JPH0331579A - Microwave corona discharge-type internal combustion engine igniter - Google Patents

Microwave corona discharge-type internal combustion engine igniter

Info

Publication number
JPH0331579A
JPH0331579A JP16345789A JP16345789A JPH0331579A JP H0331579 A JPH0331579 A JP H0331579A JP 16345789 A JP16345789 A JP 16345789A JP 16345789 A JP16345789 A JP 16345789A JP H0331579 A JPH0331579 A JP H0331579A
Authority
JP
Japan
Prior art keywords
microwave
corona discharge
combustion chamber
piston
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16345789A
Other languages
Japanese (ja)
Other versions
JP2747476B2 (en
Inventor
Masashi Shindo
正士 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP16345789A priority Critical patent/JP2747476B2/en
Publication of JPH0331579A publication Critical patent/JPH0331579A/en
Application granted granted Critical
Publication of JP2747476B2 publication Critical patent/JP2747476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To improve ignition performance in a small size device by providing a discharge electrode in a specified position of a wave guide for transmitting a microwave pulse to a combustion chamber in a device constructed so that a microwave is transmitted to the a combustion chamber to course microwave corona discharge, thereby igniting combustible gas. CONSTITUTION:An impulse voltage generator 21 is adapted to generate impulse voltage with a pulse width of 0.1-0.5msec in synchronization with the fuel ignition timing in a combustion chamber 25 according to the output of a distributer 20, and the output of the device 21 is applied to a microwave generator 22 such as a magnetron or the like. The thus generated microwave pulse about 300-500W is transmitted through an isolator 24 to a feeder 23 comprising a wave guide 23a, and transmitted to the interior of the combustion chamber 25. A microwave discharge is formed in the combustion chamber 25 to ignite and burn combustible gas. In this case, discharge electrodes 23b, 23b are disposed opposite to each other in a position separated by 1/4 wavelength from the terminal end portion of the wave guide 23a so as to cause microwave corona discharge between both electrodes 23b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波コロナ放電式内燃機関点火装置に係
り、より詳細には、可燃性ガスをエンジン燃焼室で燃焼
させるためにマイクロ波コロナ放電を利用したマイクロ
波コロナ放電式内燃機関点火装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a microwave corona discharge type internal combustion engine ignition device, and more particularly, the present invention relates to a microwave corona discharge type internal combustion engine ignition device, and more specifically, a microwave corona discharge type internal combustion engine ignition device for burning combustible gas in an engine combustion chamber. This invention relates to a microwave corona discharge type internal combustion engine ignition system that utilizes.

〔従来の技術〕[Conventional technology]

一般にガソリンエンジンでは、点火プラグによって高圧
火花放電を起こさせることで点火を行っているが、この
点火方式では、イグニッションコイルで生成された高電
圧のインパルスをハイテンションケーブルを介して微少
間隙を有する点火プラグ電極間に印加して放電し、その
ときのアーク熱により燃料ガスに点火している。
Generally, gasoline engines ignite by causing a high-voltage spark discharge using a spark plug, but in this ignition method, the high-voltage impulse generated by the ignition coil is passed through a high-tension cable to the ignition ignition with a small gap. A voltage is applied between the plug electrodes to generate a discharge, and the resulting arc heat ignites the fuel gas.

このため、(1)不完全燃焼成いは点火不良により生じ
た遊離炭素や未燃焼燃料が電極間の絶縁抵抗を著しく低
下させ、このため電極間に印加されるインパルス電圧が
下がり、アークのエネルギが低下して点火不良が継続し
たり、点火不能に陥る。
For this reason, (1) Incomplete combustion occurs because free carbon and unburned fuel caused by ignition failure significantly reduce the insulation resistance between the electrodes, which reduces the impulse voltage applied between the electrodes and reduces the energy of the arc. As a result, ignition failure continues or ignition becomes impossible.

(2)希薄燃料ガスの点火にはエネルギの大きなアーク
放電が有利であるので、インパルス発生用イグニッショ
ンコイルの改良を必要とする。(3)ハイテンションケ
ーブルからの電磁ノイズが大きく、カーエレクトロニク
ス化の進展にとって大きな妨げとなる。(4)放電時の
アース電位の変動が電子機器の誤動作を招く恐れがある
。などの問題があった。
(2) Since arc discharge with large energy is advantageous for igniting dilute fuel gas, it is necessary to improve the ignition coil for generating impulses. (3) The electromagnetic noise from high-tension cables is large, which is a major hindrance to the advancement of car electronics. (4) Fluctuations in ground potential during discharge may cause electronic equipment to malfunction. There were other problems.

そこで従来、例えば特開昭57−186067号公報に
示されるように、内燃機関の燃焼室において、マイクロ
波によるコロナ放電を生じさせて燃料ガスに点火するよ
うにしたマイクロ波コロナ放電式の内燃機関点火装置が
提案されている。
Therefore, conventionally, as shown in Japanese Patent Application Laid-Open No. 57-186067, a microwave corona discharge type internal combustion engine is used, in which corona discharge is generated by microwaves in the combustion chamber of the internal combustion engine to ignite the fuel gas. An igniter has been proposed.

該提案の点火装置では、第5図に示すように、シリンダ
1とピストン2とにより構成された燃焼室3を構成し、
シリンダ1の内壁上部に混合ガスを吸入する吸入孔1a
及び燃焼後のガスを排出する排出孔1bと、吸入孔開閉
弁1c及び排出孔開閉弁1dとが設けられている。ピス
トン2はクランク軸4に連結されており、クランク軸4
にはクランク角センサ5が取付けられている。また、燃
焼室3の中央上部には、所定周波数で共振する同軸型共
振器6がネジその他の手段により固定されている。この
同軸型共振器6の中心導体6aの一端は共振器6の壁に
直接固定されており、他端は絶縁リング7で支持されて
いる。この中心導体6aの先端は耐熱材料を用いてやや
細くし、マイクロ波アンテナ8として燃焼室3の中に突
出して設けられている。
In the proposed ignition device, as shown in FIG. 5, a combustion chamber 3 is composed of a cylinder 1 and a piston 2,
Suction hole 1a for sucking mixed gas into the upper part of the inner wall of cylinder 1
A discharge hole 1b for discharging gas after combustion, a suction hole opening/closing valve 1c, and a discharge hole opening/closing valve 1d are provided. The piston 2 is connected to the crankshaft 4.
A crank angle sensor 5 is attached to. Further, a coaxial resonator 6 that resonates at a predetermined frequency is fixed to the upper center of the combustion chamber 3 by screws or other means. One end of the center conductor 6a of this coaxial resonator 6 is directly fixed to the wall of the resonator 6, and the other end is supported by an insulating ring 7. The tip of the center conductor 6a is made slightly thinner using a heat-resistant material, and is provided as a microwave antenna 8 so as to protrude into the combustion chamber 3.

また、同軸型共振器6には同軸回路9が接続されている
。この同軸回路9内には同軸芯線9aが設けられており
、この同軸芯線9aは同軸型共振器6の中心導体6aに
適当な結合条件で接続され、マイクロ波発振装置10か
らの出力のほとんどが同軸回路9を介して同軸型共振器
6に供給されるようになっている。マイクロ波発振装置
10は、上記クランク角センサ5からの出力をタイミン
グ信号とするタイミング回路11の出力で動作される。
Further, a coaxial circuit 9 is connected to the coaxial resonator 6 . A coaxial core wire 9a is provided in this coaxial circuit 9, and this coaxial core wire 9a is connected to the center conductor 6a of the coaxial resonator 6 under appropriate coupling conditions, so that most of the output from the microwave oscillator 10 is The signal is supplied to the coaxial resonator 6 via the coaxial circuit 9. The microwave oscillator 10 is operated by the output of a timing circuit 11 which uses the output from the crank angle sensor 5 as a timing signal.

なお、12は電源である。Note that 12 is a power source.

以上の構成において、マイクロ波発振装置10の出力を
同軸回路9を介して同軸型共振器6に供給することによ
り同軸共振器6の中心導体6aの先端のマイクロ波アン
テナ8部分に生じる強力な電界分布によって高周波アー
ク放電を発生させ、この高周波アークにより燃焼室3内
の燃料ガスを点火する。このことにより、アークのエネ
ルギ低下による点火不良や点火不能の問題を解消すると
共に、小さな供給エネルギでのアーク放電を可能にして
電磁ノイズの発生などの問題も解消している。
In the above configuration, by supplying the output of the microwave oscillator 10 to the coaxial resonator 6 via the coaxial circuit 9, a strong electric field is generated in the microwave antenna 8 portion at the tip of the center conductor 6a of the coaxial resonator 6. A high frequency arc discharge is generated by the distribution, and the fuel gas in the combustion chamber 3 is ignited by this high frequency arc. This eliminates the problem of ignition failure or inability to ignite due to a decrease in arc energy, and also eliminates problems such as generation of electromagnetic noise by making arc discharge possible with a small amount of supplied energy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述した従来の点火装置では、マイクロ波アン
テナが燃焼室3内に臨まされているだけであるため、圧
縮され高圧力状態にある燃料ガス内で放電現象を起こし
確実に点火を行うには、マイクロ波アンテナに伝送する
マイクロ波電力を増大してやる必要がある。このため、
それだけマイクロ波発生装置に大出力のものが必要にな
り、マイクロ発生装置及びその電源の大型化やコストア
ップを招くという問題がある。
However, in the conventional ignition device described above, since the microwave antenna is only placed inside the combustion chamber 3, it is difficult to ensure ignition by causing a discharge phenomenon in the compressed, high-pressure fuel gas. , it is necessary to increase the microwave power transmitted to the microwave antenna. For this reason,
This requires a microwave generator with a high output, which poses a problem of increasing the size and cost of the microwave generator and its power source.

よって本発明は、上述した従来の問題点に鑑み、小さな
マイクロ波電力で確実に点火を行えるようにしたマイク
ロ波コロナ放電式内燃機関点火装置を提供することを課
題としている。
Therefore, in view of the above-mentioned conventional problems, it is an object of the present invention to provide a microwave corona discharge type internal combustion engine ignition device that can reliably ignite with small microwave power.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明により成されたマイクロ
波コロナ放電式内燃機関点火装置は、燃焼室にマイクロ
波パルスを伝送し、該マイクロ波パルスによりマイクロ
波コロナ放電を生じさせ、該コロナ放電によりピストン
によって圧縮されたシリンダ内の可燃ガスに点火し爆発
させ、該爆発力によってピストンを押下げるようにした
マイクロ波コロナ放電式内燃機関点火装置であって、前
記燃焼室に前記マイクロ波パルスを伝送する導波管を連
結し、該導波管内に圧縮位置にあるピストンから前記マ
イクロ波の1/4波長離れた位置に放電電極を形成した
ことを、又は前記燃焼室に内部導体の端部がピストンの
端面に対向するように前記マイクロ波を伝送する同軸導
波管を連結し、前記内部導体の端部が対向する前記ピス
トンの端面に、内部導体の端部と協動してマイクロ波コ
ロ′す放電を行う電極を形成したことを特徴としている
In order to solve the above problems, a microwave corona discharge type internal combustion engine ignition device made according to the present invention transmits a microwave pulse to a combustion chamber, causes a microwave corona discharge to be generated by the microwave pulse, and a microwave corona discharge is caused by the corona discharge. A microwave corona discharge type internal combustion engine ignition device that ignites and explodes combustible gas in a cylinder compressed by a piston, and pushes down the piston by the explosive force, and transmits the microwave pulse to the combustion chamber. A discharge electrode is formed in the waveguide at a position 1/4 wavelength of the microwave from the piston in the compression position, or the end of the internal conductor is connected to the combustion chamber. A coaxial waveguide for transmitting the microwave is connected to face the end face of the piston, and a microwave roller is connected to the end face of the piston where the end of the internal conductor is opposite to the end face of the piston in cooperation with the end of the internal conductor. It is characterized by the formation of electrodes that generate electric discharge.

〔作 用〕[For production]

以上の構成において、燃焼室に連結され燃焼室にマイク
ロ波パルスを伝送する導波管内に、圧縮位置にあるピス
トンからマイクロ波の1/4波長離れた位置に放電電極
を形成しているため、電極部分に定在波の電界が最大の
部分がくるようになり、放電電極において小さなマイク
ロ波電力によって容易にコロナ放電を生じさせて確実に
燃料ガスに点火することができる。
In the above configuration, the discharge electrode is formed at a position 1/4 microwave wavelength away from the piston in the compression position in the waveguide connected to the combustion chamber and transmitting microwave pulses to the combustion chamber. The maximum electric field of the standing wave is located at the electrode portion, and a small microwave power can easily cause corona discharge at the discharge electrode to reliably ignite the fuel gas.

また、燃焼室に連結した同軸導波管の内部導体の端部と
対向するようにピストンの端面に、内部導体の端部と協
動してマイクロ波コロナ放電を行う電極を形成している
ため、電極間にマイクロ波電気力線が集中して強力な電
界が生じて絶縁破壊によるコロナ放電が容易に発生する
In addition, an electrode is formed on the end surface of the piston to face the end of the internal conductor of the coaxial waveguide connected to the combustion chamber, so that it cooperates with the end of the internal conductor to generate microwave corona discharge. , microwave electric lines of force concentrate between the electrodes, creating a strong electric field and easily causing corona discharge due to dielectric breakdown.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明によるマイクロ波コロナ放電式内燃機関
点火装置の一実施例を示す概略図であり、同図において
、20はディストリビュータ、21はインパルス電圧発
生装置、22はマイクロ波発生装置、23は給電線、2
4はアイソレータ、25は燃焼室である。
FIG. 1 is a schematic diagram showing an embodiment of a microwave corona discharge type internal combustion engine ignition system according to the present invention, in which 20 is a distributor, 21 is an impulse voltage generator, 22 is a microwave generator, 23 is the feeder line, 2
4 is an isolator, and 25 is a combustion chamber.

インパルス電圧発生装置21はディストリビュータ20
の出力に基づいて燃焼室25での燃料点火の時期に同期
してパルス幅0.1〜0.5 m5ecのインパルス電
圧を発生し、これをマイクロ波発生装置22に印加する
。マイクロ波発生装置22は、マグネトロンにより構成
されることができ、上記インパルス電圧発生装置21か
らのインパルス電圧がマグネトロンの陰陽極間に印加さ
れることにヨリ、300〜500Wのマイクロ波パルス
を発生する。
The impulse voltage generator 21 is a distributor 20
Based on the output of , an impulse voltage with a pulse width of 0.1 to 0.5 m5ec is generated in synchronization with the timing of fuel ignition in the combustion chamber 25, and this is applied to the microwave generator 22. The microwave generator 22 can be composed of a magnetron, and generates microwave pulses of 300 to 500 W when the impulse voltage from the impulse voltage generator 21 is applied between the cathode and anode of the magnetron. .

マイクロ波発生装置22が発生するマイクロ波パルスは
、一方向への電力伝送を無損失で行い、逆方向への伝送
を行わないように内部の抵抗で吸収するアイソレータ2
4を介して給電線23に伝送される。給電線23は、端
部が燃焼室25のシリンダ25aに連結された矩形又は
円形導波管や同軸導波管などにより構成され、マイクロ
波パルスは給電線23を介して燃焼室25に伝送される
The isolator 2 absorbs the microwave pulses generated by the microwave generator 22 with an internal resistance so that power is transmitted in one direction without loss and is not transmitted in the opposite direction.
4 to the feeder line 23. The feeder line 23 is composed of a rectangular or circular waveguide, a coaxial waveguide, etc. whose end is connected to the cylinder 25a of the combustion chamber 25, and the microwave pulse is transmitted to the combustion chamber 25 via the feeder line 23. Ru.

給電線23を介してのマイクロ波の伝送は基本モードで
行うのが最もよい。
The transmission of microwaves via the feed line 23 is best carried out in fundamental mode.

燃焼室25へのマイクロ波パルスの供給は、上記ディス
トリビュータ20により燃焼室25のピストン25bに
同期がとられ、ピストン25bの端部と給電線23の端
部が〜2+11111の最適な間隔になったときに行わ
れるので、燃焼室25内に強いマイクロ波電界が生じて
マイクロ波コロナ放電が形成され、燃料ガスへの点火が
実現する。
The supply of microwave pulses to the combustion chamber 25 was synchronized with the piston 25b of the combustion chamber 25 by the distributor 20, and the end of the piston 25b and the end of the feeder line 23 were at an optimal distance of ~2+11111. Since this occurs at a certain time, a strong microwave electric field is generated in the combustion chamber 25, a microwave corona discharge is formed, and the ignition of the fuel gas is realized.

上記インパルス電圧発生装置21が発生するインパルス
電圧は、使用するマグネトロンの種類に応じて定められ
る。例えば、最も普及している電子レンジ用のマグネト
ロンの場合、インパルス電圧は2〜3kV、発振周波数
は2.45GHz、最大出力は1.5kWである。
The impulse voltage generated by the impulse voltage generator 21 is determined depending on the type of magnetron used. For example, in the case of the most popular magnetron for microwave ovens, the impulse voltage is 2 to 3 kV, the oscillation frequency is 2.45 GHz, and the maximum output is 1.5 kW.

第2図乃至第4図は第1図における給電線23と燃焼室
25との連結構造の種々の実施例を示す断面図であり、
第2図の例では、給電線23は矩形又は円形の導波管2
3aにより構成され、該導波管23aの端部は気密状態
を保持して燃焼室25のシリンダ25aの中央上部に連
結されている。
2 to 4 are cross-sectional views showing various embodiments of the connection structure between the power supply line 23 and the combustion chamber 25 in FIG. 1,
In the example shown in FIG. 2, the feed line 23 is a rectangular or circular waveguide 2.
3a, and the end of the waveguide 23a is connected to the upper center of the cylinder 25a of the combustion chamber 25 while maintaining an airtight state.

導波管23aの相対向する管内壁部分には、先端が尖っ
た電極23b及び23bが、導波管23aの終端部から
略λ、/4(λ9 ;導波管を伝送されるマイクロ波の
波長)の位置に1〜2+11111の間隔で対置して設
けられている。なお、燃焼室25と大気とを分離するた
め、導波管23aにはその内周壁にセラミック板からな
る隔離板23cが気密状態を保って嵌合されている。
Electrodes 23b and 23b with sharp tips are provided on the opposing inner wall portions of the waveguide 23a, and the electrodes 23b and 23b have sharp tips extending approximately λ,/4 (λ9; wavelength) and are provided opposite to each other at an interval of 1 to 2+11111. In order to separate the combustion chamber 25 from the atmosphere, a separator plate 23c made of a ceramic plate is fitted to the inner peripheral wall of the waveguide 23a in an airtight manner.

この構成において、ピストン25bが導波管23aの端
部に接触する程に近づくとき、すなわち燃料ガスが圧縮
状態にあるときに合わせて300〜500Wのマイクロ
波パルスを伝送すると、ピストン25bが短絡板として
働き、電極23b及び23bの位置に定在波の電界の最
大値がくるようになり、電極23b及び23b間にマイ
クロ波コロナ放電が生じ、燃料ガスへの点火が実現する
In this configuration, when the piston 25b comes close enough to contact the end of the waveguide 23a, that is, when a microwave pulse of 300 to 500 W is transmitted while the fuel gas is in a compressed state, the piston 25b moves to the short circuit plate. The electric field of the standing wave reaches its maximum value at the positions of the electrodes 23b and 23b, microwave corona discharge occurs between the electrodes 23b and 23b, and the fuel gas is ignited.

第3図は燃焼室25と給電線23との他の連結構成を示
し、本例では、給電線23が外部導体23d−1と内部
導体23 d−2とからなる同軸導波管23dから構成
され、咳同輔導波管23dのの外部導体23d−1の端
部は気密状態を保持して燃焼室25のシリンダ25aの
中央上部に連結されている。同軸導波管23dの外部導
体23d−1と内部導体23 d−2の相対向する部分
には、先端が尖った電極23e及び23eが、同軸導波
管23dの終端部から略λg/4(λ、;導波管を伝送
されるマイクロ波の波長)の位置に1〜2mmの間隔で
対置して設けられている。なお、燃焼室25と大気とを
分離するため、同軸導波管23dにはその外部導体23
d−1と内部導体23d−2との間の隙間にセラミック
板からなる隔離板23fが気密状態を保って嵌合されて
いる。
FIG. 3 shows another connection structure between the combustion chamber 25 and the power supply line 23. In this example, the power supply line 23 is composed of a coaxial waveguide 23d consisting of an outer conductor 23d-1 and an inner conductor 23d-2. The end of the outer conductor 23d-1 of the cough guide waveguide 23d is connected to the upper center of the cylinder 25a of the combustion chamber 25 while maintaining an airtight state. At opposing portions of the outer conductor 23d-1 and the inner conductor 23d-2 of the coaxial waveguide 23d, electrodes 23e and 23e with sharp tips are arranged at approximately λg/4 ( They are provided opposite to each other at an interval of 1 to 2 mm at the position of λ, which is the wavelength of the microwave transmitted through the waveguide. In addition, in order to separate the combustion chamber 25 and the atmosphere, the coaxial waveguide 23d has its outer conductor 23.
A separator plate 23f made of a ceramic plate is fitted in the gap between d-1 and the internal conductor 23d-2 in an airtight manner.

以上の構成により、第2図の例と同様にピストン25b
が短絡板として働き、ピストン25bが導波管端部に接
触する程に近づいたとき、このタイミングで同軸導波管
23dに伝送されているマイクロ波パルスにより、電極
23e及び23e間にコロナ放電が生じて燃焼室25に
おいて燃料ガスの点火が行われる。
With the above configuration, the piston 25b is
acts as a short-circuit plate, and when the piston 25b comes close enough to contact the end of the waveguide, a corona discharge is generated between the electrodes 23e and 23e due to the microwave pulse being transmitted to the coaxial waveguide 23d at this timing. As a result, fuel gas is ignited in the combustion chamber 25.

第4図は第3図の変形例を示す図であり、同軸導波管2
3dの内部導体23d−2を外部導体23d−1の端部
から適当な距離dのところで止めてその先端を尖らせる
と共に、短絡板として働くピストン25bの上記内部導
体23d−2の先端部と対向する部位に先端が尖った電
極25cを固着している。上記内部導体23d−2の先
端と上記電極25cとは協動して放電電極を構成し、ピ
ストン25bが同軸導波管23dの端部に接触する程接
近したとき放電電極間の間隔が2〜3mm程度となるよ
うにしておく。なお、23gは燃焼室25と大気を分離
する隔離部材である。
FIG. 4 is a diagram showing a modification of FIG. 3, in which the coaxial waveguide 2
The inner conductor 23d-2 of 3d is stopped at an appropriate distance d from the end of the outer conductor 23d-1, and its tip is sharpened, and is opposed to the tip of the inner conductor 23d-2 of the piston 25b, which acts as a short circuit plate. An electrode 25c with a sharp tip is fixed to the area where the electrode 25c is attached. The tip of the internal conductor 23d-2 and the electrode 25c cooperate to form a discharge electrode, and when the piston 25b approaches the end of the coaxial waveguide 23d to the extent that it contacts the end, the distance between the discharge electrodes is 2 to 2. Make sure it is about 3mm. Note that 23g is an isolation member that separates the combustion chamber 25 from the atmosphere.

以上の構成によって、ピストン25bが同軸導波管23
dの端部に接触する程に接近した状態において、同軸導
波管23dにマイクロ波パルスを伝送すると、マイクロ
波電気力線が放電電極間に集中し、強力な電界が生じて
絶縁破壊が起こり、コロナ放電が発生する。
With the above configuration, the piston 25b is connected to the coaxial waveguide 23.
When a microwave pulse is transmitted to the coaxial waveguide 23d while the coaxial waveguide 23d is close enough to touch the end of d, microwave electric lines of force are concentrated between the discharge electrodes, a strong electric field is generated, and dielectric breakdown occurs. , corona discharge occurs.

この第4図の構成は、波長に対して所定の位置関係に位
置されなければならない短絡板を必要としないので、発
振周波数の低い普及型のマグネトロンを使用しても導波
管形状を大きくしなくてよいので好まし〈実施できる。
The configuration shown in Figure 4 does not require a shorting plate that must be positioned in a predetermined positional relationship with respect to the wavelength, so even if a popular magnetron with a low oscillation frequency is used, the waveguide shape can be enlarged. It is preferable and can be implemented because it is not necessary.

また、第2図の構成であっても、1OGHz帯のマグネ
トロンを使用すれば、導波管の寸法を1/4程度に小さ
くすることができる。
Furthermore, even with the configuration shown in FIG. 2, if a 1 OGHz band magnetron is used, the size of the waveguide can be reduced to about 1/4.

第3図及び第4図の構成では、給電線が同軸導波管であ
るので、その内部及び外部導体の径には制約となる条件
が無く、好みの寸法とすることができる。
In the configurations shown in FIGS. 3 and 4, since the feeder line is a coaxial waveguide, there are no restrictions on the diameters of the inner and outer conductors, and the diameters of the inner and outer conductors can be set to desired dimensions.

更に、先端が尖った電極は低いパワーのマイクロ波パル
スで放電を行わせることができるが、その反面放電によ
る消耗が大きいので、電極及び電極となる内部導体の端
部はタングステンやモリブデンなどの耐熱性の材料によ
り好ましく形成される。
Furthermore, an electrode with a sharp tip can generate a discharge using a low-power microwave pulse, but on the other hand, the discharge causes a large amount of wear, so the electrode and the end of the internal conductor that becomes the electrode should be made of heat-resistant material such as tungsten or molybdenum. It is preferably made of a plastic material.

上述した実施例において、電極間にはマイクロ波が供給
されているのでその極性が問題にならない他、電極間の
電界が激しく変化して電子やイオンが電極に捕捉されず
、電極の汚れの問題が生じなくなると共に、放電で生じ
るプラズマ密度が高くなってエネルギ密度の大きな放電
が可能となっている。また、導波管を使用していて給電
線は閉鎖型となっているので、外部に電磁界が漏れて電
磁ノイズの問題を生じることもない。
In the above-mentioned embodiment, since the microwave is supplied between the electrodes, the polarity does not matter, and the electric field between the electrodes changes drastically so that electrons and ions are not captured by the electrodes, causing the problem of electrode contamination. At the same time, the plasma density generated by the discharge increases, making it possible to generate a discharge with high energy density. Furthermore, since a waveguide is used and the power supply line is a closed type, there is no problem of electromagnetic noise caused by leakage of electromagnetic fields to the outside.

〔効 果〕〔effect〕

以上説明したように本発明によれば、放電電極において
小さなマイクロ波電力によって容易にコロナ放電を生じ
させて確実に燃料ガスに点火することができるので、マ
イクロ波発生装置に大出力のものを使用しなくてもよく
なり、その分その小型化やコストダウンが図れるなどの
効果が得られる。
As explained above, according to the present invention, it is possible to easily generate corona discharge with small microwave power at the discharge electrode and reliably ignite the fuel gas, so a high output microwave generator is used. It is no longer necessary to do so, and benefits such as miniaturization and cost reduction can be obtained accordingly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるマイクロ波コロナ放電式内燃機関
点火装置の一実施例を示す概略図、 第2図は第1図中の一部分の一実施例を示す断面図、 第3図は第1図中の一部分の他の実施例を示す断面図、 第4図は第3図中の一部分の変形例を示す断面図、 第5図は従来の装置例を示す図である。 23a・・・導波管、23b・・・電極、23d・・・
同軸導波管、23d−1・・・外部導体、23d−2・
・・内部導体、23eは電極、25・・・燃焼室、25
a・・・シリンダ、25b・・・ピストン、25c・・
・電極。
FIG. 1 is a schematic diagram showing an embodiment of a microwave corona discharge type internal combustion engine ignition system according to the present invention, FIG. 2 is a sectional view showing an embodiment of a portion of FIG. 1, and FIG. FIG. 4 is a cross-sectional view showing a modified example of a portion of FIG. 3, and FIG. 5 is a view showing an example of a conventional device. 23a... Waveguide, 23b... Electrode, 23d...
Coaxial waveguide, 23d-1...outer conductor, 23d-2...
...inner conductor, 23e is electrode, 25...combustion chamber, 25
a...Cylinder, 25b...Piston, 25c...
·electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)燃焼室にマイクロ波パルスを伝送し、該マイクロ
波パルスによりマイクロ波コロナ放電を生じさせ、該コ
ロナ放電によりピストンによって圧縮されたシリンダ内
の可燃ガスに点火し爆発させ、該爆発力によってピスト
ンを押下げるようにしたマイクロ波コロナ放電式内燃機
関点火装置において、 前記燃焼室に前記マイクロ波パルスを伝送する導波管を
連結し、該導波管内に、圧縮位置にあるピストンから前
記マイクロ波の1/4波長離れた位置に放電電極を形成
した、 ことを特徴とするマイクロ波コロナ放電式内燃機関点火
装置。
(1) A microwave pulse is transmitted to the combustion chamber, the microwave pulse generates a microwave corona discharge, the corona discharge ignites and explodes the combustible gas in the cylinder compressed by the piston, and the explosive force causes In a microwave corona discharge type internal combustion engine ignition device configured to push down a piston, a waveguide for transmitting the microwave pulse is connected to the combustion chamber, and the microwave pulse is transmitted from the piston in a compression position into the waveguide. A microwave corona discharge type internal combustion engine ignition device, characterized in that a discharge electrode is formed at a position 1/4 wavelength away from the wave.
(2)燃焼室にマイクロ波を伝送し、該マイクロ波によ
りマイクロ波コロナ放電を生じさせ、該コロナ放電によ
りピストンによって圧縮されたシリンダ内の可燃ガスに
点火し爆発させ、該爆発力によってピストンを押下げる
ようにしたマイクロ波コロナ放電式内燃機関点火装置に
おいて、前記燃焼室に内部導体の端部がピストンの端面
に対向するように前記マイクロ波を伝送する同軸導波管
を連結し、前記内部導体の端部が対向する前記ピストン
の端面に、内部導体の端部と協動してマイクロ波コロナ
放電を行う電極を形成した、 ことを特徴とするマイクロ波コロナ放電式内燃機関点火
装置。
(2) Transmit microwaves to the combustion chamber, use the microwaves to generate microwave corona discharge, use the corona discharge to ignite and explode the combustible gas in the cylinder compressed by the piston, and use the explosive force to cause the piston to explode. In a microwave corona discharge type internal combustion engine ignition device configured to be pushed down, a coaxial waveguide for transmitting the microwave is connected to the combustion chamber so that the end of the internal conductor faces the end surface of the piston, and A microwave corona discharge type internal combustion engine ignition device, characterized in that an electrode is formed on an end surface of the piston opposite to which the end of the conductor faces, and performs microwave corona discharge in cooperation with the end of the internal conductor.
JP16345789A 1989-06-26 1989-06-26 Microwave corona discharge ignition system for internal combustion engine Expired - Fee Related JP2747476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16345789A JP2747476B2 (en) 1989-06-26 1989-06-26 Microwave corona discharge ignition system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16345789A JP2747476B2 (en) 1989-06-26 1989-06-26 Microwave corona discharge ignition system for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0331579A true JPH0331579A (en) 1991-02-12
JP2747476B2 JP2747476B2 (en) 1998-05-06

Family

ID=15774248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16345789A Expired - Fee Related JP2747476B2 (en) 1989-06-26 1989-06-26 Microwave corona discharge ignition system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2747476B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239411A1 (en) * 2002-08-28 2004-03-18 Robert Bosch Gmbh Engine plasma ignition plug with waveguide resonator for high frequency energy supply, employs coaxial path with resonator to transfer energy into combustion chamber
DE10239409A1 (en) * 2002-08-28 2004-03-18 Robert Bosch Gmbh Engine plasma ignition plug with waveguide resonator for high frequency energy supply, passes energy through coaxial coupler into combustion chamber
DE10239414A1 (en) * 2002-08-28 2004-03-18 Robert Bosch Gmbh Engine plasma ignition plug with waveguide resonator for high frequency energy supply, includes inductive and capacitative energy coupling design
WO2004033897A1 (en) * 2002-10-08 2004-04-22 Mittsu Electric Co., Ltd. Internal combustion engine
JP2006278749A (en) * 2005-03-29 2006-10-12 Dainippon Screen Mfg Co Ltd Tape peeling device
JP2007512477A (en) * 2003-12-01 2007-05-17 エムベーイー マイクロ ウェーブ イグニション ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for igniting the combustion of fuel in an internal combustion engine of an engine, an attached device and an engine
EP2020503A2 (en) 2007-08-02 2009-02-04 Nissan Motor Co., Ltd. Non-equilibrium plasma discharge type ignition device
JP2009103039A (en) * 2007-10-23 2009-05-14 Nissan Motor Co Ltd Engine ignition device
JP2009103038A (en) * 2007-10-23 2009-05-14 Nissan Motor Co Ltd Engine ignition device
WO2009113688A1 (en) * 2008-03-14 2009-09-17 イマジニアリング株式会社 Gasket of internal combustion engine and internal combustion engine
US8186322B2 (en) 2006-09-20 2012-05-29 Imagineering, Inc. Ignition apparatus, internal-combustion engine, ignition plug, plasma equipment, exhaust gas degradation apparatus, ozone generating/sterilizing/disinfecting apparatus, and odor eliminating apparatus
JP2012149607A (en) * 2011-01-20 2012-08-09 Toyota Central R&D Labs Inc Ignition device for internal combustion engine
EP1941157A4 (en) * 2005-09-09 2013-09-04 Btu Int Microwave combustion system for internal combustion engines
CN105275710A (en) * 2014-07-11 2016-01-27 明·郑 Active-control resonant ignition system
US20200182217A1 (en) * 2018-12-10 2020-06-11 GM Global Technology Operations LLC Combustion ignition devices for an internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525335B2 (en) * 2004-10-07 2010-08-18 株式会社豊田中央研究所 Internal combustion engine and ignition device thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239411A1 (en) * 2002-08-28 2004-03-18 Robert Bosch Gmbh Engine plasma ignition plug with waveguide resonator for high frequency energy supply, employs coaxial path with resonator to transfer energy into combustion chamber
DE10239409A1 (en) * 2002-08-28 2004-03-18 Robert Bosch Gmbh Engine plasma ignition plug with waveguide resonator for high frequency energy supply, passes energy through coaxial coupler into combustion chamber
DE10239414A1 (en) * 2002-08-28 2004-03-18 Robert Bosch Gmbh Engine plasma ignition plug with waveguide resonator for high frequency energy supply, includes inductive and capacitative energy coupling design
DE10239409B4 (en) * 2002-08-28 2004-09-09 Robert Bosch Gmbh Device for igniting an air-fuel mixture in an internal combustion engine
DE10239411B4 (en) * 2002-08-28 2004-09-09 Robert Bosch Gmbh Device for igniting an air-fuel mixture in an internal combustion engine
DE10239414B4 (en) * 2002-08-28 2004-12-02 Robert Bosch Gmbh Device for igniting an air-fuel mixture in an internal combustion engine
US6918366B2 (en) 2002-08-28 2005-07-19 Robert Bosch Gmbh Device for igniting an air-fuel mixture in an internal combustion engine
WO2004033897A1 (en) * 2002-10-08 2004-04-22 Mittsu Electric Co., Ltd. Internal combustion engine
JP2007512477A (en) * 2003-12-01 2007-05-17 エムベーイー マイクロ ウェーブ イグニション ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for igniting the combustion of fuel in an internal combustion engine of an engine, an attached device and an engine
JP2006278749A (en) * 2005-03-29 2006-10-12 Dainippon Screen Mfg Co Ltd Tape peeling device
EP1941157A4 (en) * 2005-09-09 2013-09-04 Btu Int Microwave combustion system for internal combustion engines
EP3404253A1 (en) 2006-09-20 2018-11-21 Imagineering, Inc. Ignition apparatus and internal-combustion engine
US8186322B2 (en) 2006-09-20 2012-05-29 Imagineering, Inc. Ignition apparatus, internal-combustion engine, ignition plug, plasma equipment, exhaust gas degradation apparatus, ozone generating/sterilizing/disinfecting apparatus, and odor eliminating apparatus
US9151265B1 (en) 2006-09-20 2015-10-06 Imagineering, Inc. Ignition apparatus, internal-combustion engine, ignition plug, plasma equipment, exhaust gas degradation apparatus, ozone generating/sterilizing/disinfecting apparatus, and odor eliminating apparatus
US8240293B2 (en) 2006-09-20 2012-08-14 Imagineering, Inc. Ignition apparatus, internal-combustion engine, ignition plug, plasma equipment, exhaust gas degradation apparatus, ozone generating/sterilizing/disinfecting apparatus, and odor eliminating apparatus
US8327816B2 (en) 2006-09-20 2012-12-11 Imagineering, Inc. Ignition apparatus, internal-combustion engine, ignition plug, plasma equipment, exhaust gas degradation apparatus, ozone generating/sterilizing/disinfecting apparatus, and odor eliminating apparatus
US8464695B2 (en) 2006-09-20 2013-06-18 Imagineering, Inc. Ignition apparatus, internal-combustion engine, ignition plug, plasma equipment, exhaust gas degradation apparatus, ozone generating/sterilizing/disinfecting apparatus and odor eliminating apparatus
US8800537B2 (en) 2006-09-20 2014-08-12 Imagineering, Inc. Ignition apparatus, internal-combustion engine, ignition plug, plasma equipment, exhaust gas degradation apparatus, ozone generating/sterilizing/disinfecting apparatus and odor eliminating apparatus
JP2009036123A (en) * 2007-08-02 2009-02-19 Nissan Motor Co Ltd Non-equilibrium plasma discharge engine
EP2020503A2 (en) 2007-08-02 2009-02-04 Nissan Motor Co., Ltd. Non-equilibrium plasma discharge type ignition device
JP2009103039A (en) * 2007-10-23 2009-05-14 Nissan Motor Co Ltd Engine ignition device
JP2009103038A (en) * 2007-10-23 2009-05-14 Nissan Motor Co Ltd Engine ignition device
WO2009113688A1 (en) * 2008-03-14 2009-09-17 イマジニアリング株式会社 Gasket of internal combustion engine and internal combustion engine
US8495989B2 (en) 2008-03-14 2013-07-30 Imagineering, Inc. Gasket of an internal combustion engine and internal combustion engine
JP2009221943A (en) * 2008-03-14 2009-10-01 Imagineering Inc Gasket of internal combustion engine and internal combustion engine
JP2012149607A (en) * 2011-01-20 2012-08-09 Toyota Central R&D Labs Inc Ignition device for internal combustion engine
CN105275710A (en) * 2014-07-11 2016-01-27 明·郑 Active-control resonant ignition system
CN105275710B (en) * 2014-07-11 2018-05-18 明·郑 Igniter and ignition system
US20200182217A1 (en) * 2018-12-10 2020-06-11 GM Global Technology Operations LLC Combustion ignition devices for an internal combustion engine

Also Published As

Publication number Publication date
JP2747476B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
CA1048594A (en) Combustion in an internal combustion engine
JP2747476B2 (en) Microwave corona discharge ignition system for internal combustion engine
US7671309B2 (en) Microwave combustion system for internal combustion engines
US7721697B2 (en) Plasma generating ignition system and associated method
EP0635636B1 (en) Railplug direct injector/ignitor assembly
US5361737A (en) Radio frequency coaxial cavity resonator as an ignition source and associated method
KR101110436B1 (en) Radiofrequency plasma spark plug
US8783220B2 (en) Quarter wave coaxial cavity igniter for combustion engines
US9873315B2 (en) Dual signal coaxial cavity resonator plasma generation
KR101575381B1 (en) Plasma plug for an internal combustion engine
JP2012127286A (en) High-frequency plasma ignition device
JPH0122473B2 (en)
EP1214519B1 (en) Long-life traveling spark ignitor and associated firing circuitry
WO2013035880A1 (en) High-frequency radiation plug
JP6739348B2 (en) Ignition unit, ignition system, and internal combustion engine
JP2011007163A (en) Spark-ignition internal combustion engine
WO2012161232A1 (en) Spark plug and internal-combustion engine
CN106762331A (en) A kind of microwave radiation technology plug ignition method and its integrating device
JP2012149608A (en) Ignition device for internal combustion engine
EP3364509A1 (en) Ignition device
JP2010096144A (en) Spark-ignition internal combustion engine
JPWO2016108283A1 (en) Ignition system and internal combustion engine
JP5994062B2 (en) Antenna structure, high-frequency radiation plug, internal combustion engine
JP2010121566A (en) Ignition plug structure used under high frequency electric field

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees