WO2004033897A1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
WO2004033897A1
WO2004033897A1 PCT/JP2003/012870 JP0312870W WO2004033897A1 WO 2004033897 A1 WO2004033897 A1 WO 2004033897A1 JP 0312870 W JP0312870 W JP 0312870W WO 2004033897 A1 WO2004033897 A1 WO 2004033897A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
ignition
combustion chamber
combustion
engine
Prior art date
Application number
PCT/JP2003/012870
Other languages
French (fr)
Japanese (ja)
Inventor
Yasutsugu Ohki
Original Assignee
Mittsu Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mittsu Electric Co., Ltd. filed Critical Mittsu Electric Co., Ltd.
Priority to AU2003272938A priority Critical patent/AU2003272938A1/en
Publication of WO2004033897A1 publication Critical patent/WO2004033897A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves

Definitions

  • the present invention relates to high frequency electromagnetic wave ignition in which a high permittivity fuel or a mixed fuel in which a high permittivity fuel is mixed with a low permittivity fuel is ignited in a combustion chamber by a high frequency electromagnetic wave ignition method in an internal combustion engine.
  • SI spark discharge ignition
  • SI engine gasoline engine
  • CI compression ignition
  • CI engines diesel engines
  • microwaves are electromagnetic waves in the frequency range of 0.3 GHz to 300 GHz
  • microphone mouth wave heating means heating using this microphone mouth wave, also called dielectric heating.
  • the high dielectric constant fuel is ignited and burned with the energy of the electromagnetic wave at a required speed that matches the timing of ignition of the internal combustion engine, and the low dielectric constant fuel is used as the ignition energy. It means an electromagnetic wave in the frequency domain with the ability to ignite.
  • the microphone wave ignition power supplied to the combustion chamber differs depending on the mixing ratio of the high dielectric constant fuel and the low dielectric constant fuel, the mixed fuel amount, the size of the combustion chamber, the supplied microwave wavelength, and the like. If enough ignition performance is provided by controlling the microphone mouth wave ignition power and supply time under sufficient information for that, the frequency of the microphone mouth wave ignition method is the same as that of the conventional microphone mouth wave. It is not limited.
  • the microwaves supplied in the present invention may be frequencies in the band below the microwave band referred to by the communication means, and may be frequencies in the band above the microwave band. I'm not talking about it.
  • the high frequency electromagnetic induction heating having the meaning of the contents defined above is used in the present invention as the microphone oral wave ignition system, and the high frequency electromagnetic wave ignition system of the present invention is the MI (Microwave Ignition) system. .
  • MI method Use expressions as abbreviations.
  • SI engine that uses fuel that is easy to vaporize and has a high combustion speed is an electric spark ignition system
  • CI engine that uses a fuel that is difficult to vaporize and that has a slow combustion speed has a pressure heating and ignition system
  • the present invention is a method of igniting high permittivity fuel with high frequency electromagnetic wave ignition power according to the burning species and igniting low permittivity fuel, the same internal combustion engine is used regardless of the burning species of low permittivity fuel. The purpose is to provide a method to make uniform combustion ignition instantly.
  • the present invention regardless of the fuel type of the low dielectric constant fuel, emits electromagnetic radiation of energy intensity corresponding to the mixed fuel type of the high dielectric constant fuel and the low dielectric constant fuel.
  • the purpose is to provide a method to spread the injection energy equally throughout the combustion chamber and to uniformly ignite the entire combustion chamber uniformly by its electromagnetic radiation energy to achieve high explosion ratio, equal pressure ratio, and complete combustion.
  • the present invention overheats the local combustion heating point and exceeds the temperature at which the NOx is generated locally, the combustion can be performed uniformly and simultaneously throughout the combustion chamber.
  • the purpose is to provide a method of combustion that does not exceed the NOx generation temperature.
  • heat transfer heat transfer
  • flow transfer convection
  • radiative transfer electromagnétique radiation
  • the present invention which is a microwave ignition system in which heat is transferred at the speed of light, directly heats the high permittivity fuel over the entire combustion chamber instead of the heat transfer. Since the high-dielectric-constant fuel is first ignited and the low-dielectric-constant fuel is ignited with this energy in a two-stage ignition system, the high-dielectric-constant fuel and the low-dielectric-constant fuel are sufficiently mixed. The entire combustion chamber can be burned almost instantaneously, and the purpose is to cause such combustion.
  • a mixture of high-permittivity fuel and low-permittivity fuel is atomized into fine-atomized fuel.
  • the high-permittivity fuel in the fine-grain mist fuel before combustion has a high dielectric constant because it is not vaporized in the fine-grain mist state. Since the dielectric constant decreases, the fuel absorbs the electromagnetic wave radiation energy (the electromagnetic wave radiation energy consists of the radiation energy of the three electromagnetic fields of the electrostatic magnetic field, the induced electromagnetic field, and the radiated electromagnetic field) before combustion. After combustion, since the reaction gas does not absorb the electromagnetic radiation energy, the electromagnetic radiation energy will be transmitted to the whole area almost instantaneously.
  • the ignition system of the internal combustion engine according to the present invention is a two-stage ignition system in which a high dielectric constant fuel is ignited by high frequency electromagnetic wave ignition and a low dielectric constant fuel is ignited by the ignition energy.
  • the low dielectric constant fuel to be secondary ignited is filled in the vicinity of the periphery of the high dielectric constant fuel to be primary ignited, the high dielectric constant fuel and the low dielectric constant fuel are mixed and filled in the entire combustion chamber area. It can be ignited instantly.
  • the ignition means of the MI system of the present invention is a system called a microphone mouth wave heating system when using an electromagnetic wave similar to a microwave oven.
  • the microwave oven's range chamber is regarded as a combustion chamber, and the microphone mouth wave generated from the microwave mouth wave generator is radiated from the microwave radiation end into the combustion chamber through the waveguide, and the microwaves are burned. It is a means to ignite the mixture of high and low permittivity fuel mixed fuel that is atomized in the chamber.
  • a microphone mouth wave generator for generating a microphone mouth wave includes a microwave generating electron tube represented by a magneto hole, a gun diode, and an A microwave semiconductor such as a toroid diode is a microwave generator, and a waveguide for guiding the microwave generated from the microwave generator (a guide for guiding a high frequency electromagnetic wave such as a microwave) from the waveguide It is a means to radiate the guided electromagnetic wave from the antenna which is an electromagnetic wave radiation terminal formed to be radiated to the combustion chamber of the internal combustion energy.
  • a microphone When a microphone is used as a microphone mouth wave generator for generating microwaves according to the present invention, it is preferable to use a B-type vibration system that oscillates from the configuration of a split anode and an external resonator serving as an external resonance circuit.
  • the magnetron cavity is preferably a rising sun type or a Tachibana type, which is limited to ⁇ mode oscillation.
  • the number of external resonators be a number including the number of spares in the number of engines, and attach an antenna to each external resonator and supply it to the engine that needs ignition and the external resonators.
  • One method is to insert an antenna, extract microwaves, and use a switch to distribute to the engine that needs ignition. This is desirable because the latter has a simple configuration.
  • the electromagnetic radiator terminal disposed in the narrow engine compartment preferably has the following form.
  • Any of these structures can be used as an electromagnetic wave radiation terminal for radiating the microwaves necessary for ignition of the internal combustion engine.
  • the microwave waveguide 34 of the present invention it is desirable that the waveguide cylindrical coaxial path has a smaller attenuation characteristic than the other waveguides 34,.
  • Fig. 1 is a cross-sectional view of an MI ignition engine with high / low permittivity fuel mixed fuel
  • Fig. 2 is a cross-sectional view of an MI spark plug of the same mounting shape as an existing spark plug
  • Fig. 4 is a partial cycle diagram in which the adiabatic compression start corresponding to the mixture and the adiabatic expansion end according to the load are independent and the stroke cycle diagram and the stroke cycle.
  • Fig. 5 is an operation diagram
  • Fig. 5 is a diagram showing a 4-cycle engine structure and 4 operations that have been invented, put into practical use
  • Fig. 6 is a spark plug of an existing SI engine. It is an example.
  • FIG. 1 shows that in the cylindrical coaxial type or rectangular coaxial type internal combustion engine 1, microwaves supplied from the microphone mouth wave generator 14 are radiated to the electromagnetic wave radiation terminal 3 1 (in the example of the conical patch antenna in Fig. 1).
  • FIG. 2 is a cross-sectional view of a MI-type combustible engine of the MI system in which the mixture 53 emitted from the internal combustion engine 1 is emitted.
  • a fuel tank 5 containing a mixed fuel 50 c in which high dielectric constant fuel 50 b and low dielectric constant fuel 50 a are mixed with fine particles mist is stored in the combustion chamber 3 filled with pre-compressed air.
  • the mixed fuel supply device 57 is connected to the fuel injection nozzle 4 4 a to supply the mixed fuel 50 c from 6.
  • it is not limited to pre-filling the combustion chamber 3 with the air-fuel mixture 53 in which the air-fuel mixture 50 c and the reaction air 51 are mixed with fine particles before ignition of the MI system.
  • Conical patch antenna 2 4 a consists of a pair of opposing patches perpendicular to the conical surface, a conical patch type fitted to the conical convex base surface, and a conical patch type fitted to the concave base surface It is done.
  • the size of the electromagnetic wave radiation terminal 31 changes according to the frequency of the microwave generator 14, the size of the combustion chamber 3 of the engine and the electromagnetic wave radiation terminal 3 is not limited to the conical patch antenna 2 4 a described. It becomes an electromagnetic wave radiation terminal 3 1 of a size according to the generated frequency of 1, and the antenna described above can be used.
  • the oxygen-enriched air 5 1 a (omitted) supplied to the combustion chamber 3 is a heater converter
  • the mixed fuel 50 c which has been finely atomized by the ultrasonic fine particle atomizer 8 4 a (omitted) is injected into the oxygen-enriched air. It is injected from the nozzle 4 4 a and forms the mixture 5 3.
  • microwaves generated by the microwave generator 14 are radiated from the electromagnetic wave radiation terminal 31 to the whole area in the combustion chamber 3 to ignite the mixture 53 in the combustion chamber 3
  • the heat machine converter 5 (Biston) obtains power from heat and outputs power to the outside.
  • the operation method of the microwave generator 14 is preferably intermittent generation, and microwaves are intermittently emitted when the heater converter 5 returns to the top dead center, and the heater converter 5 is an exhaust valve near the bottom dead center. Continue the generation until just before the release is performed, and the others are operated with the duty ratio at rest, 0
  • the operation of the microwave generator 14 obtains the information from the position of the heater converter 5 which can move the internal combustion engine chamber to the heater converter position sensor 3 5 (omitted), and the radiation start timing sensor 3 6 (omitted)
  • the microwave intensity is determined by the microwave radiation control device 37 (omitted) that receives the signal from the unit and radiates and controls the microphone mouth wave intensity according to the mixture volume and concentration of the combustion chamber, and determines the microwave intensity of the microwaves.
  • the generator 14 emits radiation to the combustion chamber 3.
  • the cooling device for cooling the microphone mouth wave generator 14 is omitted.
  • the microwave power source and the microwave generator described above use simple existing ones because they are already in practical use, but they are not only such shapes but microphones that are already in practical use.
  • the mouth wave power supply and the microphone mouth wave generator are not limited to use as an ignition device for an internal combustion engine.
  • Fig. 1 when the microwave generated from the microwave generator 14 is radiated, the radiation wave is reflected from the electromagnetic wave load, and the electromagnetic wave transmission window is reduced to reduce damage caused by the reflection microphone mouth wave.
  • an electromagnetic wave window having 3 3 it is omitted here.
  • the electromagnetic wave transmission window 33 made of quartz glass, and the influence of impedance mismatch between the power supply and the effective load It is desirable to use materials and equipment such as a ferrite isother that can be reduced.
  • the electromagnetic wave transmission window 33 made of quartz glass has a high transmissivity of the microphone mouth wave in the direction in which the microwaves are radiated to the combustion chamber 3 and a low infrared transmissivity emitted from the combustion chamber 3. It is desirable to be a window with a one-way filtering function.
  • Mike Mouth Wave Permeable Insulation 3 3 a is exemplified in the patent publication No. 6-2 9 4 2 1 6 in the Carbo of New Carris Nore (N ew Car 1 is 1 e) in Indiana.
  • Fig. 2 shows that currently used general-purpose products can be used with existing engines.
  • An example is shown in which a conical patch antenna is configured with an electromagnetic radiation terminal 31 having the same mounting shape as the spark plug 31 as a central axis.
  • a patch antenna can be configured on the inner surface of the outer cylinder of the electromagnetic radiation terminal 31 which has the same mounting shape as the current general-purpose product.
  • the coaxial cable 3 4 d tube 34 a the same, the path 34 b, and the strip line 34 c can be used.
  • FIG. 3 shows that in the combustion chamber supplied with the high / low dielectric constant fuel mixture by the MI ignition method of the present invention, it is possible to ignite under negative pressure by adiabatic expansion before ignition, as an example.
  • FIG. At the end of the scavenging process (A) from the bottom dead center (a) to the top dead center (b) at which the exhaust is completed, the fuel 50 is supplied to the combustion chamber 3 filled with the reactive gas 51. Form 3 and adiabatic expansion of the combustion chamber 3.
  • the adiabatic expansion process (B) from the top dead center (b) to the ignition point (c) has the effect of promoting the vaporization of the fuel 50 and the mixing with the reaction gas 51 while at the same time enhancing the Ml performance.
  • ignition is simultaneously and uniformly performed at the ignition point (c).
  • the adiabatic expansion process (B) is expanded by an external force.
  • the external force is a drive motor that becomes a flywheel parallel to the main load 8, a panel mechanism with stored energy, mechanical bottoming load 8 6 (omitted) such as a flywheel, and an electric system bottoming load 8 5 (omitted) 5 d (omitted) is the driving force (omitted).
  • the scavenging air is scavenged with the scavenging body 52 from the bottom dead center (a) at which the exhaust is completed, and when scavenging is completed, the mixture 53 is supplied, and the top dead center (b)
  • the method of filling the combustion chamber 3 with the required mixture 53 when the heat machine converter 5 reaches the point There is no limitation on the method of filling the combustion chamber 3 with the required mixture 53 when the heat machine converter 5 reaches the point.
  • the combustion is continuously performed under a constant pressure, and the combustion proceeds by supplying power for supplying power to the outside, and the combustion end point (e) at which the combustion ends.
  • the process consisting of and the highest point (d) is the heat receiving thermal expansion process (D).
  • the temperatures of the combustion chamber 3 and the heat machine conversion chamber 4 are 1 7 0 0 so that the temperatures of the combustion chamber 3 and the heat machine conversion chamber 4 are not too high, ie, the thermal dissociation temperature is not exceeded. It is desirable to determine the upper limit of the injection amount of the fuel 50 supplied at the fuel supply point (b) so that the thermal dissociation temperature (200 ° K) or less at about ° C.
  • the adiabatic expansion process (E) is the process from fuel combustion end point (e) to exhaust start point to exhaust start point (f), heat machine conversion chamber under adiabatic condition
  • Step 4 is a process in which the heat-to-machine converter 5 outputs power to the outside.
  • the heat receiving thermal expansion process (D) is also a process in which the heater converter 5 outputs power to the outside.
  • the process from the exhaust start point (f) to the exhaust end point (a) is the exhaust process (F).
  • the exhaust start point (f) uses the adiabatic expansion independent process of the present invention, the load power is released immediately before the generated power is exceeded, and the exhaust starts.
  • Fig. 4 is a stroke operation diagram showing an atotic compression start according to the mixture, an adiabatic expansion end according to the load 9 independent Otto cycle diagram and its stroke.
  • a cycle as shown in FIG. 4 is also possible because ignition can be properly performed anytime and any time, and uniform complete combustion can be performed regardless of the operating position of the heat machine converter.
  • the scavenging gas is started from the scavenging start point (a) with the scavenging gas 52 to start the scavenging gas, and then the reaction gas 51 is supplied, the exhaust valve is sealed, and the required amount of reaction gas is supplied to the internal combustion engine chamber 2 5 1
  • the process up to the compression start point (b) where is filled and compression is started is the scavenging process (A).
  • the scavenging gas 52 is supplied at the same time as the exhaust valve opens at the exhaust start point (e) and considerable scavenging is finished at the scavenging start point (a).
  • the ideal conceptual configuration of the thermal cycle In particular, in the case of a two-stroke cycle or the like, it may be considered that the reaction air 51 is supplied at the scavenging start point (a).
  • Fuel 50 is supplied at the compression start point (b) before compression starts, and compression is opened.
  • the adiabatic compression process (B) is the process from the beginning to the ignition point (c) where the compression ends.
  • fuel may be injected at the end of compression.
  • the fuel 50 is ignited at the ignition point (c), and the process until the combustion end point (d) where the fuel combustion ends is the heat receiving process (C).
  • the adiabatic expansion process is started at the end of combustion (d), and the process to the exhaust point (d) where the adiabatic expansion ends is the adiabatic expansion process (D).
  • the process from the exhaust point (e) where the exhaust valve is opened and exhaust exhaust heat is started to the scavenging start point (a) is the exhaust process (E).
  • the exhaust valve is opened just before the generated power from the internal combustion engine falls below the load power.
  • Fig. 4 shows that compression is started at an arbitrary position after the scavenging process (A), and at any position. It is a figure for showing mutual independence which expansion ends.
  • FIG. 4 shows the independence of the compression process which determines the compression start position optimally according to the reaction volume, the length of the sweeping air supply process, and the mixture volume before the ignition, and the load power
  • FIG. 4 is a cycle diagram showing the independence of the adiabatic expansion process in which the length of the adiabatic expansion process is decided according to the situation.
  • FIG. 5 is a PV thermal cycle diagram showing a 4-cycle engine structure and 4 operations which have been invented and put into practical use.
  • the figure shows one heat cycle consisting of four stroke strokes of suction stroke (A), adiabatic compression stroke (B), adiabatic expansion stroke (C) and exhaust sweep stroke (D), and the cycle is represented on the PV coordinate axis Is the PV diagram (E).
  • the igniter is omitted.
  • the internal combustion engine of the present invention mixes the high dielectric constant fuel with the low dielectric constant fuel, and uses the MI system whose energy propagation speed is the light speed, regardless of the fuel type, the MI engine and Become.
  • M l plug which has the same mounting shape as the spark plug used in current gasoline engines, and connect it to a high frequency electromagnetic wave generation and control device, in addition to petroleum products heavier than gasoline, Plant oil can also be driven by the gasoline engine.
  • combustion control can be performed at a temperature at which thermal dissociation does not occur, so that the energy conversion efficiency can be easily improved.
  • the complete combustion of the fuel can be almost achieved, the residual fuel is ignited at the abnormal position of the heat machine converter.
  • the ability to suppress the occurrence of misfires As a result, a large amount of CO is generated, the combustion temperature is low, the flame-extinguishing layer is also increased, and the HC is increased.
  • the radiated electromagnetic energy is small throughout the combustion chamber. Therefore, it is an effect that generation of CO and HC can be suppressed.
  • the self-cleaning temperature of the igniter of the SI engine is in the range of 450 ° C. to 850 ° C., it is operated to maintain this temperature. By using it, it is not necessary to control the operation within the self cleaning temperature range, and energy conversion efficiency can be easily improved. .
  • the compression process can be omitted without impairing the ignition performance, so that the compression process releases the condition that restricts the termination of the adiabatic expansion process, and the output according to the load can be obtained. Since the adiabatic expansion process can be continued, the thermal energy conversion efficiency can be dramatically improved. The effect is that
  • the explosion ratio is known as the ratio between the pressure (temperature) before combustion and the pressure (temperature) after combustion, and the adiabatic external force expansion capacity ⁇ pressure reduction and temperature reduction processes as in the present invention is applied to the thermal cycle. If it is put in the process, the adiabatic external force expansion capacity * It becomes the low pressure before combustion and the pressure ratio after combustion which decreased in the pressure reduction and temperature reduction process, so the explosion ratio can be increased and the energy conversion efficiency of the internal combustion engine is high.
  • the effect is that the effect of
  • the temperature of the combustion chamber is reduced by the adiabatic expansion before ignition according to the present invention because the temperature in the internal combustion engine before combustion is lowered, and as a result, the maximum temperature at the time of combustion is lowered.
  • the effect is that it can be reduced.
  • the heat cycle shown in FIG. 4 is also made possible by the present invention.
  • the position of the heat machine converter 5 at the time of exhaust heat differs from the position of the heat machine converter 5 at the start of compression. The following effects can be expected because it becomes possible to separate and start the compression process of and the termination of the adiabatic expansion process as a generational unit.
  • the compression process can be arbitrarily set without impairing the ignition performance, and as a result, the compression process becomes the generated power. Because the adiabatic expansion process can be continued up to the output, the thermal energy conversion can be done dramatically The effect is that the efficiency can be increased.
  • the optimal compression amount of the air-fuel mixture can be set.
  • the effect is that the length of the adiabatic expansion process can be determined and controlled according to the load. -As a result, it is possible to stretch the adiabatic expansion process to a minimum power that exceeds the optimum amount of compression and load, so it is easy to improve the thermal energy conversion efficiency.
  • the heat machine conversion chamber can be enlarged, the engine braking performance can be improved.
  • an internal combustion engine variable control engine comprising a combustion chamber volume and a heat machine conversion chamber is also made possible by the present invention, and the following effects can be expected.
  • the volume of the internal combustion engine chamber that is, the volume of the combustion chamber and the volume of the heat exchanger conversion chamber can be controlled freely and variably, the optimum volume of the combustion chamber can be obtained according to the mixture volume and concentration. Since the heat machine conversion efficiency in the heat machine conversion chamber can be variably controlled to the optimum volume, it is an effect that the optimum combustion related to the volume can be performed.
  • the volume of the combustion chamber can be independently controlled and varied, so it is an effect that optimal combustion can be performed in relation to the volume. .
  • the capacity of the heat machine conversion chamber can be freely controlled and varied, so the heat machine conversion can be performed from the back electromotive force power according to the magnitude of the back electromotive force power from the load. Since power can be separated from the load at a position where the power is higher, it is possible to prevent consumption of the load's load as an engine brake and improve heat machine conversion efficiency.
  • combustion chamber 3 a combustion chamber wall surface
  • Electromagnetic wave switching mechanism 4 0 Fuel injection device
  • reaction gas 5 1 reaction gas 5 1 a oxygen enrichment gas
  • combustion chamber sky wall 7 combustion chamber piston

Abstract

An internal combustion engine characterized by having a two stage ignition system where the high-permittivity fuel of mixture gas produced by atomizing the mixture fuel of the high-permittivity fuel and low-permittivity fuel in the air is ignited when the combustion chamber of the internal combustion engine is filled with the mixture gas and a high-frequency electromagnetic wave is radiated into the combustion chamber under the positional information of a thermomechanical covering element, and then the low-permittivity fuel is ignited by the combustion heat thereof.

Description

明細書  Specification
内燃エンジン 技術分野  Internal combustion engine technology
この発明は、 内燃エンジンにおいて高周波電磁波点火方式によ り、 高誘電率燃料、 または、 低誘電率燃料に高誘電率燃料を混合し た混合燃料を燃焼室で点火させる高周波電磁波点火に関する。 技術背景  The present invention relates to high frequency electromagnetic wave ignition in which a high permittivity fuel or a mixed fuel in which a high permittivity fuel is mixed with a low permittivity fuel is ignited in a combustion chamber by a high frequency electromagnetic wave ignition method in an internal combustion engine. Technology background
内燃エンジンにおいて、 高電圧スパーク放電点火 (S I : S p a r k I g n i t i o n) 方式 (以下、 S I方式とレ、う。) のガソ リ ンエンジン (以下 S Iエンジンという。) と圧縮点火 (C I : C o mp r e s s i o n I g n i t i o n) 方式 (以 「一、 C I方式と いう。) のディーゼルエンジン (以下 C Iエンジンという。) が一般 によく知られている。  In an internal combustion engine, a high-voltage spark discharge ignition (SI) system (hereinafter referred to as SI system and vehicle) and a gasoline engine (hereinafter referred to as SI engine) and compression ignition (CI: Co mp mp) Generally, diesel engines (hereinafter referred to as “CI engines”) (hereinafter referred to as “CI engines”) are generally well known.
特に、 この S Iエンジンにおいてマイクロ波アンテナ、 または、 高周波源から放出される電磁波およびコロナ放電による点火方式が 特許公報 H 1— 2 24 7 3、 特開昭 5 8— 5 1 2 7 7、 特許 2 74 In particular, in this SI engine, an ignition system by an electromagnetic wave or corona discharge emitted from a microwave antenna or a high frequency source is disclosed in Patent Publication H 1 2 24 7 3, JP-A 5 8 5 1 5 2 7 7, Patent 2 74
74 7 6号、特開平 0 7— 1 20 3 7、特開平 0 6— 2 2 9 3 3 4、 特開 2 00 0— 2 3 04 2 6、 特開 2 0 0 1— 7 3 9 20、 特開平No. 74 7 6, JP-A 0 7-1 120 3 7, JP-A 0 6-2 2 9 3 34 4, JP-A 2 00 0- 2 3 04 2 6, JP-A 2 0 0 1- 7 3 9 20 , Japanese Patent Application No.
0 6 - 1 2 6 1 9 0が公表されている。 0 6-1 2 6 1 9 0 has been published.
一方、 WO 9 8/4 2 8 0 7において、 アルコール燃料とする上 記エンジン、 アルコールガソリン混合燃料を燃料とする内燃ェンジ ンが実用化されていると公表されている。 On the other hand, in WO 9 8/4 2 0 7, the above-mentioned engine using alcohol fuel, internal combustion engine using alcohol-gasoline blend fuel as fuel Have been announced as being put to practical use.
一般に用語として、 マイクロ波は 0. 3 GH zから 3 0 0 GH z の周波数帯の電磁波であり、 マイク口波加熱はこのマイク口波を利 用した加熱を意味し、 誘電加熱ともいう。  In general terms, microwaves are electromagnetic waves in the frequency range of 0.3 GHz to 300 GHz, and microphone mouth wave heating means heating using this microphone mouth wave, also called dielectric heating.
しかしながら、 本発明であるマイクロ波点火方式は、 内燃ェンジ ンの点火のタイ ミングに整合した所要速度で高誘電率燃料を電磁波 のエネルギーで起点火燃焼させ、 その点火エネルギーで低誘電率燃 料を点火させる能力を持った周波数領域の電磁波という意味である。  However, in the microwave ignition method according to the present invention, the high dielectric constant fuel is ignited and burned with the energy of the electromagnetic wave at a required speed that matches the timing of ignition of the internal combustion engine, and the low dielectric constant fuel is used as the ignition energy. It means an electromagnetic wave in the frequency domain with the ability to ignite.
したがって、 高誘電率燃料と低誘電率燃料との混合割合および混 合燃料量ならびに燃焼室のサイズ、供給マイクロ波波長などにより、 燃焼室に供給されるマイク口波点火パワーは異なる。 そのための十 分な情報の下に、 供給するマイク口波点火パワーと供給時間を制御 して、 十分な点火性能を持たせるならば、 マイク口波点火方式の周 波数が従来のマイク口波に限定される訳でない。  Therefore, the microphone wave ignition power supplied to the combustion chamber differs depending on the mixing ratio of the high dielectric constant fuel and the low dielectric constant fuel, the mixed fuel amount, the size of the combustion chamber, the supplied microwave wavelength, and the like. If enough ignition performance is provided by controlling the microphone mouth wave ignition power and supply time under sufficient information for that, the frequency of the microphone mouth wave ignition method is the same as that of the conventional microphone mouth wave. It is not limited.
以上、 本発明において供給されるマイクロ波は通信手段で呼称す るマイクロ波帯以下の帯域の周波数でもよく、 また、 マイクロ波帯 以上の帯域の周波数でもよいという意味で、 通信手段で呼称するマ イク口波ではなレ、。  As described above, the microwaves supplied in the present invention may be frequencies in the band below the microwave band referred to by the communication means, and may be frequencies in the band above the microwave band. I'm not talking about it.
上記で定義した内容の意味を持つ高周波電磁波誘電加熱点火をマ イク口波点火方式と して本発明で使用することと、 本発明の高周波 電磁波点火方式を M I (M i c r o w a v e I g n i t i o n) 方式とする。  The high frequency electromagnetic induction heating having the meaning of the contents defined above is used in the present invention as the microphone oral wave ignition system, and the high frequency electromagnetic wave ignition system of the present invention is the MI (Microwave Ignition) system. .
これにより、 既存の点火方式と して、 S I、 C I と本発明 M I方 式を略称として利用する。 As a result, as existing ignition methods, SI, CI and the present invention MI method Use expressions as abbreviations.
内燃エンジンの点火方式として、 S Iエンジンではスポッ ト点火 であり、 C Iエンジンではランダム局所自動点火であり、 その点火 の伝播が最高でも音速であることから、 燃焼室全域に渡ることに時 間が掛かり、 また、 燃料が付着しやすく、 気体より熱容量が大きい 燃焼室壁面近傍は混合気の昇温速度が遅いため、 燃焼室壁面より遠 方の混合気と比較して、 燃焼速度が遅くなるという欠点があった。  As the ignition system for internal combustion engines, spot ignition is for SI engines and random local auto ignition is for CI engines, and the propagation of the ignition is at the highest speed of sound, so it takes time to span the entire combustion chamber. Also, the fuel adheres easily, and the heat-up rate near the wall surface of the combustion chamber is large because the heat capacity is larger than that of the gas. Therefore, the combustion speed is slower compared to air-fuel mixture farther from the wall surface of the combustion chamber was there.
その上、 局所加熱が発生し、 その局所加熱空間で N O Xが発生す る、 あるいは、 完全燃焼しないまま排熱にまで至るという課題があ る。  In addition, there is a problem that local heating occurs and NOx is generated in the local heating space, or exhaust heat is reached without complete combustion.
その他、 気化し易く、 燃焼速度が速い燃料を利用する S Iェンジ ンは電気スパーク点火方式、 一方、 気化がし難く、 燃焼速度が遅い 燃料を利用する C Iエンジンは圧力昇温点火方式と、 燃料種により エンジン点火方式が分かれるという課題があった。  In addition, SI engine that uses fuel that is easy to vaporize and has a high combustion speed is an electric spark ignition system, while CI engine that uses a fuel that is difficult to vaporize and that has a slow combustion speed has a pressure heating and ignition system, There is a problem that the engine ignition system is divided by
今まで公表されている M Iエンジンにおいては、 S Iエンジンに おけるスパークブラグ対する代替手段としての位置付けしかないた め、気化しゃすい燃料種を選定せざるを得ないという課題があつた。 本発明は、 燃焼種に応じて高周波電磁波点火パワーにより高誘電 率燃料を点火させ、 低誘電率燃料を点火させる方式であるから、 低 誘電率燃料の燃焼種に拘らず、 同一の内燃エンジンで、 瞬時にして 均一燃焼点火させる方法を提供することを目的としている。  For the Ml engine, which has been published up to now, it has only been positioned as an alternative to spark brags in the Sl engine, and there was a problem that it was necessary to select a vaporized and clean fuel type. Since the present invention is a method of igniting high permittivity fuel with high frequency electromagnetic wave ignition power according to the burning species and igniting low permittivity fuel, the same internal combustion engine is used regardless of the burning species of low permittivity fuel. The purpose is to provide a method to make uniform combustion ignition instantly.
また、 本発明は、 低誘電率燃料の燃料種に関わらず、 高誘電率燃 料と低誘電率燃料の混合燃料種に応じたエネルギー強度の電磁波放 射エネルギーを燃焼室全域に等しく行き渡らせ、 その電磁波放射ェ ネルギ一により燃焼室全域で均一に同時点火させ、 高い爆発比、 等 圧比、 完全燃焼を図る方法を提供することを目的としている。 In addition, the present invention, regardless of the fuel type of the low dielectric constant fuel, emits electromagnetic radiation of energy intensity corresponding to the mixed fuel type of the high dielectric constant fuel and the low dielectric constant fuel. The purpose is to provide a method to spread the injection energy equally throughout the combustion chamber and to uniformly ignite the entire combustion chamber uniformly by its electromagnetic radiation energy to achieve high explosion ratio, equal pressure ratio, and complete combustion.
さらに、 本発明は、 局所燃焼加熱個所が過熱し、 その局所で N O X発生温度を越えてしまうことから、 燃焼室全体で均一にして同時 に燃焼させることができるため、 局所においても全体においても、 Furthermore, since the present invention overheats the local combustion heating point and exceeds the temperature at which the NOx is generated locally, the combustion can be performed uniformly and simultaneously throughout the combustion chamber.
N O X発生温度を越えない燃焼をさせる方法を提供することを目的 としている。 The purpose is to provide a method of combustion that does not exceed the NOx generation temperature.
熱は一般に静止伝達 (伝熱)、 流動伝達 (対流)、 放射伝達 (電磁 放射) の三者があり、 そのいずれの伝達も熱媒質のエネルギー伝達 速度以上には伝達はできない。  There are generally three types of heat transfer: heat transfer (heat transfer), flow transfer (convection), and radiative transfer (electromagnetic radiation), and none of them can transfer more than the energy transfer rate of the thermal medium.
熱伝達が電磁的伝達であるから光速で熱が伝達されるマイクロ波 点火方式である本発明を利用すれば、 熱伝達でなく、 燃焼室全域に 渡って、 高誘電率燃料に直接加熱作用が働き、 その高誘電率燃料が まず点火し、 そのエネルギーで低誘電率燃料が点火する 2段点火方 式であるため、 高誘電率燃料と低誘電率燃料が十分に混合されてい る状態では、 燃焼室全域でほぼ瞬時にして燃焼させることができ、 そのような燃焼をさせることを目的としている。  Since the heat transfer is electromagnetic transfer, the present invention, which is a microwave ignition system in which heat is transferred at the speed of light, directly heats the high permittivity fuel over the entire combustion chamber instead of the heat transfer. Since the high-dielectric-constant fuel is first ignited and the low-dielectric-constant fuel is ignited with this energy in a two-stage ignition system, the high-dielectric-constant fuel and the low-dielectric-constant fuel are sufficiently mixed. The entire combustion chamber can be burned almost instantaneously, and the purpose is to cause such combustion.
高誘電率燃料と低誘電率燃料の混合燃料を微粒霧化させた燃焼前 の微粒霧燃料の高誘電率燃料は微粒霧状態で気化していないので誘 電率が高いが、 燃焼気体化すると誘電率が下がるため、 燃焼前は電 磁波放射エネルギー (電磁波放射エネルギーは静電磁界、 誘導電磁 界、 放射電磁界の 3電磁界の放射エネルギーからなる。) を燃料が吸 収し、 燃焼後は電磁波放射エネルギーを反応気体が吸収しなくなる ので、 ほぼ瞬時に電磁波放射エネルギ一が全域に行き渡ることにな る。 A mixture of high-permittivity fuel and low-permittivity fuel is atomized into fine-atomized fuel. The high-permittivity fuel in the fine-grain mist fuel before combustion has a high dielectric constant because it is not vaporized in the fine-grain mist state. Since the dielectric constant decreases, the fuel absorbs the electromagnetic wave radiation energy (the electromagnetic wave radiation energy consists of the radiation energy of the three electromagnetic fields of the electrostatic magnetic field, the induced electromagnetic field, and the radiated electromagnetic field) before combustion. After combustion, since the reaction gas does not absorb the electromagnetic radiation energy, the electromagnetic radiation energy will be transmitted to the whole area almost instantaneously.
以上、 本発明では、 M I方式による高誘電率燃料点火により低誘 電率燃料を点火させることが目的である。 発明の明示  As described above, it is an object of the present invention to ignite low permittivity fuel by high permittivity fuel ignition by the MI method. Clarification of invention
本発明の内燃エンジンの点火方式は、 まず、 高誘電率燃料が高 周波電磁波点火により点火し、 その点火エネルギーで、 低誘電率燃 料を点火させる 2段点火方式である。  The ignition system of the internal combustion engine according to the present invention is a two-stage ignition system in which a high dielectric constant fuel is ignited by high frequency electromagnetic wave ignition and a low dielectric constant fuel is ignited by the ignition energy.
そのため、 一次点火する高誘電率燃料の周囲近傍に二次点火する 低誘電率燃料が充満していることから、 高誘電率燃料と低誘電率燃 料とが混合され充満した燃焼室全領域で瞬時点火させることができ る。  Therefore, since the low dielectric constant fuel to be secondary ignited is filled in the vicinity of the periphery of the high dielectric constant fuel to be primary ignited, the high dielectric constant fuel and the low dielectric constant fuel are mixed and filled in the entire combustion chamber area. It can be ignited instantly.
本発明の M I方式の点火手段は電子レンジと同様の電磁波を利用 する場合はマイク口波加熱方式と呼ばれる方式である。  The ignition means of the MI system of the present invention is a system called a microphone mouth wave heating system when using an electromagnetic wave similar to a microwave oven.
この M I方式は電子レンジのレンジ室を燃焼室に見立て、 マイク 口波発生装置から発生したマイク口波が導波管を介してマイクロ波 放射端から燃焼室内に放射され、 そのマイクロ波により、 燃焼室に 粒霧された高 ·低誘電率燃料混合燃料の混合気が点火されるように した手段である。  In this MI method, the microwave oven's range chamber is regarded as a combustion chamber, and the microphone mouth wave generated from the microwave mouth wave generator is radiated from the microwave radiation end into the combustion chamber through the waveguide, and the microwaves are burned. It is a means to ignite the mixture of high and low permittivity fuel mixed fuel that is atomized in the chamber.
本発明のマイク口波を発生するマイク口波発生装置はマグネト口 ンを代表とするマイクロ波発生電子管と、 ガンダイオード、 インパ ッ トダイォードなどのマイクロ波半導体がマイクロ波発生装置で、 そのマイクロ波発生装置から発生されたマイクロ波を案内する導波 管 (マイクロ波などの高周波電磁波を導くガイ ド) を通じて、 その 導波管から案内された電磁波が放射されるように形成された電磁波 放射端子であるアンテナから内燃エネルギーの燃焼室に放射するよ うにした手段である。 A microphone mouth wave generator for generating a microphone mouth wave according to the present invention includes a microwave generating electron tube represented by a magneto hole, a gun diode, and an A microwave semiconductor such as a toroid diode is a microwave generator, and a waveguide for guiding the microwave generated from the microwave generator (a guide for guiding a high frequency electromagnetic wave such as a microwave) from the waveguide It is a means to radiate the guided electromagnetic wave from the antenna which is an electromagnetic wave radiation terminal formed to be radiated to the combustion chamber of the internal combustion energy.
本発明のマイクロ波を発生するマイク口波発生装置と してマグネ ト口ンを利用する場合は分割陽極と外部共振回路となる外部共振器 との構成から発振する B型振動方式が望ましい。  When a microphone is used as a microphone mouth wave generator for generating microwaves according to the present invention, it is preferable to use a B-type vibration system that oscillates from the configuration of a split anode and an external resonator serving as an external resonance circuit.
また、 マグネトロン空洞としては πモードの発振に限定されるラ イジングサン型、 橘型が望ましい。  The magnetron cavity is preferably a rising sun type or a Tachibana type, which is limited to π mode oscillation.
さらに、 外部共振器の数はエンジン数に予備も含めた数とするこ とが望ましく、 それぞれの外部共振器にアンテナを付属させ、 点火 が必要なエンジンに供給して行く方法と外部共振器の 1つにアンテ ナを揷入し、 マイクロ波を引き出し、 切り替え器で点火が必要なェ ンジンに振り分けて行く方法があるが、 後者が単純な構成となるの で望ましい。  Furthermore, it is desirable that the number of external resonators be a number including the number of spares in the number of engines, and attach an antenna to each external resonator and supply it to the engine that needs ignition and the external resonators. One method is to insert an antenna, extract microwaves, and use a switch to distribute to the engine that needs ignition. This is desirable because the latter has a simple configuration.
本発明のマイク口波を発生するマイクロ波発生装置の放射形態は 狭いエンジン室内に配置する電磁放射体端子は、 次のような形態が 望ましい。  According to the radiation form of the microwave generator for generating the microphone mouth wave of the present invention, the electromagnetic radiator terminal disposed in the narrow engine compartment preferably has the following form.
平面導体基板の上面に誘電体基面を形成し、 その上に任意形状の 導体箔パッチ面を形成した構造のアンテナで、その形状として円形、 方形など様々な形状があるパッチアンテナとしては、 ( a ) 方形パッチアンテナ An antenna of a structure in which a dielectric base surface is formed on the upper surface of a flat conductor substrate and a conductor foil patch surface of an arbitrary shape is formed thereon, and as a patch antenna having various shapes such as circular and square as its shape, (a) Square patch antenna
(b ) 円形パッチアンテナ  (b) Circular patch antenna
( c ) 多角錐パッチアンテナ  (c) Polygon pyramid patch antenna
( d) 円錐多重パッチアンテナ  (d) Conical multiple patch antenna
があり、 その他に There are other
( e ) 渦巻き直進行するへリカルアンテナ  (e) Spiral straight antenna
( f ) 渦巻き円錐進行する円錐へリカルアンテナ  (f) Conical helical antenna traveling spiral cone
(g) 2渦巻き独立平面卷き構成の等角渦巻きアンテナ  (g) Two-fold independent plane conformal spiral antenna
( ) 2渦巻き独立円垂構成の等角渦巻きアンテナ  () Equiangular spiral antenna with 2 spiral independent circular configuration
( i ) 円中心から放射状に電磁波を放射するラジアルライン . スロ ッ ト · アンテナ  (i) A radial line that radiates electromagnetic waves radially from the center of the circle Slot antenna
( j ) 導波管側面に長穴を開けてスロッ トアンテナ  (j) Slot antenna with a long hole on the side of the waveguide
(k ) 同軸管の中心導体を突き出させた突起アンテナ、 または、 複 突起アンテナ  (k) A protruding antenna or a double protruding antenna with the center conductor of the coaxial tube sticking out
( 1 ) 導波管内に石英などマイクロ波を透過する材料で作ったキヤ ビティをおき、 キヤビテイアンテナ  (1) Place a cavity made of a material that transmits microwaves, such as quartz, in the waveguide, and a cavity antenna
(m) 導波管内に共振構造や、 電界を集中させるための共振突起ァ ンテナ  (m) Resonant structure in the waveguide or resonant projection antenna for concentrating the electric field
などがある。 and so on.
これらのいずれの構造も内燃エンジンの点火に必要なマイクロ波 を放射する電磁波放射端子として利用できる。  Any of these structures can be used as an electromagnetic wave radiation terminal for radiating the microwaves necessary for ignition of the internal combustion engine.
なお、 本発明のマイクロ波導波路 34としては、 導波円筒同軸路 がその他の導波路 3 4に比べ、減衰特性が小さいことから望ましレ、。 図面の簡単な説明 In addition, as the microwave waveguide 34 of the present invention, it is desirable that the waveguide cylindrical coaxial path has a smaller attenuation characteristic than the other waveguides 34,. Brief description of the drawings
第 1図は高 ·低誘電率燃料混合燃料による M I点火式エンジン の断面図であり、 第 2図は、 既存のスパークプラグと同装着形状の M I点火プラグの断面図であり、 第 3図は点火前断熱膨脹による負 圧状態下で点火するサバティサイクル図であり、 第 4図混合気に応 じた断熱圧縮開始、 負荷に応じた断熱膨脹終了が独立したォッ トー サイクル図とス トローク作動図であり、 第 5図は、 既発明、 実用化 されている 4サイクルエンジン構造と 4動作を示す図、 P V熱サイ クル図であり、 第 6図は既存の S Iエンジンにおけるスパークプラ グの例である。 発明を実施するための最良の形態  Fig. 1 is a cross-sectional view of an MI ignition engine with high / low permittivity fuel mixed fuel, Fig. 2 is a cross-sectional view of an MI spark plug of the same mounting shape as an existing spark plug, and Fig. 3 Fig. 4 is a partial cycle diagram in which the adiabatic compression start corresponding to the mixture and the adiabatic expansion end according to the load are independent and the stroke cycle diagram and the stroke cycle. Fig. 5 is an operation diagram, Fig. 5 is a diagram showing a 4-cycle engine structure and 4 operations that have been invented, put into practical use, and a PV thermal cycle diagram, and Fig. 6 is a spark plug of an existing SI engine. It is an example. BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明の実施の形態例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第 1図は、 円筒同軸形または矩形同軸型の内燃エンジン 1に おいて、 マイク口波発生装置 1 4から供給されるマイクロ波を電磁 波放射端子 3 1 (図 1では円錐パッチアンテナの例)から放射させ、 内燃エンジン 1に供給された混合気 5 3を点火させる M I方式の內 燃エンジン断面図である。  Fig. 1 shows that in the cylindrical coaxial type or rectangular coaxial type internal combustion engine 1, microwaves supplied from the microphone mouth wave generator 14 are radiated to the electromagnetic wave radiation terminal 3 1 (in the example of the conical patch antenna in Fig. 1). FIG. 2 is a cross-sectional view of a MI-type combustible engine of the MI system in which the mixture 53 emitted from the internal combustion engine 1 is emitted.
なお、 予め圧縮された空気が充填された燃焼室 3には高誘電率燃 料 5 0 b と低誘電率燃料 5 0 aが微粒霧混合された混合燃料 5 0 c が収納された燃料タンク 5 6から混合燃料供給装置 5 7通じ、 燃料 噴射ノズル 4 4 aから混合燃料 5 0 cが供給される。 なお、 M I方式点火前に、 燃焼室 3に混合気 5 0 c と反応気 5 1 が微粒霧混合した混合気 5 3を予め充填しておく ことを制限するも のではない。 In addition, a fuel tank 5 containing a mixed fuel 50 c in which high dielectric constant fuel 50 b and low dielectric constant fuel 50 a are mixed with fine particles mist is stored in the combustion chamber 3 filled with pre-compressed air. The mixed fuel supply device 57 is connected to the fuel injection nozzle 4 4 a to supply the mixed fuel 50 c from 6. In addition, it is not limited to pre-filling the combustion chamber 3 with the air-fuel mixture 53 in which the air-fuel mixture 50 c and the reaction air 51 are mixed with fine particles before ignition of the MI system.
一方、 燃焼室 3にマイクロ波発生装置 1 4で発生されたマイクロ 波が導波路 3 4を経て、円錐パッチアンテナ 2 4 aから放射される。 円錐パッチアンテナ 2 4 aは円錐表面に直角する対峙する 1対のパ ツチで構成される方式のほか、 円錐凸基面に合わせた円錐パッチ方 式、 凹基面に合わせた円錐パッチ方式で構成されている。  On the other hand, microwaves generated by the microwave generator 14 in the combustion chamber 3 are radiated from the conical patch antenna 24a through the waveguide 34. Conical patch antenna 2 4 a consists of a pair of opposing patches perpendicular to the conical surface, a conical patch type fitted to the conical convex base surface, and a conical patch type fitted to the concave base surface It is done.
ここで、 マイクロ波発生装置 1 4の周波数に応じて、 電磁波放射 端子 3 1のサイズが変わるため、 記載した円錐パッチアンテナ 2 4 aに限らず、 エンジンの燃焼室 3のサイズと電磁波放射端子 3 1の 発生周波数に応じたサイズの電磁波放射端子 3 1 となり、 上記記載 したアンテナが利用できる。  Here, since the size of the electromagnetic wave radiation terminal 31 changes according to the frequency of the microwave generator 14, the size of the combustion chamber 3 of the engine and the electromagnetic wave radiation terminal 3 is not limited to the conical patch antenna 2 4 a described. It becomes an electromagnetic wave radiation terminal 3 1 of a size according to the generated frequency of 1, and the antenna described above can be used.
図 1において動作の説明をする。  The operation will be described with reference to FIG.
燃焼室 3に供給された酸素富化気 5 1 a (省略) は熱機変換子 The oxygen-enriched air 5 1 a (omitted) supplied to the combustion chamber 3 is a heater converter
5の可動により圧縮され、 上死点近傍に近づいたとき、 超音波微粒 霧化装置 8 4 a (省略) で微粒霧化された混合燃料 5 0 cがその酸 素富化気中に燃料噴射ノズル 4 4 aから噴射され、 混合気 5 3を形 成させる。 When the fuel is compressed by the movement of 5 and approaches the vicinity of the top dead center, the mixed fuel 50 c which has been finely atomized by the ultrasonic fine particle atomizer 8 4 a (omitted) is injected into the oxygen-enriched air. It is injected from the nozzle 4 4 a and forms the mixture 5 3.
一方、 その燃料嘖射後、 マイクロ波発生装置 1 4で発生したマイ クロ波を電磁波放射端子 3 1から燃焼室 3内全域に放射させ、 燃焼 室 3内で混合気 5 3を点火させ、 その熱力から熱機変換子 5 (ビス トン) はパワーを得て、 外部にパワーを出力する。 マイクロ波発生装置 1 4の稼動方式は間欠型の発生方式がよく、 熱機変換子 5が上死点に戻る時期に、 マイクロ波を間欠放射させ、 熱機変換子 5が下死点近傍で排気弁が開放させられる直前まで発生 を継続させ、 その他は休止するデューティ比で稼動させる方式がよ レ、0 On the other hand, after the fuel irradiation, microwaves generated by the microwave generator 14 are radiated from the electromagnetic wave radiation terminal 31 to the whole area in the combustion chamber 3 to ignite the mixture 53 in the combustion chamber 3 The heat machine converter 5 (Biston) obtains power from heat and outputs power to the outside. The operation method of the microwave generator 14 is preferably intermittent generation, and microwaves are intermittently emitted when the heater converter 5 returns to the top dead center, and the heater converter 5 is an exhaust valve near the bottom dead center. Continue the generation until just before the release is performed, and the others are operated with the duty ratio at rest, 0
マイクロ波発生装置 1 4の稼動は内燃エンジン室内を可動する熱 機変換子 5の位置を熱機変換子位置センサー 3 5 (省略) からの情 報を得て、 放射起動タイミングセンサー 3 6 (省略) からの信号を 受信し、 燃焼室の混合気量 ·濃度に応じた強度のマイク口波を放射 制御するマイクロ波放射制御装置 3 7 (省略) でマイクロ波強度を 決め、 そのマイクロ波をマイクロ波発生装置 1 4から燃焼室 3に放 射する。  The operation of the microwave generator 14 obtains the information from the position of the heater converter 5 which can move the internal combustion engine chamber to the heater converter position sensor 3 5 (omitted), and the radiation start timing sensor 3 6 (omitted) The microwave intensity is determined by the microwave radiation control device 37 (omitted) that receives the signal from the unit and radiates and controls the microphone mouth wave intensity according to the mixture volume and concentration of the combustion chamber, and determines the microwave intensity of the microwaves. The generator 14 emits radiation to the combustion chamber 3.
なお、 マイク口波発生装置 1 4を冷却するための冷却装置は省略 している。  The cooling device for cooling the microphone mouth wave generator 14 is omitted.
上記の説明のマイクロ波電源、 マイクロ波発生装置は既に実用化 されているものを利用することから、 簡便的な表記をしているが、 このような形状だけではなく、既に実用化しているマイク口波電源、 マイク口波発生装置を点火装置として、 内燃エンジンに利用するこ とを制限するものではない。  The microwave power source and the microwave generator described above use simple existing ones because they are already in practical use, but they are not only such shapes but microphones that are already in practical use. The mouth wave power supply and the microphone mouth wave generator are not limited to use as an ignition device for an internal combustion engine.
第 1図では、 マイクロ波発生装置 1 4から発生したマイクロ波が 放射された時、 その放射波が電磁波負荷から反射され、 その反射マ イク口波によって損傷することを軽減するため、 電磁波透過窓 3 3 を有する電磁波窓付きとすることが望ましいが、ここでは省略した。 第 1図では省略しているがマイク口波発生装置 1 4を保護する目 的で、 必要により、 石英ガラスからなる電磁波透過窓 3 3、 電源と 実効負荷との間のインピーダンス · ミスマッチによる影響を少なく するフェライ トアイ ソレータなどの材料や装置を採用することが望 ましい。 In Fig. 1, when the microwave generated from the microwave generator 14 is radiated, the radiation wave is reflected from the electromagnetic wave load, and the electromagnetic wave transmission window is reduced to reduce damage caused by the reflection microphone mouth wave. Although it is desirable to use an electromagnetic wave window having 3 3, it is omitted here. Although it is omitted in Fig. 1, to protect the microphone mouth wave generator 14, if necessary, the electromagnetic wave transmission window 33 made of quartz glass, and the influence of impedance mismatch between the power supply and the effective load It is desirable to use materials and equipment such as a ferrite isother that can be reduced.
その石英ガラスからなる電磁波透過窓 3 3は、 マイクロ波が燃焼 室 3に放射される方向にはそのマイク口波の透過率が高く、 燃焼室 3から発せられる赤外線透過率が低く、 電磁波異周波一方向性フィ ルターリング機能を持った窓であることが望ましい。  The electromagnetic wave transmission window 33 made of quartz glass has a high transmissivity of the microphone mouth wave in the direction in which the microwaves are radiated to the combustion chamber 3 and a low infrared transmissivity emitted from the combustion chamber 3. It is desirable to be a window with a one-way filtering function.
また、 点火前のマイクロ波透過時にはマイクロ波透過、 点火後は マイクロ波、 赤外線ともに低透過率に変化する液晶を利用し、 その フィルターリング機能を構成させる方法などを取り入れることが望 ましい。  In addition, it is desirable to use a method of forming a filtering function by using a liquid crystal that changes to a microwave transmission before microwave ignition and to a low transmittance for both microwave and infrared light after ignition.
さらに、 透過性のフィルターリングフィルムを断熱 2層構造の電 磁波透過窓 3 3のマイクロ波放射側に貼り付け、 燃焼室 3からの伝 熱損傷を回避させることが望ましい。  Furthermore, it is desirable to paste a permeable filter film on the microwave radiation side of the heat insulating two-layer electromagnetic wave transmission window 33 to avoid heat transfer damage from the combustion chamber 3.
それらの例として、 マイク口波透過断熱材 3 3 aは、 特許公開平 6 - 2 9 4 2 1 6で例証している、 ィンディアナ州ニューカーリス ノレ (N e w C a r 1 i s 1 e ) のカーボランダム社 (C a r b o r u n d u m C o r p o r a t i o n) 製の商標 「ファイノ ーフ ラックス (F I B ERF RAX)」 として製造販売されているマイク 口波断熱材を利用する方法もある。  As an example of them, Mike Mouth Wave Permeable Insulation 3 3 a is exemplified in the patent publication No. 6-2 9 4 2 1 6 in the Carbo of New Carris Nore (N ew Car 1 is 1 e) in Indiana. There is also a method using microwave insulation manufactured and sold as a trademark "Fino Flux (FIB ERF RAX)" manufactured by Random Corporation (C arborundum Corporation).
第 2図には、 既存のエンジンでも利用できるように、 現在汎用品 点火プラグと装着形状を同じく した電磁放射端子 3 1を中心軸に円 錐パッチアンテナを構成する例を示す。 Fig. 2 shows that currently used general-purpose products can be used with existing engines. An example is shown in which a conical patch antenna is configured with an electromagnetic radiation terminal 31 having the same mounting shape as the spark plug 31 as a central axis.
また、 現在汎用品と装着形状を同じく した電磁放射端子 3 1の外 円筒内面にパッチアンテナを構成することもできる。  In addition, a patch antenna can be configured on the inner surface of the outer cylinder of the electromagnetic radiation terminal 31 which has the same mounting shape as the current general-purpose product.
なお、 第 1図および第 2図の導波路 3 4には、 同軸ケーブル 3 4 d 管 3 4 a、 同 、 路 3 4 b、 ス トリ ツプ線路 3 4 cを利 用できる。  For the waveguide 34 in FIGS. 1 and 2, the coaxial cable 3 4 d tube 34 a, the same, the path 34 b, and the strip line 34 c can be used.
第 3図は、 本発明の M I点火方式で高 ·低誘電率燃料混合を供給 された燃焼室においては点火前断熱膨脹による負圧状態下で点火す ることも可能であり、 その例としてのサバティサイクル図である。 排気終了した下死点( a ) から上死点(b ) までの掃給気過程(A ) 終了時点で、 反応気 5 1で充満した燃焼室 3に燃料 5 0を供給し、 混合気 5 3を形成させ、 燃焼室 3を断熱膨脹させる。  Fig. 3 shows that in the combustion chamber supplied with the high / low dielectric constant fuel mixture by the MI ignition method of the present invention, it is possible to ignite under negative pressure by adiabatic expansion before ignition, as an example. FIG. At the end of the scavenging process (A) from the bottom dead center (a) to the top dead center (b) at which the exhaust is completed, the fuel 50 is supplied to the combustion chamber 3 filled with the reactive gas 51. Form 3 and adiabatic expansion of the combustion chamber 3.
上死点 (b ) から点火点 ( c ) までの断熱膨脹過程 (B ) は、 燃料 5 0の気化と反応気 5 1 との混合を促進させると同時に M l性 能を高める効果があり、 燃焼室 3の全域において、 点火点 ( c ) で 点火が同時、 均一に行われる。  The adiabatic expansion process (B) from the top dead center (b) to the ignition point (c) has the effect of promoting the vaporization of the fuel 50 and the mixing with the reaction gas 51 while at the same time enhancing the Ml performance. In the entire combustion chamber 3, ignition is simultaneously and uniformly performed at the ignition point (c).
なお、 図 3では省略しているが、 断熱膨脹過程 (B ) は外力で膨 脹される。  Although not shown in Fig. 3, the adiabatic expansion process (B) is expanded by an external force.
その外力は主負荷 8に並列するフライフォイールか、 エネルギー 蓄積されたパネ機構、 フライフォイール等の機械系ボトミング負荷 8 6 (省略)、 電機系ボトミング負荷 8 5 (省略) となる駆動モータ 8 5 d (省略) からの駆動力 (省略) である。 なお、 掃給気過程 (A) で、 排気終了した下死点 ( a ) から掃気 体 5 2で掃気し、 掃気が終了した時点で、 混合気 5 3を供給し、 上 死点 (b) 点に熱機変換子 5が達する時点で、 所要の混合気 5 3を 燃焼室 3に満たす方式を制限するものではない。 The external force is a drive motor that becomes a flywheel parallel to the main load 8, a panel mechanism with stored energy, mechanical bottoming load 8 6 (omitted) such as a flywheel, and an electric system bottoming load 8 5 (omitted) 5 d (omitted) is the driving force (omitted). In the scavenging air supply process (A), the scavenging air is scavenged with the scavenging body 52 from the bottom dead center (a) at which the exhaust is completed, and when scavenging is completed, the mixture 53 is supplied, and the top dead center (b) There is no limitation on the method of filling the combustion chamber 3 with the required mixture 53 when the heat machine converter 5 reaches the point.
点火点 (c ) から燃焼終了点 ( d) までの受熱昇温昇圧過程 (C) で、 供給された燃料 5 0は瞬時に燃焼する燃料 5 0が高温状態を形 成し、 燃焼室 3の圧力最高点 (d) に達する。  In the heat receiving pressure raising process (C) from the ignition point (c) to the combustion end point (d), the supplied fuel 50 forms a high temperature state of the fuel 50 burning instantaneously, and the combustion chamber 3 The pressure peak (d) is reached.
圧力最高点 (d) に達した後も燃焼が一定圧力下で持続的に行わ れ、 外部にパワー供給するパワー分を補給する形で燃焼が進み、 燃 焼が終了する燃焼終了点 ( e) と最高点 (d) からなる過程が受熱 熱力膨脹過程 (D) である。  Even after reaching the pressure peak (d), the combustion is continuously performed under a constant pressure, and the combustion proceeds by supplying power for supplying power to the outside, and the combustion end point (e) at which the combustion ends. The process consisting of and the highest point (d) is the heat receiving thermal expansion process (D).
これは瞬時燃焼力が低い低揮発性燃料 5 0 dに高誘電率燃料 5 0 bを混合した混合燃料 5 0 cが燃焼する場合、 瞬時燃焼力が低い燃 料 5 0 dと瞬時燃焼力が高い燃料 5 0 eの混合燃料の場合、 瞬時燃 焼力が低い燃料 5 0 dを専燃する場合は、 理想的なサバティサイク ル過程となると仮定し、そのサバティサイクル過程図が図 3である。  This is because when the mixed fuel 50 c in which the low volatile fuel 50 d is mixed with the high permittivity fuel 50 b with low instantaneous combustion power, the fuel 50 d with the low instantaneous combustion power and the instantaneous combustion power In the case of exclusively fueled fuel 50 d with low instantaneous combustion power in the case of a high fuel mixed fuel of 50 e, it is assumed that the ideal Sabaty cycle process will be assumed, and the Sabaty cycle process diagram is shown in Figure 3 .
ここで、 燃焼室 3 と熱機変換室 4の温度が高すぎる事のないよう に、 すなわち、 熱解離温度を越えることのないように、 燃焼室 3と 熱機変換室 4の温度が 1 7 0 0°C程度の熱解離温度 ( 2 00 0 K) 以下になるように、 燃料供給点 (b) で供給される燃料 5 0の噴射 量の上限を決めておく事が望ましい。  Here, the temperatures of the combustion chamber 3 and the heat machine conversion chamber 4 are 1 7 0 0 so that the temperatures of the combustion chamber 3 and the heat machine conversion chamber 4 are not too high, ie, the thermal dissociation temperature is not exceeded. It is desirable to determine the upper limit of the injection amount of the fuel 50 supplied at the fuel supply point (b) so that the thermal dissociation temperature (200 ° K) or less at about ° C.
断熱膨脹過程 (E) は燃料の燃焼終了点 (e) から排気開始する 排気開始点 ( f ) までの過程をいい、 断熱状態下にある熱機変換室 4で熱機変換子 5が外部にパワーを出力する過程である。 なお、 受熱熱力膨脹過程 (D) も熱機変換子 5が外部にパワーを出 力する過程である。 The adiabatic expansion process (E) is the process from fuel combustion end point (e) to exhaust start point to exhaust start point (f), heat machine conversion chamber under adiabatic condition Step 4 is a process in which the heat-to-machine converter 5 outputs power to the outside. The heat receiving thermal expansion process (D) is also a process in which the heater converter 5 outputs power to the outside.
排気開始点( f ) から排気終了点( a ) までの過程が排気過程(F) である。  The process from the exhaust start point (f) to the exhaust end point (a) is the exhaust process (F).
排気開始点 ( f ) は本発明の断熱膨脹独立過程を利用すれば、 負 荷パワーが発生パワーを上回る直前に負荷解列し、排気開始となる。  When the exhaust start point (f) uses the adiabatic expansion independent process of the present invention, the load power is released immediately before the generated power is exceeded, and the exhaust starts.
第 4図は、 混合気に応じた断熱圧縮開始、 負荷 9に応じた断熱膨 脹終了が独立したォッ トーサイクル図とそのス トロークを示すス ト ローク作動図である。  Fig. 4 is a stroke operation diagram showing an atotic compression start according to the mixture, an adiabatic expansion end according to the load 9 independent Otto cycle diagram and its stroke.
本発明により、 熱機変換子の作動位置に左右されることなく、 い つでも適宜点火でき、 均一に瞬時に完全燃焼させることができるの で、 図 4のようなサイクルも可能となる。  According to the present invention, a cycle as shown in FIG. 4 is also possible because ignition can be properly performed anytime and any time, and uniform complete combustion can be performed regardless of the operating position of the heat machine converter.
掃気開始点( a )から掃気体 5 2で掃気を開始する掃気が終了し、 続いて反応気 5 1が供給され、 排気弁が封止され、 内燃エンジン室 2に所要量の反応気 5 1が充填され、 圧縮が開始される圧縮開始点 ( b ) までの過程が掃給気過程 (A) である。  The scavenging gas is started from the scavenging start point (a) with the scavenging gas 52 to start the scavenging gas, and then the reaction gas 51 is supplied, the exhaust valve is sealed, and the required amount of reaction gas is supplied to the internal combustion engine chamber 2 5 1 The process up to the compression start point (b) where is filled and compression is started is the scavenging process (A).
実際は排気開始点 (e ) で、 排気弁開放と同時に掃気体 5 2を供 給し、 掃気開始点 ( a ) では相当掃気が終了しているが、 あくまで も、 熱サイクルの理想的な概念構成を示すもので、 特に、 2ス ト口 ークサイクルなどの場合では、 掃給気開始点 (a ) で反応気 5 1を 供給すると考えても良い。  Actually, the scavenging gas 52 is supplied at the same time as the exhaust valve opens at the exhaust start point (e) and considerable scavenging is finished at the scavenging start point (a). However, the ideal conceptual configuration of the thermal cycle In particular, in the case of a two-stroke cycle or the like, it may be considered that the reaction air 51 is supplied at the scavenging start point (a).
圧縮開始点 (b ) で圧縮開始前に燃料 5 0が供給され、 圧縮が開 始され、圧縮が終了する点火点(c)までの過程が断熱圧縮過程(B) である。 Fuel 50 is supplied at the compression start point (b) before compression starts, and compression is opened. The adiabatic compression process (B) is the process from the beginning to the ignition point (c) where the compression ends.
なお、 圧縮終了時点で燃料噴射させてもよい。  Note that fuel may be injected at the end of compression.
断熱圧縮過程の圧縮の外力は第 3図で説明したことと同様である。 The external force of compression in the adiabatic compression process is the same as that described in FIG.
点火点 ( c) で燃料 5 0が点火され、 燃料の燃焼が終了する燃焼 終了点 ( d) までの過程が受熱過程 (C) である。  The fuel 50 is ignited at the ignition point (c), and the process until the combustion end point (d) where the fuel combustion ends is the heat receiving process (C).
燃焼終了点 ( d) で断熱膨脹が開始され、 断熱膨脹が終了する排 気点 (d) までの過程が断熱膨脹過程 (D) である。  The adiabatic expansion process is started at the end of combustion (d), and the process to the exhaust point (d) where the adiabatic expansion ends is the adiabatic expansion process (D).
排気弁が開放され、 排気排熱が開始される排気点 ( e ) から掃気 開始点 ( a) までの過程が排気過程 (E) である。  The process from the exhaust point (e) where the exhaust valve is opened and exhaust exhaust heat is started to the scavenging start point (a) is the exhaust process (E).
なお、 排気弁の開放は内燃エンジンから発生する発生パワーが負 荷パワーを下回る直前に開放される。  The exhaust valve is opened just before the generated power from the internal combustion engine falls below the load power.
従来のエンジンにおいては、 圧縮過程と排気過程が相互に制限さ れる過程となっていたが、 第 4図は、 掃気過程 (A) 後の任意の位 置で圧縮が開始され、 任意の位置で膨脹が終了する相互独立を示す ための図である。  In the conventional engine, the compression process and the exhaust process are mutually restricted processes, but Fig. 4 shows that compression is started at an arbitrary position after the scavenging process (A), and at any position. It is a figure for showing mutual independence which expansion ends.
さらに、 第 4図は、 反応気量に応じて、 掃給気過程の長さを、 点 火前の混合気量に応じて、 最適に圧縮開始位置を決める圧縮過程の 独立と、 負荷パワーの状況に合わせて、 断熱膨脹過程の長さが決ま る断熱膨脹過程の独立を示すサイクル図である。  Furthermore, FIG. 4 shows the independence of the compression process which determines the compression start position optimally according to the reaction volume, the length of the sweeping air supply process, and the mixture volume before the ignition, and the load power It is a cycle diagram showing the independence of the adiabatic expansion process in which the length of the adiabatic expansion process is decided according to the situation.
実際の高速ディーゼルエンジンゃガソリンエンジンは理想化され た第 4図のォッ トーサイクルで表すことが出来ると言われている事 から、 第 4図において、 圧縮過程の独立と断熱膨脹過程の独立を示 すサイクル図を示したが、 ォッ トーサイクルだけに適用される訳で はない。 Since it is said that an actual high-speed diesel engine or gasoline engine can be represented by the idealized Fig. 4 Otto cycle, in Fig. 4, the independence of the compression process and the independence of the adiabatic expansion process are considered. Indication The cycle diagram is shown, but it does not necessarily apply to the Otto cycle alone.
圧縮過程の独立と、 負荷パワーの状況に合わせて、 断熱膨脹過程 の長さが決まる断熱膨脹過程の独立性を持たせる方式は、 低速ディ —ゼルエンジンの場合にも適用できるがここでは省略した。  The independence of the compression process and of the adiabatic expansion process that determines the length of the adiabatic expansion process according to the load power situation can be applied to the low-speed diesel engine but is omitted here. .
第 5図は、 既発明、 実用化されている 4サイクルエンジン構造と 4動作を示す図、 P V熱サイクル図である。  FIG. 5 is a PV thermal cycle diagram showing a 4-cycle engine structure and 4 operations which have been invented and put into practical use.
吸入行程 (A )、 断熱圧縮行程 (B )、 断熱膨脹行程 (C )、 排掃気 行程 ( D ) の 4つのス トローク行程で 1熱サイクルを構成し、 その サイクルを P V座標軸上で表した図が P V線図 (E ) である。  The figure shows one heat cycle consisting of four stroke strokes of suction stroke (A), adiabatic compression stroke (B), adiabatic expansion stroke (C) and exhaust sweep stroke (D), and the cycle is represented on the PV coordinate axis Is the PV diagram (E).
なお、 点火装置は省略している。 産業上の利用可能性  The igniter is omitted. Industrial applicability
以上説明したように本発明の内燃エンジンは、 低誘電率燃料に高 誘電率燃料を混合させ、 エネルギー伝播速度が光速である M I方式 を利用すれば、 燃料種に拘らずに M I方式のエンジンとなる。  As described above, the internal combustion engine of the present invention mixes the high dielectric constant fuel with the low dielectric constant fuel, and uses the MI system whose energy propagation speed is the light speed, regardless of the fuel type, the MI engine and Become.
特に、 現行のガソリンエンジンで利用されている点火プラグと同 装着形状の M lプラグを利用し、 そのプラグに高周波電磁波発生 - 制御装置に接続させれば、 ガソリンより重質な石油製品のほか、 植 物油などでもそのガソリンエンジンで駆動させることができる。  In particular, if you use the M l plug, which has the same mounting shape as the spark plug used in current gasoline engines, and connect it to a high frequency electromagnetic wave generation and control device, in addition to petroleum products heavier than gasoline, Plant oil can also be driven by the gasoline engine.
そして、 高誘電率燃料を低誘電率燃料とが混合されていれば、 低 誘電率燃料でさえ、 非常に高い空燃比でも完全点火、 完全燃焼を容 易にでき、 局所高温で発生する N O Xの抑制ができる温度でも充分 な熱効率が上げることができ、 排気ガス浄化装置等を省略できる。 その上、 点火が燃焼室全体で同時刻的に発生することから、 燃焼 速度を速められ、 爆発比が高められる結果、 熱効率を向上させるこ とができる。 And, if high permittivity fuel is mixed with low permittivity fuel, even a low permittivity fuel can be fully ignited and burned easily even at very high air fuel ratio, and NOx generated at local high temperature can Even temperature that can be controlled is enough The thermal efficiency can be improved, and the exhaust gas purification system etc. can be omitted. Moreover, since the ignition occurs at the same time in the entire combustion chamber, the combustion rate can be increased, the explosion ratio can be increased, and the thermal efficiency can be improved.
その上、 全域均一点火ができる本発明の方式では、 熱解離が発生 しない温度で燃焼制御させることができるため、 エネルギー変換効 率を容易に向上させることができる。  Moreover, according to the method of the present invention capable of uniform ignition over the entire area, combustion control can be performed at a temperature at which thermal dissociation does not occur, so that the energy conversion efficiency can be easily improved.
さらに、 燃料の完全燃焼がほぼ図れるので、 残留燃料が熱機変換子 の異常位置で点火してしまう ミスファイアの発生を抑制できるほ力 、 アイ ドリングおよび低負荷時には圧縮圧力が低いので不完全燃焼と なり易く、 その結果、 CO を多く発生し、 燃焼温度が低く消炎層も 増えて HCが増大するが、 本発明の M I方式のエンジンであれば、 放射電磁エネルギーが燃焼室全域に隈なく、 行き渡るので、 C O、 H Cの発生が抑制できるという効果である。 Furthermore, since the complete combustion of the fuel can be almost achieved, the residual fuel is ignited at the abnormal position of the heat machine converter. The ability to suppress the occurrence of misfires. As a result, a large amount of CO is generated, the combustion temperature is low, the flame-extinguishing layer is also increased, and the HC is increased. However, in the case of the MI type engine of the present invention, the radiated electromagnetic energy is small throughout the combustion chamber. Therefore, it is an effect that generation of CO and HC can be suppressed.
その上、 S Iエンジンの点火装置の自己清浄温度が 4 5 0 °Cから 8 5 0 °Cの範囲であると言われているので、 この温度を保つように 運転されているが、 本発明を使用することで、 自己清浄温度範囲で の運転制御をする必要が無く、 エネルギー変換効率を容易に向上さ せることができる。 .  Furthermore, since it is said that the self-cleaning temperature of the igniter of the SI engine is in the range of 450 ° C. to 850 ° C., it is operated to maintain this temperature. By using it, it is not necessary to control the operation within the self cleaning temperature range, and energy conversion efficiency can be easily improved. .
その他、 本発明の電磁波点火方式を利用すれば、 点火性能を損な うことなく圧縮過程を省略できる結果、 圧縮過程が断熱膨張過程の 終了を制約する条件を解き放し、 負荷に応じた出力まで、 断熱膨張 過程を継続できるため、 飛躍的に熱エネルギー変換効率を高めるこ とができるという効果である。 Besides, using the electromagnetic wave ignition method of the present invention, the compression process can be omitted without impairing the ignition performance, so that the compression process releases the condition that restricts the termination of the adiabatic expansion process, and the output according to the load can be obtained. Since the adiabatic expansion process can be continued, the thermal energy conversion efficiency can be dramatically improved. The effect is that
次に、 本発明により、 第 3図のような断熱外力膨張可容 ·減圧 - 減温過程を持つサイクルも可能となり、 そのようなサイクルにおい ては、 次の効果が期待できる。  Next, according to the present invention, a cycle having an adiabatic external force expansion capacity / pressure reduction-temperature reduction process as shown in FIG. 3 is also possible, and in such a cycle, the following effects can be expected.
その効果は、 爆発比は燃焼前の圧力 (温度) と燃焼後の圧力 (温 度) の比で知られ、 本発明のような断熱外力膨張可容 ·減圧,減温 過程を、 熱サイクルに過程に入れれば、 その断熱外力膨張可容 *減 圧 ·減温過程で低下した燃焼前の低圧と燃焼後の圧力比となるから、 その爆発比を大きくでき、 内燃エンジンのエネルギー変換効率を高 める効果を上げることができるという効果である。  The effect is that the explosion ratio is known as the ratio between the pressure (temperature) before combustion and the pressure (temperature) after combustion, and the adiabatic external force expansion capacity · pressure reduction and temperature reduction processes as in the present invention is applied to the thermal cycle. If it is put in the process, the adiabatic external force expansion capacity * It becomes the low pressure before combustion and the pressure ratio after combustion which decreased in the pressure reduction and temperature reduction process, so the explosion ratio can be increased and the energy conversion efficiency of the internal combustion engine is high. The effect is that the effect of
その上、 燃焼室の温度は、 本発明の点火前断熱膨脹により、 燃焼 前の内燃エンジン内の温度を下げる効果、 また、 その結果、 燃焼時 の最高温度が下がるため、 内燃エンジン内の温度を低下させること ができるという効果である。  Furthermore, the temperature of the combustion chamber is reduced by the adiabatic expansion before ignition according to the present invention because the temperature in the internal combustion engine before combustion is lowered, and as a result, the maximum temperature at the time of combustion is lowered. The effect is that it can be reduced.
さらに、 第 4図に示す熱サイクルも本発明により可能となり、 そ の結果、 排熱時の熱機変換子 5位置と圧縮開始時の熱機変換子 5位 置を異にし、 点火のための準備としての圧縮過程の開始と、 発生パ ヮ一としての断熱膨脹過程の終了を分離独立させたサイクルも可能 となるため、 次の効果が期待できる。  Furthermore, the heat cycle shown in FIG. 4 is also made possible by the present invention. As a result, the position of the heat machine converter 5 at the time of exhaust heat differs from the position of the heat machine converter 5 at the start of compression. The following effects can be expected because it becomes possible to separate and start the compression process of and the termination of the adiabatic expansion process as a generational unit.
本発明の電磁波点火方式を利用すれば、 点火性能を損なうことな く圧縮過程を任意に設定できる結果、 圧縮過程が発生パワーとなる 断熱膨張過程の終了を制約する条件を解き放し、 負荷に応じた出力 まで、 断熱膨張過程を継続できるため、 飛躍的に熱エネルギー変換 効率を高めることができるという効果である。 By using the electromagnetic wave ignition method of the present invention, the compression process can be arbitrarily set without impairing the ignition performance, and as a result, the compression process becomes the generated power. Because the adiabatic expansion process can be continued up to the output, the thermal energy conversion can be done dramatically The effect is that the efficiency can be increased.
その上、 内燃エンジンからパワーを出力する断熱膨張過程と内燃 エンジンに圧縮外力を与える圧縮過程を独立させる本発明では、 混 合気の最適な圧縮量を設定でき、 その圧縮量に制約されずに、 断熱 膨張過程の長さを、 負荷に応じて、 決定制御できるという効果であ る。 - その結果、 最適な圧縮量と負荷を上回る最低のパワーに低下する まで断熱膨張過程を引き伸ばすことができるので、 熱エネルギー変 換効率の向上が容易にできる。  Moreover, in the present invention in which the adiabatic expansion process of outputting power from the internal combustion engine and the compression process of applying the external compression force to the internal combustion engine are independent, the optimal compression amount of the air-fuel mixture can be set. The effect is that the length of the adiabatic expansion process can be determined and controlled according to the load. -As a result, it is possible to stretch the adiabatic expansion process to a minimum power that exceeds the optimum amount of compression and load, so it is easy to improve the thermal energy conversion efficiency.
以上の外、 熱機変換室が大きくできることから、 エンジンブレー キ性能を向上させることができるという効果である。  In addition to the above, since the heat machine conversion chamber can be enlarged, the engine braking performance can be improved.
次に、 燃焼室容積と熱機変換室からなる内燃ェンジン室可変制御 エンジンも、 本発明により可能となり、 次の効果が期待できる。  Next, an internal combustion engine variable control engine comprising a combustion chamber volume and a heat machine conversion chamber is also made possible by the present invention, and the following effects can be expected.
内燃エンジン室の容積、 すなわち、 燃焼室容積と熱機変換室容積 が独立して、 自由に可変制御できることから、 混合気量,濃度に応 じ、 燃焼室の最適な容積とすることができ、 また、 熱機変換室内の 熱機パヮ一変換効率が最適な容積に可変制御できるので、 容積に関 わる最適な燃焼をさせることができるという効果である。  Since the volume of the internal combustion engine chamber, that is, the volume of the combustion chamber and the volume of the heat exchanger conversion chamber can be controlled freely and variably, the optimum volume of the combustion chamber can be obtained according to the mixture volume and concentration. Since the heat machine conversion efficiency in the heat machine conversion chamber can be variably controlled to the optimum volume, it is an effect that the optimum combustion related to the volume can be performed.
その上、 燃焼室の容積が独立に制御可変できることから、 混合気 量 ·濃度に応じた燃焼室の容積とすることができるので、 容積に関 わる最適な燃焼をさせることができるという効果である。  Moreover, since the volume of the combustion chamber can be independently controlled and varied, the volume of the combustion chamber can be made to correspond to the mixture volume and concentration, so it is an effect that optimal combustion can be performed in relation to the volume. .
その他、 熱機変換室の容積が自由に制御可変できることから、 負 荷からの逆起流パワーの大きさに応じ、 逆起流パワーより熱機変換 パワーが上回る位置で、 負荷との解列ができることから、 負荷のパ ヮーをエンジンブレーキとして消費を防ぎ、 熱機変換効率を向上さ せることができるという効果である。 【符号の説明】 In addition, the capacity of the heat machine conversion chamber can be freely controlled and varied, so the heat machine conversion can be performed from the back electromotive force power according to the magnitude of the back electromotive force power from the load. Since power can be separated from the load at a position where the power is higher, it is possible to prevent consumption of the load's load as an engine brake and improve heat machine conversion efficiency. [Description of the code]
1 内燃エンジン 2 内燃エンジン室  1 internal combustion engine 2 internal combustion engine chamber
3 燃焼室 3 a 燃焼室壁表面  3 combustion chamber 3 a combustion chamber wall surface
4 熱機変換室 4 a 熱機変換室壁表面  4 heat machine conversion chamber 4 a heat machine conversion chamber wall surface
5 熱機変換子 5 a 熱機変換子壁表面 5 b 円筒熱機変換子 5 heat machine converter 5 a heat machine converter wall surface 5 b cylindrical heat machine converter
5 c 矩形熱機変換子 5 d 絶縁円筒同軸熱機変換子 5 c rectangular heat machine converter 5 d insulated cylindrical coaxial heat machine converter
5 e 絶縁矩形中空熱機変換子  5 e insulated rectangular hollow heat machine converter
7 連結子 8 主負荷 ' 9 負荷 1 1 スィ ッチ  7 connector 8 main load '9 load 1 1 switch
1 3 高周波電磁波発生装置 1 4 マイク口波発生装置  1 3 High frequency electromagnetic wave generator 1 4 Microphone mouth wave generator
1 4 a マイク口波電源 1 5 M I装置  1 4 a microphone mouth wave power supply 1 5 M I device
2 2 接地極  2 2 ground pole
2 3 内極 2 3 a 凸極 2 3 b パラボラ極  2 3 inner pole 2 3 a convex pole 2 3 b parabolic pole
2 4 アンテナ  2 4 antennas
2 4 a 円錐パッチアンテナ 2 4 b 角錐パッチアンテナ  2 4 a cone patch antenna 2 4 b pyramid patch antenna
2 4 c 円形パッチアンテナ 2 4 d 方形パッチアンテナ  2 4 c circular patch antenna 2 4 d square patch antenna
2 4 e 2渦巻き円錐アンテナ 2 4 f ループアンテナ  2 4 e 2 spiral cone antenna 2 4 f loop antenna
2 4 g ノヽ0ラボラアンテナ 2 5 絶縁体 2 4 g no 0 laboratory antenna 2 5 insulator
3 1 電磁波放射端子  3 1 Electromagnetic radiation terminal
3 3 電磁波透過窓 3 3 a マイクロ波透過断熱材 3 4 導波路 3 4 a 導波管 3 4 b 同軸導波路3 3 electromagnetic wave transmission window 3 3 a microwave transmission insulation material 3 4 waveguide 3 4 a waveguide 3 4 b coaxial waveguide
3 4 c ス ト リ ップ線路 3 4 d 同軸ケーブル 3 4 c strip line 3 4 d coaxial cable
3 4 d a 同軸ケーブル心線 3 4 d b 同軸ケーブルシース 3 4 d a coaxial cable core 3 4 d b coaxial cable sheath
3 5 熱機変換子位置センサー 3 5 heat machine converter position sensor
3 6 発振起動タイ ミングセンサー  3 6 Oscillation start timing sensor
3 7 マイクロ波放射制御装置 3 8 冷却装置  3 7 Microwave Radiation Controller 3 8 Cooling Device
3 9 電磁波開閉機構 4 0 燃料噴射装置  3 9 Electromagnetic wave switching mechanism 4 0 Fuel injection device
4 1 燃料噴射ポンプ 4 3 燃料供給装置  4 1 Fuel injection pump 4 3 Fuel supply device
4 4 燃料噴射装置 4 5 混合気供給装置  4 4 fuel injection system 4 5 mixture supply system
4 6 掃気孔 4 7 給気孔 4 8 排気孔 4 9 燃料混合気室 4 6 Sputtering holes 4 7 Air supply holes 4 8 Exhaust holes 4 9 Fuel mixture chamber
5 0 燃料 5 0 a 低誘電率燃料 5 0 b 高誘電率燃料 5 0 fuel 5 0 a low dielectric constant fuel 5 0 b high dielectric constant fuel
5 0 c 混合燃料 5 0 d 低揮発性燃料 5 0 e 高揮発性燃料 50 c mixed fuel 5 0 d low volatility fuel 5 0 e high volatility fuel
5 1 反応気 5 1 a 酸素富化気 5 1 reaction gas 5 1 a oxygen enrichment gas
5 2 掃気体 5 3 混合気 5 3 a 混合気ノズル  5 2 scavenging gas 5 3 mixture 5 3 a mixture nozzle
6 0 ブレーキ負荷 6 1 エンジンブレーキ  6 0 Brake load 6 1 Engine brake
6 2 エンジンブレーキ負荷量  6 2 Engine brake load
7 8 燃焼室天壁 7 9 燃焼室ピス トン  7 8 combustion chamber sky wall 7 9 combustion chamber piston
1 0 6 外力断熱膨張過程 1 0 7 熱機変換子可動開始位置 1 0 6 external force adiabatic expansion process 1 0 7 heat machine converter movable start position
1 0 8 断熱膨脹過程終了時の熱機変換子可動位置 1 0 8 Heat machine converter movable position at the end of adiabatic expansion process
1 2 0 熱サイクル 1 2 1 出力断熱圧縮過程  1 2 0 thermal cycle 1 2 1 power adiabatic compression process
1 5 1 火花点火装置 1 5 2 圧力点火装置  1 5 1 spark igniter 1 5 2 pressure igniter

Claims

22 請求の範囲  22 Scope of claim
高周波電磁波発生装置で発生された電磁波エネルギーを燃焼室に 放射させる高周波電磁波点火装置により、 高誘電率油を単独燃料、 または、 高誘電率油と低誘電率燃料とを混合した混合燃料を燃焼室 で高周波電磁波点火させることを特徴とする内燃エンジン  A high frequency electromagnetic wave igniter that radiates the electromagnetic wave energy generated by the high frequency electromagnetic wave generator to the combustion chamber, a high dielectric constant oil as a single fuel, or a mixed fuel in which a high dielectric constant oil and a low dielectric constant fuel are mixed Internal combustion engine characterized by high frequency electromagnetic wave ignition
PCT/JP2003/012870 2002-10-08 2003-10-08 Internal combustion engine WO2004033897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003272938A AU2003272938A1 (en) 2002-10-08 2003-10-08 Internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-295496 2002-10-08
JP2002295496 2002-10-08

Publications (1)

Publication Number Publication Date
WO2004033897A1 true WO2004033897A1 (en) 2004-04-22

Family

ID=32089215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012870 WO2004033897A1 (en) 2002-10-08 2003-10-08 Internal combustion engine

Country Status (2)

Country Link
AU (1) AU2003272938A1 (en)
WO (1) WO2004033897A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113968A (en) * 1981-01-07 1982-07-15 Hitachi Ltd Microwave plasma ignition type engine
JPH0331579A (en) * 1989-06-26 1991-02-12 Masashi Shindo Microwave corona discharge-type internal combustion engine igniter
JP2000274249A (en) * 1999-03-19 2000-10-03 Nissan Motor Co Ltd Gasoline internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113968A (en) * 1981-01-07 1982-07-15 Hitachi Ltd Microwave plasma ignition type engine
JPH0331579A (en) * 1989-06-26 1991-02-12 Masashi Shindo Microwave corona discharge-type internal combustion engine igniter
JP2000274249A (en) * 1999-03-19 2000-10-03 Nissan Motor Co Ltd Gasoline internal combustion engine

Also Published As

Publication number Publication date
AU2003272938A1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
US7036492B2 (en) Systems and methods for conditioning or vaporizing liquid fuel in an intermittent combustion engine
US5361737A (en) Radio frequency coaxial cavity resonator as an ignition source and associated method
CA1048594A (en) Combustion in an internal combustion engine
US4774914A (en) Electromagnetic ignition--an ignition system producing a large size and intense capacitive and inductive spark with an intense electromagnetic field feeding the spark
JP5423417B2 (en) High frequency plasma ignition device
TW505734B (en) Add-on unit to conventional ignition systems to provide a follow-on current through a spark plug
JP2010096109A (en) Ignition device
US7770551B2 (en) Method for igniting combustion of fuel in a combustion chamber of an engine, associated device and engine
WO2015025913A1 (en) Ignition system for internal combustion engine, and internal combustion engine
JP5934851B2 (en) Internal combustion engine
JPWO2013042597A1 (en) Plasma generator and internal combustion engine
JP2747476B2 (en) Microwave corona discharge ignition system for internal combustion engine
JPH02502661A (en) Formation of field discharge
JP2014503052A (en) Apparatus, system, and method for vaporizing a fuel mixture
US8910619B2 (en) Enhanced combustion for spark ignition engine using electromagnetic energy coupling
US10677456B2 (en) Waveguide antenna for microwave enhanced combustion
WO2013011965A1 (en) Internal combustion engine, and plasma generating device
JP6179004B2 (en) Electromagnetic radiation device
WO2004033897A1 (en) Internal combustion engine
WO2013035882A2 (en) Antenna structure, high-frequency radiation plug, internal combustion engine, and manufacturing method for antenna structure
CN208982209U (en) Fuel-air is pre-mixed homogeneous charge electromagnet ignition type internal combustion
JP2011007158A (en) Spark ignition type internal combustion engine
JPS5970886A (en) Firing method of internal-combustion engine
US10808643B2 (en) Homogenous charge electromagnetic volume ignition internal combustion engine and its ignition method
JP6145760B2 (en) High frequency radiation plug and internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase