WO2004034451A1 - Substrate detergent - Google Patents

Substrate detergent Download PDF

Info

Publication number
WO2004034451A1
WO2004034451A1 PCT/JP2002/010607 JP0210607W WO2004034451A1 WO 2004034451 A1 WO2004034451 A1 WO 2004034451A1 JP 0210607 W JP0210607 W JP 0210607W WO 2004034451 A1 WO2004034451 A1 WO 2004034451A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
group
corrosion inhibitor
metal corrosion
substrate
Prior art date
Application number
PCT/JP2002/010607
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiko Kakizawa
Mayumi Kimura
Ichiro Hayashida
Original Assignee
Wako Pure Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries, Ltd. filed Critical Wako Pure Chemical Industries, Ltd.
Priority to AU2002338176A priority Critical patent/AU2002338176A1/en
Priority to PCT/JP2002/010607 priority patent/WO2004034451A1/en
Priority to TW091123894A priority patent/TW583719B/en
Publication of WO2004034451A1 publication Critical patent/WO2004034451A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/16Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • C11D3/349Organic compounds containing sulfur additionally containing nitrogen atoms, e.g. nitro, nitroso, amino, imino, nitrilo, nitrile groups containing compounds or their derivatives or thio urea
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02074Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a planarization of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • C11D2111/22

Definitions

  • the present invention relates to a metal corrosion inhibitor, and a cleaning agent and a cleaning method for a substrate surface using the same, particularly for a substrate surface having copper wiring on the surface.
  • the structure of LSIs has been miniaturized as the degree of integration has increased, and it has become a multilayer structure in which metal wiring and the like are superimposed on the semiconductor surface in many stages. Also, the wiring used is changed from conventional aluminum to copper with lower electrical resistance.
  • a so-called chemical-physical polishing technique which physically polishes and flattens the semiconductor substrate while oxidizing metallic Cu
  • Cu-CMP oxidizing metallic Cu
  • the insulating film silicon oxide that separates the Cu wiring from each other is exposed on the semiconductor surface after the Cu-CMP process, and the wafer surface after the Cu-CMP process is exposed. Is contaminated by a large amount of metallic impurities.
  • Metallic impurity contamination is caused by Cu removed by CMP adsorbing on the insulating film and remaining as metal oxide (copper oxide).
  • metal oxide copper oxide
  • the copper element diffuses into the insulating film due to heat treatment in a later process, and the insulating properties are reduced, thereby deteriorating the characteristics of the device. If the contamination is severe, the isolated wires will be connected, or short-circuited, and the device will be destroyed. Therefore, remove metal oxide (copper oxide) before proceeding to the next step There is a need.
  • a cleaning step after the Cu-CMP step is essential to remove the metal impurities as described above.
  • Japanese Patent Application Laid-Open No. 7-79061 discloses aromatic compounds represented by benzotriazoles and imidazoles.
  • these compounds have a low copper corrosion inhibitory effect and are only effective at high concentrations.
  • these compounds have low solubility in water, and it is difficult to add these compounds at a high concentration to ultrapure water, which is generally used as a diluent when using a detergent for semiconductors.
  • an alkali solubilizing agent such as amine or an alcoholic organic solvent is required. Solvents had a bad effect on the cleaning properties and were difficult to use.
  • Japanese Patent Application Laid-Open No. 2000-087268 / Japanese Patent Application Laid-Open No. 2000-280296 discloses cyclic compounds such as mercaptoimidazole and mercaptothiazole. .
  • Japanese Patent Application Laid-Open No. 2000-273636 discloses a carbon and hydroxyl group having a mercapto group in a molecule, such as mercaptoethanol and mercaptoglycerol, and having the mercapto group bonded thereto. Discloses an aliphatic alcohol-based compound in which the carbon bonded to is bonded adjacently.
  • Japanese Unexamined Patent Publication No. 2000-273663 has a problem of human health and ecosystem compared with the conventional one due to recent problems on the human body and environmental pollution. It is intended to provide a metal corrosion inhibitor that has little risk of harmful effects on steel, but it is highly toxic and still has safety issues. It is not practical because it has an unpleasant odor even when used in an aqueous solution.
  • the present invention has been made in view of the above situation, and has an excellent metal corrosion inhibitory action and a highly safe metal corrosion inhibitor. Using the same, a copper wiring is provided on the surface of a substrate, especially on the surface.
  • An object of the present invention is to provide a method for cleaning a substrate which can be effectively removed. Disclosure of the invention
  • the present invention has the following configurations.
  • a metal corrosion inhibitor comprising an amino acid having a thiol group in the molecule or a derivative thereof.
  • a method for treating a substrate comprising treating the substrate with the treatment agent according to (2).
  • a cleaning agent comprising the metal corrosion inhibitor according to (1).
  • a method for cleaning a substrate comprising cleaning the substrate with the cleaning agent according to (4).
  • the substrate After subjecting a semiconductor substrate having a copper-coated portion to a chemical-physical polishing treatment (CMP), the substrate is treated with the treatment agent described in (2) above, and then the semiconductor substrate is cleaned. Cleaning the substrate with an agent.
  • CMP chemical-physical polishing treatment
  • a method for cleaning a substrate comprising subjecting the substrate to the cleaning agent according to the above (4) after being subjected to (CMP).
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that an amino acid having a thiol group in a molecule or a derivative thereof has a good metal corrosion inhibiting action and high safety, and If the substrate is treated with a cleaning agent containing an amino acid or a derivative thereof, the surface of the substrate, particularly the surface, may have copper.
  • the present inventors have found that metal impurities (copper oxide) on the surface of the substrate on which the wiring has been formed can be effectively removed without causing corrosion or oxidation of the copper wiring, thereby completing the present invention.
  • the amino acid having a thiol group in the molecule according to the present invention is a compound having a thiol group, a carboxyl group and an amino group in the molecule. Include compounds represented by the following general formula [1].
  • R represents a lower alkylene group.
  • examples of the lower alkylene group represented by R include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a pentamethylene group.
  • a linear alkylene group having 1 to 6 carbon atoms (methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group) is preferable, and a methylene group or an ethylene group is particularly preferable.
  • amino acid having a thiol group in the molecule according to the present invention a commercially available product (for example, manufactured by Wako Pure Chemical Industries, Ltd.) may be used, or the amino acid may be appropriately prepared according to a method known per se. It may be prepared and used.
  • examples of the compound represented by the general formula [1] include cysteine and homocysteine. These compounds are D-forms, L-forms, DL-forms, and mixtures having a mixing ratio of, respectively. Mixtures of different D- and L-forms can also be used.
  • the amino acid derivative having a thiol group in the molecule according to the present invention is not particularly limited as long as it has a metal corrosion inhibiting action.
  • the N-acyl derivative of the amino acid according to the present invention Or a carboxylic acid ester of the amino acid according to the present invention and the like.
  • the N-acyl form of the amino acid according to the present invention is the amino acid according to the present invention in which an amino group has a hydrogen atom introduced into a hydrogen atom of the amino group.
  • an amino group in the above general formula [1] has a hydroxyl group introduced with an acyl group.
  • R 1 represents an acyl group, and R is the same as described above.
  • the acyl group to be introduced into the hydrogen atom of the amino group of the amino acid according to the present invention or the acyl group represented by R 1 in the general formula [2] may be linear, branched or cyclic.
  • Those derived from saturated aliphatic monocarboxylic acids having 1 to 6 atoms for example, those derived from unsaturated aliphatic monocarboxylic acids having 3 to 7 carbon atoms such as acryloyl group, propioloyl group, methyl acryloyl group, crotonyl group, and isocrotonyl group.
  • Substances for example, benzoyl group, naphthoyl group, pentane carbonyl group, indylene carbonyl group, azulene carbonyl group, heptane carbenyl group, indacene carbonyl group, anthracene carbonyl group, phenanthrene carbonyl group, Aromatic monocarboxylic acid having 7 to 23 carbon atoms, preferably 7 to 12 carbon atoms, such as a triphenylene carbonyl group, a pyrenecarbonyl group, a naphthene sencarbonyl group, a pyrene carbonyl group, a pennecene carbonyl group and the like.
  • aromatic monocarboxylic acid-derived acyl group or the aralkyl monocarboxylic acid-derived acyl group has, for example, a lower alkyl group such as a methyl group or an ethyl group as a substituent. You may.
  • acyl groups those derived from a saturated aliphatic monocarboxylic acid and those derived from an aralkyl monocarboxylic acid are preferable, and those derived from a saturated aliphatic monocarboxylic acid are more preferable. Is derived from a linear saturated aliphatic monocarboxylic acid. Among the acyl groups derived from linear saturated aliphatic monocarboxylic acids, acetyl groups are particularly preferred.
  • N-acyl form of the amino acid having a thiol group in the molecule according to the present invention is a commercially available product (eg, (Manufactured by Wako Pure Chemical Industries, Ltd.) or may be appropriately prepared and used according to a method known per se.
  • an N-alkanoyl form in which an acyl group derived from a saturated aliphatic monocarboxylic acid is introduced into the hydrogen atom of the amino group of the amino acid according to the present invention (general formula R 1 in [2] is an acyl group derived from a saturated aliphatic monocarboxylic acid) and an N-aralkanoyl derivative having an acetyl group derived from aralkylmonocarboxylic acid (R 1 in general formula [2]) Is preferably an aralkyl monocarboxylic acid-derived acyl group), more preferably an N-alkanoyl compound, and further preferably, a straight-chain hydrogen atom of the amino group of the amino acid according to the present invention.
  • N-linear alkanoyl derivative having an acyl group derived from a saturated aliphatic monocarboxylic acid of the formula (wherein R 1 in the general formula [2] is an acyl group derived from a linear saturated aliphatic monocarboxylic acid) Also ).
  • R 1 in the general formula [2] is an acyl group derived from a linear saturated aliphatic monocarboxylic acid
  • the tyl form (R 1 in the general formula [2] is an acetyl group) is particularly preferred.
  • N-acyl form of the amino acid according to the present invention includes, for example, N-acetylcysteine, N-butyrylcysteine, N-cyclohexylcarbonylcysteine, Pioloylcis tin, N-crotonylcysteine, N-benzoylcysteine, N-naphthylcysteine, N-phenylmethylcarbonylcysteine, N-phenylbutylcarbonylcysteine, N-phenylcyclohexylcarbonylcysteine , N-acetyl homocysteine, N-butyryl homocysteine, N-cyclohexylcarbonyl homocysteine, N-propioloyl homocysteine, N-crotonyl homocysteine, N-benzoyl homocystin, N-naphtho
  • the hydroxyl group of the carboxyl group in the above general formula [1] has an acyl group introduced.
  • R 2 represents a hydrocarbon residue, and R is the same as described above.
  • the hydrocarbon residue represented by R 2 may be any of aliphatic, aromatic, araliphatic, or alicyclic as long as it is a monovalent group.
  • the aliphatic in the aliphatic and araliphatic may be saturated or unsaturated, and may be linear or branched. Representative of these include, for example, linear, branched, or cyclic saturated or unsaturated alkyl, aryl, aralkyl, and alkenyl groups.
  • alkyl group examples include those having usually 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. Specific examples include a methyl group, an ethyl group, and n-propyl.
  • aryl group examples include those having 6 to 14 carbon atoms. Specifically, for example, phenyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2 , 4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,5-xylyl group, naphthyl group, anthryl group and the like.
  • the aralkyl group usually has 7 to 12 carbon atoms, preferably 7 to 10 carbon atoms, and specifically includes, for example, benzyl, phenethyl, phenylpropyl, phenylbutyl and phenyl.
  • Xyl group methyl
  • the aromatic ring of the aryl or aralkyl group include a lower alkyl group such as a methyl group and an ethyl group, a halogen atom, a nitro group, and an amino group. May be included as a substituent.
  • alkenyl group examples include those having usually 2 to 10 groups. Specifically, for example, a vinyl group, an aryl group, a 1-propenyl group, an iso-propenyl group, a 3-butenyl group, -Butenyl, 1-butenyl, 1,3-butenyl, 4-pentenyl, 3-pentenyl, 2-pentenyl, 1-pentenyl, 1,3-pentenyl, 2, 4-pentenyl group, 1,1-dimethyl-2-propenyl group, 1-ethyl-2-propenyl group, 1,2-dimethyl-1-propenyl group, 1-methyl-1 -Butenyl group, 5-hexenyl group, 4-hexenyl group, 2-hexenyl group, 1-hexenyl group, 1-methyl-1-hexenyl group, 2-methyl-2-hexenyl group, 3-methyl 1,3-hexenyl group, 1-heptenyl group, 2-octenyl group,
  • an alkyl group and an aralkyl group are preferable, a lower alkyl group having 1 to 6 carbon atoms and a benzyl group are more preferable, and a lower alkyl group having 1 to 6 carbon atoms is more preferable.
  • the carboxylic acid ester of an amino acid having a thiol group in the molecule according to the present invention may be a commercially available product (for example, manufactured by Wako Pure Chemical Industries, Ltd.), or may be appropriately prepared according to a method known per se. May be.
  • Examples of the carboxylic acid ester of the amino acid according to the present invention include an alkyl group in which an alkyl group is introduced into a hydroxyl group of the amino acid according to the present invention.
  • Ester (R 2 in the general formula [3] is an alkyl group) and aralkyl ester having an aralkyl group introduced therein (R 2 in the general formula [3] is an aralkyl group)
  • R 2 in the general formula [3] is A lower alkyl group of 1 to 6
  • a benzyl ester having a benzyl group introduced therein wherein R 2 in the general formula [3] is a benzyl group
  • R 2 in the general formula [3] is a benzyl group
  • carboxylic acid ester of the amino acid according to the present invention includes, for example, cysteine methyl ester, cysteine ethyl ester, cysteine isobutyl ester, cysteine n-hexyl ester, cysteine Cyclohexyl ester, cysteine phenyl ester, cysteine naphthyl ester, cysteine benzyl ester, cysteine methyl benzyl ester, cysteine vinyl ester, cysteine 3-butenyl ester, cysteine 3-cyclohexenyl ester, homocysteine methyl ester, homo Cystine ethyl ester, homocystine isobutyl ester, homocystine n-hexyl ester, homocystine cyclohexyl ester, homocystine phenyl ester , Hom
  • the amount of the amino acid or derivative thereof having a thiol group in the molecule cannot be specified because it varies depending on the type of the amino acid or derivative thereof having a thiol group in the molecule and the surface area of the substrate to be treated. 0.0001-10% by weight, preferably 0.0001-1% by weight, more preferably 0.0001-0.5% by weight.
  • the metal corrosion inhibitor of the present invention comprises the amino acid having a thiol group in the molecule or a derivative thereof according to the present invention as described above.
  • the metal corrosion inhibitor of the present invention is usually in the form of an aqueous solution, and is prepared by adding and dissolving the amino acid or its derivative according to the present invention in water.
  • the method of dissolving the amino acid or its derivative according to the present invention in water includes, for example, a method of adding the amino acid or its derivative according to the present invention separately dissolved in water, or a method of directly adding the amino acid or its derivative according to the present invention.
  • a method of adding to water, dissolving and stirring, etc. may be mentioned.
  • the metal corrosion inhibitor of the present invention thus prepared is preferably subjected to a filtration treatment or the like before use.
  • the water used here may be any water that has been purified by distillation, ion exchange treatment, or the like, and so-called ultrapure water used in this field is more preferable.
  • metal corrosion inhibitor in addition to the amino acid or its derivative according to the present invention as described above, reagents generally used in this field can be used.
  • Such reagents include, for example, organic acids, amines, inorganic alkali compounds, chelating agents, surfactants and the like.
  • the organic acid used in the present invention is not particularly limited as long as it is generally used in this field, and examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberin and the like.
  • Dicarboxylic acids having 2 to 8 carbon atoms such as acids, 2-n-butylmalonic acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, phthalic acid, isophtalic acid, terephthalic acid, etc., for example, tricarboxylic acid, benzenetricarboxylic acid Tricarboxylic acids having 6 or more carbon atoms such as acids, for example, monohydroxydicarboxylic acids having 3 or more carbon atoms, such as tartronic acid and malic acid, and dihydroxydicarboxylic acids having 4 or more carbon atoms, such as tartaric acid, for example, carbon such as citric acid 6 or more monohydroxytricarboxylic acids, such as hydroxytricarboxylic acids, their ammonium salts, etc. Is mentioned.
  • dicarboxylic acid, monohydroxydicarboxylic acid, monohydroxytricarboxylic acid and dihydroxydicarboxylic acid are preferable, and dicarboxylic acid and monohydroxytricarboxylic acid are particularly preferable.
  • oxalic acid, malonic acid, fumaric acid, malic acid, citric acid, and tartaric acid are preferable, and citric acid and oxalic acid are particularly preferable.
  • organic acids may be used alone or in combination of two or more.
  • the amount of the organic acid used varies depending on the type of the organic acid and cannot be specified unconditionally, but is, for example, usually 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, and more preferably 0.05 to 10% by weight.
  • the amine used in the present invention may be any one generally used in this field, and is not particularly limited. Examples thereof include methylamine, ethylamine, n-propylamine, n-butylamine, n-pentylamine, and n-pentylamine.
  • Alkylamines having 1 to 6 carbon atoms such as hexylamine, cyclopentylamine, cyclohexylamine, etc., for example, dimethylamine, methylethylamine Dialkylamines having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms, such as min, getylamine, dipropylamine, etc., for example, carbon atoms such as trimethylamine, dimethylethylamine, methylgetylamine, triethylamine, trippyramine, etc.
  • a dialkylenetriamine having 2 to 4 carbon atoms for example, a trialkylenetetramine having 3 to 18 carbon atoms, such as trimethylenetetramine, triethylenetetramine, and the like, preferably a trialkylenetetramine having 3 to 6 carbon atoms, for example, tetramethylammonium Dimethyl hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-pentylammonium hydroxide, tetra-n-hexylammonium hydroxide M hydroxide Tetraalkylammonium hydroxide having 4 to 24 carbon atoms, such as tetracyclopentylammonium hydroxide, tetracyclohexylammonium hydroxide, etc., for example, the following general formula [4]
  • R 3 represents an alkyl group
  • R 4 and R 5 represent an alkylene group
  • m and n each represent a positive integer.
  • an alkylamine-alkylene oxide adduct represented by the formula: You.
  • the alkyl group represented by R 3 is, for example, a linear, branched, or cyclic alkyl group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably Are 1 to 4, specifically, for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl Group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, n-hexyl group, iso-hexyl group, 3-methylpentyl group, 2-methylpentyl group , 1,2-dimethylbutyl, sec-hexyl, tert-hexyl, n-heptyl, iso-heptyl, sec-heptyl,
  • alkylene group represented by R 4 and R 5 for example, a linear, branched or cyclic lower alkylene group having 1 to 6 carbon atoms is preferable, for example, a methylene group, an ethylene group, a propylene group, a butylene group, Methyl methylene group, ethyl ethylene group, methyl ethylene group, methyl propylene group, ethyl Examples thereof include a propylene group, a pentylene group, a hexylene group, a cyclopentylene group, a cyclohexylene group, and a methylene group and an ethylene group are particularly preferable.
  • n and n each represent a positive integer and are usually 1 to 10, preferably 1 to 5.
  • alkylamine-alkylene oxide adduct represented by the general formula [4] described above examples include, for example, methylamine di (polyoxymethylene), methylamine di (polyoxyethylene), methylamine di (polyoxyethyl propylene), Methylamine di (polyoxycyclohexylene), methylamine (polyoxymethylene) (polyoxyethylene), methylamine (polyoxymethylene) (polyoxyethylpropylene), methylamine (polyoxymethylene) (polyoxycyclohexylene) , Methylamine (polyoxyethylene) (polyoxyethyl propylene), methylamine (polyoxyethyl propylene) (polyoxycyclohexylene), ethylamine di (polyoxymethylene), Luamine di (polyoxyethylene), ethyl amine di (polyoxy propylene), ethyl amine di (polyoxycyclohexylene), e
  • alkylene diamine, dialkylene triamine, trialkylene tetramine, alkylamine-alkylene oxide adduct, and tetraalkylammonium hydroxide are preferred, and among them, alkylene diamine, cycloalkyl Alkylamine di (polyoxyalkylene) is particularly preferred.
  • ethylenediamine, diethylenetriamine, triethylenetetramine, cyclohexylaminedi (polyoxyethylene), cyclohexylamine (polyoxyethylene) (polyoxymethylene), and tetramethylammonium hydroxide are preferred.
  • cyclohexylamine di (polyoxyethylene) are particularly preferred. These amines may be used alone or in combination of two or more.
  • the amount of the amine used varies depending on the type of the amine and cannot be specified unconditionally. For example, it is usually 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, and more preferably 0.05 to 10% by weight.
  • the inorganic compound used in the present invention may be any compound usually used in this field, and is not particularly limited. Examples thereof include hydroxyamine, hydrazine, ammonia, and salts thereof (for example, hydrochloride, sulfate, etc.). And inorganic alkali compounds such as potassium hydroxide and sodium hydroxide. Among them, a nitrogen-containing inorganic alkali compound is preferable, and a nitrogen-containing inorganic alkali compound containing no metal is particularly preferable. Specifically, hydroxylamine, hydrazine and ammonia are preferred, and ammonia is particularly preferred.
  • These inorganic alkali compounds may be used alone or in an appropriate combination of two or more.
  • the amount of the inorganic compound used depends on the type of the inorganic compound and cannot be specified unconditionally. For example, it is usually 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, more preferably 0.05 to: 10% by weight.
  • the chelating agent used in the present invention may be any one usually used in this field, and is not particularly limited. By adding a chelating agent, metal oxides such as copper oxide dispersed in the liquid can be solubilized and re-adsorption can be suppressed, and impurities such as Fe and A1 can be removed from the substrate surface. it can.
  • chelating agents examples include EDTA (ethylenediaminetetraacetic acid), EDDA (ethylenediaminediacetic acid), EDTA—OH (hydroxyethylenediaminetriacetic acid), GEDTA (dalicol etherdiaminetetraacetic acid), and DTPA (diethylenetriaminetetraacetic acid).
  • Pentaacetic acid Pentaacetic acid
  • IDA iminodiacetic acid
  • methyl-EDTA diaminopropanetetraacetic acid
  • TA tri-triacetic triacetic acid
  • TTHA triethylenetetramine hexaacetic acid
  • Linear aminopolycarboxylic acids such as complex salts with amines, such as Cy DTA (trans-cyclohexyldiaminotetraacetic acid), ammonium salts thereof, and aminopolycarboxylic acids such as cyclic aminopolycarboxylic acids such as complexes with amines
  • NT PO ditrilotrismethylene phosphonic acid
  • HEDPO hydroxyethylidene di Phosphate
  • Amin Polyphosphonic acids such as complex salts with EDDPO (ethylenediaminedi (methylenephosphonic acid)
  • EDTPO ethylenediaminetetra (methylenephosphonic acid)
  • PDTPO ethylenediaminetetra (
  • EDTA, CyDTA, HEDPO, EDTPO, DETPPO, ammonium salts thereof, and complex salts of these with amines are particularly preferred.
  • examples of the amine that forms the complex salt include the same amines as described above.
  • chelating agents may be used alone or in combination of two or more.
  • the amount of the chelating agent varies depending on the type of the chelating agent and cannot be specified unconditionally. For example, it is usually 0.0001 to 10% by weight, preferably 0.0001 to 1% by weight, more preferably 0.0001 to 0.5% by weight.
  • the surfactant used in the present invention is not particularly limited as long as it is generally used in this field.
  • the addition of a surfactant can improve the wettability of the aqueous solution on the substrate surface.
  • Such surfactants include, for example, nonionic surfactants having a polyoxyalkylene group in the molecule, such as sulfonic acid groups, hydroxyloxyl groups, phosphonic acid groups, sulfoxyl groups, and phosphonoxyl groups in the molecule.
  • Anionic surfactants having a selected group for example, alkylamines, for example, quaternary ammoniums such as alkyltrimethylammonium, alkyldimethylpentylammonium, for example, alkylpyridinium, Cationic surfactants such as salts thereof (for example, hydrochloride, sulfate, etc.), for example, alkylbetaine derivatives, imidazoliniumbeine derivatives, sulfobeine derivatives, aminocarboxylic acid derivatives, imidazoline derivatives, and aminoxides
  • alkylamines for example, quaternary ammoniums such as alkyltrimethylammonium, alkyldimethylpentylammonium, for example, alkylpyridinium
  • Cationic surfactants such as salts thereof (for example, hydrochloride, sulfate, etc.), for example, alkylbetaine derivatives, imidazoliniumbeine derivatives, s
  • Nonionic surfactants having a polyoxyalkylene group in the molecule include:
  • polyoxyalkylene alkyl ethers polyoxyalkylene polyalkylaryl ethers, and the like can be mentioned. More specifically, for example, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, etc.
  • Nonionic surfactants having a oxyethylene group such as polyoxypropylene alkyl ethers
  • nonionic surfactants having a polyoxypropylene group in a molecule such as polyoxypropylene alkylphenyl ether, etc.
  • Nonionic surfactants having a polyoxyethylene group and a polyoxypropylene group in the molecule such as alkyl ether and polyoxyethylene polyoxypropylene alkylphenyl ether, are exemplified.
  • anionic surfactant having a group selected from a sulfonic acid group, a carboxyl group, a phosphonic acid group, a sulfoxyl group and a phosphonoxyl group in the molecule include alkylsulfonic acid, alkylbenzenesulfonic acid, alkylnaphthylenesulfonic acid, and the like.
  • alkali metal salts such as sodium and potassium, for example, ammonium salts, etc., among which ammonium salts are preferred
  • anionic surfactants having a sulfonic acid group in the molecule for example, alkyl carboxylic acids, Alkyl benzene carboxylic acid, alkyl naphthalene carboxylic acid, and salts thereof (eg, sodium, lithium
  • Anionic surfactants having a carboxyl group in the molecule such as alkylphosphonic acid, alkylbenzenephosphonic acid, alkylnaphthylenephosphonic acid, etc.
  • Anionic surfactants having a phosphonic acid group in the molecule such as salts thereof (for example, alkali metal salts such as sodium and potassium, for example, ammonium salts, among which ammonium salts are preferable), such as alkyl sulfates Alkyl benzene sulfate, polyoxyethylene alkyl sulfate, polyoxyethylene alkyl benzene sulfate, polyoxyethylene alkyl naphthene sulfate, salts thereof (eg, alkali metal salts such as sodium and potassium, and the like) If Anmoniumu salts, Ru include among others Anmoniumu salts are preferred) Anion-based surfactants having a sulfoxyl group in a molecule, such as and the like.
  • salts thereof for example, alkali metal salts such as sodium and potassium, for example, ammonium salts, among which ammonium salts are preferable
  • alkyl sulfates Alkyl
  • nonionic surfactants and anionic surfactants are preferred, and esters are particularly preferred.
  • anionic surfactant include those having a sulfonic acid group in a molecule and those having a sulfoxyl group in a molecule. Those are particularly preferred. More specifically, nonionic surfactants having a polyoxyethylene group in a molecule such as a polyoxyethylene alkyl ether, and a polyoxyethylene group and a polyoxygen in a molecule such as a polyoxyethylene polyoxypropylene alkyl ether.
  • Nonionic surfactants having a propylene group anionic surfactants having a carboxyl group in the molecule such as alkylbenzenesulfonic acid, and anionic surfactants having a sulfoxyl group in the molecule such as polyoxyethylene alkyl sulfate.
  • Activators are particularly preferred.
  • surfactants may be used alone or in combination of two or more. They may be used together.
  • the amount of surfactant used cannot be determined unconditionally because it differs depending on the type of surfactant, but nonionic surfactants only need to be at or above the critical micelle concentration, and if they are thinner, the etching rate will increase. , The effect diminishes.
  • the surfactant other than the nonionic surfactant may be an amount that can reduce the surface tension of the substrate surface treatment agent.
  • the specific amount used is different depending on the type of the surfactant and cannot be specified unconditionally. However, it is usually 0.0001 to 1% by weight, preferably 0.0001 to 0.1% by weight, more preferably 0.0001 to 0.05% by weight.
  • the metal corrosion inhibitor of the present invention comprises the amino acid or the derivative thereof according to the present invention as described above, and at least one of the above-described organic acids, amines, inorganic alkali compounds, chelating agents, and surfactants.
  • the one comprising an amino acid or a derivative thereof according to the present invention as described above, a chelating agent or a surfactant is particularly preferred.
  • the metal corrosion inhibitor according to the present invention comprises an amino acid having a thiol group in a molecule or a derivative thereof according to the present invention, which is contained therein and which is adsorbed on a metal surface to form a protective film on the metal surface.
  • the treating agent of the present invention is a metal corrosion inhibitor of the present invention as described above, Amino acids having a thiol group in the molecule according to the present invention or derivatives thereof, if necessary, for example, reagents usually used in this field, such as organic acids, amines, inorganic alkali compounds, chelating agents, and surfactants as described above. Are contained in the concentration range as described above.
  • oxidation and corrosion of the metal on the substrate surface can be prevented at the same time.
  • Metal impurities for example, metal oxides such as copper oxide and iron oxide
  • particles can be more effectively removed.
  • those comprising the amino acid or the derivative thereof according to the present invention as described above, a chelating agent or a surfactant are particularly preferable.
  • the treating agent of the present invention is usually in the form of an aqueous solution, and is prepared by adding and dissolving the amino acid or the derivative thereof according to the present invention in water by the same preparation method as the metal corrosion inhibitor of the present invention as described above. Is done.
  • the treating agent of the present invention thus prepared is preferably subjected to a filtration treatment or the like before use.
  • the treatment method (metal corrosion prevention method) of the present invention comprises contacting the treatment agent (metal corrosion inhibitor) of the present invention as described above with a metal on the surface of a substrate having a metal coating on the surface. May be treated with the treating agent of the present invention (method for preventing metal corrosion).
  • the method of treating the substrate surface having a metal coating on the surface with the treating agent of the present invention may be any method known per se usually performed in this field, and specifically, Simply treating the substrate (metal corrosion inhibitor) Examples of the method include a dipping process in which the substrate is immersed in the substrate and a single-wafer process in which a treating agent is sprinkled on the substrate in a shower shape.
  • treatment refers to bringing the treatment agent of the present invention into contact with the metal on the substrate surface, as described above.
  • examples include, but are not limited to, pretreatment, cleaning treatment, and the like before storage treatment, for example, cleaning treatment.
  • the metal corrosion inhibitor of the present invention is, for example, a preservative for a substrate having a metal coating on the surface, or a pretreatment agent for a substrate having a metal coating on the surface, or having a metal coating on the surface. It can also be used as a processing agent such as a cleaning agent for substrates.
  • the treating agent of the present invention is used as a preservative for a substrate having a metal-coated portion on its surface, it is possible to prevent the metal from being oxidized and corroded during storage of the substrate from various atmospheres such as an aqueous solution and air. Further, metal impurities on the substrate surface can be effectively removed.
  • a method for storing the substrate of the present invention for example, a method of performing the above-described dip treatment or the like and storing the substrate while immersing the substrate in the processing agent (preservative) of the present invention, or performing the above-described single wafer processing or the like
  • examples include a method of preserving the treating agent (preservative) of the present invention while sprinkling it on the substrate, or a method of drying and storing the substrate after performing these treatments.
  • the treatment agent of the present invention is used as a pretreatment agent for the substrate to treat the metal on the substrate surface.
  • An aqueous solution of a cleaning agent or the like used in the process can prevent oxidation and corrosion of the metal during the process of the next process from various atmospheres such as air during the next process. By simple operations such as cleaning with pure water, metal impurities on the substrate surface can be effectively removed.
  • Examples of the pretreatment method of the substrate of the present invention include a method of dipping the substrate in the treatment agent (pretreatment agent) of the present invention by the above-described dip treatment, and a treatment agent of the present invention by the single-wafer processing as described above. A method of sprinkling the (pretreatment agent) on the substrate, or a method of drying the substrate after performing these treatments, and the like.
  • the substrate thus obtained can be subjected to a cleaning method using a surface treatment agent (cleaning agent) known per se, which is usually performed in this field.
  • a surface treatment agent cleaning agent
  • any one used in this field can be used, and it is not particularly limited.
  • the treating agent of the present invention comprises, as described above, an amino acid having a thiol group in a molecule or a derivative thereof, and an organic acid, an amine, an inorganic compound, a chelating agent, and a surfactant as described above.
  • the detergent of the present invention is usually in the form of an aqueous solution, and the amino acid or a derivative thereof (or an organic acid, an amine, an inorganic alkali compound, a chelating agent and a surfactant) according to the present invention is used. Is added to and dissolved in water.
  • the method for dissolving the amino acid or its derivative according to the present invention in water include, for example, the amino acid or its derivative according to the present invention separately dissolved in water (or the separately dissolved organic acid, amine, or inorganic acid).
  • the cleaning agent of the present invention thus prepared is preferably subjected to a filtration treatment or the like before use.
  • the water used here may be any water that has been purified by distillation, ion exchange treatment or the like, but so-called ultrapure water used in this field is more preferable.
  • the surface of a substrate having a metal coating on the surface may be treated with the cleaning agent of the present invention as described above.
  • the method of treating the substrate surface having a metal coating on the surface with the cleaning agent of the present invention may be any cleaning method known per se, which is usually performed in this field, and includes, for example, the dip treatment and the single-wafer treatment as described above. And the like. Further, in the present invention, by using physical cleaning at the same time as cleaning, metal impurities (metal oxide equivalent to oxidation, etc.) can be more effectively removed. As a specific method of the combined use, there is a method in which a substrate surface having a metal-coated portion on the surface is subjected to a physical cleaning step in the presence of the cleaning agent of the present invention.
  • the physical cleaning step is performed in a state where the cleaning agent of the present invention is present by the above-described dip treatment, single-wafer processing, or the like.
  • the physical cleaning examples include brush scrub cleaning for cleaning the substrate surface using a high-speed rotating polyvinyl alcohol brush or the like, megasonic cleaning using high frequency, and the like.
  • the liquid properties of the metal corrosion inhibitor and the treating agent (preservative, pretreatment agent, cleaning agent, etc.) of the present invention as described above are not particularly limited, and the type and purpose of the substrate used
  • the pH is appropriately selected from the pH range usually used in this field.
  • the metal corrosion inhibitor and treatment agent (preservative, pretreatment agent, detergent, etc.) of the present invention can be used, for example, for a substrate having a metal coating on the surface.
  • Examples of such a substrate include a semiconductor substrate, a printed substrate such as a polyimide resin, a glass substrate used for an LCD, and the like, and are particularly useful for a semiconductor substrate.
  • the metal coated on the substrate surface may be any metal that reacts with sulfur, such as copper, chromium, silver, and gold, and is particularly useful for metallic copper. Particularly, it is particularly useful for a semiconductor substrate having a copper coating on its surface (with copper wiring).
  • Examples and Comparative Examples will be described, but the present invention is not limited thereto.
  • the metal Cu deposition layer 18 and the Cu contamination layer used in this example and the comparative example were prepared by the following methods, respectively.
  • the Cu film thickness and the amount of Cu (copper atoms) adsorbed and remaining on the surface of the Cu contamination wafer were measured by the following methods. [Metal Cu deposition @ Ahachi]
  • a copper deposit was prepared by depositing metallic Cu on the surface of 4-inch silicon wafer by sputtering.
  • the thickness of copper on the surface of the metal Cu deposition layer was 100 nm.
  • each metal corrosion inhibitor (preservative) listed in Table 1 was immersed in the metal Cu deposition wafer prepared by the above method at room temperature for 5 hours. Thereafter, the wafer was taken out, rinsed with ultrapure water for 10 minutes, and spin-dried.
  • the metal corrosion inhibitor of the present invention can prevent oxidation and corrosion of metal, and preserves a substrate having a metal coating on the surface in a treating agent (preservative) containing the metal inhibitor of the present invention. Then, it can be seen that oxidation and corrosion of the metal can be prevented at the same time, and the substrate having a metal coating on the surface can be stored well in a solution. Examples 15 to 17
  • the metal Cu deposition wafer prepared by the above method was immersed in 1 L of each metal corrosion inhibitor (preservative) shown in Table 3 at room temperature for 1 minute. Thereafter, the wafer was taken out, rinsed with ultrapure water for 10 minutes, and spin-dried. The wafer was then left in the air for 10 hours.
  • each metal corrosion inhibitor preservative shown in Table 3
  • each metal corrosion inhibitor (preservative) shown in Table 4 was sprinkled on the surface of the metal-Cu-deposited wafer prepared by the above method for 1 minute. Thereafter, the wafer was rinsed with ultrapure water for 10 minutes and spin-dried. Then, the wafer was left in the air for 10 hours.
  • the metal inhibitor of the present invention is contained not only by the so-called dipping treatment as in Examples 15 to 17 but also by the so-called single-wafer treatment as in Examples 18 to 20.
  • a treating agent preservative
  • the metal on the substrate surface It can be seen that oxidation can be prevented and the substrate having a metal coating on the surface can be stored well in air.
  • the PA18 was immersed in 1 L of each cleaning solution described in Table 5 at room temperature for 10 minutes. Thereafter, the AHA was removed, rinsed with ultrapure water for 10 minutes, and spin-dried.
  • Examples 23 and 30 copper oxide can be effectively removed, and oxidation and corrosion of metal Cu can be prevented, while Comparative Examples 21 and 22 are substrates. It can be seen that the Cu film on the surface is significantly corroded.
  • the substrate having the metal coating on the surface is subjected to the cleaning step, if the substrate is pretreated with the metal corrosion inhibitor (pretreatment agent) of the present invention, the substrate can be cleaned. It can be seen that the metal can be prevented from being oxidized and corroded in the process, and that the metal oxide can also be effectively removed.
  • the metal corrosion inhibitor (pretreatment agent) of the present invention the substrate can be cleaned. It can be seen that the metal can be prevented from being oxidized and corroded in the process, and that the metal oxide can also be effectively removed.
  • the Cu-contaminated wafer prepared by the above method was immersed in 1 L of each cleaning agent (metal corrosion inhibitor) described in Table 7 at room temperature for 10 minutes. Thereafter, the wafer was taken out, rinsed with ultrapure water for 10 minutes, and spin-dried.
  • the metal Cu deposition wafer prepared by the above method was immersed in 1 L of each cleaning agent (metal corrosion inhibitor) described in Table 7 at room temperature for 5 hours. Thereafter, the wafer was taken out, rinsed with ultrapure water for 10 minutes, and spin-dried. With regard to the copper contamination treated in this way, the residual Cu concentration adsorbed on the surface of the wafer was measured to evaluate the ability to remove metal impurities. In order to confirm the presence or absence of oxidation, the color tone of the Cu film surface on the wafer surface was visually observed and updated. Next, the thickness of the metal Cu on the wafer surface was measured to confirm the presence or absence of corrosion of the metal Cu. Table 7 shows the results. Comparative Example 26 to 37
  • the present invention provides a metal corrosion inhibitor having a good metal corrosion inhibiting action and high safety, and a substrate surface using the same, particularly a substrate surface having copper wiring on the surface.
  • the present invention provides a method for cleaning a substrate.
  • the use of the metal corrosion inhibitor of the present invention can solve, for example, various problems in the production of semiconductors.

Abstract

A metal corrosion inhibitor; a detergent for substrate surfaces, especially ones having a copper wiring formed thereon, which contains the inhibitor; and a cleaning method. The metal corrosion inhibitor contains either an amino acid having a thiol group in the molecule or a derivative thereof. The treating agent and detergent for substrate surfaces contain the metal corrosion inhibitor. The method of treating and cleaning substrate surfaces employs the metal corrosion inhibitor.

Description

明 細 書  Specification
基板洗浄剤 技術分野  Substrate cleaning technology
本発明は、 金属腐蝕防止剤、 及びこれを用いた基板表面、 特に、 表面 に銅配線が施された基板表面の洗浄剤及び洗浄方法に関する。 技術背景  The present invention relates to a metal corrosion inhibitor, and a cleaning agent and a cleaning method for a substrate surface using the same, particularly for a substrate surface having copper wiring on the surface. Technology background
近年、 LSIの構造は、 高集積化に伴い微細化が進んでおり、 半導体表 面に金属配線などが幾段にも重ねられた多層構造となっている。 また、 使用される配線も従来のアルミニウムから、 より電気的抵抗の低い銅 In recent years, the structure of LSIs has been miniaturized as the degree of integration has increased, and it has become a multilayer structure in which metal wiring and the like are superimposed on the semiconductor surface in many stages. Also, the wiring used is changed from conventional aluminum to copper with lower electrical resistance.
(Cu)への変更が提案されている。 A change to (Cu) has been proposed.
表面に銅配線が多層に亘つて施された多層構造を有する半導体を製造 する工程には、 金属 Cuを酸化しながら物理的に半導体基板を研磨して 平坦化するいわゆる化学的物理的研磨技術(Cu-CMP)が利用される。 一方、 Cu-CMP 工程後の半導体表面には、 Cu 配線とそれぞれの Cu 配線を隔離する絶縁膜 (酸化ケィ素) が剥き出しの状態となっており、 Cu-CMP 工程後のゥェ一ハー表面は多量の金属不純物により汚染され ている。  In the process of manufacturing a semiconductor having a multilayer structure in which copper wiring is applied over the surface in multiple layers, a so-called chemical-physical polishing technique (which physically polishes and flattens the semiconductor substrate while oxidizing metallic Cu) ( Cu-CMP) is used. On the other hand, the insulating film (silicon oxide) that separates the Cu wiring from each other is exposed on the semiconductor surface after the Cu-CMP process, and the wafer surface after the Cu-CMP process is exposed. Is contaminated by a large amount of metallic impurities.
金属不純物汚染は CMPによって削り取られる Cuが絶縁膜上の吸着 し金属酸化物 (酸化銅) として残存することに起因している。  Metallic impurity contamination is caused by Cu removed by CMP adsorbing on the insulating film and remaining as metal oxide (copper oxide).
このように絶縁膜上に金属酸化物 (酸化銅) が残存すると、 後工程で の熱処理で銅元素が絶縁膜中に拡散し、 絶縁性が低下することでデバイ スの特性が劣化してしまい、 汚染が著しい場合は、 隔離した配線同士が 結線、 即ち、 ショートを起こしてしまうため、 デバイスが破壊されてし まう。 そのため、 次工程に進む前に、 金属酸化物 (酸化銅) を除去する 必要がある。 If metal oxide (copper oxide) remains on the insulating film, the copper element diffuses into the insulating film due to heat treatment in a later process, and the insulating properties are reduced, thereby deteriorating the characteristics of the device. If the contamination is severe, the isolated wires will be connected, or short-circuited, and the device will be destroyed. Therefore, remove metal oxide (copper oxide) before proceeding to the next step There is a need.
以上の理由で、 上記した如き金属不純物を除去するために、 Cu-CMP 工程後の洗浄工程は必須である。  For the above reasons, a cleaning step after the Cu-CMP step is essential to remove the metal impurities as described above.
一方、 半導体表面の金属銅は、 活性が高く、 僅かな酸化力によって容 易に腐蝕されて、 配線抵抗が増大したり、 断線を引き起こしてしまう。 このため、 Cu-CMP工程後の洗浄工程に於いては、 従来、 半導体用の 洗浄液として用いられている、 比較的酸化力の強い、 塩酸やフッ酸等の 無機酸を主成分とする洗浄液を用いると、 絶縁膜上に付着した酸化銅の みならず、 配線の金属銅をも溶解してしまうので、 当該酸性洗浄液の使 用は好ましくない。  On the other hand, metallic copper on the surface of a semiconductor has a high activity and is easily corroded by a slight oxidizing power, thereby increasing wiring resistance and causing disconnection. For this reason, in the cleaning process after the Cu-CMP process, a cleaning solution which is conventionally used as a cleaning solution for semiconductors and has a relatively strong oxidizing power and mainly contains an inorganic acid such as hydrochloric acid or hydrofluoric acid is used. If it is used, not only the copper oxide adhering to the insulating film but also the metal copper of the wiring is dissolved, so that the use of the acidic cleaning solution is not preferable.
また、 シユウ酸やクェン酸等の比較的酸化力の弱い有機酸を主成分と する洗浄剤も、 無機酸に比べて銅の溶解作用は弱いものの、 銅溶解作用 を有しているため、 極力低濃度の有機酸を使用する必要があった。 この ため、 有機酸を低濃度で使用した場合には、 金属酸化物の溶解力も低下 してしまうため、 半導体表面を長時間に亘り洗浄する必要があった。 このような欠点を解消するために、 洗浄剤に種々の金属腐蝕防止剤を 添加することにより、 半導体表面上の金属銅の腐蝕を防止し得ることが 知られている。  Detergents mainly composed of organic acids having relatively low oxidizing power, such as oxalic acid and citric acid, also have a copper dissolving effect, although they have a weaker copper dissolving effect than inorganic acids. It was necessary to use low concentrations of organic acids. For this reason, when the organic acid is used at a low concentration, the dissolving power of the metal oxide also decreases, so that it is necessary to clean the semiconductor surface for a long time. It is known that corrosion of metallic copper on a semiconductor surface can be prevented by adding various metal corrosion inhibitors to a cleaning agent in order to solve such a defect.
例えば特開平 7— 7 9 0 6 1号公報等には、 ベンゾトリァゾ一ル類ゃ イミダゾ一ル類を代表とする芳香族系化合物が開示されている。  For example, Japanese Patent Application Laid-Open No. 7-79061 discloses aromatic compounds represented by benzotriazoles and imidazoles.
しかしながら、 これら化合物は、 銅の腐食防止効果が低く、 高濃度で しか防止効果が認められない。 しかしながら、 当該化合物は、 水への溶 解度が低く、 半導体用洗浄剤を使用する際に希釈液として一般に用いら れる超純水中に、これら化合物を高濃度で添加することは困難であった。 また、 これら化合物を高濃度で使用するには、 ァミン等のアルカリ可溶 化剤やアルコール系の有機溶剤等が必要となるが、 これら可溶化剤や有 機溶剤は、 洗浄特性に悪影響を及ぼすため、 使用が困難であった。 However, these compounds have a low copper corrosion inhibitory effect and are only effective at high concentrations. However, these compounds have low solubility in water, and it is difficult to add these compounds at a high concentration to ultrapure water, which is generally used as a diluent when using a detergent for semiconductors. Was. In addition, in order to use these compounds at a high concentration, an alkali solubilizing agent such as amine or an alcoholic organic solvent is required. Solvents had a bad effect on the cleaning properties and were difficult to use.
また、 特開 2 0 0 0— 8 7 2 6 8号公報ゃ特開 2 0 0 0— 2 8 2 0 9 6号公報等には、 メルカプトイミダゾールゃメルカプトチアゾール等の 環状化合物が開示されている。  In addition, Japanese Patent Application Laid-Open No. 2000-087268 / Japanese Patent Application Laid-Open No. 2000-280296 discloses cyclic compounds such as mercaptoimidazole and mercaptothiazole. .
しかしながら、 これら化合物は、 半導体表面の銅と結合すると、 銅表 面が疎水性となり、 洗浄剤のアタックを阻止するので、 これら化合物を 除去するのが困難となる。 このように、 これらの化合物のような有機物 が銅表面に残存したまま、 後の工程やデバイス作動時等に於いて半導体 が熱処理を受けると、 当該有機物が燃焼、 爆発等し、 重大な欠陥が生じ てしまうという問題や、 毒性が強く、 人体や環境に対する安全性等に問 題があった。  However, when these compounds bind to copper on the semiconductor surface, the copper surface becomes hydrophobic, preventing the attack of the detergent and making it difficult to remove these compounds. Thus, if the semiconductor is subjected to a heat treatment in a later process or at the time of device operation while the organic substance such as these compounds remains on the copper surface, the organic substance will burn, explode, etc., and serious defects will occur. There were problems such as the safety of the human body and the environment.
更に、 特開 2 0 0 0— 2 7 3 6 6 3号公報には、 メルカプトエタノー ルゃメルカプトグリセロール等の、 分子中にメルカプト基を有し且つ当 該メルカプト基が結合している炭素と水酸基が結合している炭素とが隣 接して結合している脂肪族アルコール系化合物が開示されている。  Furthermore, Japanese Patent Application Laid-Open No. 2000-273636 discloses a carbon and hydroxyl group having a mercapto group in a molecule, such as mercaptoethanol and mercaptoglycerol, and having the mercapto group bonded thereto. Discloses an aliphatic alcohol-based compound in which the carbon bonded to is bonded adjacently.
しかしながら、 特開 2 0 0 0— 2 7 3 6 6 3号公報に開示された発明 は、 近年の人体への影響や環境汚染等に関する問題から、 従来のものに 比べて人の健康や生態系に有害な影響を与える恐れが少ない金属腐蝕防 止剤を提供することを目的としてなされたものであるが、 毒性は強く、 未だ安全性に問題があり、 また、 これら化合物は、 蒸気圧が比較的低く、 水溶液中に添加して使用した場合でも不快臭があり、 実用的ではない。 本発明は、 上記した如き状況に鑑みなされたもので、 良好な金属腐食 防止作用を有レ且つ安全性が高い金属腐蝕防止剤、 及びこれを用いた、 基板表面、 特に、 表面に銅配線が施された基板表面に於ける銅配線の酸 化や腐蝕を防止し得る当該基板の処理方法、 並びに、 当該基板表面の銅 配線の腐蝕や酸化を防止し得、 且つ当該表面の金属不純物 (酸化銅) を 有効に除去し得る基板の洗浄方法を提供するものである。 発明の開示 However, the invention disclosed in Japanese Unexamined Patent Publication No. 2000-273663 has a problem of human health and ecosystem compared with the conventional one due to recent problems on the human body and environmental pollution. It is intended to provide a metal corrosion inhibitor that has little risk of harmful effects on steel, but it is highly toxic and still has safety issues. It is not practical because it has an unpleasant odor even when used in an aqueous solution. SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and has an excellent metal corrosion inhibitory action and a highly safe metal corrosion inhibitor. Using the same, a copper wiring is provided on the surface of a substrate, especially on the surface. A method for treating the substrate, which can prevent oxidation and corrosion of the copper wiring on the surface of the substrate, and a method for preventing corrosion and oxidation of the copper wiring on the surface of the substrate; Copper) An object of the present invention is to provide a method for cleaning a substrate which can be effectively removed. Disclosure of the invention
本発明は、 以下の構成よりなる。  The present invention has the following configurations.
( 1 ) 分子内にチオール基を有するアミノ酸又はその誘導体を含んで なる金属腐蝕防止剤。  (1) A metal corrosion inhibitor comprising an amino acid having a thiol group in the molecule or a derivative thereof.
(2) 上記 ( 1 ) に記載の金属腐蝕防止剤を含んでなる処理剤。 (2) A treating agent comprising the metal corrosion inhibitor according to (1).
(3) 基板を上記 (2) に記載の処理剤で処理することを特徴とする 該基板の処理方法。 (3) A method for treating a substrate, comprising treating the substrate with the treatment agent according to (2).
(4) 上記 ( 1 ) に記載の金属腐蝕防止剤を含んでなる洗浄剤。 (4) A cleaning agent comprising the metal corrosion inhibitor according to (1).
(5) 基板を上記 (4) に記載の洗浄剤で洗浄することを特徴とする 該基板の洗浄方法。 (5) A method for cleaning a substrate, comprising cleaning the substrate with the cleaning agent according to (4).
( 6 ) 表面に銅被覆部を有する半導体基板を化学的物理的研磨処理 (CMP) に付した後、 当該基板を上記 (2) に記載の処理剤で処理する ことを特徴とする該基板の処理方法。  (6) After subjecting a semiconductor substrate having a copper coating on its surface to a chemical-physical polishing treatment (CMP), the substrate is treated with the treatment agent described in (2) above. Processing method.
( 7 ) 表面に銅被覆部を有する半導体基板を化学的物理的研磨処理 (CMP) に付した後、 当該基板を上記 (2) に記載の処理剤で処理し、 次いで当該基板を半導体基板洗浄剤で洗浄することを特徴とする該基板 の処理方法。  (7) After subjecting a semiconductor substrate having a copper-coated portion to a chemical-physical polishing treatment (CMP), the substrate is treated with the treatment agent described in (2) above, and then the semiconductor substrate is cleaned. Cleaning the substrate with an agent.
( 8) 表面に銅被覆部を有する半導体基板を化学的物理的研磨処理 (8) Chemical and physical polishing of semiconductor substrate with copper coating on the surface
(CMP) に付した後、 当該基板を上記 (4) に記載の洗浄剤で洗浄する ことを特徴とする該基板の洗浄方法。 A method for cleaning a substrate, comprising subjecting the substrate to the cleaning agent according to the above (4) after being subjected to (CMP).
本発明者等は上記目的を達成すべく鋭意研究を重ねた結果、 分子内に チオール基を有するアミノ酸又はその誘導体が、 良好な金属腐食防止作 用を有し且つ安全性が高いこと、 並びに当該アミノ酸又はその誘導体を 含有する洗浄剤を用いて基板を処理すれば、 基板表面、 特に、 表面に銅 配線が施された基板表面を、 銅配線の腐蝕や酸化を起こさず、 当該表面 の金属不純物 (酸化銅) を有効に除去し得ることを見出し、 本発明を完 成させるに至った。 発明を実施するための最良の形態 The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that an amino acid having a thiol group in a molecule or a derivative thereof has a good metal corrosion inhibiting action and high safety, and If the substrate is treated with a cleaning agent containing an amino acid or a derivative thereof, the surface of the substrate, particularly the surface, may have copper. The present inventors have found that metal impurities (copper oxide) on the surface of the substrate on which the wiring has been formed can be effectively removed without causing corrosion or oxidation of the copper wiring, thereby completing the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る分子内にチオール基を有するアミノ酸 (以下、 本発明に 係るアミノ酸と略記する場合がある。) は、 分子内にチオール基、 カルボ キシル基及びアミノ基を有するものであり、 具体的には下記一般式 [ 1 ] で示される化合物が挙げられる。
Figure imgf000006_0001
The amino acid having a thiol group in the molecule according to the present invention (hereinafter sometimes abbreviated as the amino acid according to the present invention) is a compound having a thiol group, a carboxyl group and an amino group in the molecule. Include compounds represented by the following general formula [1].
Figure imgf000006_0001
HS― R一 COOH 1 1 J HS- R-COOH 1 1 J
(式中、 Rは低級アルキレン基を示す。) 一般式 [ 1 ] に於いて、 Rで示される低級アルキレン基としては、 例 えばメチレン基、 エチレン基、 トリメチレン基、 テトラメチレン基、 ぺ ンタメチレン基、 へキサメチレン基、 プロピレン基、 ブチレン基、 メチ ルメチレン基、 ェチルエチレン基、 メチルエチレン基、 メチルプロピレ ン基、 ェチルプロピレン基、 ペンチレン基、 へキシレン基、 シクロペン チレン基、 シクロへキシレン基等の直鎖状、 分枝状あるいは環状の炭素 数 1〜 6の低級アルキレン基が挙げられる。 なかでも、 炭素数 1〜6の 直鎖状のアルキレン基 (メチレン基、 エチレン基、 トリメチレン基、 テ トラメチレン基、 ペンタメチレン基、 へキサメチレン基) が好ましく、 メチレン基又はエチレン基が特に好ましい。  (In the formula, R represents a lower alkylene group.) In the general formula [1], examples of the lower alkylene group represented by R include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a pentamethylene group. , Hexamethylene, propylene, butylene, methylethylene, methylethylene, methylethylene, methylpropylene, ethylpropylene, pentylene, hexylene, cyclopentylene, cyclohexylene, etc. , Branched or cyclic lower alkylene groups having 1 to 6 carbon atoms. Among them, a linear alkylene group having 1 to 6 carbon atoms (methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group) is preferable, and a methylene group or an ethylene group is particularly preferable.
本発明に係る分子内にチオール基を有するアミノ酸は、 市販品 (例え ば和光純薬工業㈱製) を用いてもよいし、 自体公知の方法に準じて適宜 調製して用いてもよい。 As the amino acid having a thiol group in the molecule according to the present invention, a commercially available product (for example, manufactured by Wako Pure Chemical Industries, Ltd.) may be used, or the amino acid may be appropriately prepared according to a method known per se. It may be prepared and used.
上記一般式 [ 1 ] で示される化合物としては、 より具体的には、 例え ばシスティン、 ホモシスティン等が挙げられ、 これらは D体でも L体で も、 D L体でも、 また、 夫々混合比が異なる D体と L体との混合物でも 使用可能である。  More specifically, examples of the compound represented by the general formula [1] include cysteine and homocysteine. These compounds are D-forms, L-forms, DL-forms, and mixtures having a mixing ratio of, respectively. Mixtures of different D- and L-forms can also be used.
上記した如き、 本発明に於ける分子内にチオール基を有するアミノ酸 の誘導体としては、 金属腐食防止作用を有するものであれば特に限定さ れないが、例えば本発明に係るアミノ酸の N-ァシル体又は本発明に係る アミノ酸のカルボン酸エステル体等が挙げられる。  As described above, the amino acid derivative having a thiol group in the molecule according to the present invention is not particularly limited as long as it has a metal corrosion inhibiting action. For example, the N-acyl derivative of the amino acid according to the present invention Or a carboxylic acid ester of the amino acid according to the present invention and the like.
本発明に係るアミノ酸の N-ァシル体とは、上記した如き本発明に係る アミノ酸が有するァミノ基の水素原子にァシル基が導入されたものであ る。 The N-acyl form of the amino acid according to the present invention is the amino acid according to the present invention in which an amino group has a hydrogen atom introduced into a hydrogen atom of the amino group.
具体的には、 下記一般式 [ 2 ] に示すように、 上記一般式 [ 1 ] に於 けるアミノ基の水酸基にァシル基が導入されたものである。  Specifically, as shown in the following general formula [2], an amino group in the above general formula [1] has a hydroxyl group introduced with an acyl group.
NH—— R 1 NH—— R 1
I [ 21 I [ 2 1
HS― R一 CH一 COOH HS- R-CH-COOH
(式中、 R 1はァシル基を示し、 Rは前記と同じ。) (In the formula, R 1 represents an acyl group, and R is the same as described above.)
本発明に係るアミノ酸が有するァミノ基の水素原子に導入されるァシ ル基又は一般式 [ 2 ] に於いて R 1で示されるァシル基としては、 直鎖 状、 分枝状或いは環状でもよく、 例えばホルミル基、 ァセチル基、 プロ ピオニル基、 プチリル基、 イソプチリル基、 バレリル基、 イソバレリル 基、 ビバロイル基、 へキサノィル基、 シクロプロピオ二ルカルポニル基、 シクロペンチルカルポニル基、 シクロへキシルカルポニル基等の炭素数 1〜 6の飽和脂肪族モノカルボン酸由来のもの、例えばァクリロイル基、 プロピオロイル基、 メ夕クリロイル基、 クロトノィル基、 イソクロトノ ィル基等の炭素数 3〜 7の不飽和脂肪族モノカルボン酸由来のもの、 例 えばベンゾィル基、 ナフトイル基、 ペン夕レンカルボニル基、 インデレ ンカルボ二ル基、 ァズレンカルポニル基、 ヘプ夕レンカルボ二ル基、 ィ ンダセンカルポニル基、 アントラセンカルポニル基、 フエナントレン力 ルポニル基、 トリフエ二レンカルボ二ル基、 ピレンカルボニル基、 ナフ 夕センカルポニル基、 ピリレンカルポニル基、 ペン夕センカルボニル基 等の炭素数 7〜23、好ましくは炭素数 7〜: 12の芳香族モノ力ルポン酸由 来のもの、 例えばフエ二ルメチルカルポニル基、 フエニルェチルカルボ ニル基、 フエニルプロピルカルボニル基、 フエニルイソプロピルカルボ ニル基、 フエ二ルブチルカルポニル基、 フエ二ルイソブチルカルポニル 基、 フエニルペンチルカルポニル基、 フエニルイソペンチルカルポニル 基、 フエニルネオペンチルカルポニル基、 フエニルへキシルカルポニル 基、 フエニルイソへキシルカルポニル基、 フエ二ルェチルペンチルカル ポニル基、 フエニルメチルペンチルカルポニル基、 フエ二ルジメチルブ チルカルポニル基、 フエ二ルェチルブチルカルポニル基、 フエニルヘプ チルカルポニル基、 フエニルメチルへキシルカルポニル基、 フエニルジ メチルペンチルカルポニル基、 フエニルォクチルカルボニル基、 フエ二 ルノニルカルポニル基、 フエニルデシルカルポニル基、 フエニルゥンデ シルカルポニル基、 フエ二ルドデシルカルポニル基、 フエニルトリデシ ルカルポニル基、 フエニルシクロプロピルカルポニル基、 フエ二ルシク 口ペンチルカルポニル基、 フエニルシクロへキシルカルポニル基、 フエ ニルシクロへキシルカルポニル基、 フエニルシクロへプチルカルポニル 基、 フエニルシクロォクチルカルポニル基、 フエニルシクロノニルカル ポニル基、 フエニルシクロデシルカルポニル基、 フエニルシクロウンデ シルカルボニル基、 フエ二ルシクロドデシルカルポニル基、 フエニルシ クロトリデシルカルポニル基、 等の炭素数?〜 20、 好ましくは炭素数 7 〜13のァラルキルモノカルボン酸由来のもの等が挙げられる。 尚、 上記した如き芳香族モノカルボン酸由来のァシル基又はァラルキ ルモノカルボン酸由来のァシル基の芳香環には、 例えばメチル基、 ェチ ル基等の低級アルキル基等を置換基として有していてもよい。 The acyl group to be introduced into the hydrogen atom of the amino group of the amino acid according to the present invention or the acyl group represented by R 1 in the general formula [2] may be linear, branched or cyclic. For example, carbon number of formyl group, acetyl group, propionyl group, butyryl group, isopyryl group, valeryl group, isovaleryl group, bivaloyl group, hexanoyl group, cyclopropionylcarbonyl group, cyclopentylcarbonyl group, cyclohexylcarbonyl group, etc. Those derived from saturated aliphatic monocarboxylic acids having 1 to 6 atoms, for example, those derived from unsaturated aliphatic monocarboxylic acids having 3 to 7 carbon atoms such as acryloyl group, propioloyl group, methyl acryloyl group, crotonyl group, and isocrotonyl group. Substances, for example, benzoyl group, naphthoyl group, pentane carbonyl group, indylene carbonyl group, azulene carbonyl group, heptane carbenyl group, indacene carbonyl group, anthracene carbonyl group, phenanthrene carbonyl group, Aromatic monocarboxylic acid having 7 to 23 carbon atoms, preferably 7 to 12 carbon atoms, such as a triphenylene carbonyl group, a pyrenecarbonyl group, a naphthene sencarbonyl group, a pyrene carbonyl group, a pennecene carbonyl group and the like. Derived from, for example, phenylmethylcarbonyl, phenylethylcarbonyl, Phenylpropylcarbonyl group, phenylisopropylcarbonyl group, phenylbutylcarbonyl group, phenylisobutylcarbonyl group, phenylpentylcarbonyl group, phenylisopentylcarbonyl group, phenylneopentylcarbonyl group, phenylhexyl Carbonyl group, phenylisohexylcarbonyl group, phenylethylpentylcarbonyl group, phenylmethylpentylcarbonyl group, phenyldimethylbutylcarbonyl group, phenylethylbutylcarbonyl group, phenylheptylcarbonyl group, phenylmethylhexylcarbonyl group , Phenyldimethylpentylcarbonyl, phenyloctylcarbonyl, phenylnonylcarbonyl, phenyldecylcarbonyl, phenyldidecylcarbonyl , Phenyldodecylcarbonyl, phenyltridecylcarbonyl, phenylcyclopropylcarbonyl, phenylcyclopentylcarbonyl, phenylcyclohexylcarbonyl, phenylcyclohexylcarbonyl, phenylcycloheptylcarbonyl, phenylcyclone Butylcarbonyl, phenylcyclononylcarbonyl, phenylcyclodecylcarbonyl, phenylcyclounde Number of carbon atoms such as silcarbonyl group, phenylcyclododecylcarbonyl group, phenylcyclotridecylcarbonyl group, etc.? To 20, preferably those derived from aralkylmonocarboxylic acids having 7 to 13 carbon atoms. The aromatic ring of the aromatic monocarboxylic acid-derived acyl group or the aralkyl monocarboxylic acid-derived acyl group has, for example, a lower alkyl group such as a methyl group or an ethyl group as a substituent. You may.
上記した如きァシル基のなかでも、 飽和脂肪族モノカルボン酸由来の もの及びァラルキルモノカルボン酸由来のものが好ましく、 より好まし くは飽和脂肪族モノカルボン酸由来のものであり、 更に好ましくは直鎖 状の飽和脂肪族モノカルボン酸由来のものである。 直鎖状の飽和脂肪族 モノカルボン酸由来のァシル基のなかでも、ァセチル基が特に好ましレ また、本発明に係る分子内にチオール基を有するアミノ酸の N-ァシル 体は、 市販品 (例えば和光純薬工業㈱製) を用いてもよいし、 自体公知 の方法に準じて適宜調製して用いてもよい。 本発明に係るアミノ酸の N-ァシル体としては、本発明に係るアミノ酸 が有するァミノ基の水素原子に、 飽和脂肪族モノカルボン酸由来のァシ ル基が導入された N-アルカノィル体 (一般式 [ 2 ] に於ける R 1が飽和 脂肪族モノカルボン酸由来のァシル基であるもの) 及びァラルキルモノ カルボン酸由来のァシル基が導入された N-ァラルカノィル体 (一般式 [ 2 ] に於ける R 1がァラルキルモノカルボン酸由来のァシル基である もの) が好ましく、 より好ましくは N-アルカノィル体であり、 更に好ま しくは、 本発明に係るアミノ酸が有するァミノ基の水素原子に、 直鎖状 の飽和脂肪族モノカルボン酸由来のァシル基が導入された N-直鎖アル カノィル体 (一般式 [ 2 ] に於ける R 1が直鎖状の飽和脂肪族モノカル ボン酸由来のァシル基であるもの) である。 なかでも、 本発明に係るァ ミノ酸が有するァミノ基の水素原子に、ァセチル基が導入された N-ァセ チル体 (一般式 [ 2 ] に於ける R 1がァセチル基であるもの) が特に好 ましい。 Among the above-mentioned acyl groups, those derived from a saturated aliphatic monocarboxylic acid and those derived from an aralkyl monocarboxylic acid are preferable, and those derived from a saturated aliphatic monocarboxylic acid are more preferable. Is derived from a linear saturated aliphatic monocarboxylic acid. Among the acyl groups derived from linear saturated aliphatic monocarboxylic acids, acetyl groups are particularly preferred. The N-acyl form of the amino acid having a thiol group in the molecule according to the present invention is a commercially available product (eg, (Manufactured by Wako Pure Chemical Industries, Ltd.) or may be appropriately prepared and used according to a method known per se. As the N-acyl form of the amino acid according to the present invention, an N-alkanoyl form in which an acyl group derived from a saturated aliphatic monocarboxylic acid is introduced into the hydrogen atom of the amino group of the amino acid according to the present invention (general formula R 1 in [2] is an acyl group derived from a saturated aliphatic monocarboxylic acid) and an N-aralkanoyl derivative having an acetyl group derived from aralkylmonocarboxylic acid (R 1 in general formula [2]) Is preferably an aralkyl monocarboxylic acid-derived acyl group), more preferably an N-alkanoyl compound, and further preferably, a straight-chain hydrogen atom of the amino group of the amino acid according to the present invention. N-linear alkanoyl derivative having an acyl group derived from a saturated aliphatic monocarboxylic acid of the formula (wherein R 1 in the general formula [2] is an acyl group derived from a linear saturated aliphatic monocarboxylic acid) Also ). Among them, an N-acetate in which an acetyl group is introduced into a hydrogen atom of the amino group of the amino acid according to the present invention. The tyl form (R 1 in the general formula [2] is an acetyl group) is particularly preferred.
本発明に係るアミノ酸の N-ァシル体(一般式 [ 2 ]で示される化合物) の具体例としては、 例えば N-ァセチルシスティン、 N-ブチリルシステ イン、 N-シクロへキシルカルボニルシスティン、 N-プロピオロイルシス ティン、 N-クロトノィルシスティン、 N-ベンゾィルシスティン、 N-ナフ トイルシスティン、 N-フエ二ルメチルカルポニルシスティン、 N-フエ二 ルブチルカルポニルシスティン、 N-フエニルシクロへキシルカルポニル システィン、 N-ァセチルホモシスティン、 N-ブチリルホモシスティン、 N-シクロへキシルカルポニルホモシスティン、 N-プロピオロイルホモシ スティン、 N-クロトノィルホモシスティン、 N-ベンゾィルホモシスティ ン、 N-ナフトイルホモシスティン、 N-フエ二ルメチルカルポニルホモシ スティン、 N-フエ二ルブチルカルポニルホモシスティン、 N-フエニルシ クロへキシルカルポニルホモシスティン等が挙げられ、 これらは D体で も L体でも、 D L体でも、 また、 夫々混合比が異なる D体と L体との混 合物でも使用可能である。 本発明に係るアミノ酸のカルボン酸エステル体とは、 上記した如き本 発明に係るアミノ酸が有する力ルポキシル基がエステル化されたもので ある。  Specific examples of the N-acyl form of the amino acid according to the present invention (compound represented by the general formula [2]) include, for example, N-acetylcysteine, N-butyrylcysteine, N-cyclohexylcarbonylcysteine, Pioloylcis tin, N-crotonylcysteine, N-benzoylcysteine, N-naphthylcysteine, N-phenylmethylcarbonylcysteine, N-phenylbutylcarbonylcysteine, N-phenylcyclohexylcarbonylcysteine , N-acetyl homocysteine, N-butyryl homocysteine, N-cyclohexylcarbonyl homocysteine, N-propioloyl homocysteine, N-crotonyl homocysteine, N-benzoyl homocystin, N-naphthoyl homocysteine, N-phenylmethylcarbonyl homocysteine, N-fenylbuti Lucarponyl homocysteine, N-phenylcyclohexylcarbonyl homocysteine, and the like.These are D-form, L-form, DL-form, and a mixture of D-form and L-form with different mixing ratios. But it can be used. The carboxylic acid ester of the amino acid according to the present invention is the carboxylic acid ester of the amino acid according to the present invention as described above, which is esterified.
具体的には、 下記一般式 [ 2 ] に示すように、 上記一般式 [ 1 ] に於 けるカルボキシル基の水酸基にァシル基が導入されたものである。
Figure imgf000010_0001
More specifically, as shown in the following general formula [2], the hydroxyl group of the carboxyl group in the above general formula [1] has an acyl group introduced.
Figure imgf000010_0001
(式中、 R 2は炭化水素残基を示し、 Rは前記と同じ。) 一般式 [ 3 ] に於いて、 R2で示される炭化水素残基としては、 一価 の基であれば、 脂肪族、 芳香族、 芳香脂肪族、 或いは脂環族の何れでも よく、 また、 脂肪族及び芳香脂肪族に於ける脂肪族としては、 飽和でも 不飽和でも、 また、 直鎖状でも分枝状でもよい。 これらのうちの代表的なものとしては、 例えば直鎖状、 分枝状、 或い は環状の飽和又は不飽和のアルキル基、 ァリール基、 ァラルキル基、 ァ ルケニル基等が挙げられる。 (In the formula, R 2 represents a hydrocarbon residue, and R is the same as described above.) In the general formula [3], the hydrocarbon residue represented by R 2 may be any of aliphatic, aromatic, araliphatic, or alicyclic as long as it is a monovalent group. The aliphatic in the aliphatic and araliphatic may be saturated or unsaturated, and may be linear or branched. Representative of these include, for example, linear, branched, or cyclic saturated or unsaturated alkyl, aryl, aralkyl, and alkenyl groups.
アルキル基としては、 通常炭素数 1〜 1 0のもの、 好ましくは 1〜6 のもの、 より好ましくは 1〜4のものが挙げられ、 具体的には、 例えば メチル基、 ェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル基、 is 0-ブチル基、 sec-ブチル基、 ter卜ブチル基、 n-ペンチル基、 iso-ペンチ ル基、 sec-ペンチル基、 tert-ペンチル基、 ネオペンチル基、 n-へキシル 基、 iso-へキシル基、 3-メチルペンチル基、 2-メチルペンチル基、 1,2- ジメチルブチル基、 sec-へキシル基、 tert-へキシル基、 n-ヘプチル基、 iso-ヘプチル基、 sec-ヘプチル基、 n-ォクチル基、 iso-ォクチル基、 se c-ォクチル基、 n-ノニル基、 n-デシル基、 シクロプロピル基、 シクロべ ンチル基、 シクロへキシル基、 シクロへプチル基、 シクロォクチル基、 シクロデシル基等が挙げられる。  Examples of the alkyl group include those having usually 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. Specific examples include a methyl group, an ethyl group, and n-propyl. Group, iso-propyl group, n-butyl group, is 0-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neopentyl Group, n-hexyl group, iso-hexyl group, 3-methylpentyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, sec-hexyl group, tert-hexyl group, n-heptyl group , Iso-heptyl, sec-heptyl, n-octyl, iso-octyl, sec-octyl, n-nonyl, n-decyl, cyclopropyl, cyclopentyl, cyclohexyl , Cycloheptyl, cyclooctyl, cyclodecyl, etc. .
ァリール基としては、 通常炭素数 6〜 1 4のものが挙げられ、 具体的 には、 例えばフエニル基、 o—トリル基、 m—トリル基、 p—トリル基 、 2 , 3—キシリル基、 2, 4—キシリル基、 2, 5—キシリル基、 2 , 6—キシリル基、 3, 5—キシリル基、 ナフチル基、 アントリル基等 が挙げらる。  Examples of the aryl group include those having 6 to 14 carbon atoms. Specifically, for example, phenyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2 , 4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,5-xylyl group, naphthyl group, anthryl group and the like.
ァラルキル基としては、 通常炭素数 7〜 1 2のもの、 好ましくは 7〜 1 0のものが挙げられ、 具体的には、 例えばべンジル基、 フエネチル基 、 フエニルプロピル基、 フエニルブチル基、 フエニルへキシル基、 メチ ルペンジル基、 メチルフエネチル基、 ェチルベンジル基等が挙げられる 尚、 上記した如きァリール基又はァラルキル基の芳香環には、 例えば メチル基、 ェチル基等の低級アルキル基や、 ハロゲン原子、 ニトロ基、 アミノ基等を置換基として有していてもよい。 The aralkyl group usually has 7 to 12 carbon atoms, preferably 7 to 10 carbon atoms, and specifically includes, for example, benzyl, phenethyl, phenylpropyl, phenylbutyl and phenyl. Xyl group, methyl Examples of the aromatic ring of the aryl or aralkyl group include a lower alkyl group such as a methyl group and an ethyl group, a halogen atom, a nitro group, and an amino group. May be included as a substituent.
アルケニル基としては、 通常 2〜 1 0のものが挙げられ、 具体的には、 例えばビニル基、 ァリル基、 1-プロぺニル基、 iso-プロぺニル基、 3-ブテ ニル基、 2-ブテニル基、 1-ブテニル基、 1,3-ブタジェニル基、 4-ペンテ二 ル基、 3-ペンテニル基、 2-ペンテニル基、 1-ペンテニル基、 1,3-ペン夕ジ ェニル基、 2,4-ペン夕ジェニル基、 1,1-ジメチル -2-プロぺニル基、 1-ェ チル -2-プロぺニル基、 1,2-ジメチル -1-プロぺニル基、 1-メチル -1-ブテニ ル基、 5-へキセニル基、 4-へキセニル基、 2-へキセニル基、 1-へキセニ ル基、 1-メチル -1-へキセニル基、 2-メチル -2-へキセニル基、 3-メチル 1,3- へキサジェニル基、 1-ヘプ夕ニル基、 2-ォクテニル基、 3-ノネニル基、 4-デセニル基、 2-シクロペンテニル基、 2,4-シクロペンタジェニル基、 1- シクロへキセニル基、 2-シクロへキセニル基、 3-シクロへヰセニル基、 2-シクロヘプテニル基、 2-シクロノネニル基、 3-シクロデセニル基等が 挙げられる。  Examples of the alkenyl group include those having usually 2 to 10 groups. Specifically, for example, a vinyl group, an aryl group, a 1-propenyl group, an iso-propenyl group, a 3-butenyl group, -Butenyl, 1-butenyl, 1,3-butenyl, 4-pentenyl, 3-pentenyl, 2-pentenyl, 1-pentenyl, 1,3-pentenyl, 2, 4-pentenyl group, 1,1-dimethyl-2-propenyl group, 1-ethyl-2-propenyl group, 1,2-dimethyl-1-propenyl group, 1-methyl-1 -Butenyl group, 5-hexenyl group, 4-hexenyl group, 2-hexenyl group, 1-hexenyl group, 1-methyl-1-hexenyl group, 2-methyl-2-hexenyl group, 3-methyl 1,3-hexenyl group, 1-heptenyl group, 2-octenyl group, 3-nonenyl group, 4-decenyl group, 2-cyclopentenyl group, 2,4-cyclopentagenenyl group, 1 -Cyclo Hexenyl group, cyclohexenyl group into 2-cyclopropyl, 3-cycloheteroalkyl Wiseniru group, 2-cycloheptenyl, 2-cyclononenyl group, a 3-cyclodecenyl group, and the like.
なかでも、 アルキル基及びァラルキル基が好ましく、 より好ましくは 炭素数 1〜6の低級アルキル基及びべンジル基であり、 更に好ましくは 炭素数 1〜 6の低級アルキル基である。  Of these, an alkyl group and an aralkyl group are preferable, a lower alkyl group having 1 to 6 carbon atoms and a benzyl group are more preferable, and a lower alkyl group having 1 to 6 carbon atoms is more preferable.
本発明に係る分子内にチオール基を有するアミノ酸のカルボン酸エス テル体は、 市販品 (例えば和光純薬工業㈱製) を用いてもよいし、 自体 公知の方法に準じて適宜調製して用いてもよい。  The carboxylic acid ester of an amino acid having a thiol group in the molecule according to the present invention may be a commercially available product (for example, manufactured by Wako Pure Chemical Industries, Ltd.), or may be appropriately prepared according to a method known per se. May be.
本発明に係るアミノ酸のカルボン酸エステル体としては、 本発明に係 るアミノ酸が有する力ルポキシル基に、 アルキル基が導入されたアルキ ルエステル体 (一般式 [ 3 ] に於 る R 2がアルキル基であるもの) 及 びァラルキル基が導入されたァラルキルエステル体 (一般式 [ 3 ] に於 ける R 2がァラルキル基であるもの) が好ましく、 より好ましくは本発 明に係るアミノ酸が有するカルボキシル基に、 炭素数 1〜 6のアルキル 基が導入された低級アルキルエステル体体 (一般式 [ 3 ] に於ける R 2 が炭素数 1〜 6の低級アルキル基であるもの) 及びべンジル基が導入さ れたべンジルエステル体 (一般式 [ 3 ] に於ける R 2がべンジル基であ るもの) であり、 更に好ましくは、 低級アルキルエステル体である。 本発明に係るアミノ酸のカルボン酸エステル体 (一般式 [ 3 ] で示さ れる化合物) の具体例としては、 例えばシスティンメチルエステル、 シ スティンェチルエステル、 システィンイソブチルエステル、 システィン n-へキシルエステル、 システィンシクロへキシルエステル、 システィン フエニルエステル、 システィンナフチルエステル、 システィンべンジル エステル、 システィンメチルベンジルエステル、 システィンビニルエス テル、 システィン 3-ブテニルエステル、 システィン 3-シクロへキセニル エステル、 ホモシスティンメチルエステル、 ホモシスティンェチルエス テル、 ホモシスティンイソブチルエステル、 ホモシスティン n-へキシル エステル、 ホモシスティンシクロへキシルエステル、 ホモシスティンフ ェニルエステル、 ホモシスティンナフチルエステル、 ホモシスティンべ ンジルエステル、 ホモシスティンメチルベンジルエステル、 ホモシステ インビニルエステル、 ホモシスティン 3-ブテニルエステル、 ホモシステ ィン 3-シクロへキセニルエステル等が挙げられ、 これらは D体でも L体 でも、 D L体でも、 また、 夫々混合比が異なる D体と L体との混合物で も使用可能である。 上記した如き本発明に係る分子内にチオール基を有するアミノ酸又は その誘導体は、 単独で使用しても、 2種以上適宜組み合わせて用いても よい。 Examples of the carboxylic acid ester of the amino acid according to the present invention include an alkyl group in which an alkyl group is introduced into a hydroxyl group of the amino acid according to the present invention. Ester (R 2 in the general formula [3] is an alkyl group) and aralkyl ester having an aralkyl group introduced therein (R 2 in the general formula [3] is an aralkyl group) And more preferably a lower alkyl ester in which an alkyl group having 1 to 6 carbon atoms is introduced into a carboxyl group of the amino acid according to the present invention (wherein R 2 in the general formula [3] is A lower alkyl group of 1 to 6) and a benzyl ester having a benzyl group introduced therein (wherein R 2 in the general formula [3] is a benzyl group), and more preferably a lower alkyl group. It is an alkyl ester. Specific examples of the carboxylic acid ester of the amino acid according to the present invention (compound represented by the general formula [3]) include, for example, cysteine methyl ester, cysteine ethyl ester, cysteine isobutyl ester, cysteine n-hexyl ester, cysteine Cyclohexyl ester, cysteine phenyl ester, cysteine naphthyl ester, cysteine benzyl ester, cysteine methyl benzyl ester, cysteine vinyl ester, cysteine 3-butenyl ester, cysteine 3-cyclohexenyl ester, homocysteine methyl ester, homo Cystine ethyl ester, homocystine isobutyl ester, homocystine n-hexyl ester, homocystine cyclohexyl ester, homocystine phenyl ester , Homocysteine naphthyl ester, homocysteine benzyl ester, homocysteine methyl benzyl ester, homocysteine vinyl ester, homocysteine 3-butenyl ester, homocysteine 3-cyclohexenyl ester, and the like. It can be used in L-form, DL-form, or a mixture of D-form and L-form with different mixing ratios. An amino acid having a thiol group in the molecule according to the present invention as described above or The derivatives may be used alone or in combination of two or more.
分子内にチオール基を有するアミノ酸又はその誘導体の使用量は、 分 子内にチオール基を有するアミノ酸又はその誘導体の種類や処理される 基板の表面積等によって異なるため一概には言えないが、 例えば通常 0.0001- 10 重量%、 好ましくは 0.0001〜1重量%、 より好ましくは 0.0001〜0.5重量%である。 本発明の金属腐蝕防止剤は、 上記した如き本発明に係る分子内にチォ 一ル基を有するアミノ酸又はその誘導体を含んでなるものである。また、 本発明の金属腐蝕防止剤は、 通常水性溶液の状態であり、 当該本発明に 係るアミノ酸又はその誘導体を水に添加溶解させることにより調製され る。  The amount of the amino acid or derivative thereof having a thiol group in the molecule cannot be specified because it varies depending on the type of the amino acid or derivative thereof having a thiol group in the molecule and the surface area of the substrate to be treated. 0.0001-10% by weight, preferably 0.0001-1% by weight, more preferably 0.0001-0.5% by weight. The metal corrosion inhibitor of the present invention comprises the amino acid having a thiol group in the molecule or a derivative thereof according to the present invention as described above. The metal corrosion inhibitor of the present invention is usually in the form of an aqueous solution, and is prepared by adding and dissolving the amino acid or its derivative according to the present invention in water.
本発明に係るアミノ酸又はその誘導体を水に溶解する方法としては、 例えば水の中に別途溶解した本発明に係るアミノ酸又はその誘導体を添 加する方法や、本発明に係るアミノ酸又はその誘導体を直接水に添加し、 溶解、 攪拌する方法等が挙げられる。  The method of dissolving the amino acid or its derivative according to the present invention in water includes, for example, a method of adding the amino acid or its derivative according to the present invention separately dissolved in water, or a method of directly adding the amino acid or its derivative according to the present invention. A method of adding to water, dissolving and stirring, etc. may be mentioned.
このようにして調製した本発明の金属腐蝕防止剤は、 使用前に濾過処 理等を行うのが好ましい。 また、 ここで用いられる水は、 蒸留、 イオン 交換処理等により精製されたものであればよいが、 この分野で用いられ る、 いわゆる超純水がより好ましい。  The metal corrosion inhibitor of the present invention thus prepared is preferably subjected to a filtration treatment or the like before use. In addition, the water used here may be any water that has been purified by distillation, ion exchange treatment, or the like, and so-called ultrapure water used in this field is more preferable.
更に本発明に係る金属腐蝕防止剤中には、 上記した如き本発明に係る アミノ酸又はその誘導体以外に、 通常この分野で用いられる試薬類を使 用することができる。  Further, in the metal corrosion inhibitor according to the present invention, in addition to the amino acid or its derivative according to the present invention as described above, reagents generally used in this field can be used.
このような試薬類としては、 例えば有機酸、 ァミン、 無機アルカリ化 合物、 キレート剤、 界面活性剤等である。 本発明に於いて用いられる有機酸としては、 通常この分野で用いられ るものであればよく、 特に限定されないが、 例えばシユウ酸、 マロン酸、 コハク酸、 グルタル酸、 アジピン酸、 ピメリン酸、 スベリン酸、 2-n-ブ チルマロン酸、 マレイン酸、 フマル酸、 シトラコン酸、 メサコン酸、 フ タル酸、 ィソフタル酸、 テレフタル酸等の炭素数 2〜 8のジカルボン酸、 例えばトリ力ルバリル酸、 ベンゼントリカルボン酸等の炭素数 6以上の トリカルボン酸、 例えばタルトロン酸、 リンゴ酸等の炭素数 3以上のモ ノヒドロキシジカルボン酸、 例えば酒石酸等の炭素数 4以上のジヒドロ キシジカルボン酸、 例えばクェン酸等の炭素数 6以上のモノヒドロキシ トリカルボン酸、 例えばヒドロキシトリカルボン酸、 これらのアンモニ ゥム塩等が挙げられる。 Such reagents include, for example, organic acids, amines, inorganic alkali compounds, chelating agents, surfactants and the like. The organic acid used in the present invention is not particularly limited as long as it is generally used in this field, and examples thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberin and the like. Dicarboxylic acids having 2 to 8 carbon atoms such as acids, 2-n-butylmalonic acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, phthalic acid, isophtalic acid, terephthalic acid, etc., for example, tricarboxylic acid, benzenetricarboxylic acid Tricarboxylic acids having 6 or more carbon atoms such as acids, for example, monohydroxydicarboxylic acids having 3 or more carbon atoms, such as tartronic acid and malic acid, and dihydroxydicarboxylic acids having 4 or more carbon atoms, such as tartaric acid, for example, carbon such as citric acid 6 or more monohydroxytricarboxylic acids, such as hydroxytricarboxylic acids, their ammonium salts, etc. Is mentioned.
なかでも、 ジカルボン酸、 モノヒドロキシジカルボン酸、 モノヒドロ キシトリカルボン酸及びジヒドロキシジカルボン酸が好ましく、 ジカル ボン酸及びモノヒドロキシトリカルボン酸が特に好ましい。  Among them, dicarboxylic acid, monohydroxydicarboxylic acid, monohydroxytricarboxylic acid and dihydroxydicarboxylic acid are preferable, and dicarboxylic acid and monohydroxytricarboxylic acid are particularly preferable.
より具体的には、 シユウ酸、 マロン酸、 フ夕ル酸、 リンゴ酸、 クェン 酸、 酒石酸が好ましく、 クェン酸、 シユウ酸が特に好ましい。  More specifically, oxalic acid, malonic acid, fumaric acid, malic acid, citric acid, and tartaric acid are preferable, and citric acid and oxalic acid are particularly preferable.
また、 これら有機酸は、 単独で使用しても、 2種以上適宜組み合わせ て用いてもよい。  These organic acids may be used alone or in combination of two or more.
有機酸の使用量は、 有機酸の種類によって異なるため一概には言えな いが、 例えば通常 0.0001〜20重量%、 好ましくは 0.001〜10重量%、 より好ましくは 0.05〜: 10重量%である。  The amount of the organic acid used varies depending on the type of the organic acid and cannot be specified unconditionally, but is, for example, usually 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, and more preferably 0.05 to 10% by weight.
本発明に於いて用いられるァミンとしては、 通常この分野で用いられ るものであればよく、 特に限定されないが、 例えばメチルァミン、 ェチ ルァミン、 n-プロピルァミン、 n-プチルァミン、 n-ペンチルァミン、 n- へキシルァミン、 シクロペンチルァミン、 シクロへキシルァミン等の炭 素数 1〜 6のアルキルァミン、 例えばジメチルァミン、 メチルェチルァ ミン、 ジェチルァミン、 ジプロピルァミン等の炭素数 2〜 1 2、 好まし くは炭素数 2〜 6のジアルキルァミン、 例えばトリメチルァミン、 ジメ チルェチルァミン、 メチルジェチルァミン、 トリェチルァミン、 トリプ 口ピルアミン等の炭素数 3〜 1 8、 好ましくは炭素数 3〜 6のトリアル キルァミン、 例えばモノエタノールァミン、 ジエタノールァミン、 トリ エタノールァミン、 ジメチルエタノールァミン、 ジェチルエタノールァ ミン等の炭素数 1〜 1 8、 好ましくは炭素数 1〜 6のモノ乃至トリヒド ロキシアルキルァミン、 例えばメチレンジァミン、 エチレンジァミン、 プロピレンジァミン、 イソプロピレンジァミン、 プチレンジァミン、 メ チルメチレンジァミン、 ェチルエチレンジァミン、 メチルエチレンジァ ミン、 メチルプロピレンジァミン、 ェチルプロピレンジァミン、 ペンチ レンジァミン、 へキシレンジァミン、 シクロペンチレンジァミン、 シク 口へキシレンジァミン等の炭素数 1〜 6のアルキレンジァミン、 例えば ジメチレントリアミン、 ジエチレントリアミン等の炭素数 2〜 1 2、 好 ましくは炭素数 2〜4のジアルキレントリアミン、 例えばトリメチレン テトラミン、 トリエチレンテトラミン等の炭素数 3〜 1 8、 好ましくは 炭素数 3〜 6のトリアルキレンテトラミン、 例えばテトラメチルアンモ 二ゥムヒドロキシド、 テトラエチルアンモニゥムヒドロキシド、 テトラ -n-プロピルアンモニゥムヒドロキシド、 テトラ -n-プチルアンモニゥム ヒ ドロキシド、 テトラ- n-ペンチルアンモニゥムヒドロキシド、 テトラ- n-へキシルアンモニゥムヒドロキシド、 テトラシクロペンチルアンモニ ゥムヒドロキシド、 テトラシクロへキシルアンモニゥムヒドロキシド等 の炭素数 4〜 2 4のテトラアルキルアンモニゥムヒドロキシド、 例えば 下記一般式 [ 4 ]
Figure imgf000017_0001
The amine used in the present invention may be any one generally used in this field, and is not particularly limited. Examples thereof include methylamine, ethylamine, n-propylamine, n-butylamine, n-pentylamine, and n-pentylamine. Alkylamines having 1 to 6 carbon atoms such as hexylamine, cyclopentylamine, cyclohexylamine, etc., for example, dimethylamine, methylethylamine Dialkylamines having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms, such as min, getylamine, dipropylamine, etc., for example, carbon atoms such as trimethylamine, dimethylethylamine, methylgetylamine, triethylamine, trippyramine, etc. Trial quilamine having a number of 3 to 18, preferably 3 to 6 carbon atoms, for example, a carbon number of 1 to 18 such as monoethanolamine, diethanolamine, triethanolamine, dimethylethanolamine, getylethanolamine and the like. Mono- to trihydroxyalkylamines, preferably having 1 to 6 carbon atoms, such as methylenediamine, ethylenediamine, propylenediamine, isopropylenediamine, petylenediamine, methylmethylenediamine, ethylethylenediamine, methylethylene Diamine, methyl Alkylene diamines having 1 to 6 carbon atoms such as pyrylene diamine, ethyl propylene diamine, pentylene diamine, hexylene diamine, cyclopentylene diamine, cyclohexylene diamine, etc., and 2 to 2 carbon atoms such as dimethylenetriamine and diethylenetriamine. 12, preferably a dialkylenetriamine having 2 to 4 carbon atoms, for example, a trialkylenetetramine having 3 to 18 carbon atoms, such as trimethylenetetramine, triethylenetetramine, and the like, preferably a trialkylenetetramine having 3 to 6 carbon atoms, for example, tetramethylammonium Dimethyl hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-pentylammonium hydroxide, tetra-n-hexylammonium hydroxide M hydroxide Tetraalkylammonium hydroxide having 4 to 24 carbon atoms, such as tetracyclopentylammonium hydroxide, tetracyclohexylammonium hydroxide, etc., for example, the following general formula [4]
Figure imgf000017_0001
(式中、 R 3はアルキル基を、 R 4及び R 5はアルキレン基を示し、 m及 び nは正の整数を示す。) で示されるアルキルアミンーアルキレンォキサイ ド付加物等が挙げられ る。 (Wherein, R 3 represents an alkyl group, R 4 and R 5 represent an alkylene group, and m and n each represent a positive integer.) And an alkylamine-alkylene oxide adduct represented by the formula: You.
一般式 [ 4 ] に於いて、 R 3で示されるアルキル基としては、 例えば 直鎖状、 分枝状あるいは環状の通常炭素数 1〜 1 0のもの、 好ましくは 1〜 6のもの、 より好ましくは 1〜4のものが挙げられ、 具体的には、 例えばメチル基、 ェチル基、 n-プロピル基、 iso-プロピル基、 n-ブチル 基、 iso-ブチル基、 sec-ブチル基、 tert-ブチル基、 n-ペンチル基、 iso-ぺ ンチル基、 sec-ペンチル基、 tert-ペンチル基、 ネオペンチル基、 n-へキ シル基、 iso-へキシル基、 3-メチルペンチル基、 2-メチルペンチル基、 1,2- ジメチルブチル基、 sec-へキシル基、 tert-へキシル基、 n-ヘプチル基、 iso-ヘプチル基、 sec-ヘプチル基、 n-ォクチル基、 iso-ォクチル基、 sec- ォクチル基、 n-ノニル基、 n-デシル基、 シクロプロピル基、 シクロペン チル基、 シクロへキシル基、 シクロへプチル基、 シクロォクチル基、 シ クロデシル基等が挙げられる。 なかでもシクロへキシル基等が特に好ま しい。 In the general formula [4], the alkyl group represented by R 3 is, for example, a linear, branched, or cyclic alkyl group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably Are 1 to 4, specifically, for example, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl Group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, n-hexyl group, iso-hexyl group, 3-methylpentyl group, 2-methylpentyl group , 1,2-dimethylbutyl, sec-hexyl, tert-hexyl, n-heptyl, iso-heptyl, sec-heptyl, n-octyl, iso-octyl, sec-octyl , N-nonyl, n-decyl, cyclopropyl, cyclopentyl, cyclohexyl Heptyl group cycloalkyl, Shikurookuchiru groups include shea Kurodeshiru group. Among them, a cyclohexyl group and the like are particularly preferred.
R 4及び R 5で示されるアルキレン基としては、 例えば直鎖状、 分枝状 あるいは環状の炭素数 1〜 6の低級アルキレン基が好ましく、 例えばメ チレン基、 エチレン基、 プロピレン基、 ブチレン基、 メチルメチレン基、 ェチルエチレン基、 メチルエチレン基、 メチルプロピレン基、 ェチルプ ロピレン基、 ペンチレン基、 へキシレン基、 シクロペンチレン基、 シク 口へキシレン基等が挙げられ、 なかでもメチレン基、 エチレン基等が特 に好ましい。 As the alkylene group represented by R 4 and R 5 , for example, a linear, branched or cyclic lower alkylene group having 1 to 6 carbon atoms is preferable, for example, a methylene group, an ethylene group, a propylene group, a butylene group, Methyl methylene group, ethyl ethylene group, methyl ethylene group, methyl propylene group, ethyl Examples thereof include a propylene group, a pentylene group, a hexylene group, a cyclopentylene group, a cyclohexylene group, and a methylene group and an ethylene group are particularly preferable.
また、 m及び nは正の整数を示し、 通常 1〜 1 0、 好ましくは 1〜 5 である。  Further, m and n each represent a positive integer and are usually 1 to 10, preferably 1 to 5.
上記した如き一般式 [ 4 ] で示されるアルキルァミン—アルキレンォ キサイ ド付加物としては、 具体的には、 例えばメチルアミンジ (ポリオ キシメチレン)、 メチルアミンジ (ポリオキシエチレン)、 メチルァミン ジ (ポリオキシェチルプロピレン)、 メチルアミンジ (ポリオキシシクロ へキシレン)、 メチルァミン (ポリオキシメチレン) (ポリオキシェチレ ン)、 メチルァミン (ポリオキシメチレン) (ポリオキシェチルプロピレ ン)、 メチルァミン (ポリオキシメチレン) (ポリオキシシクロへキシレ ン)、 メチルァミン (ポリオキシエチレン) (ポリオキシェチルプロピレ ン)、 メチルァミン (ポリオキシェチルプロピレン) (ポリオキシシクロ へキシレン)、 ェチルアミンジ (ポリオキシメチレン)、 ェチルアミンジ (ポリォキシエチレン)、ェチルアミンジ(ポリォキシェチルプロピレン), ェチルアミンジ (ポリオキシシクロへキシレン)、 ェチルァミン (ポリオ キシメチレン) (ポリオキシエチレン)、 ェチルァミン (ポリオキシメチ レン) (ポリオキシェチルプロピレン)、 ェチルァミン (ポリオキシメチ レン) (ポリオキシシクロへキシレン)、 ェチルァミン (ポリオキシェチ レン) (ポリオキシェチルプロピレン)、 ェチルァミン (ポリオキシェチ レン) (ポリオキシシクロへキシレン)、 ェチルァミン (ポリオキシェチ ルプロピレン) (ポリオキシシクロへキシレン)、 プロピルアミンジ (ポ リオキシメチレン)、 プロピルアミンジ (ポリオキシエチレン)、 プロピ ルアミンジ (ポリオキシェチルプロピレン)、 プロピルアミンジ (ポリオ キシシクロへキシレン)、 プロピルアミン (ポリオキシメチレン) (ポリ ォキシエチレン)、 プロピルアミン (ポリオキシメチレン) (ポリオキシ ェチルプロピレン)、 プロピルアミン (ポリオキシメチレン) (ポリオキ シシクロへキシレン)、 プロピルアミン (ポリオキシエチレン) (ポリオ キシェチルプロピレン)、 プロピルアミン (ポリオキシエチレン) (ポリ ォキシシクロへキシレン)、 プロピルアミン(ポリオキシェチルプロピレ ン) (ポリオキシシクロへキシレン) 等のアルキルアミンジ(ポリオキシ アルキレン)、 例えばシクロへキシルアミンジ (ポリオキシメチレン)、 シク口へキシルアミンジ (ポリォキシエチレン)、 シクロへキシルアミン ジ (ポリオキシプロピレン)、 シクロへキシルアミンジ (ポリオキシプチ レン)、 シクロへキシルアミンジ (ポリオキシメチルメチレン)、 シクロ へキシルアミンジ(ポリォキシェチルエチレン)、 シクロへキシルァミン ジ (ポリオキエチルプロピレン)、 シクロへキシルアミンジ (ポリオキシ ペンチレン)、 シクロへキシルアミンジ (ポリオキシへキシレン)、 シク 口へキシルアミンジ(ポリォキシシクロへキシレン)、 シクロへキシルァ ミン (ポリオキシメチレン) (ポリオキシエチレン)、 シクロへキシルァ ミン (ポリオキシメチレン) (ポリオキシェチルプロピレン)、 シクロへ キシルァミン (ポリオキシメチレン) (ポリオキシシクロへキシレン)、 シクロへキシルァミン(ポリォキシエチレン) (ポリォキシェチルプロピ レン)、 シクロへキシルァミン (ポリオキシエチレン) (ポリオキシシグ 口へキシレン)、 シクロへキシルァミン (ポリオキシェチルプロピレン) (ポリオキシシクロへキシレン)、 シクロデシルァミンジ(ポリオキシメ チレン)、 シクロデシルアミンジ (ポリオキシエチレン)、 シクロデシル アミンジ (ポリォキシェチルプロピレン)、 シクロデシルァミンジ (ポリ ォキシシクロへキシレン)、 シクロデシルァミン (ポリオキシメチレン) リォキシェチルプロピレン)、シク口デシルアミン(ポリォキシメチレン) (ポリオキシシクロへキシレン)、 シクロデシルァミン(ポリオキシェチ レン) (ポリオキシェチルプロピレン)、 シクロデシルァミン (ポリオキ シエチレン) (ポリオキシシクロへキシレン)、 シクロデシルァミン (ポ リオキシェチルプロピレン) (ポリオキシシクロへキシレン)等のシクロ アルキルアミンジ (ポリオキシアルキレン) 等が挙げられる。 Examples of the alkylamine-alkylene oxide adduct represented by the general formula [4] described above include, for example, methylamine di (polyoxymethylene), methylamine di (polyoxyethylene), methylamine di (polyoxyethyl propylene), Methylamine di (polyoxycyclohexylene), methylamine (polyoxymethylene) (polyoxyethylene), methylamine (polyoxymethylene) (polyoxyethylpropylene), methylamine (polyoxymethylene) (polyoxycyclohexylene) , Methylamine (polyoxyethylene) (polyoxyethyl propylene), methylamine (polyoxyethyl propylene) (polyoxycyclohexylene), ethylamine di (polyoxymethylene), Luamine di (polyoxyethylene), ethyl amine di (polyoxy propylene), ethyl amine di (polyoxycyclohexylene), ethylamine (polyoxymethylene) (polyoxyethylene), ethylamine (polyoxymethylene) (polyoxyethyl propylene) , Ethylamine (polyoxymethylene) (polyoxycyclohexylene), ethylamine (polyoxyethylene) (polyoxyethylene propylene), ethylamine (polyoxyethylene) (polyoxycyclohexylene), ethylamine (polyoxyethylene propylene) (polyoxycyclo) Hexylene), propylamine di (polyoxymethylene), propylamine di (polyoxyethylene), propylamine di (polyoxyethyl propyle) ), Propylamine di (polio Xycyclohexylene), propylamine (polyoxymethylene) (polyoxyethylene), propylamine (polyoxymethylene) (polyoxyethylene), propylamine (polyoxymethylene) (polyoxycyclohexylene), propylamine (polyoxy Alkylamine di (polyoxyalkylene) such as ethylene) (polyoxyethyl propylene), propylamine (polyoxyethylene) (polyoxycyclohexylene), propylamine (polyoxyethyl propylene) (polyoxycyclohexylene) ), For example, cyclohexylamine di (polyoxymethylene), cyclohexylamine di (polyoxyethylene), cyclohexylamine di (polyoxypropylene), cyclohexylamine di (Polyoxybutylene), cyclohexylamine di (polyoxymethylmethylene), cyclohexylamine di (polyoxyethylethylene), cyclohexylamine di (polyoxyethylpropylene), cyclohexylamine di (polyoxypentylene), cyclohexylamine di ( Polyoxyhexylene), cyclohexylamine di (polyoxycyclohexylene), cyclohexylamine (polyoxymethylene) (polyoxyethylene), cyclohexylamine (polyoxymethylene) (polyoxyethylene propylene), cyclohexylamine (Polyoxymethylene) (polyoxycyclohexylene), cyclohexylamine (polyoxyethylene) (polyoxethyl), cyclohexylamine (poly) (Xoxyethylene) (polyoxysig hexylene), cyclohexylamine (polyoxyethylpropylene) (polyoxycyclohexylene), cyclodecylaminedi (polyoxymethylene), cyclodecylaminedi (polyoxyethylene), cyclodecylaminedi (poly Oxyshetyl propylene), cyclodecylamine (polyoxycyclohexylene), cyclodecylamine (polyoxymethylene) Roxyshethyl propylene), cyclyl decylamine (polyoxymethylene) (polyoxycyclohexylene), cyclodecylamine (polyoxyethylene) (polyoxyethyl propylene), cyclodecylamine (polyoxyethylene) (poly Cycloalkylamine di (polyoxyalkylene) such as oxycyclohexylene) and cyclodecylamine (polyoxyethyl propylene) (polyoxycyclohexylene).
上記した如きァミンのなかでも、 アルキレンジァミン、 ジアルキレン トリァミン、 トリアルキレンテトラミン、 アルキルアミンーアルキレン ォキサイ ド付加物、 テトラアルキルアンモニゥムヒドロキシドが好まし く、 なかでもアルキレンジァミン、 シクロアルキルアミンジ (ポリオキ シアルキレン) が特に好ましい。  Among the above-mentioned amines, alkylene diamine, dialkylene triamine, trialkylene tetramine, alkylamine-alkylene oxide adduct, and tetraalkylammonium hydroxide are preferred, and among them, alkylene diamine, cycloalkyl Alkylamine di (polyoxyalkylene) is particularly preferred.
具体的には、 エチレンジァミン、 ジエチレントリァミン、 トリェチレ ンテトラミン、 シクロへキシルアミンジ (ポリオキシエチレン)、 シクロ へキシルァミン (ポリオキシエチレン) (ポリオキシメチレン)、 テトラ メチルアンモニゥムヒドロキシドが好ましく、 なかでもエチレンジアミ ン、 シクロへキシルアミンジ (ポリオキシエチレン) が特に好ましい。 また、 これらアミンは、 単独で使用しても、 2種以上適宜組み合わせ て用いてもよい。  Specifically, ethylenediamine, diethylenetriamine, triethylenetetramine, cyclohexylaminedi (polyoxyethylene), cyclohexylamine (polyoxyethylene) (polyoxymethylene), and tetramethylammonium hydroxide are preferred. And cyclohexylamine di (polyoxyethylene) are particularly preferred. These amines may be used alone or in combination of two or more.
ァミンの使用量は、 ァミンの種類によって異なるため一概には言えな いが、 例えば通常 0.0001〜20重量%、 好ましくは 0.001〜: 10重量%、 より好ましくは 0.05〜: 10重量%である。  The amount of the amine used varies depending on the type of the amine and cannot be specified unconditionally. For example, it is usually 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, and more preferably 0.05 to 10% by weight.
本発明に於いて用いられる無機アル力リ化合物としては、 通常この分 野で用いられるものであればよく、 特に限定されないが、 例えばヒドロ キシァミン、 ヒドラジン、 アンモニア、 これらの塩 (例えば塩酸塩、 硫 酸塩等) 等の窒素含有無機アルカリ化合物、 例えば水酸化カリウム、 水 酸化ナトリウム等の無機アル力リ等が挙げられる。 なかでも、 窒素含有無機アルカリ化合物が好ましく、 特に、 金属を含 まない窒素含有無機アル力リ化合物が好ましい。 具体的にはヒドロキシ ルァミン、 ヒドラジン及びアンモニアが好ましく、 特に、 アンモニアが 好ましい。 The inorganic compound used in the present invention may be any compound usually used in this field, and is not particularly limited. Examples thereof include hydroxyamine, hydrazine, ammonia, and salts thereof (for example, hydrochloride, sulfate, etc.). And inorganic alkali compounds such as potassium hydroxide and sodium hydroxide. Among them, a nitrogen-containing inorganic alkali compound is preferable, and a nitrogen-containing inorganic alkali compound containing no metal is particularly preferable. Specifically, hydroxylamine, hydrazine and ammonia are preferred, and ammonia is particularly preferred.
また、 これら無機アルカリ化合物は、 単独で使用しても、 2種以上適 宜組み合わせて用いてもよい。  These inorganic alkali compounds may be used alone or in an appropriate combination of two or more.
無機アル力リ化合物の使用量は、 無機アル力リ化合物の種類によって 異なるため一概には言えないが、 例えば通常 0.0001〜20 重量%、 好ま しくは 0.001〜10重量%、 より好ましくは 0.05〜: 10重量%である。 本発明に於いて用いられるキレート剤としては、 通常この分野で用い られるものであればよく、 特に限定されない。 キレート剤を添加するこ とにより、 液中に分散した酸化銅等の金属酸化物を可溶化し、 再吸着を 抑えることができ、 また、 Feや A1等の不純物を基板表面から除去する こともできる。  The amount of the inorganic compound used depends on the type of the inorganic compound and cannot be specified unconditionally. For example, it is usually 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, more preferably 0.05 to: 10% by weight. The chelating agent used in the present invention may be any one usually used in this field, and is not particularly limited. By adding a chelating agent, metal oxides such as copper oxide dispersed in the liquid can be solubilized and re-adsorption can be suppressed, and impurities such as Fe and A1 can be removed from the substrate surface. it can.
このようなキレート剤としては、 例えば EDTA (エチレンジァミン 四酢酸)、 EDDA (エチレンジァミン二酢酸)、 EDTA— OH (ヒド ロキシエチレンジアミン三酢酸)、 GEDTA (ダリコールエーテルジァ ミン四酢酸)、 DTP A (ジエチレントリアミン五酢酸)、 I DA (イミ ノジ酢酸)、 me t h y l - EDTA (ジアミノプロパン四酢酸)、 T A (二トリ口三酢酸)、 TTHA (トリエチレンテトラミン六酢酸)、 こ れらのアンモニゥム塩、 これらとアミンとの錯塩等の直鎖型ァミノポリ カルボン酸類、 例えば Cy DTA ( t r a n s—シクロへキシルジアミ ノ四酢酸)、 これのアンモニゥム塩、 これとァミンとの錯塩等の環状アミ ノポリカルボン酸類等のアミノポリカルボン酸類、 例えば NT PO (二 トリロトリスメチレンホスホン酸)、 HEDPO (ヒドロキシェチリデン ジ (メチレンホスホン酸))、 これらのアンモニゥム塩、 これらとァミン との錯塩等のポリホスホン酸類、 例えば EDD PO (エチレンジァミン ジ (メチレンホスホン酸))、 EDTPO (エチレンジアミンテトラ (メ チレンホスホン酸))、 PDTPO (ジァミノプロパンテトラ (メチレン ホスホン酸))、 DETP PO (ジエチレントリアミンペン夕 (メチレン ホスホン酸))、 TTHPO (トリエチレンテトラミンへキサ (メチレン ホスホン酸))、 これらのアンモニゥム塩、 これらとァミンとの錯塩等の ァミノポリホスホン酸類等のホスホン酸類等が挙げられる。 Examples of such chelating agents include EDTA (ethylenediaminetetraacetic acid), EDDA (ethylenediaminediacetic acid), EDTA—OH (hydroxyethylenediaminetriacetic acid), GEDTA (dalicol etherdiaminetetraacetic acid), and DTPA (diethylenetriaminetetraacetic acid). Pentaacetic acid), IDA (iminodiacetic acid), methyl-EDTA (diaminopropanetetraacetic acid), TA (tri-triacetic triacetic acid), TTHA (triethylenetetramine hexaacetic acid), these ammonium salts, and Linear aminopolycarboxylic acids such as complex salts with amines, such as Cy DTA (trans-cyclohexyldiaminotetraacetic acid), ammonium salts thereof, and aminopolycarboxylic acids such as cyclic aminopolycarboxylic acids such as complexes with amines For example, NT PO (ditrilotrismethylene phosphonic acid), HEDPO (hydroxyethylidene di Phosphate)), these Anmoniumu salts, thereof with Amin Polyphosphonic acids such as complex salts with EDDPO (ethylenediaminedi (methylenephosphonic acid)), EDTPO (ethylenediaminetetra (methylenephosphonic acid)), PDTPO (diaminopropanetetra (methylenephosphonic acid)), DETPPO (diethylenetriamine Pennox (methylene phosphonic acid)), TTHPO (triethylenetetraminehexa (methylene phosphonic acid)), their ammonium salts, and phosphonic acids such as aminopolyphosphonic acids such as complex salts of these with amines.
なかでも、 EDTA、 C yDTA、 HEDPO、 EDTPO, DET P PO、 これらのアンモニゥム塩、 及びこれらとァミンとの錯塩が特に 好ましい。  Among them, EDTA, CyDTA, HEDPO, EDTPO, DETPPO, ammonium salts thereof, and complex salts of these with amines are particularly preferred.
尚、 上記に於いて、 錯塩を形成するァミンとしては、 先に述べたアミ ンと同じものが挙げられる。  In the above, examples of the amine that forms the complex salt include the same amines as described above.
また、 これらキレート剤は、 単独で使用しても、 2種以上適宜組み合 わせて用いてもよい。  These chelating agents may be used alone or in combination of two or more.
キレート剤の使用量は、 キレート剤の種類によって異なるため一概に は言えないが、 例えば通常 0.0001〜10重量%、 好ましくは 0.0001〜1 重量%、 より好ましくは 0.0001〜0.5重量%でぁる。  The amount of the chelating agent varies depending on the type of the chelating agent and cannot be specified unconditionally. For example, it is usually 0.0001 to 10% by weight, preferably 0.0001 to 1% by weight, more preferably 0.0001 to 0.5% by weight.
本発明に於いて用いられる界面活性剤としては、 通常この分野で用い られるものであればよく、 特に限定されない。 界面活性剤を添加するこ とにより、 基板表面に対する水性溶液の濡れ性を改善し得る。  The surfactant used in the present invention is not particularly limited as long as it is generally used in this field. The addition of a surfactant can improve the wettability of the aqueous solution on the substrate surface.
このような界面活性剤としては、 例えば分子中にポリオキシアルキレ ン基を有するノニオン系界面活性剤、 例えば分子中にスルホン酸基、 力 ルポキシル基、 ホスホン酸基、 スルホキシル基及びホスホノキシル基か ら選ばれる基を有するァニオン系界面活性剤、 例えばアルキルァミン、 例えばアルキルトリメチルアンモニゥム、 アルキルジメチルペンジルァ ンモニゥム等の第四級アンモニゥム、 例えばアルキルピリジニゥム、 こ れらの塩 (例えば塩酸塩、 硫酸塩等) 等のカチオン系界面活性剤、 例え ばアルキルべタイン誘導体、 イミダゾリニゥムべ夕イン誘導体、 スルホ ベ夕イン誘導体、 ァミノカルボン酸誘導体、 イミダゾリン誘導体、 アミ ンォキサイ ド誘導体等の両性界面活性剤等が挙げられるが、 これらに限 定されない。 Such surfactants include, for example, nonionic surfactants having a polyoxyalkylene group in the molecule, such as sulfonic acid groups, hydroxyloxyl groups, phosphonic acid groups, sulfoxyl groups, and phosphonoxyl groups in the molecule. Anionic surfactants having a selected group, for example, alkylamines, for example, quaternary ammoniums such as alkyltrimethylammonium, alkyldimethylpentylammonium, for example, alkylpyridinium, Cationic surfactants such as salts thereof (for example, hydrochloride, sulfate, etc.), for example, alkylbetaine derivatives, imidazoliniumbeine derivatives, sulfobeine derivatives, aminocarboxylic acid derivatives, imidazoline derivatives, and aminoxides Examples include, but are not limited to, amphoteric surfactants such as derivatives.
分子中にポリオキシアルキレン基を有するノニオン系界面活性剤とし ては、  Nonionic surfactants having a polyoxyalkylene group in the molecule include:
例えばポリォキシアルキレンアルキルエーテル、 ポリォキシアルキレン ポリアルキルァリールエーテル等が挙げられ、 より具体的には、 例えば ポリオキシエチレンアルキルェ一テル、 ポリオキシエチレンアルキルフ ェニルエーテル等の分子中にポリォキシエチレン基を有するノニオン系 界面活性剤、 例えばポリオキシプロピレンアルキルエーテル、 ポリオキ シプロピレンアルキルフエニルエーテル等の分子中にポリォキシプロピ レン基を有するノニオン系界面活性剤、 例えばポリオキシエチレンポリ ォキシプロピレンアルキルェ一テル、 ポリオキシエチレンポリオキシプ ロピレンアルキルフエニルエーテル等の分子中にポリォキシエチレン基 及びポリォキシプロピレン基を有するノニオン系界面活性剤等が挙げら れる。 For example, polyoxyalkylene alkyl ethers, polyoxyalkylene polyalkylaryl ethers, and the like can be mentioned. More specifically, for example, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, etc. Nonionic surfactants having a oxyethylene group, such as polyoxypropylene alkyl ethers, nonionic surfactants having a polyoxypropylene group in a molecule such as polyoxypropylene alkylphenyl ether, etc., such as polyoxyethylenepolypropylene Nonionic surfactants having a polyoxyethylene group and a polyoxypropylene group in the molecule, such as alkyl ether and polyoxyethylene polyoxypropylene alkylphenyl ether, are exemplified.
分子中にスルホン酸基、 カルボキシル基、 ホスホン酸基、 スルホキシ ル基及びホスホノキシル基から選ばれる基を有するァニオン系界面活性 剤としては、 例えばアルキルスルホン酸、 アルキルベンゼンスルホン酸、 アルキルナフ夕レンスルホン酸、 これらの塩 (例えばナトリウム、 カリ ゥム等のアルカリ金属塩、 例えばアンモニゥム塩等、 なかでもアンモニ ゥム塩が好ましい) 等の分子中にスルホン酸基を有するァニオン系界面 活性剤、 例えばアルキルカルボン酸、 アルキルベンゼンカルボン酸、 ァ ルキルナフタレンカルボン酸、 これらの塩 (例えばナトリウム、 力リウ ム等のアルカリ金属塩、 例えばアンモニゥム塩等、 なかでもアンモニゥ ム塩が好ましい) 等の分子中にカルボキシル基を有するァニオン系界面 活性剤、 例えばアルキルホスホン酸、 アルキルベンゼンホスホン酸、 ァ ルキルナフ夕レンホスホン酸、 これらの塩 (例えばナトリウム、 力リウ ム等のアルカリ金属塩、 例えばアンモニゥム塩等、 なかでもアンモニゥ ム塩が好ましい) 等の分子中にホスホン酸基を有するァニオン系界面活 性剤、 例えばアルキル硫酸エステル、 アルキルベンゼン硫酸エステル、 ポリオキシエチレンアルキル硫酸エステル、 ポリォキシエチレンアルキ ルベンゼン硫酸エステル、 ポリォキシエチレンアルキルナフ夕レン硫酸 エステル、 これらの塩 (例えばナトリウム、 カリウム等のアルカリ金属 塩、 例えばアンモニゥム塩等、 なかでもアンモニゥム塩が好ましい) 等 の分子中にスルホキシル基を有するァニオン系界面活性剤等が挙げられ る。 Examples of the anionic surfactant having a group selected from a sulfonic acid group, a carboxyl group, a phosphonic acid group, a sulfoxyl group and a phosphonoxyl group in the molecule include alkylsulfonic acid, alkylbenzenesulfonic acid, alkylnaphthylenesulfonic acid, and the like. (For example, alkali metal salts such as sodium and potassium, for example, ammonium salts, etc., among which ammonium salts are preferred), etc., and anionic surfactants having a sulfonic acid group in the molecule, for example, alkyl carboxylic acids, Alkyl benzene carboxylic acid, alkyl naphthalene carboxylic acid, and salts thereof (eg, sodium, lithium Anionic surfactants having a carboxyl group in the molecule, such as alkylphosphonic acid, alkylbenzenephosphonic acid, alkylnaphthylenephosphonic acid, etc. Anionic surfactants having a phosphonic acid group in the molecule, such as salts thereof (for example, alkali metal salts such as sodium and potassium, for example, ammonium salts, among which ammonium salts are preferable), such as alkyl sulfates Alkyl benzene sulfate, polyoxyethylene alkyl sulfate, polyoxyethylene alkyl benzene sulfate, polyoxyethylene alkyl naphthene sulfate, salts thereof (eg, alkali metal salts such as sodium and potassium, and the like) If Anmoniumu salts, Ru include among others Anmoniumu salts are preferred) Anion-based surfactants having a sulfoxyl group in a molecule, such as and the like.
なかでも、 ノニオン系界面活性剤及びァニオン系界面活性剤が好まし ェ一テルが特に好ましく、 ァニオン系界面活性剤としては、 分子中にス ルホン酸基を有するもの、 分子中にスルホキシル基を有するものが特に 好ましい。 より具体的にはポリォキシエチレンアルキルエーテル等の分 子中にポリォキシエチレン基を有するノニオン系界面活性剤、 ポリォキ シエチレンポリォキシプロピレンアルキルエーテル等の分子中にポリォ キシエチレン基及びポリオキシプロピレン基を有するノニオン系界面活 性剤、 アルキルベンゼンスルホン酸等の分子中にカルボキシル基を有す るァニオン系界面活性剤、 ポリォキシエチレンアルキル硫酸エステル等 の分子中にスルホキシル基を有するァニオン系界面活性剤が特に好まし い。  Among them, nonionic surfactants and anionic surfactants are preferred, and esters are particularly preferred. Examples of the anionic surfactant include those having a sulfonic acid group in a molecule and those having a sulfoxyl group in a molecule. Those are particularly preferred. More specifically, nonionic surfactants having a polyoxyethylene group in a molecule such as a polyoxyethylene alkyl ether, and a polyoxyethylene group and a polyoxygen in a molecule such as a polyoxyethylene polyoxypropylene alkyl ether. Nonionic surfactants having a propylene group, anionic surfactants having a carboxyl group in the molecule such as alkylbenzenesulfonic acid, and anionic surfactants having a sulfoxyl group in the molecule such as polyoxyethylene alkyl sulfate. Activators are particularly preferred.
また、 これら界面活性剤は、 単独で使用しても、 2種以上適宜組み合 わせて用いてもよい。 These surfactants may be used alone or in combination of two or more. They may be used together.
界面活性剤の使用量は、 界面活性剤の種類によって異なるため一概に は言えないが、 ノニオン系界面活性剤は、 臨界ミセル濃度以上であれば よく、 それより薄ければエッチングの速度が速くなり、 効果が薄れる。 また、 ノニオン性界面活性剤以外の界面活性剤は、 基板表面処理剤の表 面張力を低下させ得る量であればよい。 具体的な使用量としては、 界面 活性剤の種類により異なるため一概には言えないが、通常 0.0001〜 1重 量%、 好ましくは 0.0001〜0.1 重量%、 より好ましくは 0.0001〜0.05 重量%である。 本発明の金属腐蝕防止剤は、 上記した如き本発明に係るアミノ酸又は その誘導体と、 上記した如き有機酸、 ァミン、 無機アルカリ化合物、 キ レー卜剤及び界面活性剤のうちの少なくとも一つとを含んでなるものが 好ましく、 更には、 上記した如き本発明に係るアミノ酸又はその誘導体 と、 キレート剤又は 及び界面活性剤とを含んでなるものが特に好まし い。 本発明の金属腐蝕防止剤は、 そこに含まれる本発明に係る分子内にチ オール基を有するアミノ酸又はその誘導体が有する、 金属表面に吸着し て当該表面に保護膜を形成することによって、 金属表面を保護して水溶 液や空気中から受ける金属の酸化や腐蝕を抑制し得るという性質を利用 したものであり、 本発明の金属腐蝕防止剤を用いて、 例えば表面に金属 被覆部を有する基板表面を処理すれば、 当該基板表面の金属の酸化や腐 食を防止し得、 更には基板表面の金属不純物を有効に除去し得る。 本発明の処理剤は、 上記した如き本発明の金属腐蝕防止剤、 即ち、 本 発明に係る分子内にチオール基を有するアミノ酸又はその誘導体、 要す れば、 例えば前述した如き、 有機酸、 ァミン、 無機アルカリ化合物、 キ レート剤、 界面活性剤等の通常この分野で用いられる試薬類を前述した 如き濃度範囲で含んでなるものである。 The amount of surfactant used cannot be determined unconditionally because it differs depending on the type of surfactant, but nonionic surfactants only need to be at or above the critical micelle concentration, and if they are thinner, the etching rate will increase. , The effect diminishes. Further, the surfactant other than the nonionic surfactant may be an amount that can reduce the surface tension of the substrate surface treatment agent. The specific amount used is different depending on the type of the surfactant and cannot be specified unconditionally. However, it is usually 0.0001 to 1% by weight, preferably 0.0001 to 0.1% by weight, more preferably 0.0001 to 0.05% by weight. The metal corrosion inhibitor of the present invention comprises the amino acid or the derivative thereof according to the present invention as described above, and at least one of the above-described organic acids, amines, inorganic alkali compounds, chelating agents, and surfactants. The one comprising an amino acid or a derivative thereof according to the present invention as described above, a chelating agent or a surfactant is particularly preferred. The metal corrosion inhibitor according to the present invention comprises an amino acid having a thiol group in a molecule or a derivative thereof according to the present invention, which is contained therein and which is adsorbed on a metal surface to form a protective film on the metal surface. It utilizes the property that it can protect the surface and suppress the oxidation and corrosion of metals received from aqueous solutions and air. For example, a substrate having a metal-coated portion on the surface using the metal corrosion inhibitor of the present invention. By treating the surface, oxidation and corrosion of the metal on the substrate surface can be prevented, and furthermore, metal impurities on the substrate surface can be effectively removed. The treating agent of the present invention is a metal corrosion inhibitor of the present invention as described above, Amino acids having a thiol group in the molecule according to the present invention or derivatives thereof, if necessary, for example, reagents usually used in this field, such as organic acids, amines, inorganic alkali compounds, chelating agents, and surfactants as described above. Are contained in the concentration range as described above.
尚、 上記した如き通常この分野で用いられる試薬類のうちの少なくと も一つを、 本発明の処理剤中に含有させれば、 基板表面の金属の酸化や 腐蝕を防止するのと同時に、 金属不純物 (例えば酸化銅、 酸化鉄等の金 属酸化物等) やパーティクル等をより有効に除去し得る。 なかでも、 上 記した如き本発明に係るアミノ酸又はその誘導体と、 キレート剤又は 及び界面活性剤とを含んでなるものが特に好ましい。  When at least one of the reagents usually used in this field as described above is contained in the treatment agent of the present invention, oxidation and corrosion of the metal on the substrate surface can be prevented at the same time. Metal impurities (for example, metal oxides such as copper oxide and iron oxide) and particles can be more effectively removed. Among them, those comprising the amino acid or the derivative thereof according to the present invention as described above, a chelating agent or a surfactant are particularly preferable.
上記した如き試薬類の具体例、 好ましい態様等は先に述べた通りであ る。 本発明の処理剤は、 通常水性溶液の状態であり、 前述した如き本発明 の金属腐蝕防止剤と同様の調製方法により、 当該本発明に係るアミノ酸 又はその誘導体を水に添加溶解させることにより調製される。  Specific examples and preferred embodiments of the reagents as described above are as described above. The treating agent of the present invention is usually in the form of an aqueous solution, and is prepared by adding and dissolving the amino acid or the derivative thereof according to the present invention in water by the same preparation method as the metal corrosion inhibitor of the present invention as described above. Is done.
このように調製された本発明の処理剤は、 使用前に濾過処理等を行う のが好ましい。 本発明の処理方法 (金属腐蝕防止方法) は、 上記した如き本発明の処 理剤 (金属腐蝕防止剤) と、 表面に金属被覆部を有する基板表面の金属 とを接触させて、 当該基板表面を本発明の処理剤 (金属腐蝕防止方法) で処理すればよい。  The treating agent of the present invention thus prepared is preferably subjected to a filtration treatment or the like before use. The treatment method (metal corrosion prevention method) of the present invention comprises contacting the treatment agent (metal corrosion inhibitor) of the present invention as described above with a metal on the surface of a substrate having a metal coating on the surface. May be treated with the treating agent of the present invention (method for preventing metal corrosion).
表面に金属被覆部を有する基板表面を、 本発明の処理剤 (金属腐蝕防 止方法) で処理する方法としては、 通常この分野で行われる自体公知の 方法であればよく、 具体的には、 単に基板を処理剤 (金属腐蝕防止剤) 中に浸漬するディップ処理、 基板に処理剤をシャワー状に振りかける枚 葉処理等の方法が挙げられる。 The method of treating the substrate surface having a metal coating on the surface with the treating agent of the present invention (method for preventing metal corrosion) may be any method known per se usually performed in this field, and specifically, Simply treating the substrate (metal corrosion inhibitor) Examples of the method include a dipping process in which the substrate is immersed in the substrate and a single-wafer process in which a treating agent is sprinkled on the substrate in a shower shape.
本発明に於いて、 「処理」 とは、 上記したように、 本発明の処理剤と基 板表面の金属とを接触させることをいう。  In the present invention, “treatment” refers to bringing the treatment agent of the present invention into contact with the metal on the substrate surface, as described above.
より具体的には、 例えば保存処理、 例えば洗浄処理等に付す前の前処 理、 洗浄処理等が挙げられるが、 これらに限定されるものではない。 即ち、 本発明の金属腐蝕防止剤は、 例えば表面に金属被覆部を有する 基板用の保存剤、 又は表面に金属被覆部を有する基板用の前処理剤、 或 いは表面に金属被覆部を有する基板用の洗浄剤等の処理剤としても使用 し得る。  More specifically, examples include, but are not limited to, pretreatment, cleaning treatment, and the like before storage treatment, for example, cleaning treatment. That is, the metal corrosion inhibitor of the present invention is, for example, a preservative for a substrate having a metal coating on the surface, or a pretreatment agent for a substrate having a metal coating on the surface, or having a metal coating on the surface. It can also be used as a processing agent such as a cleaning agent for substrates.
例えば本発明の処理剤を、 表面に金属被覆部を有する基板用の保存剤 として用いれば、 水溶液や空気等の各種雰囲気から、 基板保存中に当該 金属が受ける酸化や腐蝕を防止することができ、 更には基板表面の金属 不純物をも有効に除去することができる。 本発明の基板の保存方法としては、 例えば上記した如きディップ処理 等を行って本発明の処理剤 (保存剤) 中に基板を浸漬したまま保存する 方法、 上記した如き枚葉処理等を行って本発明の処理剤 (保存剤) を基 板に振りかけたまま保存する方法、 或いはこれらの処理を行った後、 基 板を乾燥して保存する方法等が挙げられる。  For example, if the treating agent of the present invention is used as a preservative for a substrate having a metal-coated portion on its surface, it is possible to prevent the metal from being oxidized and corroded during storage of the substrate from various atmospheres such as an aqueous solution and air. Further, metal impurities on the substrate surface can be effectively removed. As a method for storing the substrate of the present invention, for example, a method of performing the above-described dip treatment or the like and storing the substrate while immersing the substrate in the processing agent (preservative) of the present invention, or performing the above-described single wafer processing or the like Examples include a method of preserving the treating agent (preservative) of the present invention while sprinkling it on the substrate, or a method of drying and storing the substrate after performing these treatments.
また、 例えば本発明の処理剤を、 例えば表面に金属被覆部を有する基 板を洗浄工程等に共する前に、 当該基板用の前処理剤として用いて基板 表面の金属を処理すれば、 次工程で用いられる洗浄剤等の水溶液ゃ次ェ 程に共される間の空気等の各種雰囲気から、 次工程の過程中に金属が受 ける酸化や腐蝕を防止することができ、 更には、 超純水による洗浄等の 簡単な操作によって、 基板表面の金属不純物を有効に除去することがで さる。 本発明の基板の前処理方法としては、 例えば上記した如きディップ処 理により本発明の処理剤 (前処理剤) 中に基板を浸漬する方法、 上記し た如き枚葉処理により本発明の処理剤 (前処理剤) を基板に振りかける 方法、 或いはこれらの処理を行った後、 基板を乾燥する方法等が挙げら れる。 In addition, for example, before treating a substrate having a metal-coated portion on a surface thereof in a cleaning step or the like, the treatment agent of the present invention is used as a pretreatment agent for the substrate to treat the metal on the substrate surface. An aqueous solution of a cleaning agent or the like used in the process can prevent oxidation and corrosion of the metal during the process of the next process from various atmospheres such as air during the next process. By simple operations such as cleaning with pure water, metal impurities on the substrate surface can be effectively removed. Monkey Examples of the pretreatment method of the substrate of the present invention include a method of dipping the substrate in the treatment agent (pretreatment agent) of the present invention by the above-described dip treatment, and a treatment agent of the present invention by the single-wafer processing as described above. A method of sprinkling the (pretreatment agent) on the substrate, or a method of drying the substrate after performing these treatments, and the like.
このようにして得られた基板は、 通常この分野で行われる自体公知の 表面処理剤 (洗浄剤) を用いる洗浄方法に共することができる。  The substrate thus obtained can be subjected to a cleaning method using a surface treatment agent (cleaning agent) known per se, which is usually performed in this field.
上記に於いて用いられる表面処理剤 (洗浄剤) としては、 この分野で 用いられるものは全て使用することができ、 特に限定されないが、 例え ば特開平 5-263275号公報、 特開平 6-112646号公報、 特開平 6-287774 号公報、特開平 7-54169号公報、特開平 7-79061号公報、特開平 7-166381 号公報、 特開平 7-292483号公報、 特開 2000-8185号公報、 特開平 10- 251867号公報、 特開平 7-267933号公報、 特開平 11-50275号公報等に 記載された表面処理剤(洗净剤)、後述する本発明の洗浄剤等が挙げられ る。 更に、 例えば本発明の処理剤を、 例えば表面に金属被覆部を有する基 板用の洗浄剤として用いて、 表面に金属被覆部を有する基板表面を処理 すれば、 基板表面の金属の腐蝕や酸化を防止し得、 且つ当該表面の金属 不純物を有効に除去し得る。 本発明の処理剤は、 前述したように、 本発明に係る分子内にチオール 基を有するアミノ酸又はその誘導体と、 前述した如き、 有機酸、 ァミン、 無機アル力リ化合物、 キレート剤及び界面活性剤のうちの少なくとも一 つとを含んでなるものが好ましく、 本発明に係るアミノ酸又はその誘導 体と、 キレート剤又は Z及び界面活性剤とを含んでなるものがより好ま しいが、 本発明の処理剤を、 洗浄剤として使用する際には、 このような 組成とするのが特に好ましい。 As the surface treatment agent (cleaning agent) used in the above, any one used in this field can be used, and it is not particularly limited. For example, JP-A-5-263275, JP-A-6-112646 JP, JP-A-6-287774, JP-A-7-54169, JP-A-7-79061, JP-A-7-166381, JP-A-7-292483, JP-A-2000-8185 Surface treatment agents (detergents) described in JP-A-10-251867, JP-A-7-267933, JP-A-11-50275, and the like, and the detergent of the present invention described later. . Further, for example, if the treating agent of the present invention is used as a cleaning agent for a substrate having a metal-coated portion on its surface to treat the surface of the substrate having a metal-coated portion on the surface, corrosion and oxidation of the metal on the substrate surface can be achieved. Can be prevented, and metal impurities on the surface can be effectively removed. As described above, the treating agent of the present invention comprises, as described above, an amino acid having a thiol group in a molecule or a derivative thereof, and an organic acid, an amine, an inorganic compound, a chelating agent, and a surfactant as described above. At least one of And more preferably those comprising the amino acid or derivative thereof according to the present invention, a chelating agent or Z and a surfactant, but the treating agent of the present invention is used as a detergent. When used, such a composition is particularly preferable.
尚、 上記した如き有機酸、 ァミン、 無機アルカリ化合物、 キレート剤 及び界面活性剤の具体例、 好ましい態様等は先に述べた通りである。 本発明の洗浄剤は、 通常水性溶液の状態であり、 当該本発明に係るァ ミノ酸又はその誘導体 (又はこれと、 有機酸、 ァミン、 無機アルカリ化 合物、 キレート剤及び界面活性剤のうちの少なくとも一つと) を、 水に 添加溶解させることにより調製される。 、 本発明に係るアミノ酸又はその誘導体を水に溶解する方法としては、 例えば水の中に、別途溶解した本発明に係るアミノ酸又はその誘導体(又 はこれと、 別途溶解した有機酸、 ァミン、 無機アルカリ化合物、 キレー ト剤及び界面活性剤のうちの少なくとも一つと) を添加する方法や、 本 発明に係るアミノ酸又はその誘導体 (又はこれと、 有機酸、 ァミン、 無 機アル力リ化合物、 キレート剤及び界面活性剤のうちの少なくとも一つ と) を直接水に添加し、 溶解、 攪拌する方法、 或いは、 水の中に添加、 溶解した本発明に係るアミノ酸又はその誘導体と、 別途水の中に添加、 溶解した、 有機酸、 ァミン、 無機アルカリ化合物、 キレート剤及び界面 活性剤のうちの少なくとも一つとを、 攪拌、 混合する方法等が挙げられ る。  The specific examples and preferred embodiments of the above-mentioned organic acid, amine, inorganic alkali compound, chelating agent and surfactant are as described above. The detergent of the present invention is usually in the form of an aqueous solution, and the amino acid or a derivative thereof (or an organic acid, an amine, an inorganic alkali compound, a chelating agent and a surfactant) according to the present invention is used. Is added to and dissolved in water. Examples of the method for dissolving the amino acid or its derivative according to the present invention in water include, for example, the amino acid or its derivative according to the present invention separately dissolved in water (or the separately dissolved organic acid, amine, or inorganic acid). A method of adding an alkali compound, at least one of a chelating agent and a surfactant, and an amino acid or a derivative thereof according to the present invention (or an organic acid, an amine, an inorganic compound, a chelating agent) And at least one of a surfactant and water) and directly dissolving and stirring them in water, or adding the amino acid or derivative thereof according to the present invention dissolved and added in water, and separately in water Stirring and mixing the added and dissolved organic acid, amine, inorganic alkali compound, at least one of a chelating agent and a surfactant, and the like. .
このようにして調製した本発明の洗浄剤は、 使用前に濾過処理等を行 うのが好ましい。 また、 ここで用いられる水は、 蒸留、 イオン交換処理 等により精製されたものであればよいが、 この分野で用いられる、 いわ ゆる超純水がより好ましい。 本発明の洗浄方法は、 表面に金属被覆部を有する基板表面を、 上記し た如き本発明の洗浄剤で処理すればよい。 The cleaning agent of the present invention thus prepared is preferably subjected to a filtration treatment or the like before use. Further, the water used here may be any water that has been purified by distillation, ion exchange treatment or the like, but so-called ultrapure water used in this field is more preferable. In the cleaning method of the present invention, the surface of a substrate having a metal coating on the surface may be treated with the cleaning agent of the present invention as described above.
表面に金属被覆部を有する基板表面を、 本発明の洗浄剤で処理する方 法としては、通常この分野で行われる自体公知の洗浄方法であればよく、 例えば前述した如きディップ処理、 枚葉処理等の方法が挙げられる。 更に、本発明に於いては、洗浄時に物理的洗浄を併用することにより、 より効果的に金属不純物 (酸化同等の金属酸化物等) を除去することが できる。 併用の具体的方法としては、 表面に金属被覆部を有する基板表 面を、 本発明の洗浄剤の存在下、 物理的洗浄工程に付すこと等が挙げら れる。  The method of treating the substrate surface having a metal coating on the surface with the cleaning agent of the present invention may be any cleaning method known per se, which is usually performed in this field, and includes, for example, the dip treatment and the single-wafer treatment as described above. And the like. Further, in the present invention, by using physical cleaning at the same time as cleaning, metal impurities (metal oxide equivalent to oxidation, etc.) can be more effectively removed. As a specific method of the combined use, there is a method in which a substrate surface having a metal-coated portion on the surface is subjected to a physical cleaning step in the presence of the cleaning agent of the present invention.
上記方法に於いて、 本発明の洗浄剤を存在させる方法としては、 具体 的には、 上記した如きディップ処理、 枚葉処理等により本発明の洗浄剤 を存在させた状態として物理的洗浄工程に付す方法等が挙げられる。 また、 物理的洗浄 (工程) としては、 例えば高速回転のポリビニルァ ルコール製ブラシ等を用いて基板表面を洗浄するブラシスクラブ洗浄、 高周波を用いるメガソニック洗浄等が挙げられる。  In the above method, as a method for causing the cleaning agent of the present invention to exist, specifically, the physical cleaning step is performed in a state where the cleaning agent of the present invention is present by the above-described dip treatment, single-wafer processing, or the like. And the like. Examples of the physical cleaning (step) include brush scrub cleaning for cleaning the substrate surface using a high-speed rotating polyvinyl alcohol brush or the like, megasonic cleaning using high frequency, and the like.
物理的洗浄を併用する場合のより具体的な手法としては、 例えば基板 を本発明の洗浄剤中に浸潰した後、 当該洗浄液中から取り出して基板表 面に当該洗浄剤を存在させた状態とした後に物理的洗浄を行う方法、 基 板を本発明の洗浄剤中に浸漬させたまま物理的洗浄を行う方法、 基板表 面に本発明の洗浄剤を振りかけて基板表面に当該洗浄剤を存在させた状 態とした後に物理的洗浄を行う方法、 或いは基板表面に本発明の洗浄剤 を振りかけながら物理的洗浄を行う方法等が挙げられる。  As a more specific method when physical cleaning is used in combination, for example, after immersing the substrate in the cleaning agent of the present invention, removing the substrate from the cleaning solution and allowing the cleaning agent to exist on the surface of the substrate Physical cleaning after cleaning, a method in which physical cleaning is performed while the substrate is immersed in the cleaning agent of the present invention, and the cleaning agent of the present invention is sprinkled on the surface of the substrate, and the cleaning agent is present on the surface of the substrate. A method in which physical cleaning is performed after the state is performed, or a method in which physical cleaning is performed while the cleaning agent of the present invention is sprinkled on the substrate surface, may be used.
上記した如き本発明の金属腐蝕防止剤及び処理剤(保存剤、前処理剤、 洗浄剤等) の液性は特に限定されず、 用いられる基板の種類や使用目的 等により通常この分野で用いられる p H範囲から適宜選択される。 The liquid properties of the metal corrosion inhibitor and the treating agent (preservative, pretreatment agent, cleaning agent, etc.) of the present invention as described above are not particularly limited, and the type and purpose of the substrate used The pH is appropriately selected from the pH range usually used in this field.
より具体的には、 弱酸性乃至アルカリ性が好ましく、 通常 pH 2〜13、 好ましくは pH 3〜12、 より好ましくは pH 4〜: 10である。 このような pH 範囲とすることで、 基板表面とパーティクルとの電気的な反発が大 きくなるので、 パーティクル及び金属不純物 (例えば酸化銅等の金属酸 化物等) の除去効果が向上し、 更には層間絶縁膜である Si02をエツチン グする恐れがより少なくなる。 本発明の金属腐蝕防止剤及び処理剤 (保存剤、 前処理剤、 洗浄剤等) は、 例えば表面に金属被覆部を有する基板に使用し得る。 More specifically, it is preferably weakly acidic to alkaline, and usually has a pH of 2 to 13, preferably 3 to 12, and more preferably 4 to 10. By setting the pH in such a range, the electrical repulsion between the substrate surface and the particles is increased, so that the effect of removing the particles and metal impurities (for example, metal oxides such as copper oxide) is improved. risk of Etsuchin grayed the Si0 2 is an interlayer insulating film becomes less. The metal corrosion inhibitor and treatment agent (preservative, pretreatment agent, detergent, etc.) of the present invention can be used, for example, for a substrate having a metal coating on the surface.
このような基板としては、 例えば半導体基板、 ポリイミド榭脂等のプ リント基板、 L C D等に使用されるガラス基板等が挙げられ、 特に半導 体基板に有用である。 まだ、 当該基板表面に被覆される金属としては、 硫黄と反応する金属であればよく、 例えば銅、 クロム、 銀、 金等が挙げ られ、 特に金属銅に有用である。 なかでも、 表面に銅被覆部を有する ( 銅配線が施された) 半導体基板に特に,有用である。 以下に実施例及び比較例を挙げるが、 本発明はこれらにより何等限定 されるものではない。 また、 本実施例及び比較例に於いて使用した金属 Cu堆積ゥェ一八' び Cu汚染ゥェ一ハは夫々以下の方法により調製したものを使用し、 ま た、金属 Cu堆積ゥエー八表面の Cuの膜厚及び Cu汚染ゥェ一ハ表面に 吸着残存している Cu (銅原子) の吸着量 (残存 Cu濃度) は夫々以下の 方法により測定した。 〔金属 Cu堆積ゥエー八〕 Examples of such a substrate include a semiconductor substrate, a printed substrate such as a polyimide resin, a glass substrate used for an LCD, and the like, and are particularly useful for a semiconductor substrate. Still further, the metal coated on the substrate surface may be any metal that reacts with sulfur, such as copper, chromium, silver, and gold, and is particularly useful for metallic copper. Particularly, it is particularly useful for a semiconductor substrate having a copper coating on its surface (with copper wiring). Hereinafter, Examples and Comparative Examples will be described, but the present invention is not limited thereto. The metal Cu deposition layer 18 and the Cu contamination layer used in this example and the comparative example were prepared by the following methods, respectively. The Cu film thickness and the amount of Cu (copper atoms) adsorbed and remaining on the surface of the Cu contamination wafer were measured by the following methods. [Metal Cu deposition @ Ahachi]
4インチシリコンゥエー八の表面にスパッタ法により金属 Cuを堆積 させたものを銅堆積ゥエーハとした。  A copper deposit was prepared by depositing metallic Cu on the surface of 4-inch silicon wafer by sputtering.
尚、 下記に示す方法により当該金属 Cu堆積ゥェ一八表面の銅の膜厚 は、 lOOOnmであることを確認した。  In addition, it was confirmed by the method described below that the thickness of copper on the surface of the metal Cu deposition layer was 100 nm.
CCu汚染ゥェ一八〕 CCu contamination 18)
熱酸化法により表面を Si02とした 4インチシリコンゥェ一ハを、 1 ppmとなるように Cuイオンを添加したスラリー水溶液 (1 %シリカ含 有 0.1 %過酸化水素水) 1 Lに 1分間浸潰し、 超純水により 10分間流水 洗浄した後、 スピン乾燥したものを Cu汚染ゥェ一ハとした。 4 inch silicon © E one tooth in which the surface and the Si0 2 by thermal oxidation, 1 ppm and aqueous slurry with the addition of Cu ions so (1% silica containing chromatic 0.1% hydrogen peroxide solution) 1 minute 1 L After being immersed, washed with running ultrapure water for 10 minutes, and spin-dried, it was used as a Cu contamination wafer.
尚、 下記に示す方法により、 当該 Cu汚染ゥエー八には、 Cu (銅原子) が 3 X 101 4原子 Zcm2 吸着残存していることを確認した。 〔金属 Cu膜厚測定法〕 In addition, it was confirmed by the method described below that Cu (copper atom) 3 × 10 14 atoms Zcm 2 was adsorbed and remained in the Cu contamination layer 8. [Metal Cu film thickness measurement method]
ゥエーハを半分に割り、 断面を電子顕微鏡により観察し、 金属 Cu膜厚 を測定した。  ゥ The wafer was divided in half, the cross section was observed with an electron microscope, and the metal Cu film thickness was measured.
〔Cu濃度測定法〕 (Cu concentration measurement method)
ゥエー八表面に吸着残存した Cuを、 フッ酸一硝酸水溶液で溶解回収 した後、 該回収液中の Cu濃度を、 原子吸光法 (黒鉛炉原子吸光分光分 析装置) により測定した。 得られた測定値に基づいて Cu (銅原子) の 吸着量 (残存 Cu濃度) を求めた。 尚、本実施例及び比較例に於いては、特に断りのない限り濃度を表す%、 ppm, ppbは全て重量比を示す。 また、 使用する水は全て超純水であり、 銅が O.Olppb以下であることを確認してから使用した。 実施例 After the Cu adsorbed on the surface of A-8 was dissolved and recovered with a hydrofluoric acid / nitric acid aqueous solution, the Cu concentration in the recovered solution was measured by an atomic absorption method (graphite furnace atomic absorption spectrometer). Based on the obtained measured values, the adsorption amount of Cu (copper atoms) (residual Cu concentration) was determined. In Examples and Comparative Examples,%, ppm, and ppb all represent weight ratios unless otherwise specified. The water used is all ultrapure water, Copper was used after confirming that it was O.Olppb or less. Example
実施例 1〜 1 4 Examples 1-1 to 14
表 1に記載の各金属腐蝕防止剤 (保存剤) 1 Lに、 上記方法で作製し た金属 Cu堆積ゥエーハを室温下、 5時間浸潰した。 その後、 ゥエーハ を取り出し、 超純水で 1 0分間リンスし、 スピン乾燥させた。  1 L of each metal corrosion inhibitor (preservative) listed in Table 1 was immersed in the metal Cu deposition wafer prepared by the above method at room temperature for 5 hours. Thereafter, the wafer was taken out, rinsed with ultrapure water for 10 minutes, and spin-dried.
このように処理した金属 Cu堆積ゥェ一ハについて、 金属 Cuの酸化 の有無を確認するため、 ゥェ一八表面の Cu膜表面の色調を目視で観察 し、 また、 金属 Cuの腐蝕の有無を確認するため、 ゥエーハ表面の金属 Cuの膜厚を測定した。 結果を表 1に示す。 In order to confirm the presence or absence of oxidation of the metal Cu on the metal Cu deposition wafer treated in this way, the color tone of the Cu film surface on the wafer surface was visually observed, and the presence or absence of corrosion of the metal Cu To confirm this, the film thickness of metallic Cu on the wafer surface was measured. Table 1 shows the results.
表 1 table 1
Figure imgf000034_0001
比較例 1 ~ 6
Figure imgf000034_0001
Comparative Examples 1 to 6
表 2に記載の各種溶液を用いた以外は、 実施例 1 ~ 1 4と同様の方法 で金属 Cu堆積ゥエーハを処理した後、 ゥエーハ表面の Cu膜表面の色 調を目視で観察し、 また、 ゥエーハ表面の金属 Cuの膜厚を測定した。 結果を表 2に示す。 尚、 表 2中の一は測定不能を示す。 表 2  Except that the various solutions described in Table 2 were used, metal Cu deposition was treated in the same manner as in Examples 1 to 14, and then the color tone of the Cu film surface on the wafer surface was visually observed. (4) The film thickness of metallic Cu on the surface of the wafer was measured. Table 2 shows the results. One in Table 2 indicates that measurement was not possible. Table 2
Figure imgf000035_0001
表 1及び表 2から明らかなように、本発明の金属腐蝕防止剤(保存剤) (実施例 1〜 1 4 ) 中で金属 Cu堆積ゥエー八を保存した場合には、 ゥ エーハ表面の Cu膜表面の色調に変化はなく、 金属 Cuが酸化されてお らず、 且つ Cu膜厚に殆ど変化が無く、 金属 Cuが腐蝕されていないこ とが判る。
Figure imgf000035_0001
As is apparent from Tables 1 and 2, when the metal Cu deposition (A8) was preserved in the metal corrosion inhibitor (preservative) of the present invention (Examples 1 to 14), the Cu film on the surface of the wafer was obtained. It can be seen that there was no change in the color tone of the surface, the metal Cu was not oxidized, and there was almost no change in the Cu film thickness, and the metal Cu was not corroded.
これに対して、 比較例 1及び 5の溶液中で金属 Cu堆積ゥエーハを保 存した場合には、 金属 Cu が著しく腐蝕され、 且つゥェ一ハ表面の Cu 膜表面の光沢が消失し、 金属 Cuが酸化されていることが判る。 また、 比較例 4及び 6の溶液中で保存した場合には、 ゥエーハ表面の Cu膜表 面の色調に変化はなく、 金属 Cuが酸化されてはいないものの、 Cu膜厚 が減少し、 金属 Cuが腐蝕 (溶解) されていることが判る。 更には、 比 較例 2に於いては、 金属 Cuが酸化及び腐蝕 (溶解) されていることが、 特に比較例 3に於いては、 金属 Cuが全て腐蝕 (溶解) されていること が判る。 On the other hand, when the metal Cu deposition wafer was stored in the solutions of Comparative Examples 1 and 5, the metal Cu was significantly corroded, and the gloss of the Cu film surface on the wafer surface was lost, and the metal It turns out that Cu is oxidized. Also, When stored in the solutions of Comparative Examples 4 and 6, there was no change in the color tone of the Cu film surface on the wafer surface, and although the metal Cu was not oxidized, the Cu film thickness decreased and the metal Cu corroded. (Dissolved). Furthermore, it can be seen that in Comparative Example 2, metal Cu was oxidized and corroded (dissolved), and particularly in Comparative Example 3, all metal Cu was corroded (dissolved). .
即ち、 本発明の金属腐蝕防止剤は、 金属の酸化と腐食を防止し得、 本 発明の金属防止剤を含んでなる処理剤 (保存剤) .中で表面に金属被覆部 を有する基板を保存すれば、 当該金属の酸化と腐食を同時に防止し得、 表面に金属被覆部を有する基板を溶液中で良好に保存し得ることが判る。 実施例 1 5〜 1 7  That is, the metal corrosion inhibitor of the present invention can prevent oxidation and corrosion of metal, and preserves a substrate having a metal coating on the surface in a treating agent (preservative) containing the metal inhibitor of the present invention. Then, it can be seen that oxidation and corrosion of the metal can be prevented at the same time, and the substrate having a metal coating on the surface can be stored well in a solution. Examples 15 to 17
表 3に記載の各金属腐蝕防止剤 (保存剤) 1 Lに、 上記方法で作製し た金属 Cu堆積ゥエーハを室温下、 1分間浸漬した。 その後、 ゥェ一ハ を取り出し、 超純水で 1 0分間リンスし、 スピン乾燥させた。 次いで、 ゥェ一ハを空気中で 1 0時間放置した。  The metal Cu deposition wafer prepared by the above method was immersed in 1 L of each metal corrosion inhibitor (preservative) shown in Table 3 at room temperature for 1 minute. Thereafter, the wafer was taken out, rinsed with ultrapure water for 10 minutes, and spin-dried. The wafer was then left in the air for 10 hours.
このように処理した金属 Cu堆積ゥェ一ハについて、 金属 Cuの酸化 の有無を確認するため、 ゥェ一八表面の Cu膜表面の色調を目視で観察 した。 結果を表 3に示す。 比較例 7〜 1 0  With respect to the metal Cu deposition wafer thus treated, the color tone of the Cu film surface on the wafer surface was visually observed in order to confirm the presence or absence of oxidation of the metal Cu. Table 3 shows the results. Comparative Examples 7 to 10
表 3に記載の各種溶液を用いた以外は、 実施例 1 5〜 1 7と同様の方 法で金属 Cu堆積ゥエーハを処理した後、 ゥェ一ハ表面の Cu膜表面の 色調を目視で観察した。 結果を表 3に実施例 1 5〜 1 7と併せて示す。 表 3 Except for using the various solutions described in Table 3, the metal Cu deposition wafer was treated in the same manner as in Examples 15 to 17, and the color tone of the Cu film surface on the wafer surface was visually observed. did. The results are shown in Table 3 together with Examples 15 to 17. Table 3
Figure imgf000037_0001
表 3から明らかなように、 本発明の金属腐蝕防止剤 (保存剤) (実施例 1 5〜 1 7 ) で金属 Cu堆積ゥエーハを処理した後に、 当該ゥェ一ハを 空気中で保存した場合には、 ゥエー八表面の Cu膜表面の色調に変化は なく、 金属 Cuが酸化されていないことが判る。
Figure imgf000037_0001
As is clear from Table 3, after treating the metal Cu deposition wafer with the metal corrosion inhibitor of the present invention (preservative) (Examples 15 to 17), the wafer was stored in air. In the figure, there is no change in the color tone of the Cu film surface on the surface of the metal sheet, indicating that the metallic Cu is not oxidized.
これに対して、 比較例 7〜 1 0の溶液で金属 Cu堆積ゥエーハを処理 した場合には、 ゥェ一ハ表面の Cu膜表面の光沢が消失し、 金属 Cuが 酸化されていることが判る。  In contrast, when the metal Cu deposition wafer was treated with the solutions of Comparative Examples 7 to 10, the gloss of the Cu film surface on the wafer surface disappeared, indicating that the metal Cu was oxidized. .
即ち、 本発明の金属防止剤を含んでなる処理剤 (保存剤) で、 表面に 金属被覆部を有する基板を処理した後、 これを保存すれば、 当該基板表 面の金属の酸化を防止し得、 表面に金属被覆部を有する基板を空気中で 良好に保存し得ることが判る。 実施例 1 8〜 2 0 That is, after treating a substrate having a metal-coated portion on the surface with a treating agent (preservative) containing the metal inhibitor of the present invention and then storing it, oxidation of the metal on the surface of the substrate can be prevented. It can be seen that the substrate having a metal coating on the surface can be stored well in air. Example 18 to 20
表 4に記載の各金属腐蝕防止剤 (保存剤) 5 0 0 mlを、 上記方法で作 製した金属 Cu堆積ゥエーハ表面に 1分間かけて振りかけた。 その後、 ゥエーハを、 超純水で 1 0分間リンスし、 スピン乾燥させた。 次いで、 ゥエーハを空気中で 1 0時間放置した。  500 ml of each metal corrosion inhibitor (preservative) shown in Table 4 was sprinkled on the surface of the metal-Cu-deposited wafer prepared by the above method for 1 minute. Thereafter, the wafer was rinsed with ultrapure water for 10 minutes and spin-dried. Then, the wafer was left in the air for 10 hours.
このように処理した金属 Cu堆積ゥエー八について、 金属 Cuの酸化 の有無を確認するため、 ゥェ一ハ表面の Cu膜表面の色調を目視で観察 した。 結果を表 4に示す。 比較例 1 1〜: 1 4  With respect to the metal Cu deposits thus treated, the color tone of the Cu film surface on the wafer surface was visually observed in order to confirm the presence or absence of oxidation of the metal Cu. Table 4 shows the results. Comparative Example 11: 1 to 4
表 4に記載の各種溶液を用いた以外は、 実施例 1 8〜 2 0と同様の方 法で金属 Cu堆積ゥェ一ハを処理した後、 ゥェ一ハ表面の Cu膜表面の 色調を目視で観察した。 結果を表 4に実施例 1 8〜 2 0と併せて示す。 After treating the metal Cu deposition wafer in the same manner as in Examples 18 to 20, except that the various solutions described in Table 4 were used, the color tone of the Cu film surface on the wafer surface was changed. Observed visually. The results are shown in Table 4 together with Examples 18 to 20.
表 4 Table 4
Figure imgf000039_0001
表 4から明らかなように、 本発明の金属腐蝕防止剤 (保存剤) (実施例 1 8〜 2 0 ) で金属 Cu堆積ゥエーハを処理した後に、 当該ゥェ一ハを 空気中で保存した場合には、 ゥエーハ表面の Cu膜表面の色調に変化は なく、 金属 Cuが酸化されていないことが判る。
Figure imgf000039_0001
As is evident from Table 4, after treating the metal Cu deposition wafer with the metal corrosion inhibitor (preservative) (Examples 18 to 20) of the present invention, the wafer was stored in air. The results show that there was no change in the color tone of the Cu film surface on the wafer surface, and that the metallic Cu was not oxidized.
これに対して、 比較例 1 5〜 1 7の溶液で金属 Cu堆積ゥェ一ハを処 理した場合には、 ゥエー八表面の Cu 膜表面の光沢が消失し、 金属 Cu が酸化されていることが判る。  On the other hand, when the metal Cu deposition wafer was treated with the solutions of Comparative Examples 15 to 17, the gloss of the Cu film surface on the surface of the metal sheet disappeared, and the metal Cu was oxidized. It turns out.
即ち、 実施例 1 5〜 1 7で行った如きいわゆるディップ処理だけでな く、 実施例 1 8〜 2 0で行ったようないわゆる枚葉処理によっても、 本 発明の金属防止剤を含んでなる処理剤 (保存剤) で、 表面に金属被覆部 を有する基板を処理した後、 これを保存すれば、 当該基板表面の金属の 酸化を防止し得、 表面に金属被覆部を有する基板を空気中で良好に保存 し得ることが判る。 実施例 2 1〜 3 4 That is, the metal inhibitor of the present invention is contained not only by the so-called dipping treatment as in Examples 15 to 17 but also by the so-called single-wafer treatment as in Examples 18 to 20. After treating a substrate having a metal coating on the surface with a treating agent (preservative), if it is stored, the metal on the substrate surface It can be seen that oxidation can be prevented and the substrate having a metal coating on the surface can be stored well in air. Example 2 1 to 3 4
表 5に記載の各金属腐蝕防止剤 (前処理剤) 1 Lに、 上記方法で作製 した Cu汚染ゥェ一八及び金属 Cu堆積ゥエーハを室温下、 1時間浸漬 した。 その後、 ゥェ一ハを取り出し、 超純水で 1 0分間リンスし、 スピ ン乾燥させた。  In 1 L of each metal corrosion inhibitor (pretreatment agent) shown in Table 5, the Cu contamination layer 18 and metal Cu deposition layer produced by the above method were immersed at room temperature for 1 hour. Thereafter, the wafer was taken out, rinsed with ultrapure water for 10 minutes, and spin-dried.
次いで、 表 5に記載の各洗浄液 1 Lに、 当該ゥエー八を室温下、 1 0 分間浸漬した。 その後、 ゥエー八を取り出し、 超純水で 1 0分間リンス し、 スピン乾燥させた。  Next, the PA18 was immersed in 1 L of each cleaning solution described in Table 5 at room temperature for 10 minutes. Thereafter, the AHA was removed, rinsed with ultrapure water for 10 minutes, and spin-dried.
このように処理した Cu汚染ゥェ一八については、 金属不純物除去能 力を評価するため、 ゥエーハ表面に吸着残存している残存 Cu濃度を測 定し、 また、 金属 Cu堆積ゥエー八については、 金属 Cuの酸化の有無 を確認するため、 ゥエーハ表面の Cu膜表面の色調を目視で観察し、 更 に、 金属 Cuの腐蝕の有無を確認するため、 ゥエーハ表面の金属 Cuの 膜厚を測定した。 結果を表 5に示す。 尚、 表 5中の一は測定不能を示す。 比較例 1 5〜 2 5  With regard to the Cu contamination layer 18 treated in this way, the residual Cu concentration adsorbed on the wafer surface was measured to evaluate the ability to remove metal impurities. In order to confirm the presence or absence of oxidation of metal Cu, the color tone of the Cu film surface on the wafer surface was visually observed.In addition, the thickness of metal Cu on the wafer surface was measured in order to confirm the presence of corrosion of metal Cu. . Table 5 shows the results. One in Table 5 indicates that measurement was not possible. Comparative Examples 15 to 25
表 5に記載の各種溶液及び各洗浄剤を用いた以外は、 実施例 2 1〜 3 4と同様の方法で Cu汚染ゥェ一ハ及び金属 Cu堆積ゥェ一ハを処理し た後、 Cu 汚染ゥェ一ハについては、 ゥエーハ表面に吸着残存している 残存 Cu濃度を測定し、 また、 金属 Cu堆積ゥエー八については、 ゥェ ーハ表面の Cu膜表面の色調を目視で観察し、 更に、 ゥエーハ表面の金 属 Cuの膜厚を測定した。 結果を表 6に示す。  After treating Cu contamination wafers and metal Cu deposition wafers in the same manner as in Examples 21 to 34 except that the various solutions and cleaning agents listed in Table 5 were used, For contamination wafers, the residual Cu concentration adsorbed on the wafer surface was measured.For metal Cu deposition, the color tone of the Cu film surface on the wafer surface was visually observed. Furthermore, the film thickness of metal Cu on the wafer surface was measured. Table 6 shows the results.
尚、 比較例 1 5〜 1 8に於いては、 金属腐蝕防止剤 (前処理剤) での 処理を行わず、 表 6に記載の各洗浄液 1 Lに、 当該ゥエーハを室温下、 1 0分間浸漬した後、 ゥエーハを取り出し、超純水で 1 0分間リンスし、 スピン乾燥させたものを測定 ·観察した。 In Comparative Examples 15 to 18, the metal corrosion inhibitor (pretreatment agent) was used. Without treatment, immerse the wafer in 1 L of each cleaning solution described in Table 6 at room temperature for 10 minutes, remove the wafer, rinse it with ultrapure water for 10 minutes, and spin dry. · Observed.
表 5 Table 5
Figure imgf000042_0001
表 6
Figure imgf000042_0001
Table 6
Figure imgf000043_0001
表 5及び表 6の結果から明らかなように、 実施例 2 1 、 2 2及び 2 7 の金属腐蝕防止剤 (前処理剤) を用いて前処理を行った場合は、 Cu 汚 染ゥエーハ表面の残存 Cu濃度を 1 0 1 Qオーダー以下に抑制し得、 且つ 金属 Cuの酸化並びに腐蝕を防止し得ることが判る。 これに対し、 従来 の金属腐蝕防止剤 (表面処理剤) を用いて前処理を行った場合には、 残 存 Cu濃度を同程度に抑制し得るものの、 金属 Cuの酸化や腐蝕を生じ てしまったり (比較例 1 9及び 2 3 )、 金属 Cuの酸化腐蝕は抑えられる ものの、 残存 Cu濃度が高く、 酸化銅を効果的に除去し得ない (比較例 2 0、 2 4及び 2 5 ) ことが判る。
Figure imgf000043_0001
As is clear from the results in Tables 5 and 6, when the pretreatment was performed using the metal corrosion inhibitor (pretreatment agent) of Examples 21, 22, and 27, Cu contamination It can be seen that the residual Cu concentration can be suppressed to the order of 101 Q or less, and the oxidation and corrosion of metallic Cu can be prevented. On the other hand, when pretreatment is performed using a conventional metal corrosion inhibitor (surface treatment agent), although the residual Cu concentration can be suppressed to the same extent, oxidation and corrosion of metal Cu occur. Rolling (Comparative Examples 19 and 23), oxidative corrosion of metallic Cu is suppressed However, it can be seen that the residual Cu concentration was high and copper oxide could not be removed effectively (Comparative Examples 20, 24 and 25).
同様に、実施例 2 3及び 3 0に於いては、酸化銅を効果的に除去し得、 且つ金属 Cuの酸化並びに腐蝕を防止し得るのに対し、 比較例 2 1及び 2 2は、 基板表面の Cu膜が著しく腐蝕されているのが判る。  Similarly, in Examples 23 and 30, copper oxide can be effectively removed, and oxidation and corrosion of metal Cu can be prevented, while Comparative Examples 21 and 22 are substrates. It can be seen that the Cu film on the surface is significantly corroded.
また、 実施例 2 6、 2 8、 3 2及び 3 4と比較例 1 5〜: I 8との結果 から、 本発明の金属腐蝕防止剤 (前処理剤) を用いて前処理を行えば、 これを行わない場合に比べて洗浄時に於ける金属 Cuの酸化及び腐蝕を 抑制し得、 更には酸化銅をも効果的に除去し得ることも判る。  Also, from the results of Examples 26, 28, 32, and 34 and Comparative Examples 15 to: I8, if pretreatment was performed using the metal corrosion inhibitor (pretreatment agent) of the present invention, It can be seen that the oxidation and corrosion of metallic Cu during cleaning can be suppressed as compared with the case where this is not performed, and that copper oxide can also be effectively removed.
以上のことから明らかなように、 表面に金属被覆部を有する基板を洗 浄工程に付す前に、 本発明の金属腐蝕防止剤 (前処理剤) を用いて当該 基板を前処理すれば、 洗浄工程に於いて金属が酸化や腐蝕を受けるのを 防止することができ、 更には、 金属酸化物をも効果的に除去し得ること が判る。 実施例 3 5〜 4 4  As is clear from the above, before the substrate having the metal coating on the surface is subjected to the cleaning step, if the substrate is pretreated with the metal corrosion inhibitor (pretreatment agent) of the present invention, the substrate can be cleaned. It can be seen that the metal can be prevented from being oxidized and corroded in the process, and that the metal oxide can also be effectively removed. Example 3 5 to 4 4
表 7に記載の各洗浄剤 (金属腐蝕防止剤) 1 Lに、 上記方法で作製し た Cu汚染ゥエーハを室温下、 1 0分間浸漬した。 その後、 ゥエーハを 取り出し、 超純水で 1 0分間リンスし、 スピン乾燥させた。  The Cu-contaminated wafer prepared by the above method was immersed in 1 L of each cleaning agent (metal corrosion inhibitor) described in Table 7 at room temperature for 10 minutes. Thereafter, the wafer was taken out, rinsed with ultrapure water for 10 minutes, and spin-dried.
また、 表 7に記載の各洗浄剤 (金属腐蝕防止剤) 1 Lに、 上記方法で 作製した金属 Cu堆積ゥエーハを室温下、 5時間浸漬した。 その後、 ゥ エーハを取り出し、 超純水で 1 0分間リンスし、 スピン乾燥させた。 このように処理した Cu汚染ゥエー八については、 金属不純物除去能 力を評価するため、 ゥエーハ表面に吸着残存している残存 Cu濃度を測 定し、 また、 金属 Cu堆積ゥエー八については、 金属 Cuの酸化の有無 を確認するため、 ゥエーハ表面の Cu膜表面の色調を目視で観察し、 更 に、 金属 Cuの腐蝕の有無を確認するため、 ゥェ一ハ表面の金属 Cuの 膜厚を測定した。 結果を表 7に示す。 比較例 2 6〜 3 7 Further, the metal Cu deposition wafer prepared by the above method was immersed in 1 L of each cleaning agent (metal corrosion inhibitor) described in Table 7 at room temperature for 5 hours. Thereafter, the wafer was taken out, rinsed with ultrapure water for 10 minutes, and spin-dried. With regard to the copper contamination treated in this way, the residual Cu concentration adsorbed on the surface of the wafer was measured to evaluate the ability to remove metal impurities. In order to confirm the presence or absence of oxidation, the color tone of the Cu film surface on the wafer surface was visually observed and updated. Next, the thickness of the metal Cu on the wafer surface was measured to confirm the presence or absence of corrosion of the metal Cu. Table 7 shows the results. Comparative Example 26 to 37
表 8に記載の各洗浄剤を用いた以外は、 実施例 3 5〜 4 4と同様の方 法で Cu汚染ゥエー八及び金属 Cu堆積ゥェ一ハを処理した後、 ゥェ一 八表面に吸着残存している残存 Cu濃度を測定し、 また、 金属 Cu堆積 ゥエー八については、 ゥエーハ表面の Cu膜表面の色調を目視で観察し、 更に、 ゥエーハ表面の金属 Cuの膜厚を測定した。 結果を表 8に示す。 尚、 表 8中の一は測定不能を示す。 After treating Cu contamination and metal Cu deposition wafers in the same manner as in Examples 35 to 44, except that each cleaning agent described in Table 8 was used, the surface of the wafer was treated. The concentration of residual Cu remaining by adsorption was measured, and for metal Cu deposition A8, the color tone of the Cu film surface on the wafer surface was visually observed, and the thickness of metal Cu on the wafer surface was also measured. Table 8 shows the results. One in Table 8 indicates that measurement was not possible.
表 8 Table 8
Figure imgf000046_0001
表 9
Figure imgf000046_0001
Table 9
Figure imgf000047_0001
表 7及び表 8から明らかなように、本発明の洗浄剤(金属腐蝕防止剤) (実施例 3 5〜4 4 ) を用いてゥェ一ハを洗浄した場合には、 ゥエーハ 表面の残存 Cu濃度を 1 0 1 Gオーダ一以下に抑制し得、 また、 Cu膜表 面の色調に変化はなく、 金属 Cuが酸化されておらず、 且つ Cu膜厚に 殆ど変化が無く、 金属 Cuが腐蝕されていないことが判る。
Figure imgf000047_0001
As is clear from Tables 7 and 8, when the wafer was cleaned using the cleaning agent (metal corrosion inhibitor) of the present invention (Examples 35 to 44), the residual Cu on the wafer surface was reduced. The concentration can be suppressed to the order of less than 101 G, the color tone of the Cu film surface does not change, the metal Cu is not oxidized, and the Cu film thickness hardly changes, and the metal Cu is corroded. It turns out that it has not been done.
これに対して、 比較例 2 7、 3 0、 3 1、 3 3及び 3 4の洗浄剤を用 いた場合には、 残存 Cu濃度を 1 0 1 Qオーダ一以下に抑制し得るものの、 金属 Cuが酸化され、 金属 Cuが著しく腐蝕されていることが判る。 ま た、 比較例 2 9、 及び 3 5〜 3 7の洗浄剤を用いた場合には、 ゥェ一ハ 表面の金属 Cuが酸化されておらず、 また、 金属 Cuが殆ど腐蝕もされ てはいないものの、 残存 Cu濃度が高く、 ゥェ一ハ表面の酸化銅を充分 に除去し得ないことが判る。 更には、 比較例 2 6及び 3 2の洗浄剤を用 いた場合には、 金属 Cuが腐蝕及び酸化され、 また、 残存 Cu濃度が高 く、 ゥエーハ表面の酸化銅を充分に除去し得ないことが判る。 比較例 2 8の洗浄剤を用いた場合には、 金属 Cuが著しく腐蝕されており、 また、 ゥエー八表面の酸化銅を充分に除去し得ないことが判る。 In contrast, when the cleaning agents of Comparative Examples 27, 30, 30, 31, 33, and 34 were used, the residual Cu concentration could be suppressed to the order of 101 Q or less, but the metal Cu Is oxidized and the metal Cu is significantly corroded. When the cleaning agents of Comparative Examples 29 and 35 to 37 were used, the metal Cu on the wafer surface was not oxidized, and the metal Cu was almost corroded. Although not shown, the residual Cu concentration is high, and it can be seen that the copper oxide on the wafer surface cannot be sufficiently removed. Furthermore, when the cleaning agents of Comparative Examples 26 and 32 were used, metal Cu was corroded and oxidized, and the residual Cu concentration was high, and the copper oxide on the surface of the wafer could not be sufficiently removed. I understand. When the cleaning agent of Comparative Example 28 was used, it was found that the metal Cu was significantly corroded, and that the copper oxide on the surface of the coating material could not be sufficiently removed.
即ち、 本発明の洗浄剤を用いて表面に金属被覆部を有する基板表面を 洗浄すれば、 当該金属の酸化と腐食を防止し得、 且つ当該表面の金属不 純物 (酸化銅) を有効に除去し得ることが判る。 産業上の利用の可能性  That is, by cleaning the surface of the substrate having a metal coating on the surface using the cleaning agent of the present invention, oxidation and corrosion of the metal can be prevented, and metal impurities (copper oxide) on the surface can be effectively removed. It can be seen that it can be removed. Industrial potential
以上の如く、 本発明は良好な金属腐食防止作用を有し且つ安全性が高 い金属腐蝕防止剤、 及びこれを用いた、 基板表面、 特に、 表面に銅配線 が施された基板表面に於ける銅配線の酸化や腐蝕を防止し得る当該基板 の処理方法、 並びに、 当該基板表面の銅配線の腐蝕や酸化を防止し得、 且つ当該表面の金属不純物 (酸化銅) を有効に除去し得る基板の洗浄方 法を提供するものであり、 本発明の金属腐蝕防止剤を用いれば、 例えば 半導体製造時における諸問題を解決できる。  INDUSTRIAL APPLICABILITY As described above, the present invention provides a metal corrosion inhibitor having a good metal corrosion inhibiting action and high safety, and a substrate surface using the same, particularly a substrate surface having copper wiring on the surface. A method of treating the substrate, which can prevent oxidation and corrosion of copper wiring, and a method of preventing corrosion and oxidation of copper wiring on the surface of the substrate, and effectively remove metal impurities (copper oxide) on the surface. The present invention provides a method for cleaning a substrate. The use of the metal corrosion inhibitor of the present invention can solve, for example, various problems in the production of semiconductors.

Claims

請 求 の 範 囲 The scope of the claims
1 . 分子内にチオール基を有するアミノ酸又はその誘導体を含んでなる 金属腐蝕防止剤。  1. A metal corrosion inhibitor comprising an amino acid having a thiol group in the molecule or a derivative thereof.
2 . 水性溶液である請求項 1に記載の金属腐蝕防止剤。  2. The metal corrosion inhibitor according to claim 1, which is an aqueous solution.
3 . 分子内にチオール基を有するアミノ酸が、 システィン又はホモシス ティンである請求項 1又は 2に記載の金属腐蝕防止剤。 3. The metal corrosion inhibitor according to claim 1, wherein the amino acid having a thiol group in the molecule is cysteine or homocystin.
4 . アミノ酸誘導体がアミノ酸の N-ァシル体又はアミノ酸のカルボン酸 エステル体である請求項 1〜 3の何れかに記載の金属腐蝕防止剤。4. The metal corrosion inhibitor according to any one of claims 1 to 3, wherein the amino acid derivative is an N-acyl form of the amino acid or a carboxylic acid ester form of the amino acid.
5 . N-ァシル体がカルボン酸由来のァシル基が導入されたものである請 求項 4に記載の金属腐食防止剤。 5. The metal corrosion inhibitor according to claim 4, wherein the N-acyl compound has a carboxylic acid-derived acyl group introduced therein.
6 . N-ァシル体が N-アルカノィル体又は N-ァラルカノィル体である請 求項 4に記載の金属腐蝕防止剤。  6. The metal corrosion inhibitor according to claim 4, wherein the N-acyl form is an N-alkanoyl form or an N-aralkanoyl form.
7 . N-ァシル体が N-ァセチル体である請求項 4に記載の金属腐蝕防止 剤。 請求項 4に記載の金属腐蝕防止剤。 る請求項 4に記載の金属腐蝕防止剤。  7. The metal corrosion inhibitor according to claim 4, wherein the N-acyl form is an N-acetyl form. 5. The metal corrosion inhibitor according to claim 4. 5. The metal corrosion inhibitor according to claim 4, wherein:
1 0 . 更に、 有機酸、 ァミン、 無機アルカリ化合物、 キレート剤及び界 面活性剤のうちの少なくとも一つを含んでなる請求項 1〜 9の何れかに 記載の金属腐蝕防止剤。  10. The metal corrosion inhibitor according to any one of claims 1 to 9, further comprising at least one of an organic acid, an amine, an inorganic alkali compound, a chelating agent, and a surfactant.
1 1 . 有機酸がジ乃至トリカルボン酸である請求項 1 0に記載の金属腐 蝕防止剤。  11. The metal corrosion inhibitor according to claim 10, wherein the organic acid is a di- to tricarboxylic acid.
1 2 . 有機酸がモノ乃至ジヒドロキシジ乃至トリカルボン酸である請求 項 1 0に記載の金属腐蝕防止剤。  12. The metal corrosion inhibitor according to claim 10, wherein the organic acid is a mono- to di-hydroxy di- to tricarboxylic acid.
1 3 . ァミンが、 アルキルァミン、 ジアルキルァミン、 ヒドロキシアル キルァミン、 アルキレンジァミン、 ジアルキレントリァミン、 トリアル キレンテトラミン、 アルキルァミン—アルキレンオキサイ ド付加物、 テ トラアルキルアンモニゥムヒドロキシドの何れかである請求項 1 0に記 載の金属腐蝕防止剤。 14. 無機アルカリ化合物が、 窒素含有無機アルカリ化合物である請求 項 1 0に記載の金属腐蝕防止剤。 1 3. The amine is alkylamine, dialkylamine, hydroxyal 10. The metal corrosion inhibitor according to claim 10, wherein the metal corrosion inhibitor is any one of kilamine, alkylenediamine, dialkylenetriamine, trialkylenetetramine, an alkylamine-alkylene oxide adduct, and tetraalkylammonium hydroxide. . 14. The metal corrosion inhibitor according to claim 10, wherein the inorganic alkali compound is a nitrogen-containing inorganic alkali compound.
1 5. 窒素含有無機アルカリ化合物が、 ヒドロキシルァミン、 ヒドラジ ン、 アンモニア、 及びこれらの塩からなる群より選ばれるものである請 求項 1 4に記載の金属腐蝕防止剤。  15. The metal corrosion inhibitor according to claim 14, wherein the nitrogen-containing inorganic alkali compound is selected from the group consisting of hydroxylamine, hydrazine, ammonia, and salts thereof.
1 6. キレート剤がアミノポリカルボン酸類又はノ及びホスホン酸類で ある請求項 1 0に記載の金属腐蝕防止剤。  16. The metal corrosion inhibitor according to claim 10, wherein the chelating agent is an aminopolycarboxylic acid or amino and phosphonic acids.
1 7. ァミノポリカルボン酸類が、 直鎖型ァミノポリカルボン酸類又は Z及び環状アミノポリカルボン酸類である請求項 1 6に記載の金属腐蝕 防止剤。 17. The metal corrosion inhibitor according to claim 16, wherein the aminopolycarboxylic acids are linear aminopolycarboxylic acids or Z and cyclic aminopolycarboxylic acids.
1 8. 直鎖型ァミノポリカルボン酸類が、 EDTA (エチレンジァミン 四酢酸)、 EDDA (エチレンジァミン二酢酸)、 EDT A-OH (ヒド ロキシエチレンジァミン三酢酸)、 GEDTA (ダリコールエーテルジァ ミン四酢酸)、 DTPA (ジエチレントリアミン五酢酸)、 I DA (イミ ノジ酢酸)、 me t h y l — EDTA (ジアミノプロパン四酢酸)、 NT A (二トリ口三酢酸)、 TTHA (トリエチレンテトラミン六酢酸)、 ま たはそのアンモニゥム塩若しくはァミンとの錯塩である請求項 1 7に記 載の金属腐蝕防止剤。  1 8. Linear aminopolycarboxylic acids are EDTA (ethylenediaminetetraacetic acid), EDDA (ethylenediaminediacetic acid), EDT A-OH (hydroxyethylenediaminetriacetic acid), GEDTA (dalicol etherdiamine). Tetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), IDA (iminodiacetic acid), methyl — EDTA (diaminopropanetetraacetic acid), NTA (tri-triamine triacetic acid), TTHA (triethylenetetramine hexaacetic acid), 18. The metal corrosion inhibitor according to claim 17, which is a complex salt with an ammonium salt or an amine.
1 9. 環状アミノポリカルボン酸類が、 CyDTA ( t r a n s—シク 口へキシルジァミノ四酢酸) 、 またはそのアンモニゥム塩若しくはアミ ンとの錯塩である請求項 1 7に記載の金属腐蝕防止剤。  19. The metal corrosion inhibitor according to claim 17, wherein the cyclic aminopolycarboxylic acid is CyDTA (trans-hexyldiaminotetraacetic acid), or a complex salt thereof with an ammonium salt or an amine.
20. ホスホン酸類が、 ポリホスホン酸類又は/及びァミノポリホスホ ン酸類である請求項 1 6に記載の金属腐蝕防止剤。 20. The phosphonic acids are polyphosphonic acids and / or aminopolyphospho 17. The metal corrosion inhibitor according to claim 16, which is an acid.
2 1. ポリホスホン酸類が、 NTPO (二トリロトリスメチレンホスホ ン酸) 、 HED PO (ヒドロキシェチリデンジ (メチレンホスホン酸) ) 、 またはそのアンモニゥム塩若しくはァミンとの錯塩である請求項 2 0に記載の金属腐蝕防止剤。  21. The method according to claim 20, wherein the polyphosphonic acids are NTPO (ditrilotrismethylene phosphonic acid), HED PO (hydroxyethylidene di (methylene phosphonic acid)), or a complex salt thereof with an ammonium salt or an amine. Metal corrosion inhibitor.
22. ァミノポリホスホン酸類が、 EDD PO (エチレンジアミンジ(メ チレンホスホン酸))、 EDTPO (エチレンジアミンテトラ (メチレン ホスホン酸))、 PDTPO (ジァミノプロパンテトラ (メチレンホスホ ン酸))、 DETP PO (ジエチレントリアミンペン夕 (メチレンホスホ ン酸))、 TTHPO (トリエチレンテトラミンへキサ (メチレンホスホ ン酸))またはそのアンモニゥム塩若しくはァミンとの錯塩である請求項 22. Aminopolyphosphonic acids include EDD PO (ethylenediaminedi (methylenephosphonic acid)), EDTPO (ethylenediaminetetra (methylenephosphonic acid)), PDTPO (diaminopropanetetra (methylenephosphonic acid)), DETPPO ( Diethylenetriamine pentoxide (methylenephosphonic acid)), TTHPO (triethylenetetraminehexa (methylenephosphonic acid)) or a complex salt thereof with an ammonium salt or an amine.
20に記載の金属腐蝕防止剤。 20. The metal corrosion inhibitor according to 20.
23. 界面活性剤が、 ノニオン系界面活性剤またはァニオン系界面活性 剤である請求項 1 0に記載の金属腐蝕防止剤。 24. ノニオン系界面活性剤が、 分子中にポリオキシアルキレン基を有 するものであるである請求項 2 3に記載の金属腐蝕防止剤。  23. The metal corrosion inhibitor according to claim 10, wherein the surfactant is a nonionic surfactant or an anionic surfactant. 24. The metal corrosion inhibitor according to claim 23, wherein the nonionic surfactant has a polyoxyalkylene group in the molecule.
2 5. ノニオン系界面活性剤が、 ポリオキシアルキレンアルキルエーテ ル類又はポリォキシアルキレンポリアルキルァリールエーテル類である 請求項 2 3に記載の金属腐蝕防止剤。 25. The metal corrosion inhibitor according to claim 23, wherein the nonionic surfactant is a polyoxyalkylene alkyl ether or a polyoxyalkylene polyalkyl aryl ether.
26. ァニオン系界面活性剤が、 スルホン酸基、 力ルポキシル基、 ホス ホン酸基及びスルホキシル基からなる群より選ばれる基を有するもので ある請求項 2 3に記載の金属腐蝕防止剤。 26. The metal corrosion inhibitor according to claim 23, wherein the anionic surfactant has a group selected from the group consisting of a sulfonic acid group, a sulfoxyl group, a phosphonic acid group, and a sulfoxyl group.
2 7. ァニオン系界面活性剤が、 アルキルスルホン酸、 アルキルァリー ルスルホン酸、 アルキル硫酸エステル、 アルキルァリール硫酸エステル、 ポリオキシアルキレンアルキル硫酸エステル、 ポリオキシアルキレンァ ルキルァリール硫酸エステル、 アルキルカルボン酸、 アルキルァリール カルボン酸、又はこれらの塩である請求項 2 6に記載の金属腐蝕防止剤。 2 8 . 請求項 1〜 2 7の何れかに記載の金属腐蝕防止剤を含んでなる処 理剤。 2 7. The anionic surfactant is an alkyl sulfonic acid, an alkyl aryl sulfonic acid, an alkyl sulfate, an alkyl aryl sulfate, a polyoxyalkylene alkyl sulfate, a polyoxyalkylene alkyl aryl sulfate, an alkyl carboxylic acid, an alkyl aryl. 27. The metal corrosion inhibitor according to claim 26, which is a carboxylic acid or a salt thereof. 28. A treating agent comprising the metal corrosion inhibitor according to any one of claims 1 to 27.
2 9 . 処理剤が表面に銅被覆部を有する基板用である請求項 2 8に記載 の処理剤。  29. The processing agent according to claim 28, wherein the processing agent is for a substrate having a copper coating on the surface.
3 0 . 基板が半導体基板である請求項 2 9に記載の処理剤。  30. The processing agent according to claim 29, wherein the substrate is a semiconductor substrate.
3 1 . 基板を請求項 2 8に記載の処理剤で処理することを特徴とする該 基板の処理方法。  31. A method for treating a substrate, comprising treating the substrate with the treatment agent according to claim 28.
3 2 . 基板が表面に銅被覆部を有するものである請求項 3 1に記載の処 理方法。  32. The processing method according to claim 31, wherein the substrate has a copper coating on the surface.
3 3 . 基板が半導体基板である請求項 3 2に記載の処理方法。  33. The processing method according to claim 32, wherein the substrate is a semiconductor substrate.
3 4 . 請求項 1〜 2 7の何れかに記載の金属腐蝕防止剤を含んでなる洗 浄剤。  34. A detergent comprising the metal corrosion inhibitor according to any one of claims 1 to 27.
3 5 . 洗浄剤が表面に銅被覆部を有する基板用である請求項 3 4に記載 の洗浄剤。  35. The cleaning agent according to claim 34, wherein the cleaning agent is for a substrate having a copper coating on the surface.
3 6 . 基板が半導体基板である請求項 3 4に記載の洗浄剤。  36. The cleaning agent according to claim 34, wherein the substrate is a semiconductor substrate.
3 7 . 基板を請求項 3 4に記載の洗浄剤で洗浄することを特徴とする該 基板の洗浄方法。 '  37. A method for cleaning a substrate, comprising cleaning the substrate with the cleaning agent according to claim 34. '
3 8 . 基板が表面に銅被覆部を有する半導体基板である請求項 3 7に記 載の洗浄方法。  38. The cleaning method according to claim 37, wherein the substrate is a semiconductor substrate having a copper coating on the surface.
3 9 . 基板が半導体基板である請求項 3 8に記載の洗浄方法。  39. The cleaning method according to claim 38, wherein the substrate is a semiconductor substrate.
4 0 . 表面に銅被覆部を有する半導体基板を化学的物理的研磨処理 (CMP) に付した後、 当該基板を請求項 2 8に記載の処理剤で処理する ことを特徴とする該基板の処理方法。  40. After subjecting a semiconductor substrate having a copper-coated portion to a chemical-physical polishing treatment (CMP), the substrate is treated with the treatment agent according to claim 28. Processing method.
4 1 . 表面に銅被覆部を有する半導体基板を化学的物理的研磨処理 (CMP) に付した後、 当該基板を請求項 2 8に記載の処理剤で処理し、 次いで当該基板を半導体基板洗浄剤で洗浄することを特徴とする該基板 の処理方法。 41. After subjecting a semiconductor substrate having a copper coating on the surface to a chemical and physical polishing treatment (CMP), the substrate is treated with the treatment agent according to claim 28, Next, the substrate is cleaned with a semiconductor substrate cleaning agent.
2 . 表面に銅被覆部を有する半導体基板を化学的物理的研磨処理 (CMP) に付した後、 当該基板を請求項 3 4に記載の洗浄剤で洗浄する ことを特徴とする該基板の洗浄方法。  2. A semiconductor substrate having a copper coating on its surface is subjected to chemical-physical polishing (CMP), and then the substrate is cleaned with the cleaning agent according to claim 34. Method.
PCT/JP2002/010607 2002-10-11 2002-10-11 Substrate detergent WO2004034451A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002338176A AU2002338176A1 (en) 2002-10-11 2002-10-11 Substrate detergent
PCT/JP2002/010607 WO2004034451A1 (en) 2002-10-11 2002-10-11 Substrate detergent
TW091123894A TW583719B (en) 2002-10-11 2002-10-17 Agent for cleaning substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/010607 WO2004034451A1 (en) 2002-10-11 2002-10-11 Substrate detergent

Publications (1)

Publication Number Publication Date
WO2004034451A1 true WO2004034451A1 (en) 2004-04-22

Family

ID=32089055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010607 WO2004034451A1 (en) 2002-10-11 2002-10-11 Substrate detergent

Country Status (3)

Country Link
AU (1) AU2002338176A1 (en)
TW (1) TW583719B (en)
WO (1) WO2004034451A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052424A1 (en) * 2006-10-27 2008-05-08 Anji Microelectronics (Shanghai) Co., Ltd. A cleaning compound for removing photoresist

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338994B (en) * 2010-07-23 2014-12-31 安集微电子(上海)有限公司 Cleaning solution for photoresist
WO2012075686A1 (en) * 2010-12-10 2012-06-14 安集微电子(上海)有限公司 Thick-film photoresist stripper solution
WO2012083587A1 (en) * 2010-12-21 2012-06-28 安集微电子(上海)有限公司 Cleaning liquid for thick film photoresists
CN103809393A (en) * 2012-11-12 2014-05-21 安集微电子科技(上海)有限公司 Cleaning liquid for removing photoresist residues
CN103809394B (en) * 2012-11-12 2019-12-31 安集微电子科技(上海)股份有限公司 Cleaning solution for removing photoresist etching residues

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673399A (en) * 1992-08-28 1994-03-15 Kao Corp Detergent composition
JPH08337563A (en) * 1995-04-11 1996-12-24 Kashima Sekiyu Kk N-acylamino acid and its salt
EP1093161A1 (en) * 1999-10-12 2001-04-18 Applied Materials, Inc. Method and composite arrangement inhibiting corrosion of a metal layer following chemical mechanical polishing
JP2001345303A (en) * 2000-03-30 2001-12-14 Mitsubishi Chemicals Corp Method for processing surface of substrate
JP2002289569A (en) * 2001-03-23 2002-10-04 Ekc Technology Kk Residue release agent composition and its application method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673399A (en) * 1992-08-28 1994-03-15 Kao Corp Detergent composition
JPH08337563A (en) * 1995-04-11 1996-12-24 Kashima Sekiyu Kk N-acylamino acid and its salt
EP1093161A1 (en) * 1999-10-12 2001-04-18 Applied Materials, Inc. Method and composite arrangement inhibiting corrosion of a metal layer following chemical mechanical polishing
JP2001345303A (en) * 2000-03-30 2001-12-14 Mitsubishi Chemicals Corp Method for processing surface of substrate
JP2002289569A (en) * 2001-03-23 2002-10-04 Ekc Technology Kk Residue release agent composition and its application method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008052424A1 (en) * 2006-10-27 2008-05-08 Anji Microelectronics (Shanghai) Co., Ltd. A cleaning compound for removing photoresist

Also Published As

Publication number Publication date
TW583719B (en) 2004-04-11
AU2002338176A1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
EP1679361B1 (en) Cleaning agent for substrate and cleaning method
US7922823B2 (en) Compositions for processing of semiconductor substrates
US7700532B2 (en) Cleaning composition and method of cleaning therewith
EP2119765B1 (en) Cleaning liquid composition for a semiconductor substrate
WO2005076332A1 (en) Substrate cleaning liquid for semiconductor device and cleaning method
US20060166847A1 (en) Compositions for processing of semiconductor substrates
WO2003065433A1 (en) Liquid detergent for semiconductor device substrate and method of cleaning
EP0909311A1 (en) Post clean treatment
JP2003013266A (en) Substrate cleaning agent
WO2002094462A1 (en) Method for cleaning surface of substrate
KR20060115968A (en) Substrate surface cleaning liquid mediums and cleaning method
WO2014123126A1 (en) Cleaning liquid for substrate for semiconductor devices and method for cleaning substrate for semiconductor devices
JP2011159658A (en) Cleaning agent for semiconductor provided with tungsten wiring
US6884338B2 (en) Methods for polishing and/or cleaning copper interconnects and/or film and compositions therefor
JP2005260213A (en) Cleaning liquid for substrate for semiconductor device and cleaning method
WO2012073909A1 (en) Substrate cleaner for copper wiring, and method for cleaning copper wiring semiconductor substrate
JP2015165561A (en) Substrate cleaning liquid for semiconductor devices and method for cleaning substrate for semiconductor devices
JP3435698B2 (en) Cleaning liquid for semiconductor substrates
JP4498726B2 (en) Washing soap
TW442864B (en) Surface treatment composition and method for treating surface of substrate by using the same
US6066609A (en) Aqueous solution for cleaning a semiconductor substrate
KR100874173B1 (en) An aqueous cleaning composition containing a copper specific corrosion inhibitor for cleaning inorganic residues on semiconductor substrates.
US20120080053A1 (en) Method for cleaning of semiconductor substrate and acidic solution
WO2004034451A1 (en) Substrate detergent
JP4138323B2 (en) Release agent composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP