WO2004037716A1 - アルコ−ルを原料とする水素の生成方法、及び装置 - Google Patents

アルコ−ルを原料とする水素の生成方法、及び装置 Download PDF

Info

Publication number
WO2004037716A1
WO2004037716A1 PCT/JP2002/011138 JP0211138W WO2004037716A1 WO 2004037716 A1 WO2004037716 A1 WO 2004037716A1 JP 0211138 W JP0211138 W JP 0211138W WO 2004037716 A1 WO2004037716 A1 WO 2004037716A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
alcohol
reactor
reaction
electrode
Prior art date
Application number
PCT/JP2002/011138
Other languages
English (en)
French (fr)
Inventor
Yasushi Sekine
Original Assignee
Yasushi Sekine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yasushi Sekine filed Critical Yasushi Sekine
Priority to AU2002344021A priority Critical patent/AU2002344021A1/en
Priority to PCT/JP2002/011138 priority patent/WO2004037716A1/ja
Publication of WO2004037716A1 publication Critical patent/WO2004037716A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol

Definitions

  • the present invention relates to a method and an apparatus for producing hydrogen. Background art
  • Hydrogen is an important industrial gas, and has been widely used in the synthesis of ammonia and methanol, hydrodesulfurization, hydrocracking, hydrogenation of oils and fats, welding, and semiconductor manufacturing. Recently, new fields of use, such as reactants in fuel cells and fuels for automobiles, aircraft, power generation, and kitchens, are attracting attention.
  • steam reforming As a method for producing hydrogen, a method of reacting alcohol with water vapor (steam reforming) is conventionally known. Steam reforming is also called steam reforming, and is specifically represented by the following chemical reaction formula (1) or (2).
  • the present inventor has conducted intensive studies in view of the above-mentioned conventional situation, and as a result, the present invention can be carried out at a lower temperature and normal pressure than the conventional method, and can be carried out without using a catalyst.
  • New steam riff with high conversion rate and no miscellaneous side reactions We have found a forming method and have already filed a patent application (Japanese Patent Application No. 2000-15032).
  • a direct-current pulse discharge is performed in a mixed gas containing gaseous chain hydrocarbons and water vapor to react the chain hydrocarbons and water vapor to generate hydrogen and carbon monoxide. It can be implemented with a low-cost, small-sized, portable reactor.For example, natural gas is converted into gasoline, transported to consuming areas, supplied to automobiles, etc., reformed, and converted to fuel cells. It is expected to be used for hydrogen supply.
  • the method according to the above-mentioned application uses gasoline or the like as a raw material, and has a problem that by-products are slightly generated.
  • the present invention is a production method that can be carried out at a lower temperature and normal pressure and at lower cost than in the past, and can efficiently obtain hydrogen with a high yield. Therefore, it is an object of the present invention to provide a novel production method and an apparatus that do not deposit carbon or generate by-products such as acetylene. Disclosure of the invention
  • the method of the present invention comprises: performing a pulse discharge in a raw material gas containing a gaseous alcohol and water vapor to induce a reaction between the alcohol and the water vapor to generate hydrogen. It is characterized by making it. Further, in a source gas containing a gaseous alcohol, a pulse discharge is performed to induce a reaction of the alcohol to generate hydrogen.
  • FIG. 1 is a diagram showing an embodiment of the hydrogen generator of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention is characterized in that a pulse discharge is performed in a raw material gas containing a gaseous alcohol and water vapor to induce a reaction between the alcohol and the water vapor to generate hydrogen.
  • a reforming reaction between alcohol and water vapor occurs due to the pulse discharge, and as a result, the target hydrogen is efficiently produced in a high yield as in the above-described case. Is done.
  • alcohol may be involved in the reaction as a result, and thus includes a case where ether is used as a raw material, and the ether is hydrolyzed to alcohol, and the alcohol reacts.
  • the present invention is characterized in that a pulse discharge is performed in a raw material gas containing a gaseous alcohol to induce a reaction of the alcohol to generate hydrogen.
  • the decomposition reaction of the alcohol is caused by the pulse discharge, and as a result, the target hydrogen is efficiently produced at a high yield.
  • This reaction can be performed, for example, at a low temperature of 80 to 120 ° C. and at normal pressure, depending on the type of alcohol.
  • the present invention is characterized in that the above production method is performed in the absence of a catalyst.
  • the present invention is characterized in that the above generation method is performed by a continuous method of continuously supplying a source gas.
  • the present invention is an apparatus for performing the above-mentioned generation method, comprising: a reactor; an electrode housed in the reactor; and a DC power supply for applying a DC voltage to the electrode. And an outlet for discharging hydrogen.
  • an apparatus for producing hydrogen is provided.
  • This equipment In the reactor, the raw material gas is charged into the reactor. Then, a pulse discharge is performed between the electrodes, and the generated hydrogen is discharged from the outlet and used effectively.
  • the present invention provides an apparatus for performing the above-described method for generating a source gas continuously, comprising: a reactor; an electrode housed in the reactor; It is characterized by including a DC power supply for applying a DC voltage, a supply port for continuously supplying a source gas, and a discharge port for discharging generated hydrogen.
  • the raw material gas is continuously replenished from the supply port into the reactor, and hydrogen is efficiently produced.
