WO2004032211A1 - X-ray generator and exposure device - Google Patents

X-ray generator and exposure device Download PDF

Info

Publication number
WO2004032211A1
WO2004032211A1 PCT/JP2003/010537 JP0310537W WO2004032211A1 WO 2004032211 A1 WO2004032211 A1 WO 2004032211A1 JP 0310537 W JP0310537 W JP 0310537W WO 2004032211 A1 WO2004032211 A1 WO 2004032211A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
ray generator
ray
plasma
vacuum vessel
Prior art date
Application number
PCT/JP2003/010537
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Kondo
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2003262256A priority Critical patent/AU2003262256A1/en
Publication of WO2004032211A1 publication Critical patent/WO2004032211A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Definitions

  • the present invention relates to an X-ray generator provided in an X-ray apparatus such as an X-ray microscope, an X-ray analyzer, an X-ray exposure apparatus, and an exposure apparatus including the same.
  • the present invention relates to an X-ray generator and the like having advantages such as easy replacement of a mirror. Background art
  • laser-plasma X-ray sources and discharge plasma X-ray sources have attracted attention as light sources for X-ray equipment such as X-ray analyzers and X-ray exposure apparatuses.
  • a laser-plasma X-ray source (hereinafter referred to as LPX) focuses and irradiates a laser beam for excitation onto a target material in a vacuum vessel to generate plasma, and radiates X-rays from this plasma. is there.
  • This LPX has a brightness comparable to that of an angel (synchrotron radiation), despite its small size.
  • the discharge plasma X-ray source generates a discharge by applying a high pulse voltage to the electrodes, ionizes the working gas by this discharge, generates plasma, and uses X-rays radiated from the plasma.
  • This discharge plasma X-ray source is characterized by its small size, large amount of radiated X-rays, low cost, and high conversion efficiency of X-rays to input power compared to LPX.
  • a typical discharge plasma X-ray source is a dense plasma focus X-ray source (hereinafter referred to as DPFX).
  • DPFX dense plasma focus X-ray source
  • the target material and members (electrodes, etc.) near the plasma scatter as atoms or ions during plasma generation (such particles are called scattered particles or debris).
  • the scattered particles easily adhere to and accumulate on an X-ray mirror such as a multilayer mirror disposed around the plasma, and reduce the reflectivity of the mirror.
  • the mirror (the first mirror), to which the X-ray radiated from the plasma first enters, is attached inside the plasma generation chamber (vacuum container). I have. Therefore, there are the following problems.
  • the first mirror When replacing the first mirror, the first mirror must be removed and reattached inside the chamber, and it takes time and effort to replace the mirror.
  • the plasma generation chamber becomes large due to the configuration including the first mirror.
  • the temperature of the mirror rises due to the thermal load from the plasma X-ray source, so it is necessary to cool the mirror appropriately, but the cooling mechanism for that also becomes complicated.
  • the present invention has been made in view of such a problem, and has as its object to provide an X-ray generator having advantages such as easy replacement of a mirror and an exposure apparatus having the same. Disclosure of the invention
  • an X-ray generator comprises: an X-ray source that converts a target material into plasma and radiates X-rays from the plasma; a vacuum container that houses the X-ray source; And a mirror on which X-rays radiated from a radiation source are incident, wherein the mirror or a member holding the mirror constitutes a part of a wall of the vacuum vessel.
  • the deteriorated mirror can be quickly replaced with a new mirror from the atmosphere side.
  • the back surface of the member holding the mirror or the mirror may be exposed outside the vacuum vessel.
  • the mirror or the mirror holding member can be cooled from outside the vacuum vessel, it is easy to arrange the cooling means. Especially when the outside of the vacuum vessel is in the air, the heat of the mirror is radiated to the atmosphere from the back side, so that the temperature rise of the mirror can be suppressed.
  • a mirror cooling mechanism can be provided on the back surface of the mirror or the member holding the mirror.
  • the temperature rise of the mirror can be suppressed by using the mirror cooling mechanism.
  • the mirror cooling mechanism can be provided on the atmosphere side (the back side of the mirror), the configuration of the cooling mechanism is simplified (for example, when the cooling mechanism is a water-cooled jacket, the piping is easily routed). Maintenance is also easier if the cooling mechanism is exposed to the atmosphere.
  • the X-ray generator according to the present invention further includes a laser light source for generating laser light for converting the target material into plasma, and the laser light is used for the mirror or a member holding the mirror. A part of the light may be transmitted, or the light may enter the vacuum container through an opening formed in the mirror.
  • the X-rays radiated from the plasma have a strong intensity in the direction of the laser beam. Therefore, according to this means, the X-rays generated by the X-ray source can be effectively guided to the mirror, and the amount of X-rays emitted from the X-ray generator can be increased.
  • detecting means for detecting the position and attitude of the mirror, adjusting means for adjusting the position and attitude of the mirror, and receiving a signal from the detecting means, And control means for controlling the adjusting means so as to take a predetermined position and posture.
  • the mirror can be accurately set to the correct position and posture. Therefore, it is possible to maintain the accuracy of the apparatus without changing the alignment of the apparatus when replacing the mirror or performing maintenance.
  • An exposure apparatus includes an X-ray generator according to any one of claims 1 to 4, an illumination optical system configured to irradiate an X-ray generated by the X-ray generator on a mask, and an X-ray reflected from the mask. And a projection optical system for projecting and imaging light on the sensitive substrate.
  • a mirror whose performance has deteriorated can be quickly and easily replaced with a new mirror, and the X-ray generator can be quickly returned to a normal state, so that the time and cost required for maintenance can be reduced and the apparatus can be operated. The rate can be improved.
  • FIG. 1 is a diagram schematically showing an exposure apparatus having an X-ray generator according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a mirror position / posture adjustment unit in the X-ray generator of FIG.
  • FIG. 3 is a plan view showing another example of the mirror position / posture adjustment unit.
  • FIG. 4 is a diagram showing another example of the X-ray generator.
  • FIG. 5 (A) is a diagram showing another example of the X-ray generator
  • FIG. 5 (B) is a front view of a mirror of the X-ray generator of FIG. 5 (A).
  • FIG. 1 is a diagram schematically showing an exposure apparatus having an X-ray generator according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a mirror position / posture adjustment unit in the X-ray generator of FIG.
  • the left side of FIG. 1 is referred to as the upstream side, and the right side of FIG. 1 is referred to as the downstream side (the optical system side at the subsequent stage) along the optical paths of the laser beam and the X-ray.
  • the X-ray generator 1 is arranged upstream of the exposure apparatus in FIG.
  • the X-ray generator 1 includes a spherical vacuum vessel 2.
  • the vacuum container 2 is provided with a vacuum pump (vacuum exhaust device) 3.
  • Vacuum container 2 Pump 3 exhausts. When the pressure in the vacuum vessel 2 is reduced by the vacuum pump 3, the X-rays radiated from the plasma P are not attenuated.
  • a stainless steel gas jet nozzle 4 is arranged inside the vacuum vessel 2.
  • the gas jet nozzle 4 is connected to a valve (both not shown) connected to a gas cylinder.
  • the gas cylinder is filled with an evening get gas such as xenon (Xe).
  • the target gas in the gas cylinder is sent to a valve via a pipe or the like, and is ejected from the gas jet nozzle 4 into the vacuum vessel 2.
  • the ejected evening gas serves as a target material when generating plasma P.
  • An opening 2 a is formed on the upstream side of the vacuum vessel 2.
  • a mirror (first mirror) 10 is incorporated in the opening 2a.
  • the mirror 10 constitutes a part of the wall on the upstream side of the vacuum container 2.
  • the reflecting surface 10a of the mirror 10 is located in the vacuum container 2, and the back surface 10b of the mirror 10 is exposed to the atmosphere outside the vacuum container 2.
  • a magnetic fluid seal 9 is interposed between the opening 2a of the vacuum vessel 2 and the side peripheral surface of the mirror 10, and the two are sealed.
  • the mirror 10 is a mirror made of low thermal expansion glass (for example, Zerodur 1 or ULE) having a paraboloidal reflecting surface 10a.
  • a multilayer film 12 made of Mo / Si is coated on the reflection surface 10a of the mirror 10 except for a part of the center of the surface.
  • the multilayer film 12 is configured to reflect X-rays having a wavelength of 13.5 nm.
  • the mirror 10 is arranged so that the plasma P is located at the focal position. Among the X-rays radiated from the plasma P, the X-rays having a wavelength of 13.5 ⁇ m are reflected by the reflecting surface 10a of the mirror 10 and become an X-ray luminous flux E, which is guided to the subsequent optical system.
  • a water cooling jacket (mirror cooling mechanism) 15 is attached to the back surface 10 b of the mirror 10.
  • the piping 15a of the water cooling jacket 15 is connected to a water source pump (not shown).
  • the water-cooling jacket 15 cools the mirror 10 whose temperature has been increased by receiving radiant heat from the plasma P. Since this water-cooled jacket 15 is provided on the air side of the mirror back 10 b, The wiring of 15a is easy and the configuration is simple. In addition, maintenance is easy because the water cooling jacket 15 is exposed to the atmosphere.
  • a laser light source 5 is disposed upstream of the back surface 10 b of the mirror 10.
  • a lens 6 is arranged between the mirror 10 and the laser light source 5.
  • the lens 6 focuses one YAG laser light L emitted from the laser light source 5 to the tip of the gas jet nozzle 4. At this time, the YAG laser light L passes through the center of the mirror 10 (the portion where the multilayer film 12 is not coated).
  • plasma P is generated, and from this plasma P, a line is radiated.
  • the target gas ejected from the gas jet nozzle 4 is exhausted to the outside of the vacuum vessel 2 by the vacuum pump 3 after the plasma P is generated.
  • the lens 6 is provided separately.
  • the portion of the mirror 10 through which the laser beam passes can be made convex so as to serve also as the lens, and the lens 6 can be omitted.
  • a flange portion 13 that protrudes in a flange shape is formed on the back surface 10 b side of the mirror 10.
  • the flange portion 13 is engaged with an engagement protrusion 14 formed on the outer surface of the vacuum vessel 2.
  • a piezo element 8 (adjustment means) is mounted between the vacuum vessel 2 and the flange portion 13 of the mirror 10.
  • the piezo element 8 is an actuating device for adjusting the mirror to a normal position and orientation after replacing the mirror.
  • the piezo element 8 is connected to a control device 33, and operates in response to a signal from the control device 33.
  • a material transparent to laser light is used as the mirror member, but an opaque material such as silicon, aluminum, or copper may be used.
  • an opening may be provided in a portion of the mirror through which the laser beam passes, and a member (for example, quartz or the like) transparent to the laser beam may be attached to the opening.
  • a member for example, quartz or the like
  • the cooling efficiency is increased due to high thermal conductivity.
  • a semiconductor laser 30 and a photodiode 31 are arranged in a vacuum vessel 2. These semiconductor lasers The position and orientation of the mirror 10 are detected by the photodiode 31. As an example, three or more semiconductor lasers 30 are arranged around the mirror 10. The photodiode 31 is disposed around the mirror 10 corresponding to each semiconductor laser 30. The semiconductor laser 30 and the photodiode 31 are arranged on the reflection surface 10a side of the mirror 10, and are arranged at positions where the X-rays reflected by the mirror 10 are not blocked.
  • the semiconductor laser 30 and the photodiode 31 are connected to a control device 33 in the same manner as the piezo element 8, and outputs a position / posture detection signal of the mirror 10 to the control device 33.
  • FIG. 2 does not show the gas jet nozzle 4, the laser light source 5, the lens 6, etc. of FIG.
  • the beam emitted from each of the semiconductor lasers 30 strikes one point of the reflecting surface 10a of the mirror 10 and is reflected, and is incident on the corresponding photodiode 31.
  • the light receiving surface of each photodiode 31 is divided into four, and a detection signal can be extracted from each of the four divided light receiving surfaces.
  • Four detection signals from one photodiode are input to the control device 33.
  • the control device 33 controls the piezo element 8 based on the detection signal, and adjusts the positions of the gas jet nozzle 4 and the mirror 10 and the alignment of the subsequent optical system (see FIG. 1).
  • One light L of the YAG laser emitted from the laser light source 5 passes through the center of the lens 6 and the mirror 10 and is focused on the gas jet nozzle 4.
  • the target gas ejected from the gas jet nozzle 4 at supersonic speed becomes high temperature by receiving the energy of the condensed YAG laser beam L and generates plasma P.
  • X-rays are emitted when the ions in this plasma transition to a low potential state.
  • the X-rays incident on the mirror 10 the X-rays having a wavelength of about 13.5 nm are reflected by the multilayer film 12 formed on the mirror reflection surface 10 a to become an X-ray luminous flux E, which is a vacuum.
  • the X-ray generator 1 When scattered particles from the plasma P accumulate on the reflecting surface 10a of the mirror 10 due to the long-time operation of the X-ray generator 1, the X-rays reflected on the reflecting surface 10a of the mirror 10 The amount of light decreases. In this case, the original mirror needs to be replaced with a new mirror. During this replacement work, the mirror 10 constitutes a part of the wall of the vacuum vessel 2, so that the deteriorated mirror can be quickly and easily replaced with a new mirror from the atmosphere side. Therefore, the X-ray generator 1 can quickly return to the original state.
  • the position of the newly installed mirror may be slightly different from the position of the original mirror.
  • the position of the reflected light of the laser from the semiconductor laser 30 shown in FIG. 2 detected on the photodiode 31 changes. Therefore, the detection value output from the photodiode 31 also changes. Therefore, the control device 33 drives the piezo element 8 so that the output value of the photodiode 31 substantially matches the condition of the initial state when the original mirror is adjusted. In this way, a new mirror can be placed at the same position as the original mirror position.
  • a piezo element is used as the mirror position adjusting means.
  • the present invention is not limited to this, and various other elements such as a motor can be used as long as the mirror position can be changed. Monkey
  • a vacuum chamber 20 is connected to the downstream side of the vacuum vessel 2.
  • a filter 21 and an aperture plate 23 are arranged.
  • the filter 21 is made of, for example, zirconium (Zr) having a thickness of 0.1 m. Visible ⁇ Cuts out ultraviolet light.
  • the aperture plate 23 has a disk shape and is disposed downstream of the filter 21. At the center of the aperture plate 23, a pinhole 23a is formed. The portion around the pinhole 23a of the aperture plate 23 plays a role of blocking scattered X-rays and X-rays that are emitted directly downstream without being reflected by the mirror 10. It is also used to perform differential exhaust on the upstream and downstream sides of the pinhole to increase the degree of vacuum on the downstream side.
  • a gate valve 25 is provided below the opening plate 23.
  • the gate valve 25 is closed to isolate the downstream illumination optical system 41 from the vacuum vessel 2.
  • the filter 21 is disposed upstream of the pinhole 23a, but the filter 21 may be disposed downstream of the pinhole 23a.
  • An exposure chamber 40 is provided below the vacuum chamber 20.
  • an illumination optical system 41 In the exposure chamber 40, an illumination optical system 41, a mask 43, a projection optical system 45, and the like are arranged.
  • the illumination optical system 41 is composed of a fly-eye optical system reflecting mirror or the like, and shapes the X-ray light beam reflected by the mirror 10 and irradiates it toward the upper right of FIG.
  • a reflective mask 43 In the upper right of FIG. 1 of the illumination optical system 41, a reflective mask 43 is arranged.
  • a reflection film made of a multilayer film is also formed on the reflection surface of the reflection type mask 43.
  • a mask pattern corresponding to the pattern to be transferred to the wafer 49 is formed on the reflection film.
  • the projection optical system 45 includes a plurality of reflecting mirrors and the like, and reduces the X-rays reflected by the reflective mask 43 to a predetermined reduction magnification (for example, 1Z4) and projects the X-rays on the wafer 49.
  • a predetermined reduction magnification for example, 1Z4
  • the dimensions of the illumination optical system 41 and the projection optical system 45 are smaller than those of the X-ray generator 1.
  • the illumination optical system 41 irradiates the reflective surface of the reflective mask 43 with X-rays.
  • the reflection type mask 43 and the projection optical system 45 The wafer 49 is relatively synchronously scanned at a predetermined speed ratio determined by the reduction magnification of the projection optical system.
  • the entire circuit pattern of the reflective mask 43 is transferred to each of the plurality of shot areas on the wafer 49 by the step-and-scan method.
  • the chips of the wafer 49 are, for example, 25 ⁇ 25 mm square.
  • FIG. 3 is a plan view showing another example of the mirror position / posture adjustment unit.
  • the semiconductor laser 30 and the photodiode 31 for detecting the position and orientation of the mirror 10 are arranged in the vacuum vessel 2 (see FIG. 2). Therefore, as shown in FIG. 3, the photodiodes 31a to 31d divided into four parts can be arranged on the surface on the upstream side of the aperture plate 23. In this case, if the position of the mirror 10 shifts, the X-ray does not pass through the inside of the pinhole 23a and hits one of the photodiodes 31a to 31d. Alternatively, the area irradiated on one of the photodiodes increases, and the output signal strength of each photodiode changes. The position and orientation of the mirror can be adjusted based on the detection result of the photodiode at this time. Further, the mirror position can be more precisely adjusted by increasing the number of divided photodiodes.
  • a photodiode is used as the detector, but other detection means may be used.
  • a metal plate for example, gold
  • an ammeter is individually connected between each metal plate and the ground. Good.
  • the position of the mirror shifts and the area irradiated on each metal plate changes, the number of photoelectrons emitted from the metal plate changes, and the indicated value of each ammeter connected to each metal plate changes Therefore, the position and attitude of the mirror can be adjusted based on this. Further, the number of photoelectrons emitted from the metal plate may be monitored instead of the amount of current flowing into the metal plate.
  • FIG. 4 is a diagram showing another example of the X-ray generator.
  • one YAG laser beam emitted from the laser light source 5 The L is transmitted through the center of the mirror 10 and condensed, but as shown in Fig. 4, it does not pass through the mirror 10 and illuminates one light L of the YAG laser from the side of the mirror 10. It can also be collected by focusing.
  • the temperature of the mirror 10 does not rise due to the transmission of the YAG laser light L
  • the temperature of the multilayer film 12 on the mirror reflecting surface 10a does not easily rise. Therefore, the multilayer film 12 is hardly deteriorated, and a decrease in the reflectance of the mirror 10 can be suppressed.
  • FIG. 5 (A) is a diagram showing another example of the X-ray generator
  • FIG. 5 (B) is a front view of a mirror of the X-ray generator of FIG. 5 (A).
  • a flange 13 is formed on the back surface 10b side of the mirror 10, and the mirror itself forms a part of the vacuum vessel 2.
  • a mirror holding member 16 for holding the mirror 10 ′ with respect to the vacuum vessel 2 may be used.
  • the mirror holding member 16 has the same flange portion 13 as described above, and forms a part of the vacuum vessel 2.
  • the mirror 10 ′ is attached to the mirror holding member 16 in the vacuum vessel 2.
  • the mirror 10 'in this example is composed of a plurality of (six in the figure) segment mirrors, and all segment mirrors constitute a paraboloid of revolution. You.
  • Each segment mirror is attached to a mirror holding member 16 via a piezo element (position adjustment mechanism) 17.
  • the example shown in FIG. 5 is suitable for a case where a single mirror is composed of a plurality of segment mirrors instead of an integral mirror in advance.
  • a multilayer mirror has been described as an example.
  • the present invention is not limited to this, and can be applied to an X-ray generator using an oblique incidence mirror.
  • a laser plasma X-ray source as the X-ray generator, it is also possible to use another plasma X-ray source such as a discharge plasma X-ray source.
  • a discharge plasma X-ray source when using a discharge plasma X-ray source, excitation, single laser light source and the optical system of the eye a laser light source was focused of 3 cells for a plasma target materials as in FIG. 1 is not required.
  • EUV light can be guided into the exposure chamber 40 by arranging a plurality of oblique incidence mirrors between the plasma P and the filter 21. is there.
  • the whole of the plurality of oblique incidence mirrors arranged in an annular shape can be removed so as to replace the pipe.
  • a pipe-shaped chamber wall may be used as a holding portion, and a plurality of oblique incidence mirrors may be arranged on the inner surface of the chamber.
  • FIG. It may be configured to be exposed.
  • an X-ray generator having advantages such as shortening of a mirror replacement time or facilitation of cooling of a mirror, and an exposure apparatus having the same. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An X-ray generator (1) has a spherical vacuum vessel (2). A mirror (first mirror) (10) is incorporated into an upstream-side opening (2a) in the vacuum vessel (2). This mirror (10) constitutes part of the upstream-side wall of the vacuum vessel (2). The reflecting surface (10a) of the mirror (10) is positioned in the vacuum vessel (2), with the back (10b) of the mirror (10) exposed to the atmosphere outside the vacuum vessel (2). The back (10b) of the mirror (10) has a water-cooled jacket (15) attached thereto. Since the water-cooled jacket (15) is disposed on the atmosphere-side of the mirror back (10b), the laying, etc. of a piping (15a) are easy and the arrangement is simple. Further, since the water-cooled jacket (15) is exposed to the atmosphere, replacement and maintenance are easy.

Description

明 細 書  Specification
X線発生装置及び露光装置 技術分野 X-ray generator and exposure equipment
本発明は、 X線顕微鏡や X線分析装置、 X線露光装置等の X線機器に装備 される X線発生装置と、 それを備える露光装置に関する。 特には、 ミラーの 交換が簡単にできる等の利点を有する X線発生装置等に関する。 背景技術  The present invention relates to an X-ray generator provided in an X-ray apparatus such as an X-ray microscope, an X-ray analyzer, an X-ray exposure apparatus, and an exposure apparatus including the same. In particular, the present invention relates to an X-ray generator and the like having advantages such as easy replacement of a mirror. Background art
近年、 X線分析装置や X線露光装置等の X線機器の光源として、 レーザ一 プラズマ X線源や放電プラズマ X線源が注目されている。  In recent years, laser-plasma X-ray sources and discharge plasma X-ray sources have attracted attention as light sources for X-ray equipment such as X-ray analyzers and X-ray exposure apparatuses.
レーザ一プラズマ X線源 (以下、 L P Xと呼ぶ) は、 励起用のレーザ一光 を真空容器内の標的材料に集光照射してプラズマを生成し、 このプラズマか ら X線を輻射させるものである。 この L P Xは、 小型でありながらアンジュ レ一タ (シンクロトロンラジェーシヨン) に匹敵するほどの輝度をもつ。 放電プラズマ X線源は、 電極にパルス高電圧を印加して放電を起こし、 こ の放電で動作ガスをイオン化してプラズマを生成し、 このプラズマから輻射 される X線を利用する。 この放電プラズマ X線源は、 小型であり、 輻射され る X線量が多く、 低コストであり、 さらに L P Xに比べて投入電力に対する X線の変換効率が高いという特徴がある。 放電プラズマ X線源の代表的なも のは、 デンスプラズマフォーカス X線源 (以下、 D P F Xと呼ぶ) である。 このような L P Xや D P F Xにおいては、 標的材料やプラズマ近傍の部材 (電極等) が、 プラズマ生成時に原子やイオン状の粒子となって周囲に飛び 散る (このような粒子を飛散粒子あるいはデブリと呼ぶ)。 飛散粒子は、 ブラ ズマの周囲に配置された多層膜ミラー等の X線ミラーに付着 ·堆積し易く、 ミラーの反射率を低下させる。 このため、 L P Xや D P F Xにおいては、 多 層膜ミラーをある一定期間ごとに新たなミラ一に交換する必要がある。 前述の X線源を備える X線発生装置においては、 プラズマから輻射される X線が最初に入射するミラ一 (第 1ミラ一) は、 プラズマ発生チャンバ (真 空容器) の内部に取り付けられている。 そのため、 以下に述べるような問題 がある。 A laser-plasma X-ray source (hereinafter referred to as LPX) focuses and irradiates a laser beam for excitation onto a target material in a vacuum vessel to generate plasma, and radiates X-rays from this plasma. is there. This LPX has a brightness comparable to that of an angel (synchrotron radiation), despite its small size. The discharge plasma X-ray source generates a discharge by applying a high pulse voltage to the electrodes, ionizes the working gas by this discharge, generates plasma, and uses X-rays radiated from the plasma. This discharge plasma X-ray source is characterized by its small size, large amount of radiated X-rays, low cost, and high conversion efficiency of X-rays to input power compared to LPX. A typical discharge plasma X-ray source is a dense plasma focus X-ray source (hereinafter referred to as DPFX). In such LPX and DPFX, the target material and members (electrodes, etc.) near the plasma scatter as atoms or ions during plasma generation (such particles are called scattered particles or debris). ). The scattered particles easily adhere to and accumulate on an X-ray mirror such as a multilayer mirror disposed around the plasma, and reduce the reflectivity of the mirror. For this reason, in LPX and DPFX, it is necessary to replace the multilayer mirror with a new mirror every certain period. In the X-ray generator equipped with the above-mentioned X-ray source, the mirror (the first mirror), to which the X-ray radiated from the plasma first enters, is attached inside the plasma generation chamber (vacuum container). I have. Therefore, there are the following problems.
( 1 )第 1ミラーを交換する際には、チヤンバ内部で第 1ミラーの取り外し · 再取り付けを行わなければならず、 ミラ一交換作業に時間と手間がかかる。  (1) When replacing the first mirror, the first mirror must be removed and reattached inside the chamber, and it takes time and effort to replace the mirror.
( 2 ) 第 1ミラーを内包する構成上、 プラズマ発生チャンバが大型化してし まう。 さらに、 ミラーはプラズマ X線源からの熱負荷を受けて温度が上昇す るため、適宜冷却する必要があるが、それ用の冷却機構も複雑化してしまう。 本発明は、 このような問題に鑑みてなされたものであって、 ミラーの交換 が簡単にできる等の利点を有する X線発生装置及びそれを備える露光装置を 提供することを目的とする。 発明の開示  (2) The plasma generation chamber becomes large due to the configuration including the first mirror. In addition, the temperature of the mirror rises due to the thermal load from the plasma X-ray source, so it is necessary to cool the mirror appropriately, but the cooling mechanism for that also becomes complicated. The present invention has been made in view of such a problem, and has as its object to provide an X-ray generator having advantages such as easy replacement of a mirror and an exposure apparatus having the same. Disclosure of the invention
前記の課題を解決するため、 本発明の X線発生装置は、 標的材料をプラズ マ化し、 該プラズマから X線を輻射させる X線源と、 該 X線源を収容する 真空容器と、 前記 X線源から輻射される X線が入射するミラーと、 を具備 し、 前記ミラ一あるいはミラ一を保持している部材が、 前記真空容器の壁 の一部を構成していることを特徴とする。  In order to solve the above-mentioned problems, an X-ray generator according to the present invention comprises: an X-ray source that converts a target material into plasma and radiates X-rays from the plasma; a vacuum container that houses the X-ray source; And a mirror on which X-rays radiated from a radiation source are incident, wherein the mirror or a member holding the mirror constitutes a part of a wall of the vacuum vessel. .
本発明によれば、 ミラ一あるいはミラーを保持している部材が真空容器の 壁の一部を構成しているので、 性能の劣化したミラ一を大気側から素早く新 しいミラーと交換できる。  According to the present invention, since the mirror or the member holding the mirror constitutes a part of the wall of the vacuum vessel, the deteriorated mirror can be quickly replaced with a new mirror from the atmosphere side.
本発明の X線発生装置においては、 前記ミラーあるいはミラ一を保持して いる部材の裏面が真空容器外側に露出しているものとすることができる。 この場合、 ミラ一あるいはミラー保持部材.を真空容器外から冷却すること ができるため、 冷却手段を配置することが容易になる。 特に真空容器外が大 気の場合は、 ミラーの熱が裏面側から大気に放熱されるので、 ミラーの温度 上昇を抑えることができる。 本発明の X線発生装置においては、 前記ミラーあるいはミラーを保持して いる部材の裏面にミラ一冷却機構を設けることができる。 In the X-ray generator of the present invention, the back surface of the member holding the mirror or the mirror may be exposed outside the vacuum vessel. In this case, since the mirror or the mirror holding member can be cooled from outside the vacuum vessel, it is easy to arrange the cooling means. Especially when the outside of the vacuum vessel is in the air, the heat of the mirror is radiated to the atmosphere from the back side, so that the temperature rise of the mirror can be suppressed. In the X-ray generator of the present invention, a mirror cooling mechanism can be provided on the back surface of the mirror or the member holding the mirror.
この場合、 ミラー冷却機構を用いてミラーの温度上昇を抑えることができ る。 さらに、 ミラー冷却機構を大気側 (ミラー裏面側) に設けることができ るので、 冷却機構の構成が簡素化する (例えば冷却機構が水冷ジャケットで ある場合は、 配管の引き回しが簡単になる)。 また、 冷却機構が大気側に露出 していると、 メンテナンスも容易になる。  In this case, the temperature rise of the mirror can be suppressed by using the mirror cooling mechanism. Furthermore, since the mirror cooling mechanism can be provided on the atmosphere side (the back side of the mirror), the configuration of the cooling mechanism is simplified (for example, when the cooling mechanism is a water-cooled jacket, the piping is easily routed). Maintenance is also easier if the cooling mechanism is exposed to the atmosphere.
本発明の X線発生装置においては、 前記標的材料をプラズマ化するレー ザ一光を発生させるレーザ一光源を具備し、 前記レ一ザ一光が、前記ミラー あるいはミラーを保持している部材の一部を透過、 あるいは、 前記ミラーに 開けられた開口部を通過して、 前記真空容器内に入射するものとすることが できる。  The X-ray generator according to the present invention further includes a laser light source for generating laser light for converting the target material into plasma, and the laser light is used for the mirror or a member holding the mirror. A part of the light may be transmitted, or the light may enter the vacuum container through an opening formed in the mirror.
固体ターゲットの場合、 プラズマから輻射される X線は、 レーザ一光の入 射方向に強い強度をもつ。 したがって、 本手段によれば、 X線源で発生した X線を有効にミラーに導くことができ、 X線発生装置から射出する X線の光 量を高めることができる。  In the case of a solid target, the X-rays radiated from the plasma have a strong intensity in the direction of the laser beam. Therefore, according to this means, the X-rays generated by the X-ray source can be effectively guided to the mirror, and the amount of X-rays emitted from the X-ray generator can be increased.
本発明の X線発生装置においては、 前記ミラーの位置及び姿勢を検出する 検出手段と、 該ミラーの位置及び姿勢を調整する調整手段と、 前記検出 手段からの信号を受けて、 該ミラ一が所定の位置及び姿勢をとるように、 前 記調整手段を制御する制御手段と、 をさらに具備するものとすることがで さる。  In the X-ray generator according to the present invention, detecting means for detecting the position and attitude of the mirror, adjusting means for adjusting the position and attitude of the mirror, and receiving a signal from the detecting means, And control means for controlling the adjusting means so as to take a predetermined position and posture.
この場合、ミラーを正規の位置及び姿勢に正確にセットすることができる。 したがつて、 ミラーの交換時ゃメンテナンス時等に装置のァライメントを崩 すことがなく、 装置の精度を維持することができる。  In this case, the mirror can be accurately set to the correct position and posture. Therefore, it is possible to maintain the accuracy of the apparatus without changing the alignment of the apparatus when replacing the mirror or performing maintenance.
本発明の露光装置は、 請求項 1 ~ 4いずれか 1項記載の X線発生装置と、 該 X線発生装置から発生された X線をマスクに当てる照明光学系と、 該マ スクから反射した光を感応基板上に投影結像させる投影光学系と、 を具備 することを特徴とする。 本発明によれば、 性能の劣化したミラ一を素早く簡単に新たなミラーと交 換でき、 X線発生装置を素早く正常状態に復帰できるので、 メンテナンスに 要する時間や費用を削減できるとともに、 装置稼動率を向上させることがで さる。 図面の簡単な説明 An exposure apparatus according to the present invention includes an X-ray generator according to any one of claims 1 to 4, an illumination optical system configured to irradiate an X-ray generated by the X-ray generator on a mask, and an X-ray reflected from the mask. And a projection optical system for projecting and imaging light on the sensitive substrate. According to the present invention, a mirror whose performance has deteriorated can be quickly and easily replaced with a new mirror, and the X-ray generator can be quickly returned to a normal state, so that the time and cost required for maintenance can be reduced and the apparatus can be operated. The rate can be improved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施の形態に係る X線発生装置を有する露光装置を模 式的に示す図である。  FIG. 1 is a diagram schematically showing an exposure apparatus having an X-ray generator according to one embodiment of the present invention.
図 2は、 図 1の X線発生装置におけるミラー位置 ·姿勢調整部を示す図で ある。  FIG. 2 is a diagram showing a mirror position / posture adjustment unit in the X-ray generator of FIG.
図 3は、 ミラー位置 ·姿勢調整部の他の例を示す平面図である。  FIG. 3 is a plan view showing another example of the mirror position / posture adjustment unit.
図 4は、 X線発生装置の他の例を示す図である。  FIG. 4 is a diagram showing another example of the X-ray generator.
図 5 (A)は X線発生装置の他の例を示す図であり、 図 5 ( B )は図 5 (A) の X線発生装置のミラ一の正面図である。 発明を実施するための形態  FIG. 5 (A) is a diagram showing another example of the X-ray generator, and FIG. 5 (B) is a front view of a mirror of the X-ray generator of FIG. 5 (A). BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しつつ説明する。  Hereinafter, description will be made with reference to the drawings.
図 1は、 本発明の一実施の形態に係る X線発生装置を有する露光装置を模 式的に示す図である。  FIG. 1 is a diagram schematically showing an exposure apparatus having an X-ray generator according to one embodiment of the present invention.
図 2は、 図 1の X線発生装置におけるミラー位置 ·姿勢調整部を示す図で ある。  FIG. 2 is a diagram showing a mirror position / posture adjustment unit in the X-ray generator of FIG.
なお、 以下の説明では、 レーザー光及び X線の光路に沿って、 図 1の左側 を上流側といい、 図 1の右側を下流側 (後段の光学系側) という。  In the following description, the left side of FIG. 1 is referred to as the upstream side, and the right side of FIG. 1 is referred to as the downstream side (the optical system side at the subsequent stage) along the optical paths of the laser beam and the X-ray.
本実施の形態では、 本発明に係る X線発生装置をレーザープラズマ X線源 に適用した例について述べる。  In this embodiment, an example in which the X-ray generator according to the present invention is applied to a laser plasma X-ray source will be described.
図 1の露光装置の上流側には、 X線発生装置 1が配置されている。 この X 線発生装置 1は、 球状の真空容器 2を備えている。 この真空容器 2には、 真 空ポンプ (真空排気装置) 3が付設されている。 真空容器 2内は、 真空ボン プ 3で排気されている。 真空容器 2内が真空ポンプ 3で減圧されることで、 プラズマ Pから輻射された X線が減衰しないようになっている。 An X-ray generator 1 is arranged upstream of the exposure apparatus in FIG. The X-ray generator 1 includes a spherical vacuum vessel 2. The vacuum container 2 is provided with a vacuum pump (vacuum exhaust device) 3. Vacuum container 2 Pump 3 exhausts. When the pressure in the vacuum vessel 2 is reduced by the vacuum pump 3, the X-rays radiated from the plasma P are not attenuated.
真空容器 2内には、 ステンレス製のガスジエツトノズル 4が配置されてい る。 このガスジエツトノズル 4は、 ガスボンベに繋がるバルブ (ともに図示 されず) に接続されている。ガスボンベ内にはキセノン(X e )等の夕一ゲッ トガスが充填されている。 ガスボンベ内のターゲットガスは、 配管等を介し てバルブに送られ、 ガスジエツトノズル 4から真空容器 2内に噴出される。 この噴出された夕ーゲッ卜ガスが、 プラズマ Pを生成する際の標的材料とな る。  Inside the vacuum vessel 2, a stainless steel gas jet nozzle 4 is arranged. The gas jet nozzle 4 is connected to a valve (both not shown) connected to a gas cylinder. The gas cylinder is filled with an evening get gas such as xenon (Xe). The target gas in the gas cylinder is sent to a valve via a pipe or the like, and is ejected from the gas jet nozzle 4 into the vacuum vessel 2. The ejected evening gas serves as a target material when generating plasma P.
真空容器 2の上流側には、 開口 2 aが形成されている。 この開口 2 a内に は、 ミラー (第 1ミラー) 1 0が組み込まれている。 このミラ一 1 0は、 真 空容器 2上流側の壁の一部を構成している。 ミラ一 1 0の反射面 1 0 aは真 空容器 2内に位置しており、 ミラー 1 0の裏面 1 0 bは真空容器 2外の大気 側に露出している。 なお、 真空容器 2の開口 2 aとミラー 1 0の側周面間に は、 磁性流体シール 9が介装されており、 両者間はシールされている。 ミラ一 1 0は、 この例では回転放物面形状の反射面 1 0 aを有する低熱膨 張ガラス製 (例えばゼロデュア一や U L E等) ミラーである。 ミラー 1 0の 反射面 1 0 aには、 面中心の一部を除いて M o / S i製の多層膜 1 2がコー トされている。 この多層膜 1 2は、 波長 1 3 . 5 n mの X線を反射するよう に構成されている。 ミラー 1 0は、 その焦点位置にプラズマ Pが位置するよ うに配置されている。プラズマ Pから輻射された X線のうち、波長 1 3 . 5 η mの X線がミラー 1 0の反射面 1 0 aで反射し、 X線光束 Eとなって後段の 光学系に導かれる。  An opening 2 a is formed on the upstream side of the vacuum vessel 2. A mirror (first mirror) 10 is incorporated in the opening 2a. The mirror 10 constitutes a part of the wall on the upstream side of the vacuum container 2. The reflecting surface 10a of the mirror 10 is located in the vacuum container 2, and the back surface 10b of the mirror 10 is exposed to the atmosphere outside the vacuum container 2. A magnetic fluid seal 9 is interposed between the opening 2a of the vacuum vessel 2 and the side peripheral surface of the mirror 10, and the two are sealed. In this example, the mirror 10 is a mirror made of low thermal expansion glass (for example, Zerodur 1 or ULE) having a paraboloidal reflecting surface 10a. A multilayer film 12 made of Mo / Si is coated on the reflection surface 10a of the mirror 10 except for a part of the center of the surface. The multilayer film 12 is configured to reflect X-rays having a wavelength of 13.5 nm. The mirror 10 is arranged so that the plasma P is located at the focal position. Among the X-rays radiated from the plasma P, the X-rays having a wavelength of 13.5 ηm are reflected by the reflecting surface 10a of the mirror 10 and become an X-ray luminous flux E, which is guided to the subsequent optical system.
ミラ一 1 0の裏面 1 0 bには、 水冷ジャケット (ミラ一冷却機構) 1 5が 取り付けられている。 水冷ジャケット 1 5の配管 1 5 aは、 図示せぬ水源 ' ポンプに繋がっている。 水冷ジャケット 1 5は、 プラズマ Pからの輻射熱を 受けて温度が上昇したミラー 1 0を冷却するためのものである。 この水冷 ジャケット 1 5は、 ミラー裏面 1 0 bの大気側に設けられているため、 配管 1 5 aの引き回し等が容易で構成が簡素である。また、水冷ジャケット 1 5が 大気側に露出しているため、 メンテナンスも容易である。 A water cooling jacket (mirror cooling mechanism) 15 is attached to the back surface 10 b of the mirror 10. The piping 15a of the water cooling jacket 15 is connected to a water source pump (not shown). The water-cooling jacket 15 cools the mirror 10 whose temperature has been increased by receiving radiant heat from the plasma P. Since this water-cooled jacket 15 is provided on the air side of the mirror back 10 b, The wiring of 15a is easy and the configuration is simple. In addition, maintenance is easy because the water cooling jacket 15 is exposed to the atmosphere.
ミラー 1 0の裏面 1 0 bよりも上流側には、 レーザー光源 5が配置されて いる。 ミラ一 1 0とレ一ザ一光源 5間には、 レンズ 6が配置されている。 こ のレンズ 6は、 レ一ザ一光源 5から放出された Y A Gレーザ一光 Lを、 ガス ジェットノズル 4の先に集光する。 この際、 Y A Gレーザー光 Lは、 ミラ一 1 0の中心 (多層膜 1 2がコートされていない箇所) を透過する。 集光され た Y A Gレーザ一光 Lが夕ーゲットガスに照射されることで、 プラズマ Pが 生成され、 このプラズマ Pから: 線が輻射される。 なお、 この際ガスジエツ トノズル 4から噴出されたターゲットガスは、プラズマ Pが生成された後に、 真空ポンプ 3で真空容器 2外に排気される。なお、本実施例では、レンズ 6を 別途設けたが、 ミラー 1 0のレーザ一光が通過する部分を凸形状としてレン ズの役割を兼ねるものとし、 レンズ 6を省くこともできる。  A laser light source 5 is disposed upstream of the back surface 10 b of the mirror 10. A lens 6 is arranged between the mirror 10 and the laser light source 5. The lens 6 focuses one YAG laser light L emitted from the laser light source 5 to the tip of the gas jet nozzle 4. At this time, the YAG laser light L passes through the center of the mirror 10 (the portion where the multilayer film 12 is not coated). When the focused YAG laser light L is applied to the evening gas, plasma P is generated, and from this plasma P, a line is radiated. At this time, the target gas ejected from the gas jet nozzle 4 is exhausted to the outside of the vacuum vessel 2 by the vacuum pump 3 after the plasma P is generated. In this embodiment, the lens 6 is provided separately. However, the portion of the mirror 10 through which the laser beam passes can be made convex so as to serve also as the lens, and the lens 6 can be omitted.
ミラー 1 0の裏面 1 0 b側には、 鍔状に張り出したフランジ部 1 3が形成 されている。 このフランジ部 1 3は、 真空容器 2外面に形成された係合突起 1 4に係合している。 真空容器 2とミラ一 1 0のフランジ部 1 3間には、 ピ ェゾ素子 8 (調整手段)が取り付けられている。 このピエゾ素子 8は、 ミラー を交換した後、 ミラーを正規の位置 ·姿勢に調整するためのァクチユエ一夕 である。図 2に示すように、ピエゾ素子 8は制御装置 3 3に接続されており、 この制御装置 3 3からの信号に応じて作動する。なお、本実施例では、ミラー 部材としてレーザー光に対して透明な材料を用いているが、 シリコンやアル ミニゥム、 銅等の不透明材料を用いてもよい。 この場合には、 ミラーのレー ザ一光が通過する部分に開口を設け、 その部分にレーザー光に対して透明な 部材 (例えば石英等) を取り付けるようにしてもよい。 シリコンやアルミ二 ゥム、 銅等の金属をミラ一部材として用いると、 熱伝導率が高いため冷却効 率が高くなる。  On the back surface 10 b side of the mirror 10, a flange portion 13 that protrudes in a flange shape is formed. The flange portion 13 is engaged with an engagement protrusion 14 formed on the outer surface of the vacuum vessel 2. A piezo element 8 (adjustment means) is mounted between the vacuum vessel 2 and the flange portion 13 of the mirror 10. The piezo element 8 is an actuating device for adjusting the mirror to a normal position and orientation after replacing the mirror. As shown in FIG. 2, the piezo element 8 is connected to a control device 33, and operates in response to a signal from the control device 33. In this embodiment, a material transparent to laser light is used as the mirror member, but an opaque material such as silicon, aluminum, or copper may be used. In this case, an opening may be provided in a portion of the mirror through which the laser beam passes, and a member (for example, quartz or the like) transparent to the laser beam may be attached to the opening. When a metal such as silicon, aluminum or copper is used as a mirror member, the cooling efficiency is increased due to high thermal conductivity.
図 2に示すように、 真空容器 2内には、 半導体レーザ一 3 0及びフォトダ ィオード 3 1 (検出手段) が配置されている。 これら半導体レーザ一 3 0 · フォトダイオード 3 1で、 ミラ一 1 0の位置や姿勢を検出する。 半導体レー ザ一 3 0は、 一例でミラー 1 0の周囲に 3個以上配置されている。 フォトダ ィオード 3 1は、 各半導体レーザー 3 0に対応して、 ミラー 1 0の周囲に配 置されている。 これら半導体レーザー 3 0及びフォトダイオード 3 1は、 ミ ラー 1 0の反射面 1 0 a側に配置されており、 ミラー 1 0で反射した X線を 遮らない位置に配置されている。 半導体レーザー 3 0及びフォトダイオード 3 1は、 前述のピエゾ素子 8と同様に制御装置 3 3に接続されており、 この 制御装置 3 3にミラー 1 0の位置 ·姿勢検出信号を出力する。 なお、 図 2で は、 図 1のガスジェットノズル 4やレーザ一光源 5、 レンズ 6等は描かれて いない。 As shown in FIG. 2, a semiconductor laser 30 and a photodiode 31 (detection means) are arranged in a vacuum vessel 2. These semiconductor lasers The position and orientation of the mirror 10 are detected by the photodiode 31. As an example, three or more semiconductor lasers 30 are arranged around the mirror 10. The photodiode 31 is disposed around the mirror 10 corresponding to each semiconductor laser 30. The semiconductor laser 30 and the photodiode 31 are arranged on the reflection surface 10a side of the mirror 10, and are arranged at positions where the X-rays reflected by the mirror 10 are not blocked. The semiconductor laser 30 and the photodiode 31 are connected to a control device 33 in the same manner as the piezo element 8, and outputs a position / posture detection signal of the mirror 10 to the control device 33. Note that FIG. 2 does not show the gas jet nozzle 4, the laser light source 5, the lens 6, etc. of FIG.
各半導体レーザ一 3 0から出たビームは、 ミラ一 1 0の反射面 1 0 aの一 点に当たって反射し、 それぞれ対応するフォトダイォ一ド 3 1に入射する。 各フォトダイオード 3 1の受光面は 4分割されており、 これら 4分割された 各受光面のそれぞれから検出信号を取り出すことができる。 1つのフォトダ ィオードからの 4つの検出信号は、 制御装置 3 3に入力される。 制御装置 3 3は、 この検出信号に基づいてピエゾ素子 8を制御し、 ガスジェットノズ ル 4やミラ一 1 0の位置、 後段の光学系 (図 1参照) のァライメントが調整 される。  The beam emitted from each of the semiconductor lasers 30 strikes one point of the reflecting surface 10a of the mirror 10 and is reflected, and is incident on the corresponding photodiode 31. The light receiving surface of each photodiode 31 is divided into four, and a detection signal can be extracted from each of the four divided light receiving surfaces. Four detection signals from one photodiode are input to the control device 33. The control device 33 controls the piezo element 8 based on the detection signal, and adjusts the positions of the gas jet nozzle 4 and the mirror 10 and the alignment of the subsequent optical system (see FIG. 1).
ここで、 前述の構成を有する X線発生装置 1の総合的な作用について述べ る。  Here, the overall operation of the X-ray generator 1 having the above-described configuration will be described.
レーザー光源 5から放出された Y A Gレーザ一光 Lは、 レンズ 6及びミ ラ一 1 0の中央を透過してガスジエツトノズル 4の直上に集光される。 ガス ジエツトノズル 4から超音速で噴出されたターゲットガスは、 集光された Y A Gレーザー光 Lのエネルギを受けて高温になり、 プラズマ Pを生成する。 このプラズマ中のイオンが低ポテンシャル状態へ遷移する際に、 X線を放出 する。 ミラ一 1 0に入射した X線のうち、 波長 1 3 . 5 n m付近の X線がミ ラー反射面 1 0 aに形成された多層膜 1 2で反射して X線光束 Eとなり、 真 空容器 2の下流側から後段の光学系 (図 1参照) へと導かれる。 ミラー 1 0の反射面 1 0 aには、 プラズマ Pからの輻射熱で熱負荷が加わ るが、 ミラー 1 0は水冷ジャケット 1 5で冷却されているため、 温度上昇が 低く抑えられる。 あるいは、 ミラー 1 0の裏面 1 0 bが大気側に露出してい るため、 ミラ一 1 0の熱が大気に放熱され、 これによつても温度上昇が抑え られる。 One light L of the YAG laser emitted from the laser light source 5 passes through the center of the lens 6 and the mirror 10 and is focused on the gas jet nozzle 4. The target gas ejected from the gas jet nozzle 4 at supersonic speed becomes high temperature by receiving the energy of the condensed YAG laser beam L and generates plasma P. X-rays are emitted when the ions in this plasma transition to a low potential state. Among the X-rays incident on the mirror 10, the X-rays having a wavelength of about 13.5 nm are reflected by the multilayer film 12 formed on the mirror reflection surface 10 a to become an X-ray luminous flux E, which is a vacuum. It is guided from the downstream side of the container 2 to the subsequent optical system (see Fig. 1). A heat load is applied to the reflecting surface 10a of the mirror 10 by radiant heat from the plasma P. However, since the mirror 10 is cooled by the water-cooling jacket 15, the temperature rise can be kept low. Alternatively, since the back surface 10b of the mirror 10 is exposed to the atmosphere side, the heat of the mirror 10 is radiated to the atmosphere, thereby suppressing the temperature rise.
X線発生装置 1の長時間の稼動に伴い、 プラズマ Pからの飛散粒子がミ ラー 1 0の反射面 1 0 aに堆積すると、 ミラー 1 0の反射面 1 0 aで反射さ れる X線の光量が低下してくる。 こうなると、 元のミラ一を新たなミラーに 交換する必要がある。 この交換作業の際は、 ミラ一 1 0が真空容器 2の壁の 一部を構成しているので、 性能の劣化したミラ一を大気側から素早く簡単に 新たなミラーと交換できる。 そのため、 X線発生装置 1を素早く元の状態に 復帰できる。  When scattered particles from the plasma P accumulate on the reflecting surface 10a of the mirror 10 due to the long-time operation of the X-ray generator 1, the X-rays reflected on the reflecting surface 10a of the mirror 10 The amount of light decreases. In this case, the original mirror needs to be replaced with a new mirror. During this replacement work, the mirror 10 constitutes a part of the wall of the vacuum vessel 2, so that the deteriorated mirror can be quickly and easily replaced with a new mirror from the atmosphere side. Therefore, the X-ray generator 1 can quickly return to the original state.
ここで、 新たに設置したミラーの位置は、 元のミラーがあった位置とは僅 かにずれる可能性がある。 このような位置ずれが生じた場合、 図 2に示す半 導体レーザー 3 0からのレーザーの反射光の、 フォトダイオード 3 1上で検 出される位置が変化する。 そのため、 フォトダイオード 3 1から出力される 検出値も変化する。 そこで、 フォトダイオード 3 1の出力値が、 元のミラー を調整した時の初期状態の条件とほぼ一致するように、 制御装置 3 3がピエ ゾ素子 8を駆動する。 こうすることにより、 元のミラー位置と同じ位置に新 たなミラ一を配置することができる。 なお、 本実施例では、 ミラー位置調整 手段としてピエゾ素子を用いたが、 これに限らず、 モーター等のミラー位置 を変化させることができるものであれば、 他の様々なものを用いることがで さる。  Here, the position of the newly installed mirror may be slightly different from the position of the original mirror. When such a displacement occurs, the position of the reflected light of the laser from the semiconductor laser 30 shown in FIG. 2 detected on the photodiode 31 changes. Therefore, the detection value output from the photodiode 31 also changes. Therefore, the control device 33 drives the piezo element 8 so that the output value of the photodiode 31 substantially matches the condition of the initial state when the original mirror is adjusted. In this way, a new mirror can be placed at the same position as the original mirror position. In this embodiment, a piezo element is used as the mirror position adjusting means. However, the present invention is not limited to this, and various other elements such as a motor can be used as long as the mirror position can be changed. Monkey
図 1に戻って、 X線発生装置 1を有する X線露光装置の全体構成について 説明する。  Returning to FIG. 1, the overall configuration of the X-ray exposure apparatus having the X-ray generator 1 will be described.
真空容器 2の下流側には、真空室 2 0が接続されている。この真空室 2 0内 には、フィルター 2 1及び開口板 2 3が配置されている。フィルター 2 1は、 例えば厚さ 0 . 1 mのジルコニウム (Z r ) からなり、 プラズマ Pからの 可視 ·紫外光をカットする。 開口板 2 3は、 円盤状をしており、 フィルタ一 2 1の下流側に配置されている。 この開口板 2 3の中心には、 ピンホール 2 3 aが形成されている。 開口板 2 3のピンホール 2 3 a周囲の箇所は、 散 乱した X線や、 ミラー 1 0によって反射されずに直接下流側に放出されてい る X線等を遮る役割を果たす。 また、 ピンホールの上流側と下流側で差動排 気を行い、 下流側の真空度を上げるためにも使用される。 A vacuum chamber 20 is connected to the downstream side of the vacuum vessel 2. In the vacuum chamber 20, a filter 21 and an aperture plate 23 are arranged. The filter 21 is made of, for example, zirconium (Zr) having a thickness of 0.1 m. Visible · Cuts out ultraviolet light. The aperture plate 23 has a disk shape and is disposed downstream of the filter 21. At the center of the aperture plate 23, a pinhole 23a is formed. The portion around the pinhole 23a of the aperture plate 23 plays a role of blocking scattered X-rays and X-rays that are emitted directly downstream without being reflected by the mirror 10. It is also used to perform differential exhaust on the upstream and downstream sides of the pinhole to increase the degree of vacuum on the downstream side.
真空室 2 0において、 開口板 2 3の下方にはゲートバルブ 2 5が設けられ ている。 X線発生装置 1のミラー交換等のメンテナンスの際には、 このゲー トバルブ 2 5を閉じて、 下流の照明光学系 4 1と真空容器 2とを隔離する。 なお、 この実施例では、 フィルター 2 1をピンホール 2 3 aの上流側に配置 しているが、フィルター 2 1をピンホール 2 3 aの下流側に配置してもよい。 このようにすると、 フィルタ一 2 1に照射される X線はミラー 1 0で反射さ れた X線のみとなるため、 フィルター 2 1に吸収される X線による熱負荷が 小さくなる利点がある。  In the vacuum chamber 20, a gate valve 25 is provided below the opening plate 23. During maintenance such as replacement of the mirror of the X-ray generator 1, the gate valve 25 is closed to isolate the downstream illumination optical system 41 from the vacuum vessel 2. In this embodiment, the filter 21 is disposed upstream of the pinhole 23a, but the filter 21 may be disposed downstream of the pinhole 23a. By doing so, the X-rays irradiated to the filter 21 are only the X-rays reflected by the mirror 10, so that there is an advantage that the heat load due to the X-rays absorbed by the filter 21 is reduced.
真空室 2 0の下方には、 露光チャンバ 4 0が設置されている。 露光チャン バ 4 0内には、 照明光学系 4 1やマスク 4 3、 投影光学系 4 5等が配置され ている。照明光学系 4 1は、フライアイ光学系の反射鏡等で構成されており、 ミラー 1 0で反射した X線光束を成形し、 図 1の右上に向かって照射する。 照明光学系 4 1の図 1の右上には、 反射型マスク 4 3が配置されている。 反 射型マスク 4 3の反射面にも多層膜からなる反射膜が形成されている。 この 反射膜には、 ウェハ 4 9に転写するパターンに応じたマスクパターンが形成 されている。 反射型マスク 4 3の下流側には、 順に投影光学系 4 5、 ウェハ 4 9が配置されている。 投影光学系 4 5は、 複数の反射鏡等からなり、 反射 型マスク 4 3で反射された X線を所定の縮小倍率(例えば 1 Z 4 )に縮小し、 ウェハ 4 9上に投影する。 なお、 図 1では、 照明光学系 4 1や投影光学系 4 5の寸法は、 X線発生装置 1に対して小さく描かれている。  An exposure chamber 40 is provided below the vacuum chamber 20. In the exposure chamber 40, an illumination optical system 41, a mask 43, a projection optical system 45, and the like are arranged. The illumination optical system 41 is composed of a fly-eye optical system reflecting mirror or the like, and shapes the X-ray light beam reflected by the mirror 10 and irradiates it toward the upper right of FIG. In the upper right of FIG. 1 of the illumination optical system 41, a reflective mask 43 is arranged. A reflection film made of a multilayer film is also formed on the reflection surface of the reflection type mask 43. A mask pattern corresponding to the pattern to be transferred to the wafer 49 is formed on the reflection film. On the downstream side of the reflective mask 43, a projection optical system 45 and a wafer 49 are arranged in this order. The projection optical system 45 includes a plurality of reflecting mirrors and the like, and reduces the X-rays reflected by the reflective mask 43 to a predetermined reduction magnification (for example, 1Z4) and projects the X-rays on the wafer 49. In FIG. 1, the dimensions of the illumination optical system 41 and the projection optical system 45 are smaller than those of the X-ray generator 1.
露光動作を行う際には、 照明光学系 4 1により反射型マスク 4 3の反射面 に X線を照射する。 その際、 投影光学系 4 5に対して反射型マスク 4 3及び ウェハ 4 9を投影光学系の縮小倍率により定まる所定の速度比で相対的に同 期走査する。 これにより、 反射型マスク 4 3の回路パターンの全体をウェハ 4 9上の複数のショット領域の各々にステップアンドスキャン方式で転写す る。 なお、 ウェハ 4 9のチップは例えば 2 5 X 2 5 mm角である。 When performing the exposure operation, the illumination optical system 41 irradiates the reflective surface of the reflective mask 43 with X-rays. At this time, the reflection type mask 43 and the projection optical system 45 The wafer 49 is relatively synchronously scanned at a predetermined speed ratio determined by the reduction magnification of the projection optical system. Thus, the entire circuit pattern of the reflective mask 43 is transferred to each of the plurality of shot areas on the wafer 49 by the step-and-scan method. The chips of the wafer 49 are, for example, 25 × 25 mm square.
なお、 前述の実施の形態においては、 以下のような改変を行うこともでき る。  In the above embodiment, the following modifications can be made.
図 3は、 ミラー位置 ·姿勢調整部の他の例を示す平面図である。  FIG. 3 is a plan view showing another example of the mirror position / posture adjustment unit.
前述の実施の形態では、ミラー 1 0の位置'姿勢を検出する半導体レーザー 3 0 ·フォトダイオード 3 1を真空容器 2内に配置している(図 2参照)が、 このフォトダイオード 3 1に代えて、 図 3に示すように、 開口板 2 3の上流 側の面に 4分割されたフォトダイオード 3 1 a〜 3 1 dを配置することもで きる。 この場合、 ミラー 1 0の位置がずれると、 X線がピンホール 2 3 a内 側を通過せず、 フォトダイオード 3 1 a〜 3 1 dのいずれかに当たる。 ある いは、 いずれかのフォトダイオードに照射される面積が大きくなり、 各フォ トダイオードの出力信号強度が変化する。 この際のフォトダイオードの検出 結果に基づき、 ミラ一の位置 ·姿勢を調整することができる。 さらに、 フォ トダイオードの分割数を多くすることにより、 一層精密にミラー位置を調整 することができる。  In the above-described embodiment, the semiconductor laser 30 and the photodiode 31 for detecting the position and orientation of the mirror 10 are arranged in the vacuum vessel 2 (see FIG. 2). Therefore, as shown in FIG. 3, the photodiodes 31a to 31d divided into four parts can be arranged on the surface on the upstream side of the aperture plate 23. In this case, if the position of the mirror 10 shifts, the X-ray does not pass through the inside of the pinhole 23a and hits one of the photodiodes 31a to 31d. Alternatively, the area irradiated on one of the photodiodes increases, and the output signal strength of each photodiode changes. The position and orientation of the mirror can be adjusted based on the detection result of the photodiode at this time. Further, the mirror position can be more precisely adjusted by increasing the number of divided photodiodes.
なお、 この例では検出器としてフォトダイオードを用いているが、 他の検 出手段でもよい。 例えば、 ピンホールの周囲に、 図 3のように周囲から電気 的に絶縁された金属板 (例えば金等) を配置し、 各金属板とグランドとの間 に個々に電流計を接続したものでもよい。 この場合は、 ミラーの位置がずれ て各金属板に照射される面積が変わると、 金属板から放出される光電子数が 変化し、 各金属板に接続されている各電流計の指示値が変化するので、 これ を元にミラーの位置、 姿勢を調整することができる。 また、 金属板に流入す る電流量ではなく、 金属板から放出される光電子数をモニタ一してもよい。 図 4は、 X線発生装置の他の例を示す図である。  In this example, a photodiode is used as the detector, but other detection means may be used. For example, as shown in Fig. 3, a metal plate (for example, gold) electrically insulated from the surroundings is placed around the pinhole, and an ammeter is individually connected between each metal plate and the ground. Good. In this case, if the position of the mirror shifts and the area irradiated on each metal plate changes, the number of photoelectrons emitted from the metal plate changes, and the indicated value of each ammeter connected to each metal plate changes Therefore, the position and attitude of the mirror can be adjusted based on this. Further, the number of photoelectrons emitted from the metal plate may be monitored instead of the amount of current flowing into the metal plate. FIG. 4 is a diagram showing another example of the X-ray generator.
前述の実施の形態では、 レーザー光源 5から放出された Y A Gレーザ一光 Lが、 ミラ一 1 0の中心を透過して集光される構成であるが、 図 4に示すよ うに、 ミラー 1 0を通さず、 ミラー 1 0の側方から Y A Gレーザ一光 Lを照 射して集光させることもできる。このように構成した場合は、 Y A Gレーザー 光 Lの透過に伴うミラー 1 0の温度上昇が起こらないので、 ミラー反射面 1 0 aの多層膜 1 2の温度上昇も起こりにくくなる。そのため、多層膜 1 2が 劣化しにくく、 ミラー 1 0の反射率の低下を抑えることができる。 In the above-described embodiment, one YAG laser beam emitted from the laser light source 5 The L is transmitted through the center of the mirror 10 and condensed, but as shown in Fig. 4, it does not pass through the mirror 10 and illuminates one light L of the YAG laser from the side of the mirror 10. It can also be collected by focusing. In such a configuration, since the temperature of the mirror 10 does not rise due to the transmission of the YAG laser light L, the temperature of the multilayer film 12 on the mirror reflecting surface 10a does not easily rise. Therefore, the multilayer film 12 is hardly deteriorated, and a decrease in the reflectance of the mirror 10 can be suppressed.
図 5 (A)は X線発生装置の他の例を示す図であり、 図 5 ( B )は図 5 (A) の X線発生装置のミラーの正面図である。  FIG. 5 (A) is a diagram showing another example of the X-ray generator, and FIG. 5 (B) is a front view of a mirror of the X-ray generator of FIG. 5 (A).
図 1や図 2、図 4に示す前述の各実施の形態では、ミラー 1 0の裏面 1 0 b 側に、 フランジ部 1 3がー体に形成され、 ミラー自体が真空容器 2の一部を なす構成であるが、 図 5 (A) に示すように、 ミラー 1 0 'を真空容器 2に 対して保持するミラー保持部材 1 6を用いる構成とすることもできる。 この ミラ一保持部材 1 6は、 前述と同様のフランジ部 1 3を有し、 真空容器 2の 一部をなす。 ミラ一 1 0 'は、 真空容器 2内においてミラ一保持部材 1 6に 取り付けられている。 図 5 ( B ) に示すように、 この例のミラ一 1 0 'は、 複数(図では 6個)のセグメントミラ一からなつており、全セグメントミラー で回転放物面状のミラーが構成される。 各セグメントミラーは、 それぞれピ ェゾ素子 (位置調整機構) 1 7を介してミラー保持部材 1 6に取り付けられ ている。 図 5のような例は、 予め一体のミラーではなく、 複数のセグメント ミラーで一つのミラ一を構成する場合等に適している。  In the above-described embodiments shown in FIGS. 1, 2 and 4, a flange 13 is formed on the back surface 10b side of the mirror 10, and the mirror itself forms a part of the vacuum vessel 2. As shown in FIG. 5A, a mirror holding member 16 for holding the mirror 10 ′ with respect to the vacuum vessel 2 may be used. The mirror holding member 16 has the same flange portion 13 as described above, and forms a part of the vacuum vessel 2. The mirror 10 ′ is attached to the mirror holding member 16 in the vacuum vessel 2. As shown in Fig. 5 (B), the mirror 10 'in this example is composed of a plurality of (six in the figure) segment mirrors, and all segment mirrors constitute a paraboloid of revolution. You. Each segment mirror is attached to a mirror holding member 16 via a piezo element (position adjustment mechanism) 17. The example shown in FIG. 5 is suitable for a case where a single mirror is composed of a plurality of segment mirrors instead of an integral mirror in advance.
上述の実施の形態では多層膜ミラーを例にあげて説明したが、 本発明はこ れに限定されず、 斜入射ミラーを用いた X線発生装置にも適用可能である。 また、 X線発生装置としてレーザープラズマ X線源を用いて説明したが、 これも放電プラズマ X線源等、 他のプラズマ X線源を用いることが可能であ る。 例えば、 放電プラズマ X線源を用いた場合、 図 1のようにターゲット材 料をプラズマ化させるための励起レ一ザ光源や、 レーザ光源を収束さ3せるた めの光学系は不要となる。 In the above-described embodiment, a multilayer mirror has been described as an example. However, the present invention is not limited to this, and can be applied to an X-ray generator using an oblique incidence mirror. Also, although the description has been given using a laser plasma X-ray source as the X-ray generator, it is also possible to use another plasma X-ray source such as a discharge plasma X-ray source. For example, when using a discharge plasma X-ray source, excitation, single laser light source and the optical system of the eye a laser light source was focused of 3 cells for a plasma target materials as in FIG. 1 is not required.
さらに、プラズマから輻射する E U V光を露光チャンパ 4 0内に導く際に、 図 1ではミラー 1 0を用いているが、 プラズマ Pとフィルタ一 2 1との間に 複数の斜入射ミラーを環状に配置することにより、 E U V光を露光チャンバ 4 0内に導くことが可能である。 この場合、 環状に配置した複数の斜入射ミ ラー部全体が、パイプ交換するように取り外すことが可能である。この場合、 パイプ状のチャンバ壁を保持部として、 その内面に複数の斜入射ミラ一を配 置してもよいし、 図 1の例のように斜入射ミラーの裏面の各々がチャンバ壁 外に露出するような構成にしてもよい。 発明の効果 Furthermore, when guiding EUV light radiated from the plasma into the exposure chamber 40, Although the mirror 10 is used in FIG. 1, EUV light can be guided into the exposure chamber 40 by arranging a plurality of oblique incidence mirrors between the plasma P and the filter 21. is there. In this case, the whole of the plurality of oblique incidence mirrors arranged in an annular shape can be removed so as to replace the pipe. In this case, a pipe-shaped chamber wall may be used as a holding portion, and a plurality of oblique incidence mirrors may be arranged on the inner surface of the chamber. Alternatively, as shown in FIG. It may be configured to be exposed. The invention's effect
以上の説明から明らかなように、 本発明によれば、 ミラーの交換時間を短 縮できる、 あるいは、 ミラーの冷却が容易である等の利点を有する X線発生 装置及びそれを備える露光装置を提供できる。  As is apparent from the above description, according to the present invention, there is provided an X-ray generator having advantages such as shortening of a mirror replacement time or facilitation of cooling of a mirror, and an exposure apparatus having the same. it can.

Claims

1 . 標的材料をプラズマ化し、 該プラズマから X線を輻射させる X線源と、 該 X線源を収容する真空容器と、 1. An X-ray source that converts a target material into plasma and emits X-rays from the plasma, and a vacuum container that contains the X-ray source.
前記 X線源から輻射される X線が入射するミラーと、  A mirror on which X-rays radiated from the X-ray source are incident;
を具備し、 With
 Mouth
前記ミラ一あるいはミラー青を保持している部材が、 前記真空容器の壁の一 部を構成していることを特徴とする X線発生装置。  An X-ray generator, wherein the member holding the mirror or the mirror blue constitutes a part of a wall of the vacuum vessel.
2 . 前記ミラーあるいはミラーを保持のしている部材の裏面が真空容器外側に 露出していることを特徴とする請求項 1記載の X線発生装置。  2. The X-ray generator according to claim 1, wherein a back surface of the mirror or a member holding the mirror is exposed outside the vacuum vessel.
3 . 前記ミラーあるいはミラーを保持している囲部材の裏面にミラー冷却機構 が設けられていることを特徴とする請求項 2記載の X線発生装置。  3. The X-ray generator according to claim 2, wherein a mirror cooling mechanism is provided on a back surface of the mirror or a surrounding member holding the mirror.
4 . 前記標的材料をプラズマ化するレーザ一光を発生させるレーザー光源を 具備し、  4. A laser light source for generating a laser beam for converting the target material into plasma is provided.
前記レ一ザ一光が、 前記ミラーあるいはミラーを保持している部材の一部 を透過、 あるいは、 前記ミラーに開けられた開口部を通過して、 前記真空容 器内に入射することを特徴とする請求項 1、 2又は 3記載の X線発生装置。 The laser beam is transmitted through the mirror or a part of a member holding the mirror, or passes through an opening formed in the mirror and enters the vacuum container. The X-ray generator according to claim 1, 2 or 3.
5 . 前記ミラーの位置及び姿勢を検出する検出手段と、 5. Detecting means for detecting the position and orientation of the mirror,
該ミラーの位置及び姿勢を調整する調整手段と、  Adjusting means for adjusting the position and orientation of the mirror;
前記検出手段からの信号を受けて、 該ミラーが所定の位置及び姿勢をとる ように、 前記調整手段を制御する制御手段と、  Control means for controlling the adjusting means so as to receive a signal from the detecting means and to take a predetermined position and posture of the mirror;
をさらに具備すること ¾特徴とする請求項 1〜 4いずれか 1項記載の X線発 生装置。 The X-ray generator according to any one of claims 1 to 4, further comprising:
6 . 請求項 1〜 5いずれか 1項記載の X線発生装置と、  6. The X-ray generator according to any one of claims 1 to 5,
該 X線発生装置から発生された X線をマスクに当てる照明光学系と、 該マスクから反射した光を感応基板上に投影結像させる投影光学系と、 を具備することを特徴とする露光装置。  An exposure apparatus comprising: an illumination optical system that irradiates a mask with X-rays generated from the X-ray generation device; and a projection optical system that projects light reflected from the mask onto a sensitive substrate. .
PCT/JP2003/010537 2002-10-01 2003-08-20 X-ray generator and exposure device WO2004032211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003262256A AU2003262256A1 (en) 2002-10-01 2003-08-20 X-ray generator and exposure device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002288282A JP2004128105A (en) 2002-10-01 2002-10-01 X ray generator and aligner
JP2002-288282 2002-10-01

Publications (1)

Publication Number Publication Date
WO2004032211A1 true WO2004032211A1 (en) 2004-04-15

Family

ID=32063660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010537 WO2004032211A1 (en) 2002-10-01 2003-08-20 X-ray generator and exposure device

Country Status (3)

Country Link
JP (1) JP2004128105A (en)
AU (1) AU2003262256A1 (en)
WO (1) WO2004032211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1589792A2 (en) * 2004-04-19 2005-10-26 Canon Kabushiki Kaisha Light source apparatus and exposure apparatus having the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7948185B2 (en) 2004-07-09 2011-05-24 Energetiq Technology Inc. Inductively-driven plasma light source
US7307375B2 (en) 2004-07-09 2007-12-11 Energetiq Technology Inc. Inductively-driven plasma light source
DE602005027576D1 (en) * 2004-07-09 2011-06-01 Energetiq Technology Inc INDUCTIVELY CONTROLLED PLASMA LIGHT SOURCE
JP4878108B2 (en) * 2004-07-14 2012-02-15 キヤノン株式会社 Exposure apparatus, device manufacturing method, and measurement apparatus
JP4710406B2 (en) * 2005-04-28 2011-06-29 ウシオ電機株式会社 Extreme ultraviolet light exposure device and extreme ultraviolet light source device
JP4904809B2 (en) * 2005-12-28 2012-03-28 ウシオ電機株式会社 Extreme ultraviolet light source device
JP4937590B2 (en) * 2006-01-25 2012-05-23 株式会社小松製作所 Extreme ultraviolet light source device
JP5126806B2 (en) * 2006-09-12 2013-01-23 一般財団法人電力中央研究所 High energy particle generating apparatus, tubular member nondestructive inspection apparatus, and high energy particle generating method
JP5001055B2 (en) * 2007-04-20 2012-08-15 株式会社小松製作所 Extreme ultraviolet light source device
JP5534647B2 (en) * 2008-02-28 2014-07-02 ギガフォトン株式会社 Extreme ultraviolet light source device
WO2018229855A1 (en) 2017-06-13 2018-12-20 ギガフォトン株式会社 Extreme ultraviolet light generation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572563A (en) * 1993-12-20 1996-11-05 Canon Kabushiki Kaisha Mirror unit and an exposure apparatus using the unit
JP2000286189A (en) * 1999-03-31 2000-10-13 Nikon Corp Projection aligner, exposure method, and device- manufacturing method
US6219400B1 (en) * 1997-04-17 2001-04-17 Canon Kabushiki Kaishi X-ray optical system and X-ray exposure apparatus
US6285743B1 (en) * 1998-09-14 2001-09-04 Nikon Corporation Method and apparatus for soft X-ray generation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572563A (en) * 1993-12-20 1996-11-05 Canon Kabushiki Kaisha Mirror unit and an exposure apparatus using the unit
US6219400B1 (en) * 1997-04-17 2001-04-17 Canon Kabushiki Kaishi X-ray optical system and X-ray exposure apparatus
US6285743B1 (en) * 1998-09-14 2001-09-04 Nikon Corporation Method and apparatus for soft X-ray generation
JP2000286189A (en) * 1999-03-31 2000-10-13 Nikon Corp Projection aligner, exposure method, and device- manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1589792A2 (en) * 2004-04-19 2005-10-26 Canon Kabushiki Kaisha Light source apparatus and exposure apparatus having the same
EP1589792A3 (en) * 2004-04-19 2008-10-29 Canon Kabushiki Kaisha Light source apparatus and exposure apparatus having the same

Also Published As

Publication number Publication date
JP2004128105A (en) 2004-04-22
AU2003262256A1 (en) 2004-04-23

Similar Documents

Publication Publication Date Title
JP5878120B2 (en) EUV radiation system and lithographic apparatus
US8129702B2 (en) Radiation system with contamination barrier
JP4799620B2 (en) Radiation system and lithographic apparatus
JP4320999B2 (en) X-ray generator and exposure apparatus
JP5191541B2 (en) Module and method for generating extreme ultraviolet radiation and lithographic projection apparatus
WO2005096680A1 (en) Light source unit, illumination optical device and exposing method
TWI712338B (en) Light source and generation method for extreme ultraviolet radiation, and extreme ultraviolet lithography system
US20050045829A1 (en) Spectrum measuring apparatus and method
KR20030051206A (en) Soft x-ray light source device and euv exposure apparatus and illuminating method
TWI644177B (en) Method and apparatus for generating radiation
JP2011513987A (en) Lithographic apparatus, plasma source, and reflection method
JP2010258447A (en) Lithographic radiation source, collector, apparatus and method
WO2004032211A1 (en) X-ray generator and exposure device
US20110199600A1 (en) Collector assembly, radiation source, lithographic apparatus and device manufacturing method
US8547525B2 (en) EUV radiation generation apparatus
JP6122853B2 (en) Radiation source
US20210243875A1 (en) Light source for lithography exposure process
JP3782736B2 (en) Exposure apparatus and control method thereof
JP5534647B2 (en) Extreme ultraviolet light source device
JP4424748B2 (en) Lithographic apparatus, device manufacturing method and radiation system
KR101331069B1 (en) Lithographic apparatus and device manufacturing method
JP2006140470A (en) Radiation system, lithography device, manufacturing method for device, and device manufactured by them
JP2002311200A (en) X-ray generator and exposure device
JP2023506424A (en) collector flow ring
WO2004030423A1 (en) X-ray generating device and exposure device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase