KR101906045B1 - nonflammable heat insulator using expandable insulation material - Google Patents

nonflammable heat insulator using expandable insulation material Download PDF

Info

Publication number
KR101906045B1
KR101906045B1 KR1020170043469A KR20170043469A KR101906045B1 KR 101906045 B1 KR101906045 B1 KR 101906045B1 KR 1020170043469 A KR1020170043469 A KR 1020170043469A KR 20170043469 A KR20170043469 A KR 20170043469A KR 101906045 B1 KR101906045 B1 KR 101906045B1
Authority
KR
South Korea
Prior art keywords
insulating material
fiber
inorganic
weight
foamed
Prior art date
Application number
KR1020170043469A
Other languages
Korean (ko)
Inventor
백범규
이상윤
박웅비
김영민
Original Assignee
주식회사 경동원
지에스건설 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동원, 지에스건설 주식회사 filed Critical 주식회사 경동원
Priority to KR1020170043469A priority Critical patent/KR101906045B1/en
Application granted granted Critical
Publication of KR101906045B1 publication Critical patent/KR101906045B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Building Environments (AREA)

Abstract

The present invention relates to a non-flammable heat insulating material using a foamed organic insulation material, which has an excellent heat insulating performance of an organic insulating material and simultaneously secures incombustibility of an inorganic insulating material. More specifically, the present invention relates to the non-flammable heat insulating material, which is obtained by foaming or pulverizing a foamed insulating material; surface-treating the foamed insulating material with a silane compound to enhance the bonding properties with an inorganic binder or an inorganic material; mixing an organic binder or an inorganic binder, an organic fiber or an inorganic fiber, or a mixed fiber of an organic fiber and an inorganic fiber, and an inorganic reinforcing agent; molding the mixture with a press; and drying a molded article, thereby having a low density and a low thermal conductivity compared to existing inorganic insulation materials.

Description

발포성 단열 소재를 이용한 불연 단열재 {nonflammable heat insulator using expandable insulation material}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a nonflammable heat insulator using an expandable insulation material,

본 발명은 유기 단열재의 우수한 단열성능을 가지면서도, 무기 단열재의 불연성을 동시에 확보하는 유기 발포성 단열소재를 이용한 불연단열재에 관한 것으로서, 보다 상세하게는 발포성 단열소재를 입자형태로 발포하거나, 분쇄하고 무기바인더 또는 무기 보강제와의 결합성을 증가시키기 위하여 실란화합물로 표면처리 한 후, 유기바인더 또는 무기바인더, 유기 섬유 또는 무기섬유 또는 유기 섬유와 무기 섬유의 혼용섬유, 무기보강제, 불투명화제를 혼합하고 프레스로 성형하고, 건조시켜, 기존 무기단열재 대비 저밀도의 낮은 열전도율을 가지는 불연단열재에 관한 것이다. The present invention relates to a fire-retardant insulating material using an organic foam insulating material having both excellent insulation performance of an organic insulating material and ensuring nonflammability of an inorganic insulating material. More specifically, the present invention relates to a fireproof insulating material that foam, An inorganic binder, an organic fiber or an inorganic fiber, or a mixed fiber of an organic fiber and an inorganic fiber, an inorganic reinforcing agent, and an opacifying agent are mixed, and after the surface treatment with a silane compound to increase the bonding property with a binder or an inorganic reinforcing agent, And has a low density and a low thermal conductivity compared to conventional inorganic insulating materials.

건축용 단열재로 널리 사용되는 폴리우레탄폼, 발포폴리스티렌은 단열성은 우수하나, 화재에 취약하여 대형화재 사고로 이어지는 사례가 증가하고 있으며, 이에 따라 화재에 대한 보완 방안으로 난연 발포폴리스티렌이나 PIR(Polyisocyanurate)폼, 멜라민폼, 페놀폼 등이 적용되고 있으나, 화재 시 유해가스가 발생하며, 유해가스에 의한 심각한 인명피해가 대부분을 차지하고 있기 때문에 근본적 해결이 필요하다. Polyurethane foam and expanded polystyrene, which are widely used as insulation materials for construction, are excellent in heat insulation. However, they are vulnerable to fire and lead to large-scale fire accidents. As a result, fire retardant expanded polystyrene or polyisocyanurate foam , Melamine foam, and phenol foam. However, since harmful gas is generated in the event of a fire and most of the casualties are caused by harmful gas, a fundamental solution is needed.

세라믹 단열재인 퍼라이트, 질석, 규조토 등의 단열재는 우수한 불연성을 가지나, 열전도율이 유기계 발포폼 단열재 대비하여 상대적으로 높아 건축물에 적용하기에는 단열성이 현격히 부족하며, 장섬유 형태의 유리섬유로 형상을 구현한 글라스울이나 미네랄울 등 등 무기계 섬유는 자체의 불연성은 우수하나, 섬유의 표면처리와 형상구현을 위해 사용되는 바인더의 난연성이 취약하여 불연 성능을 확보하기 어렵고, 열전도율이 20에서 약 0.033 W/mK 수준으로 건축물 적용 시 폴리우레탄폼 대비 단열두께의 증가가 초래하는 문제점이 발생한다. 또한 유리섬유는 수분에 취약하여 장시간 사용에 따른 제품의 침하 및 단열성 감소 등의 문제가 발생한다. Insulation materials such as perlite, vermiculite, and diatomaceous earth, which are ceramic insulation materials, have excellent nonflammability, but their thermal conductivity is relatively higher than that of organic foamed foam insulation, so that they are insufficient in thermal insulation for application to buildings. Glasses Inorganic fibers such as wool or mineral wool have excellent flame retardancy, but the flame retardancy of the binder used for the surface treatment and shaping of the fiber is poor, so it is difficult to secure fireproof performance and the thermal conductivity is about 0.033 W / mK at 20 , There arises a problem that the insulation thickness is increased compared to polyurethane foam when applied to buildings. In addition, the glass fiber is vulnerable to moisture, which causes problems such as settlement of the product and reduction of thermal insulation due to use for a long time.

무기계단열재 중 합성실리카 단열재는 열전도율이 20에서 약 0.025 W/mK 이하로, 유기계 발포폼 단열재 대비 동등 이상의 성능을 가지나, 기존의 합성실리카 단열재는 도면 1과 같이 합성실리카(10), 유기섬유 또는 무기섬유, 불투명화제(20)를 혼합하고 압축하여 제조되는데, 건축용 단열재에서 요구하는 휨강도(20N/㎠ 이상), 압축강도 (20N/㎠ 이상)을 만족하기 위해서는 고밀도로 압축하여야 하며, 이때 해당 강도를 만족하기 위한 단열재의 밀도는 220Kg/㎥ 이상 요구되고, 이는 기존의 폴리우레탄폼이나 페놀폼의 밀도가 40~60Kg/㎥ 인데 반해 높은 밀도에 따른 과다한 소재의 사용과 압축성형 시 성형 시간 소요가 높아 높은 제조원가를 가지게 되어, 합성실리카 단열재가 불연성임을 감안하더라도 높은 재료비로 인하여 건축용 단열재로 사용이 현실적으로 불가하다. The synthetic silica insulator in inorganic insulator has a thermal conductivity of about 0.025 W / mK or less at 20, which is equal to or better than that of organic foam foam insulator. However, the conventional synthetic silica insulator has a synthetic silica (10) (20N / ㎠) and compressive strength (20N / ㎠ or more) required for building insulation, it is necessary to compress it at a high density. At this time, the strength The density of insulation is required to be more than 220Kg / ㎥ in order to satisfy the requirement. The density of conventional polyurethane foam or phenol foam is 40 ~ 60Kg / ㎥, but the use of excessive material due to high density and molding time in compression molding is high. High manufacturing costs, and even considering that synthetic silica insulation is nonflammable, it can not be used as a thermal insulation material for construction due to high material cost. Do.

이에, 분쇄하거나 입자의 형태로 팽창시킨 유기계 발포폼을 실란화합물로 표면 코팅하여 무기물과의 결합성을 향상시킨 후, 합성실리카와 팽창 퍼라이트 등의 무기 보강제와 유기계 바인더 또는 무기계 바인더, 불투명화제와 혼합하여 압축성형하여, 발포폼으로 체적을 확보하고 무기 단열소재에 의해 불연성을 동시에 가지는 저밀도의 낮은 열전도율의 불연성 단열재를 완성하게 되었다. Thus, the organic foamed foam obtained by crushing or expanded in the form of particles is surface-coated with a silane compound to improve the bonding property with the inorganic substance, and then mixed with an inorganic reinforcing agent such as synthetic silica and expanded peroxide, an organic binder or an inorganic binder, And a compression molding is carried out to obtain a low-density, low-thermal-conductivity nonflammable heat insulating material having a volume secured by a foamed foam and being nonflammable by an inorganic heat insulating material.

본 발명은 불연 성능을 가지며, 폴리우레탄 대비 동등 이상의 단열 효율, 기존 합성 실리카 단열재 대비 낮은 밀도를 가지면서도 우수한 강도를 가지는 불연성 고성능 단열재를 제공하는데 그 목적이 있다.It is an object of the present invention to provide a non-combustible high-performance heat insulating material having flame-retardant performance, heat insulating efficiency equal to or higher than that of polyurethane, and low density compared to existing synthetic silica thermal insulating materials.

상기 목적을 달성하기 위하여 본 발명은, 실란화합물로 코팅된 발포성 단열소재, 보강 섬유, 무기 보강재, 바인더 및 불투명화제를 혼합하고, 상기 실란화합물은 상기 발포성 단열소재 총 중량% 대비 0.1 ~ 30 중량% 혼합하여 형성한 것을 특징으로 한다. In order to attain the above object, the present invention provides a method for producing a foamed insulating material, which comprises mixing a foamable insulating material coated with a silane compound, reinforcing fibers, an inorganic reinforcement, a binder and an opacifying agent, the silane compound being contained in an amount of 0.1 to 30 wt% Are mixed and formed.

또한, 상기 불연단열재 총 중량% 대비, 실란화합물로 코팅된 발포성 단열소재는 10 ~ 99중량%, 보강섬유는 0.5 ~ 20 중량%, 무기 보강재는 0.1 ~ 60 중량%, 바인더는 0.1 ~ 40 중량%, 불투명화제는 0.1~ 30 중량% 혼합하는 것을 특징으로 한다. 10 to 99% by weight of the foam insulating material coated with the silane compound, 0.5 to 20% by weight of the reinforcing fiber, 0.1 to 60% by weight of the inorganic reinforcing material, 0.1 to 40% by weight of the binder, By weight, and the opacifying agent is mixed in an amount of 0.1 to 30% by weight.

또한, 상기 발포성 단열소재는 발포폼을 분쇄 또는 발포폼을 액상 상태에서 입자 형태로 팽창시킨 것을 특징으로 한다. The foamable heat insulating material is characterized in that the foamed foam is expanded in the form of particles in a liquid state.

또한, 상기 발포폼은 페놀 발포폼, 우레탄 발포폼, 폴리에틸렌 발포폼, 폴리프로필렌 발포폼, 멜라민 발포폼 중 선택된 1종 이상인 것을 특징으로 한다. The foamed foam may be at least one selected from phenol foam, urethane foam, polyethylene foam, polypropylene foam, and melamine foam.

또한, 상기 실란 화합물은 이소옥틸트리메톡시실란 (i-Octyltrimethoxysilane), 메틸트리메톡시실란(Methyltrimethoxysilane), 에폭시시클로헥실에틸트리메톡시실란 (Epoxycyclohexylethyltrimethoxy silane), 옥틸트리에톡시실란 (Octyltrietoxysilane), 3-아미노프로필트리에톡시실란 (3-aminopropyltriethoxysilane), 3-글리시딜옥시프로필트리메톡시실란 (3-glycidyloxytriethoxysilane), 3-메타크릴옥시프로필트리메특시실란 (3-methacryloxypropyltrimethoxysilane), 비닐트리에톡시실란 (vinyltriethoxysilane), 비닐트리메톡시실란 (vinyltrimethoxysilane), 비닐트리(2-메톡시-에톡시)실란 [vinyltri (2-methoxy-ethoxy) silane , 클로로프로필트리에톡시실란 (Chloro propyltriethoxysilane) , 아미노프로필트리메톡시실란 (Aminopropyl trimethoxysilane) 중에서 1종 이상인 것을 특징으로 한다. The silane compound may be at least one selected from the group consisting of iso-octyltrimethoxysilane, methyltrimethoxysilane, epoxycyclohexylethyltrimethoxy silane, octyltriethoxysilane, 3- 3-aminopropyltriethoxysilane, 3-glycidyloxytriethoxysilane, 3-methacryloxypropyltrimethoxysilane, vinyltriethoxysilane, vinyltriethoxysilane, (vinyltriethoxysilane), vinyltrimethoxysilane, vinyltri (2-methoxy-ethoxy) silane, chloropropyltriethoxysilane, aminopropyltriethoxysilane, And at least one of aminopropyl trimethoxysilane.

또한, 상기 보강 섬유는 유기 섬유 또는 무기섬유인 것을 특징으로 한다. In addition, the reinforcing fiber is an organic fiber or an inorganic fiber.

또한, 상기 유기 섬유는 폴리프로필렌 섬유, 플로에틸렌 섬유, 폴리에스터 섬유 중에서 1종 이상, 상기 무기 섬유는 유리 섬유, 세라믹 섬유, 미네랄 섬유, 지르코니아 섬유, 알루미나 섬유 또는 현무암 섬유 중에서 1종 이상인 것을 특징으로 한다. The organic fibers may be at least one of polypropylene fibers, polyethylene fibers and polyester fibers, and the inorganic fibers may be at least one of glass fibers, ceramic fibers, mineral fibers, zirconia fibers, alumina fibers or basalt fibers do.

또한, 상기 무기 보강재는 합성 실리카 또는 팽창 퍼라이트인 것을 특징으로 한다. Further, the inorganic reinforcement is characterized by being synthetic silica or expanded perlite.

또한, 상기 합성 실리카는 50~400 ㎡/g의 비표면적을 가지는 구형의 무정형 입자이며, 단위 입자는 10~100nm, 집합체의 입자가 1~100㎛ 인 것을 특징으로 한다. The synthetic silica is a spherical amorphous particle having a specific surface area of 50 to 400 m < 2 > / g, and has a unit particle size of 10 to 100 nm and an aggregate particle size of 1 to 100 mu m.

또한, 상기 팽창 퍼라이트는 진주암, 흑요석, 송지암, 경석 중에서 1종 이상을 건조 후 팽창 시킨 것을 특징으로 한다. Further, the expanded perlite is characterized in that at least one of perlite, obsidian, plowing rock, pumice is expanded after drying.

또한, 상기 팽창 퍼라이트는 20~40 g/l의 벌크 비중을 가지며, 팽창 퍼라이트 입자들은 팽창 퍼라이트의 총 중량을 기준으로 400㎛ 초과입자 15±10 중량%, 400~250㎛입자 40±15 중량%, 250~160㎛입자 20±10 중량%, 160㎛ 미만입자 30±15 중량%의 입도분포로 구성된 것을 특징으로 한다. The expanded perlite has a bulk specific gravity of 20 to 40 g / l, and the expanded perlite particles contain 15 to 10% by weight of particles exceeding 400 탆, 40 to 15% by weight of particles of 400 to 250 탆 based on the total weight of the expanded peroxide, 20 to 10% by weight of particles of 250 to 160 mu m and 30 to 15% by weight of particles of less than 160 mu m.

또한, 상기 바인더는 유기 바인더 또는 무기 바인더인 것을 특징으로 한다. Further, the binder is an organic binder or an inorganic binder.

또한, 상기 유기 바인더는 액상 레졸 페놀 수지, 에폭시 수지, 실리콘 수지, 우레탄 수지, 아크릴 수지, 요소 수지, 분말형 노볼락 페놀 수지, 분말형태의 멜라민 수지, 에폭시 수지 또는 실리콘 수지 중에서 1종 이상인 것을 특징으로 한다. The organic binder may be at least one selected from the group consisting of a liquid resol phenol resin, an epoxy resin, a silicone resin, a urethane resin, an acrylic resin, a urea resin, a powdered novolak phenol resin, a powdered melamine resin, .

또한, 상기 무기 바인더는 소듐실리케이트, 포타슘실리케이트, 리튬실리케이트, 콜로이달실리카 중에서 1종 이상인 것을 특징으로 한다. The inorganic binder may be at least one of sodium silicate, potassium silicate, lithium silicate, and colloidal silica.

또한, 상기 불투명화제는 탄화규소, 그라파이트, 지르코니아, 지르콘, 산화알루미늄, 이산화티탄 중에서 1종 이상인 것을 특징으로 한다. The opacifying agent is characterized by being at least one of silicon carbide, graphite, zirconia, zircon, aluminum oxide, and titanium dioxide.

본 발포성 단열소재를 이용한 불연단열재는 기존의 유기 단열재와 동등 이상의 단열성능을 가지면서도 불연성을 가지고, 저밀도의 낮은 재료비로 제조 가능하여, 건축용 및 방화문용으로 사용될 수 있는 장점이 있다. The fire-proof insulation material using the foamable insulation material has the same heat insulation performance as that of the existing organic insulation material, but has a nonflammable property and can be manufactured at a low density and a low material cost, so that it can be used for construction and fire doors.

도 1은 기존의 합성실리카 단열재의 구성 및 형태를 간략히 나타낸 것이다.
도 2는 본 발명의 발포성 단열소재가 함유된 단열재의 구성 및 형태를 간략히 나타낸 것이다.
Fig. 1 is a schematic view showing the structure and the shape of a conventional synthetic silica thermal insulator.
Fig. 2 is a view schematically showing the construction and form of the heat insulating material containing the foamable insulating material of the present invention.

이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 도면 2와 같이 실란화합물이 코팅된 발포성 단열소재(30) 입자와 무기 보강제 및 보강섬유와 불투명화제, 바인더를 혼합하는 것을 특징으로 한다. 저밀도의 발포성 단열소재(30) 입자로 구조체를 형성하고 무기보강제로 격막을 형성하고, 바인더로 발포성 단열소재(30) 입자와 무기보강제를 결합하여 100~150 Kg/㎥ 정도의 낮은 밀도에서도 우수한 단열성능을 가지는 불연 단열재를 제조할 수 있다. The present invention is characterized by mixing particles of a foam insulating material (30) coated with a silane compound, an inorganic reinforcing agent, a reinforcing fiber, an opacifying agent and a binder as shown in Fig. (30) particles of a low density, a diaphragm is formed of an inorganic reinforcing agent, and a foamed insulating material (30) particles and an inorganic reinforcing agent are combined with a binder to obtain an excellent thermal insulation even at a density as low as about 100 to 150 Kg / It is possible to produce a fire-retardant insulating material having a high performance.

이를 실시하기 위하여 발포성 단열 소재는 폴리우레탄 발포폼, 폴리에틸렌 발포폼, 폴리프로필렌 발포폼, 멜라민 발포폼, 페놀 발포폼 등이며, 이미 발포된 폼을 분쇄하여 입자의 형태로 제조하거나, 상기 발포폼들을 액상 상태에서 입자의 형태로 팽창시켜 사용한다. In order to accomplish this, the foaming insulating material is a polyurethane foam, a polyethylene foam, a polypropylene foam, a melamine foam, a phenol foam, and the like. The foam may be prepared by pulverizing the foam to form particles, Expands in the form of particles in the liquid phase.

이렇게 제조된 발포성 단열소재는 유기물로써, 바인더 및 무기 보강제와 결합력이 부족하며, 이를 해결하기 위하여 발포성 단열소재 표면을 실란화합물로 코팅하여 건조시킴으로써 유기물과 무기물의 결합성을 향상시킬 수 있다. The foamable insulating material thus prepared is an organic material and has insufficient bonding force with the binder and the inorganic reinforcing agent. To solve this problem, the surface of the foam insulating material is coated with a silane compound and dried, thereby improving the bonding property between the organic material and the inorganic material.

본 발명에서 실란화합물은 유기물과 무기물의 결합력을 향상 시킬 수 있으며, 소수성 실란화합물, 친수성 실란화합물, 또는 이들의 조합으로 구성된다. In the present invention, the silane compound can improve the bonding force between an organic material and an inorganic material, and is composed of a hydrophobic silane compound, a hydrophilic silane compound, or a combination thereof.

상기 실란화합물은 이소옥틸트리메톡시실란 (i-Octyltrimethoxysilane), 메틸트리메톡시실란(Methyltrimethoxysilane), 에폭에폭시시클로헥실에틸트리 메톡시실란(Epoxycyclohexylethyltrimethoxysilane), 옥틸트리에톡시실란 (Octyl trietoxysilane), 3-아미노프로필트리에톡시실란 (3-aminopropyltriethoxy silane), 3-글리시딜옥시프로필트리메톡시실란 (3-glycidyloxytriethoxysilane), 3-메타크릴옥시프로필트리메특시실란 (3-methacryloxypropyltrimethoxysilane), 비닐트리에톡시실란 (vinyltriethoxysilane), 비닐트리메톡시실란 (vinyltrimethoxysilane), 비닐트리(2-메톡시-에톡시)실란 [vinyltri (2-methoxy-ethoxy) silane, 클로로피로필트리에톡시실란 (Chloro propyltriethoxysilane), 아미노프로필트리메톡시실란 (Aminopropyl trimetheoxysilane) 등 중에서 1종 이상을 사용할 수 있다. The silane compound may be at least one selected from the group consisting of i-octyltrimethoxysilane, methyltrimethoxysilane, epoxycyclohexylethyltrimethoxysilane, octyl triethoxysilane, 3-amino 3-aminopropyltriethoxysilane, 3-glycidyloxytriethoxysilane, 3-methacryloxypropyltrimethoxysilane, vinyltriethoxysilane, and 3-methacryloxypropyltrimethoxysilane. (vinyltriethoxysilane), vinyltrimethoxysilane, vinyltri (2-methoxy-ethoxy) silane, chloropropyltriethoxysilane, aminopropyltriethoxysilane, Aminopropyl trimethoxysilane, and the like can be used.

실란화합물은 발포성 단열소재 총 중량% 대비 0.1~30 중량%를, 바람직하게는 0.5~15 중량%를 혼합할 수 있으며, 0.1 중량% 미만일 경우, 결합력 증가의 효과를 나타내기 어렵고, 30 중량%를 초과할 경우, 결합력의 증가는 기대할 수 있으나, 발포성 단열 소재의 열전도율이 상승한다. The silane compound may be mixed in an amount of 0.1 to 30% by weight, preferably 0.5 to 15% by weight based on the total weight% of the foamable insulating material. If the amount is less than 0.1% by weight, If it exceeds, the increase of the bonding force can be expected, but the thermal conductivity of the foam insulating material increases.

실란화합물로 코팅된 발포성 단열소재는 본 발명의 불연단열재 총 중량% 대비 10 ~ 99 중량% 혼합할 수 있고, 바람직하게는 20 내지 50 중량% 혼합할 수 있다. 10 중량% 미만인 경우 부피 대체에 따른 휨강도 및 압축강도 보강이 어렵고, 99 중량% 초과할 경우 불연성을 확보하기 어려운 문제점이 있다. The foamable insulating material coated with the silane compound may be mixed in an amount of 10 to 99% by weight, preferably 20 to 50% by weight, based on the total weight% of the fireproof insulation material of the present invention. If it is less than 10% by weight, it is difficult to reinforce the flexural strength and the compressive strength according to the substitution of volume, and when it is more than 99% by weight, it is difficult to secure the incombustibility.

본 발명의 보강 섬유는 단열재의 성형성, 휨 강도, 시공성 등을 보강하기 위하여 사용하며, 길이가 3~30mm 범위의 보강섬유를 사용한다. 보강섬유는 유기 섬유, 무기 섬유 또는 유기 섬유와 무기섬유의 혼용섬유를 사용할 수 있다. The reinforcing fiber of the present invention is used for reinforcing the formability, bending strength, and workability of the heat insulating material, and reinforcing fibers having a length of 3 to 30 mm are used. The reinforcing fiber may be organic fibers, inorganic fibers, or hybrid fibers of organic fibers and inorganic fibers.

상기 유기 섬유는 폴리프로필렌 섬유, 폴리에틸렌 섬유, 폴리에스터 섬유 또는 나일렌 섬유 중에서 1종 이상, 상기 무기 섬유는 유리 섬유, 세라믹 섬유, 미네랄 섬유, 지르코니아 섬유, 알루미나 섬유 또는 현무암 섬유 중에서 1종 이상을 사용할 수 있다. The inorganic fibers may be at least one selected from among glass fiber, ceramic fiber, mineral fiber, zirconia fiber, alumina fiber, or basalt fiber, at least one of polypropylene fiber, polyethylene fiber, polyester fiber and nylon fiber. .

상기 보강 섬유는 본 발명의 불연단열재 총 중량% 대비, 0.5~20 중량%를, 바람직하게는 0.5~10 중량%를 혼합할 수 있으며, 0.5 중량% 미만일 경우, 강도의 보강 효과를 나타내기 어렵고, 20 중량%를 초과할 경우, 섬유간 뭉침 현상으로 고른 분산성을 확보하기 어렵고, 열전도율이 상승하는 문제점이 있다.The reinforcing fiber may be mixed with 0.5 to 20% by weight, preferably 0.5 to 10% by weight, based on the total weight% of the fireproof insulation material of the present invention. When the reinforcing fiber is less than 0.5% by weight, If it exceeds 20% by weight, it is difficult to ensure uniform dispersibility due to the aggregation of fibers, and the thermal conductivity is increased.

본 발명의 무기 보강제는 단열재의 불연성 확보하고 단열성을 보강하기 위하여 사용한다. 무기 보강제는 합성실리카, 팽창 퍼라이트를 사용할 수 있다. The inorganic reinforcing agent of the present invention is used for ensuring the nonflammability of the heat insulating material and for reinforcing the heat insulating property. As the inorganic reinforcing agent, synthetic silica and expanded perlite can be used.

합성실리카는 50~400 ㎡/g의 비표면적을 가지는 구형의 무정형 규소화합물로써, 입자크기는 단위 입자는 10~100nm, 집합체의 입자가 1~100㎛ 범위의 분말 입자를 사용할 수 있다. Synthetic silica is a spherical amorphous silicon compound having a specific surface area of 50 to 400 m < 2 > / g. Particle size is 10-100 nm, and aggregate particles are in the range of 1-100 mu m.

팽창퍼라이트는 퍼라이트 원광을 건조시킨 후 팽창시켜 제조된 것으로, 퍼라이트 원광은 진주암, 흑요석, 송지암, 경석 중 선택된 1종 이상이다. 팽창 퍼라이트는 20~40 g/l의 벌크비중을 가지며, 팽창퍼라이트 입자들은 팽창 퍼라이트의 총 중량을 기준으로 400㎛ 초과입자 15±10 중량%, 400~250㎛입자 40±15 중량%, 250~160㎛입자 20±10 중량%, 160㎛ 미만입자 30±15 중량%의 입도분포로 구성된 팽창퍼라이트를 사용할 수 있다. Expansion perlite is manufactured by drying perlite ore and expanding it. Perlite ore is at least one selected from perlite, obsidian, buried rock and pumice. The expanded perlite has a bulk specific gravity of 20 to 40 g / l and the expanded perlite particles have a specific gravity of 15 ± 10% by weight, particles of 400 to 250 μm, 40 ± 15% by weight, An expanded parate composed of a particle size distribution of 20 占 10% by weight of 160 占 퐉 particles and 30 占 15% by weight of particles of less than 160 占 퐉 can be used.

무기 보강제는 본 발명의 불연단열재 총 중량% 대비, 0.1~60 중량%, 바람직하게는 5~60 중량%를 혼합할 수 있으며, 0.1 중량% 미만일 경우, 불연성을 확보하기 어렵고, 60 중량%를 초과할 경우, 휨강도와 압축강도를 만족하기 위한 단열재의 밀도가 상승하는 문제점이 있다. The inorganic reinforcing agent may be blended in an amount of 0.1 to 60% by weight, preferably 5 to 60% by weight based on the total weight% of the fireproof thermal insulation material of the present invention. When the inorganic reinforcing agent is less than 0.1% by weight, There is a problem that the density of the heat insulating material to satisfy the bending strength and the compressive strength is increased.

본 발명의 바인더는 단열재의 성형성, 휨강도, 불연성을 보강하기 위하여 사용하며, 유기바인더 또는 무기 바인더를 사용할 수 있다.  The binder of the present invention is used for reinforcing the moldability, bending strength and incombustibility of the heat insulating material, and organic binders or inorganic binders can be used.

유기 바인더는 액상 레졸 페놀 수지, 에폭시 수지, 실리콘 수지, 우레탄 수지, 아크릴 수지, 요소 수지 또는 분말형 노볼락 페놀 수지, 분말형태의 멜라민 수지, 에폭시 수지, 실리콘 수지 중에서 1종 이상을 사용할 수 있으며, 무기 바인더는 쇼듐실리케이트, 포타슘실리케이트, 리튬실리케이트, 콜로이달 실리카 중에서 1종 이상을 사용할 수 있다. The organic binder may be at least one selected from the group consisting of a liquid resol phenol resin, an epoxy resin, a silicone resin, a urethane resin, an acrylic resin, a urea resin or a powdery novolak phenol resin, a powdered melamine resin, The inorganic binder may be at least one selected from the group consisting of sodium silicate, potassium silicate, lithium silicate and colloidal silica.

바인더는 본 발명의 불연단열재 총 중량% 대비, 0.1~40 중량%, 바람직하게는 0.1~30 중량%를 혼합할 수 있으며, 0.1 중량% 미만인 경우 바인더에 의한 결합력 향상을 확보하기 어렵고, 40 중량% 초과할 경우, 단열재의 휨강도와 압축강도는 상승하나 열전도율이 상승하는 문제점이 있다. The binder may be blended in an amount of 0.1 to 40% by weight, preferably 0.1 to 30% by weight based on the total weight% of the fire-proofing material of the present invention. When the binder is less than 0.1% by weight, The bending strength and the compressive strength of the heat insulating material increase but the thermal conductivity increases.

본 발명에서 불투명화제는 고온에서 발생하는 복사열을 산란시켜 복사열을 차단하는 역할을 수행하며, 탄화규소, 그라파이트, 지르코니아, 지르콘, 산화알루미늄, 이산화티탄 중에서 1종 이상을 사용할 수 있다. In the present invention, the opacifying agent scatters radiant heat generated at a high temperature to block radiant heat, and at least one of silicon carbide, graphite, zirconia, zircon, aluminum oxide, and titanium dioxide can be used.

불투명화제는 본 발명의 불연단열재 총 중량% 대비, 0.1~30 중량%, 바람직하게는 0.1~25 중량%를 사용할 수 있으며, 0.1 중량% 미만인 경우 복사열 차단이 어렵고, 30 중량%를 초과할 경우, 고온에서 복사열을 차단하는 역할은 증가하나, 상온에서 열전도율이 상승하는 문제점이 있다. The opacifying agent may be used in an amount of 0.1 to 30% by weight, preferably 0.1 to 25% by weight based on the total weight% of the fire retardant insulation material of the present invention. When the amount is less than 0.1% by weight, The role of blocking radiant heat at high temperature is increased, but there is a problem that the thermal conductivity rises at room temperature.

이하, 본 발명을 실시예 및 비교예에 의거하여 구체적으로 설명하는 바, 본 발명이 실시예 또는 비교예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail based on examples and comparative examples, but the present invention is not limited by examples or comparative examples.

실시예Example  And 비교예Comparative Example

다음 표 1 및 표 2 에 나타낸 바와 같은 실란 화합물의 표면처리 함량과 각 성분별 함량 기준으로 혼합 및 압축성형하고 건조하여 발포성 단열소재를 이용한 단열재를 제조하였다. The surface treatment contents of the silane compounds as shown in the following Tables 1 and 2 were mixed and compression-molded on the basis of the content of each component and dried to prepare a heat insulating material using a foam insulating material.

물성측정Property measurement

다음에 나타낸 각 방법으로 상기 실시예 1 내지 5 및 비교예 1 내지 4 에 따라 제조된 발포성 단열소재를 이용한 단열재의 물성을 측정하였으며, 그 결과는 표 1과 표 2에 각각 나타내었다. The physical properties of the heat insulating material using the foamable insulating material prepared according to Examples 1 to 5 and Comparative Examples 1 to 4 were measured by the following methods, and the results are shown in Table 1 and Table 2, respectively.

[측정 방법][How to measure]

1.밀도1. Density

밀도는 KS M 3808 에 의거하여 측정하였으며, 다음 식을 통하여 계산하였다.The density was measured according to KS M 3808 and calculated using the following formula.

밀도(Kg/㎥) = W(건조중량) / V(부피)Density (Kg / m 3) = W (dry weight) / V (volume)

2.휨강도(굴곡강도) 2. Bending strength (flexural strength)

휨강도는 KS M 3808 에 의거하여 측정하였으며, 다음 식을 통하여 계산하였다.The bending strength was measured according to KS M 3808 and calculated by the following equation.

휨강도(N/㎠) = 3Wl / 2bh2Bending strength (N / cm2) = 3Wl / 2bh2

W : 최대하중(N) W: Maximum load (N)

l : 지점간 거리(㎝) l: Distance between points (cm)

b : 시험편 나비(㎝) b: Test piece width (cm)

h : 시험편 두께(㎝) h: Specimen thickness (cm)

3.압축강도 3. Compressive strength

휨강도는 KS M 3808 에 의거하여 측정하였으며, 15% 변형시 까지의 발생 하중을 기준으로 계산하였다.The bending strength was measured in accordance with KS M 3808 and calculated based on the generated loads up to 15% deformation.

압축강도(N/㎠) = W / ACompressive strength (N / cm2) = W / A

W : 최대하중(N) W: Maximum load (N)

A : 단면적 (㎠) A: Cross-sectional area (㎠)

4. 열전도율 4. Thermal conductivity

열전도율 시험은 KS L 9016 에 의거하여 측정온도 20 조건에서 측정하였다. The thermal conductivity test was carried out under the condition of temperature 20 measured according to KS L 9016.

5. 난연성능 5. Flame Retardant Performance

난연성능은 건축물 내부 마감재료의 난연성능기준(건설교통부 고시 제 2006-476호) 에 의거한 KS F ISO 1182(건축재료의 불연성시험방법) 와 KS F 2271(가스유해성시험) 에 의거해서 측정하였다. The flame retardant performance was measured in accordance with KS F ISO 1182 (Nonflammability test method of building materials) and KS F 2271 (Gas hazard test) based on the flame retardant performance standard of the interior finishing materials of the building (Ministry of Construction and Transportation Notice No. 2006-476) .

구분division 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실란화합물
(발포성단열소재 총 중량%대비)
Silane compound
(Based on the total weight% of foamable insulating material)
0.50.5 0.50.5 55 55 55
조성성분
(중량%)
Composition component
(weight%)
발포성단열소재Foam insulation material 5050 5050 5050 3030 2020
보강섬유Reinforcing fiber 55 55 55 55 55 무기보강제Inorganic reinforcing agent 3737 2727 2727 4747 4747 바인더bookbinder 00 1010 1010 1010 2020 불투명화제Opacifier 88 88 88 88 88 물성Properties 밀도(Kg/㎥)Density (Kg / m3) 130130 130130 130130 150150 150150 휨강도(N/㎠)Bending strength (N / cm2) 2020 2121 2525 2121 2626 압축강도(N/㎠)Compressive strength (N / cm2) 2121 2222 2323 2323 2626 열전도율(W/mK)Thermal conductivity (W / mK) 0.0210.021 0.0230.023 0.0230.023 0.0220.022 0.0250.025 난연성능Flame retardant performance 불연재Non-combustible material 불연재Non-combustible material 불연재Non-combustible material 불연재Non-combustible material 불연재Non-combustible material

구분division 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 실란화합물
(발포성단열소재 총 중량%대비)
Silane compound
(Based on the total weight% of foamable insulating material)
00 00 00 00
조성성분
(중량%)
Composition component
(weight%)
발포성단열소재Foam insulation material 5050 5050 3030 2020
보강섬유Reinforcing fiber 55 55 55 55 무기보강제Inorganic reinforcing agent 3737 2727 4747 4747 바인더bookbinder 00 1010 1010 2020 불투명화제Opacifier 88 88 88 88 물성Properties 밀도(Kg/㎥)Density (Kg / m3) 130130 130130 150150 150150 휨강도(N/㎠)Bending strength (N / cm2) 99 1111 1212 1616 압축강도(N/㎠)Compressive strength (N / cm2) 1313 1414 1818 2020 열전도율(W/mK)Thermal conductivity (W / mK) 0.0210.021 0.0230.023 0.0220.022 0.0240.024 난연성능Flame retardant performance 불연재Non-combustible material 불연재Non-combustible material 불연재Non-combustible material 불연재Non-combustible material

상기 표 1과 표 2에 나타낸 바와 같이, 실란 화합물의 코팅 함량 및 조성 성분별 단열재를 제조하였다.As shown in Tables 1 and 2, the coating amount of the silane compound and the thermal insulating material for each component were prepared.

상기 실시예 1 내지 5는 발포성 단열소재와 무기보강제의 바람직한 조성에 따라 모두 불연 성능을 확보하였다. The above Examples 1 to 5 secured fire-retardant performance according to the preferable composition of the foam insulating material and the inorganic reinforcing agent.

상기 실시예 1, 2와 비교예 1, 2를 비교할 경우, 발포성 단열소재의 실란화합물 코팅 유무에 따라 휨강도와 압축강도의 차이가 발생하고 있으며, 이는 실란화합물에 의한 코팅에 의해 발포성 단열소재와 무기보강제 및 바인더와의 결합성이 크게 증가함을 나타내고 있다. Comparing Examples 1 and 2 and Comparative Examples 1 and 2, there is a difference in bending strength and compressive strength depending on whether silane compound coating is applied to the foam insulating material. This is because coating with the silane compound causes the foam insulating material and the inorganic The bonding property with the reinforcing agent and the binder is greatly increased.

실시예 2와 실시예 3 내지 5를 비교할 경우, 실란화합물의 코팅량에 따른 결합강도의 증가 정도를 판단할 수 있으며, 그 사용량에 따라 열전도율과 휨강도, 압축강도의 변화 경향을 판단할 수 있다. Comparing Example 2 and Examples 3 to 5, it is possible to determine the degree of increase in bond strength according to the coating amount of the silane compound, and it is possible to determine the tendency of the thermal conductivity, the bending strength, and the compressive strength to vary depending on the use amount.

무기 바인더의 사용량에 따른 실시에 4와 5를 비교할 경우 바인더 사용량에 따라 휨강도와 압축강도는 크게 상승하나, 열전도율이 증가하여 단열효율이 감소하는 경향을 나타내었다. 이는 해당 단열재가 사용되는 환경과 요구 단열효율에 따라 선택적으로 사용이 가능함을 나타낸다. Comparing 4 and 5 according to the use amount of inorganic binder, the bending strength and compressive strength increase greatly according to the amount of binder used, but the heat conductivity tends to decrease due to the increase of thermal conductivity. This indicates that the insulation can be selectively used depending on the environment in which the insulation is used and the required insulation efficiency.

결과적으로, 실란 화합물을 이용하여 표면 처리된 발포성 단열소재와 무기 보강제 및 바인더에 의해 제조되는 단열재는 저밀도에서도 우수한 물리적 강도와 낮을 열전도율의 불연성을 확보할 수 있었다. As a result, the foamed insulating material surface-treated with the silane compound, the inorganic reinforcing agent, and the insulating material produced by the binder were able to secure the excellent physical strength and low thermal conductivity non-flammability even at low density.

이상에서 본 발명의 내용을 상세히 기술하였으며, 상기 실시예는 이들의 범위를 제한하는 것은 아니며, 이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당 업계의 통상의 지식을 가진 자라면, 본 발 발명의 범위에서 변형 가능함을 알 수 있다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, It can be understood that the present invention can be modified within the scope of the present invention.

10 : 합성실리카
20 : 불투명화제
30 : 발포성 단열소재
10: Synthetic silica
20: opacifier
30: Foam insulation material

Claims (15)

실란화합물로 코팅된 발포성 단열소재, 보강 섬유, 무기 보강재, 바인더 및 불투명화제를 혼합하고, 상기 실란화합물은 상기 발포성 단열소재 총 중량% 대비 0.5 ~ 5 중량% 혼합하고, 휨강도 및 압축강도가 동시에 향상되는 것을 특징으로 하는 발포성 단열소재를 이용한 불연단열재.Wherein the foamed insulating material coated with the silane compound, the reinforcing fiber, the inorganic reinforcing material, the binder and the opacifying agent are mixed and the silane compound is mixed with 0.5 to 5 wt% based on the total weight% of the foamable insulating material, Wherein the foamed insulating material is used as a fire-retardant insulating material. 제 1 항에 있어서, 상기 불연단열재 총 중량% 대비, 실란화합물로 코팅된 발포성 단열소재는 10 ~ 99중량%, 보강섬유는 0.5 ~ 20 중량%, 무기 보강재는 0.1 ~ 60 중량%, 바인더는 0.1 ~ 40 중량%, 불투명화제는 0.1~ 30 중량% 혼합하는 것을 특징으로 하는 발포성 단열소재를 이용한 불연단열재. The method according to claim 1, wherein the foaming insulating material coated with the silane compound is 10 to 99 wt%, the reinforcing fiber is 0.5 to 20 wt%, the inorganic reinforcement is 0.1 to 60 wt%, the binder is 0.1 By weight to 40% by weight, and the opacifying agent is mixed in an amount of 0.1 to 30% by weight. 제 1 항 또는 제 2 항에 있어서, 상기 발포성 단열소재는 발포폼을 분쇄 또는 발포폼을 액상 상태에서 입자 형태로 팽창시킨 것을 특징으로 하는 발포성 단열소재를 이용한 불연단열재. The fire-resistant insulating material according to any one of claims 1 to 3, wherein the foamed insulating material is a foamed foam which is expanded in the form of particles in a liquid state. 제 3 항에 있어서, 상기 발포폼은 페놀 발포폼, 우레탄 발포폼, 폴리에틸렌 발포폼, 폴리프로필렌 발포폼, 멜라민 발포폼 중 선택된 1종 이상인 것을 특징으로 하는 발포성 단열소재를 이용한 불연단열재. [4] The fire-extinguishing material according to claim 3, wherein the foamed foam is at least one selected from phenol foam, urethane foam, polyethylene foam, polypropylene foam and melamine foam. 제 1 항 또는 제 2 항에 있어서, 상기 실란 화합물은 이소옥틸트리메톡시실란 (i-Octyltrimethoxysilane), 메틸트리메톡시실란(Methyltrimethoxysilane), 에폭시시클로헥실에틸트리메톡시실란 (Epoxycyclohexylethyltrimethoxy silane), 옥틸트리에톡시실란 (Octyltrietoxysilane), 3-아미노프로필트리에톡시실란 (3-aminopropyltriethoxysilane), 3-글리시딜옥시프로필트리메톡시실란 (3-glycidyloxytriethoxysilane), 3-메타크릴옥시프로필트리메특시실란 (3-methacryloxypropyltrimethoxysilane), 비닐트리에톡시실란 (vinyltriethoxysilane), 비닐트리메톡시실란 (vinyltrimethoxysilane), 비닐트리(2-메톡시-에톡시)실란 [vinyltri (2-methoxy-ethoxy) silane , 클로로프로필트리에톡시실란 (Chloro propyltriethoxysilane) , 아미노프로필트리메톡시실란 (Aminopropyl trimethoxysilane) 중에서 1종 이상인 것을 특징으로 하는 발포성 단열 소재를 이용한 불연 단열재. The method according to claim 1 or 2, wherein the silane compound is at least one selected from the group consisting of i-octyltrimethoxysilane, methyltrimethoxysilane, epoxycyclohexylethyltrimethoxysilane, octyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidyloxytriethoxysilane, 3-methacryloxypropyltrimethoxysilane (3-aminopropyltriethoxysilane), 3- methacryloxypropyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltri (2-methoxy-ethoxy) silane, chloropropyltriethoxysilane (Chloro propyltriethoxysilane), and aminopropyl trimethoxysilane. The foamed insulation material of the present invention, insulator. 제 1 항 또는 제 2 항에 있어서, 상기 보강 섬유는 유기 섬유 또는 무기섬유인 것을 특징으로 하는 발포성 단열 소재를 이용한 불연단열재. The fire-retardant insulating material according to any one of claims 1 to 3, wherein the reinforcing fiber is an organic fiber or an inorganic fiber. 제 6 항에 있어서, 상기 유기 섬유는 폴리프로필렌 섬유, 폴리에틸렌 섬유, 폴리에스터 섬유 중에서 1종 이상, 상기 무기 섬유는 유리 섬유, 세라믹 섬유, 미네랄 섬유, 지르코니아 섬유, 알루미나 섬유 또는 현무암 섬유 중에서 1종 이상인 것을 특징으로 하는 발포성 단열 소재를 이용한 불연단열재. [7] The method according to claim 6, wherein the organic fiber is at least one of polypropylene fiber, polyethylene fiber and polyester fiber, and the inorganic fiber is at least one of glass fiber, ceramic fiber, mineral fiber, zirconia fiber, alumina fiber or basalt fiber Wherein the foamed insulation material is a foamed insulation material. 제 1 항 또는 제 2 항에 있어서, 상기 무기 보강재는 합성 실리카 또는 팽창 퍼라이트인 것을 특징으로 하는 발포성 단열 소재를 이용한 불연단열재. 3. The fire-retardant insulating material according to claim 1 or 2, wherein the inorganic reinforcing material is synthetic silica or expanded perlite. 제 8 항에 있어서, 상기 합성 실리카는 50~400 ㎡/g의 비표면적을 가지는 구형의 무정형 입자이며, 단위 입자는 10~100nm, 집합체의 입자가 1~100㎛ 인 것을 특징으로 하는 발포성 단열 소재를 이용한 불연단열재. 9. The foamed insulating material according to claim 8, wherein the synthetic silica is spherical amorphous particles having a specific surface area of 50 to 400 m < 2 > / g, wherein the unit particles are 10 to 100 nm and the aggregate particles are 1 to 100 m. . 제 8 항에 있어서, 상기 팽창 퍼라이트는 진주암, 흑요석, 송지암, 경석 중에서 1종 이상을 건조 후 팽창 시킨 것을 특징으로 하는 발포성 단열 소재를 이용한 불연단열재. 9. The fire-retardant insulation material according to claim 8, wherein the expanded perlite is at least one of perlite, obsidian, sandstone, and pumice is expanded after being dried. 제 8 항에 있어서, 상기 팽창 퍼라이트는 20~40 g/l의 벌크 비중을 가지며, 팽창 퍼라이트 입자들은 팽창 퍼라이트의 총 중량을 기준으로 400㎛ 초과입자 15±10 중량%, 400~250㎛입자 40±15 중량%, 250~160㎛입자 20±10 중량%, 160㎛ 미만입자 30±15 중량%의 입도분포로 구성된 것을 특징으로 하는 발포성 단열 소재를 이용한 불연단열재.9. The method of claim 8, wherein the expanded perlite has a bulk specific gravity of 20 to 40 g / l, wherein the expanded perlite particles comprise 15 + 10% Wherein the particle size distribution is ± 15% by weight, the particle size is 250 ± 160 μm, the particle size is 20 ± 10% by weight, and the particle size smaller than 160 μm is 30 ± 15% by weight. 제 1 항 또는 제 2 항에 있어서, 상기 바인더는 유기 바인더 또는 무기 바인더인 것을 특징으로 하는 발포성 단열 소재를 이용한 불연단열재. The fire-retardant insulating material according to any one of claims 1 to 3, wherein the binder is an organic binder or an inorganic binder. 제 12 항에 있어서, 상기 유기 바인더는 액상 레졸 페놀 수지, 에폭시 수지, 실리콘 수지, 우레탄 수지, 아크릴 수지, 요소 수지, 분말형 노볼락 페놀 수지, 분말형태의 멜라민 수지, 에폭시 수지 또는 실리콘 수지 중에서 1종 이상인 것을 특징으로 하는 발포성 단열 소재를 이용한 불연단열재.The organic binder according to claim 12, wherein the organic binder is selected from the group consisting of liquid resol phenol resin, epoxy resin, silicone resin, urethane resin, acrylic resin, urea resin, powdered novolak phenol resin, powdered melamine resin, epoxy resin, Of the total amount of the foamed insulation material. 제 12 항에 있어서, 상기 무기 바인더는 소듐실리케이트, 포타슘실리케이트, 리튬실리케이트, 콜로이달실리카 중에서 1종 이상인 것을 특징으로 하는 발포성 단열 소재를 이용한 불연단열재.13. The fire-resistant insulating material according to claim 12, wherein the inorganic binder is one or more of sodium silicate, potassium silicate, lithium silicate, and colloidal silica. 제 1 항 또는 제 2 항에 있어서, 상기 불투명화제는 탄화규소, 그라파이트, 지르코니아, 지르콘, 산화알루미늄, 이산화티탄 중에서 1종 이상인 것을 특징으로 하는 발포성 단열 소재를 이용한 불연단열재.

The fire-resistant insulating material according to claim 1 or 2, wherein the opacifying agent is at least one of silicon carbide, graphite, zirconia, zircon, aluminum oxide, and titanium dioxide.

KR1020170043469A 2017-04-04 2017-04-04 nonflammable heat insulator using expandable insulation material KR101906045B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170043469A KR101906045B1 (en) 2017-04-04 2017-04-04 nonflammable heat insulator using expandable insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170043469A KR101906045B1 (en) 2017-04-04 2017-04-04 nonflammable heat insulator using expandable insulation material

Publications (1)

Publication Number Publication Date
KR101906045B1 true KR101906045B1 (en) 2018-10-10

Family

ID=63876084

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170043469A KR101906045B1 (en) 2017-04-04 2017-04-04 nonflammable heat insulator using expandable insulation material

Country Status (1)

Country Link
KR (1) KR101906045B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075013A (en) * 2020-11-26 2022-06-07 남양노비텍 주식회사 Fire protection panel and Fire protection device using the fire protection panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035719A (en) * 2004-07-29 2006-02-09 Sk Kaken Co Ltd Fireproof heat insulation structure and its construction method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035719A (en) * 2004-07-29 2006-02-09 Sk Kaken Co Ltd Fireproof heat insulation structure and its construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075013A (en) * 2020-11-26 2022-06-07 남양노비텍 주식회사 Fire protection panel and Fire protection device using the fire protection panel
KR102497182B1 (en) * 2020-11-26 2023-02-09 남양노비텍 주식회사 Fire protection panel and Fire protection device using the fire protection panel

Similar Documents

Publication Publication Date Title
JP6034425B2 (en) Airgel composite and its production and use
KR101306632B1 (en) Spray-type nonflammable insulating material composition and production method and coating method thereof
EP1834053B1 (en) Aerogel containing blanket
JP5571851B2 (en) Inorganic nanoporous particles with water-dispersible polyurethane binder
US6598358B1 (en) Use of aerogels for deadening structure-borne and/or impact sounds
CN110177769B (en) Building material mixture for shielding electromagnetic radiation
AU2003241488A1 (en) Aerogel and hollow particle binder composition, insulation composite, and method for preparing the same
KR20110100989A (en) Heat insulation using expanded perlite of closed cell
EP4061632B1 (en) A thermal insulation board comprising at least one aerogel composite material for the thermal insulation of buildings
CN103261293B (en) Composite material comprising nanoporous particles
KR101797219B1 (en) nonflammable firewall
CN114096499A (en) Insulating material and method for the production thereof
KR101523327B1 (en) Method for preparing nonflammable heat-insulation coating adhesive using sol-gel method and nonflammable heat-insulation coating adhesive prepared by the same
KR101906045B1 (en) nonflammable heat insulator using expandable insulation material
KR101164580B1 (en) Manufacturing method for super light silica aerogel cerment mortar having insulating, water proofing, refractory characteristics
KR102500414B1 (en) Fireproof composition for spray containing aerogels and method for manufacturing the same
KR102137840B1 (en) Nano porous silica-based and cementitious materials-based external thermal insulation composite system with improved fire resistance, and manufacturing method for the same
KR20170066947A (en) Non-flammable construction interior and exterior ceramic formed materials using perlite and method of manufacturing the same
KR101758309B1 (en) Non-flammable construction interior and exterior panel and method of manufacturing the same
KR101162766B1 (en) Eco-friendly wood board with improved functionality using vermiculite and method of manufacturing the same
KR101162562B1 (en) Non-inflammably Highly Efficient Heat Insulator and Method for Preparing the Same
KR20140132488A (en) A paint composition for reducing noise and A paint and things used it
JP2002308669A (en) (calcium silicate)-silica composite formed body
CN108643375A (en) A kind of expanded perlite integrated heat-preservation hanging plate
KR20100131362A (en) Vacuum heat insulator for a door and method for preparing the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant