WO2004037533A2 - Heat resistant insulation composite, and method for preparing the same - Google Patents
Heat resistant insulation composite, and method for preparing the same Download PDFInfo
- Publication number
- WO2004037533A2 WO2004037533A2 PCT/US2003/015530 US0315530W WO2004037533A2 WO 2004037533 A2 WO2004037533 A2 WO 2004037533A2 US 0315530 W US0315530 W US 0315530W WO 2004037533 A2 WO2004037533 A2 WO 2004037533A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- binder
- heat resistant
- base layer
- insulation composite
- resistant insulation
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 231
- 239000002131 composite material Substances 0.000 title claims abstract description 115
- 238000000034 method Methods 0.000 title claims abstract description 58
- 239000011230 binding agent Substances 0.000 claims abstract description 175
- 239000002245 particle Substances 0.000 claims abstract description 128
- 239000011159 matrix material Substances 0.000 claims abstract description 48
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 31
- 230000001681 protective effect Effects 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims description 106
- 239000000758 substrate Substances 0.000 claims description 28
- 239000004088 foaming agent Substances 0.000 claims description 25
- 229920005822 acrylic binder Polymers 0.000 claims description 16
- 238000005507 spraying Methods 0.000 claims description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 239000003063 flame retardant Substances 0.000 claims description 9
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000004062 sedimentation Methods 0.000 claims description 7
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 6
- 239000004917 carbon fiber Substances 0.000 claims description 6
- 239000013528 metallic particle Substances 0.000 claims description 6
- 239000012783 reinforcing fiber Substances 0.000 claims description 6
- 229920001296 polysiloxane Polymers 0.000 claims description 5
- 239000006229 carbon black Substances 0.000 claims description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims 4
- 239000000835 fiber Substances 0.000 description 26
- 239000004005 microsphere Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 12
- 238000009472 formulation Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- -1 microballoons Substances 0.000 description 7
- 239000008199 coating composition Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229920005992 thermoplastic resin Polymers 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000005187 foaming Methods 0.000 description 5
- 239000010451 perlite Substances 0.000 description 5
- 235000019362 perlite Nutrition 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 239000004964 aerogel Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000002902 bimodal effect Effects 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910021485 fumed silica Inorganic materials 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004693 Polybenzimidazole Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 2
- 229920001276 ammonium polyphosphate Polymers 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000009970 fire resistant effect Effects 0.000 description 2
- 238000009998 heat setting Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920002480 polybenzimidazole Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- NJVOHKFLBKQLIZ-UHFFFAOYSA-N (2-ethenylphenyl) prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1C=C NJVOHKFLBKQLIZ-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 235000016976 Quercus macrolepis Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical class [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical class [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 235000012254 magnesium hydroxide Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B26/06—Acrylates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/04—Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/02—Macromolecular compounds
- C04B26/10—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B26/12—Condensation polymers of aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
- C04B26/30—Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds
- C04B26/32—Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds containing silicon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/004—Reflecting paints; Signal paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/18—Fireproof paints including high temperature resistant paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/70—Additives characterised by shape, e.g. fibres, flakes or microspheres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00612—Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/28—Fire resistance, i.e. materials resistant to accidental fires or high temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/30—Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
- C04B2201/32—Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B2001/7691—Heat reflecting layers or coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
Definitions
- This invention pertains to a heat resistant insulation composite, and method for preparing the same.
- Various materials have been used with binder systems to provide particulate- filled binder-type insulation materials.
- aerogel particles have been combined with aqueous binders to provide insulation materials with good thermal and acoustic insulation properties; however, these systems typically do not provide sufficient durability or heat resistance, and are limited in their formulation to aqueous binders that do not penetrate the hydrophobic pores of the aerogel particle.
- aerogel materials tend to be more expensive than other types of particulate fillers.
- Other materials such as microballoons, perlite, clays, and various other particulate fillers also have been used in combination with binders to provide insulation materials. Some such materials have been used in conjunction with intumescent (e.g., char-forming) layers to provide a certain degree of fire-resistance.
- the invention provides a heat resistant insulation composite comprising, consisting essentially of, or consisting of (a) an insulation base layer comprising, consisting essentially of, or consisting of hollow, non-porous particles, a matrix binder, and, optionally, a foaming agent, and (b) a thermally reflective layer comprising, consisting essentially of, or consisting of a protective binder and an infrared reflecting agent, wherein the heat resistant insulation composite has a thermal conductivity of about 50 mW/(n ⁇ K) or less.
- a method for preparing a heat resistant insulation composite comprises, consists essentially of, or consists of (a) providing on a substrate an insulation base layer comprising, consisting essentially of, or consisting of hollow, non- porous particles, a matrix binder, and, optionally, a foaming agent, and (b) applying to a surface of the insulation base layer a thermally reflective layer comprising, consisting essentially of, or consisting of a protective binder and an infrared reflecting agent, wherein the heat resistant insulation composite has a thermal conductivity of about 50 mW/(m-K) or less.
- the heat resistant insulation composite of the present invention comprises, consists essentially of, or consists of (a) an insulation base layer comprising, consisting essentially of, or consisting of hollow, non-porous particles, a matrix binder, and, optionally, a foaming agent, and (b) a thermally reflective layer comprising, consisting essentially of, or consisting of a protective binder and an infrared reflecting agent, wherein the heat resistant insulation composite has a thermal conductivity of about 50 m /(m-K) or less.
- any suitable type of hollow, non-porous particle can be used in conjunction with the invention, including materials referred to as microballoons, microspheres, microbubbles, cenospheres, and other terms routinely used in the art.
- the term "non-porous,” as it is used in conjunction with the invention, means that the wall of the hollow particle does not allow the matrix binder to enter the interior space of the hollow particle to any substantial degree.
- substantially degree is meant an amount that would increase the thermal conductivity of the particle or the insulation composite.
- the hollow, non-porous particles can be made of any suitable material, including organic and inorganic materials, and are preferably made from a material with a relatively low thermal conductivity.
- Organic materials include, for example, vinylidene chloride/acrylonitrile materials, phenolic materials, urea-formaldehyde materials, polystyrene materials, or thermoplastic resins.
- Inorganic materials include, for example, glass, silica, titania, alumina, quartz, fly ash, and ceramic materials.
- the heat resistant insulation composite can comprise a mixture of any of the foregoing types of hollow, non-porous particles (e.g., inorganic and organic hollow, non-porous particles).
- the interior space of the hollow particle typically will comprise a gas such as air (i.e., the hollow particles can comprise a shell of non-porous material encapsulating a gas).
- Suitable hollow, non-porous particles are commercially available.
- suitable hollow, non-porous particles include ScotchliteTM glass microspheres and ZeeospheresTM ceramic microspheres (both manufactured by 3M, Inc.).
- Suitable hollow, non-porous particles also include EXPANCEL® microspheres (manufactured by A zo Nobel), which consist of a thermoplastic resin shell encapsulating a gas.
- EXPANCEL® microspheres manufactured by A zo Nobel
- the particles should be relatively small compared with the thickness of the heat resistant insulation composite (e.g., the insulation base layer of the heat resistant insulation composite) so as to allow the matrix binder to surround the particles and form a matrix.
- the particles it is suitable to use hollow, non-porous particles having an average particle diameter (by weight) of about 5 mm or less (e.g., about 0.01-5 mm).
- the particles will have an average particle diameter (by weight) of about 0.001 mm or more (e.g., about 0.005 mm or more, or about 0.01 mm or more).
- the particles have an average particle diameter (by weight) of about 3 mm or less (e.g., about 0.015-3 mm, about 0.02-3 mm, or about 0.1-3 mm) or about 2 mm or less (e.g., about 0.015-2 mm, about 0.02-2 mm, about 0.5-2 mm, or about 1- 1.5 mm).
- the hollow, non-porous particles used in conjunction with the invention can have a narrow particle size distribution.
- the hollow, non-porous particles can have a particle size distribution such that at least about 95% of the particles (by weight) have a particle diameter of about 5 mm or less (e.g., about 0.01-5 mm), preferably about 3 mm or less (e.g., about 0.01-3 mm, about 0.015-3 mm, about 0.02-3 mm, or about 0.1-3 mm) or even about 2 mm or less (e.g., about 0.01-2 mm, about 0.015-2 mm, about 0.02-2 mm, about 0.5-2 mm, or about 1-1.5 mm).
- the particles are approximately spherical in shape.
- the hollow, non-porous particles can have a bimodal particle size distribution, wherein the average particle sizes of the bimodal particle size distribution can be any of the above-described average particle sizes. Desirably, the ratio of the average particle sizes of the bimodal particle size distribution is at least about 8:1, such as at least about 10:1, or even at least about 12:1.
- the heat resistant insulation composite e.g., the insulation base layer of the heat resistant insulation composite
- the heat resistant insulation composite can comprise about 5-99 vol.% of the hollow, non-porous particles based on the total liquid/solid volume of the insulation base layer.
- the total liquid/solid volume of the insulation base layer can be determined by measuring the volume of the combined liquid and solid components of insulation base layer (e.g., hollow, non-porous particles, matrix binder, foaming agent, etc.).
- the total liquid/solid volume of the insulation base layer is the volume of the combined liquid and solid components of the insulation base layer prior to foaming.
- the thermal conductivity of the heat resistant insulation composite decreases, thereby yielding enhanced thermal insulation performance; however, the mechanical strength and integrity of the insulation base layer decreases with increasing proportions of the hollow, non-porous particles due to a decrease in the relative amount of matrix binder used. Accordingly, it is often desirable to use about 50-95 vol.% hollow, non-porous particles in the insulation base layer, more preferably about 75-90 vol.% hollow, non-porous particles.
- the insulation base layer of the heat resistant insulation composite can comprise any suitable matrix binder.
- the matrix binder can be an aqueous or non-aqueous binder, although aqueous binders are preferred due to their ease of use.
- aqueous binder refers to a binder that, prior to being used to prepare the insulation base layer, is water-dispersible or water-soluble.
- aqueous binder is used to refer to an aqueous binder in its wet or dry state (e.g., before or after the aqueous binder has been dried or cured, in which state the binder may no longer comprise water) even though the aqueous binder may not be dispersible or soluble in water after the binder has been dried or cured.
- Preferred aqueous matrix binders are those which, after drying, provide a water-resistant binder composition.
- Suitable non-aqueous matrix binders include acrylics, epoxies, butyral binders, polyethylene oxide binders, alkyds, polyesters, unsaturated polyesters, and other non-aqueous resins.
- Suitable aqueous matrix binders include, for example, acrylic binders, silicone-containing binders, phenolic binders, vinyl acetate binders, ethylene- vinyl acetate binders, styrene-acrylate binders, styrene- butadiene binders, polyvinyl alcohol binders, and polyvinyl-chloride binders, and acrylamide binders, as well as mixtures and co-polymers thereof.
- Preferred aqueous binders are aqueous acrylic binders.
- the matrix binder whether aqueous or non-aqueous, can be used alone or in combination with suitable cross-linking agents.
- the insulation base layer of the heat resistant insulation composite can comprise any amount of the matrix binder.
- the insulation base layer can comprise 1-95 vol.% of the matrix binder based on the total liquid/solid volume of the insulation base layer.
- the proportion of the matrix binder increases, the proportion of the hollow, non-porous particles necessarily decreases and, as a result, the thermal conductivity of the insulation base layer is increased. Accordingly, it is desirable to use as little of the matrix binder as needed to attain a desired amount of mechanical strength.
- the insulation base layer comprises about 1-50 vol.% of the matrix binder, or about 5-25 vol.% of the matrix binder, or even about 5-10 vol.% of the matrix binder.
- the insulation base layer can comprise opacifying agents, which reduce the thermal conductivity of the insulation base layer.
- Any suitable opacifying agent can be used, including, but not limited to, carbon black, carbon fiber, titania, or modified carbonaceous components as described, for example, in WO 96/18456A2.
- the insulation base layer preferably comprises a foaming agent in addition to the matrix binder and hollow, non-porous particles. Without wishing to be bound by any particular theory, the foaming agent is believed to enhance the adhesion between the matrix binder and the hollow, non-porous particles.
- the foaming agent is believed to improve the rheology of the matrix binder (e.g., for sprayable applications) and, especially, allows , the matrix binder to be foamed by agitating or mixing (e.g., frothing) the combined matrix binder and foaming agent prior to or after the incorporation of the hollow, non-porous particles, although the foaming agent can be used without foaming the binder.
- a foamed binder can be advantageously used to provide a foamed insulation base layer having a lower density than a non-foamed base layer.
- the matrix binder can, of course, be foamed using other methods, either with or without the use of a foaming agent.
- the matrix binder can be foamed using compressed gasses or propellants, or the binder can be foamed by passing the binder through a nozzle (e.g., a nozzle that creates high-shear or turbulent flow).
- a nozzle e.g., a nozzle that creates high-shear or turbulent flow.
- Any suitable foaming agent can be used in the insulation base layer.
- Suitable foaming agents include, but are not limited to, foam-enhancing surfactants (e.g., non-ionic, cationic, anionic, and zwitterionic surfactants), as well as other commercially available foam enhancing agents, or mixtures thereof.
- the foaming agent should be present in an amount sufficient to enable the matrix binder to be foamed, if such foaming is desired. Preferably, about 0.1-5 wt.%, such as about 0.5-2 wt.%, of the foaming agent is used.
- the insulation base layer may also comprise reinforcing fibers. The reinforcing fibers can provide additional mechanical strength to the insulation base layer and, accordingly, to the insulation composite.
- Fibers of any suitable type can be used, such as fiberglass, alumina, calcium phosphate, mineral wool, wollastonite, ceramic, cellulose, carbon, cotton, polyamide, polybenzimidazole, polyaramid, acrylic, phenolic, polyester, polyethylene, PEEK, polypropylene, and other types of polyolefins, or mixtures thereof.
- Preferred fibers are heat and fire resistant, as are fibers that do not have respirable pieces.
- the fibers also can be of a type that reflects infrared radiation, such as carbon fibers, ⁇ metallized fibers, or fibers of other suitable infrared-reflecting materials.
- the fibers can be in the form of individual strands of any suitable length, which can be applied, for example, by spraying the fibers onto the substrate with the other components of the insulation base layer (e.g., by mixing the fibers with one or more of the other components of the insulation base layer before spraying, or by separately spraying the fibers onto the substrate).
- the fibers can be in the form of webs or netting, which can be applied, for example, to the substrate, and the other components of the insulation base layer can be sprayed, spread, or otherwise applied over the web or netting.
- the fibers can be used in any amount sufficient to give the desired amount of mechanical strength for the particular application in which the heat resistant insulation composite will be used.
- the fibers are present in the insulation base layer in an amount of about 0.1-50 wt. %, desirably in an amount of about 0.5-20 wt.%, such as in an amount of about 1-10 wt. %, based on the weight of the insulation base layer.
- the insulation base layer can have any desired thickness.
- Heat resistant insulation composites comprising thicker insulation base layers have greater thermal and/or acoustic insulation properties; however, the heat resistant insulation composite of the invention allows for the use of a relatively thin insulation base layer while still providing excellent thermal and/or acoustic insulation properties.
- an insulation base layer that is about 1-15 mm thick, such as about 2-6 mm thick, provides adequate insulation.
- the thermal conductivity of the insulation base layer will depend, in part, upon the particular formulation used to provide the insulation base layer. Desirably, the insulation base layer is formulated so as to have a thermal conductivity of about 50 mW/(m-K) or less, after drying. Preferably, the insulation base layer is formulated so as to have a thermal conductivity of about 45 mW/(m-K) or less, more preferably about 42 mW/(m-K) or less, or even about 40 mW/(m-K) or less (e.g., about 35 mW/(m-K)), after drying.
- the density of the insulation base layer will depend, in part, upon the particular formulation used to provide the insulation base layer.
- the insulation base layer is formulated so as to have a density of about 0.5 g/cm or less, more preferably about 0.1 g/cm 3 or less, most preferably about 0.08 g/cm 3 or less, such as about 0.05 g/cm 3 or less, after drying.
- the thermally reflective layer of the heat resistant insulation composite comprises a protective binder.
- the thermally reflective layer imparts a higher degree of mechanical strength to the heat resistant insulation composite and/or protects the insulation base layer from degradation due to one or more environmental factors (e.g., heat, humidity, abrasion, impact, etc.).
- the protective binder can be any suitable binder that is resistant to the particular conditions (e.g., heat, stress, humidity, etc.) to which the heat resistant insulation composite will be exposed. Thus, the selection of the binder will depend, in part, upon the particular properties desired in the heat resistant insulation composite.
- the protective binder can be the same or different from the matrix binder of the insulation base layer.
- Suitable binders include aqueous and non-aqueous natural and synthetic binders.
- examples of such binders include any of the aqueous and non-aqueous binders suitable for use in the insulation base layer, as previously described herein.
- Preferred binders are aqueous binders, such as aqueous acrylic binders.
- Especially preferred are self-crosslinking binders, such as self-crosslinking acrylic binders.
- the thermally reflective layer can contain hollow, non-porous particles, or can be substantially or completely free of hollow, non- porous particles.
- the thermally reflective layer contains hollow, non-porous particles in an amount of about 20 vol.% or less, such as about 10 vol.% or less, or even about 5 vol.% or less (e.g., about 1 vol.% or less).
- the infrared reflecting agent can be any compound or composition that reflects or otherwise blocks infrared radiation, including opacifiers such as carbonaceous materials (e.g., carbon black), carbon fibers, titania (rutile), spinel pigments, and other metallic and non-metallic particles, pigments, and fibers, and mixtures thereof.
- opacifiers such as carbonaceous materials (e.g., carbon black), carbon fibers, titania (rutile), spinel pigments, and other metallic and non-metallic particles, pigments, and fibers, and mixtures thereof.
- Preferred infrared reflecting agents include metallic particles, pigments, and pastes, such as aluminum, stainless steel, bronze, copper/zinc alloys, and copper/chromium alloys. Aluminum particles, pigments, and pastes are especially preferred.
- the thermally reflective layer advantageously comprises an anti-sedimentation agent.
- Suitable anti-sedimentation agents include commercially available fumed metal oxides, clays, and organic suspending agents.
- Preferred anti-sedimentation agents are fumed metal oxides, such as firmed silica, and clays, such as hectorites.
- the thermally reflective layer also can comprise a wetting agent, such as a non-foaming surfactant.
- Preferred formulations of the thermally reflective layer comprise reinforcing fibers.
- the reinforcing fibers can provide additional mechanical strength to the thermally reflective layer and, accordingly, to the insulation composite.
- Fibers of any suitable type can be used, such as fiberglass, alumina, calcium phosphate, mineral wool, wollastonite, ceramic, cellulose, carbon, cotton, polyamide, polybenzimidazole, polyaramid, acrylic, phenolic, polyester, polyethylene, PEEK, polypropylene, and other types of polyolefins, or mixtures thereof.
- Preferred fibers are heat and fire resistant, as are fibers that do not have respirable pieces.
- the fibers also can be of a type that reflects infrared radiation, and can be used in addition to, or instead of, the infrared reflecting agents previously mentioned.
- carbon fibers or metallized fibers can be used, which provide both reinforcement and infrared reflectivity.
- the fibers can be in the form of individual strands of any suitable length, which can be applied, for example, by spraying the fibers onto the insulation base layer with the other components of the thermally reflective layer (e.g., by mixing the fibers with one or more of the other components of the thermally reflective layer before spraying, or by separately spraying the fibers onto the insulation base layer).
- the fibers can be in the form of webs or netting, which can be applied, for example, to the insulation base layer, and the other components of the thermally reflective layer can be sprayed, spread, or otherwise applied over the web or netting.
- the fibers can be used in any amount sufficient to give the desired amount of mechanical strength for the particular application in which the heat resistant insulation composite will be used.
- the fibers are present in the thermally reflective layer an amount of about 0.1-50 wt. %, desirably an amount of about 1-20 wt.%, such as an amount of about 2-10 wt. %, based on the weight of the thermally reflective layer.
- the thickness of the thermally reflective layer will depend, in part, on the degree of protection and strength desired. While the thermally reflective layer can be any thickness, it is often desirable to keep the thickness of the heat resistant insulation composite to a minimum and, thus, to reduce the thickness of the thermally reflective layer to the minimum amount needed to provide an adequate amount of protection for a particular application. Generally, adequate protection can be provided by a thermally reflective layer that is about 1 mm thick or less.
- the thermal conductivity of the heat resistant insulation composite will depend, primarily, on the particular formulation of the insulation base layer, although the formulation of the thermally reflective coating may have some effect.
- the heat resistant insulation composite is formulated so as to have a thermal conductivity of about 50 mW/(m-K) or less, after drying.
- the heat resistant insulation composite is formulated so as to have a thermal conductivity of about 45 mW/(m-K) or less, more preferably about 42 mW/(m-K) or less, or even about 40 mW/(m-K) or less (e.g., about 35 mW/(m-K)), after drying.
- the term "heat resistant" as it is used to describe the insulation composite of the invention means that the insulation composite will not substantially degrade under high heat conditions.
- An insulation composite is considered to be heat resistant within the meaning of the invention if, after exposure to high-heat conditions for a period of 1 hour, the insulation composite retains at least about 85%, preferably at least about 90%, more preferably at least about 95%, or even at least about 98% or all of its original mass.
- the high heat conditions are as provided using a 250 W heating element (IRB manufactured by Edmund B ⁇ hler GmbH, Germany) connected to a hot-air blower (HG3002 LCD manufactured by Steinel GmbH, Germany) with thin aluminum panels arranged around the device to form a tunnel.
- the insulation composite is exposed to the high heat conditions (thermally reflective layer facing the heating element) at a distance of about 20 mm from the heating element, wherein the hot air blower (at full blower setting and lowest heat setting) provides a continuous flow of air between the heating element and the insulation composite.
- the heat resistant insulation composite does not visibly degrade under such conditions.
- the insulation composite desirably includes a suitable fire retardant.
- the fire retardant can be included in the insulation base layer and/or the thermally reflective layer of the heat resistant insulation composite.
- Suitable fire retardants include aluminum hydroxides, magnesium hydroxides, ammonium polyphosphates and various phosphorus-containing substances, and other commercially available fire retardants and intumescent agents.
- the heat resistant insulation composite may additionally comprise other components, such as any of various additives known in the art.
- additives include rheology control agents and thickeners, such as fumed silica, polyacrylates, polycarboxylic acids, cellulose polymers, as well as natural gums, starches and dextrins.
- Other additives include solvents and co-solvents, as well as waxes, surfactants, and curing and cross-linking agents, as required.
- the invention further provides a method for preparing a heat resistant insulation composite comprising, consisting essentially of, or consisting of (a) providing on a substrate an insulation base layer comprising, consisting essentially of, or consisting of hollow, non- porous particles, a matrix binder, and, optionally, a foaming agent, and (b) applying to a surface of the insulation base layer a thermally reflective layer comprising a protective binder and an infrared reflecting agent, wherein the heat resistant insulation composite has a thermal conductivity of about 50 mW/(m-K) or less.
- the various elements of the heat resistant insulation composite prepared in accordance with this method are as previously described herein.
- the insulation base layer can be provided by any suitable method.
- the hollow, non-porous particles and matrix binder can be combined by any suitable method to form an particle-containing binder composition, which then can be applied to the substrate to form an insulation base layer, for example, by spreading or spraying the particle-containing binder composition on the substrate.
- the insulation base layer is provided by (a) providing a binder composition comprising, consisting essentially of, or consisting of a matrix binder and a foaming agent, (b) agitating the binder composition to provide a foamed binder composition, (c) combining the foamed binder composition with the hollow, non-porous particles to provide an particle-containing binder composition, and (d) applying the particle- containing binder composition to the substrate to provide the insulation base layer.
- the insulation base layer can be provided by (a) providing a binder composition comprising, consisting essentially of, or consisting of a matrix binder and, optionally, a foaming agent to provide a binder composition, (b) providing an particle composition comprising, consisting essentially of, or consisting of hollow, non-porous partilces, and (c) simultaneously applying the binder composition and the particle composition to the substrate, wherein the binder composition is mixed with the particle composition to provide the insulation base layer.
- the particle composition comprises, consists essentially of, or consists of hollow, non-porous particles, as previously described herein, and, optionally, a suitable vehicle.
- the binder composition and/or particle composition can be applied to the substrate in accordance with the invention (e.g., together or separately) by any suitable method, such as by spreading or, preferably, spraying the binder composition and/or particle composition or the components thereof onto the substrate.
- suitable method such as by spreading or, preferably, spraying the binder composition and/or particle composition or the components thereof onto the substrate.
- Simultaneously applying is meant that the particle composition and the binder composition are separately delivered to the substrate at the same time, wherein the particle composition and the binder composition are mixed during the delivery process (e.g., mixed in the flow path or on the substrate surface).
- the flowpaths can be joined within the spraying apparatus, such that a combined particle-binder composition is delivered to the substrate, or the flowpaths can be entirely separate, such that the particle composition is not combined with the binder composition until the respective compositions reach the substrate.
- the particle-containing binder composition produced in accordance with the invention exhibit a reduced tendency of the hollow, non-porous particles to separate from the composition, thereby maintaining a uniform dispersion in the composition and increasing the thermal conductivity of the composition.
- the method of the invention enables the use of a high particle to binder ratio, which enhances the thermal performance of the particle-containing binder composition and reduces the density of the composition.
- the method of the invention provides a sprayable particle-containing binder composition, allowing flexibility in its application and use.
- the hollow, non-porous particles, binder composition, and foaming agent are as previously described herein.
- the binder alone or in combination with the foaming agent, is, preferably, foamed by agitation or mixing
- other foaming methods can be used.
- the binder can be foamed using compressed gasses or propellants, or the binder can be foamed by passing the binder through a nozzle (e.g., a nozzle that creates high-shear or turbulent flow).
- the thermally reflective layer of the heat resistant insulation composite can be applied to the surface of the insulation base layer by any suitable method. The components of the thermally reflective layer are as previously described herein.
- the components of the thermally reflective layer are combined, with mixing, to provide a thermally reflective coating composition, which then is applied to the surface of the insulation base layer by any suitable method, for example, by spreading or spraying.
- adhesives or coupling agents may be used to adhere the thermally reflective layer to the insulation base layer, such adhesives are not needed in accordance with the invention inasmuch as the binder in the insulation base layer or thermally reflective layer can provide desired adhesion.
- the thermally reflective layer is, preferably, applied to the insulation base layer while the insulation base layer is wet, but can be applied after the insulation base layer has been dried.
- the heat resistant insulation composite e.g., the insulation base layer and/or the thermally reflective layer of the heat resistant insulation composite
- the heat resistant insulation composite of the invention can, of course, be used for any suitable purpose.
- the heat resistant insulation composite of the invention is especially suited for applications demanding insulation that provides thermal stability, mechanical strength, and/or flexibility in the mode of application.
- the heat-resistant insulation composite according to preferred formulations, especially sprayable formulations, is useful for insulating surfaces from high temperatures and can be easily applied to surfaces which might otherwise be difficult or costly to protect by conventional methods. Examples of such applications include various components of motorized vehicles and devices, such as the engine compartment, firewall, fuel tank, steering column, oil pan, trunk and spare tire, or any other component of a motorized vehicle or device.
- the heat resistant insulation composite is especially well suited for insulating the underbody of a motorized vehicle, especially as a shield for components near the exhaust system.
- the heat resistant insulation composite of the invention can be used to provide insulation in many other applications.
- the heat resistant insulation composite can be used to insulate pipes, walls, and heating or cooling ducts.
- preferred formulations of the heat resistant insulation composite are sprayable formulations
- the heat resistant insulation composite can also be extruded or molded to provide insulation articles such as tiles, panels, or various shaped articles.
- the invention also provides a substrate, such as any of those previously mentioned, comprising the heat resistant insulation composite of the invention, as well as a method for insulating a substrate comprising the use of any of the heat resistant insulation composite, or methods for its preparation or use.
- EXAMPLE 1 This example illustrates the preparation and performance of a heat resistant insulation composite in accordance with the invention.
- a particle-containing matrix binder composition (Sample 1 A) was prepared by combining 200 g of an aqueous acrylic binder (LEFASOLTM 168/1 manufactured by Lefatex Chemie GmbH, Germany), 1.7 g of a foaming agent (HOSTAPURTM OSB manufactured by Clariant GmbH, Germany), and 30 g of an ammonium polyphosphate fire retardant (EXOLITTM AP420 manufactured by Clariant GmbH, Germany) in a conventional mixer. The binder composition was mixed until 3 dm 3 of a foamed binder composition was obtained.
- an aqueous acrylic binder LFASOLTM 168/1 manufactured by Lefatex Chemie GmbH, Germany
- HOSTAPURTM OSB manufactured by Clariant GmbH, Germany
- EXOLITTM AP420 ammonium polyphosphate fire retardant
- Examples IB and 1C Two other particle-containing binder compositions were prepared (Samples IB and 1C) in the same manner as Sample 1 A, above, except that perlite (StaubexTM manufactured by Irish Perlite GmbH, Germany) and bitumenized perlite (ThermoperlTM manufactured by Irish Perlite GmbH, Germany) were used instead of the glass microspheres.
- compositions were spread using a spatula into a frame lined with aluminum foil measuring approximately 25 cm in length and width, and approximately 1.5 cm in depth.
- the compositions were dried for two hours at 130 °C. After the compositions had cooled, 20 cm by 20 cm samples were cut from the frames, and the thermal conductivity of each sample was measured using a LAMBDA CONTROLTM A50 thermal conductivity instrument (manufactured by Hesto Elektronik GmbH, Germany) with an upper platen temperature of 36 °C and a lower platen temperature of 10 °C.
- the densities of the samples were determined by dividing the weight of each sample by its dimensions. The results are provided in Table 1. Table 1
- the particle-containing binder composition which can be used as the insulation base layer in a heat resistant insulation composite according to the invention, provides lower thermal conductivity and lower density than compositions prepared using other particulate materials. Furthermore, the particle- containing binder composition is less friable and not as rigid as other composites. [0042]
- the particle-containing binder composition can be applied to a substrate as an insulation base layer, to which a thermally reflective coating can be applied to form a heat resistant insulation composite.
- a thermally reflective coating composition can be prepared, for example, by combining 58 g of an aqueous acrylic binder (WORLEECRYLTM 1218 manufactured by Worlee Chemie GmbH, Germany) with 22.6 g of a fumed silica anti- sedimentation agent (CAB-O-SPERSETM manufactured by Cabot Corporation, Massachusetts) and 19.4 g of an aluminum pigment paste as an infrared reflecting agent (STAPATM Hydroxal WH 24 n.l. manufactured by Eckart GmbH, Germany).
- the composition can be gently mixed using a magnetic stirrer. After mixing, the coating composition can be applied to the insulation base layer, for example, by spraying to a thickness of approximately 1 mm, preferably before drying the insulation base layer.
- the particle-containing insulation composite thus prepared provides excellent heat resistance as compared to the same insulation base layer in the absence of the thermally reflective coating, while retaining a low thermal conductivity and low density.
- EXAMPLE 2 This example illustrates the preparation and performance of a heat resistant insulation composite in accordance with the invention.
- a particle-containing matrix binder composition (Sample 2A) was prepared by combhiing 200 g of an aqueous acrylic binder (WORLEECRYLTM 1218 manufactured by Worlee Chemie GmbH, Germany), 1.2 g of a foaming agent (HOSTAPURTM OSB manufactured by Clariant GmbH, Germany), and 10 g of water in an Oakes foamer (available from E.T.
- a second particle-containing binder composition was prepared (Sample 2B) in the same manner as Sample 2A, above, except that a mixture of hollow, non-porous, thermoplastic resin microspheres and hollow, non-porous, glass microspheres was used instead of the hollow, non-porous, thermoplastic resin microspheres alone.
- the mixture consisted of 38.3 g of hollow, non-porous, thermosplastic resin microspheres (specifically, 5 g of EXPANCEL® 091 DE 40 d30 microspheres and 33.3 g of EXPANCEL® 551 WE 40 d36 microspheres (both manufactured by Akzo Nobel)) and 45 g of hollow, non-porous, glass microspheres (B23/500 glass microspheres manufactured by 3M, Minneapolis, MN).
- Each type of hollow, non-porous particle comprised the same amount by volume of the total hollow, non-porous particle composition.
- the volume percent of hollow, non-porous particles in Sample 2B was equal to that of Sample 2A.
- compositions were spread using a spatula into an aluminum foil-lined frame measuring approximately 25 cm in length and width, and approximately 1.5 cm in depth. The compositions were dried for two hours at 130 °C. After the compositions had cooled, 20 cm by 20 cm samples were cut from the frames, and the thermal conductivity of each sample was measured using a LAMBDA CONTROLTM A50 thermal conductivity instrument (manufactured by Hesto Elektronik GmbH, Germany) with an upper platen temperature of 36 °C and a lower platen temperature of 10 °C. The densities of the samples were determined by dividing the weight of each sample by its dimensions. The results are provided in Table 2. Table 2
- the particle-containing binder compositions which can be used as the insulation base layer in a heat resistant insulation composite according to the invention, provide low thermal conductivity and low density.
- EXAMPLE 3 [0049] This example illustrates the heat resistance of an insulation composite of the invention.
- a thermally reflective coating composition was prepared by combining 58 g of an aqueous acrylic binder (WORLEECRYLTM 1218 manufactured by Worlee Chemie GmbH, Germany) with 22.6 g of a fumed silica anti-sedimentation agent (CAB-O-SPERSETM manufactured by Cabot Corporation, Massachusetts) and 19.4 g of an aluminum pigment paste as an infrared reflecting agent (STAPATM Hydroxal WH 24 n.l. manufactured by Eckart GmbH, Germany). The mixture was gently mixed using a magnetic stirrer.
- the thermally reflective coating composition was then applied to the particle- containing binder compositions of Example 2 (Sample 2 A and Sample 2B) to a thickness of approximately 1 mm, thereby yielding insulation composites having an insulation base layer and a thermally reflective layer (Sample 3A and Sample 3B, respectively).
- the thermally reflective coating composition was also applied to a third particle-containing composition to yield a third insulation composite (Sample 3C).
- the third particle-containing composition was prepared in the same manner as Sample 2A, except for the amount and specific type that of hollow, non-porous, thermoplastic resin microspheres (100 g of EXPANCEL® 551 WE 40 d36 179.2 microspheres (available from Akzo Nobel) were used).
- each of the insulation composites was then placed in an apparatus designed to determine the heat resistance of the insulation composite.
- the apparatus comprised a 250 W heating element (IRB manufactured by Edmund B ⁇ hler GmbH, Germany) connected to a hot-air blower (HG3002 LCD manufactured by Steinel GmbH, Germany) with thin aluminum panels arranged around the device to form a tunnel.
- the insulation composite was exposed to the high heat conditions for about 30 minutes at a distance of about 20 mm from the heating element (thermally reflective layer facing the heating element), and the hot air blower (at full blower setting and lowest heat setting) provided a continuous flow of air between the heating element and the insulation composite.
- the temperature of the backside of the insulation composite i.e., the side opposite the thermally reflective layer and the heating element was monitored throughout the test to determine the maximum sustained temperature. The results of these measurements are provided in Table 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
- Thermal Insulation (AREA)
- Building Environments (AREA)
- Insulating Bodies (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003299511A AU2003299511B2 (en) | 2002-05-15 | 2003-05-15 | Heat resistant insulation composite, and method for preparing the same |
EP20030799798 EP1511959A2 (en) | 2002-05-15 | 2003-05-15 | Heat resistant insulation composite, and method for preparing the same |
JP2004546673A JP4559229B2 (en) | 2002-05-15 | 2003-05-15 | Heat resistant insulating composite and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38096702P | 2002-05-15 | 2002-05-15 | |
US60/380,967 | 2002-05-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004037533A2 true WO2004037533A2 (en) | 2004-05-06 |
WO2004037533A3 WO2004037533A3 (en) | 2004-10-21 |
Family
ID=32176363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/015530 WO2004037533A2 (en) | 2002-05-15 | 2003-05-15 | Heat resistant insulation composite, and method for preparing the same |
Country Status (7)
Country | Link |
---|---|
US (1) | US20050025952A1 (en) |
EP (1) | EP1511959A2 (en) |
JP (1) | JP4559229B2 (en) |
CN (1) | CN1325833C (en) |
AU (1) | AU2003299511B2 (en) |
RU (1) | RU2303744C2 (en) |
WO (1) | WO2004037533A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102454228A (en) * | 2010-10-19 | 2012-05-16 | 叶福春 | Composite phenolic aldehyde heat insulation plate |
FR2975691A1 (en) * | 2011-05-26 | 2012-11-30 | Electricite De France | ATMOSPHERIC SUPER-INSULATING MATERIAL BASED ON AEROGEL |
RU2475897C1 (en) * | 2011-07-06 | 2013-02-20 | Открытое акционерное общество "Энергия" | Method for manufacture of thermal insulation for thermal lithium current source |
RU2633386C2 (en) * | 2016-03-15 | 2017-10-12 | Акционерное общество АО "Энергия" | Method for manufacturing superthin thermal insulation for thermal lithium current source |
RU176949U1 (en) * | 2016-10-10 | 2018-02-02 | Александр Валерьевич Бояринцев | DEVICE FOR HEAT INSULATION OF RESERVOIRS, TANKS, TANKS, TANKERS AND EQUIPMENT (STORAGE, TRANSPORTATION AND PROCESSING OF LIQUIDS) USING HEAT INSULATION COVER IN EXTREME EXTREME |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050281979A1 (en) * | 2004-06-17 | 2005-12-22 | Toas Murray S | Loose fill insulation product having phase change material therein |
US8132382B2 (en) * | 2004-06-17 | 2012-03-13 | Certainteed Corporation | Insulation containing heat expandable spherical additives, calcium acetate, cupric carbonate, or a combination thereof |
US20070238008A1 (en) * | 2004-08-24 | 2007-10-11 | Hogan Edward J | Aerogel-based vehicle thermal management systems and methods |
US20060057351A1 (en) * | 2004-09-10 | 2006-03-16 | Alain Yang | Method for curing a binder on insulation fibers |
US20060123723A1 (en) * | 2004-12-09 | 2006-06-15 | Weir Charles R | Wall finishing panel system |
US8003028B2 (en) * | 2005-07-26 | 2011-08-23 | The Boeing Company | Composite of aerogel and phase change material |
DE102006039261A1 (en) * | 2006-08-22 | 2008-03-06 | Lanxess Deutschland Gmbh | Dressed leather |
CN103898996A (en) | 2007-03-21 | 2014-07-02 | 阿什工业技术有限责任公司 | Utility materials incorporating a microparticle matrix |
US8445101B2 (en) * | 2007-03-21 | 2013-05-21 | Ashtech Industries, Llc | Sound attenuation building material and system |
US20090239429A1 (en) | 2007-03-21 | 2009-09-24 | Kipp Michael D | Sound Attenuation Building Material And System |
US7953247B2 (en) | 2007-05-21 | 2011-05-31 | Snap-On Incorporated | Method and apparatus for wheel alignment |
WO2010054029A2 (en) | 2008-11-04 | 2010-05-14 | Ashtech Industries, L.L.C. | Utility materials incorporating a microparticle matrix formed with a setting system |
DE202009010576U1 (en) | 2009-08-05 | 2009-10-29 | Peter-Lacke Gmbh | Coating for a carrier part |
DE102010029513A1 (en) * | 2010-05-31 | 2011-02-24 | Wacker Chemie Ag | Insulation with layer structure |
FI2598459T3 (en) * | 2010-07-30 | 2023-04-19 | Rockwool As | Method for manufacturing an aerogel-containing composite |
CN101967046B (en) * | 2010-09-14 | 2012-12-05 | 陈西才 | Formula of external thermal insulation layer coating for natural color jade outer wall and production method |
RU2462331C2 (en) * | 2010-09-15 | 2012-09-27 | Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" | Method of producing composite material based on titanium silicocarbide and titanium porous-fibrous component |
RU2012100941A (en) * | 2012-01-11 | 2013-07-20 | Юрий Николаевич Дубов | METHOD OF APPLICATION OF POLYMERIC MATERIAL |
US9976687B2 (en) | 2012-05-18 | 2018-05-22 | Saprex, Llc | Breathable multi-component exhaust insulation system |
CN102702982A (en) * | 2012-05-24 | 2012-10-03 | 浙江东化实业有限公司 | Full grain leather polishing mending cream |
US9388515B2 (en) | 2012-09-28 | 2016-07-12 | Saprex, Llc | Heat curable composite textile |
JP5727986B2 (en) * | 2012-10-31 | 2015-06-03 | ニチハ株式会社 | Building board and manufacturing method thereof |
SK6703Y1 (en) * | 2012-12-31 | 2014-03-04 | Rusnak Matej | Mass for surface treatment and its application |
KR101583651B1 (en) * | 2013-03-07 | 2016-01-08 | 주식회사 아모그린텍 | Core for Heat Insulating Material, Method for Manufacturing the Same and Slim Type Heat Insulating Material Using the Same |
JP6369849B2 (en) * | 2013-12-11 | 2018-08-08 | 関西ペイント株式会社 | Thermal insulation coating material, thermal insulation building material, and building repair method |
DE102014222851A1 (en) * | 2014-11-10 | 2016-05-12 | BSH Hausgeräte GmbH | No-frost refrigerating appliance |
JP6281551B2 (en) * | 2015-09-30 | 2018-02-21 | マツダ株式会社 | Engine combustion chamber insulation structure |
DK3443254T3 (en) * | 2016-04-15 | 2024-03-18 | Saprex Llc | COMPOSITE INSULATION SYSTEM |
US10570308B2 (en) * | 2016-07-08 | 2020-02-25 | Akzo Nobel Coatings International B.V. | Heat insulating coating composition, method for applying such coating composition and kit of parts comprising such coating composition |
KR20190042038A (en) | 2016-08-19 | 2019-04-23 | 와커 헤미 아게 | Complex insulation system |
DE102016121807A1 (en) * | 2016-11-14 | 2018-05-17 | Joint Stock Company Railway Research Institute | Solar radiation-reflecting coating and its use |
CN110177672B (en) | 2016-11-18 | 2022-05-13 | 萨布雷克斯有限责任公司 | Composite insulation system |
DE102016226064A1 (en) * | 2016-12-22 | 2018-06-28 | Kautex Textron Gmbh & Co. Kg | Hollow body comprising a wall of a multilayer thermoplastic material and method for its production |
CN109137537B (en) * | 2018-09-10 | 2020-03-27 | 钟金榜 | Closed porous composite material, heat insulating material, sound insulating material, and method for producing same |
RU2722596C1 (en) * | 2019-04-08 | 2020-06-02 | Шахурин Иван Александрович | Binding composition for producing insulating composite material and insulating composite material |
CN110077063A (en) * | 2019-04-25 | 2019-08-02 | 上海驰纺材料科技有限公司 | A kind of high Thermal textile composite material and preparation method based on aeroge |
US12098799B2 (en) | 2020-07-13 | 2024-09-24 | Nanotech, Inc. | Hybrid insulating compound for use in systems requiring high power of thermal insulation |
TWI761013B (en) * | 2020-12-31 | 2022-04-11 | 金門化工有限公司 | Fire and heat-resisting resin composition and fire-resisting heat-resisting layer |
US20240247153A1 (en) * | 2023-01-24 | 2024-07-25 | Nanotech Inc. | Thermally insulative compositions for a fireproof coating |
US12089301B1 (en) | 2023-04-21 | 2024-09-10 | Wagstaff, Inc. | Material, apparatus, and method for electrically shielding heated components |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5631097A (en) * | 1992-08-11 | 1997-05-20 | E. Khashoggi Industries | Laminate insulation barriers having a cementitious structural matrix and methods for their manufacture |
US5641584A (en) * | 1992-08-11 | 1997-06-24 | E. Khashoggi Industries | Highly insulative cementitious matrices and methods for their manufacture |
US5665442A (en) * | 1992-08-11 | 1997-09-09 | E. Khashoggi Industries | Laminated sheets having a highly inorganically filled organic polymer matrix |
EP1308263A2 (en) * | 1992-11-25 | 2003-05-07 | E. Khashoggi Industries, Llc | Highly inorganically filled compositions |
Family Cites Families (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3249463A (en) * | 1962-09-21 | 1966-05-03 | Interchem Corp | Acrylic latex coating composition and book cover material made therefrom |
US4001379A (en) * | 1968-04-27 | 1977-01-04 | Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler | Process of making superfine amorphous high structural silicic acid |
US4003981A (en) * | 1968-04-27 | 1977-01-18 | Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler | Process of making superfine amorphous high structure silicic acid |
US3634288A (en) * | 1969-04-16 | 1972-01-11 | Nalco Chemical Co | Preparation of hydrophobic silica sol for use as antifoaming agent |
US3868299A (en) * | 1969-09-04 | 1975-02-25 | Bayer Ag | Insulating glass unit containing absorbent mixture |
GB1298701A (en) * | 1969-11-12 | 1972-12-06 | Foseco Int | Heat-insulating antipiping compounds |
US3874944A (en) * | 1969-12-31 | 1975-04-01 | Polaroid Corp | Diffusion transfer processes employing permanent laminate film units |
US3716431A (en) * | 1970-05-14 | 1973-02-13 | Vistron Corp | Process for preparing striped sheet material continuously |
GB1350661A (en) * | 1970-06-10 | 1974-04-18 | Micropore International Ltd | Thermal insulating materials |
US3869297A (en) * | 1970-06-15 | 1975-03-04 | Chevron Res | Aluminum coatings based on clay-emulsified asphalts |
US3775351A (en) * | 1970-10-28 | 1973-11-27 | C Sachs | Production of polymer-inorganic foam |
US3869334A (en) * | 1971-06-10 | 1975-03-04 | Micropore Insulation Limited | Insulating materials |
US3812886A (en) * | 1972-07-05 | 1974-05-28 | Midwesco Enterprise Inc | Cryogenic insulation |
US3816154A (en) * | 1973-05-18 | 1974-06-11 | Goury T Mc | Silica gel flatting agent |
US3830666A (en) * | 1973-06-12 | 1974-08-20 | Us Army | Insulation application |
DE2359611C3 (en) * | 1973-11-30 | 1981-09-17 | Bayer Ag, 5090 Leverkusen | Process for the preparation of fillers bound by isocyanate-based resins |
JPS5325856B2 (en) * | 1974-02-06 | 1978-07-29 | ||
DE2414478C3 (en) * | 1974-03-26 | 1978-07-13 | Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt | Airgel-like structured silica and process for making same |
US4038077A (en) * | 1974-04-04 | 1977-07-26 | Polaroid Corporation | Process comprising diffusion transfer silver image removal |
US3953646A (en) * | 1974-06-24 | 1976-04-27 | Nasa | Two-component ceramic coating for silica insulation |
US3955034A (en) * | 1974-06-24 | 1976-05-04 | Nasa | Three-component ceramic coating for silica insulation |
US3968281A (en) * | 1974-07-15 | 1976-07-06 | Sybron Corporation | Filter molded heating and/or insulating member |
GB1540825A (en) * | 1975-02-27 | 1979-02-14 | Ici Ltd | Paint compositions |
IT1063380B (en) * | 1975-03-28 | 1985-02-11 | Dainippon Toryo Kk | COMPOSITION FOR COATING OF THE TYPE OF WATER DISPERSION |
US4146585A (en) * | 1977-03-02 | 1979-03-27 | Union Carbide Corporation | Process for preparing silane grafted polymers |
US4209566A (en) * | 1977-07-18 | 1980-06-24 | General Electric Company | Method of improving the electrical properties of polymeric insulations containing polar additives, and the improved polymeric insulation product thereof |
DE2750903C2 (en) * | 1977-11-14 | 1982-12-09 | Basf Farben + Fasern Ag, 2000 Hamburg | Use of a coating agent based on acrylate polymers for various purposes, in particular in the building sector |
GB1603972A (en) * | 1978-02-15 | 1981-12-02 | Reed K J | Transfer sheets with releasable layers |
US4332852A (en) * | 1978-03-29 | 1982-06-01 | Kennecott Corporation | Conditioned colloidal silica post impregnant to prevent binder migration in the production of insulation articles comprising randomly oriented refractory fibers |
US4322460A (en) * | 1978-04-24 | 1982-03-30 | The Boeing Company | Sprayable polyester coating |
US4381716A (en) * | 1978-06-05 | 1983-05-03 | Hastings Otis | Insulating apparatus and composite laminates employed therein |
US4218502A (en) * | 1978-06-19 | 1980-08-19 | Minnesota Mining And Manufacturing Company | Intumescable fire-retardant products |
JPS557428A (en) * | 1978-06-30 | 1980-01-19 | Yuasa Battery Co Ltd | Multilayer heat insulator |
JPS55161150A (en) * | 1979-06-01 | 1980-12-15 | Tajima Roofing Co | Heattinsulating asphalt waterproof board laying method thereof |
FR2461690B1 (en) * | 1979-07-19 | 1985-08-16 | Europ Propulsion | HIGH TEMPERATURE THERMAL INSULATION MATERIAL AND MANUFACTURING METHOD THEREOF |
YU261080A (en) * | 1979-10-13 | 1984-02-29 | Gruenzweig Hartmann Glasfaser | Heat-insulating body |
ZA807224B (en) * | 1979-12-07 | 1982-01-27 | Dunlop Ltd | Foam composites |
US4346149A (en) * | 1980-05-19 | 1982-08-24 | Gulfko Incorporated | Water based aluminum paint |
GB2081246B (en) * | 1980-07-25 | 1984-03-14 | Rolls Royce | Thermal barrier coating composition |
JPS57140814A (en) * | 1981-02-23 | 1982-08-31 | Japan Steel Works Ltd:The | Heat insulation method for heated metallic material |
US4396661A (en) * | 1981-08-20 | 1983-08-02 | Subtex, Inc. | Refractory coated and dielectric coated flame resistant insulating fabric composition |
US4492779A (en) * | 1981-12-07 | 1985-01-08 | Thiokol Corporation | Aramid polymer and powder filler reinforced elastomeric composition for use as a rocket motor insulation |
US4496469A (en) * | 1982-01-12 | 1985-01-29 | Otsuka Kagaku Yakuhin Kabushiki Kaisha | Heat-insulating refractory material consisting alkali titanate and silicon resin |
US4391873A (en) * | 1982-01-19 | 1983-07-05 | The United States Of America As Represented By The Department Of Energy | High temperature thermal insulating composite |
US4507165A (en) * | 1982-09-15 | 1985-03-26 | Hercules Incorporated | Elastomer insulation compositions for rocket motors |
US4461867A (en) * | 1982-09-27 | 1984-07-24 | General Electric Company | Composition for promoting adhesion of curable silicones to substrates |
US4501841A (en) * | 1983-02-03 | 1985-02-26 | Hercules Incorporated | Elastomeric insulating materials for rocket motors |
US4504532A (en) * | 1983-02-03 | 1985-03-12 | Hercules Incorporated | Phenolic blast tube insulators for rocket motors |
US4504565A (en) * | 1984-04-17 | 1985-03-12 | Markem Corporation | Radiation imageable compositions containing hollow ceramic microspheres |
US4567228A (en) * | 1984-05-21 | 1986-01-28 | Ppg Industries, Inc. | Aqueous dispersion, internally silylated and dispersed polyurethane resins, and surfaces containing same |
US4582873A (en) * | 1984-05-21 | 1986-04-15 | Ppg Industries, Inc. | Process for producing aqueous dispersions, internally silylated and dispersed polyurethane resins, and surfaces containing same |
US4583623A (en) * | 1984-10-18 | 1986-04-22 | Allied Corporation | Heat shield element for a brake |
US5041321A (en) * | 1984-11-02 | 1991-08-20 | The Boeing Company | Fiberformed ceramic insulation and method |
EP0236498B1 (en) * | 1985-09-06 | 1990-02-07 | Kabushiki Kaisha Osaka Packing Seizosho | Silica molding |
US4745139A (en) * | 1987-02-09 | 1988-05-17 | Pdi, Inc. | Elastomeric coatings containing glass bubbles |
FR2613708B1 (en) * | 1987-04-13 | 1990-10-12 | Rhone Poulenc Chimie | HYDROPHOBIC PRECIPITATION SILICA, ITS PREPARATION PROCESS AND ITS APPLICATION TO THE REINFORCEMENT OF SILICON ELASTOMERS |
US4805244A (en) * | 1988-01-25 | 1989-02-21 | Scott Walter B | Heat shield insert |
US5175975A (en) * | 1988-04-15 | 1993-01-05 | Midwest Research Institute | Compact vacuum insulation |
US5098938A (en) * | 1989-03-03 | 1992-03-24 | Savin Roland R | Coating composition exhibiting improved resistance to environmental attack |
US5888393A (en) * | 1989-07-18 | 1999-03-30 | The Boeing Company | Microparticle enhanced fibrous ceramic baffle for cryogenic liquid containers |
US5108817A (en) * | 1990-04-30 | 1992-04-28 | Lydall, Inc. | Multi-component heat shield |
US5114818A (en) * | 1990-06-27 | 1992-05-19 | Xerox Corporation | Heat shielded electrostatographic imaging members |
DE4038784A1 (en) * | 1990-12-05 | 1992-06-11 | Basf Ag | COMPOSITE FOAMS WITH LOW HEAT CONDUCTIVITY |
US5188981A (en) * | 1991-05-28 | 1993-02-23 | Ford Motor Company | Molded article with integral heat shield |
US5196455A (en) * | 1991-05-30 | 1993-03-23 | Tremco Incorporated | Self-leveling sealant composition and method relating thereto |
US5221596A (en) * | 1991-09-03 | 1993-06-22 | Motorola, Inc. | Method of forming a retrograde photoresist profile |
US5300807A (en) * | 1992-01-22 | 1994-04-05 | The United States Of America As Represented By The Secretary Of The Army | Thin film detector and method of manufacture |
FR2697446B1 (en) * | 1992-11-03 | 1994-12-02 | Aquasource | Process for the treatment of a fluid containing suspended and dissolved materials, using separation membranes. |
EP0605677B1 (en) * | 1992-07-23 | 1998-06-17 | Owens Corning | Silicon or silica substrate with a modified surface and process for producing the same |
US5660900A (en) * | 1992-08-11 | 1997-08-26 | E. Khashoggi Industries | Inorganically filled, starch-bound compositions for manufacturing containers and other articles having a thermodynamically controlled cellular matrix |
US5453310A (en) * | 1992-08-11 | 1995-09-26 | E. Khashoggi Industries | Cementitious materials for use in packaging containers and their methods of manufacture |
US5637636A (en) * | 1992-11-12 | 1997-06-10 | Crosfield Limited | Silicas |
US5424111A (en) * | 1993-01-29 | 1995-06-13 | Farbstein; Malcolm N. | Thermally broken insulating glass spacer with desiccant |
US5603759A (en) * | 1993-02-11 | 1997-02-18 | Indresco Inc. | Stable, cement-bonded, overhead sprayed insulating mixes and resultant linings |
JP2568472B2 (en) * | 1993-04-16 | 1997-01-08 | 日本ピラー工業株式会社 | Heat resistant composite member and molded product thereof |
US5652278A (en) * | 1993-06-22 | 1997-07-29 | Imperial Chemical Industries Plc | Microvoid polyurethane materials |
JP2557604B2 (en) * | 1993-08-17 | 1996-11-27 | 東レ・ダウコーニング・シリコーン株式会社 | Insulator |
DE4422912A1 (en) * | 1994-06-30 | 1996-01-11 | Hoechst Ag | Xerogels, processes for their manufacture and their use |
WO1996007538A1 (en) * | 1994-09-06 | 1996-03-14 | Thermacell Technologies, Inc. | Insulation microspheres and method of manufacture |
US5601897A (en) * | 1994-10-17 | 1997-02-11 | Owens-Corning Fiberglass Technology Inc. | Vacuum insulation panel having carbonized asphalt coated glass fiber filler |
JPH08127739A (en) * | 1994-10-31 | 1996-05-21 | Riboole:Kk | Heat-resistant heat-insulating coating material |
WO1996019607A1 (en) * | 1994-12-21 | 1996-06-27 | Hoechst Aktiengesellschaft | Nonwoven fabric-aerogel composite material containing two-component fibres, a method of producing said material and the use thereof |
US5527411A (en) * | 1995-03-31 | 1996-06-18 | Owens-Corning Fiberglas Technology, Inc. | Insulating modular panels incorporating vacuum insulation panels and methods for manufacturing |
US5600930A (en) * | 1995-04-10 | 1997-02-11 | Drucker; Ernest R. | Construction system using lightweight fire-resistant panels |
US5591505A (en) * | 1995-06-07 | 1997-01-07 | Owens-Corning Fiberglas Technology, Inc. | Fibrous insulation product having inorganic binders |
US5753305A (en) * | 1995-11-16 | 1998-05-19 | Texas Instruments Incorporated | Rapid aging technique for aerogel thin films |
US5723515A (en) * | 1995-12-29 | 1998-03-03 | No Fire Technologies, Inc. | Intumescent fire-retardant composition for high temperature and long duration protection |
US5766686A (en) * | 1996-03-01 | 1998-06-16 | North American Refractories Co. | Spray insulating coating for refractory articles |
DE19702239A1 (en) * | 1997-01-24 | 1998-07-30 | Hoechst Ag | Multilayer composite materials which have at least one airgel-containing layer and at least one layer which contains polyethylene terephthalate fibers, processes for their production and their use |
DE19702240A1 (en) * | 1997-01-24 | 1998-07-30 | Hoechst Ag | Multilayer composite materials which have at least one airgel-containing layer and at least one further layer, processes for their production and their use |
DE19705511C5 (en) * | 1997-02-13 | 2005-07-14 | Faist Automotive Gmbh & Co. Kg | Heat shield for components made of thermoplastic material |
US5928723A (en) * | 1997-04-09 | 1999-07-27 | Cabot Corporation | Progress for producing surface modified metal oxide compositions |
US6017612A (en) * | 1997-04-23 | 2000-01-25 | Mitsubishi Polyester Film Corporation | Polyester film for decorative plates or decorative sheets |
WO1999044851A1 (en) * | 1998-03-04 | 1999-09-10 | Rieter Automotive (International) Ag | Fuel tank with integrated heat shield |
US6228476B1 (en) * | 1998-10-30 | 2001-05-08 | Johns Manville International, Inc. | Coated foam insulation and method of making the same |
AU4355599A (en) * | 1998-11-06 | 2000-05-29 | 1334495 Ontario Inc. | Thermally reflective substrate coating |
US6177186B1 (en) * | 1999-04-30 | 2001-01-23 | General Electric Company | Heat reflective, erosion and wear resistant coating mixture, method and coated article |
JP2002068853A (en) * | 2000-08-28 | 2002-03-08 | Tokai Kogyo Kk | Lightweight heat insulation and its production method |
-
2003
- 2003-05-15 EP EP20030799798 patent/EP1511959A2/en not_active Withdrawn
- 2003-05-15 JP JP2004546673A patent/JP4559229B2/en not_active Expired - Fee Related
- 2003-05-15 US US10/439,534 patent/US20050025952A1/en not_active Abandoned
- 2003-05-15 AU AU2003299511A patent/AU2003299511B2/en not_active Ceased
- 2003-05-15 CN CNB038167778A patent/CN1325833C/en not_active Expired - Fee Related
- 2003-05-15 WO PCT/US2003/015530 patent/WO2004037533A2/en active Application Filing
- 2003-05-15 RU RU2004136599A patent/RU2303744C2/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5631097A (en) * | 1992-08-11 | 1997-05-20 | E. Khashoggi Industries | Laminate insulation barriers having a cementitious structural matrix and methods for their manufacture |
US5641584A (en) * | 1992-08-11 | 1997-06-24 | E. Khashoggi Industries | Highly insulative cementitious matrices and methods for their manufacture |
US5665442A (en) * | 1992-08-11 | 1997-09-09 | E. Khashoggi Industries | Laminated sheets having a highly inorganically filled organic polymer matrix |
EP1308263A2 (en) * | 1992-11-25 | 2003-05-07 | E. Khashoggi Industries, Llc | Highly inorganically filled compositions |
Non-Patent Citations (1)
Title |
---|
JÜRGEN BERTLING: CHEMIE INGENIEUR TECHNIK, vol. 75, no. 6, June 2003 (2003-06), pages 669-678, XP002293062 WEINHEIM, DE * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102454228A (en) * | 2010-10-19 | 2012-05-16 | 叶福春 | Composite phenolic aldehyde heat insulation plate |
FR2975691A1 (en) * | 2011-05-26 | 2012-11-30 | Electricite De France | ATMOSPHERIC SUPER-INSULATING MATERIAL BASED ON AEROGEL |
WO2012168617A1 (en) * | 2011-05-26 | 2012-12-13 | Electricite De France | Aerogel-based material that is super-insulating at atmospheric pressure |
US10604642B2 (en) | 2011-05-26 | 2020-03-31 | Electricite De France | Aerogel-based material that is super-insulating at atmospheric pressure |
RU2475897C1 (en) * | 2011-07-06 | 2013-02-20 | Открытое акционерное общество "Энергия" | Method for manufacture of thermal insulation for thermal lithium current source |
RU2633386C2 (en) * | 2016-03-15 | 2017-10-12 | Акционерное общество АО "Энергия" | Method for manufacturing superthin thermal insulation for thermal lithium current source |
RU176949U1 (en) * | 2016-10-10 | 2018-02-02 | Александр Валерьевич Бояринцев | DEVICE FOR HEAT INSULATION OF RESERVOIRS, TANKS, TANKS, TANKERS AND EQUIPMENT (STORAGE, TRANSPORTATION AND PROCESSING OF LIQUIDS) USING HEAT INSULATION COVER IN EXTREME EXTREME |
Also Published As
Publication number | Publication date |
---|---|
US20050025952A1 (en) | 2005-02-03 |
EP1511959A2 (en) | 2005-03-09 |
JP2006501625A (en) | 2006-01-12 |
CN1668871A (en) | 2005-09-14 |
JP4559229B2 (en) | 2010-10-06 |
RU2004136599A (en) | 2005-10-27 |
AU2003299511B2 (en) | 2008-06-26 |
WO2004037533A3 (en) | 2004-10-21 |
CN1325833C (en) | 2007-07-11 |
AU2003299511A1 (en) | 2004-05-13 |
RU2303744C2 (en) | 2007-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2003299511B2 (en) | Heat resistant insulation composite, and method for preparing the same | |
AU2003241488B2 (en) | Aerogel and hollow particle binder composition, insulation composite, and method for preparing the same | |
EP1469939A1 (en) | Heat resistant aerogel insulation composite and method for its preparation; aerogel binder composition and method for its preparation | |
JP2006504543A5 (en) | ||
US6960388B2 (en) | Electrical distribution system components with fire resistant insulative coating | |
US6084008A (en) | Fire retardant coating composition | |
RU2342415C1 (en) | Liquid-ceramic insulation finish | |
JP5535406B2 (en) | Coating material | |
EP1787716A1 (en) | Heat resistant aerogel insulation composite and method for its preparation;aerogel binder composition and method for its preparation | |
JP2974247B1 (en) | Fire resistant coating composition | |
MX2013002221A (en) | Fire extinguishing core. | |
AU2003207724A1 (en) | Heat resistant aerogel insulation composite and method for its preparation; aerogel binder composition and method for its preparation | |
JPH02172847A (en) | Expansion type fire proof protective composition | |
KR101906045B1 (en) | nonflammable heat insulator using expandable insulation material | |
KR20160109471A (en) | Flame retardant composition and flame-retardant coated expanded polystyrene bead manufacturing method | |
JP2002339478A (en) | Refractory putty and its manufacturing method | |
KR20120077748A (en) | Method for manufacturing organic and norganic complex blowing form using methyl methacrylate resin and an organic and norganic complex blowing form | |
JP2004155889A (en) | Intumescent refractory material | |
CN117801587A (en) | Modified graphene oxide water-based intumescent fireproof coating and preparation method thereof | |
JP2003343044A (en) | Waterproofing fire-preventive heat-insulating structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004546673 Country of ref document: JP Ref document number: 2003299511 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003799798 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2004136599 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038167778 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2003799798 Country of ref document: EP |