 1.5 seconds (corresponding to a 0.16 11111 thick film). Subsequently, the W (CO) 6 gas was stopped, and a high-speed evacuation was performed at a pumping speed of 150 L / sec for 5 seconds, followed by an Ar gas flow rate for 5 seconds. Purging was performed at 0.5 L / min (exhaust speed: 15.3 L / sec). With such supply and rapid exhaust. The process was repeated 190 times to form a 30 nm W film.
  • Figure 6 is a graph showing the resistivity of the W film formed under these conditions. As shown in Fig. 6, the conditions for continuous W film formation
  • the specific resistance of the W film was 300 ⁇ ⁇ cm.
  • the specific resistance of the w film was sufficiently lower than the condition 1. That is, according to the embodiment of the present invention, the specific resistance is low. It was confirmed that good film quality was obtained.
  • w (Co) is used as the metallic luponyl gas.
  • a W film is formed using 6 gases.
  • At least one gas can be selected from the group. A person who used these gases alone
  • Ni, Mo, Go oRh ⁇ Re, Cr, Ru metal films can be formed respectively
  • the semiconductor wafer is exemplified as the substrate to be processed.
  • the substrates to be processed are LCD and F
  • Glass substrate for PD can be used
  • the supply of the metallic gas to the substrate to be processed and the removal of the decomposition gas such as the gas generated by the decomposition of the metallic gas are alternately performed. For this reason, even if the decomposition gas such as CO is adsorbed on the metal film, it is quickly removed and the incorporation of the decomposition gas such as co into the film is reduced. A good quality metal film with low resistance can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A CVD method for forming a certain metal film on a substrate to be processed using a metal carbonyl gas is carried out by repeating a supplying step (S4) and a removing step (S5) many times. In the supplying step (S4), the substrate is substantially kept heated at a first temperature and the metal carbonyl gas is supplied into a vacuum chamber while exhausting the vacuum chamber at a first exhausting power. In the removing step (S5) following the supplying step, the supply of the metal carbonyl gas is stopped and the vacuum chamber is quickly exhausted at a second exhausting power which is sufficiently higher than the first exhausting power, thereby removing a decomposed gas formed through decomposition of the metal carbonyl gas.

Description

明 細 書  Specification
金属カルボニルガス を使用する C V D方法  C V D method using metal carbonyl gas
技術分野 Technical field
本発明は金属カルボニルガスを使用 して被処理基板にタン ダス テ ン (W) な どの金属膜を形成する C V D ( Chemical Vapor Deposition) 方法に関 し、 特に、 半導体デバイ ス を製 造する半導体処理において利用 される C V D方法に関する。 こ こ で、 半導体処理 と は、 半導体 ウェハや L C D (Liquid crystal display)や F P D ( Flat Panel Display) 用のガラス基 板な どの被処理基板上に半導体層、 絶縁層、 導電層な どを所 定のパターンで形成する こ とによ り 、 該被処理基板上に半導 体デバイ スや、 半導体デバイスに接続される配線、 電極など を含む構造物を製造するために実施される種々の処理を意味 する。  The present invention relates to a CVD (Chemical Vapor Deposition) method for forming a metal film such as tungsten (W) on a substrate to be processed using a metal carbonyl gas, and more particularly, to a semiconductor processing method for manufacturing a semiconductor device. Related to the CVD method used in the field. Here, semiconductor processing refers to the definition of semiconductor layers, insulating layers, conductive layers, etc. on substrates to be processed, such as semiconductor wafers and glass substrates for LCDs (Liquid Crystal Displays) and FPDs (Flat Panel Displays). By forming the substrate with the above-described pattern, various processes performed for manufacturing a structure including a semiconductor device, a wiring connected to a semiconductor device, an electrode, and the like on the substrate to be processed are performed. means.
背景技術 Background art
半導体デバイ スにおいて、 配線構造の配線材料或いは相互 拡散バリ アの材料な どと して W (タ ングステン) が使用 され る。 例えば、 この場合、 W膜は、 被処理基板である半導体ゥ ェハ上の層間絶縁膜内に形成された コ ンタ ク トホールやビア ホーノレ内を埋め込むよ う に、 或いはこれらのホーノレの内面を 覆う よ う に形成される。  In a semiconductor device, tungsten (W) is used as a wiring material of a wiring structure or a material of an interdiffusion barrier. For example, in this case, the W film fills a contact hole or a via hole formed in an interlayer insulating film on a semiconductor wafer as a substrate to be processed, or covers an inner surface of these holes. It is formed as follows.
W膜の形成方法 と し て、 従来は P V D ( Physical Vapor Deposition) 、 典型的にはスパッタ リ ングが用い られてき た し力 し、 P V Dでは近年のデバイ スの微細化によ る高カ ノく レ ッジに対応する こ と が困難である。 このよ う な理由力ゝら、 近 年は、 W膜の形成方法と して、 デバイ スの微細化に十分対応 可能な C V Dが用い られている。 Conventionally, PVD (Physical Vapor Deposition), typically sputtering, has been used as a method of forming a W film. It is difficult to accommodate the ledge. Such reason force, near In recent years, CVD has been used as a method for forming the W film, which can sufficiently cope with miniaturization of devices.
例えば、 W膜を C V Dで形成するための処理ガス と して、 フ ツイ匕タ ングステン ( W F e ) 及ぴ還元ガスである H 2 ガ スが使用 される - の Π ゝ 処理ガスは、 ウェハ上で W F e For example, as a processing gas for forming a W film by CVD, fusiden tungsten (WF e) and H 2 gas, which is a reducing gas, are used. In WF e
+ 3 H 2 → W + 6 H F の反応を行い、 これによ り 、 ゥェハ上 に W膜が形成される ο しかし 、 近年、 デザイ ンルールの微細 化が益々進んでお り ヽ このよ う な F含有ガスを使用する とゲ ト酸化膜の膜質に Fが逝、 響を与えデバィ ス の故障を生じ る。 + 3 H 2 → W + 6 HF reaction, whereby a W film is formed on the wafer ο However, in recent years, the design rule has been increasingly miniaturized. The use of the contained gas causes F to die on the quality of the get oxide film, affecting the device and causing device failure.
方、 下記の特許文献 1 、 2 、 3 には、 W膜を C V D で形 成するため 、 F を含有しない処理ガス と して有機化合物ガス であるタ ングステン力ルポニル ( w ( C O ) 6 ) を使用する こ とが記載される。 また、 下記の非特許文献 1 には、 W ( c o ) 6 のよ う な金属力ルポニルを用いて C V Dによ り 金属膜 を形成する こ とが記載される。 更に、 下記の特許文献 4 には、 On the other hand, Patent Documents 1, 2, and 3 below disclose tungsten compound luponyl (w (CO) 6), which is an organic compound gas, as a processing gas containing no F in order to form a W film by CVD. It is stated that it is used. Also, Non-Patent Document 1 below describes that a metal film is formed by CVD using a metal force luponyl such as W (co) 6. Further, in Patent Document 4 below,
W ( c o ) 6 を用いて C V Dによ り 半導体デバイ ス に W膜を 形成する と が開示される。 W ( C O ) 6 のよ う な金属力ゾレ ボ二ルはヽ W F 6 のよ う な F によ るデバイ スへの悪影纏が生 じないためヽ C V D の ソ スガス と して有望である。 It is disclosed that a W film is formed on a semiconductor device by CVD using W (co) 6. W (CO) 6 metal force zone Les ball nil Do you Yo of promise as aヽCVD of the Soviet Union Sugasu because there is no Ji raw evil shadow fireman's standard to the device that by the Yo I Do not F ofヽWF 6 is there.
特許文献 1 : 特開平 2 0 2 2 5 6 7 0号公報  Patent Document 1: Japanese Patent Application Laid-Open No. H02-202570
特許文献 2 : 特開平 4 ― 1 7 3 9 7 6 号公報  Patent Document 2: Japanese Patent Application Laid-Open No. H4-17-139776
特許文献 3 : 特開平 4 一 2 7 1 3 6 号公報  Patent Document 3: Japanese Patent Application Laid-Open No. Hei 21-136
特許文献 4 : 特開 2 0 0 2 一 1 2 4 4 8 8 号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2000-112
非特許文献 1 : J. Vac. Scl. Technol., 14(2), Mar/Apr, pp . 415 -424 Non-Patent Document 1: J. Vac. Scl. Technol., 14 (2), Mar / Apr, pp. 415 -424
しかしなが ら、 W ( C O ) 6 のよ フ な金属力ルポ二ルの使 用には問題点がある 。 即ち よ う な金属カルポ二ルガス の分 解時に発生する C oは金属との親和性が強レ、 こ のため 、 C oは下地表面に吸着され、 不純物と して金属膜中に取り 込ま れやすく 、 これによ り 金属膜の電気抵 几 ¾:高 < する (非特許 文献 1 の 4 1 7ぺ ジ右欄参照 そのため 現状では 、 w However, there is a problem with the use of metallic compounds such as W (C O) 6. In other words, Co generated during the decomposition of such a metallic carbon gas has a strong affinity for the metal, so that the Co is adsorbed on the surface of the base and incorporated into the metal film as an impurity. Therefore, the electric resistance of the metal film is high (see Non-Patent Document 1, right column of page 417).
( C o ) 6 のよ う な金属カルポ二ノレは C V D ソ スガス と し て有望視されなが ら も十分に実用化されていない Metallic carpinoles such as (C o) 6 have not been put to practical use despite promising as CVD soot gas
発明の開示 Disclosure of the invention
本発明の 目的は 、 金属力ルポ二ルガスを使用する C V D方 法において、 金属力ノレポ二ルガス の分解によ り発生する C O などの分解ガスによ る悪影響を生じさせずに電気抵抗の低い 金属膜を被処理基板上に形成する こ と にある  SUMMARY OF THE INVENTION An object of the present invention is to provide a CVD method using metal-powered gas, which has a low electric resistance without causing an adverse effect due to a decomposition gas such as CO generated by the decomposition of metal-powered gas. Consists of forming a film on a substrate to be processed
本発明の第 1 の視 Λ?、は、 金属力ルボ二ルガスを用いて被処 理基板上に所定の金属膜を形成する C V D方法であつて  First aspect of the present invention? Is a CVD method for forming a predetermined metal film on a substrate to be processed using a metal gas.
刖記基板を収納する真空チャ ンパ内を真 圧力に 疋する に、 前記真空チヤ ンパ内で刖 5己基板を刖記金属力ルポ二 ルガスが分解する第 1 温度に加熱する準備ェ程とヽ  Preparation of heating the substrate to the first temperature at which the metallic gas is decomposed in the vacuum chamber in order to apply a true pressure to the inside of the vacuum chamber for storing the substrate.
刖記基板を実質的に刖記第 1 温度に加熱した状態で、 m記 真空チャ ンノ 内を第 1 排気 力で排 しなが ら 、 記真 & ャ ンバ内に前記金属力ノレボ二ルガスを供給する供 厶工程と、 前記供給ェ程に引続いてヽ 刖記金属力ノレポ二ルガス の供給 す 匕 を停止 る 力、 前記真空チャ ンバ内を刖記第 1 排 目匕力よ り も十分に高い第 2排気能力で急速排 5¾する と によ り 、 冃 u 記金属カ ルボ二ノレガス の分解によ り 生成された分解ガスを除 去する除去工程とヽ While the substrate is substantially heated to the first temperature, while exhausting the inside of the vacuum chamber with the first exhaust power, the metal gas is introduced into the chamber and the chamber. The supply step and the force that stops the supply of the metal gas after the supply step, and the inside of the vacuum chamber is more than the first discharge force.急速 u A removal step for removing the decomposition gas generated by the decomposition of the metal carbon gas;
、 '  , '
刖記供給工程と 記除去工程と を多数回繰り 返すェ程と、 を具備する  程 repeating the supplying step and the removing step a number of times.
本発明の第 2 の視点は、 金属力ルボ二ノレガスを用いて被処 理基板上に所定の金属膜を形成する C V D方法であつて、 前記基板を収納する真空チャ ンバ内を真空圧力に設定する A second aspect of the present invention relates to a CVD method for forming a predetermined metal film on a substrate to be processed by using a metal gas, such as a metal gas, and setting a vacuum pressure in a vacuum chamber for accommodating the substrate. Do
"!  "!
と共に、 前記真空チャ ンバ内で前記基板を 刖 己金属力ノレポ二 ルガスが分解する第 1 温度に加熱する準備工程と、 And a preparation step of heating the substrate to a first temperature at which the self-repellent gas is decomposed in the vacuum chamber;
—、ム 記基板を実質的に前記第 1 温度に加熱 した状態で 、 刖記 真空チャ ンバ内を第 1排気能力で排気しなが ら 、 刖記真空チ ャ ンノ 内に HU記金属カノレポ二ノレガスを供給する供給ェ程と、 記供給工程に引続いて、 前記金属力ノレボ二ノレガス の供給 を停止する一方、 前記真空チヤ ンノ 内を第 2排気會 力で排気 しなが ら、 刖記真空チャ ンバ内にパ ジガスを供給してパー ジする こ と によ り 、 前記金属カ ルポ二ルガス の分解によ り 生 成された分解ガスを除去する除去ェ程と、  While the substrate is substantially heated to the first temperature, the vacuum chamber is evacuated at the first exhaust capacity while the HU metal canopy is inserted into the vacuum chamber. Following the supply step of supplying the non-reactive gas, the supply of the metal-powered non-repellent gas is stopped, and the inside of the vacuum chamber is evacuated with the second exhaust power while By purging by supplying a purge gas into the vacuum chamber, a removal process for removing a decomposition gas generated by the decomposition of the metal calporal gas,
 ,
刖記供給工程と 刖記除去工程と を多数回繰り 返すェ程と、 を具備する  程 repeating the supply step and the removal step many times.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の一実施形態に係る C V D装置を模式的に 示す図。  FIG. 1 is a diagram schematically showing a CVD device according to one embodiment of the present invention.
図 2 は、 本発明の一実施形態に係る C V D方法を示すフロ 一チヤ ー ト  FIG. 2 is a flowchart showing a CVD method according to an embodiment of the present invention.
図 3 A及び図 3 B は、 従来の C V D方法の成膜状態を説明 するための 式図。 Figures 3A and 3B illustrate the film formation state of the conventional CVD method. Fig.
図 4 A乃至図 4 Dは 本発明の一実施形態に係る C V D方 法の成膜状態を説明するための模式図。  4A to 4D are schematic views for explaining a film formation state by the CVD method according to one embodiment of the present invention.
図 5 はヽ 本発明の他の実施形態に係る C V D装置を模式的 に示す図 o  FIG. 5 is a diagram schematically showing a CVD device according to another embodiment of the present invention.
図 6 は なる条件で形成された W膜の比抵抗を示すグラ フ  Figure 6 is a graph showing the resistivity of the W film formed under different conditions.
明を実施するための最良の形  Best way to implement
以下に本発明の実施形態について図面を参照して説明す な ヽ 以下の説明においてヽ 略同一の機能及ぴ構成を有する 構成要素については、 同一符号を付し 、 重複説明は必要な場 合にのみ行 o  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, components having substantially the same functions and configurations will be denoted by the same reference numerals, and redundant description will be omitted when necessary. Only row o
図 1 はヽ 本発明の一実施形態に係る C V D装置を模式的に 示す図である - o の成膜装置 1 0 0 はヽ 気密に構成された略 円筒状の - 、空チャ ンノ (処理室 ) 1 を有する。 処理室 1 内に はヽ 被処理基板である ゥェノヽ Wを水平に支持するためのサセ プタ 2 が配 Pスされる。 サセプタ 2 はヽ その中央下部に設け ら れた円筒状の支持部材 3 によ り 支持される o  FIG. 1 is a view schematically showing a CVD apparatus according to one embodiment of the present invention. The o-film forming apparatus 100 is a substantially air-tightly formed, substantially cylindrical-, empty channel (processing chamber). ) Has one. A susceptor 2 for horizontally supporting a substrate W to be processed is disposed in the processing chamber 1. The susceptor 2 is supported by a cylindrical support member 3 provided at the lower center thereof.
サセプタ 2 の外縁部にはゥェハ Wをガィ ドするためのガィ ド、 V ング 4 が配卩スされる 0 な 、 ゥェハ Wのためのガィ ド、は、 サセプタ 2 の表面を座ぐる と によ り 形成する こ と もでき サセプタ 2 には抵抗加熱型の ヒ 一タ 5 が埋め込まれる 。 ヒ一 タ 5 はヒ ―タ電源 6 か 電される · - と によ り サセプタ 2 を 加熱しヽ その熱で被処理基板である ゥェ - ノヽ Wを加熱する 0 の熱によ り W ( C O ) 6 ガスが熱分解され の際 、 サセ プタ 2 は成膜に都合の良い 3 0 0 〜 6 0 0 。cの所定の温度に 加熱される 。 ヒ ータ電源 6 にはコ ン ト 口 ラ (図示せず) が 接続される 。 このコ ン ト ローラによ り 、 曰 At the outer edge of the susceptor 2, a guide for guiding the wafer W and a wing 4 are arranged. A resistance heating type heater 5 is embedded in the susceptor 2. The heater 5 heats the susceptor 2 by means of the heater power supply 6 and heats the heat of the susceptor 2 and heats the substrate W to be processed. (CO) 6 gas is thermally decomposed The container 2 is 300 to 600, which is convenient for film formation. Heated to a predetermined temperature of c. A heater (not shown) is connected to the heater power supply 6. By this controller,
ijm.度センサ (図示せ ず). の信号に応 じてヒータ 5 の出力が制御される。 また、 処 理室 1 の壁にも ヒ ータ (図示せず) が埋め込まれる。 この ヒ 一タ によ り 、 処理室 1 の壁力 0 〜 8 0 。c程度に加熱される。  The output of the heater 5 is controlled according to the signal of the ijm. degree sensor (not shown). A heater (not shown) is also embedded in the wall of the processing room 1. With this heater, the wall force of the processing chamber 1 is 0 to 80. Heated to about c.
処理室 1 の天壁 1 a には、 シャ ワー へ -y 1 0 が配設され る。 シャ ヮ 1 ~ へ ッ ド 1 0 の下部のシャ ヮ一プレー ト 1 0 a に はサセプタ 2 に向けてガスを吐出するための多数のガス吐出 孔 1 1 が形成される 。 シャ ワー へッ ド 1 0 の上端には、 処理 ガス 、 例えば W ( C o ) 6 ガスを供給する配管 1 2 が接続さ れる o シャ ヮ . へ 、ソ ド 1 0 の内部には、 処理ガスを拡散させ るための空間部 1 0 c が形成される。 ガス吐出孔 1 1 は空間 部 1 0 c に連通 し、 処理ガスを均一に処理 1 内に供給する。 またヽ シャ ワープレー ト 1 0 a には、 シャ V 一 へッ ド 1 0 内 での W ( c O ) 6 ガスの分解を防止するため 、 例えば同心円 状の冷媒流路 1 0 b が形成される。 冷媒供 源 (図示せず) から この冷媒流路 1 0 b に冷却水な どの冷媒が供給され、 シ ャ ヮ プレー ト 1 0 a 力 S 2 0 〜 : L 0 0 °Cに制御される。 On the top wall 1a of the processing room 1, -y 10 is installed to the shower. At the bottom of the Shah Wa one plates 1 0 a of head 1 0 Shah Wa 1 to ~ plurality of gas injection holes 1 1 for discharging gas toward the susceptor 2 is formed. At the upper end of the shower head 10, a pipe 12 for supplying a processing gas, for example, a W (Co) 6 gas, is connected. A space 10 c for diffusing the light is formed. The gas discharge port 11 communicates with the space 10 c to uniformly supply the processing gas into the processing 1. Further, in the shower plate 10a, for example, a concentric refrigerant flow passage 10b is formed to prevent the decomposition of the W (cO) 6 gas in the shower head 10. . A coolant such as cooling water is supplied to the coolant flow path 10b from a coolant supply (not shown), and the coolant is controlled to a shear plate 10a power S20-: L00 ° C.
配管 1 2 の他端は、 成膜原料である 固体状の W ( C O ) 6 原料 Sが収容された成膜原料容器 1 3 に挿入される。 また、 容器 1 3 には、 キャ リ アガス配管 1 4 も揷入される。 キヤ リ ァガス供給源 1 5 から、 配管 1 4 を介 して、 キャ リ アガス と して例えば A r ガスが成膜原料容器 1 3 に吹き込まれる。 キ ャ リ アガスの供給によ り 、 原料容器 1 3 内の固体状の W ( C O ) 6 原料 S が昇華 して W ( C O ) 6 ガス と な る。 w ( c O ) 6 ガスは、 キャ リ アガスにキヤ リ されて配管 1 2 を介 し てシャ ワ ー へ ッ ド 1 0 へ供給され、 空間部 1 0 c で拡散され、 ガス吐出孔 1 1 を介 して処理室 1 へ供給される。 The other end of the pipe 12 is inserted into a film forming material container 13 containing a solid W (CO) 6 material S as a film forming material. In addition, the carrier 13 also includes a carrier gas pipe 14. From the carrier gas supply source 15, for example, an Ar gas is blown into the film forming material container 13 as a carrier gas via a pipe 14. By supplying the carrier gas, the solid W (C O) 6 raw material S is sublimated to W (CO) 6 gas. The w (c O) 6 gas is carried by the carrier gas and supplied to the shower head 10 via the pipe 12, is diffused in the space 10 c, and is discharged into the gas discharge hole 11. Is supplied to processing chamber 1 via
配管 1 4 にはマスフローコ ン ト ローラ 1 6 とその前後のバ ルブ 1 7 と が配設される。 また、 配管 1 2 には例んば W ( C The piping 14 is provided with a mass flow controller 16 and valves 17 before and after the mass flow controller 16. Also, for example, W (C
0 ) 6 .ガス の量に基づいてその流量を把握するための流量計0) 6. Flowmeter to grasp the flow rate based on the amount of gas
4 5 とその前後バルブ 1 7 が配設される。 配管 1 2 の流量計4 5 and the valves 17 before and after it are arranged. Flow meter for piping 1 2
4 5 の下流側には、 プリ フ ローライ ン 4 1 が接続される。 プ リ フ ロ ライ ン 4 1 は後述する排気管 2 4 に接続される。 プ リ フ ロ ライ ン 4 1 には、 W ( C O ) 6 ガス配管 1 2 と の分 岐部の直下流にバルブ 4 2 が配設される。 配管 1 2 、 1 4 、A pre-flow line 41 is connected downstream of 45. The pre-flow line 41 is connected to an exhaust pipe 24 described later. The pre-flow line 41 is provided with a valve 42 immediately downstream of a branching point from the W (CO) 6 gas pipe 12. Piping 1 2, 1 4,
4 1 の周囲にはヒータ (図示せず) が配設される こ の ヒ ー タは、 W ( C O ) 6 ガス の固化 しない温度 、 例えば 2 0 〜 141 A heater (not shown) is provided around 1. The heater is at a temperature at which the W (CO) 6 gas does not solidify, for example, 20 to 1.
0 0 。c ヽ 好ま しく は 2 5 〜 6 0 °Cに制御される。 0 0. c さ れ る It is preferably controlled at 25 to 60 ° C.
一方ヽ 配管 1 2 にパージガス配管 1 8 が れる。 ノヽ0 一 ジガス配管 1 8 の他端はパージガス供給源 1 9 に接続される パ一ジガス供給源 1 9 は、 パージガス と して、 例 ば A r ガ ス、 H e ガス、 N 2 ガスな どの不活性ガスや Η 2 ガスな どを 供給する 。 なお、 パージガス配管 1 8 にはマス フ 一 コ ン ト ローラ 2 0及びその前後のバルブ 2 1 が配設される On the other hand, a purge gas pipe 18 is connected to the pipe 12. Nono 0 one purge gas and the other end of the pipe 1 8 Pas one purge gas supply source 1 9 connected to a purge gas supply source 1 9, and a purge gas, eg if A r gas, H e gas, which N two gas Supply inert gas, Η2 gas, etc. The purge gas pipe 18 is provided with a mass controller 20 and valves 21 before and after it.
マス フ ロ ー コ ン ト ローラ 1 6 、 2 0 、 ノ ルブ 1 7 、 2 1 、 Mass flow controller 16, 20, Knob 17, 21,
4 2 は ン ト ローラ 4 0 によって制御される。 れによ り 、 キ ヤ リ ァ ガス 、 W ( C O ) 6 ガス 及ぴパージガス の供給 · 停 止及ぴ れらの流量が制御される。 W ( C Ο ) 6 ガス流量を 把握するための流 計 4 5 も コ ン ト ローラ 4 0 に接続される コ ン ト 口'一ラ 4 0 は 、 所望の W ( C O ) 6 ガス流量値が得ら れる よ う に 、 流量計 4 5 の値に基づいてキヤ リ ァガスのマス フロ一コ ン 卜 π一ラ 1 6 を制御する 42 is controlled by the controller 40. As a result, the supply / stop of the carrier gas, the W (CO) 6 gas, and the purge gas, and the flow rates thereof are controlled. W (CΟ) 6 Gas flow rate The flow meter 45 for grasping is also connected to the controller 40, and the control port 40 is provided with a flow meter so that a desired W (CO) 6 gas flow value can be obtained. 45 Controls the carrier flow mass flow π 16 based on the value of 45
処理室 1 の底壁 1 b の中央部には円形の開 口部 2 2 が形成 される。 底壁 1 b にはこの開口部 2 2 と連通 し、 下方に向け て突出する排気室 2 3 が配設される 。 排 至 2 3 の側面には 排気管 2 4 が接 される。 排気管 2 4 には、 処理室 1 内の圧 力及び排 能力を調整するバルブ 2 5 a 及び高速真空ポンプ A circular opening 22 is formed at the center of the bottom wall 1 b of the processing chamber 1. The bottom wall 1b is provided with an exhaust chamber 23 communicating with the opening 22 and protruding downward. An exhaust pipe 24 is connected to the side of the exhaust 23. The exhaust pipe 24 has a valve 25a for adjusting the pressure and exhaust capacity inside the processing chamber 1 and a high-speed vacuum pump.
2 5 b を含む排 装置 2 5 が接続される。 排気装置 2 5 を作 動させる と によ り 処理室 1 内を所定の真空度まで高速に減 圧する こ と が可能と なる。 Discharge device 25 including 25 b is connected. By operating the exhaust device 25, it is possible to rapidly reduce the pressure in the processing chamber 1 to a predetermined degree of vacuum.
サセプタ 2 にはヽ ウェハ wを支持して昇降させるための 3 本 ( 2本のみ図示 ) の支持ピン 2 6 が配設される 。 支持ピン The susceptor 2 is provided with three support pins 26 (only two are shown) for supporting and raising and lowering the wafer w. Support pin
2 6 はサセプタ 2 の表面に対して突没可能に配設される。 支 持ピン 2 6 の下端部は支持板 2 7 に固定される。 支持ピン 2Reference numeral 26 denotes a susceptor 2 which is provided so as to be able to protrude and retract with respect to the surface thereof. The lower end of the support pin 26 is fixed to the support plate 27. Support pin 2
6 は、 ェァシリ ンダな どの駆動機構 2 8 によ り 支持板 2 7 を 介して昇降される。 6 is moved up and down by a driving mechanism 28 such as an air cylinder via a support plate 27.
処理室 1 の側壁には、 成膜装置 1 0 0 に隣接する搬送室 (図示せず) と の間でウェハ Wの搬入出を行 う ための搬入出 口 2 9 が形成される。 搬入出口 2 9 は、 ゲー トバルブ 3 0 に よって開閉される。  On the side wall of the processing chamber 1, a loading / unloading port 29 for loading / unloading the wafer W with respect to a transfer chamber (not shown) adjacent to the film forming apparatus 100 is formed. The loading / unloading port 29 is opened and closed by a gate valve 30.
図 2 は、 このよ う な成膜装置を用いて W膜を形成する、 本 発明の一実施形態に係る C V D方法を示すフ ローチャー トで ある。 まず、 ゲー トノ ルブ 3 0 を開に して搬入出 口 2 9 力 ら ウェハ Wを処理室 1 内に搬入 し、 サセプタ 2 上に載置する (工程 S 1 ) 。 次に、 ヒータ 5 によ り サセプタ を加熱してそ の熱によ り ウェハ Wを 3 0 0 〜 6 0 0 °Cに加熱する (工程 S 2 ) 。 また、 排気装置 2 5 によ り 処理室 1 内を排気して、 処 理室 1 内の圧力を所定の圧力、 例えば 6 . 7 P a 以下に真空 排気する (工程 S 3 ) 。 その後、 ウェハ W上に形成された下 地膜の表面に W膜を堆積する。 W膜の堆積は、 W ( C O ) 6 の供給工程 (工程 S 4 ) と C Oの除去工程 (工程 S 5 ) と を 用いて行 う。 FIG. 2 is a flowchart showing a CVD method according to one embodiment of the present invention, in which a W film is formed using such a film forming apparatus. First, the gate knob 30 is opened and the loading / unloading port 29 The wafer W is loaded into the processing chamber 1 and placed on the susceptor 2 (step S 1). Next, the susceptor is heated by the heater 5, and the wafer W is heated to 300 to 600 ° C. by the heat (step S 2). Further, the inside of the processing chamber 1 is evacuated by the exhaust device 25, and the pressure in the processing chamber 1 is evacuated to a predetermined pressure, for example, 6.7 Pa or less (step S3). Thereafter, a W film is deposited on the surface of the underlying film formed on the wafer W. The W film is deposited by using a W (CO) 6 supply step (step S4) and a CO removal step (step S5).
W ( C O ) 6 の供給工程 (工程 S 4 ) では、 成膜原料容器 1 3 に収容された固体状の W ( C O ) 6 原料 S にキャ リ アガ ス、 例えば A r ガスを吹き込み、 W ( C O ) 6 原料 S を昇華 させる。 そ して、 生成した W ( C O ) 6 ガスをキャ リ アガス によ り キャ リ ア させて配管 1 2及びシャ ワー へッ ド 1 0 を経 て処理室 1 内に導入する。 工程 S 4 中、 排気装置 2 5 を第 1 排気速度 (第 1 排気能力) で運転し、 処理室 1 内を排気する。 この際、 真空ポンプ 2 5 b を、 工程 S 3 と 同 じ出力で動作さ せる一方、 バルブ 2 5 a を調整する こ と によ り 、 必要な第 1 排気能力を得る。 In the W (CO) 6 supply step (step S 4), a carrier gas, for example, Ar gas is blown into the solid W (CO) 6 raw material S stored in the film forming raw material container 13, and W (CO CO) 6 Sublimates the raw material S. Then, the generated W (CO) 6 gas is carried by the carrier gas and introduced into the processing chamber 1 through the pipe 12 and the shower head 10. During the process S 4, the exhaust unit 25 is operated at the first exhaust speed (first exhaust capacity) to exhaust the inside of the processing chamber 1. At this time, while the vacuum pump 25b is operated with the same output as in the step S3, the necessary first pumping capacity is obtained by adjusting the valve 25a.
ウェハ W表面に所定時間 W ( C O ) 6 ガスを供給した後、 C O の除去工程 (工程 S 5 ) に移行する。 C O の除去工程 (工程 S 5 ) では、 W ( C O ) 6 ガスの供給を止める (キヤ リ アガス の供給を止める) と共に、 排気装置 2 5 を、 上述の 第 1 排気速度 よ り も十分に高い第 2 排気速度 (第 2排気能 力) で運転し、 処理室 1 内を急速排気する。 この際、 真空ポ ンプ 2 5 b を、 工程 S 4 と 同 じ出力で動作させる一方、 バル プ 2 5 a を調整する こ と によ り 、 必要な第 2排気能力を得る。 これによ り 、 W ( C O ) 6 ガスの分解によ り 生じた C Oガス を処理室 1 から除去する。 なお、 第 2排気能力は記第 1 排気 能力の望ま しく は 3 〜 7 0 0倍、 よ り 望ま しく は 3 〜 : L 0 0 倍である。 7 0 0倍以上の排気能力差が得られるポンプはコ ス ト高であ り 、 好ま しく ない。 排気ポ ンプの排気能力 と して は 1 O O O O L Z s e c 以下が好ま しい。 After supplying the W (CO) 6 gas to the surface of the wafer W for a predetermined time, the process shifts to a CO removal step (step S5). In the CO removal process (process S5), the supply of W (CO) 6 gas is stopped (the supply of carrier gas is stopped), and the exhaust device 25 is set to a sufficiently higher speed than the first exhaust speed described above. Operate at the second pumping speed (second pumping capacity) to rapidly exhaust the inside of the processing chamber 1. At this time, vacuum port By operating the pump 25b with the same output as in the step S4, the necessary second exhaust capacity is obtained by adjusting the valve 25a. As a result, the CO gas generated by the decomposition of the W (CO) 6 gas is removed from the processing chamber 1. The second exhaust capacity is preferably 3 to 700 times, more preferably 3 to: L00 times the first exhaust capacity. A pump that can provide a difference in exhaust capacity of 700 times or more has a high cost and is not preferable. The exhaust capacity of the exhaust pump is preferably 1 OOOOLZ sec or less.
W ( C O ) 6 の供給工程 (工程 S 4 ) と C Oの除去工程 (工程 S 5 ) と を繰り 返す回数は形成される W膜の最終的な 厚さ に依存するが、 通常、 少なく と も 1 0 回以上繰り 返す。 こ の際、 W ( C O ) 6 ガス の供給、 停止、 及び流量の制御、 排気装置 2 5 のバルブ 2 5 a の調整は、 コ ン ト ローラ 4 0 カ 予め入力 された所定のプロ グラムに従って行 う。 The number of repetitions of the step of supplying W (CO) 6 (step S 4) and the step of removing CO (step S 5) depends on the final thickness of the W film to be formed, but usually at least. Repeat 10 times or more. At this time, supply, stop, and control of the flow rate of the W (CO) 6 gas, and adjustment of the valve 25a of the exhaust device 25 are performed in accordance with a predetermined program previously input to the controller 40. U.
従来の方法では、 W膜の最終的な厚さ に至るまで処理室内 に W ( C O ) 6 ガスを連続的に供給する。 この場合、 図 3 A 及び図 3 B に示すよ う に、 まず、 ウェハ W上の下地膜の表面 に W ( C O ) 6 ガス が到達する (図 3 A ) 。 そ こ で W ( C O ) 6 ガスが分解し、 分解した C Oが短時間で Wが吸着すベ きサイ ト に吸着する (図 3 B ) 。 これによ り 、 W膜に C Oが 取り 込まれて電気抵抗が高く な り 、 膜質が劣化して しま う。 In the conventional method, W (CO) 6 gas is continuously supplied into the processing chamber until the final thickness of the W film is reached. In this case, as shown in FIGS. 3A and 3B, first, the W (CO) 6 gas reaches the surface of the base film on the wafer W (FIG. 3A). The W (CO) 6 gas is decomposed, and the decomposed CO is quickly adsorbed on the site where W should be adsorbed (Fig. 3B). As a result, CO is taken into the W film, the electrical resistance increases, and the film quality deteriorates.
これに対 して、 本発明の実施形態においては、 ウェハ Wに 対する W ( C O ) 6 ガス の供給と W ( C O ) 6 ガス が分解 し て生成した C Oガス の高速排気による除去と を交互的に行う 。 この場合、 工程 S 4 では、 図 4 A及び図 4 B に示すよ う に、 ウエノヽ W上の下地膜の表面に W ( C O ) 6 ガスが到達し、 分 解した C Oが短時間で Wが吸着すべきサイ 卜 に吸着する。 し かし、 ェ程 S 5 において、 図 4 C に示すよ つ に、 高速排気に よ り C oが速やかに除去される。 そ して、 図 4 Dに示すよ う に、 次の W ( C O ) 6 ガス の供給される とヽ C Oが除去され た吸着サイ ト に W ( C o ) 6 が吸着する。 ·> - のよ な工程を 繰り 返して所定の膜厚の w膜を形成するため 、 C O取り 込み によ る膜質の低下を防ぐこ とができ る。 And pairs to this, in the embodiment of the present invention, alternating and removal by high-speed exhaust of CO gas supply and W (CO) 6 gas W (CO) 6 gas against the wafer W is generated by decomposition Do to In this case, in step S4, as shown in FIGS. 4A and 4B, The W (CO) 6 gas reaches the surface of the underlayer on the wafer W, and the decomposed CO is adsorbed on the site where W is to be adsorbed in a short time. However, in step S5, Co is quickly removed by the high-speed exhaust as shown in FIG. 4C. Then, as shown in FIG. 4D, when the next W (CO) 6 gas is supplied, W (Co) 6 is adsorbed on the adsorption site from which ヽ CO has been removed. ·> The-step is repeated to form a w film having a predetermined thickness, so that deterioration of the film quality due to CO incorporation can be prevented.
工程 S 4 において、 処理室 1 内の圧力は 0 . 1 0 〜 o 6 6 In step S4, the pressure in the processing chamber 1 is 0.10 to o66.
7 P a である こ とが望ま しい。 こ の圧力が 6 6 6 • 7 P a を 超 る と W膜の膜質が低下するおそれがある 方 、 この圧 力が 0 • 1 0 P a未満では成膜レー トが低 < な り すぎる。 ま た、 W ( C O ) 6 ガス の レジデ ンス タ イ ム は 、 1 0 0 s e c 以下でめる こ と が好ま しい。 W ( C O ) 6 ガス流 は、 0 .It is desirable to be 7 Pa. If this pressure exceeds 66 6 • 7 Pa, the film quality of the W film may be degraded. On the other hand, if this pressure is less than 0 • 10 Pa, the deposition rate is too low. Further, it is preferable that the residence time of W (CO) 6 gas be set at 100 seconds or less. The W (CO) 6 gas flow is 0.
0 1〜 5 L Z m i ri程度が好ま しい。 0 1 to 5 L Zmi ri is preferred.
c oガス の除去の際には、 上記のよ う な高速排気を行 う代 わり にヽ 処理室 1 を真空排気しなが らパージガス供給源 1 9 からパ ジガス を導入する よ う に しても よい の場合、 W When removing the co gas, instead of performing the high-speed exhaust as described above, it is also possible to introduce the purge gas from the purge gas supply source 19 while evacuating the processing chamber 1. If good, W
( c o ) 6 の供給工程 (工程 S 4 ) と C Oの除去ェ程 (工程(co) 6 supply process (process S 4) and CO removal process (process
S 5 ) と において、 排気装置 2 5 の排気能力を実質的に一定 に維持し 、 ガス の切 り 替えるだけで必要なェ程を行う こ と力 S でき る なお、 パージガス と しては、 供給ェ程 (ェ程 S 4 ) において 、 W ( C O ) 6 ガス と共に処理室 1 内に供給したキ ャ リ アガス と 同 じガスを使用する こ と がでさ る In step S5), the exhaust capacity of the exhaust device 25 is maintained substantially constant, and the required process can be performed only by switching the gas. In the process (process S 4), the same gas as the carrier gas supplied into the processing chamber 1 together with the W (CO) 6 gas can be used.
パ一ジガス導入の際は、 処理室 1 内の圧力が成膜ガス導入 時と 同 じ程度の圧力になる よ う に排気を行 う こ とが好ま しい のため 、 例えば、 単位時間あた り の铃ガス供給量及び排When introducing the purge gas, the pressure in the processing chamber 1 is Since it is preferable to exhaust the gas to the same pressure as at the time, for example, the gas supply amount and the exhaust gas per unit time
J. J.
を供給工程 (工程 S 4 ) と除去工程 (ェ程 S 5 ) と で じ とする こ とができ る。 しかし、 C οガスの除去を効果的に行 ため、 バルブ 2 5 a をフノレオープン ( ヽ空ポンプ 2 5 b を 一定の出力で動作させた状態で) に して排与壮置 2 5 の排気 能力を高めても よい。 このよ う にパ一ジガスを導入する こ と によ り 、 吸着した C Oをよ り 速やかに追い出すこ とが可能と なる  In the supply step (step S 4) and the removal step (step S 5). However, in order to effectively remove C ο gas, the valve 25a is opened normally (with the vacuum pump 25b operated at a constant output) and the exhaust capacity of the exhaust 25 May be increased. By introducing the purge gas in this way, it becomes possible to expel the adsorbed CO more quickly.
また、 c o の除去ェ程 (工程 S 5 ) にねいて 、 上述のよ に 、 一定時間高速排気を行つた後、 高 排 ¼しなが ら 一ジ ガスを導入する よ う に しても よい。 この場 a ヽ パ一ジの際に 処理室 1 内の圧力が供給ェ程 (工程 S 4 ) と 同 じ程度の圧力 と なる う にする こ と が好ま しい。  Further, as described above, after the high-speed exhaust is performed for a certain period of time, the gas may be introduced while the exhaust is performed at a high rate, as described above, in the process of removing co (step S5). . In this case, it is preferable that the pressure in the processing chamber 1 at the time of the purging is set to be approximately the same as the pressure in the supply step (step S4).
> ユ、、  > Yu,
W ( c O ) 6 の吸着は相対的に低温のほ Ό Tiゝ生 じやす < ヽ c o の脱離は相対的に ϊ¾ tun.のほ う が生じやすい 従つてヽ wThe adsorption of W (cO) 6 is relatively easy to generate at low temperatures. <ヽ The desorption of co is relatively easy to generate as ϊ¾ tun.
( C o ) 6 ガス供給の際にはウェハ wを相対的に低温に しヽ(C o) 6 When supplying gas, keep wafer w at a relatively low temperature.
C o除去の際にはゥェハ Wを相対的に高 曰 にする こ と が好ま しい 。 例えば、 W ( C o ) 6 ガス供給の際のゥェハ温度を 1 When removing Co, it is preferable to make Jeha W relatively high. For example, the wafer temperature when supplying W (Co) 6 gas is set to 1
0 0 〜 4 0 0 °c程度に し、 C ο除去の際の ゥェ ノヽ温度を 3 0 Set the temperature to about 0 to 400 ° C, and set the temperature at the time of C o removal to 30 ° C.
0 〜 6 0 0 °c程度とする こ と によ り 、 良好な成膜処理を行ラ と ができ る。 この場 σ ヽ ウェハ温度を短時間で切 り 替える 必要力 Sあるため、 サセプタ 2 と しては熱伝導性の高い A 1 N などを用い、 且つ極力薄く する こ と が好ま しい またヽ 加熱 源と して抵抗加熱型のヒ一タ 5 の代わ り にラ ンプ加熱式の加 熱源を用いれば、 ゥェノヽ温度を短時間で変化 させる こ と がで さ る。 By setting the temperature to about 0 to 600 ° C., a good film forming process can be performed. In this case, σ 力 It is necessary to switch the wafer temperature in a short period of time. Therefore, it is preferable to use A 1 N or the like with high thermal conductivity as the susceptor 2 and make it as thin as possible. Instead of the resistance heating type heater 5, a lamp heating type heating With a heat source, the temperature can be changed in a short time.
W ( C O ) 6 の供給 '工程 (工程 S 4 ) \こおいて、 W ( CSupply of W (CO) 6 'Process (Process S 4) \ Here, W (C
O ) 6 ガスの 1 回の供給量は、 w膜の厚さ 2 n m以下 に相当 する こ と が好ま しい。 1 回に成膜する厚さ が この程度であれ ば生成 した c oが取 り 込まれる量が少ない よ り 好ま し く はO) It is preferable that the supply amount of the six gases at one time corresponds to the thickness of the w film of 2 nm or less. If the thickness of the film formed at one time is about this, the amount of generated co is taken in less, and it is more preferable.
W膜の厚さ 1 . l n m以下に相当する こ と である。 This corresponds to a thickness of the W film of 1.1 nm or less.
C Oの除去工程 (ェ程 S 5 ) の 1 回あた り の時間は 2秒〜 The time for one time of the CO removal process (step S5) is from 2 seconds to
6 0 秒である こ と が好ま しい。 この時間が 2 秒以上であれば、 ウェハ W上カゝら C O を有効に除去する こ と ができ る。 よ り 好 ま し く は 3 秒以上であ ヽ 3 秒以上であればウェハ w上からPreferably, it is 60 seconds. If this time is 2 seconds or more, the CO on the wafer W can be effectively removed. More preferably, it is 3 seconds or more.
C O をほぼ除去する こ と ができ る。 一方、 の時間が 、 6 0 秒を越える と 、 処理効率が低下する。 Almost all CO can be removed. On the other hand, if the time exceeds 60 seconds, the processing efficiency decreases.
C 〇の除去工程 (ェ程 S 5 ) の 1 回あた り の排気量は 3 0 The displacement per cycle in the C〇 removal process (step S5) is 30
L 〜 3 0 0 L ある こ と が好ま しい。 よ り 望ま し く は、 この排 気量は、 4 0 L、 更には 4 5 L以上である 3 0 L未満では、L to 300 L is preferred. More desirably, this displacement is less than 40 L and even more than 45 L and less than 30 L.
C O を有効に除去する と ができ ない。 3 0 0 L を越える と 、 排気能力が高い排気装置 (高価) を使用する必要がある、 或 いは排気に時間が掛る よ になる と い う 問題が生 じる Effective removal of C O does not work. If it exceeds 300 L, there is a problem that it is necessary to use a high-exhaust capacity exhaust system (expensive), or it takes a long time to exhaust.
なお、 キャ リ アガス と して、 A r ガス に限 らず他の不活性 ガス を用いても よい。 また 、 キャ リ アガス は 、 処理ガスの温 度を低く 抑制する こ と ができ る ガスである こ と が好ま しい。 こ の よ う なガス と しては ' ヽ N 2 ガス、 H 2 ガス 、 H e ガス 力 s 例示 される。 Note that the carrier gas is not limited to the Ar gas, and another inert gas may be used. Further, it is preferable that the carrier gas is a gas capable of suppressing the temperature of the processing gas to a low level. Examples of such gas include N 2 gas, H 2 gas, and He gas power s.
図 2 に戻 り 、 この よ 5 に して、 W膜の成膜が終了後 享 2 & 排気を行って処理室 1 内の残留ガス を排出する (ェ程 S 6 ) 。 この際 、 ポス ト フローと してパージガス供給源 1 9 からパ一 ジガスを流しても よい。 そ して、 ゲー ト ノ ノレブ 3 0 を開にし て搬入出 口 2 9 から ウェハ wを搬出する (ェ程 S 7 ) Returning to FIG. 2, after the completion of the formation of the W film, The residual gas in the processing chamber 1 is exhausted by exhausting gas (Step S6). At this time, a purge gas may be supplied from the purge gas supply source 19 as a post flow. Then, the gate knob 30 is opened, and the wafer w is unloaded from the loading / unloading port 29 (Step S7).
図 5 は、 本発明の他の実施形態に係る C V D装置を模式的 に示す図である 。 この成膜装置 1 0 0 ' は、 本構造は図 1 と同 じであるが 、 還元ガスが供給可能な点のみが図 1 の装置 と は異なっている。 即ち、 配管 1 2 に還元ガス配管 3 1 が接 続され 、 この還元ガス配管 3 1 の他端は還元ガス供 源 3 2 に接続される。 還元ガス供給源 3 2 は、 還元ガス と して、 例 えば H 2 ガス、 S i H 4ガスな どを供給する。  FIG. 5 is a diagram schematically showing a CVD device according to another embodiment of the present invention. This film forming apparatus 100 ′ has the same structure as that of FIG. 1, but is different from the apparatus of FIG. 1 only in that a reducing gas can be supplied. That is, the reducing gas pipe 31 is connected to the pipe 12, and the other end of the reducing gas pipe 31 is connected to the reducing gas supply 32. The reducing gas supply source 32 supplies, for example, H 2 gas, SiH 4 gas, or the like as a reducing gas.
兀ガス配管 3 1 にはマスフ 口一:r ン 卜 口一ラ 3 3 及びそ の前後のノ ノレブ 3 4 が配設される よ /こヽ ヽ スフ π一コ ン ト ローラ 3 3 の下流側にはプリ フ ロ一ライ ン 4 3 が接 eされる。 このプリ フ ロ ーライ ン 4 3 はプリ フ ローライ ン 4 1 に接糸冗さ れる。 プ リ フ ロ一ライ ン 4 3 には 、 還兀ガス配管 3 1 と の分 岐部の直下流にバルプ 4 4 が配設される。 マス フ 一コ ン ト ロ ーラ 3 3 、 バルプ 3 4、 4 4 も :π ン 卜 口一ラ 4 0 に よ り 制 御され 、 3S兀カ ス の供給、 停止、 及び流量が ン 卜 ーラ 4 The vat gas pipe 31 is provided with a muff outlet 3r and a noreb 34 before and after the muffler outlet. This is the downstream side of the π 1 controller 33. Is connected to the pre-flow line 43. The pre-flow line 43 is connected to the pre-flow line 41. In the pre-flow line 43, a valve 44 is provided immediately downstream of the branching point with the gas pipe 31. The mass controller 33 and the valves 34 and 44 are also controlled by the π inlet port 40, and the supply, stop, and flow of the 3S gas are controlled. La 4
0 によ り 制御さ る。 Controlled by 0.
このよ う な図 5 に示す成膜装置を用いて W膜を形成する場 合には 、 図 2 に示す C Oの除去ェ程 (工程 S 5 ) に いて、 as兀 ス供給源 3 2 力 ら還元ガスを供給する これによ り 、 吸着 した W ( C O ) 6 の分解及び C οの除去が促進され、 よ り 一層成膜レー ト を上昇させる こ とができ る 図 1 の装置を用い、 異なる条件で W膜を形成する を行 つた。 実験において、 処理室 1 内の圧力を 6 6 . 7 Ρ a と し ウェハ温度を 4 4 0 °Cに設定し、 以下の 6 つの成膜条件で厚 さ 3 0 n m程度の W膜を形成した。 When a W film is formed using such a film forming apparatus shown in FIG. 5, the CO removal process (step S5) shown in FIG. Supply of reducing gas This promotes decomposition of adsorbed W (CO) 6 and removal of C o, and can further increase the deposition rate Using the apparatus shown in Fig. 1, a W film was formed under different conditions. In the experiment, the pressure in the processing chamber 1 was set at 66.7 Ρa, the wafer temperature was set at 44 ° C, and a W film with a thickness of about 30 nm was formed under the following six film forming conditions. .
[条件 1 ]  [Condition 1 ]
ガス流量 0 . 5 L / m i n で連続的に W ( C O ) 6 ガスを 供給して 3 5 n mの W膜を形成 した。  A W (CO) 6 gas was continuously supplied at a gas flow rate of 0.5 L / min to form a W film of 35 nm.
[条件 2 ]  [Condition 2]
ガス流量 0 . 5 L / m i 11 で 1 . 5 秒間に亘って W ( C At a gas flow rate of 0.5 L / mi 11, W (C
O ) 6 ガスを供給した (厚さ 0 . 1 6 11 111の^^膜に相当 ) 0 引続いて、 W ( C O ) 6 ガスを停止 して、 5秒間に亘つて 1O) 6 gas was supplied (corresponding to a ^^ film with a thickness of 0.16 11 111) 0 Subsequently, the W (CO) 6 gas was stopped and 1
5 0 L / s e c の排気速度で高速真空排気を行った のよ う な供給と急速排気と を 1 9 0 回繰り 返して 3 0 η mの w膜 を形成した。 The supply and rapid evacuation as if high-speed evacuation were performed at an evacuation speed of 50 L / sec were repeated 190 times to form a w film of 30 ηm.
[条件 3 ]  [Condition 3]
ガス流量 0 . 5 L / m i n で 1 . 5 秒間に亘つて W ( c W (c) for 1.5 seconds at 0.5 L / min
O ) 6 ガスを供給した (厚さ 0 . 1 6 n mの W膜に相当 引続いて、 W ( C O ) 6 ガスを停止 して、 3秒間に亘つて A r ガス流量 0 . 5 L / m i nでパージを行った (排 速度 1O) 6 gas was supplied (corresponding to a W film with a thickness of 0.16 nm) Then, the W (CO) 6 gas was stopped and the Ar gas flow rate was 0.5 L / min for 3 seconds. (Purge speed 1
0 . 3 し Z s e c ) この よ う な供給とパージと を 1 9 0回 繰り 返して 3 0 n mの W膜を形成 した。 0.3 Sec) This supply and purging were repeated 190 times to form a 30 nm W film.
[条件 4 ]  [Condition 4]
ガス流量 ◦ . 5 L / m i n で 1 . 5 秒間に亘つて W ( C Gas flow ◦ .5 L / min for 1.5 seconds over W (C
〇) 6 ガス を供給した (厚さ 0 . 1 7 n mの W膜に相当 引続いて、 W ( C O ) 6 ガスを停止 して、 5秒間に 1 て A r ガス流量 0 . 5 Lノ m i n でパージを行った (排気速度 1 5 . 3 L / s e c ) 。 この よ う な供給とパージと を 1 9 0 回 繰り 返して 3 2 n mの W膜を形成 した。 Ii) 6 gases were supplied (corresponding to a 0.17-nm-thick W film. Subsequently, the W (CO) 6 gas was stopped, and A r Purging was performed at a gas flow rate of 0.5 L min (pumping speed 15.3 L / sec). Such supply and purging were repeated 190 times to form a 32 nm W film.
[条件 5 ]  [Condition 5]
ガス流量 0 . 5 L / m i n で 1 . 5 秒間に亘つ て W ( C O ) 6 ガスを供給した (厚さ 0 . 1 6 11 111の^膜に相当) 。 引続いて、 W ( C O ) 6 ガスを停止 して、 1 0秒間に亘つて A r ガス流量 0 . 5 L / m i n でのパージを行った (排気速 度 1 5 . 3 L / s e c ;) 。 この よ う な供給とノヽ。 —ジと を 1 9 0 回繰り 返して 3 0 n mの W膜を形成 した。 W (CO) 6 gas was supplied at a gas flow rate of 0.5 L / min for 1.5 seconds (corresponding to a ^ film having a thickness of 0.16111111). Subsequently, the W (CO) 6 gas was stopped, and purging was performed at an Ar gas flow rate of 0.5 L / min for 10 seconds (exhaust speed: 15.3 L / sec;). . Such supply and knowledge. The process was repeated 190 times to form a 30 nm W film.
[条件 6 ]  [Condition 6]
ガス流量 0 . 5 L Z m i n で 1 . 5 秒間に亘つ て W ( C O ) 6 ガスを供給した (厚さ 0 . 1 6 11 111の 膜に相当) 。 引続いて、 W ( C O ) 6 ガスを停止 して、 5秒間に亘つて 1 5 0 L / s e c の排気速度での高速真空排気し、 更に引続い て、 5秒間に亘つて A r ガス流量 0 . 5 L / m i nでパージ を行った (排気速度 1 5 . 3 L / s e c ) 。 このよ う な供給 と急速排気とノ、。 一ジと を 1 9 0 回繰り 返して 3 0 n mの W膜 を形成した。 W (CO) 6 gas was supplied at a gas flow rate of 0.5 LZ min for 1.5 seconds (corresponding to a 0.16 11111 thick film). Subsequently, the W (CO) 6 gas was stopped, and a high-speed evacuation was performed at a pumping speed of 150 L / sec for 5 seconds, followed by an Ar gas flow rate for 5 seconds. Purging was performed at 0.5 L / min (exhaust speed: 15.3 L / sec). With such supply and rapid exhaust. The process was repeated 190 times to form a 30 nm W film.
図 6 は、 これら条件で形成された W膜の比抵抗を示すク ラ フである。 図 6 に示すよ う に 、 連続的に W膜を形成する条件 Figure 6 is a graph showing the resistivity of the W film formed under these conditions. As shown in Fig. 6, the conditions for continuous W film formation
1 では W膜の比抵抗が 3 0 0 β Ω · c mであった 。 これに対 し、 本発明の実施形態に係る条件 2 、 3 、 4 、 5 、 6 ではい ずれも w膜の比抵抗が条件 1 よ り も十分に低いものであつた。 即ち、 これによ り 、 本発明の実施形態によ り 、 比抵抗の低い 良好な膜質が得られる こ と が確認された。 At 1, the specific resistance of the W film was 300 βΩ · cm. On the other hand, under the conditions 2, 3, 4, 5, and 6 according to the embodiment of the present invention, the specific resistance of the w film was sufficiently lower than the condition 1. That is, according to the embodiment of the present invention, the specific resistance is low. It was confirmed that good film quality was obtained.
条件 3 、 4 、 5 では、 A r パージによ る c o除去の時間 と して夫々 3、 5、 1 0秒を使用 した。 図 6に示すよ Ό に 、 c In conditions 3, 4, and 5, 3, 5, and 10 seconds were used as the time for removing CO by Ar purging, respectively. As shown in Fig. 6, c
O除去の時間が長いほ ど W膜の比抵抗が低く なった また、The longer the O removal time, the lower the specific resistance of the W film.
C O除去時間が同 じ 1 0秒でも、 パージのみの条件 5 よ り も 真空排気の後にパージを行つた条件 6のほ う が W膜の抵抗が 低く なつた。 Even when the CO removal time was the same for 10 seconds, the resistance of the W film was lower in Condition 6 in which purging was performed after evacuation than in Condition 5 in which only purging was performed.
上 δ己 施形態では、 金属力ルポニルガス と して w ( C o) In the above embodiment, w (Co) is used as the metallic luponyl gas.
6 ガス を .用いて W膜を形成する場合について例示 している。 しカゝ し、 金属カノレポ二ノレガス と しては、 W ( C O ) 6 ヽ N iIn this example, a W film is formed using 6 gases. However, as a metal canopy gas, W (CO) 6 6 Ni
( C O ) 4 、 M o ( C O ) 6 ヽ C O 2 ( C O ) 8 、 R h 4 ( c o ) 12. 、 R e 2 ( C O ) 10、 C r ( C O ) 6 ヽ R U 3 ( c o )(CO) 4, Mo (CO) 6ヽ CO2 (CO) 8 , Rh4 (co) 12. , Re2 (CO) 10, Cr (CO) 6 ヽ RU3 (co)
12 力、ら なる群か ら選択される少な く と も 1 種のガス とする こ と がでさ る。 」れらのガス を単独で使用 した士县 A 12 At least one gas can be selected from the group. A person who used these gases alone
曰 は 、 w, Says w,
N i 、 M o、 G o ヽ R h ヽ R e、 C r 、 R u の金属膜を夫々 形成する こ とができ る Ni, Mo, Go oRh ヽ Re, Cr, Ru metal films can be formed respectively
 Table
またヽ 上記実施形 |1 では 、 被処理基板と して半導体ウェハ を例示 してレヽる 。 しか しヽ 被処理基板と しては、 L C Dや F In the embodiment | 1, the semiconductor wafer is exemplified as the substrate to be processed. However, the substrates to be processed are LCD and F
P D用のガラス基板 使用する こ と がでさ る Glass substrate for PD can be used
産業上の利用可能性 Industrial applicability
本発明に よれば、 被処理基板に対する金属力ノレポ二ノレガス の供給と金属力ルポ二ルガスが分解 して生成 した じ oな どの 分解ガス の除去 と を交互的に行 う 。 こ のため 、 C Oな どの分 解ガスが金属膜に吸着 しても速やかに除去 され、 c oな どの 分解ガス の膜中への取 り 込みが低減される 従って 、 電 ¾抵 抗の低い良質な金属膜を形成する こ と ができ る。 According to the present invention, the supply of the metallic gas to the substrate to be processed and the removal of the decomposition gas such as the gas generated by the decomposition of the metallic gas are alternately performed. For this reason, even if the decomposition gas such as CO is adsorbed on the metal film, it is quickly removed and the incorporation of the decomposition gas such as co into the film is reduced. A good quality metal film with low resistance can be formed.

Claims

き主 ロ冃 求 の 範 囲 The scope of the master's request
1 . 金属カルボ二ルガス を用いて被処理基板上に所定の金 属膜を形成す Hる C V D方法であつ てヽ  1. A CVD method for forming a predetermined metal film on a substrate to be processed using a metal carbon gas.
前記基板を収納する真空チャ ンノ 内を真 圧力に BX定する と共に、 前記真空チャ ンパ内で刖記基板を刖記金属力ノレボ二 ルガスが分解する第 1 is曰m.度に加熱する準備ェ程と 、  The pressure inside the vacuum chamber storing the substrate is set to BX at a true pressure, and the substrate is heated inside the vacuum chamber at a temperature of 1 m, which is the time when the metal gas is decomposed. About
m記 ¾板を実質的に 記第 1 温度に加熱した状態で 、 ftu記  In the state where the plate is substantially heated to the first temperature, the ftu
■、  ■,
真空チャンバ内を第 1 排 能力で排 ¼ しなが ら、 刖記真空チ ヤ ンバ内に tu記金属力ルポ二ルガスを供給する供給ェ程と、 前記供給 feeいてヽ 記金属カルポ二ルガス の供給 を停止する一方、 記真ェチャンノ 内を前記第 1 排 能力よ り も十分に高い第 2排 能力で急速排気する こ と によ り 、 前 記金属カルボ二ルガスの分解によ り 生成された分解ガスを除 去する除去工程と、 While the inside of the vacuum chamber is evacuated with the first exhaust capacity, a supply process for supplying the metal gas gas into the vacuum chamber and a supply gas for supplying the metal gas gas to the vacuum chamber are performed. While the supply was stopped, the inside of the chamber was rapidly evacuated with the second exhaust capacity sufficiently higher than the first exhaust capacity, thereby generating the above-mentioned metal carbonyl gas by decomposition. A removal process for removing cracked gas;
前記供給工程と前記除去工程と を多数回繰り 返す工程と、 を具備する。  Repeating the supply step and the removal step many times.
2 . 請求の範囲 1 に記載の方法において、  2. The method according to claim 1, wherein:
前記第 2排気能力は前記第 1排気能力の 3 〜 7 0 0倍であ る。  The second exhaust capacity is 3 to 700 times the first exhaust capacity.
3 . 請求の範囲 1 に記載の方法において、  3. The method of claim 1, wherein:
前記除去工程は、 前記急速排気に引続いて前記真空チャ ン バ内にパージガスを供給してパージする工程を更に具備する。  The removing step further includes a step of supplying a purge gas into the vacuum chamber to perform purging following the rapid evacuation.
4 · 金属カルボニルガス を用いて被処理基板上に所定の金 属膜を形成する C V D方法であって、  4.CVD method of forming a predetermined metal film on a substrate to be processed using metal carbonyl gas,
前記基板を収納する真空チャ ンバ内を真空圧力に設定する と共に、 刖 sd真空チヤ ンパ内で前記 板を刖 Hl5金属力ノレボ二 ルガスが分解する第 1 温度に加熱する準備工程と、 The inside of the vacuum chamber containing the substrate is set to a vacuum pressure. And a preparation step of heating the plate to a first temperature at which 刖 H5 metallurgical gas is decomposed in a 真空 sd vacuum chamber;
記基板を実質的に HU言己第 1 温 /スに加熱した状態で 、 m記 、  With the substrate substantially heated to the first temperature / temperature of the HU,
真空チャ ンパ内を第 1 排気能力で排気 しなが ら 、 刖記真空チ ャ ンバ内に刖記金属カノレホ二ルガスを供給する供給ェ程とヽ 記供給ェ程に引続いてヽ 記金属力ルポニルガス の供 厶 を停止する一方、 き 7 While the inside of the vacuum chamber is evacuated with the first exhaust capability, the supply process for supplying the metal canol gas to the vacuum chamber and the metal supply force following the supply process. While stopping the supply of luponyl gas, 7
刖 口; =1 具首 i  口 mouth; = 1 neck i
ェ"Dチャ ン 内を第 2排気能力で排 しながら、 刖記真空チャ ンノ^内にパ一ジガスを供給してパ一 ジする こ と によ り ヽ m記金属力ルボ二ルガスの分解によ り 生 成された分解ガスを除去する除去ェ程と、  By discharging the inside of the D-channel with the second pumping capacity and supplying and purging the purge gas into the vacuum chamber, the metal gas is decomposed. A removal process for removing the decomposition gas generated by the
 ,
刖記供給ェ程と前 BB除人ェ程と を多数回繰り 返すェ程とヽ を具備する。  供給 It has a process and a process that repeat the supply process and the previous BB removal process many times.
5 . 請求の範囲 4 に記載の方法に いてヽ  5. Regarding the method described in claim 4
前記第 1及ぴ第 2排気能力は実質的に同 じである α  The first and second exhaust capacities are substantially the same α
6 . 請求の範囲 4 ρΰ ψ%の方法に いてヽ  6. Claim 4 4 ΰ% method
記金属力ルボ二ルガスは金属力ルポ二ノレと キャ ァガス と を含み、 前記パ一ジガスは刖 SBキャ リ ァガス と 同 じガスか らなる。  The metallized vapor gas includes a metallized liquid gas and a carrier gas, and the purge gas is composed of the same gas as the SB carrier gas.
7 . 請求の範囲 1 または 4 に記載の方法においてヽ  7. In the method described in claim 1 or 4,
前記除去ェ程に いて、 前記基板を HH記第 1 温度よ り も高 い第 2温度に加熱する。  In the removing step, the substrate is heated to a second temperature higher than the first temperature of HH.
8 . 請求の範囲 1 または 4 に記載の方法 し レヽてヽ  8. The method described in claims 1 or 4
前記供給ェ程と 刖記除去ェ程と を繰り 返す回数は 1 0 回以 上でめ ο 0 The number of repetitions of the supply process and the removal process should be at least 10 times ο 0
9 . 請求の範囲 1 または 4 に記 の方法におレ、て 、 前記除去工程の時間が 2秒〜 6 0秒である 9. The method described in claims 1 or 4, The time of the removal step is 2 seconds to 60 seconds
1 0 . 請求の範囲 9 に記載の方法に いてヽ  10. The method as defined in claim 9
前記除去工程の排気量力 S 3 0 L〜 3 0 0 Lである  The displacement capacity of the removal step is S30L to 300L.
1 1 . 請求の範囲 1 または 4 に記載の方法に いてヽ 前記除去工程に レ、て 、 前記真空チャ ンバ内に m.元ガスを 供給する。  11. The method according to claim 1 or 4, wherein, in the removing step, m. Original gas is supplied into the vacuum chamber.
1 2 . 請求の範囲 1 または 4 に記載の方法にね いて 前記供給工程に ける前記金属力ノレボ二ノレガス の供 量が 前記金属膜の厚さ 2 n m以下に相当する  12. The method according to claim 1 or 4, wherein a supply amount of the metallic force gas in the supply step corresponds to a thickness of the metal film of 2 nm or less.
1 3 . 請求の範囲 1 または 4 に記載の方法にねレ、てヽ 前記金属カ ノレポ二ノレガスは、 W ( C o ) 6 ヽ N i ( C o ) 1 3. The method according to claim 1 or 4, wherein the metal canopy gas is W (Co) 6 ヽ Ni (Co).
4 、 M o ( C O ) 6 、 c o 2 ( C O ) 8 ヽ R h 4 ( C O ) 12、 4, M o (CO) 6 , co 2 (CO) 8ヽR h 4 (CO) 12,
R e 2 ( C O ) 10、 C r ( C O ) 6 、 R u 3 ( C O ) 12からな る群から選択される少な く と も 1 種のガスである At least one gas selected from the group consisting of Re2 (CO) 10 , Cr (CO) 6 , and Ru3 (CO) 12
1 4 . 請求の範囲 1 3 に記載の方法においてヽ  1 4. In the method described in claim 13 ヽ
前記金属カノレポェノレガス は W ( C O ) 6 ガス であ り ヽ 刖 SB 第 1 温度は 3 0 0 〜 6 0 0 °Cである。  The metal canolepo gas is W (CO) 6 gas, and the SB first temperature is 300 to 600 ° C.
1 5 . 請求の範囲 3 または 4 に記載の方法に レ、てヽ 前記真空チヤ ンノ 内に m 13パ一ジガス を供給する際の 、 単 位時間あた り の総ガ _曰  15. The method according to claim 3 or 4, wherein the total gas per unit time when supplying the m13 purge gas into the vacuum channel is:
ス供給量及び排気 は、 記供給工程と 同 じである。  The supply amount and exhaust gas are the same as in the supply process.
PCT/JP2003/014152 2002-11-06 2003-11-06 Cvd method using metal carbonyl gas WO2004042112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/119,906 US7427426B2 (en) 2002-11-06 2005-05-03 CVD method for forming metal film by using metal carbonyl gas
US12/193,370 US7879399B2 (en) 2002-11-06 2008-08-18 CV method using metal carbonyl gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002322924A JP4126219B2 (en) 2002-11-06 2002-11-06 Deposition method
JP2002-322924 2002-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/119,906 Continuation-In-Part US7427426B2 (en) 2002-11-06 2005-05-03 CVD method for forming metal film by using metal carbonyl gas

Publications (1)

Publication Number Publication Date
WO2004042112A1 true WO2004042112A1 (en) 2004-05-21

Family

ID=32310405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014152 WO2004042112A1 (en) 2002-11-06 2003-11-06 Cvd method using metal carbonyl gas

Country Status (2)

Country Link
JP (1) JP4126219B2 (en)
WO (1) WO2004042112A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034224A1 (en) * 2003-09-30 2005-04-14 Tokyo Electron Limited Method of forming a metal layer using an intermittent precursor gas flow process
WO2005034222A1 (en) * 2003-09-30 2005-04-14 Tokyo Electron Limited Method for depositing metal layers using sequential flow deposition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661130B2 (en) * 2004-08-17 2011-03-30 Jsr株式会社 Chemical vapor deposition method
US7270848B2 (en) * 2004-11-23 2007-09-18 Tokyo Electron Limited Method for increasing deposition rates of metal layers from metal-carbonyl precursors
US7279421B2 (en) * 2004-11-23 2007-10-09 Tokyo Electron Limited Method and deposition system for increasing deposition rates of metal layers from metal-carbonyl precursors
US7638002B2 (en) * 2004-11-29 2009-12-29 Tokyo Electron Limited Multi-tray film precursor evaporation system and thin film deposition system incorporating same
US7484315B2 (en) * 2004-11-29 2009-02-03 Tokyo Electron Limited Replaceable precursor tray for use in a multi-tray solid precursor delivery system
JP2007048926A (en) * 2005-08-10 2007-02-22 Tokyo Electron Ltd W based film forming method, gate electrode forming method, semiconductor device manufacturing method, and computer-readable storage medium
JP4718272B2 (en) * 2005-08-10 2011-07-06 東京エレクトロン株式会社 Rhenium-based film forming method, gate electrode forming method, semiconductor device manufacturing method, and computer-readable storage medium
US7674710B2 (en) * 2006-11-20 2010-03-09 Tokyo Electron Limited Method of integrating metal-containing films into semiconductor devices
JP5236197B2 (en) * 2007-03-28 2013-07-17 東京エレクトロン株式会社 Film forming method and film forming apparatus
JP2012102404A (en) * 2009-10-30 2012-05-31 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, and method and apparatus of processing substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331475A (en) * 1989-06-29 1991-02-12 Toyota Motor Corp Formation of thin metallic film by cvd method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331475A (en) * 1989-06-29 1991-02-12 Toyota Motor Corp Formation of thin metallic film by cvd method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034224A1 (en) * 2003-09-30 2005-04-14 Tokyo Electron Limited Method of forming a metal layer using an intermittent precursor gas flow process
WO2005034222A1 (en) * 2003-09-30 2005-04-14 Tokyo Electron Limited Method for depositing metal layers using sequential flow deposition
US6924223B2 (en) 2003-09-30 2005-08-02 Tokyo Electron Limited Method of forming a metal layer using an intermittent precursor gas flow process

Also Published As

Publication number Publication date
JP2004156104A (en) 2004-06-03
JP4126219B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
TWI437635B (en) Method of manufacturing semiconductor device, and substrate processing apparatus
JP6270575B2 (en) Reaction tube, substrate processing apparatus, and semiconductor device manufacturing method
JP5787488B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2007154297A (en) Film deposition method and film deposition system
JP5793241B1 (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium
JP2011068984A (en) Method for manufacturing semiconductor device, cleaning method and substrate treatment apparatus
WO2002061818A1 (en) Sheet type heat treating device and method for processing semiconductors
WO2004042112A1 (en) Cvd method using metal carbonyl gas
WO2008047838A1 (en) Ti FILM FORMING METHOD AND STORAGE MEDIUM
JP5344663B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
JP6994483B2 (en) Semiconductor device manufacturing methods, programs, and substrate processing devices
KR20100031460A (en) Manufacturing method of ti system film and storage medium
KR100989028B1 (en) Method for manufacturing semiconductor device and substrate processing apparatus
JP2003077863A (en) Method of forming cvd film
JP5438266B2 (en) Semiconductor device manufacturing method, cleaning method, and substrate processing apparatus
JP2004197219A (en) Film deposition method
JP5571157B2 (en) Semiconductor device manufacturing method, cleaning method, and substrate processing apparatus
JP4105120B2 (en) Deposition method
JP2010080737A (en) Method of manufacturing semiconductor device, and substrate treatment apparatus
CN114342046A (en) Method for manufacturing semiconductor device, recording medium, and substrate processing apparatus
JP3935428B2 (en) Film forming method and film forming apparatus
WO2020235596A1 (en) Film formation method, film formation apparatus, and method for cleaning treatment vessel
JP7179962B2 (en) Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
JP2009130108A (en) Substrate treating device and method of manufacturing semiconductor device
JP2007227804A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

WWE Wipo information: entry into national phase

Ref document number: 11119906

Country of ref document: US