  • a pulse discharge is performed in a raw material gas containing a gaseous alcohol and, if necessary, water vapor to induce a reaction between the alcohol or the alcohol and the water vapor. And a method for generating hydrogen.
  • the alcohol is not particularly limited, and can be appropriately selected from various alcohols. Examples thereof include methanol, ethanol, n-propanol, 2-propanol, 1-butanol, ethylene glycol, and the like, and a mixture thereof. Furthermore, since alcohol may be reacted as a result, ether is used as a raw material, and the ether is hydrolyzed with steam to produce various alcohols as described above, and the alcohol reacts. Specific examples of the ether include dimethinole ether, methyl ethyl ether, and getyl ether.
  • pulse discharge is performed in a source gas containing the alcohol and, if necessary, water vapor.
  • pulse discharge means passing a pulse current between the electrodes.For example, electron irradiation is repeated within a very short time of 1 ⁇ s or less, so the temperature of the gas phase does not rise and the reaction occurs at a very low temperature. Can be done.
  • the pulse discharge is usually performed at regular intervals, but may be intermittent. In performing the discharge, a pulse power supply can be used. However, a DC self-excited pulse discharge in which a constant voltage is applied between the electrodes and the pulse discharge is performed in a self-excited manner is preferably employed.
  • the number of pulse discharges per second (hereinafter, sometimes referred to as “pulse generation frequency”) is suitably about 5 to 100 times, and especially about 50 to 100 times. preferable.
  • the pulse generation frequency increases as the current increases under a constant voltage, and decreases as the distance between the electrodes increases. Therefore, the preferable voltage, current, and interelectrode distance are naturally set by adjusting the voltage, current, and interelectrode distance so that the above-described pulse generation frequency is achieved.
  • the applied voltage is about 1 kV to 2 kV
  • the current is about 1 to 20 mA
  • the electrode is The distance is preferably about 2 mm to 10 mm.
  • the applied voltage, current, and distance between the electrodes are not limited to the above ranges.
  • the distance between the electrodes is increased and the above-described pulse is applied. It can be implemented by increasing the applied voltage and current accordingly to achieve the frequency of occurrence.
  • a radical is generated by irradiating the discharge current, that is, the electron beam from the electrode, and this radical causes a reaction. Therefore, as the discharge current is increased and the distance between the electrodes is increased, the number of molecules that collide with the electron beam increases, so that the reaction rate increases and the conversion rate per unit time tends to increase. There is.
  • the reaction temperature is not particularly limited, but the lower the temperature, the lower the energy cost. Therefore, it is preferable to select a temperature within a temperature range higher than the boiling points of both the alcohol used as a raw material and, if necessary, the steam used, and as low as possible.
  • the reaction temperature is about 101 ° C to 130 ° C (normal pressure conditions) because water has a higher boiling point. Below) is preferable.
  • the reaction temperature should be 100 ° C to 150 ° C. It is preferable to be about C. Since water vapor tends to be concentrated, when the boiling point of alcohol is lower than that of water, the raw material gas containing alcohol and water vapor is subjected to a reaction temperature of about 130 to 15 oC in advance. It is preferred to feed the reactor after preheating at a higher temperature. When only methanol is used as a raw material, the temperature is preferably about 80 to 120 ° C.
  • the total pressure of the source gas is not particularly limited, and may be, for example, about 0.1 to 10 atmospheres. However, since the reaction proceeds sufficiently at normal pressure and a robust reactor is not required at that time, it can be said that the reaction at normal pressure is particularly preferable in industry.
  • the mixing ratio of alcohol and water vapor may be a stoichiometric amount, but if desired, one of the substances may be increased or decreased to about 1 Z 2 to 2 times the stoichiometric amount. However, if the partial pressure of steam is higher than the stoichiometric amount, the conversion of the raw material may decrease slightly. This is thought to be due to the fact that electrons generated by the discharge are captured by water molecules.
  • various alcohols can be used as described above.
  • methanol, ethanol, and propanol are used as the alcohol.
  • ethanol undergoes a reforming (reforming) reaction as shown in the following formula (3) with water vapor to produce target hydrogen without generating acetylene or the like.
  • a reforming reaction between methanol and water vapor is unlikely to occur, and usually, a decomposition reaction of methanol itself as shown in the following formula (4) proceeds. Whether the reforming reaction or the decomposition reaction is dominant depends on the structure and reactivity of the raw materials.
  • methanol is particularly preferably employed as the alcohol.
  • Methanol causes a decomposition reaction as shown in the following formula (4) by pulse discharge to generate hydrogen, but does not generate by-products such as acetylene.
  • the production method of the present invention is excellent as a method for producing hydrogen.
  • the generated hydrogen can be effectively used for, for example, synthesis of ammonia and methanol, hydrodesulfurization, hydrocracking, hydrogenation of fats and oils, welding, and semiconductor production.
  • turbine fuel there is an advantage that burning calories converted to hydrogen and carbon monoxide has a larger calorific value than burning alcohol as it is.
  • the production method of the present invention can proceed sufficiently in the absence of a catalyst. Since no catalyst is used, the cost can be reduced, and there is no problem of a decrease in the reaction rate due to a decrease in the activity of the catalyst.
  • FIG. 1 shows an example of the generation device of the present invention.
  • the generator 1 of FIG. 1 includes a reactor 10 made of quartz or other glass, ceramic, or the like.
  • a pair of electrodes 11 and 12 are provided in the reactor 10 so as to face each other, and a discharge region 13 is formed between the electrodes 11 and 12.
  • the electrode material use common materials such as SUS, nickel, copper, aluminum, iron, carbon, etc.
  • the shape of the electrode is not particularly limited, and may be various shapes such as a needle shape and a flat shape.
  • Each of the electrodes 11 and 12 extends out of the reactor 10, and a DC power supply 14 for applying a negative high voltage is connected to the electrode 11, and the DC power supply 14 is connected to the electrode 11.
  • a digital oscilloscope 15 is connected between the electrodes 11.
  • the electrode 12 is grounded outside the reactor 10.
  • a three-way port 16 is connected to the inlet side of the reactor 10, and an electrode 11 extending from the reactor 10 to the other side penetrates one port of the three-way port 16, and the other port has A supply port 17 for supplying a raw material gas to the reactor 10 is provided.
  • a tube 19 filled with quartz wool 18 is connected to the supply port 17, and a preheater 20 is provided so as to surround an area of the tube 19 filled with quartz wool 18.
  • a water vapor supply pipe 21 configured to supply water vapor W is provided with one end opened in the quartz wool 18 and the other end opened outside the pipe 19.
  • a thermocouple 22 is provided with one end inserted into quartz wool 18, and an alcohol supply pipe 24 is connected to pipe 19 via a three-way port 23.
  • a three-way port 25 is connected to the inlet side of the alcohol supply pipe 24, and a conductor 26 connected to the thermocouple 22 penetrates one port of the three-way port 25, and the other port is connected to the other port. It is configured so that gaseous alcohol A can be supplied.
  • a three-way port 27 is connected to the outlet side of the reactor 10, and an electrode 12 extending from the reactor 10 to the outside penetrates one of the three-way ports 27, and is connected to the other side. mouth has a discharge port 2 8 for discharging the hydrogen H 2 generated by pulse discharge. Note that the distance between the electrodes 11 and 12 can be arbitrarily adjusted.
  • water vapor W is supplied from the steam supply pipe 21 and gaseous alcohol A is supplied from the alcohol supply pipe 24.
  • the mixture is appropriately heated at 0 and supplied into the reactor 10 from the supply port 17.
  • a negative voltage is applied to the electrode 11 by the DC power supply 14, self-excited pulse discharge occurs between the electrodes 11 and 12, and the reaction occurs. Induced, producing hydrogen H 2.
  • the generated hydrogen H 2 is discharged from the outlet 28 and used for various purposes.
  • the generator 1 shown in FIG. 1 is configured to be able to continuously supply the raw material gas into the reactor 10, so that it is efficient and industrially excellent.
  • the feed rate of the raw material gas is adjusted to a value such that the conversion rate of the raw material gas becomes a certain value or more, for example, 60% or more, by analyzing the hydrogen H 2 discharged from the outlet 28. It is preferable to set appropriately.
  • the distance between the electrodes is about lmm to 10 mm, and the applied voltage is about 1 to 5 kV, alcohol and water vapor are contained.
  • the supply flow rate of the raw material gas is suitably about 10 to 100 Om1Z, especially about 50 to 100 Om1 minute. It should be noted that it is also possible to perform the measurement in a batch system instead of the continuous system as shown in FIG.
  • a DC power supply 14 is used as a power supply connected to the electrode 11.
  • any other power supply that can perform pulse discharge can be applied.
  • a power supply or the like configured to supply a half-wave or full-wave current by combining a rectifier with the power supply can be appropriately used.
  • the number of electrodes accommodated in the reactor 10 is not limited to one pair, and a plurality of electrodes can be used as needed.
  • the production device of the present invention can be used as a small and portable hydrogen production device.
  • hydrogen gas is obtained immediately after the start of the reaction, the response is fast, and the hydrogen gas can be continuously produced at low temperature and normal pressure. It can be used as a hydrogen supply device.
  • the device shown in Fig. 1 was produced as a generator.
  • a quartz tube having an outer diameter of 6 mm, an inner diameter of 5 mm, and a length of 300 mm was used as a reactor, and SUS316 was used as a pair of electrodes facing each other.
  • the distance between the electrodes was set to 1 to 1 Omm, and ethanol and water vapor were supplied.
  • the supply ratio of ethanol and steam was set to 1: 1 (partial pressure ratio).
  • the mixed gas of ethanol and water vapor was heated to 120 ° C by a preheater in advance and then supplied to the quartz tube.
  • the supply speed of the mixed gas is 30 ml
  • the molar ratio of carbon oxide was almost 2, suggesting that a reforming reaction had occurred.
  • the frequency of pulse generation during discharge was about 50 times Z seconds.
  • composition and amount of generated gas were measured in the same manner as in Example 1 except that the partial pressure ratio between ethanol and steam was set to 2: 1 and the supply rate of the mixed gas was set to 30 m1 minute. did.
  • the measurement results are shown in (Table 2).
  • Table 2 Current / mA conversion 1% CO selectivity 1% CO ⁇ ⁇ mol H 2 / CO
  • Ethanol alone was used as the raw material gas, and was supplied into the English pipe at a supply rate of 30 mlZ. At this time, the temperature (reaction temperature) in the quartz tube was normal temperature, and the pressure was normal pressure. In other configurations, the composition of the generated gas and the generated amount were measured in the same manner as in Example 1 above. The measurement results are shown in (Table 3)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

明細書
アルコールを原料とする水素の生成方法、 及ぴ装置 技術分野
本発明は、 水素の生成方法、 及び生成装置に関する。 背景技術
水素は、 重要な工業用ガスであり、 従来、 アンモニア、 メタノールの 合成、 水素化脱硫、 水素化分解、 油脂などの水素化、 溶接、 半導体製造 等に広く用いられている。 そして最近では、 燃料電池における反応物質 や、 自動車、 航空機、 発電、 厨房用の燃料等の新しい利用分野が注目さ れている。
上記水素の生成方法として、 アルコールと水蒸気とを反応させる方法 (スチームリフォーミング) が従来知られている。 スチームリフォーミ ングは、 水蒸気改質とも呼ばれ、 具体的には次式 (1 ) や (2 ) などの 化学反応式で表される。
CH3OH + H20→ 3H2 + C02 (1 ) C2H5OH + 3H20→ 6H2 + 2C02 (2) このスチームリフォーミングは、 従来、 アルミナを担体として白金等 の貴金属触媒を用い、 2 5 0〜4 0 0 ° (:、 1〜5 0気圧程度の高温高圧 条件下で行われていた。 しかしながら、 この方法は、 高価な触媒が必要 であり、 また高温高圧で反応を行うため、 高温高圧に耐えうる堅牢な反 応装置を用いる必要があった。 また、 種々の副反応が生じ、 生じた副生 成物によつて反応管が閉塞したり触媒が劣化したりする問題もあつた。 本発明者は、 上記従来の状況に鑑み鋭意研究を行った結果、 従来法よ りも低温、 常圧で実施することができ、 触媒を用いなくても実施するこ とができ、 転化率が高く、 雑多な副反応が起きない新規なスチームリフ ォーミング方法を見出し、 既に特許出願を行っている (特願 2 0 0 0 - 1 5 2 4 3 2号)。 この方法は、 気体状の鎖式炭化水素と水蒸気とを含 む混合ガス中で直流パルス放電を行って鎖式炭化水素と水蒸気を反応 させ、 水素と一酸化炭素を生成させる方法であり、 非常に低コス トで、 かつ小型、 可搬の反応器により実施可能であるため、 例えば、 天然ガス をガソリンに変えて消費地に輸送し、 自動車等に供給し、 改質した後に 燃料電池への水素供給に利用することが期待されている。
しかしながら、 上記出願に係る方法は、 ガソリン等を原料とするもの であり、 副生成物が若干生じる問題があった。
そこで本発明は、 上記の状況に鑑み、 従来に比して低温、 常圧で、 か つ低コストで実施可能であり、 高い収率で効率的に水素を得ることがで きる生成方法であって、 炭素が析出したり、 アセチレン等の副生成物を 生ずることがない、 新規な生成方法、 並びに装置を提供することを目的 とする。 発明の開示
上記課題を解決するため、 本発明の方法は、 気体状のアルコールと水 蒸気とを含む原料ガス中で、 パルス放電を行って、 前記アルコールと前 記水蒸気との反応を誘起し、水素を生成させることを特徴とする。また、 気体状のアルコールを含む原料ガス中で、 パルス放電を行って前記アル コールの反応を誘起し、 水素を生成させることを特徴とする。 図面の簡単な説明
図 1は、 本発明の水素の生成装置の一実施形態を示す図である。 発明を実施するための最良の形態
本棻明は、 気体状のアルコールと水蒸気とを含む原料ガス中で、 パル ス放電を行って、 前記アルコールと前記水蒸気との反応を誘起し、 水素 を生成させることを特徴とする。 この構成によれば、 パルス放電により、 アルコールと水蒸気とのリフ ォ一ミング (改質) 反応が起こり、 その結果、 上述の場合と同様に、 高 い収率で効率的に目的の水素が生成される。 なお、 アルコールは、 結果 的に反応に関われば良く、 したがって、 原料としてはエーテルを用い、 そのエーテルが加水分解されてアルコールとなり、 そのアルコールが反 応する場合をも含む。 なお、 この場合のアルコールとしては、 アルコー ルが、 メタノール、 エタノール、 プロパノールから選ばれる一以上を用 いると、 アセチレン等の副生成物を生じないため特に好ましい。
また、 本発明は、 気体状のアルコールを含む原料ガス中で、 パルス放 電を行って前記アルコールの反応を誘起し、水素を生成させることを特 徴とする。
この構成によれば、パルス放電によってアルコールの分解反応が起き、 その結果、 高い収率で効率的に目的の水素が生成される。 この反応は、 アルコールの種類にもよるが、 例えば、 8 0〜 1 2 0 °Cという低い温度 で、 かつ常圧で行うことができる。 なお、 この場合のアルコールとして は、 メタノール、 エタノールから選ばれる一以上を用いると、 ァセチレ ン等の副生成物を生じないため特に好ましい。
また、 本発明は、 上記の生成方法を、 触媒の非存在下で行うことを特 徴とする。
この構成によれば、 触媒を用いないため、 水素の製造がより低コスト に行われる。
また、 本発明は、 上記の生成方法を、 原料ガスを連続的に供給する連 続法により行うことを特徴とする。
この構成によれば、 水素の製造が、 より効率的に行われる。
また、 本発明は、 上記の生成方法を実施するための装置であって、 反 応器と、 前記反応器内に収容された電極と、 前記電極に直流電圧を印加 する直流電源と、 生成した水素を排出する排出口とを備えることを特徴 とする。
この構成によれば、 水素を製造するための装置が提供される。 この装 置において、 原料ガスは反応器内に充填される。 そして、 電極間でパル ス放電が行われ、 生成した水素は排出口から排出されて有効利用される。 さらに、 本発明は、 上述の、 原料ガスを連続的に供給する方式の生成 方法を実施するための装置であって、 反応器と、 前記反応器内に収容さ れた電極と、 前記電極に直流電圧を印加する直流電源と、 原料ガスを連 続的に供給する供給口と、生成した水素を排出する排出口とを備えるこ とを特徴とする。
この構成によれば、 原料ガスが、 供給口から反応器内へ連続的に補充 され、 水素が効率的に製造される。 .
以下、 本発明を詳細に説明する。
本発明の水素の生成方法は、 気体状のアルコールと、 必要に応じて水 蒸気とを含む原料ガス中で、 パルス放電を行って、 前記アルコール、 又 は前記アルコールと前記水蒸気との反応を誘起し、水素を生成させる方 法から概略構成される。
アルコールとしては、 特に限定されず、 種々のアルコールの中から適 宜選択することができる。 例として、 メタノール、 エタノール、 n -プロ パノール、 2—プロパノーノレ、 1ーブタノ一ノレ、 エチレングリ コーノレ等のジ オール等を挙げることができ、 また、 それらの混合物を用いることもで きる。 さらに、 結果的にアルコールが反応すれば良いので、 原料として はエーテルを用い、 そのエーテルが水蒸気により加水分解して上記のよ うな各種アルコールとなり、そのアルコールが反応する場合も含まれる 。 エーテルの具体例としては、 ジメチノレエーテル、 メチルェチルエーテ ル、 ジェチルエーテル等が挙げられる。
そして本発明は、 上記アルコールと、 必要に応じて水蒸気とを含む原 料ガス中で、 パルス放電を行うことを特徴とする。 ここでパルス放電と は、 電極間にパルス電流を流すことであり、 例えば 1 μ s以下という微 小時間内での電子照射を繰り返すため、 気相の温度が上昇せず、 非常に 低温で反応させることができる。 なお、 パルス放電は、 通常は一定間隔 で行うが、 断続的であっても良い。 放電を行うにあたっては、 パルス電源を用いることもできるが、 電極 間に一定の電圧をかけ、 自励的にパルス放電を行わせる直流自励パルス 放電が好適に採用される。 この場合、 1秒間当たりのパルス放電の回数 (以下、 「パルス発生頻度」 ということがある) は、 5回〜 1 0 0 0回 程度が適当であり、 特に 5 0〜1 0 0回程度が好ましい。 パルス発生頻 度は、 一定電圧の下では電流が高くなるほど多くなり、 また、 電極間距 離が長くなるほど少なくなる。 したがって、 好ましい電圧、 電流及ぴ電 極間距離は、 上記のパルス発生頻度が達成されるように電圧、 電流及ぴ 電極間距離を調節することによって自ずから設定される。 例として、 下 記実施例で示すような、 内径 5 m m程度の小型の反応器を用いる場合に は、 印加電圧は 1 k V〜 2 k V程度、 電流は 1〜 2 0 m A程度、 電極間 距離は 2 m m〜l O m m程度とすることが好ましい。 もちろん、 印加電 圧、 電流、 及ぴ電極間距離は上記の範囲に限定されるものではなく、 よ り製造能力の高い大型の反応装置を用いる場合には、 電極間距離を長く し、 上記パルス発生頻度を達成するためにその分、 印加電圧及び電流を 大きくすることによって実施することができる。
本発明の生成方法においては、 放電電流、 すなわち電子線が電極から 照射されることによりラジカルを生じ、 このラジカルが反応を引き起こ すものと考えられる。 したがって、 放電電流を大きくするほど、 また、 電極間距離を大きくするほど、電子線と衝突する分子の数が増えるので 、 反応速度が大きくなり、 また、 単位時間内での転化率が高くなる傾向 がある。
反応温度は、 特に限定されないが、 できるだけ低温で行う方がエネル ギーコストが安い。 したがって、 原料となるアルコール、 及ぴ必要に応 じて用いる水蒸気の両者の沸点よりも高い温度範囲内であって、 できる だけ低い温度を選択することが好ましい。 例えば、 メタノール、 ェタノ ール、 プロパノール等と水蒸気とを原料とする場合には、 水の方が沸点 が高いので、 反応温度は、 1 0 1 °C〜 1 3 0 °C程度 (常圧条件下) とす ることが好ましい。 さらに、 アルコールと水蒸気とを原料とする場合で あってアルコールの沸点が水よりも高い場合には、その沸点を少し上回 る程度の温度が好ましく、 例えば、 アルコールがプロパノールの場合に は、 反応温度を 1 0 0 °C〜 1 5 0 °C程度とすることが好ましい。 なお、 水蒸気は、 濃縮される傾向があるため、 アルコールの沸点が水よりも低 い場合には、 アルコールと水蒸気とを含む原料ガスを予め 1 3 0 〜 1 5 o °c程度の、 反応温度よりも高い温度で前加熱した後、 反応器に供給す ることが好ましい。 また、 メタノールのみを原料とする場合には、 8 0 〜 1 2 0 °C程度が好ましい。
原料ガスの全圧は、 特に限定されず、 例えば 0 . 1気圧〜 1 0気圧程 度で行うことができる。 ただし、 反応は常圧で十分に進行し、 その際に は堅牢な反応装置を必要としないので、 常圧で行うことが産業上特に好 ましいといえる。 また、 アルコールと水蒸気との混合比率は、 化学量論 量で良いが、 所望により、 一方の物質を化学量論量の 1 Z 2 〜 2倍程度 に増減させることも可能である。 ただし、 水蒸気の分圧を化学量論量よ りも高くすると、 原料の転化率は若干低下する場合がある。 これは、 放 電によって発生した電子が水分子に捕捉されてしまうことが影響して いるためと考えられる。
また、 本発明は、 上述のように種々のアルコールを用いることができ るが、 その中でも、 原料ガスとして、 気体状のアルコールと水蒸気とを 用いる場合には、 アルコールとして、 メタノール、 エタノール、 プロパ ノールが特に好ましく採用される。 例えば、 エタノールは、 水蒸気と次 式 (3 ) に示すようなリフォーミング (改質) 反応を起こし、 ァセチレ ン等を生ずることなく目的の水素を生成する。 なお、 メタノール及ぴ水 蒸気を原料とする場合には、 メタノールと水蒸気とのリフォーミング反 応は起こり難く、 通常は、 後述の式 (4 ) に示すようなメタノール自体 の分解反応が進行する。 リフォーミング反応と分解反応のいずれが優勢 となるかについては、 原料の構造及び反応性に依存する。
C2H5OH + Hゥ 0→ 4Hゥ + 2CO (3) さらに、 原料ガスとしてアルコールのみを用いる (水蒸気は用いない ) 場合には、 そのアルコールとして、 メタノールが特に好ましく採用さ れる。 メタノールは、 パルス放電によって次式 (4 ) に示すような分解 反応を起こし、 水素を生成するが、 この際に、 アセチレン等の副生成物 を生ずることがない。
CH3OH→ 2H2 + CO (4) 本発明の生成方法によれば、 アルコールの転化率が非常に高い。 した がって、 本発明の生成方法は、 水素の製造方法として優れている。 生成 した水素は、 上述したように、 例えば、 アンモニア、 メタノールの合成 、 水素化脱硫、 水素化分解、 油脂などの水素化、 溶接、 半導体製造等に 有効に利用することができる。 また、 タービン燃料としての利用を考慮 すると、 アルコールをそのまま燃焼する場合に比べて、 水素及ぴ一酸化 炭素へ転化させたものを燃焼させた方が発熱量が大きいという利点が ある。
なお、 本発明の生成方法は、 触媒の非存在下において十分に進行させ ることができる。 触媒を用いないので、 コス トが安くて済み、 また触媒 活性の低下による反応速度の低下の問題は起きない。 もっとも、 本発明 の方法において、従来法と同様なアルミナを担体とする白金触媒等を併 用することも可能である。 その場合にも、 反応が従来法に比較して遥か に低温、 低圧であるので、 触媒活性の低下や副反応の発生といった問題 は起こらない。
次に、 本発明の生成方法を実施するための装置について説明する。 図 1に、 本発明の生成装置の例を示す。 図 1の生成装置 1は、 石英その他 のガラス、 セラミックなどから構成される反応器 1 0を備えている。 反 応器 1 0内には一対め電極 1 1、 1 2が対向して設けられており、 電極 1 1と電極 1 2の間は放電領域 1 3となる。 電極の材質としては、 S U S、 ニッケル、 銅、 アルミニウム、 鉄、 炭素などの一般的な材料を用い ることができる。 また電極の形は特に限定されるものではなく、 針状、 平板状等の種々の形状にすることができる。 そして、 各電極 1 1、 1 2 は、 反応器 1 0の外へ延びており、 電極 1 1には負高電庄を印加するた めの直流電源 1 4が接続され、直流電源 1 4と電極 1 1の間にはデジタ ルオシロスコープ 1 5が接続されている。 一方、 電極 1 2は、 反応器 1 0の外側でアースされている。
反応器 1 0の入口側には、 三方口 1 6が接続され、 三方口 1 6の一方 の口へは反応器 1 0から外へ延びる電極 1 1が貫通しており、他方の口 は、 反応器 1 0へ原料ガスを供給する供給口 1 7となっている。 供給口 1 7には、 石英ウール 1 8が充填された管 1 9が接続され、 その管 1 9 のうち、石英ウール 1 8が充填されている領域を囲むようにプレヒータ 2 0が設けられている。 そして、 水蒸気 Wを供給可能に構成された水蒸 気供給管 2 1が、 石英ウール 1 8内に一端が開口し、 他端が管 1 9の外 側に開口して設けられている。 また、 熱電対 2 2が石英ウール 1 8内に 一端を挿入した状態で備えられ、 さらに管 1 9には、 三方口 2 3を介し てアルコール供給管 2 4が接続されている。 アルコール供給管 2 4の入 口側は、 三方口 2 5が接続され、 その三方口 2 5の一方の口には、 熱電 対 2 2に接続される導線 2 6が貫通し、 他方の口は、 気体状のアルコー ル Aが供給可能なように構成されている。
また、 反応器 1 0の出口側にも、 三方口 2 7が接続され、 三方口 2 7 の一方の口へは反応器 1 0から外へ延びる電極 1 2が貫通しており、他 方の口は、 パルス放電によって生成した水素 H 2を排出するための排出 口 2 8となっている。 なお、 電極 1 1と電極 1 2の間の距離は、 任意に 調節可能となっている。
この生成装置 1を使用する際には、 まず、 水蒸気供給管 2 1から水蒸 気 Wを供給し、 アルコール供給管 2 4から気体状のアルコール Aを供給 し、 それらの混合ガスを、 プレヒータ 2 0で適宜加熱し、 供給口 1 7か ら反応器 1 0内へ供給する。 そして、 直流電源 1 4により電極 1 1に負 電圧を印加すると、 電極 1 1、 1 2間に自励パルス放電が起きて反応が 誘起され、水素 H 2が生成する。生成した水素 H 2は排出口 2 8から排出 され、 種々の用途に供される。
図 1の生成装置 1は、原料ガスを反応器 1 0内へ連続的に供給できる ように構成されているので、 効率が良く産業的に優れている。 連続式で 行う場合、 原料ガスの供給速度は、 排出口 2 8から排出される水素 H 2 を分析して、 原料ガスの転化率が一定値以上、 例えば 6 0 %以上となる ような値に適宜設定することが好ましい。 例えば、 下記実施例で示すよ うな、 内径 5 mmの反応器を用い、 電極間距離を l mm〜l 0 mm程度 、 印加電圧を 1〜5 k V程度にした場合、 アルコールと水蒸気とを含む 原料ガスの供給流量は、 1 0〜 1 0 0 O m 1 Z分程度、 就中 5 0〜 1 0 O m 1 分程度が適当である。 なお、 図 1のような連続式ではなく、 回 分式で行うことも可能である。
また、 図 1の生成装置 1では、 電極 1 1に接続する電源として直流電 源 1 4を用いているが、 この他にも、 パルス放電が可能な電源であれば 適用可能であり、 例えば、 交流電源に整流器を組み合わせることにより 半波もしくは全波形の電流を供給できるように構成した電源等を適宜 採用することができる。
さらに、 反応器 1 0に収容する電極は、 一対に限らず、 必要に応じて 複数の電極を用いることもできる。
また、 本発明の生成装置は、 目的の水素とともに、 一酸化炭素が副生 する。 そこで、 生成した水素及び一酸化炭素を、 別途、 さらに水蒸気と 反応させることにより、最終的に水素ガスと二酸化炭素とを製造するこ とも可能である。 この反応は水性ガスシフト反応として知られている。 水性ガスシフト反応自体はこの分野において周知であり、 低温、 常圧で 進行するという利点がある。 この水性ガスシフト反応を本発明の生成装 置に組み込む場合には、 例えば、 酸化亜鉛一酸化銅系固体触媒などの水 性ガスシフト反応用の触媒を、 図 1の反応器 1 0の出口側に充填するこ とにより、パルス放電で生成した一酸化炭素をさらに水蒸気と反応させ て水素及び二酸化炭素とし、 これによつて水素の製造効率を大幅に高め ることができる。
本発明の生成装置は、小型で可搬の水素製造装置として用いることが できる。 すなわち、 反応開始直後から水素ガスが得られ、 応答が速く、 かつ、 低温、 常圧で水素ガスを連続的に製造することができるので、 こ の装置を自動車等に搭載して、燃料電池用水素供給装置として利用する ことが可能である。
なお、 図 1で示した生成装置の例は、 アルコールと水蒸気とを原料と する場合であるが、 アルコールのみを原料とする場合であっても、 図 1 において水蒸気 Wを供給しないようにする以外は、上述の説明に準じて 構成することができる。
以下、 実施例に基づき本発明をさらに詳細に説明するが、 これに限定 されるものではない。
(実施例 1 )
生成装置として図 1に示す装置を作製した。反応器としては外径 6 m m、 内径 5 mm、 長さ 3 0 0 mmの石英管を用い、 対向させる一対の電 極としては S U S 3 1 6を用いた。
そして、 電極間距離を 1〜 1 O mmとし、 エタノール及び水蒸気を供 給した。 エタノールと水蒸気の供給比率は、 1 : 1 (分圧比) に設定し た。 なお、 エタノールと水蒸気の混合ガスは、 予めプレヒータで 1 2 0 °Cに加熱した上で石英管へ供給した。 混合ガスの供給速度は、 3 0 m l
Z分に設定した。 また、 このときの石英管中の温度 (反応温度) は常温 であり、 圧力は常圧であった。
続いて、 直流電源から 1 . 5 k Vの負電圧を電極に印加したところ、 電極間に自励パルス放電が起こり、 このときの電流量は 1〜 9 mAであ つた。 デジタルオシロスコープにより、 自励パルスのパルス発生頻度を 測定した。 そして、 排出口から排出される 1分間当たりの生成ガスの組 成、 及ぴ生成量をガスクロマトグラフィで測定した。 測定結果を (表 1 ) に示す。 電流 / mA 転化率 1 % CO選択率 1 % Η2 / mol CO 1 μ mol H2/CO
1 7.3 66.4 62 30 2.06
2 14.4 61.9 1 12 55 2.03
3 17.7 60.5 151 66 2.27
4 31.0 60.2 238 1 16 2.05
5 39.5 59.6 293 146 2,01
7 50.0 61.0 380 189 2.01
9 62.5 61.3 478 238 2.01
(表 1 ) に示すように、 わずか数 Wの電力で水素を生成し、 その際の 転化率及ぴ生成量は投入電力にほぼ比例することが明らかとなった。 ま た、 アセチレン等の不純物は全く検出されなかった。 さらに、 水素と一
o
酸化炭素のモル比はほぼ 2であり、 リフォーミング反応が起こっている ことが示唆された。 なお、 放電中のパルス発生頻度は、 約 5 0回 Z秒で めった。
(実施例 2 )
エタノールと水蒸気の分圧比を 2 : 1とし、 混合ガスの供給速度を、 3 0 m 1 分に設定した以外は、 上記実施例 1と同様にして、 生成ガス の組成、 及ぴ生成量を測定した。 測定結果を (表 2 ) に示す。 表 2 電流 / mA 転化率 1 % CO選択率 1 % CO ί μ mol H2/CO
1 7.4 60.0 58 28 2.1 1
2 14.3 62.0 112 55 2.04
3 22.6 59.8 178 84 2.12
5 31.4 61.9 240 121 1.99
(表 2 ) の結果から、 上記実施例 1と同様に、 水素を生成し、 その際 の転化率及び生成量が投入電力にほぼ比例することが明らかとなつた。 また、 アセチレン等は検出されず、 水素と一酸化炭素のモル比もほぼ 2 であった。 なお、 放電中のパルス発生頻度は、 約 5 0回 Z秒であった。 (実施例 3 )
原料ガスとして、 ェタノールのみを用い、 供給速度 3 0 m l Z分で石 英管中に供給した。 このときの石英管中の温度 (反応温度) は常温であ り、 圧力は常圧であった。 その他の構成は、 上記実施例 1と同様にして 、 生成ガスの組成、 及び生成量を測定した。 測定結果を (表 3 ) に示す
表 3 電流 / mA 転化率 / % CO選択率 1 % 2 Ι β mol CO 1 μ mol H2/CO
1 4.8 46.1 51 14 3.73
2 16.8 45.3 108 47 2.29
3 21.1 42.8 115 56 2.06
4 26.1 44.7 170 72 2.35
5 34.2 42.4 220 90 2.45
(表 3 ) に示すように、 放電によって水素を生成し、 その際の転化率 及び生成量が投入電力にほぼ比例することが確認された。 なお、 放電中 のパルス発生頻度は、 約 5 0回 Z秒であった。
(実施例 4 )
原料ガスとして、 メタノール及ぴ水蒸気の混合ガス (分圧比 1 : 1 ) を用い、 その混合ガスの供給速度を、 3 O m 1 Z分に設定した以外は、 上記実施例 1と同様にして、 生成ガスの組成、 及び生成量を測定した。 測定結果を (表 4 ) に示す。 表 4 電流 / mA 転化率 1 % CO選択率 1 % Η2 Ιιι mol CO / μ mol H2/CO
1 8.0 86.4 47 21 2.24
2 13.5 84.8 78 35 2.21
3 19.8 84.3 115 52 2.22
4 23.8 83.7 140 62 2.27
5 28.1 83.4 158 72 2.19
(表 4 ) に示すように、 パルス放電に伴って水素が発生し、 転化率及 ぴ生成量は、 投入電力にほぼ比例することが明らかとなった。 また、 ァ セチレン等の不純物は検出されなかった。 また、 水素と一酸化炭素のモ ル比がほぼ 2であることから、 メタノール自体の分解反応が起こってい ることが示唆された。 なお、 放電中のパルス発生頻度は、 約 4 5回/秒 であった。 産業上の利用可能性
以上、 本発明の生成方法は、 アルコール、 又はアルコールと水蒸気と を含む原料ガス中においてパルス放電を行うことにより、従来よりも低 温、 常圧で、 かつ高い収率で効率的に水素を製造することができる。 そして、 アルコールの種類を適宜選択することによって、 アセチレン 等の副生成物を生ずることなく、純粋な水素ガスを得ることが可能とな る。

Claims

請求の範囲
1 . 気体状のアルコールと水蒸気とを含む原料ガス中で、 パルス放電 を行って、 前記アルコールと前記水蒸気との反応を誘起し、 水素を生成 させる方法。
2 . 気体状のアルコールを含む原料ガス中で、 パルス放電を行って前 記アルコールの反応を誘起し、 水素を生成させる方法。
3 . 請求の範囲 1記載の生成方法において、 アル:コールが、 メタノー ル、 エタノール、 プロパノールから選ばれる一以上であることを特徴と する水素の生成方法。
4 . 請求の範囲 2記載の生成方法において、 アルコールが、 メタノー ル、エタノールから選ばれる一以上であることを特徴とする水素の生成 方法。
5 . 請求の範囲 1〜 4のいずれか記載の生成方法を、 触媒の非存在下 で行うことを特徴とする水素の生成方法。
6 . 請求の^囲 1〜4のいずれか記載の生成方法を、 原料ガスを連続 的に供給する連続法により行うことを特徴とする水素の生成方法。
7 . 請求の範囲 5記載の生成方法を、 原料ガスを連続的に供給する連 続法により行うことを特徴とする水素の生成方法。
8 . 請求の範囲 1〜4のいずれか記載の生成方法を実施するための装 置であって、 反応器と、 前記反応器内に収容された電極と、 前記電極に 直流電圧を印加する直流電源と、 生成した水素を排出する排出口とを備 えることを特徴とする水素の生成装置。
9 . 請求の範囲 5記載の生成方法を実施するための装置であって、 反 応器と、 前記反応器内に収容された電極と、 前記電極に直流電圧を印加 する直流電源と、生成した水素を排出する排出口とを備えることを特徴 とする水素の生成装置。
1 0 . 請求の範囲 6記載の生成方法を実施するための装置であって、 反応器と、 前記反応器內に収容された電極と、 前記電極に直流電圧を印 加する直流電源と、 原料ガスを連続的に供給する供給口と、 生成した水 素を排出する排出口とを備えることを特徴とする水素の生成装置。
1 1 . 請求の範囲 7記載の生成方法を実施するための装置であって、 反応器と、 前記反応器内に収容された電極と、 前記電極に直流電圧を印 加する直流電源と、 原料ガスを連続的に供給する供給口と、 生成した水 素を排出する排出口とを備えることを特徴とする水素の生成装置。
PCT/JP2002/011138 2002-10-28 2002-10-28 アルコ−ルを原料とする水素の生成方法、及び装置 WO2004037716A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002344021A AU2002344021A1 (en) 2002-10-28 2002-10-28 Method and apparatus for forming hydrogen by the use of alcohol
PCT/JP2002/011138 WO2004037716A1 (ja) 2002-10-28 2002-10-28 アルコ−ルを原料とする水素の生成方法、及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/011138 WO2004037716A1 (ja) 2002-10-28 2002-10-28 アルコ−ルを原料とする水素の生成方法、及び装置

Publications (1)

Publication Number Publication Date
WO2004037716A1 true WO2004037716A1 (ja) 2004-05-06

Family

ID=32170791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011138 WO2004037716A1 (ja) 2002-10-28 2002-10-28 アルコ−ルを原料とする水素の生成方法、及び装置

Country Status (2)

Country Link
AU (1) AU2002344021A1 (ja)
WO (1) WO2004037716A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028223A1 (fr) * 1996-12-24 1998-07-02 H2-Tech S.A.R.L. Procede et appareils de production d'hydrogene par reformage a plasma
JP2001167784A (ja) * 1999-12-10 2001-06-22 Mitsubishi Motors Corp 燃料電池システム
WO2001089988A1 (fr) * 2000-05-24 2001-11-29 Yasushi Sekine Procede et appareil destine au reformage a la vapeur d'une chaine d'hydrocarbure
WO2002092499A1 (fr) * 2001-05-15 2002-11-21 Yasushi Sekine Procede et appareil de reformage en phase liquide d'un hydrocarbure ou d'un compose contenant de l'oxygene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028223A1 (fr) * 1996-12-24 1998-07-02 H2-Tech S.A.R.L. Procede et appareils de production d'hydrogene par reformage a plasma
JP2001167784A (ja) * 1999-12-10 2001-06-22 Mitsubishi Motors Corp 燃料電池システム
WO2001089988A1 (fr) * 2000-05-24 2001-11-29 Yasushi Sekine Procede et appareil destine au reformage a la vapeur d'une chaine d'hydrocarbure
WO2002092499A1 (fr) * 2001-05-15 2002-11-21 Yasushi Sekine Procede et appareil de reformage en phase liquide d'un hydrocarbure ou d'un compose contenant de l'oxygene

Also Published As

Publication number Publication date
AU2002344021A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US8075869B2 (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
US8021448B2 (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
Hrabovsky et al. Steam plasma methane reforming for hydrogen production
JP4068972B2 (ja) 炭化水素、含酸素化合物の液相リフォーミング方法及び装置
US20060280678A1 (en) Apparatus and method for preparing synthesis gas by using barrier discharge reaction
Hwang et al. Efficient Use of $\hbox {CO} _ {2} $ Reforming of Methane With an Arc-Jet Plasma
KR20000005650A (ko) 세라믹막개질기
KR20130112940A (ko) 일산화탄소(co) 및 수소(h2)를 함유하는 합성 가스를 생산하는 방법
Alawi et al. Comparative study on the performance of microwave-assisted plasma DRM in nitrogen and argon atmospheres at a low microwave power
JP2004509926A (ja) 非熱的パルスコロナ放電反応器内および無声放電反応器内におけるメタンおよび硫化水素の変換
CN116685718A (zh) 产生合成气的方法及装置
JP4255201B2 (ja) 鎖式炭化水素のスチームリフォーミング方法及びそのための装置
KR101032273B1 (ko) 개질시스템 및 이를 이용한 고농도 수소 생산방법
Lin et al. Reforming of CH 4 and CO 2 by combination of alternating current-driven nonthermal arc plasma and catalyst
JP2003073103A (ja) アルコールを原料とする水素の生成方法、及び装置
WO2004037716A1 (ja) アルコ−ルを原料とする水素の生成方法、及び装置
US20230234017A1 (en) Plasma conversion reactor of c02 with c1 to c4 hydrocarbon to c1 to c5 oxygenate and method thereof
Wang et al. H 2 production by ethanol decomposition with a gliding arc discharge plasma reactor
JP6621573B1 (ja) ガス製造システム及びガス製造方法
Ravari et al. Kinetic model study of dry reforming of methane using cold plasma
KR20140108461A (ko) 글라이딩 아크 플라즈마트론 및 이를 이용한 이산화탄소 저감 시스템
Winanti et al. Decomposition of carbon dioxide in the three-pass flow dielectric barrier discharge plasma reactor
KR101080696B1 (ko) 전자석을 이용한 회전 아크플라즈마 합성가스 개질기
JP2005146311A (ja) 燃料改質装置および改質ガスの製造方法
RU2075432C1 (ru) Способ получения синтез-газа

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase