WO2004037510A1 - Device and method for producing physically expanded structural foams during an injection molding process involving the use of dynamic mixing elements - Google Patents

Device and method for producing physically expanded structural foams during an injection molding process involving the use of dynamic mixing elements Download PDF

Info

Publication number
WO2004037510A1
WO2004037510A1 PCT/EP2003/011197 EP0311197W WO2004037510A1 WO 2004037510 A1 WO2004037510 A1 WO 2004037510A1 EP 0311197 W EP0311197 W EP 0311197W WO 2004037510 A1 WO2004037510 A1 WO 2004037510A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
blowing agent
screw piston
mixing element
mixing elements
Prior art date
Application number
PCT/EP2003/011197
Other languages
German (de)
French (fr)
Inventor
Christian Schlummer
Original Assignee
Peguform Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peguform Gmbh filed Critical Peguform Gmbh
Priority to EP03757943A priority Critical patent/EP1575752B1/en
Priority to US10/531,748 priority patent/US7293982B2/en
Priority to AU2003273976A priority patent/AU2003273976A1/en
Priority to AT03757943T priority patent/ATE501824T1/en
Publication of WO2004037510A1 publication Critical patent/WO2004037510A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • B29C44/3449Feeding the blowing agent through the screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/51Screws with internal flow passages, e.g. for molten material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/56Screws having grooves or cavities other than the thread or the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/67Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/60Screws

Definitions

  • the invention has for its object to introduce and distribute a physical blowing agent with high reproducibility and process reliability evenly in the melt flow of an injection molding machine in order to generate a homogeneous polymer / blowing agent solution, using a conventional injection molding machine.
  • a blowing agent is added to the plastic material, which produces gas bubbles in the injection mold by expansion of the blowing agent dissolved in the melt under pressure as a result of pressure reduction during injection into the injection mold, which are frozen as a result of an increase in viscosity during cooling of the melt and ultimately form the foam structure.
  • Physical blowing agents are used for the device and the method which are presented in EP 1 256 430 A1.
  • a physical blowing agent is introduced into a polymer melt through a porous sleeve. This porous sleeve is mounted on the screw piston, preferably in an area between the metering zone and a downstream mixing zone.
  • the porous sleeve is made of porous or permeable material through which the physical blowing agent passes under pressure to dissolve in the melt.
  • This porous sleeve is ideal as a thin-walled, cylindrical part for the gas entry for polymer melts of various compositions, since it has a large surface.
  • the solution presented in patent application EP 1 256430 A1 relates to gassing with a subsequent mixing process by means of one on the screw piston mounted mixing element. Fumigation takes place in a section of the screw piston, which means that the gassing element carries out the movements of the screw piston.
  • gassing element as a porous sleeve, which moves axially with the screw piston and at the same time also carries out its rotational movements, results in an even introduction of propellant, because no jet can be created through the porous surface, but at most a beam, but generally through the
  • the compressed blowing agent is brought into contact with the melt via a static mixing element, which is installed between the plasticizing unit and the sealing nozzle.
  • a porous sintered metal surface which surrounds the mixing elements, serves as a contact element between the blowing agent and the polymer melt. Differences in concentration and pressure cause absorption of the blowing agent in the melt via diffusion and sorption processes.
  • the polymer / blowing agent mixture is homogenized during the injection process by the webs of the static mixing element which interrupt the melt channel. The rearrangements, distributions and expansions of the melt within the mixer favor the diffusion processes.
  • the absorption of the blowing agent in the melt is sustainably promoted.
  • a disadvantage in the invention disclosed in DE 101 50 329 A1 is that the propellant is only introduced shortly before the sealing nozzle. So little remains Time for complete mixing of the melt before it passes through the sealing nozzle into the adjoining cavity.
  • a mixing element with a long overall length or a high pressure must be applied to the mixing element so that the blowing agent is evenly distributed in the polymer melt before it enters the cavity via the sealing nozzle .
  • EP 1 256 430 A1 also mentions the basic disadvantage of static mixing elements as the shear effect thereof, which can damage the polymer matrix.
  • Another disadvantage of using a static mixing element in the area of the screw piston is the complex valve control that is used to regulate the
  • Propellant entry serves, which increases the plant costs and the susceptibility to failure.
  • the porous sleeve according to EP 1 256 430 A1 there is a risk that leaks will occur during operation due to the large sealing surfaces, as a result of which the blowing agent no longer reaches the polymer melt exclusively through the porous sleeve, but also via the sealing points.
  • the pressure drops due to a malfunction in the blowing agent system the case could arise that the polymer melt, which is under higher pressure, gets into the blowing agent supply system via such leaks.
  • the screw piston downstream of a metering zone has porous or permeable mixing elements which can be acted upon by the blowing agent via a blowing agent supply device in the core of the screw piston and introduce the blowing agent evenly into the melt.
  • the mixing elements rotate in the polymer melt with simultaneous translational movement of the screw piston. This combination of translation and rotation during the metering phase ensures constant mixing and rearrangement of the melt with simultaneous exposure to blowing agent and thus ensures a homogeneous polymer / blowing agent mixture.
  • the combination of the mixing element and the gassing area in the same section of the screw piston not only allows a combination of the mixing element and propellant entry in a narrowly defined section of the screw piston.
  • the geometric shape of the mixing element as a rotationally symmetrical body also allows a precise introduction of blowing agent into the polymer melt. Furthermore, the amount of blowing agent input can be precisely controlled.
  • the design of the mixing elements as rotationally symmetrical bodies, which protrude into the melt in the outgassing area, ensures uniform mixing and homogenization of the blowing agent input. Due to the rotation and translation of the screw, the mixing takes place even with a short residence time of the melt in the gasification area.
  • the screw piston element can consist of a material that has a higher strength.
  • the dynamic forces acting on the mixing elements which are caused by the movement of the mixing elements in the melt, thus act only on small mixing elements, preferably designed as rotationally symmetrical bodies. As a result, the loads caused by shear or torsional forces can be reduced to a minimum.
  • the mixing elements themselves have a seal which ensures that the gas is introduced exclusively through the porous surface. This means that the size of the blowing agent inclusions can be set precisely over the entire melt surface.
  • the blowing agent is introduced evenly into the polymer melt via the porous or permeable mixing mandrels makes it possible to introduce the blowing agent optimally during the metering of the polymer. This results in an improved solution behavior due to long diffusion times and large diffusion areas with small diffusion paths.
  • a high reproducibility of the injection molding process can be determined regardless of the dosing volume and an optimal use of the blowing agent.
  • the rotational and translational movement of the mixing elements in the polymer melt and the associated shear effect prevent local concentration differences and blowing agent agglomerates.
  • the invention has the advantage of low investment costs, since no complex special machine is necessary, but only an exchange of the screw piston of the conventional injection molding machine. An extended injection unit is also not necessary. A standard length of the injection unit in the range of 20 to 25 times the outer diameter of the screw piston is sufficient.
  • the diameter of the screw piston is reduced in the area of the porous or permeable mixing elements of the screw piston. Due to the low pressure level of the polymer melt in the gassing area, the increased screw depth enables the blowing agent to be supplied directly without the need for a dosing station.
  • the mixing elements are preferably provided evenly offset in several rows on the circumference of the screw piston in order to ensure a uniform distribution of the propellant fluid in the melt.
  • the propellant is preferably added to the screw plunger
  • the high-pressure seal housing which surrounds the screw piston, is fed in during the metering phase.
  • the physical blowing agent is a fluid.
  • the high-pressure seal housing receives the propellant from at least one pressure bottle. This has the advantage that no dosing station is required.
  • the high-pressure seal housing moves simultaneously with the axial movement of the screw piston without rotation in the axial direction. This enables a uniform introduction of propellant due to the flat, axially moving and rotating gassing area during the polymer metering.
  • the polymer / blowing agent solution is homogenized with an effective length of mixing and shear elements of the visual bulb while the gassing is always the same.
  • the propellant is injected during the dosing phase.
  • Fig. 1 is a sectional view of an injection molding machine with a screw piston
  • Fig. 2 shows a detail of a mixing element
  • Fig. 3 shows a possible arrangement of the mixing elements on the screw piston
  • FIG. 1 shows an injection molding machine with a screw piston 1 rotating in the injection unit 2 and axially moved during the injection phase.
  • the polymer granulate is fed via a material hopper 3 and drawn in by the rotating screw piston 1 in the region of a feed zone 4.
  • the subsequent compression zone 5 and metering zone 6, with the aid of the external cylinder heating 7, cause the polymer material to be melted, compressed and homogenized, so that a thermally and materially homogeneous polymer melt is present at the end of the metering zone 6.
  • the screw base is increased 8, i.e. the
  • the diameter of the screw piston 1 is reduced suddenly.
  • porous or permeable mixing elements 9 are provided, which can be acted upon by a blowing agent supply device 10 and a bore 11 with a physical blowing agent, the blowing agent being introduced evenly into the polymer melt.
  • the porous or permeable mixing elements 9 serve as a contact surface between the blowing agent and the polymer melt.
  • the change in the basic depth of the screw piston leads to a reduction in pressure in this section, the so-called gassing zone 13.
  • the compressed propellant for example a propellant fluid, is supplied via the bore 11 in the longitudinal axis of the screw piston and a plurality of radial bores 12 for distribution via the mixing elements 9.
  • the porous or permeable mixing elements 9 can be made of sintered metal or of another permeable material, such as e.g. Ceramic be formed.
  • the bores 11, 12 are connected upstream of the input funnel 3 to a propellant supply device 10.
  • a seal housing 18 with a housing core and screwable cover encloses the screw piston 1.
  • the seal housing 18 is mounted between a drive device (not shown) for the screw piston 1 and the plasticizing cylinder 2 and is secured against rotation.
  • the seal housing 18 moves simultaneously with the axial movement of the screw piston 1.
  • the axial stroke of the screw piston 1 corresponds, for example, to three times the diameter of the injection cylinder 2.
  • the seal housing 18 has special rotary seals 19 and is centered on the screw piston with the aid of slide rings. Axial displacement of the seal housing 18 is prevented by mechanical clamping elements. Mechanical seals or radial shaft seals can be used as the rotary seals 19.
  • One or more radial bores 20 connect the pressure chamber of the propellant supply device 10 to the axial bore 11 in the longitudinal axis of the screw piston 1.
  • FIG. 2 shows an exemplary embodiment of the mixing elements.
  • a rotationally symmetrical pin made of porous material 9 is in a threaded bore 14 perpendicular to Screw shaft 1 screwed. Alternatively, an interference fit or other clamping device can also be provided.
  • the mixing pin like the bore in the screw piston 1, is offset and enables an axial sealing point 15 via the shoulder thus formed. With the aid of copper sealing disks or high-temperature-resistant O-ring seals 16, the mixing pin can thus be sealed against the screw piston and prevented an uncontrolled penetration of blowing agent into the plastic melt via the contact surface between the mixing pin and the screw piston.
  • a bore 12 In the bottom of the screw thread there is a bore 12 which is radial to the axis of the screw piston and which meets the axial bore 11 in the screw piston and thus represents the connection to the propellant supply.
  • this can optionally be provided with an axial bore 17. This ensures that the flow resistance through the permeable material is the same at all points on the surface.
  • the geometry of the mixing elements can also be conical. This has the advantage that the thermally induced inhomogeneities due to dissipation heating to the cylinder wall are reduced due to the decreasing end face.
  • the mixing elements can be rectangular or diamond-shaped. 3 shows a development of the screw piston 1 in the area of the gassing points between the metering zone 6 and the shear zone 21 with the corresponding distribution of the mixing elements 9.
  • a mixing element can consist of cylinders of different diameters, have a conical or frustoconical shape, have a diamond-shaped or rectangular cross-section, can be designed as a straight or oblique prism, or can represent a figure in the form of a serpentine or helical line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

Foamed molded articles can be produced during an injection molding process, among other things, by using physical expanding agents. Existing technologies differ in the greatest possible extent as to how the expanding agent is introduced into the polymer melt. One possibility consists of feeding the expanding agent via mixing elements (9), which are distributed over the screw plunger (1), are made of a porous and permeable material, and which, by means of an appropriate supply of expanding agents, load and homogeneously distribute the melt with expanding agent during the metering phase of the polymeric material. When injected into an injection mold, the single-phase polymer/expanding agent mixture produced in the aforementioned manner forms a foam structure as a result of a reduction in pressure.

Description

Vorrichtung und Verfahren zur Herstellung physikalisch getriebener Strukturschäume im Spritzgießprozess unter Verwendung dynamischer MischelementeDevice and method for producing physically driven structural foams in the injection molding process using dynamic mixing elements
Der Erfindung liegt die Aufgabe zugrunde, ein physikalisches Treibmittel mit hoher Reproduzierbarkeit und Prozesssicherheit gleichmäßig in den Schmelzestrom einer Spritzgießmaschine einzubringen und zu verteilen, um eine homogene Polymer/Treibmittel-Lösung zu generieren und zwar unter Verwendung einer konventionellen Spritzgießmaschine.The invention has for its object to introduce and distribute a physical blowing agent with high reproducibility and process reliability evenly in the melt flow of an injection molding machine in order to generate a homogeneous polymer / blowing agent solution, using a conventional injection molding machine.
Aus den Patentschriften DE 24 02 203 C3 und US 5297 948 A sind jeweils Vorrichtungen zur Herstellung geschäumter Kunststoffformteile nach dem Oberbegriff des Anspruchs 1 mit der Einschränkung auf ein Extrusionsverfahren bekannt, bei welchen das Treibmittel nur in einigen, örtlich begrenzten Bereichen eingebracht wird. Diese Erfindung ist eine Weiterentwicklung der in unserer Patentanmeldung EP 1 256 430 A1 beanspruchten Vorrichtung zur Herstellung geschäumter Kunststoffformteile. Bei besagter Vorrichtung handelt es sich um eine Spritzgießmaschine, welche zur Herstellung eines geschäumten Kunststoffformteils eingesetzt wird. Um eine schäumbare Kunststoffmasse zu erzeugen, wird dem Kunststoffmaterial ein Treibmittel zugefügt, welches im Spritzgießwerkzeug durch Expansion des unter Druck in der Schmelze gelöst vorliegenden Treibmittels infolge Druckabbaus während des Einspritzens ins Spritzgießwerkzeugs Gasblasen erzeugt, welche infolge Viskositätserhöhung während der Abkühlung der Schmelze eingefroren werden und letztlich die Schaumstruktur bilden. Für Vorrichtung und das Verfahren, welche in EP 1 256 430 A1 vorgestellt werden, kommen physikalische Treibmittel zum Einsatz. Der Eintrag eines physikalischen Treibmittels in eine Polymerschmelze erfolgt durch eine poröse Hülse. Diese poröse Hülse ist auf dem Schneckenkolben montiert, vorzugsweise in einem Bereich zwischen der Meteringzone und einer stromabwärts anschließenden Mischzone. Die poröse Hülse besteht aus porösem oder permeablem Material, durch welches das physikalische Treibmittel unter Druck hindurchtritt, um sich in der Schmelze zu lösen. Diese poröse Hülse ist als ein dünnwandiges, zylinderförmiges Teil für den Gaseintrag für Polymerschmelzen unterschiedlichster Zusammensetzung hervorragend geeignet, da sie eine große Oberfläche aufweist. Die in der Patentanmeldung EP 1 256430 A1 vorgestellte Lösung betrifft eine Begasung mit nachgeschaltetem Mischvorgang mittels einem auf dem Schneckenkolben montierten Mischelement. Die Begasung erfolgt in einem Abschnitt des Schneckenkolbens, was bedeutet, dass das Begasungselement die Bewegungen des Schneckenkolbens ausführt. Durch die Verwendung eines Begasungselements in einem Abschnitt des Schneckenkolbens werden die Investitionskosten der Gesamtanlage herabgesetzt, weil in einer konventionellen Spritzgießmaschine lediglich der Schneckenkolben ausgetauscht werden muss, um mit derselben Anlage geschäumte Kunststoffformteile herzustellen. Die Verwendung einer Begasungseinrichtung im Schneckenkolben ist zwar aus DE 2053646 B bekannt, allerdings münden die als Einspritzdüsen ausgeführten Treibmittelöffnungen in den Verteilerkopf. Durch die Treibmittelöffnungen erfolgt der Eintrag des Treibmittels in Form eines Strahls in die Schmelze. Durch die Ausführung des Begasungselements als poröse Hülse, welche sich axial mit dem Schneckenkolben mitbewegt und gleichzeitig auch dessen Rotationsbewegungen mit ausführt, erfolgt ein gleichmäßiger Treibmitteleintrag, weil durch die poröse Oberfläche gar kein Strahl entstehen kann, sondern allenfalls ein Strahlbündel, im allgemeinen werden allerdings durch dieFrom the patents DE 24 02 203 C3 and US 5297 948 A devices for the production of foamed plastic molded parts are known according to the preamble of claim 1 with the restriction to an extrusion process, in which the blowing agent is introduced only in some, locally restricted areas. This invention is a further development of the device claimed in our patent application EP 1 256 430 A1 for producing foamed plastic molded parts. Said device is an injection molding machine which is used to produce a foamed plastic molded part. In order to produce a foamable plastic mass, a blowing agent is added to the plastic material, which produces gas bubbles in the injection mold by expansion of the blowing agent dissolved in the melt under pressure as a result of pressure reduction during injection into the injection mold, which are frozen as a result of an increase in viscosity during cooling of the melt and ultimately form the foam structure. Physical blowing agents are used for the device and the method which are presented in EP 1 256 430 A1. A physical blowing agent is introduced into a polymer melt through a porous sleeve. This porous sleeve is mounted on the screw piston, preferably in an area between the metering zone and a downstream mixing zone. The porous sleeve is made of porous or permeable material through which the physical blowing agent passes under pressure to dissolve in the melt. This porous sleeve is ideal as a thin-walled, cylindrical part for the gas entry for polymer melts of various compositions, since it has a large surface. The solution presented in patent application EP 1 256430 A1 relates to gassing with a subsequent mixing process by means of one on the screw piston mounted mixing element. Fumigation takes place in a section of the screw piston, which means that the gassing element carries out the movements of the screw piston. By using a gassing element in a section of the screw piston, the investment costs of the entire system are reduced, because in a conventional injection molding machine only the screw piston has to be replaced in order to produce molded plastic parts with the same system. The use of a gassing device in the screw piston is known from DE 2053646 B, but the propellant openings designed as injection nozzles open into the distributor head. The blowing agent is introduced into the melt in the form of a jet through the blowing agent openings. The design of the gassing element as a porous sleeve, which moves axially with the screw piston and at the same time also carries out its rotational movements, results in an even introduction of propellant, because no jet can be created through the porous surface, but at most a beam, but generally through the
Vorrichtung gemäß der Erfindung oder der EP 1 2256430 A1 Treibmittelblasen in die Polymerschmelze eingetragen. In der unmittelbaren Umgebung der porösen Hülse erfolgt durch den Gaseintrag eine unvollständige Durchmischung des Gases mit der Polymerschmelze, da Scherkräfte, welche die Durchmischung erleichtern, am Umfang der glatten Hülse gering sind.Device according to the invention or EP 1 2256430 A1 blowing agent bubbles introduced into the polymer melt. In the immediate vicinity of the porous sleeve, the gas entry results in incomplete mixing of the gas with the polymer melt, since shear forces, which facilitate the mixing, are low on the circumference of the smooth sleeve.
Gute Mischwirkungen können hingegen erreicht werden durch Scherungen, Dehnungen und Umlagerungen der Schmelze.On the other hand, good mixing effects can be achieved by shearing, stretching and rearranging the melt.
Ein möglicher Weg, dieses Ziel zu erreichen, wird in DE101 50 329 A1 dargestellt. Das komprimierte Treibmittel wird über ein statisches Mischelement, welches zwischen Plastifizieraggregat und Verschlussdüse montiert wird, mit der Schmelze in Kontakt gebracht. Eine poröse Sintermetall-Fläche, welche die Mischelemente umschließt, dient dabei als Kontaktelement zwischen Treibmittel und Polymerschmelze. Konzentrations- und Druckunterschiede bewirken über Diffusions- und Sorptionsvorgänge eine Aufnahme des Treibmittels in der Schmelze. Die Homogenisierung des Polymer/Treibmittelgemisches geschieht dabei während des Einspritzvorgangs durch die den Schmelzekanal unterbrechenden Stege des statischen Mischelements. Die Umlagerungen, Aufteilungen und Dehnungen der Schmelze innerhalb des Mischers begünstigen dabei die Diffusionsvorgänge. Die Aufnahme des Treibmittels in die Schmelze wird dadurch nachhaltig begünstigt. Ein Nachteil in der in DE 101 50 329 A1 offenbarten Erfindung besteht darin, dass der Eintrag des Treibmittels erst kurz vor der Verschlussdüse erfolgt. Somit bleibt wenig Zeit für eine vollständige Durchmischung der Schmelze vor dem Durchtritt durch die Verschlussdüse in die daran anschließende Kavität. Um eine vollständige Durchmischung der Schmelze mit dem Treibmittel gewährleisten zu können, muss daher entweder ein Mischelement mit großer Baulänge oder ein hoher Druck an das Mischelement angelegt werden, damit das Treibmittel sich gleichmäßig in der Polymerschmelze verteilt, bevor es über die Verschlussdüse in die Kavität gelangt. Auch in EP 1 256 430 A1 wird als prinzipieller Nachteil von statischen Mischelementen die Scherwirkung derselben genannt, welche die Polymermatrix beschädigen kann. Ein weiterer Nachteil eines Einsatzes eines statischen Mischelements im Bereich des Schneckenkolbens ist die aufwändige Ventilsteuerung, die zur Regelung desA possible way to achieve this goal is shown in DE101 50 329 A1. The compressed blowing agent is brought into contact with the melt via a static mixing element, which is installed between the plasticizing unit and the sealing nozzle. A porous sintered metal surface, which surrounds the mixing elements, serves as a contact element between the blowing agent and the polymer melt. Differences in concentration and pressure cause absorption of the blowing agent in the melt via diffusion and sorption processes. The polymer / blowing agent mixture is homogenized during the injection process by the webs of the static mixing element which interrupt the melt channel. The rearrangements, distributions and expansions of the melt within the mixer favor the diffusion processes. The absorption of the blowing agent in the melt is sustainably promoted. A disadvantage in the invention disclosed in DE 101 50 329 A1 is that the propellant is only introduced shortly before the sealing nozzle. So little remains Time for complete mixing of the melt before it passes through the sealing nozzle into the adjoining cavity. In order to ensure complete mixing of the melt with the blowing agent, either a mixing element with a long overall length or a high pressure must be applied to the mixing element so that the blowing agent is evenly distributed in the polymer melt before it enters the cavity via the sealing nozzle , EP 1 256 430 A1 also mentions the basic disadvantage of static mixing elements as the shear effect thereof, which can damage the polymer matrix. Another disadvantage of using a static mixing element in the area of the screw piston is the complex valve control that is used to regulate the
Treibmitteleintrags dient, womit sich die Anlagekosten und die Störanfälligkeit erhöhen. Bei der konstruktiven Realisierung der porösen Hülse nach EP 1 256 430 A1 besteht die Gefahr, dass durch die großen Dichtoberflächen im Betrieb Undichtigkeiten auftreten, wodurch das Treibmittel nicht mehr ausschließlich durch die poröse Hülse, sondern zusätzlich über die Dichtstellen in die Polymerschmelze gelangt. Wenn es durch eine Störung im Treibmittelsystem zu einer Absenkung des Drucks kommt, könnte außerdem der Fall eintreten, dass die unter höherem Druck stehende Polymerschmelze über derartige Undichtigkeiten in das Treibmittelzufuhrsystem gelangt. Um diesen Nachteilen des Standes der Technik Abhilfe zu verschaffen, wird gemäß dieser Erfindung vorgeschlagen, mindestens ein dynamisches, also ein mit dem Schneckenkolben mitbewegbares Mischelement einzusetzen, über welches gleichzeitig der Treibmitteleintrag erfolgt. Die Erfindung sieht in vorteilhafter Weise vor, dass der Schneckenkolben stromabwärts einer Meteringzone poröse oder permeable Mischelemente aufweist, die über eine Treibmittelzuführeinrichtung im Kern des Schneckenkolbens mit dem Treibmittel beaufschlagbar sind und das Treibmittel gleichmäßig in die Schmelze einbringen. Während der Plastifizierphase rotieren die Mischelemente in der Polymerschmelze bei gleichzeitiger Translationsbewegung des Schneckenkolbens. Diese Kombination aus Translation und Rotation während der Dosierphase bewirkt eine ständige Durchmischung und Umlagerung der Schmelze bei gleichzeitiger Treibmittelbeaufschlagung und sorgt somit für ein homogenes Polymer/Treibmittelgemisch.Propellant entry serves, which increases the plant costs and the susceptibility to failure. When constructing the porous sleeve according to EP 1 256 430 A1, there is a risk that leaks will occur during operation due to the large sealing surfaces, as a result of which the blowing agent no longer reaches the polymer melt exclusively through the porous sleeve, but also via the sealing points. In addition, if the pressure drops due to a malfunction in the blowing agent system, the case could arise that the polymer melt, which is under higher pressure, gets into the blowing agent supply system via such leaks. In order to remedy these disadvantages of the prior art, it is proposed according to this invention to use at least one dynamic mixing element, that is to say a mixing element which can be moved with the screw piston and via which the propellant is simultaneously introduced. The invention advantageously provides that the screw piston downstream of a metering zone has porous or permeable mixing elements which can be acted upon by the blowing agent via a blowing agent supply device in the core of the screw piston and introduce the blowing agent evenly into the melt. During the plasticizing phase, the mixing elements rotate in the polymer melt with simultaneous translational movement of the screw piston. This combination of translation and rotation during the metering phase ensures constant mixing and rearrangement of the melt with simultaneous exposure to blowing agent and thus ensures a homogeneous polymer / blowing agent mixture.
Die Kombination von Mischelement und Eingasungsbereich in demselben Abschnitt des Schneckenkolbens erlaubt nicht nur eine Kombination von Mischelement und Treibmitteleintrag in einem eng begrenzten Abschnitt des Schneckenkolbens. Die geometrische Form des Mischelements als rotationssymmetrischer Körper erlaubt außerdem einen punktgenauen Eintrag von Treibmittel in die Polymerschmelze. Des weiteren kann die Menge des Treibmitteleintrags genau gesteuert werden. Durch die Ausführung der Mischelemente als rotationssymmetrische Körper, welche in die Schmelze im Ausgasungsbereich hineinragen, wird eine gleichmäßige Durchmischung und Homogenisierung des Treibmitteleintrags gewährleistet. Durch die Rotation und Translation der Schnecke erfolgt die Durchmischung auch schon bei einer kurzen Verweilzeit der Schmelze im Eingasungsbereich. Nur das Mischelement selbst besteht aus porösem oder permeablen Material, das Schneckenkolbenelement kann aus einem Material bestehen, welches höhere Festigkeit aufweist. Die auf die Mischelemente einwirkenden dynamischen Kräfte, welche durch die Bewegung der Mischelemente in der Schmelze hervorgerufen werden, wirken somit nur auf kleine, vorzugsweise als rotationssymmetrische Körper ausgeführte Mischelemente. Dadurch können die Belastungen durch Scher- oder Torsionskräfte auf ein Minimum reduziert werden.The combination of the mixing element and the gassing area in the same section of the screw piston not only allows a combination of the mixing element and propellant entry in a narrowly defined section of the screw piston. The The geometric shape of the mixing element as a rotationally symmetrical body also allows a precise introduction of blowing agent into the polymer melt. Furthermore, the amount of blowing agent input can be precisely controlled. The design of the mixing elements as rotationally symmetrical bodies, which protrude into the melt in the outgassing area, ensures uniform mixing and homogenization of the blowing agent input. Due to the rotation and translation of the screw, the mixing takes place even with a short residence time of the melt in the gasification area. Only the mixing element itself consists of porous or permeable material, the screw piston element can consist of a material that has a higher strength. The dynamic forces acting on the mixing elements, which are caused by the movement of the mixing elements in the melt, thus act only on small mixing elements, preferably designed as rotationally symmetrical bodies. As a result, the loads caused by shear or torsional forces can be reduced to a minimum.
Die Mischelemente selbst weisen eine Dichtung auf, durch welche gewährleistet wird, dass der Gaseintrag ausschließlich über die poröse Oberfläche erfolgt. Das bedeutet, dass die Größe der Treibmitteleinschlüsse über die gesamte Schmelzeoberfläche genau eingestellt werden kann.The mixing elements themselves have a seal which ensures that the gas is introduced exclusively through the porous surface. This means that the size of the blowing agent inclusions can be set precisely over the entire melt surface.
Mit Hilfe der Erfindung ist es möglich, mit nur geringen Änderungen an einer konventionellen Spritzgießmaschine physikalisch getriebene Strukturschaum-Formteile herzustellen, welche sich durch eine kompakte Außenhaut und einen geschäumten Kern auszeichnen und somit im Vergleich zu kompakten Bauteilen materialspezifische Vorteile mit Einsparungen an Gewicht, Material und damit Kosten verbinden. Des weiteren ist kein Eingriff in die Maschinensteuerung erforderlich, so dass die Investitionskosten gering sind.With the help of the invention, it is possible to produce physically driven structural foam molded parts with only minor changes to a conventional injection molding machine, which are characterized by a compact outer skin and a foamed core and thus, compared to compact components, material-specific advantages with savings in weight, material and associated with costs. Furthermore, no intervention in the machine control is necessary, so that the investment costs are low.
Die Erfindung hat im Vergleich zum Stand der Technik folgende Vorteile:The invention has the following advantages over the prior art:
• Geringe Investitionskosten, da keine aufwendige Spezialmaschine notwendig ist, sondern lediglich ein Austausch des Schneckenkolbens einer konventionellen Spritzgießmaschine.• Low investment costs, since no complex special machine is required, just an exchange of the screw piston of a conventional injection molding machine.
• Gleichmäßige Treibmitteleinbringung aufgrund mehrerer, axial mitwandernder und rotierender Eingasungsstellen während der Polymerdosierung. • Hoher Homogenisierungsgrad aufgrund intensiver Mischvorgänge bei einer im Verlauf der Eingasung stets gleichen wirksamen Länge der Misch- und Scherzonen des Schneckenkolbens.• Uniform blowing agent introduction due to several axially moving and rotating gassing points during polymer dosing. • High degree of homogenization due to intensive mixing processes with an effective length of the mixing and shear zones of the screw piston that is always the same in the course of the gassing.
• Optimales Lösungsverhalten aufgrund langer Diffusionszeiten und großer Diffusionsflächen bei kleinen Diffusionswegen.• Optimal solution behavior due to long diffusion times and large diffusion areas with small diffusion paths.
• Reproduzierbarkeit des Prozesses unabhängig vom Dosiervolumen.• Reproducibility of the process regardless of the dosing volume.
• Hoher Wirkungsgrad des Treibmittels.• High efficiency of the blowing agent.
• Leichte Austauschbarkeit defekter oder verstopfter Mischelemente• Easily interchangeable defective or clogged mixing elements
• Kombinationsmöglichkeit von Mischelementen verschiedener Bauart und vielfältige Optimierungsmöglichkeiten in Abhängigkeit von dem zu verarbeitenden• Possibility of combining mixing elements of different designs and various optimization options depending on the one to be processed
Polymermaterialpolymer material
Dadurch, dass das Treibmittel über die porösen oder permeablen Mischdorne gleichmäßig in die Polymerschmelze eingebracht wird, ist eine optimale Treibmitteleinbringung während der Polymerdosierung möglich. Es ergibt sich ein verbessertes Lösungsverhalten aufgrund langer Diffusionszeiten und großer Diffusionsflächen bei kleinen Diffusionswegen. Außerdem ist eine hohe Reproduzierbarkeit des Spritzgießprozesses unabhängig vom Dosiervolumen und eine optimale Nutzung des Treibmittels feststellbar. Durch die Rotations- und Translationsbewegung der Mischelemente in der Polymerschmelze und der damit einhergehenden Scherwirkung werden lokale Konzentrationsunterschiede und Treibmittelagglomerate verhindert. Schließlich hat die Erfindung den Vorteil geringer Investitionskosten, da keine aufwendige Spezialmaschine notwendig ist, sondern lediglich ein Austausch des Schneckenkolbens der konventionellen Spritzgießmaschine. Eine verlängerte Einspritzeinheit ist ebenfalls nicht erforderlich. Es genügt eine Standardlänge der Einspritzeinheit im Bereich des 20- bis 25-fachen des Außendurchmessers des Schneckenkolbens.The fact that the blowing agent is introduced evenly into the polymer melt via the porous or permeable mixing mandrels makes it possible to introduce the blowing agent optimally during the metering of the polymer. This results in an improved solution behavior due to long diffusion times and large diffusion areas with small diffusion paths. In addition, a high reproducibility of the injection molding process can be determined regardless of the dosing volume and an optimal use of the blowing agent. The rotational and translational movement of the mixing elements in the polymer melt and the associated shear effect prevent local concentration differences and blowing agent agglomerates. Finally, the invention has the advantage of low investment costs, since no complex special machine is necessary, but only an exchange of the screw piston of the conventional injection molding machine. An extended injection unit is also not necessary. A standard length of the injection unit in the range of 20 to 25 times the outer diameter of the screw piston is sufficient.
Vorzugsweise ist vorgesehen, dass der Durchmesser des Schneckenkolbens im Bereich der porösen oder permeablen Mischelemente des Schneckenkolbens verringert ist. Die vergrößerte Schneckengrundtiefe ermöglicht es aufgrund des geringen Druckniveaus der Polymerschmelze im Eingasungsbereich, dass das Treibmittel direkt zugeführt werden kann, ohne dass eine Dosierstation erforderlich ist. Vorzugsweise werden die Mischelemente gleichmäßig in mehreren Reihen versetzt auf dem Umfang des Schneckenkolbens vorgesehen, um eine gleichmäßige Verteilung des Treibfluides in der Schmelze zu gewährleisten.It is preferably provided that the diameter of the screw piston is reduced in the area of the porous or permeable mixing elements of the screw piston. Due to the low pressure level of the polymer melt in the gassing area, the increased screw depth enables the blowing agent to be supplied directly without the need for a dosing station. The mixing elements are preferably provided evenly offset in several rows on the circumference of the screw piston in order to ensure a uniform distribution of the propellant fluid in the melt.
Vorzugsweise wird das Treibmittel dem Schneckenkolben über ein denThe propellant is preferably added to the screw plunger
Schneckenkolben radial umschließendes Hochdruck-Dichtungsgehäuse während der Dosierphase zugeführt. Dabei liegt das physikalische Treibmittel als Fluid vor.The high-pressure seal housing, which surrounds the screw piston, is fed in during the metering phase. The physical blowing agent is a fluid.
Das Hochdruck-Dichtungsgehäuse erhält das Treibmittel von mindestens einer Druckflasche. Dies hat den Vorteil, dass keine Dosierstation erforderlich ist.The high-pressure seal housing receives the propellant from at least one pressure bottle. This has the advantage that no dosing station is required.
Das Hochdruck-Dichtungsgehäuse bewegt sich simultan mit der Axialbewegung des Schneckenkolben ohne Rotation in Axialrichtung mit. Dies ermöglicht eine gleichmäßige Treibmitteleinbringung aufgrund des flächigen, axial mitwandernden und rotierenden Eingasungsbereichs während der Polymerdosierung.The high-pressure seal housing moves simultaneously with the axial movement of the screw piston without rotation in the axial direction. This enables a uniform introduction of propellant due to the flat, axially moving and rotating gassing area during the polymer metering.
Die Polymer-/Treibmittellösung wird bei einer im Verlauf der Eingasung stets gleichen wirksamen Länge von Misch- und Scherelementen des Seh necken kolbens homogenisiert. Die Injektion des Treibmittels findet während der Dosierphase statt.The polymer / blowing agent solution is homogenized with an effective length of mixing and shear elements of the visual bulb while the gassing is always the same. The propellant is injected during the dosing phase.
Fig. 1 ist eine Schnittdarstellung einer Spritzgießmaschine mit SchneckenkolbenFig. 1 is a sectional view of an injection molding machine with a screw piston
Fig. 2 zeigt ein Detail eines MischelementsFig. 2 shows a detail of a mixing element
Fig. 3 zeigt eine mögliche Anordnung der Mischelemente auf dem SchneckenkolbenFig. 3 shows a possible arrangement of the mixing elements on the screw piston
Im folgenden wird unter Bezugnahme auf die Zeichnung Fig.1 und Fig. 2 die Erfindung näher erläutert:The invention is explained in more detail below with reference to the drawing in FIGS. 1 and 2:
Fig. 1 zeigt eine Spritzgießmaschine mit einem in der Einspritzeinheit 2 rotierenden und während der Einspritzphase axial bewegtem Schneckenkoiben 1. Das Polymergranulat wird über einen Materialtrichter 3 zugeführt und von dem rotierenden Schneckenkolben 1 im Bereich einer Einzugszone 4 eingezogen. Die sich anschließende Kompressionszone 5 und Meteringzone 6 bewirken unter Zuhilfenahme der externen Zylinderheizung 7 das Aufschmelzen, Komprimieren und Homogenisieren des polymeren Materials, so dass am Ende der Meteringzone 6 eine thermisch und stofflich homogene Polymerschmelze vorliegt. Am Ende 8 der Meteringzone 6 des Schneckenkolbens 1 ist der Schneckengrund sprunghaft vergrößert 8, d.h. der1 shows an injection molding machine with a screw piston 1 rotating in the injection unit 2 and axially moved during the injection phase. The polymer granulate is fed via a material hopper 3 and drawn in by the rotating screw piston 1 in the region of a feed zone 4. The subsequent compression zone 5 and metering zone 6, with the aid of the external cylinder heating 7, cause the polymer material to be melted, compressed and homogenized, so that a thermally and materially homogeneous polymer melt is present at the end of the metering zone 6. At the end 8 of the metering zone 6 of the screw piston 1, the screw base is increased 8, i.e. the
Durchmesser des Schneckenkolbens 1 ist sprunghaft verringert. In dem Bereich des verringerten Durchmessers sind poröse oder permeable Mischelemente 9 vorgesehen, die über eine Treibmittelzuführeinrichtung 10 und eine Bohrung 11 mit einem physikalischen Treibmittel beaufschlagbar sind, wobei das Treibmittel gleichmäßig in die Polymerschmelze eingebracht wird. Die porösen oder permeablen Mischelemente 9 dienen als Kontaktfläche zwischen dem Treibmittel und der Polymerschmelze. Die Änderung der Grundtiefe des Schneckenkolbens führt in diesem Abschnitt, der sogenannten Eingasungszone 13, zu einer Druckabsenkung. Das verdichtete Treibmittel, z.B. ein Treibfluid, wird über die Bohrung 11 in der Schneckenkolbenlängsachse und mehrere radiale Bohrungen 12 zur Verteilung über die Mischelemente 9 zugeführt.The diameter of the screw piston 1 is reduced suddenly. In the area of Reduced diameter porous or permeable mixing elements 9 are provided, which can be acted upon by a blowing agent supply device 10 and a bore 11 with a physical blowing agent, the blowing agent being introduced evenly into the polymer melt. The porous or permeable mixing elements 9 serve as a contact surface between the blowing agent and the polymer melt. The change in the basic depth of the screw piston leads to a reduction in pressure in this section, the so-called gassing zone 13. The compressed propellant, for example a propellant fluid, is supplied via the bore 11 in the longitudinal axis of the screw piston and a plurality of radial bores 12 for distribution via the mixing elements 9.
Die porösen oder permeablen Mischelemente 9 können aus Sintermetall oder aus einem anderen permeablen Material, wie z.B. Keramik gebildet sein. Die Bohrungen 11, 12 sind stromaufwärts des Eingabetrichters 3 mit einer Treibmittelzuführeinrichtung 10 verbunden. Hierzu umschließt ein Dichtungsgehäuse 18 mit einem Gehäusekern und verschraubbaren Deckel den Schneckenkolben 1.The porous or permeable mixing elements 9 can be made of sintered metal or of another permeable material, such as e.g. Ceramic be formed. The bores 11, 12 are connected upstream of the input funnel 3 to a propellant supply device 10. For this purpose, a seal housing 18 with a housing core and screwable cover encloses the screw piston 1.
Das Dichtungsgehäuse 18 ist zwischen einer nicht dargestellten Antriebseinrichtung für den Schneckenkolben 1 und dem Plastifizierzylinder 2 montiert und ist gegen Verdrehen gesichert. Das Dichtungsgehäuse 18 bewegt sich simultan mit der Axialbewegung des Schneckenkolbens 1. Der axiale Hub des Schneckenkolbens 1 entspricht beispielsweise dem dreifachen Durchmesser des Einspritzzylinders 2. Das Dichtungsgehäuse 18 weist spezielle Rotationsdichtungen 19 auf und ist mit Hilfe von Gleitringen auf dem Schneckenkolben zentriert. Ein axiales Verschieben des Dichtungsgehäuses 18 wird durch mechanische Spannelemente verhindert. Als Rotationsdichtungen 19 sind Gleitringdichtungen oder Radial-Wellendichtringe einsetzbar. Eine oder mehrere radiale Bohrungen 20 verbinden den Druckraum der Treibmittelzuführeinrichtung 10 mit der axialen Bohrung 11 in der Längsachse des Schneckenkolbens 1.The seal housing 18 is mounted between a drive device (not shown) for the screw piston 1 and the plasticizing cylinder 2 and is secured against rotation. The seal housing 18 moves simultaneously with the axial movement of the screw piston 1. The axial stroke of the screw piston 1 corresponds, for example, to three times the diameter of the injection cylinder 2. The seal housing 18 has special rotary seals 19 and is centered on the screw piston with the aid of slide rings. Axial displacement of the seal housing 18 is prevented by mechanical clamping elements. Mechanical seals or radial shaft seals can be used as the rotary seals 19. One or more radial bores 20 connect the pressure chamber of the propellant supply device 10 to the axial bore 11 in the longitudinal axis of the screw piston 1.
Nach der Zuführung des Treibmittels über die Oberfläche der Mischelemente verteilen förderwirksame Scherelemente 21, das Polymer-/Treibmittelgemisch. Die Treibmittelzuführeinrichtung 10 erhält das Treibmittel vorzugsweise über handelsübliche Druckgasflaschen. Ein elektrisch, pneumatisch oder hydraulisch betätigtes Ventil 22 verbindet jeweils während der Dosierphase des polymeren Materials die ggf. mit Hilfe eines Druckminderventils gedrosselte Treibmittelversorgung mit dem Hochdruck-Dichtungsgehäuse 18. Fig. 2 zeigt ein Ausführungsbeispiel der Mischelemente. Ein rotationssymmetrischer Stift aus porösem Material 9 wird dabei in einer Gewindebohrung 14 senkrecht zur Achse des Schneckenkolbens 1 verschraubt. Alternativ dazu kann auch eine Presspassung oder andere Klemmvorrichtung vorgesehen sein. Alternativ dazu könnten auch federbelastete Vorsprünge zum Einsatz kommen, welche in Nuten des Schneckenkolbens einrasten. Derartige Einrastmechanismen können auch eine Demontage der Mischelemente ermöglichen, was zu Reinigungszwecken erforderlich sein kann. Der Mischstift ist dabei, ebenso wie die Bohrung im Schneckenkolben 1 abgesetzt und ermöglicht über die somit gebildete Schulter eine axiale Dichtstelle 15. Mit Hilfe von Kupfer-Dichtscheiben oder hochtemperaturfesten O-Ring-Dichtungen 16 kann somit der Mischstift gegen den Schneckenkolben abgedichtet werden und verhindert ein unkontrolliertes Eindringen von Treibmittel in die Kunststoff schmelze über die Kontaktfläche zwischen Mischstift und Schneckenkolben. Im Bohrungsgrund des Einschraubgewindes befindet sich eine zur Achse des Schneckenkolben radiale Bohrung 12, welche auf die Axialbohrung 11 im Schneckenkolben trifft und somit die Verbindung zur Treibmittelzufuhr darstellt. Um ein möglichst gleichmäßiges Ausströmen des Treibmittels über die Oberfläche des Mischstiftes zu generieren, kann dieser ggf. mit einer Axialbohrung 17 versehen werden. Damit wird gewährleistet, dass die Fließwiderstände durch das permeable Material zu allen Stellen der Oberfläche gleich ist. Die Geometrie der Mischelemente kann neben der zylindrischen Form auch kegelförmig sein. Dies hat den Vorteil, dass aufgrund der abnehmenden Stirnfläche die thermisch induzierte Inhomogenitäten infolge Dissipationserwärmung zur Zylinderwand verringert werden. Ferner können die Mischelemente rechteckig oder rautenförmig ausgeführt sein. In Fig. 3 ist eine Abwicklung des Schneckenkolbens 1 im Bereich der Eingasungsstellen zwischen Meteringzone 6 und Scherzone 21 mit der entsprechenden Verteilung der Mischelemente 9 dargestellt. Ein Mischelement kann aus Zylindern unterschiedlichen Durchmessers bestehen, kegelige oder kegelstumpfförmige Form aufweisen, rautenförmigen oder rechteckigen Querschnitt aufweisen, als gerades oder schräges Prisma ausgebildet sein oder eine Figur in Form einer Schlangen- oder Schraubenlinie darstellen.After the blowing agent has been supplied over the surface of the mixing elements, promotional shear elements 21 distribute the polymer / blowing agent mixture. The blowing agent supply device 10 receives the blowing agent preferably via commercially available compressed gas cylinders. An electrically, pneumatically or hydraulically operated valve 22 connects the propellant supply, which may have been throttled with the aid of a pressure reducing valve, to the high-pressure seal housing 18 during the metering phase of the polymeric material. FIG. 2 shows an exemplary embodiment of the mixing elements. A rotationally symmetrical pin made of porous material 9 is in a threaded bore 14 perpendicular to Screw shaft 1 screwed. Alternatively, an interference fit or other clamping device can also be provided. Alternatively, spring-loaded projections could also be used, which engage in grooves in the screw piston. Such latching mechanisms can also allow disassembly of the mixing elements, which may be necessary for cleaning purposes. The mixing pin, like the bore in the screw piston 1, is offset and enables an axial sealing point 15 via the shoulder thus formed. With the aid of copper sealing disks or high-temperature-resistant O-ring seals 16, the mixing pin can thus be sealed against the screw piston and prevented an uncontrolled penetration of blowing agent into the plastic melt via the contact surface between the mixing pin and the screw piston. In the bottom of the screw thread there is a bore 12 which is radial to the axis of the screw piston and which meets the axial bore 11 in the screw piston and thus represents the connection to the propellant supply. In order to generate the most uniform possible outflow of the propellant over the surface of the mixing pin, this can optionally be provided with an axial bore 17. This ensures that the flow resistance through the permeable material is the same at all points on the surface. In addition to the cylindrical shape, the geometry of the mixing elements can also be conical. This has the advantage that the thermally induced inhomogeneities due to dissipation heating to the cylinder wall are reduced due to the decreasing end face. Furthermore, the mixing elements can be rectangular or diamond-shaped. 3 shows a development of the screw piston 1 in the area of the gassing points between the metering zone 6 and the shear zone 21 with the corresponding distribution of the mixing elements 9. A mixing element can consist of cylinders of different diameters, have a conical or frustoconical shape, have a diamond-shaped or rectangular cross-section, can be designed as a straight or oblique prism, or can represent a figure in the form of a serpentine or helical line.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1. Schneckenkolben1. Screw piston
2. Einspritzzylinder 3. Materialtrichter2. Injection cylinder 3. Material hopper
4. Einzugszone 5. Kompressionszone4. Feed zone 5. Compression zone
6. Meteringzone6. Metering zone
7. Zylinderheizung7. Cylinder heating
8. Vergrößerter Schneckengrund 9. Mischelement8. Enlarged screw base 9. Mixing element
10. Treibmittelzufuhreinrichtung10. Propellant supply device
11. Bohrung11. Hole
12. Radialbohrung12. Radial bore
13. Eingasungszone 14. Gewindebohrung13. Gasing zone 14. Threaded hole
15. axiale Dichtstelle15. axial sealing point
16. O-Ring Dichtung16. O-ring seal
17. Axialbohrung17. Axial bore
18. Dichtungsgehäuse 19. Rotationsdichtung18. Seal housing 19. Rotary seal
20. Radialbohrung20. Radial bore
21. Scherzone21. shear zone
22. Ventil 22.Valve

Claims

ANSPRÜCHE EXPECTATIONS
1. Vorrichtung zur Herstellung geschäumter Kunststoffformteile im Spritzgießprozess, vorzugsweise unter Verwendung eines physikalischen Treibmittels, wobei die Spritzgießmaschine mindestens einen Einspritzzylinder (2) enthält, welcher mindestens einen Schneckenkolben (1), welcher sich zumindest durch eine Einzugszone (4), eine Kompressionszone (5) und eine Meteringzone (6) erstreckt, beinhaltet, wobei das Treibmittel vorzugsweise in einen an die Meteringzone (6) anschließenden Bereich eingebracht wird, gekennzeichnet dadurch, dass das Treibmittel nur in einigen, örtlich begrenzten Bereichen eingebracht wird, wobei am1. Device for producing foamed plastic molded parts in the injection molding process, preferably using a physical blowing agent, the injection molding machine containing at least one injection cylinder (2) which has at least one screw piston (1) which is at least through a feed zone (4), a compression zone (5 ) and includes a metering zone (6), the propellant preferably being introduced into an area adjoining the metering zone (6), characterized in that the propellant is only introduced in some, locally restricted areas, am
Ende (8) der Meteringzone (6) der Durchmesser des Schneckenkolbens verringert ist und poröse oder permeable Mischelemente (9) vorgesehen sind.End (8) of the metering zone (6) the diameter of the screw piston is reduced and porous or permeable mixing elements (9) are provided.
2. Vorrichtung nach Anspruch 1 , gekennzeichnet dadurch, dass durch die Mischelemente (9) ein physikalisches Treibmittel in die Polymerschmelze eingetragen wird.2. Device according to claim 1, characterized in that a physical blowing agent is introduced into the polymer melt by the mixing elements (9).
3. Vorrichtung nach Anspruch 1 , gekennzeichnet dadurch, dass die Treibmittelzuführeinrichtung eine Bohrung (11) enthält.3. Device according to claim 1, characterized in that the propellant supply device contains a bore (11).
4. Vorrichtung nach Anspruch 1, gekennzeichnet dadurch, dass die Mischelemente (9) aus Sintermetall oder Keramik bestehen.4. The device according to claim 1, characterized in that the mixing elements (9) consist of sintered metal or ceramic.
5. Vorrichtung nach Anspruch 1 , gekennzeichnet dadurch, dass mindestens ein Mischelement (9) als rotationssymmetrischer Stift ausgebildet ist.5. The device according to claim 1, characterized in that at least one mixing element (9) is designed as a rotationally symmetrical pin.
6. Vorrichtung nach Anspruch 1 , gekennzeichnet dadurch, dass jedes Mischelement (9) mit einer Vorrichtung zur Verbindung mit dem Schneckenkolben versehen ist.6. The device according to claim 1, characterized in that each mixing element (9) is provided with a device for connection to the screw piston.
7. Vorrichtung nach Anspruch 6, gekennzeichnet dadurch, dass die Vorrichtung zur Verbindung mit dem Schneckenkolben eine Gewindebohrung umfasst.7. The device according to claim 6, characterized in that the device for connection to the screw piston comprises a threaded bore.
8. Vorrichtung nach Anspruch 1 , gekennzeichnet dadurch, dass das Mischelement (9) zumindest einen abgesetzten Bereich aufweist. 8. The device according to claim 1, characterized in that the mixing element (9) has at least one stepped region.
9. Vorrichtung nach Anspruch 8, gekennzeichnet dadurch, dass der abgesetzte Bereich eine Dichtung aufnehmen kann.9. The device according to claim 8, characterized in that the remote area can accommodate a seal.
10. Vorrichtung nach Anspruch 9, gekennzeichnet dadurch, dass die Dichtung aus Kupfer oder einem hochtemperaturfesten O-Ring besteht.10. The device according to claim 9, characterized in that the seal consists of copper or a high temperature resistant O-ring.
11. Vorrichtung nach Anspruch 1 , gekennzeichnet dadurch, dass ein Mischelement (9) aus Zylindern unterschiedlichen Durchmessers besteht.11. The device according to claim 1, characterized in that a mixing element (9) consists of cylinders of different diameters.
12. Vorrichtung nach Anspruch 1 , gekennzeichnet dadurch, dass ein Mischelement (9) kegelige oder kegelstumpfförmige Form aufweist.12. The device according to claim 1, characterized in that a mixing element (9) has a conical or frustoconical shape.
13. Vorrichtung nach Anspruch 1 , gekennzeichnet dadurch, dass ein Mischelement (9) rautenförmigen oder rechteckigen Querschnitt aufweist.13. The apparatus according to claim 1, characterized in that a mixing element (9) has a diamond-shaped or rectangular cross section.
14. Vorrichtung nach Anspruch 1, gekennzeichnet dadurch, dass ein Mischelement (9) als gerades oder schräges Prisma ausgebildet ist. 14. The apparatus according to claim 1, characterized in that a mixing element (9) is designed as a straight or oblique prism.
PCT/EP2003/011197 2002-10-22 2003-10-09 Device and method for producing physically expanded structural foams during an injection molding process involving the use of dynamic mixing elements WO2004037510A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03757943A EP1575752B1 (en) 2002-10-22 2003-10-09 Device and method for producing physically expanded structural foams during an injection molding process involving the use of dynamic mixing elements
US10/531,748 US7293982B2 (en) 2002-10-22 2003-10-09 Device for producing physically expanded structural foams during an injection molding process involving the use of dynamic mixing elements
AU2003273976A AU2003273976A1 (en) 2002-10-22 2003-10-09 Device and method for producing physically expanded structural foams during an injection molding process involving the use of dynamic mixing elements
AT03757943T ATE501824T1 (en) 2002-10-22 2003-10-09 DEVICE AND METHOD FOR PRODUCING PHYSICALLY DRIVEN STRUCTURAL FOAM IN THE INJECTION MOLDING PROCESS USING DYNAMIC MIXING ELEMENTS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10249314.6 2002-10-22
DE10249314A DE10249314B3 (en) 2002-10-22 2002-10-22 Injection molding machine, to produce shaped foam bodies, has a screw piston within the injection cylinder to take the physical foaming agent feed near the metering zone

Publications (1)

Publication Number Publication Date
WO2004037510A1 true WO2004037510A1 (en) 2004-05-06

Family

ID=32010480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/011197 WO2004037510A1 (en) 2002-10-22 2003-10-09 Device and method for producing physically expanded structural foams during an injection molding process involving the use of dynamic mixing elements

Country Status (7)

Country Link
US (1) US7293982B2 (en)
EP (1) EP1575752B1 (en)
AT (1) ATE501824T1 (en)
AU (1) AU2003273976A1 (en)
DE (1) DE10249314B3 (en)
ES (1) ES2359698T3 (en)
WO (1) WO2004037510A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1676685A2 (en) * 2004-12-28 2006-07-05 Everfocus Worldwide Co., Ltd. Method for controlling microscopic bubble nucleation in fluid polymer material production and its apparatus
EP1892034A1 (en) 2006-08-23 2008-02-27 Sulzer Chemtech AG Method of producing molding material
EP1892035A1 (en) 2006-08-23 2008-02-27 Sulzer Chemtech AG Metering device
DE102016113561B4 (en) 2015-08-06 2019-06-19 Everfocus International Co., Ltd. Method of producing microbubbles using a molding machine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686604B2 (en) * 2004-12-20 2010-03-30 Mgs Mfg. Group, Inc. Coaxial injector screw providing improved small shot metering
TW200821125A (en) * 2006-08-23 2008-05-16 Sulzer Chemtech Ag A metering device
EP1932649B1 (en) * 2006-12-14 2010-05-26 Sulzer Chemtech AG Porous metering element with coating
ATE468958T1 (en) * 2006-12-14 2010-06-15 Sulzer Chemtech Ag POROUS DOSING ELEMENT WITH COATING
US9897375B2 (en) * 2011-04-15 2018-02-20 Nationwide 5, Llc Continuous flow dryer for treating bulk material
HUP1200156A2 (en) 2012-03-09 2013-09-30 Furukawa Electric Co Ltd Chiyoda Ku Equipment and method for producing microcellular plastics
US10863765B2 (en) 2012-10-24 2020-12-15 Nationwide 5, Llc High-fat and high-protein animal feed supplement and process of manufacture
US20190118432A1 (en) * 2017-10-23 2019-04-25 Trexel, Inc. Blowing agent introduction in polymer foam processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2402203A1 (en) * 1973-01-17 1974-07-25 Fujikura Ltd PROCESS AND SPRAYING MACHINE FOR MANUFACTURING WIRE WITH FOAMED POLYOLEFIN INSULATION FOR REMOTE COMMUNICATION
US5297948A (en) * 1990-04-27 1994-03-29 Abc Group Extruder screw for use in foam plastic extruder
EP1072375A2 (en) * 1999-07-23 2001-01-31 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Method and apparatus for producing polymer foams

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848739A (en) * 1955-09-30 1958-08-26 Western Electric Co Methods of and apparatus for making cellular plastic products
DE2053646B2 (en) * 1970-10-31 1975-07-10 Krauss-Maffei Ag, 8000 Muenchen Machine for processing cell-forming plastics
US3972970A (en) * 1974-02-07 1976-08-03 Western Electric Company, Inc. Method for extruding cellular thermoplastic products
US4390332A (en) * 1981-07-06 1983-06-28 Kmmco Structural Foam, Inc. Apparatus for injection molding of parts from foam plastics material and/or from solid plastics material
US5523045A (en) * 1983-04-13 1996-06-04 American National Can Company Methods for injection molding and blow-molding multi-layer plastic articles
JPH06213660A (en) * 1993-01-19 1994-08-05 Aisin Seiki Co Ltd Detecting method for approximate straight line of image
JP3590559B2 (en) * 2000-03-14 2004-11-17 積水化学工業株式会社 Injection molding equipment for thermoplastic resin molded products
CA2431818C (en) 2001-01-05 2011-11-22 Immunivest Corporation Devices and methods to image objects
JP3425559B2 (en) * 2001-01-11 2003-07-14 積水化学工業株式会社 Injection molding equipment for thermoplastic resin molded products
EP1256430A1 (en) * 2001-05-11 2002-11-13 Vereinigung Zur Förderung Des Instituts Für Kunststoffverarbeitung In Industrie Und Handwerk Apparatus and method for for injection moulding of foamed article
DE10150329C2 (en) * 2001-10-15 2003-08-14 Peguform Gmbh & Co Kg Device and method for producing foamed plastic molded parts in an injection molding process using compressed physical blowing fluids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2402203A1 (en) * 1973-01-17 1974-07-25 Fujikura Ltd PROCESS AND SPRAYING MACHINE FOR MANUFACTURING WIRE WITH FOAMED POLYOLEFIN INSULATION FOR REMOTE COMMUNICATION
US5297948A (en) * 1990-04-27 1994-03-29 Abc Group Extruder screw for use in foam plastic extruder
EP1072375A2 (en) * 1999-07-23 2001-01-31 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Method and apparatus for producing polymer foams

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1676685A2 (en) * 2004-12-28 2006-07-05 Everfocus Worldwide Co., Ltd. Method for controlling microscopic bubble nucleation in fluid polymer material production and its apparatus
EP1676685A3 (en) * 2004-12-28 2006-08-09 Everfocus Worldwide Co., Ltd. Method for controlling microscopic bubble nucleation in fluid polymer material production and its apparatus
CN1864981B (en) * 2004-12-28 2010-10-13 约伯佛克斯·难得怀德股份有限公司 Method for controlling microscopic bubble nucleation in fluid polymer material production and its apparatus
EP1892034A1 (en) 2006-08-23 2008-02-27 Sulzer Chemtech AG Method of producing molding material
EP1892035A1 (en) 2006-08-23 2008-02-27 Sulzer Chemtech AG Metering device
DE102016113561B4 (en) 2015-08-06 2019-06-19 Everfocus International Co., Ltd. Method of producing microbubbles using a molding machine

Also Published As

Publication number Publication date
ES2359698T3 (en) 2011-05-26
ATE501824T1 (en) 2011-04-15
US20060034958A1 (en) 2006-02-16
EP1575752B1 (en) 2011-03-16
AU2003273976A1 (en) 2004-05-13
US7293982B2 (en) 2007-11-13
EP1575752A1 (en) 2005-09-21
DE10249314B3 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
DE19754863C2 (en) Process for producing pellets of different colors and device for carrying out the process
DE2108936C3 (en) Method and device for manufacturing semi-finished plastic products with a foam core and non-foamed shell
DE10249314B3 (en) Injection molding machine, to produce shaped foam bodies, has a screw piston within the injection cylinder to take the physical foaming agent feed near the metering zone
WO2001051267A2 (en) Method for introducing additives
EP0393315A2 (en) Method for injection moulding fluid-filled plastic articles and apparatus for carrying out the method
DE102013105749B4 (en) Extrusion hose head for discontinuous foaming
AT519150B1 (en) Auger for injection molding and injection molding plant
DE112006000001B4 (en) Contact filter block and method and apparatus for making construction elements of a contact filter block
EP0664197B1 (en) Method and apparatus for manufacturing thermoplastic elastomere foam profiles for the construction and the automobile industry
DE10150329C2 (en) Device and method for producing foamed plastic molded parts in an injection molding process using compressed physical blowing fluids
EP1827666B1 (en) Mixing reactor and method for continuously ejecting a treated substance using said mixing reactor
EP1387751B1 (en) Injection molding machine and injection molding method for producing foamed shaped parts
DE2352538A1 (en) METHOD FOR MANUFACTURING STRANDED PLASTIC PROFILES AND DEVICE FOR CARRYING OUT THIS METHOD
WO2006024181A1 (en) Method and device for the cyclic transfer of hot molten plastic
EP0139841B1 (en) Method and apparatus for producing a hollow thermoplastic body by blow-moulding
EP3846998B1 (en) Device for forming a plastic component
DE3611688C2 (en)
DE10009843B4 (en) Extruder with blister
DE19801412A1 (en) Injection molding machine
DE19608187C1 (en) Mixing head
WO2001003902A1 (en) Injection molding device
DE102007030704A1 (en) Plasticator of injection molding machine for manufacturing plastic melt, has units for inserting fluid in screw with incorporated bore, and fluid is led to discharge duct, which is provided in axial end area of screw
EP3680088A1 (en) Method for three-dimensional application of a foamed material by means of a printing apparatus and printing apparatus
DE1205692B (en) Device for the extrusion of composite molded plastic bodies
DE3743512C1 (en) Extruder for thermoplastics, rubber or similar materials, with a screw which can turn in a barrel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AU BA BR CA CN CO CR DM DZ GD GE HR HU ID IL IN IS JP KE KG KP KR LC LK LS LT LV MA MD MG MK MX NO NZ OM PH PL RO RU SG SL TN TT UA US VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003757943

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006034958

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10531748

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003757943

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10531748

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP