WO2004030421A1 - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
WO2004030421A1
WO2004030421A1 PCT/JP2003/010832 JP0310832W WO2004030421A1 WO 2004030421 A1 WO2004030421 A1 WO 2004030421A1 JP 0310832 W JP0310832 W JP 0310832W WO 2004030421 A1 WO2004030421 A1 WO 2004030421A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
arc tube
rectangular wave
discharge lamp
dimming
Prior art date
Application number
PCT/JP2003/010832
Other languages
French (fr)
Japanese (ja)
Inventor
Norikazu Yamamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2003261751A priority Critical patent/AU2003261751A1/en
Publication of WO2004030421A1 publication Critical patent/WO2004030421A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/2806Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a discharge lamp device provided with a lighting circuit for applying an alternating rectangular wave voltage to an arc tube having an internal electrode and an external electrode, and a backlight provided with such a discharge lamp device.
  • Discharge lamp devices are often required to have brightness according to the ambient illuminance of the environment in which they are used. This is because, if the brightness of the discharge lamp device is kept constant, the brightness may be too high or too low depending on the surrounding illuminance, which may cause discomfort during use. Such a problem becomes particularly apparent when a discharge lamp device is used as a backlight, for example, a backlight of a liquid crystal display device to perform a fine display. Under such circumstances, a backlight for a liquid crystal display device or the like is provided with a dimming function so as to obtain luminance according to the ambient illuminance environment.
  • a mercury-free mercury-free discharge lamp device there is a discharge lamp device using an arc tube filled with a rare gas.
  • the arc tube containing a rare gas include an internal electrode at one end of the arc tube containing a rare gas composed of at least one of xenon, talypton, and argon, and a tube axis on the outer surface of the arc tube.
  • An arc tube in which an external electrode is formed in a band shape in a direction is known (for example, see Japanese Patent Application Laid-Open No. Hei 6-163005 (page 3, FIG. 1)).
  • a high frequency is applied between an internal electrode and an external electrode to generate ultraviolet rays by dielectric barrier discharge, and the phosphor coated on the inner surface of the arc tube is excited by the ultraviolet rays to emit visible light to the outside. To be released. Disclosure of the invention
  • FIG. 8 shows a schematic block diagram of a conventional discharge lamp device.
  • the arc tube 1 has an internal electrode 2 provided inside thereof and an external electrode 3 provided outside thereof. External electrode 3 is usually grounded.
  • An applied voltage Va which is an alternating rectangular wave voltage for causing discharge inside the arc tube 1 to emit light, is applied from the lighting circuit 4 between the internal electrode 2 and the external electrode 3.
  • the reason for applying the alternating rectangular wave voltage is that the overall luminous efficiency (for the entire discharge lamp device) can be increased.
  • the rectangular wave generating circuit 5 generates a rectangular wave signal Sb which is a continuous rectangular wave, and inputs the rectangular wave signal Sb to the drive signal generating circuit 6.
  • the drive signal generation circuit 6 generates a drive signal Sc based on the square wave signal Sb and the dimming signal Sa input from the dimming control circuit 7, and inputs the driving signal Sc to the switching circuit 8. .
  • the switching circuit 8 controls the input to the pulse transformer 9 based on the drive signal Sc, and applies an applied voltage Va, which is an alternating rectangular wave voltage boosted by the pulse transformer 9, between the internal electrode 2 and the external electrode 3. Apply.
  • the dimming signal Sa is generated by the dimming control circuit 7, has an intermittent light emission period T on, and is controlled so as to emit light from the arc tube 1 in the intermittent light emission period T on.
  • the frequency (rectangular wave frequency) of the square wave signal Sb is set to about 20 to 50 kHz, which is necessary for the arc tube 1 to generate a discharge and emit light efficiently, in consideration of the luminous efficiency of the arc tube 1. It is set.
  • the switching circuit 8 to which the driving signal Sc has been input from the driving signal generating circuit 6 operates in synchronization with the driving signal Sc, and generates an applied voltage Va synchronized with the driving signal Sc from the pulse transformer 9.
  • the applied voltage Va is a peak-to-peak voltage of about 2 kV, that is, an alternating rectangular wave voltage of +1 kV to 11 kV. Since the applied voltage V a applied between the internal electrode 2 and the external electrode 3 is determined by the ratio of the intermittent light emission period T on and the light emission stop period T off as shown in the figure, the first cycle T of the applied voltage V a The waveform direction of a1 is not constant because it becomes a positive rectangular wave or a negative rectangular wave depending on the timing condition. Also, since the external electrode 3 is grounded, the applied voltage Va is also the voltage applied to the internal electrode 2, and the timing condition Also occurs when the voltage sign changes.
  • FIG. 10A to 10C are diagrams showing enlarged waveforms of the lamp current when the initial applied voltage becomes a positive rectangular wave voltage in the discharge lamp device of FIG.
  • the applied voltage Va and the lamp current Ia flowing through the arc tube 1 are shown corresponding to the intermittent light emission period T on of the dimming signal Sa.
  • the initial stage of the application of the applied voltage Va applied in response to the intermittent light emission period T on of the dimming signal Sa (particularly, the first cycle Ta 1 and the second cycle Ta 2 Looking at the situation of the lamp current Ia in the third cycle T a3)
  • the current Ia hardly flows in the first cycle T al
  • the lamp current Ia drops significantly
  • the current in several cycles thereafter It can be seen that the state has shifted to a stable state after the value has gradually increased.
  • the peak current value of the lamp current Ia is approximately ⁇ 35 to 4 O mA in a stable state (here, the fourth cycle and thereafter).
  • the frequency of the square wave signal Sb is about 30 kHz
  • the cycle such as the first cycle Ta1 is about 33 microseconds.
  • the specifications of the arc tube 1 are the same as those in FIG. 3 described later.
  • the lamp current I a in the first cycle T a 1 is remarkably reduced to about 10% of the peak current value in both positive and negative directions, and is extremely unstable even in the discharge state, and the light emission state It seems that the transition to is not sufficient.
  • the lamp current Ia in the second cycle Ta2 is about 50 to 80% of the peak current value in both positive and negative directions, and cannot be said to be in a stable discharge state, and the fluctuation width of the current value is large. It seems that the light emission state is not sufficiently stable.
  • the lamp current Ia in the third cycle Ta3 is about 90% of the peak current value in both positive and negative directions, and it is considered that the lamp current Ia has reached an almost stable discharge state (luminous state).
  • the decrease and variation of the lamp current Ia at the beginning of the application of the applied voltage Va cause flickering of light emission, especially when the dimming rate ⁇ is reduced (the intermittent light emission period ⁇ ⁇ ⁇ is shortened). Therefore, the effect becomes larger when the number of alternating rectangular wave pulses of the applied Va decreases.
  • the conventional discharge lamp device has a problem in that when the dimming rate is reduced, the light emission flickers.
  • the display flickers and the display becomes difficult to see.
  • a liquid crystal display that requires a particularly wide range of dimming rate and may make the dimming rate extremely small .
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a discharge lamp device in which light emission does not flicker even when the dimming rate is reduced. Another object of the present invention is to provide a backlight having a small flicker of light emission even when the dimming rate is reduced, particularly a backlight suitable for a liquid crystal display device.
  • a discharge lamp device is a discharge lamp device for driving an arc tube in which a rare gas is sealed, a first electrode is provided inside, and a second electrode is provided outside, and the first electrode and the second electrode are provided.
  • a lighting circuit for applying an alternating rectangular wave voltage is provided between them.
  • the lighting circuit includes a dimming control circuit that outputs a dimming signal for controlling the intermittent light emitting period, and a dimming control from the dimming control circuit in order to realize dimming control by intermittently emitting light at a predetermined cycle.
  • a plurality of the second electrodes may be arranged apart from each other in the tube axis direction of the arc tube. Further, the first electrode may be cylindrical.
  • a backlight according to the present invention includes at least one arc tube and the above-described discharge lamp device.
  • the backlight may further include a light guide plate to be arranged on the back surface of the liquid crystal display element.
  • a light guide plate to be arranged on the back surface of the liquid crystal display element.
  • an arc tube is arranged to face the light guide plate.
  • the arc tube may have an L-shape, in which case it is preferable that the arc tube is arranged to face the side surface of the light guide plate.
  • the voltage applied to the internal electrode of the arc tube is set to an alternating rectangular wave voltage starting from a negative rectangular wave voltage, so that the intermittent light emission period Since the lamp current (discharge current) at the initial stage of the application of the alternating rectangular wave voltage can be increased, the fluctuation (variation) of the lamp current when the dimming rate is particularly low can be reduced, and stable dimming control with less flicker of light emission can be achieved. Possible A discharge lamp device can be realized.
  • the discharge lamp device of the present invention for a backlight, for example, a backlight for a liquid crystal display device, it is possible to realize a backlight capable of performing a wide range of dimming control with a small amount of flickering of light emission, and having a small flickering of display
  • a display device capable of dimming control for example, a liquid crystal display device
  • FIG. 1 is a schematic block diagram of a discharge lamp device according to the present invention.
  • FIG. 2A is a waveform diagram of the dimming signal Sa output from the dimming control circuit in the discharge lamp device.
  • FIG. 2B is a waveform diagram of a rectangular wave signal Sb output from a rectangular wave generation circuit in the discharge lamp device.
  • FIG. 2C is a waveform diagram of the drive signal Sc output from the drive signal generation circuit in the discharge lamp device.
  • FIG. 2D is a waveform diagram of the applied voltage Va output from the pulse transformer in the discharge lamp device.
  • FIG. 3A is an enlarged waveform diagram of the dimming signal Sa output from the dimming control circuit.
  • FIG. 3B is an enlarged waveform diagram of the applied voltage Va output from the pulse transformer.
  • FIG. 3C is an enlarged waveform diagram of the lamp current Ia.
  • FIG. 4A is a side view showing a structural example of the arc tube and the external electrodes in the discharge lamp device according to the present invention.
  • FIG. 4B is a cross-sectional view showing a structural example of the arc tube and the external electrode in the discharge lamp device according to the present invention.
  • FIG. 5 is a diagram illustrating a configuration example of a switching circuit and a pulse transformer.
  • FIG. 6 is a plan view of a backlight according to the present invention.
  • FIG. 7 is a diagram showing the relationship between the dimming rate and the flickering feeling for a backlight using a conventional discharge lamp device and a backlight using the discharge lamp device of the present invention.
  • FIG. 8 is a schematic block diagram of a conventional discharge lamp device.
  • FIG. 9A to 9D are diagrams showing waveforms of respective parts in the conventional discharge lamp device of FIG. 10A to 10C show the dimming signal S a, the applied voltage V a at which the voltage at the start of application becomes a positive rectangular wave voltage, and the increase of the lamp current I a in the conventional discharge lamp device of FIG. It is a figure showing a waveform.
  • Embodiment 1 a discharge lamp device and a backlight according to the present invention will be described with reference to the accompanying drawings.
  • FIG. 1 is a schematic block diagram of a discharge lamp device according to the present invention.
  • the discharge device includes a lighting circuit 4 for lighting the arc tube 1.
  • the arc tube 1 includes an internal electrode 2 provided inside and an external electrode 3 provided so as to contact or adhere to the outside.
  • the external electrode 3 is normally grounded and set to OV.
  • the lighting circuit 4 applies an applied voltage Va, which is an alternating rectangular wave voltage for causing a discharge inside the arc tube 1 to emit light.
  • Va an alternating rectangular wave voltage for causing a discharge inside the arc tube 1 to emit light.
  • the reason for applying the alternating rectangular wave voltage is that the overall luminous efficiency (as the entire discharge lamp device) can be increased.
  • the internal electrode 2 has a rod shape and is made of nickel, tungsten, or the like.
  • the plurality of external electrodes 3 are appropriately spaced apart in the tube axis direction on the outer surface of the arc tube 1. By dividing into a plurality of parts, contraction discharge is suppressed, and higher luminance and higher efficiency can be achieved.
  • the external electrodes 3 are uniformly spaced, the distance between them may be narrower as the distance from the internal electrodes 2 increases. With such an arrangement, the luminance distribution can be controlled even at a position distant from the internal electrode 2.
  • the internal electrode 2 is not limited to a specific shape, but may have a rod shape, a cylindrical shape, or other various shapes.
  • the internal electrodes 2 may be provided not only at one end as in the present embodiment but also at both ends.
  • the external electrode 3 is not limited to a specific shape, and may be formed in a band shape in the tube axis direction in addition to the above-described ones. Object, spirally formed in the tube axis direction, mesh-shaped object, etc., as long as they are electrically connected to the outside of the arc tube 1 by contact, connection, printing, etc., length, size, number Is not limited.
  • the arc tube 1 is a so-called mercury-free fluorescent tube which uses a rare gas as a discharge medium and does not contain mercury. “Mercury-free” means that it is not contained to the extent that main light emission is obtained by rare gas discharge.
  • the lighting circuit 4 includes a rectangular wave generating circuit 5, a driving signal generating circuit 6, a dimming control circuit 7, a switching circuit 8, and a pulse transformer 9.
  • the rectangular wave generation circuit 5 generates a rectangular wave signal Sb which is a continuous rectangular wave, and inputs the rectangular wave signal Sb to the drive signal generation circuit 6.
  • the dimming control circuit 7 outputs a dimming signal Sa for controlling dimming.
  • the drive signal generation circuit 6 generates a drive signal Sc based on the square wave signal Sb and the dimming signal Sa input from the dimming control circuit 7, and inputs the driving signal Sc to the switching circuit 8. .
  • the switching circuit 8 controls the input to the pulse transformer 9 based on the drive signal Sc, and applies an applied voltage Va, which is an alternating rectangular wave voltage boosted by the pulse transformer 9, between the internal electrode 2 and the external electrode 3. Apply.
  • the rectangular wave generation circuit 5, the drive signal generation circuit 6, and the dimming control circuit 7 are composed of an oscillation circuit, a logic circuit, and the like, and include a dimming signal Sa, a square wave signal Sb, and a driving signal Sc. Phase adjustment and the like may be performed by the usual logic design technique.
  • the drive signal generation circuit 6 includes an inversion phase adjustment circuit 6 m as phase control means.
  • the inverting phase adjustment circuit 6 m applies the drive signal Sc that has been phase-controlled (logically controlled to “1” or “0”) so that the first cycle of the applied voltage Va starts from a negative rectangular wave voltage. appear.
  • the drive signal Sc is controlled so that the applied voltage Va, which is an alternating rectangular wave voltage, always starts from a negative rectangular wave voltage at the start of application during the light emission period controlled during dimming, and is supplied to the switching circuit 8. Is done.
  • the inverted phase adjustment circuit 6 m is a logic circuit of any form as long as it generates a drive signal Sc controlled so that the first cycle in the light emission period of the applied voltage Va starts from a negative rectangular wave voltage. It may be.
  • the switching circuit 8 is controlled so that the applied voltage Va starts from a negative rectangular wave voltage.
  • a similar operation is possible by providing a circuit as phase control means.
  • the rectangular wave generation circuit 5, the drive signal generation circuit 6, and the dimming control circuit 7 are controlled by a microcomputer so that the first cycle of the applied voltage Va starts from a negative square wave voltage. Needless to say, the drive signal Sc adjusted to the above may be generated.
  • the operation of the discharge lamp device will be described with reference to FIGS.
  • the dimming control circuit 7 outputs a dimming signal Sa which is a control signal for dimming control as shown in FIG. 2A.
  • the dimming signal Sa has an intermittent light emission period T on, and is intermittently controlled so as to generate light emission of the arc tube 1 during this intermittent light emission period To n.
  • the frequency (dimming frequency) of the dimming signal Sa is set to a frequency of about 100 to 300 Hz in order to avoid flickering due to the repetition of the intermittent light emission period Ton and the light emission stop period To ⁇ f.
  • the brightness of the arc tube 1 can be increased. If the intermittent light emission period T on is shortened, the brightness of the arc tube 1 can be reduced.
  • the square wave generating circuit 5 outputs a square wave signal Sb as shown in FIG.
  • the frequency (square wave frequency) of the square wave signal Sb is set to about 20 to 50 kHz necessary for the arc tube 1 to generate a discharge and emit light in consideration of the luminous efficiency of the arc tube 1. Is preferred. If the external electrode 3 is an electrode that is appropriately spaced apart in the tube axis direction on the outer surface of the arc tube 1, the emission efficiency can be further increased by setting the rectangular wave frequency to about 30 to 45 kHz. It was confirmed.
  • the drive signal generating circuit 6 receives the rectangular wave signal Sb from the rectangular wave generating circuit 5 and the dimming signal Sa from the dimming control circuit 7, and converts these signals Sa and Sb into an inversion phase adjusting circuit 6.
  • a drive signal Sc as shown in FIG. 2C is generated.
  • the predetermined logical operation is to logically invert the dimming signal Sa, and calculate the logical sum of the logically inverted dimming signal Sa and the rectangular wave signal Sb.
  • Drive signal S c Is set to maintain, for example, logic “1” in the light emission stop period T off, but becomes a signal synchronized with the rectangular wave signal S b in the intermittent light emission period T on.
  • the switching circuit 8 receives the drive signal Sc from the drive signal generation circuit 6, operates in synchronization with the drive signal Sc, and switches the pulse transformer 9 appropriately. Thereby, the pulse transformer 9 generates an applied voltage Va synchronized with the drive signal Sc as shown in FIG. 2D.
  • the drive signal Sc is described as having a logic "1" during the light emission stop period Toff and having the same logic as the rectangular wave signal Sb during the intermittent light emission period Ton.
  • the present invention is not limited to this.
  • by incorporating a logic inversion circuit in the switching circuit 8 it is also possible to configure a logic signal using the same logic signal as in the related art.
  • the configuration of the logic circuit as the phase control means can be configured in any way.
  • the phase control means may be constituted by a method other than the logic circuit. Applied voltage Va output from pulse transformer 9 is about 2 k peak-to-peak voltage
  • V that is, an alternating rectangular wave voltage of +1 kV to 1 kV.
  • the applied voltage V a applied between the internal electrode 2 and the external electrode 3 is, in contrast to the prior art shown in FIG. 9D, a negative square wave voltage (A) and an alternating square wave voltage starting from Is controlled so that That is, the first cycle Ta1 of the applied voltage Va always starts with a negative rectangular wave voltage and ends with a positive rectangular wave voltage. Since the external electrode 3 is grounded, the applied voltage Va is also the voltage applied to the internal electrode 2, and a negative voltage is always applied to the internal electrode 2 first.
  • FIG. 3A to 3C are diagrams showing enlarged waveforms of the applied voltage and the lamp current in the discharge lamp device of the present embodiment.
  • FIG. 3B shows the applied voltage Va
  • FIG. 3C shows the lamp current flowing through the arc tube 1 corresponding to the intermittent light emission period Ton in the light control signal Sa for light control shown in FIG. 3A. Ia is shown respectively.
  • the applied voltage Va is about 2 kV in peak-to-peak value.
  • Initial stage of the start of application of the applied voltage Va generated in response to the intermittent light emission period Ton of the dimming signal Sa (particularly, the first cycle Ta1, the second cycle Ta2, and the third cycle Ta3).
  • the lamp current I a in the first cycle T a 1 Indicates that almost no current flows at the time of the negative rise, but the current that flows when shifting from the negative square wave voltage to the positive square wave voltage is about 50% of the peak current value, and shifts from negative power to positive. In this case, the current flowing during the operation is greatly increased as compared with the prior art. Since the lamp current I a in the second cycle Ta 2 is about 90% of the peak current value in both positive and negative directions, it is considered that the lamp has almost reached a stable discharge state (luminous state). It is.
  • the decrease phenomenon of the lamp current Ia in the early stage of the start of the application of the applied voltage Va disappears earlier than in the related art, and the lamp current Ia shifts to a substantially stable state in the second cycle. Therefore, the flicker of the arc tube 1 can be greatly improved as compared with the related art.
  • the reason why the decrease in the lamp current Ia is small and the lamp current Ia recovers quickly is that the internal electrode 2 operates as a cathode first, so that the discharge of electrons into the arc tube 1 is stable and sufficient. It is thought to be done. Note that it is more effective if the surface area of the internal electrode 2 is smaller than the surface area of the external electrode 3.
  • the peak current value of the lamp current Ia is about 35 to 4 OmA in a stable state (here, the third cycle or later).
  • the rectangular wave frequency of the rectangular wave signal Sb at this time is about 30 kHz
  • the cycle such as the first cycle Ta1 is about 33 microseconds. Similar characteristics were obtained when the square wave frequency was about 20 to 50 kHz.
  • the period of transition to the stable state and the like vary depending on the applied voltage Va, the specifications of the arc tube 1, and other conditions, and are not limited to this example.
  • the specifications of the arc tube 1 used for measuring the characteristics shown in FIGS. 3A to 3C are as follows.
  • the arc tube 1 is processed into an L-shape, and has a diameter of 2.6 mm, an inner diameter of 2. Omm, and a length of 252 mm.
  • the shape of the internal electrode 2 is a rod made of tungsten. When the internal electrode 2 is formed in a cylindrical shape (cup shape, hollow shape), the surface area of the internal electrode 2 increases, and the number of electrons emitted from the internal electrode 2 into the tube can be increased.
  • the external electrodes 3 are arranged outside the arc tube 1 with a width of 1 to 3 mm and at an interval of 1 to 5 mm, and are grounded. As described above, according to the discharge device or the like of the present embodiment, the lamp current Ia can be reduced and its variation can be improved at the initial stage of the application of the applied voltage Va. In the case where the number of pulses of the applied voltage Va is reduced by shortening Ton), the improvement effect becomes remarkable.
  • 4A and 4B are views showing an example of the structure of the arc tube and the external electrode 3 in the discharge lamp device of the present embodiment.
  • FIG. 4A is a side view of the arc tube 1
  • FIG. 4B is a cross-sectional view taken along line BB in FIG. 4A.
  • the arc tube 1 is formed of a cylindrical glass tube, in which a mixed gas of Xe-Ar is sealed as a discharge medium.
  • a phosphor layer (not shown) is provided on the inner surface of the glass tube.
  • an internal electrode 2 made of tungsten is provided, led out to the outside by a lead wire 2a, and is connectable to a lighting circuit 4.
  • the external electrode 3 is composed of a plurality of divided electrode portions 3a spaced apart from each other in the tube axis direction and a connecting portion 3b for connecting them to each other, and can be connected to the lighting circuit 4 by the lead wire 3c.
  • the connecting portion 3b has two functions of an electrical function of connecting the divided electrode portions 3a to each other and a mechanical function of connecting and holding the divided electrode portions 3a to each other.
  • the external electrode 3 is made of an elastic phosphor bronze plate, and each of the divided electrode portions 3a is in contact with the glass tube in the circumferential direction of the glass tube, and a plurality of external electrodes are arranged in the direction of the tube axis of the arc tube 1.
  • the cross-sectional shape is formed to be uneven so as to act as.
  • the connecting portion 3b is arranged at a position away from the circumferential direction of the glass tube so as not to contact the glass tube.
  • the internal electrodes 2 may be provided at both ends of the arc tube 1, which can further reduce and reduce the lamp current la, and especially when the length of the arc tube 1 is long, the internal electrode 2 is large. It works.
  • the arc tube 1 is pressed by a light guide plate (not shown) from the direction of arrow 1p so that the glass tube and the external electrode 3 are pressed against each other.
  • FIG. 5 is a diagram illustrating a configuration example of the switching circuit 8 and the pulse transformer 9.
  • the switching circuit 8 is composed of switching elements 8A and 8B composed of MOS FETs and a switching control circuit 8C for controlling the switching elements 8A and 8B.
  • Switching element 8 A and switching element 8 B are connected to respective ends of the primary winding of pulse transformer 9. In the center of the primary winding of pulse transformer 9 Is supplied with DC voltage DC.
  • the switching control circuit 8C to which the driving signal Sc is input turns on the switching element 8A and the switching element 8B alternately in synchronization with the driving signal Sc, and supplies a current to the primary winding of the pulse transformer 9. By flowing the current, a boosted alternating rectangular wave voltage is induced in the secondary winding of the pulse transformer 9.
  • the internal electrode 2 and the external electrode 3 of the arc tube 1 are connected to the secondary winding of the pulse transformer 9, and an alternating rectangular wave voltage is applied between the internal electrode 2 and the external electrode 3.
  • the current direction of the secondary winding of the pulse transformer 9 varies depending on the winding direction, and is not limited to the illustrated case. That is, depending on the winding direction of the pulse transformer 9, the connection of the electrodes (the internal electrode 2 and the external electrode 3) of the arc tube 1 may be reversed. In short, the connection may be made such that the first period & 1 of the applied voltage &, which is an alternating rectangular wave voltage generated corresponding to the intermittent light emission period T on, starts from a negative rectangular wave voltage.
  • the circuit configuration is not limited to this, as long as the same rectangular wave voltage can be applied to the arc tube 1 by controlling the drive signal generation circuit 6, and a half-bridge circuit, a full-bridge circuit, etc. It may be something.
  • Embodiment 2 is not limited to this, as long as the same rectangular wave voltage can be applied to the arc tube 1 by controlling the drive signal generation circuit 6, and a half-bridge circuit, a full-bridge circuit, etc. It may be something.
  • FIG. 6 is a plan view showing a schematic configuration of a backlight according to the present invention including the above lighting circuit.
  • the backlight includes a light guide plate 10 having a predetermined shape for a backlight, two arc tubes 1 (arc tubes l a and l b) processed into an L shape, and a lighting circuit 4.
  • the specifications of the arc tube 1 (the arc tubes l a and l b) and the lighting circuit 4 in FIG. 6 are the same as those of the discharge lamp device in the first embodiment.
  • FIG. 6 shows a so-called edge light type backlight configuration, but it is also possible to use a direct type backlight in which the arc tube 1 is arranged to face the light guide plate 10 in the plane direction. In any case, a useful effect of reducing flicker can be obtained. Since the arc tubes la and 11) are in a V-shape, they can be opposed to the four sides of the light guide plate 10 with only two tubes.
  • the arc tubes la and 1b are provided with internal electrodes 2 at both ends, whereby the internal electrode 2 of the arc tube 1a and the internal electrode 2 of the arc tube 1b are adjacent to each other when they are arranged to face each other.
  • the adjacent internal electrodes 2 are commonly connected to each other and connected to a predetermined terminal of the lighting circuit 4.
  • the light emitting tubes 1a and 1b are commonly connected to each other and connected to the other terminal of the lighting circuit 4, so that the lighting circuit 4 can be composed of only one circuit.
  • the internal electrode 2 on the side to which the lighting circuit 4 is not connected is not shown, if the internal electrode 2 is provided here and the lighting circuit 4 is connected, the effect of reducing flicker is further enhanced, and It is possible to cope with the enlargement of the light plate 10 (lengthening of the arc tube 1).
  • the light guide plate 10 has a size corresponding to a 7-inch wide size liquid crystal display device, and has a long side of 16 O mm and a short side of 97 mm. A silk-printed dot pattern (not shown) was used for light distribution control. As the optical sheet, one diffusion sheet was arranged on the light guide plate 10.
  • FIG. 7 is a diagram showing a result of comparing the relationship between the dimming rate and the flickering feeling for backlights using the lighting device of the present invention and the conventional technique.
  • the degree of flicker when the dimming rate ⁇ was changed for the conventional technology and the backlight according to the present invention was examined as a flickering feeling for 10 subjects.
  • the dimming rate ⁇ was changed every 10% between 100 and 10%, and every 1% between 100% and 1%.
  • Rating level ⁇ or B is indicated by the symbol “ ⁇ ” when 10 people answered, and rating A or B is indicated by the symbol “ ⁇ ” when 5 or more (9 or less) responded. If the number of respondents who answered A or B is 4 or less, it is indicated by the symbol “X”.
  • the dimming rate was “ ⁇
  • the present invention only shows some flicker when the dimming ratio is 4% or less. It can be seen that the flicker (feeling of flicker) is greatly improved as compared with.
  • the backlight according to the present invention is used in a liquid crystal display device as a backlight for a liquid crystal display device, it is sufficient even when an extremely small dimming rate is required, for example, in a vehicle-mounted navigator using the liquid crystal display device. It is possible to realize a liquid crystal display device with little flickering of luminescence which can be used for a liquid crystal display. Note that it is naturally possible to use the backlight directly as a backlight without using the light guide plate 10, and in this case as well, a backlight with less flickering of light emission can be realized. Industrial potential
  • the discharge lamp device of the present invention can be applied to a lighting device for an arc tube having an internal electrode and an external electrode, and can realize a wide range of dimming control with reduced light emission flicker.
  • the lighting device of the present invention can be applied to a backlight (for example, a backlight for a liquid crystal display device), and can realize a backlight capable of performing a wide range of dimming control with a small amount of flicker of light emission and a small amount of flicker of a display.
  • a display device capable of dimming control (for example, a liquid crystal display device) can be realized.

Abstract

A discharge lamp lighting device which drives a light emission tube sealed with a rare gas therein and provided with a first electrode inside thereof and a second electrode outside thereof, and which is provided with a lighting circuit between the first and second electrodes to apply an alternating rectangular wave voltage (Va). The lighting circuit outputs a dimming signal (Sa) for controlling an intermittent light emission period (Ton) so as to intermittently emit light at a specified cycle (T) to enable a dimming control, and generates an alternate rectangular wave voltage (Va) starting with a negative rectangular wave voltage (A), based on this dimming signal (Sa) and using the potential of the second electrode as a reference potential during an intermittent light emission period (Ton), for application to the first electrode.

Description

明 細 書 放電灯点灯装置 技術分野  Description Discharge lamp lighting device Technical field
本発明は、 内部電極と外部電極を有する発光管へ交番矩形波電圧を印加する点 灯回路を備えた放電灯装置、 及びそのような放電灯装置を備えたバックライ 卜に 関する。 発明の背景  The present invention relates to a discharge lamp device provided with a lighting circuit for applying an alternating rectangular wave voltage to an arc tube having an internal electrode and an external electrode, and a backlight provided with such a discharge lamp device. Background of the Invention
放電灯装置は使用する環境の周囲照度に応じた明るさを要求されることが多い。 これは、 放電灯装置の明るさを一定にしたままでは、 周囲の照度により、 明るす ぎたり、 逆に喑すぎたりすることから、 使用に際し不快感を生じるからである。 このような問題は放電灯装置をバックライト、 例えば液晶表示装置のバックライ トに用いて精細な表示をするような場合に特に顕在化する。 このような事情から、 液晶表示装置用バックライ ト等においては周囲照度環境に応じた輝度を得るよう に調光機能を備える。  Discharge lamp devices are often required to have brightness according to the ambient illuminance of the environment in which they are used. This is because, if the brightness of the discharge lamp device is kept constant, the brightness may be too high or too low depending on the surrounding illuminance, which may cause discomfort during use. Such a problem becomes particularly apparent when a discharge lamp device is used as a backlight, for example, a backlight of a liquid crystal display device to perform a fine display. Under such circumstances, a backlight for a liquid crystal display device or the like is provided with a dimming function so as to obtain luminance according to the ambient illuminance environment.
また、 近年、 環境問題への対策のため水銀を使用しない無水銀の放電灯装置が 要望されている。 無水銀の放電灯装置として、 希ガスを封入した発光管を用いた 放電灯装置がある。 希ガスを封入した発光管としては、 例えば、 キセノン、 タリ プトン、 アルゴン等の内の少なくとも 1種からなる希ガスを封入した発光管の一 端に内部電極を、 発光管の外部表面の管軸方向に外部電極を帯状に形成した発光 管が知られている (例えば、 特開平 6— 1 6 3 0 0 5号公報 (第 3頁、 図 1 ) 参 照) 。 このような発光管は内部電極と外部電極の間に高周波を印加して誘電体バ リア放電による紫外線を生じさせ、 発光管の内部表面に被覆した蛍光体を紫外線 により励起して可視光を外部に放出するものである。 発明の開示  In recent years, there has been a demand for a mercury-free mercury-free discharge lamp device to take measures against environmental problems. As a mercury-free discharge lamp device, there is a discharge lamp device using an arc tube filled with a rare gas. Examples of the arc tube containing a rare gas include an internal electrode at one end of the arc tube containing a rare gas composed of at least one of xenon, talypton, and argon, and a tube axis on the outer surface of the arc tube. An arc tube in which an external electrode is formed in a band shape in a direction is known (for example, see Japanese Patent Application Laid-Open No. Hei 6-163005 (page 3, FIG. 1)). In such an arc tube, a high frequency is applied between an internal electrode and an external electrode to generate ultraviolet rays by dielectric barrier discharge, and the phosphor coated on the inner surface of the arc tube is excited by the ultraviolet rays to emit visible light to the outside. To be released. Disclosure of the invention
(発明が解決しようとする課題) 図 8に従来の放電灯装置の概略プロック図を示す。 発光管 1はその内部に設け られる内部電極 2と、 その外部に設けられる外部電極 3とを有する。 外部電極 3 は通常接地されている。 発光管 1の内部において放電を生じさせ、 発光させるた めの交番矩形波電圧である印加電圧 V aが、 内部電極 2と外部電極 3間に点灯回 路 4から印加される。 交番矩形波電圧を印加する理由は (放電灯装置全体として の) 総合的な発光効率を大きくできるからである。 (Problems to be solved by the invention) FIG. 8 shows a schematic block diagram of a conventional discharge lamp device. The arc tube 1 has an internal electrode 2 provided inside thereof and an external electrode 3 provided outside thereof. External electrode 3 is usually grounded. An applied voltage Va, which is an alternating rectangular wave voltage for causing discharge inside the arc tube 1 to emit light, is applied from the lighting circuit 4 between the internal electrode 2 and the external electrode 3. The reason for applying the alternating rectangular wave voltage is that the overall luminous efficiency (for the entire discharge lamp device) can be increased.
点灯回路 4において、 矩形波発生回路 5は連続した矩形波である矩形波信号 S bを発生し、 矩形波信号 S bを駆動信号発生回路 6へ入力する。 駆動信号発生回 路 6は矩形波信号 S bと調光制御回路 7から入力される調光信号 S aとに基づい て駆動信号 S cを発生し、 駆動信号 S cをスイッチング回路 8へ入力する。 スィ ツチング回路 8は駆動信号 S cに基づいてパルストランス 9への入力を制御し、 パルストランス 9により昇圧した交番矩形波電圧である印加電圧 V aを内部電極 2と外部電極 3との間に印加する。  In the lighting circuit 4, the rectangular wave generating circuit 5 generates a rectangular wave signal Sb which is a continuous rectangular wave, and inputs the rectangular wave signal Sb to the drive signal generating circuit 6. The drive signal generation circuit 6 generates a drive signal Sc based on the square wave signal Sb and the dimming signal Sa input from the dimming control circuit 7, and inputs the driving signal Sc to the switching circuit 8. . The switching circuit 8 controls the input to the pulse transformer 9 based on the drive signal Sc, and applies an applied voltage Va, which is an alternating rectangular wave voltage boosted by the pulse transformer 9, between the internal electrode 2 and the external electrode 3. Apply.
図 9 A〜 9 Dは図 8の放電灯装置における各部波形を示す図である。 調光信号 S aは調光制御回路 7で生成され、 間欠発光期間 T o nを有し、 この間欠発光期 間 T o nにおいて発光管 1の発光を生じるように制御される。  9A to 9D are diagrams showing waveforms at various points in the discharge lamp device of FIG. The dimming signal Sa is generated by the dimming control circuit 7, has an intermittent light emission period T on, and is controlled so as to emit light from the arc tube 1 in the intermittent light emission period T on.
矩形波信号 S bの周波数 (矩形波周波数) は発光管 1の発光効率等を考慮して 発光管 1が放電を生じて効率良く発光するのに必要な 2 0〜 5 0 k H z程度に設 定される。 矩形波発生回路 5からの矩形波信号 S b及び調光制御回路 7からの調 光信号 S aを受けた駆動信号発生回路 6は、 調光信号 S a及び矩形波信号 S bを 適宜論理演算処理することにより、 駆動信号 S cを発生する。 駆動信号発生回路 6から駆動信号 S cを入力されたスィツチング回路 8は駆動信号 S cに同期して 動作し、 パルストランス 9から駆動信号 S cに同期した印加電圧 V aを発生する。 印加電圧 V aはピーク対ピーク電圧で約 2 k V、 つまり + 1 k V〜一 1 k Vの 交番矩形波電圧である。 内部電極 2と外部電極 3との間に印加される印加電圧 V aは図示するように間欠発光期間 T o nと発光停止期間 T o f f との比で決まる ため、 印加電圧 V aの第 1周期 T a 1の波形方向はタイミング条件により正の矩 形波や負の矩形波となるから一定にならない。 また、 外部電極 3は接地されてい るから、 印加電圧 V aは内部電極 2に印加される電圧でもあり、 タイミング条件 により電圧符号が変化するといつたことが同様に生じる。 The frequency (rectangular wave frequency) of the square wave signal Sb is set to about 20 to 50 kHz, which is necessary for the arc tube 1 to generate a discharge and emit light efficiently, in consideration of the luminous efficiency of the arc tube 1. It is set. The drive signal generation circuit 6, which receives the square wave signal Sb from the square wave generation circuit 5 and the dimming signal Sa from the dimming control circuit 7, performs logical operation on the dimming signal Sa and the square wave signal Sb as appropriate. By processing, a drive signal Sc is generated. The switching circuit 8 to which the driving signal Sc has been input from the driving signal generating circuit 6 operates in synchronization with the driving signal Sc, and generates an applied voltage Va synchronized with the driving signal Sc from the pulse transformer 9. The applied voltage Va is a peak-to-peak voltage of about 2 kV, that is, an alternating rectangular wave voltage of +1 kV to 11 kV. Since the applied voltage V a applied between the internal electrode 2 and the external electrode 3 is determined by the ratio of the intermittent light emission period T on and the light emission stop period T off as shown in the figure, the first cycle T of the applied voltage V a The waveform direction of a1 is not constant because it becomes a positive rectangular wave or a negative rectangular wave depending on the timing condition. Also, since the external electrode 3 is grounded, the applied voltage Va is also the voltage applied to the internal electrode 2, and the timing condition Also occurs when the voltage sign changes.
図 1 0 A〜 1 0 Cは図 8の放電灯装置において、 初期印加電圧が正の矩形波電 圧となった際のランプ電流の拡大波形を示す図である。 調光信号 S aの間欠発光 期間 T o nに対応させて、 印加電圧 V a及び発光管 1に流れるランプ電流 I aを 示す。 図 1 0 Cを参照し、 調光信号 S aの間欠発光期間 T o nに対応して印加し た印加電圧 V aの印加開始初期 (特に、 第 1周期 T a 1、 第 2周期 T a 2、 第 3 周期 T a 3 ) におけるランプ電流 I aの状況をみると、 第 1周期 T a lにおいて は電流 I aがほとんど流れず、 ランプ電流 I aが大幅な低下し、 その後の数周期 において電流値が徐々に増加した後に安定状態に移行していることがわかる。 な お、 ランプ電流 I aのピーク電流値は安定状態 (ここでは第 4周期以降) で約 ± 3 5〜4 O mAである。 またこの時の矩形波信号 S bの周波数は約 3 0 k H zとしており、 第 1周期 T a 1等の周期は約 3 3マイクロ秒になる。 なお、 発光 管 1の仕様は後述する図 3の場合と同一である。  10A to 10C are diagrams showing enlarged waveforms of the lamp current when the initial applied voltage becomes a positive rectangular wave voltage in the discharge lamp device of FIG. The applied voltage Va and the lamp current Ia flowing through the arc tube 1 are shown corresponding to the intermittent light emission period T on of the dimming signal Sa. Referring to FIG. 10C, the initial stage of the application of the applied voltage Va applied in response to the intermittent light emission period T on of the dimming signal Sa (particularly, the first cycle Ta 1 and the second cycle Ta 2 Looking at the situation of the lamp current Ia in the third cycle T a3), the current Ia hardly flows in the first cycle T al, the lamp current Ia drops significantly, and the current in several cycles thereafter It can be seen that the state has shifted to a stable state after the value has gradually increased. Note that the peak current value of the lamp current Ia is approximately ± 35 to 4 O mA in a stable state (here, the fourth cycle and thereafter). At this time, the frequency of the square wave signal Sb is about 30 kHz, and the cycle such as the first cycle Ta1 is about 33 microseconds. The specifications of the arc tube 1 are the same as those in FIG. 3 described later.
第 1周期 T a 1におけるランプ電流 I aは、 正負いずれの方向においてもピー ク電流値の約 1割程度と低下が顕著であり、 放電状態にあるとしても極めて不安 定な状態にあり発光状態への移行が不十分と思われる。 第 2周期 T a 2における ランプ電流 I aは、 正負いずれの方向においてもピーク電流値の約 5〜 8割程度 で、 安定した放電状態とは言えず、 電流値の変動幅 (バラツキ) も大きく、 十分 安定した発光状態に達していないと思われる。 第 3周期 T a 3におけるランプ電 流 I aは、 正負いずれの方向においてもピーク電流値の約 9割程度で、 ほぼ安定 した放電状態 (発光状態) に到達しているものと思われる。  The lamp current I a in the first cycle T a 1 is remarkably reduced to about 10% of the peak current value in both positive and negative directions, and is extremely unstable even in the discharge state, and the light emission state It seems that the transition to is not sufficient. The lamp current Ia in the second cycle Ta2 is about 50 to 80% of the peak current value in both positive and negative directions, and cannot be said to be in a stable discharge state, and the fluctuation width of the current value is large. It seems that the light emission state is not sufficiently stable. The lamp current Ia in the third cycle Ta3 is about 90% of the peak current value in both positive and negative directions, and it is considered that the lamp current Ia has reached an almost stable discharge state (luminous state).
印加電圧 V aの印加開始初期にランプ電流 I aの低下及びバラツキを生じるこ とが発光のちらつきの原因となり、 特に調光率 αを小さくした場合 (間欠発光期 間 Τ ο ηを短く したことにより、 印加 V aの交番矩形波パルス数が少なくな つた場合) に影響が大きくなる。  The decrease and variation of the lamp current Ia at the beginning of the application of the applied voltage Va cause flickering of light emission, especially when the dimming rate α is reduced (the intermittent light emission period ο ο η is shortened). Therefore, the effect becomes larger when the number of alternating rectangular wave pulses of the applied Va decreases.
上述したとおり、 従来の放電灯装置は調光率を小さくした場合に、 発光のちら つきを生じるという問題があった。 また、 このような放電灯装置をバックライト に用いた場合には表示がちらつくことから表示が見づらくなるという問題があつ た。 特に幅広い調光率を要求され調光率を極めて小さくする場合がある液晶表示 . As described above, the conventional discharge lamp device has a problem in that when the dimming rate is reduced, the light emission flickers. In addition, when such a discharge lamp device is used for a backlight, there is a problem that the display flickers and the display becomes difficult to see. A liquid crystal display that requires a particularly wide range of dimming rate and may make the dimming rate extremely small .
4 ' 装置用バックライトにおいては発光のちらつきが顕著になるという問題があった。 (その解決方法)  There was a problem that the flicker of light emission became remarkable in the backlight for the 4 'device. (How to solve it)
本発明は斯かる事情に鑑みなされたものであり、 その目的とするところは調光 率を小さくした場合においても発光のちらつきの小さい放電灯装置を提供するこ とにある。 また、 本発明の他の目的は、 調光率を小さくした場合においても発光 のちらつきの小さいバックライト、 特に液晶表示装置に好適なバックライトを提 供することにある。  The present invention has been made in view of such circumstances, and an object of the present invention is to provide a discharge lamp device in which light emission does not flicker even when the dimming rate is reduced. Another object of the present invention is to provide a backlight having a small flicker of light emission even when the dimming rate is reduced, particularly a backlight suitable for a liquid crystal display device.
本発明に係る放電灯装置は、 希ガスを封入し、 内部に第 1電極を設け、 外部に 第 2電極を設けた発光管を駆動する放電灯装置であって、 第 1電極と第 2電極間 に交番矩形波電圧を印加する点灯回路を備える。 点灯回路は、 所定の周期で間欠 的に発光させて調光制御を実現するため、 間欠的な発光期間を制御する調光信号 を出力する調光制御回路と、 調光制御回路からの調光信号に基き、 間欠的な発光 期間において前記第 2電極の電位を基準電位として負の矩形波電圧から始まる交 番矩形波電圧を生成して、 第 1電極へ印加する回路とを含む。  A discharge lamp device according to the present invention is a discharge lamp device for driving an arc tube in which a rare gas is sealed, a first electrode is provided inside, and a second electrode is provided outside, and the first electrode and the second electrode are provided. A lighting circuit for applying an alternating rectangular wave voltage is provided between them. The lighting circuit includes a dimming control circuit that outputs a dimming signal for controlling the intermittent light emitting period, and a dimming control from the dimming control circuit in order to realize dimming control by intermittently emitting light at a predetermined cycle. A circuit for generating an alternating rectangular wave voltage starting from a negative rectangular wave voltage based on the signal and using the potential of the second electrode as a reference potential in an intermittent light emitting period, and applying the generated voltage to the first electrode.
第 2電極は発光管の管軸方向において複数個離間配置してもよレ、。 また、 第 1 電極は円筒状であってもよい。  A plurality of the second electrodes may be arranged apart from each other in the tube axis direction of the arc tube. Further, the first electrode may be cylindrical.
本発明に係るバックライ トは、 少なくとも 1つの発光管と、 上記の放電灯装置 とを備える。  A backlight according to the present invention includes at least one arc tube and the above-described discharge lamp device.
バックライトはさらに液晶表示素子の背面に配置すべき導光板を備えてもよく、 その際、 発光管を導光板と対向して配置するのが好ましい。 発光管は L字形状を 有してもよく、 その際、 発光管は導光板の側面に対向配置されるのが好ましい。  The backlight may further include a light guide plate to be arranged on the back surface of the liquid crystal display element. In this case, it is preferable that an arc tube is arranged to face the light guide plate. The arc tube may have an L-shape, in which case it is preferable that the arc tube is arranged to face the side surface of the light guide plate.
(従来技術より有利な効果) (Advantageous effect over conventional technology)
本発明によれば、 調光制御のための間欠発光期間において、 発光管の内部電極 に印加される印加電圧を負の矩形波電圧から始まる交番矩形波電圧とすることに より、 間欠発光期間における交番矩形波電圧の印加開始初期におけるランプ電流 (放電電流) を大きくできるので、 調光率が特に低い場合のランプ電流のゆらぎ (バラツキ) を小さくでき、 発光のちらつきの少ない安定した調光制御が可能な 放電灯装置を実現できる。 According to the present invention, during the intermittent light emission period for dimming control, the voltage applied to the internal electrode of the arc tube is set to an alternating rectangular wave voltage starting from a negative rectangular wave voltage, so that the intermittent light emission period Since the lamp current (discharge current) at the initial stage of the application of the alternating rectangular wave voltage can be increased, the fluctuation (variation) of the lamp current when the dimming rate is particularly low can be reduced, and stable dimming control with less flicker of light emission can be achieved. Possible A discharge lamp device can be realized.
また、 本発明の放電灯装置をバックライト、 例えば、 液晶表示装置用バックラ ィトに用いることにより、 発光のちらつきが少なく幅広い調光制御が可能なバッ クライトを実現でき、 表示のちらつきが少なく幅広い調光制御が可能な表示装置 (例えば、 液晶表示装置) を実現できる。 図面の簡単な説明  Further, by using the discharge lamp device of the present invention for a backlight, for example, a backlight for a liquid crystal display device, it is possible to realize a backlight capable of performing a wide range of dimming control with a small amount of flickering of light emission, and having a small flickering of display A display device capable of dimming control (for example, a liquid crystal display device) can be realized. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る放電灯装置の概略プロック図である。  FIG. 1 is a schematic block diagram of a discharge lamp device according to the present invention.
図 2 Aは、 放電灯装置における調光制御回路から出力される調光信号 S aの波 形図である。  FIG. 2A is a waveform diagram of the dimming signal Sa output from the dimming control circuit in the discharge lamp device.
図 2 Bは、 放電灯装置における矩形波発生回路から出力される矩形波信号 S b の波形図である。  FIG. 2B is a waveform diagram of a rectangular wave signal Sb output from a rectangular wave generation circuit in the discharge lamp device.
図 2 Cは、 放電灯装置における駆動信号発生回路から出力される駆動信号 S c の波形図である。  FIG. 2C is a waveform diagram of the drive signal Sc output from the drive signal generation circuit in the discharge lamp device.
図 2 Dは、 放電灯装置におけるパルストランスから出力される印加電圧 V aの 波形図である。  FIG. 2D is a waveform diagram of the applied voltage Va output from the pulse transformer in the discharge lamp device.
図 3 Aは、 調光制御回路から出力される調光信号 S aの拡大波形図である。 図 3 Bは、 パルストランスから出力される印加電圧 V aの拡大波形図である。 図 3 Cは、 ランプ電流 I aの拡大波形図である。  FIG. 3A is an enlarged waveform diagram of the dimming signal Sa output from the dimming control circuit. FIG. 3B is an enlarged waveform diagram of the applied voltage Va output from the pulse transformer. FIG. 3C is an enlarged waveform diagram of the lamp current Ia.
図 4 Aは、 本発明に係る放電灯装置における発光管及び外部電極の構造例を示 す側面図である。  FIG. 4A is a side view showing a structural example of the arc tube and the external electrodes in the discharge lamp device according to the present invention.
図 4 Bは、 本発明に係る放電灯装置における発光管及び外部電極の構造例を示 す断面図である。  FIG. 4B is a cross-sectional view showing a structural example of the arc tube and the external electrode in the discharge lamp device according to the present invention.
図 5は、 スィツチング回路及びパルストランスの構成例を示す図である。  FIG. 5 is a diagram illustrating a configuration example of a switching circuit and a pulse transformer.
図 6は、 本発明に係るバックライトの平面図である。  FIG. 6 is a plan view of a backlight according to the present invention.
図 7は、 従来技術の放電灯装置を用いたバックライトと本発明放電灯装置を用 いたバックライ トについて、 調光率とちらつき感の関係を示した図である。  FIG. 7 is a diagram showing the relationship between the dimming rate and the flickering feeling for a backlight using a conventional discharge lamp device and a backlight using the discharge lamp device of the present invention.
図 8は、 従来の放電灯装置の概略プロック図である。  FIG. 8 is a schematic block diagram of a conventional discharge lamp device.
図 9 A〜 9 Dは、 図 8の従来の放電灯装置における各部の波形を示す図である。 図 1 0 A〜1 0 Cは、 図 8の従来の放電灯装置において、 調光信号 S a、 印加 開始時の電圧が正の矩形波電圧となる印加電圧 V a、 ランプ電流 I aの拡大波形 を示す図である。 発明を実施するための最良の形態 9A to 9D are diagrams showing waveforms of respective parts in the conventional discharge lamp device of FIG. 10A to 10C show the dimming signal S a, the applied voltage V a at which the voltage at the start of application becomes a positive rectangular wave voltage, and the increase of the lamp current I a in the conventional discharge lamp device of FIG. It is a figure showing a waveform. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付の図面を参照し、 本発明にかかる放電灯装置及びバックライトの好 ましい実施形態を説明する。 実施の形態 1  Hereinafter, preferred embodiments of a discharge lamp device and a backlight according to the present invention will be described with reference to the accompanying drawings. Embodiment 1
図 1は本発明に係る放電灯装置の概略プロック図である。  FIG. 1 is a schematic block diagram of a discharge lamp device according to the present invention.
放電等装置は発光管 1を点灯させる点灯回路 4を備える。  The discharge device includes a lighting circuit 4 for lighting the arc tube 1.
発光管 1は内部に設けられた内部電極 2と、 外部に接触又は接着するように設 けられる外部電極 3とを備える。 外部電極 3は通常接地され、 O Vに設定されて いる。 内部電極 2と外部電極 3との間には、 点灯回路 4から、 発光管 1の内部で 放電を生じさせ、 発光させるための交番矩形波電圧である印加電圧 V aが印加さ れる。 交番矩形波電圧を印加する理由は (放電灯装置全体としての) 総合的な発 光効率を大きくできるからである。  The arc tube 1 includes an internal electrode 2 provided inside and an external electrode 3 provided so as to contact or adhere to the outside. The external electrode 3 is normally grounded and set to OV. Between the internal electrode 2 and the external electrode 3, the lighting circuit 4 applies an applied voltage Va, which is an alternating rectangular wave voltage for causing a discharge inside the arc tube 1 to emit light. The reason for applying the alternating rectangular wave voltage is that the overall luminous efficiency (as the entire discharge lamp device) can be increased.
内部電極 2は棒状であり、 ニッケル、 タングステン等で形成されている。 外部 電極 3は発光管 1の外表面の管軸方向に適宜複数個に離間配置したものである。 複数個に分割することにより、 収縮放電が抑制され、 より高輝度 ·高効率にする ことができる。 なお、 外部電極 3は均等に離間配置されているが、 内部電極 2か ら離れるにつれて離間間隔が狭くなるようにしても良い。 このように配置するこ とにより内部電極 2から離れた位置でも輝度分布を制御することができる。 また、 外部電極 3によって光が遮蔽されることを抑制するため、 発光管 1の円周方向に おける外部電極 3の長さは発光管 1の円周の半分以下とすることが好まし!、。 本実施形態において、 内部電極 2は特定の形状に限定されるものではなく、 棒 状の他、 円筒状その他の種々の形状が可能である。 内部電極 2は本実施形態のよ うに一端に設けるだけでなく、 両端に設けてもよレ、。 また、 外部電極 3は特定の 形状に限定されるものではなく、 上述したものの他、 管軸方向に帯状に形成した もの、 管軸方向にらせん状に形成したもの、 メッシュ状のもの等、 発光管 1の外 部に接触、 接続、 印刷等により電気的に接続されていれば良く、 長さ、 大きさ、 個数は限定されない。 The internal electrode 2 has a rod shape and is made of nickel, tungsten, or the like. The plurality of external electrodes 3 are appropriately spaced apart in the tube axis direction on the outer surface of the arc tube 1. By dividing into a plurality of parts, contraction discharge is suppressed, and higher luminance and higher efficiency can be achieved. Although the external electrodes 3 are uniformly spaced, the distance between them may be narrower as the distance from the internal electrodes 2 increases. With such an arrangement, the luminance distribution can be controlled even at a position distant from the internal electrode 2. In addition, in order to prevent light from being shielded by the external electrode 3, it is preferable that the length of the external electrode 3 in the circumferential direction of the arc tube 1 be less than half the circumference of the arc tube 1! ,. In the present embodiment, the internal electrode 2 is not limited to a specific shape, but may have a rod shape, a cylindrical shape, or other various shapes. The internal electrodes 2 may be provided not only at one end as in the present embodiment but also at both ends. In addition, the external electrode 3 is not limited to a specific shape, and may be formed in a band shape in the tube axis direction in addition to the above-described ones. Object, spirally formed in the tube axis direction, mesh-shaped object, etc., as long as they are electrically connected to the outside of the arc tube 1 by contact, connection, printing, etc., length, size, number Is not limited.
発光管 1は希ガスを放電用媒体とし、 水銀を含まない、 いわゆる無水銀の蛍光 管である。 「水銀を含まない」 とは、 希ガス放電によって主な発光が得られる程 度に含まないことを意味する。  The arc tube 1 is a so-called mercury-free fluorescent tube which uses a rare gas as a discharge medium and does not contain mercury. “Mercury-free” means that it is not contained to the extent that main light emission is obtained by rare gas discharge.
点灯回路 4は矩形波発生回路 5、 駆動信号発生回路 6、 調光制御回路 7、 スィ ツチング回路 8、 パルストランス 9により構成される。  The lighting circuit 4 includes a rectangular wave generating circuit 5, a driving signal generating circuit 6, a dimming control circuit 7, a switching circuit 8, and a pulse transformer 9.
矩形波発生回路 5は連続した矩形波である矩形波信号 S bを発生し、 矩形波信 号 S bを駆動信号発生回路 6へ入力する。 調光制御回路 7は調光を制御するため の調光信号 S aを出力する。  The rectangular wave generation circuit 5 generates a rectangular wave signal Sb which is a continuous rectangular wave, and inputs the rectangular wave signal Sb to the drive signal generation circuit 6. The dimming control circuit 7 outputs a dimming signal Sa for controlling dimming.
駆動信号発生回路 6は矩形波信号 S bと調光制御回路 7から入力される調光信 号 S aとに基づいて駆動信号 S cを発生し、 駆動信号 S cをスィツチング回路 8 へ入力する。 スィツチング回路 8は駆動信号 S cに基づいてパルストランス 9へ の入力を制御し、 パルストランス 9により昇圧した交番矩形波電圧である印加電 圧 V aを内部電極 2と外部電極 3との間に印加する。 なお、 矩形波発生回路 5 、 駆動信号発生回路 6、 調光制御回路 7は発振回路、 論理回路等で構成され、 調光 信号 S a、 矩形波信号 S b、 駆動信号 S cの相互間の位相調整等は通常の論理設 計の手法により行えば良い。  The drive signal generation circuit 6 generates a drive signal Sc based on the square wave signal Sb and the dimming signal Sa input from the dimming control circuit 7, and inputs the driving signal Sc to the switching circuit 8. . The switching circuit 8 controls the input to the pulse transformer 9 based on the drive signal Sc, and applies an applied voltage Va, which is an alternating rectangular wave voltage boosted by the pulse transformer 9, between the internal electrode 2 and the external electrode 3. Apply. The rectangular wave generation circuit 5, the drive signal generation circuit 6, and the dimming control circuit 7 are composed of an oscillation circuit, a logic circuit, and the like, and include a dimming signal Sa, a square wave signal Sb, and a driving signal Sc. Phase adjustment and the like may be performed by the usual logic design technique.
駆動信号発生回路 6は位相制御手段として反転位相調整回路 6 mを備える。 特 に、 反転位相調整回路 6 mは印加電圧 V aの第 1周期が負の矩形波電圧から始ま るように位相制御 ( 「1」 または 「0」 に論理制御) された駆動信号 S cを発生 する。 つまり、 交番矩形波電圧である印加電圧 V aが調光時に制御される発光期 間における印加開始時に必ず負の矩形波電圧から始まるよう、 駆動信号 S cが制 御され、 スイッチング回路 8へ供給される。 反転位相調整回路 6 mは、 印加電圧 V aの発光期間における第 1周期が負の矩形波電圧から始まるように制御された 駆動信号 S cを発生するものであればどのような形態の論理回路であっても良い。 また、 駆動信号発生回路 6が反転位相調整回路 6 mを有しない構成とする場合は、 スィツチング回路 8に印加電圧 V aが負の矩形波電圧から始まるように制御する 回路を位相制御手段として設けることにより同様な動作が可能である。 なお、 矩 形波発生回路 5、 駆動信号発生回路 6、 調光制御回路 7を、 マイクロコンピュー タにより制御することにより、 印加電圧 V aの第 1周期が負の矩形波電圧から始 まるように調整された駆動信号 S cを発生させても良いことはいうまでもない。 図 2 A〜 2Dを参照し、 放電灯装置の動作を説明する。 The drive signal generation circuit 6 includes an inversion phase adjustment circuit 6 m as phase control means. In particular, the inverting phase adjustment circuit 6 m applies the drive signal Sc that has been phase-controlled (logically controlled to “1” or “0”) so that the first cycle of the applied voltage Va starts from a negative rectangular wave voltage. appear. In other words, the drive signal Sc is controlled so that the applied voltage Va, which is an alternating rectangular wave voltage, always starts from a negative rectangular wave voltage at the start of application during the light emission period controlled during dimming, and is supplied to the switching circuit 8. Is done. The inverted phase adjustment circuit 6 m is a logic circuit of any form as long as it generates a drive signal Sc controlled so that the first cycle in the light emission period of the applied voltage Va starts from a negative rectangular wave voltage. It may be. When the drive signal generation circuit 6 does not include the inversion phase adjustment circuit 6 m, the switching circuit 8 is controlled so that the applied voltage Va starts from a negative rectangular wave voltage. A similar operation is possible by providing a circuit as phase control means. The rectangular wave generation circuit 5, the drive signal generation circuit 6, and the dimming control circuit 7 are controlled by a microcomputer so that the first cycle of the applied voltage Va starts from a negative square wave voltage. Needless to say, the drive signal Sc adjusted to the above may be generated. The operation of the discharge lamp device will be described with reference to FIGS.
調光制御回路 7は図 2 Aに示すような調光制御のための制御信号である調光信 号 S aを出力する。 調光信号 S aは間欠発光期間 T o nを有し、 この間欠発光期 間 To nにおいて発光管 1の発光を生じるように間欠制御される。 調光信号 S a の周波数 (調光周波数) は、 間欠発光期間 To nと発光停止期間 To ί f との繰 り返しによるちらつきを感じないようにするため、 100〜300Hz程度の周 波数に設定されるのが好ましい。 間欠発光期間 To n及び発光停止期間 To f f により 1周期 T (=To n + To f f ) を構成する。 調光周波数により決まる 1 周期 Tにおいて、 発光停止期間 To f f に比して間欠発光期間 To nを長くすれ ば、 発光管 1の輝度を上げることができ、 逆に発光停止期間 To f f に比して間 欠発光期間 T o nを短くすれば、 発光管 1の輝度を下げることができる。 ひ = (T o n/T) X I 00 (%) で求まる値を調光率 α (%) とする。 つまり、 調光率 100%は連続発光状態を、 調光率 0%は発光停止状態を、 調光率 50% は発光期間と発光停止期間とが等しい状態を示す。 .  The dimming control circuit 7 outputs a dimming signal Sa which is a control signal for dimming control as shown in FIG. 2A. The dimming signal Sa has an intermittent light emission period T on, and is intermittently controlled so as to generate light emission of the arc tube 1 during this intermittent light emission period To n. The frequency (dimming frequency) of the dimming signal Sa is set to a frequency of about 100 to 300 Hz in order to avoid flickering due to the repetition of the intermittent light emission period Ton and the light emission stop period Toίf. Preferably. One cycle T (= Ton + Toff) is constituted by the intermittent light emission period Ton and the light emission stop period Toff. In one cycle T determined by the dimming frequency, if the intermittent light emission period Ton is made longer than the light emission stop period Toff, the brightness of the arc tube 1 can be increased. If the intermittent light emission period T on is shortened, the brightness of the arc tube 1 can be reduced. The value obtained by the formula: H = (T on / T) X I 00 (%) is defined as a dimming rate α (%). In other words, a dimming rate of 100% indicates a continuous light emission state, a dimming rate of 0% indicates a light emission stop state, and a dimming rate of 50% indicates a state in which the light emission period and the light emission stop period are equal. .
矩形波発生回路 5は図 2 Βに示すような矩形波信号 S bを出力する。 矩形波信 号 S bの周波数 (矩形波周波数) は、 発光管 1の発光効率等を考慮して発光管 1 が放電を生じて発光するのに必要な 20〜50 kHz程度に設定されるのが好ま しい。 なお、 外部電極 3が発光管 1の外表面の管軸方向に適宜複数個に離間配置 された形状の電極である場合、 矩形波周波数を 30〜45 kHz程度にすると発 光効率をさらに大きくできることを確認した。  The square wave generating circuit 5 outputs a square wave signal Sb as shown in FIG. The frequency (square wave frequency) of the square wave signal Sb is set to about 20 to 50 kHz necessary for the arc tube 1 to generate a discharge and emit light in consideration of the luminous efficiency of the arc tube 1. Is preferred. If the external electrode 3 is an electrode that is appropriately spaced apart in the tube axis direction on the outer surface of the arc tube 1, the emission efficiency can be further increased by setting the rectangular wave frequency to about 30 to 45 kHz. It was confirmed.
駆動信号発生回路 6は、 矩形波発生回路 5からの矩形波信号 S bと調光制御回 路 7からの調光信号 S aを受け、 これらの信号 S a及び S bを反転位相調整回路 6 mで所定の論理演算を行なうことにより図 2Cに示すような駆動信号 S cを生 成する。 本実施形態では、 所定の論理演算は、 調光信号 S aを論理反転し、 その 論理反転した調光信号 S aと矩形波信号 S bの論理和を演算する。 駆動信号 S c は、 発光停止期間 T o f f においては例えば論理 「1」 を維持するように設定さ れているが、 間欠発光期間 T o nにおいては矩形波信号 S bに同期した信号とな る。 The drive signal generating circuit 6 receives the rectangular wave signal Sb from the rectangular wave generating circuit 5 and the dimming signal Sa from the dimming control circuit 7, and converts these signals Sa and Sb into an inversion phase adjusting circuit 6. By performing a predetermined logical operation on m, a drive signal Sc as shown in FIG. 2C is generated. In the present embodiment, the predetermined logical operation is to logically invert the dimming signal Sa, and calculate the logical sum of the logically inverted dimming signal Sa and the rectangular wave signal Sb. Drive signal S c Is set to maintain, for example, logic “1” in the light emission stop period T off, but becomes a signal synchronized with the rectangular wave signal S b in the intermittent light emission period T on.
スイッチング回路 8は駆動信号発生回路 6からの駆動信号 S cを受け、 駆動信 号 S cに同期して動作し、 パルストランス 9を適宜スイッチング駆動する。 これ により、 パルストランス 9は図 2 Dに示すように駆動信号 S cに同期した印加電 圧 V aを発生する。 なお、 本実施形態では駆動信号 S cは、 発光停止期間 T o f f においては論理 「 1」 とし、 間欠発光期間 T o nにおいて矩形波信号 S bと同 様の論理となるような構成として説明したが、 これに限るものではなく、 例えば スィツチング回路 8に論理反転回路を組み込むことにより、 従来技術と同様の論 理信号により構成することも可能である。 つまり、 間欠発光期間 T o nに移行し た場合において、 印加電圧 V aが負の矩形波電圧 (A) 力 ら始まるように印加電 圧 V aを制御できれば、 位相制御手段としての論理回路の構成はどのように構成 しても良レ、。 また、 位相制御手段は論理回路以外の方法によって構成しても良い。 パルストランス 9から出力される印加電圧 V aはピーク対ピーク電圧で約 2 k The switching circuit 8 receives the drive signal Sc from the drive signal generation circuit 6, operates in synchronization with the drive signal Sc, and switches the pulse transformer 9 appropriately. Thereby, the pulse transformer 9 generates an applied voltage Va synchronized with the drive signal Sc as shown in FIG. 2D. In the present embodiment, the drive signal Sc is described as having a logic "1" during the light emission stop period Toff and having the same logic as the rectangular wave signal Sb during the intermittent light emission period Ton. However, the present invention is not limited to this. For example, by incorporating a logic inversion circuit in the switching circuit 8, it is also possible to configure a logic signal using the same logic signal as in the related art. In other words, if the applied voltage Va can be controlled so that the applied voltage Va starts from the negative rectangular wave voltage (A) in the transition to the intermittent light emission period Ton, the configuration of the logic circuit as the phase control means Can be configured in any way. Further, the phase control means may be constituted by a method other than the logic circuit. Applied voltage Va output from pulse transformer 9 is about 2 k peak-to-peak voltage
V、 つまり + 1 k V〜一 1 k Vの交番矩形波電圧である。 内部電極 2と外部電極 3との間に印加される印加電圧 V aは、 図 9 Dに示す従来技術とは逆に、 負の矩 形波電圧 (A) カゝら始まる交番矩形波電圧となるように制御される。 つまり、 印 加電圧 V aの第 1周期 T a 1は必ず負の矩形波電圧から始まり、 正の矩形波電圧 で終わる波形となる。 外部電極 3は接地されているため、 印加電圧 V aは内部電 極 2に印加される電圧でもあり、 内部電極 2には必ず最初に負の電圧が印加され ることになる。 V, that is, an alternating rectangular wave voltage of +1 kV to 1 kV. The applied voltage V a applied between the internal electrode 2 and the external electrode 3 is, in contrast to the prior art shown in FIG. 9D, a negative square wave voltage (A) and an alternating square wave voltage starting from Is controlled so that That is, the first cycle Ta1 of the applied voltage Va always starts with a negative rectangular wave voltage and ends with a positive rectangular wave voltage. Since the external electrode 3 is grounded, the applied voltage Va is also the voltage applied to the internal electrode 2, and a negative voltage is always applied to the internal electrode 2 first.
図 3 A〜 3 Cは本実施形態の放電灯装置における印加電圧及びランプ電流の拡 大した波形を示す図である。 図 3 Aに示す調光制御のための調光信号 S aにおけ る間欠発光期間 T o nに対応させて、 図 3 Bに印加電圧 V a、 及び図 3 Cに発光 管 1に流れるランプ電流 I aをそれぞれ示している。 印加電圧 V aはピーク対ピ ーク値で約 2 k Vである。 調光信号 S aの間欠発光期間 T o nに対応して発生し た印加電圧 V aの印加開始初期 (特に、 第 1周期 T a 1、 第 2周期 T a 2、 第 3 周期 T a 3 ) におけるランプ電流 I aの状況をみると、 第 1周期 T a 1において は、 負の立ち上がり時点では電流がほとんど流れないが、 負の矩形波電圧から正 の矩形波電圧に移行する際に流れる電流はピーク電流値の約 5割程度であり、 負 力 ら正に移行する際に流れる電流が従来技術に比して大きく増加している。 第 2 周期 Ta 2におけるランプ電流 I aは、 正負いずれの方向においてもピーク電流 値の約 9割程度となっていることから、 ほぼ安定した放電状態 (発光状態) に達 しているものと思われる。 3A to 3C are diagrams showing enlarged waveforms of the applied voltage and the lamp current in the discharge lamp device of the present embodiment. FIG. 3B shows the applied voltage Va and FIG. 3C shows the lamp current flowing through the arc tube 1 corresponding to the intermittent light emission period Ton in the light control signal Sa for light control shown in FIG. 3A. Ia is shown respectively. The applied voltage Va is about 2 kV in peak-to-peak value. Initial stage of the start of application of the applied voltage Va generated in response to the intermittent light emission period Ton of the dimming signal Sa (particularly, the first cycle Ta1, the second cycle Ta2, and the third cycle Ta3). Looking at the situation of the lamp current I a in the first cycle T a 1 Indicates that almost no current flows at the time of the negative rise, but the current that flows when shifting from the negative square wave voltage to the positive square wave voltage is about 50% of the peak current value, and shifts from negative power to positive. In this case, the current flowing during the operation is greatly increased as compared with the prior art. Since the lamp current I a in the second cycle Ta 2 is about 90% of the peak current value in both positive and negative directions, it is considered that the lamp has almost reached a stable discharge state (luminous state). It is.
このように、 印加電圧 V aの印加開始初期におけるランプ電流 I aの低下現象 が従来技術に比較して早く消失し、 ランプ電流 I aは第 2周期でほぼ安定状態に 移行している。 したがって、 発光管 1のちらつきを従来技術に比して大きく改善 できる。 ランプ電流 I aの低下が小さく、 しかもランプ電流 I aが早く回復する 理由は、 内部電極 2が初めに陰極として動作することから、 発光管 1内部への電 子の放出が安定かつ十分に行われるためと考えられる。 なお、 内部電極 2の表面 積が外部電極 3の表面積より小さいとより効果的である。  As described above, the decrease phenomenon of the lamp current Ia in the early stage of the start of the application of the applied voltage Va disappears earlier than in the related art, and the lamp current Ia shifts to a substantially stable state in the second cycle. Therefore, the flicker of the arc tube 1 can be greatly improved as compared with the related art. The reason why the decrease in the lamp current Ia is small and the lamp current Ia recovers quickly is that the internal electrode 2 operates as a cathode first, so that the discharge of electrons into the arc tube 1 is stable and sufficient. It is thought to be done. Note that it is more effective if the surface area of the internal electrode 2 is smaller than the surface area of the external electrode 3.
ランプ電流 I aのピーク電流値は安定状態 (ここでは第 3周期以降) で約士 35〜4 OmAである。 また、 この時の矩形波信号 S bの矩形波周波数は約 30 kHzとしており、 第 1周期 T a 1等の周期は約 33マイクロ秒になる。 なお、 矩形波周波数が 20〜 50 kHz程度の場合において、 同様な特性を得られた。 また、 安定状態に移行する周期等は印加電圧 V a、 発光管 1の仕様、 その他の条 件により変動するものであり、 この例に限るものではない。  The peak current value of the lamp current Ia is about 35 to 4 OmA in a stable state (here, the third cycle or later). In addition, the rectangular wave frequency of the rectangular wave signal Sb at this time is about 30 kHz, and the cycle such as the first cycle Ta1 is about 33 microseconds. Similar characteristics were obtained when the square wave frequency was about 20 to 50 kHz. Further, the period of transition to the stable state and the like vary depending on the applied voltage Va, the specifications of the arc tube 1, and other conditions, and are not limited to this example.
図 3 A〜 3 Cに示す特性の測定に用いた発光管 1の仕様は次のとおりである。 発光管 1は L字形状に加工し、 r^g2. 6 mm, 内径 2. Omm、 管長 252m mである。 封入ガスは Xeと Arの混合ガス (X e : A r = 6 : 4) であり、 封 入ガス圧力は 13. 3 k P a〜26 k P aである。 内部電極 2の形状は、 タンダ ステン製の棒状である。 なお、 内部電極 2の形状を円筒状 (カップ状、 ホロ一形 状) にした場合は内部電極 2の表面積が広くなり、 内部電極 2から管内部へ放出 される電子を多くすることができることから初期のランプ電流 I aを大きくでき、 ランプ電流 I aの安定性を大きくすることができるので発光のちらつきをさらに 小さくできる。 外部電極 3は発光管 1の外部に 1〜 3 mm幅で、 1〜 5 mm間隔 に配置し、 接地する。 以上のように本実施形態の放電等装置によれば、 印加電圧 V aの印加開始初期 におけるランプ電流 I aの低下及びバラツキを改善できることから、 特に調光率 aを小さくした場合 (間欠発光期間 T o nを短くしたことにより、 印加電圧 V a のパルス数が少なくなつた場合) に、 その改善効果は顕著になる。 The specifications of the arc tube 1 used for measuring the characteristics shown in FIGS. 3A to 3C are as follows. The arc tube 1 is processed into an L-shape, and has a diameter of 2.6 mm, an inner diameter of 2. Omm, and a length of 252 mm. The sealed gas is a mixed gas of Xe and Ar (Xe: Ar = 6: 4), and the sealed gas pressure is 13.3 kPa to 26 kPa. The shape of the internal electrode 2 is a rod made of tungsten. When the internal electrode 2 is formed in a cylindrical shape (cup shape, hollow shape), the surface area of the internal electrode 2 increases, and the number of electrons emitted from the internal electrode 2 into the tube can be increased. Since the initial lamp current Ia can be increased and the stability of the lamp current Ia can be increased, the flicker of light emission can be further reduced. The external electrodes 3 are arranged outside the arc tube 1 with a width of 1 to 3 mm and at an interval of 1 to 5 mm, and are grounded. As described above, according to the discharge device or the like of the present embodiment, the lamp current Ia can be reduced and its variation can be improved at the initial stage of the application of the applied voltage Va. In the case where the number of pulses of the applied voltage Va is reduced by shortening Ton), the improvement effect becomes remarkable.
図 4 A及び 4 Bは本実施形態の放電灯装置における発光管及び外部電極 3の構 造の一例を示した図である。  4A and 4B are views showing an example of the structure of the arc tube and the external electrode 3 in the discharge lamp device of the present embodiment.
図 4 Aは発光管 1の側面図であり、 図 4 Bは図 4 Aにおいて B— B線で切断し たときの断面図である。 発光管 1は円筒状のガラス管からなり、 内部に放電用媒 体として X e— A r混合ガスが封入されている。 ガラス管の内部表面には図示し ない蛍光体層が設けられている。 発光管 1の端部の内側には、 タングステン製の 内部電極 2が設けられ、 リード線 2 aにより外部へ導出され、 点灯回路 4との接 続可能にされている。 外部電極 3は管軸方向に複数個に離間配置された分割電極 部 3 aとそれらを相互に接続する連結部 3 bとにより構成され、 リード線 3 cに より点灯回路 4との接続を可能にされている。 連結部 3 bは分割電極部 3 aを相 互に接続する電気的な機能と分割電極部 3 aを相互に連結保持する機械的な機能 との二つの役割を有する。 外部電極 3は弾性を有するリン青銅の板材からなり、 各分割電極部 3 aがガラス管の円周方向においてガラス管に接触し、 発光管 1の 管軸方向において複数個離間配置された外部電極として作用するように、 断面形 状を凹凸に形成されている。 なお、 連結部 3 bはガラス管に接触しないようにガ ラス管の円周方向からは離れた位置に配置される構成としてある。 また、 内部電 極 2を発光管 1の両方の端部に設けてもよく、 これにより、 ランプ電流 l aの低 下及びバラツキをさらに改善でき、 特に発光管 1の長さが長い場合に、 大きな効 果を奏する。 なお、 発光管 1はガラス管と外部電極 3とが圧接するように矢印 1 pの方向から導光板 (図示せず) により押圧される。  FIG. 4A is a side view of the arc tube 1, and FIG. 4B is a cross-sectional view taken along line BB in FIG. 4A. The arc tube 1 is formed of a cylindrical glass tube, in which a mixed gas of Xe-Ar is sealed as a discharge medium. A phosphor layer (not shown) is provided on the inner surface of the glass tube. Inside the end of the arc tube 1, an internal electrode 2 made of tungsten is provided, led out to the outside by a lead wire 2a, and is connectable to a lighting circuit 4. The external electrode 3 is composed of a plurality of divided electrode portions 3a spaced apart from each other in the tube axis direction and a connecting portion 3b for connecting them to each other, and can be connected to the lighting circuit 4 by the lead wire 3c. Has been. The connecting portion 3b has two functions of an electrical function of connecting the divided electrode portions 3a to each other and a mechanical function of connecting and holding the divided electrode portions 3a to each other. The external electrode 3 is made of an elastic phosphor bronze plate, and each of the divided electrode portions 3a is in contact with the glass tube in the circumferential direction of the glass tube, and a plurality of external electrodes are arranged in the direction of the tube axis of the arc tube 1. The cross-sectional shape is formed to be uneven so as to act as. The connecting portion 3b is arranged at a position away from the circumferential direction of the glass tube so as not to contact the glass tube. In addition, the internal electrodes 2 may be provided at both ends of the arc tube 1, which can further reduce and reduce the lamp current la, and especially when the length of the arc tube 1 is long, the internal electrode 2 is large. It works. The arc tube 1 is pressed by a light guide plate (not shown) from the direction of arrow 1p so that the glass tube and the external electrode 3 are pressed against each other.
図 5はスイッチング回路 8及びパルストランス 9の構成例を示す図である。 スィツチング回路 8は MO S F E Tで構成されるスィツチング素子 8 A、 8 B 及びスィツチング素子 8 A、 8 Bを制御するスィツチング制御回路 8 Cにより構 成される。 スィツチング素子 8 A及びスィツチング素子 8 Bはパルストランス 9 の 1次卷線のそれぞれの端に接続される。 パルストランス 9の 1次巻線の中央に は直流電圧 D Cが供給される。 駆動信号 S cを入力されたスィツチング制御回路 8 Cは、 駆動信号 S cに同期してスィツチング素子 8 Aとスィツチング素子 8 B とを交互にオンし、 パルストランス 9の 1次卷線に電流を流すことにより、 パル ストランス 9の 2次巻線に昇圧された交番矩形波電圧を誘起する。 パルストラン ス 9の 2次卷線に発光管 1の内部電極 2及び外部電極 3が接続され、 内部電極 2 及び外部電極 3の相互間に交番矩形波電圧が印加される。 FIG. 5 is a diagram illustrating a configuration example of the switching circuit 8 and the pulse transformer 9. The switching circuit 8 is composed of switching elements 8A and 8B composed of MOS FETs and a switching control circuit 8C for controlling the switching elements 8A and 8B. Switching element 8 A and switching element 8 B are connected to respective ends of the primary winding of pulse transformer 9. In the center of the primary winding of pulse transformer 9 Is supplied with DC voltage DC. The switching control circuit 8C to which the driving signal Sc is input turns on the switching element 8A and the switching element 8B alternately in synchronization with the driving signal Sc, and supplies a current to the primary winding of the pulse transformer 9. By flowing the current, a boosted alternating rectangular wave voltage is induced in the secondary winding of the pulse transformer 9. The internal electrode 2 and the external electrode 3 of the arc tube 1 are connected to the secondary winding of the pulse transformer 9, and an alternating rectangular wave voltage is applied between the internal electrode 2 and the external electrode 3.
例えばスイッチング素子 8 Aがオンした場合には矢印 Aで示す方向に電流が流 れ、 パルストランス 9の 2次巻線には矢印 Cで示す方向の電流が誘導される。 こ の場合は外部電極 3に対して内部電極 2が高い電位であるから、 内部電極 2に対 して正の矩形波電圧を印加した状態である。 逆にスイッチング素子 8 Bがオンし た場合には矢印 Bで示す方向に電流が流れ、 パルストランス 9の 2次巻線には矢 印 Dで示す方向の電流が誘導される。 この場合は外部電極 3に対して外部電極 2 が低レ、電位であるから、 内部電極 2に対して負の矩形波電圧を印加した状態であ る。 なお、 パルストランス 9の 2次卷線の電流方向は卷線方向により変動するの で図示した場合に限るものではない。 つまり、 パルストランス 9の卷線方向によ つては発光管 1の電極 (内部電極 2、 外部電極 3 ) の接続が逆になることもある。 要は、 間欠発光期間 T o nに対応して発生させる交番矩形波電圧である印加電圧 &の第1周期丁& 1が負の矩形波電圧から始まるように接続すれば良い。 また、 駆動信号発生回路 6を制御して発光管 1に同様の矩形波電圧を印加できるもので あれば、 回路構成はこれに限らず、 ハーフブリッジ回路、 フルブリッジ回路等ど のような形態のものでも良い。 実施の形態 2  For example, when the switching element 8A is turned on, a current flows in the direction indicated by the arrow A, and a current is induced in the secondary winding of the pulse transformer 9 in the direction indicated by the arrow C. In this case, since the internal electrode 2 has a higher potential than the external electrode 3, a positive rectangular wave voltage is applied to the internal electrode 2. Conversely, when the switching element 8B is turned on, a current flows in the direction indicated by the arrow B, and a current is induced in the secondary winding of the pulse transformer 9 in the direction indicated by the arrow D. In this case, since the external electrode 2 has a low level and a potential with respect to the external electrode 3, a state in which a negative rectangular wave voltage is applied to the internal electrode 2 is shown. The current direction of the secondary winding of the pulse transformer 9 varies depending on the winding direction, and is not limited to the illustrated case. That is, depending on the winding direction of the pulse transformer 9, the connection of the electrodes (the internal electrode 2 and the external electrode 3) of the arc tube 1 may be reversed. In short, the connection may be made such that the first period & 1 of the applied voltage &, which is an alternating rectangular wave voltage generated corresponding to the intermittent light emission period T on, starts from a negative rectangular wave voltage. The circuit configuration is not limited to this, as long as the same rectangular wave voltage can be applied to the arc tube 1 by controlling the drive signal generation circuit 6, and a half-bridge circuit, a full-bridge circuit, etc. It may be something. Embodiment 2
図 6は、 上記の点灯回路を備えた本発明に係るバックライトの概略構成を示す 平面図である。 バックライトは、 バックライト用としての所定形状を有する導光 板 1 0、 L字形状に加工された 2本の発光管 1 (発光管 l a、 l b ) 、 及び点灯 回路 4を有する。 図 6における発光管 1 (発光管 l a、 l b ) 及び点灯回路 4の 仕様は実施の形態 1における放電灯装置のものと同一である。  FIG. 6 is a plan view showing a schematic configuration of a backlight according to the present invention including the above lighting circuit. The backlight includes a light guide plate 10 having a predetermined shape for a backlight, two arc tubes 1 (arc tubes l a and l b) processed into an L shape, and a lighting circuit 4. The specifications of the arc tube 1 (the arc tubes l a and l b) and the lighting circuit 4 in FIG. 6 are the same as those of the discharge lamp device in the first embodiment.
導光板 1 0の端部側面に対向して、 L字形状に加工された 2本の発光管 1 (発 光管 l a、 l b ) が対称に配置されている。 図 6は、 いわゆるエッジライト方式 のバックライト構成を示すが、 導光板 1 0の平面方向に発光管 1を対向配置する 直下方式のバックライトとすることも可能である。 いずれの場合においてもちら つきの低減という有用な効果を奏することができる。 発光管 l a、 1 1)はし字形 状であることから、 2本のみで導光板 1 0の 4辺に対向配置することができる。 また、 発光管 l a、 1 bはそれぞれ両端部に内部電極 2を設けており、 これに より、 対向配置した場合に発光管 1 aの内部電極 2と発光管 1 bの内部電極 2と を隣接させることができ、 隣接する内部電極 2を相互に共通接続して、 点灯回路 4の所定の端子に接続する。 外部電極 3についても発光管 1 a、 1 bの間を相互 に共通接続して、 点灯回路 4の他方の端子に接続するので点灯回路 4は 1つの回 路のみで構成できる。 なお、 点灯回路 4を接続しない側の内部電極 2は図示して いないが、 こちらにも内部電極 2を設けて点灯回路 4を接続すれば、 ちらつきの 低減効果がさらに大きくなることはもちろん、 導光板 1 0の大型化 (発光管 1の 長尺化) への対応が可能となる。 Opposite to the end side surface of the light guide plate 10, two arc tubes 1 (light emitting Light tubes la, lb) are symmetrically arranged. FIG. 6 shows a so-called edge light type backlight configuration, but it is also possible to use a direct type backlight in which the arc tube 1 is arranged to face the light guide plate 10 in the plane direction. In any case, a useful effect of reducing flicker can be obtained. Since the arc tubes la and 11) are in a V-shape, they can be opposed to the four sides of the light guide plate 10 with only two tubes. In addition, the arc tubes la and 1b are provided with internal electrodes 2 at both ends, whereby the internal electrode 2 of the arc tube 1a and the internal electrode 2 of the arc tube 1b are adjacent to each other when they are arranged to face each other. The adjacent internal electrodes 2 are commonly connected to each other and connected to a predetermined terminal of the lighting circuit 4. As for the external electrode 3 as well, the light emitting tubes 1a and 1b are commonly connected to each other and connected to the other terminal of the lighting circuit 4, so that the lighting circuit 4 can be composed of only one circuit. Although the internal electrode 2 on the side to which the lighting circuit 4 is not connected is not shown, if the internal electrode 2 is provided here and the lighting circuit 4 is connected, the effect of reducing flicker is further enhanced, and It is possible to cope with the enlargement of the light plate 10 (lengthening of the arc tube 1).
導光板 1 0は 7ィンチワイドサイズ液晶表示装置に対応する大きさであり、 長 辺は 1 6 O mm、 短辺は 9 7 mmである。 配光制御用にシルク印刷のドットパタ ーン (図示しない) を用いた。 光学シートとしては導光板 1 0の上に拡散シート を 1枚配置した。  The light guide plate 10 has a size corresponding to a 7-inch wide size liquid crystal display device, and has a long side of 16 O mm and a short side of 97 mm. A silk-printed dot pattern (not shown) was used for light distribution control. As the optical sheet, one diffusion sheet was arranged on the light guide plate 10.
図 7は、 本発明と従来技術の点灯装置を用いたバックライトについて調光率と ちらつき感の関係を比較した結果を示した図である。 従来技術と本発明によるバ ックライトについて調光率 αを変更した場合のちらつきの程度を、 被験者 1 0名 についてちらつき感として調べた。 調光率 αは 1 0 0〜1 0 (%) の間では 1 0 %おきに、 1 0〜 1 (%) の間では 1 %おきに変更した。 評価レベルは、 (Α) ちらつきを全く感じない、 (Β ) ちらつきは気にならない、 (C ) ちらつ きは多少気になる、 (D) ちらつきを感じる、 の 4段階とした。 評価レベル Α又 は Bと答えた人が 1 0人の場合は記号 「〇」 で示し、 評価 A又は Bと答えた人が 5人以上 (9人以下) の場合は記号 「△」 で示し、 評価 A又は Bと答えた人が 4 人以下の場合は記号 「X」 で示している。 従来の場合は調光率 1 0 0〜 1 0 % において 「〇| 、 9〜8 %では 「厶」 、 7 %以下が 「X」 であった。 これに対 し、 本宪明によれば、 調光率 1 0 0〜5 %において 「〇」 、 4〜3 %では 「△」 、 2 %以下が 「X」 であった。 つまり、 従来のものでは 9 %以下の調光率とした 場合に何らかのちらつきが感じられるのに対し、 本発明では 4 %以下の調光率と した場合に何らかのちらつきが感じられるに過ぎず、 従来に比してちらつき (ち らつき感) が大幅に改善されていることがわかる。 FIG. 7 is a diagram showing a result of comparing the relationship between the dimming rate and the flickering feeling for backlights using the lighting device of the present invention and the conventional technique. The degree of flicker when the dimming rate α was changed for the conventional technology and the backlight according to the present invention was examined as a flickering feeling for 10 subjects. The dimming rate α was changed every 10% between 100 and 10%, and every 1% between 100% and 1%. There were four evaluation levels: (Α) flicker was not felt at all, (ら な い) flicker was not a concern, (C) flicker was somewhat worried, and (D) flicker was felt. Rating level 記号 or B is indicated by the symbol “〇” when 10 people answered, and rating A or B is indicated by the symbol “△” when 5 or more (9 or less) responded. If the number of respondents who answered A or B is 4 or less, it is indicated by the symbol “X”. In the conventional case, the dimming rate was “〇 |” at 100 to 10%, “mm” at 9 to 8%, and “X” at 7% or less. Against this According to the present invention, however, the dimming rate was “〇” at 100 to 5%, “△” at 4 to 3%, and “X” at 2% or less. In other words, while the conventional device shows some flicker when the dimming ratio is 9% or less, the present invention only shows some flicker when the dimming ratio is 4% or less. It can be seen that the flicker (feeling of flicker) is greatly improved as compared with.
本発明に係るバックライ トは、 液晶表示装置用バックライ トとして液晶表示装 置に用いれば、 例えば液晶表示装置を用いた車載用のナビグータのように極めて 小さい調光率を要求される場合においても十分に利用可能な、 発光のちらつきの 少ない液晶表示装置を実現できる。 なお、 導光板 1 0を用いないで直接バックラ イトとして用いることも当然可能であり、 この場合においても同様に発光のちら つきの少ないバックライトを実現できる。 産業上の利用の可能性  If the backlight according to the present invention is used in a liquid crystal display device as a backlight for a liquid crystal display device, it is sufficient even when an extremely small dimming rate is required, for example, in a vehicle-mounted navigator using the liquid crystal display device. It is possible to realize a liquid crystal display device with little flickering of luminescence which can be used for a liquid crystal display. Note that it is naturally possible to use the backlight directly as a backlight without using the light guide plate 10, and in this case as well, a backlight with less flickering of light emission can be realized. Industrial potential
本発明の放電灯装置は、 内部電極と外部電極を有する発光管の点灯装置に適用 でき、 発光ちらつきを低減した幅広い調光制御が実現できる。 また、 本発明の点 灯装置は、 バックライト (例えば、 液晶表示装置用バックライト) に適用でき、 発光のちらつきが少なく幅広い調光制御が可能なバックライ トを実現でき、 表示 のちらつきが少なく幅広い調光制御が可能な表示装置 (例えば、 液晶表示装置) を実現できる。 本発明は、 特定の実施形態について説明されてきたが、 当業者にとっては他の 多くの変形例、 修正、 他の利用が明らかである。 それゆえ、 本発明は、 ここでの 特定の開示に限定されず、 添付の請求の範囲によってのみ限定され得る。 なお、 本出願は日本国特許出願、 特願 2 0 0 2— 2 8 3 1 6 9号 (2 0 0 2年 9月 2 7 3提出) に関連し、 その内容は参照することにより本文中に取り入れられる。  INDUSTRIAL APPLICABILITY The discharge lamp device of the present invention can be applied to a lighting device for an arc tube having an internal electrode and an external electrode, and can realize a wide range of dimming control with reduced light emission flicker. In addition, the lighting device of the present invention can be applied to a backlight (for example, a backlight for a liquid crystal display device), and can realize a backlight capable of performing a wide range of dimming control with a small amount of flicker of light emission and a small amount of flicker of a display. A display device capable of dimming control (for example, a liquid crystal display device) can be realized. Although the present invention has been described with respect to particular embodiments, many other variations, modifications, and other uses will become apparent to those skilled in the art. Therefore, the present invention is not limited to the specific disclosure herein, but only by the appended claims. This application is related to a Japanese patent application, Japanese Patent Application No. 2002-28283169 (submitted on Sep. 27, 2002), the contents of which are incorporated herein by reference. Incorporated in.

Claims

請 求 の 範 囲 The scope of the claims
1 . 希ガスを封入し、 内部に第 1電極を設け、 外部に第 2電極を設けた発光 管を駆動する放電灯装置であって、 1. A discharge lamp device for driving an arc tube in which a rare gas is sealed, a first electrode is provided inside, and a second electrode is provided outside,
前記第 1電極と前記第 2電極間に交番矩形波電圧を印加する点灯回路を備え、 該点灯回路は、  A lighting circuit for applying an alternating rectangular wave voltage between the first electrode and the second electrode;
所定の周期で間欠的に発光させて調光制御を実現するため、 間欠的な発光期 間を制御する調光信号を出力する調光制御回路と、  A dimming control circuit that outputs a dimming signal for controlling the intermittent light emitting period in order to realize dimming control by intermittently emitting light at a predetermined cycle;
該調光制御回路からの調光信号に基き、 間欠的な発光期間において前記第 2 電極の電位を基準電位として負の矩形波電圧から始まる交番矩形波電圧を生成し て、 前記第 1電極へ印加する回路とを含む  Based on the dimming signal from the dimming control circuit, an intermittent light emitting period is used to generate an alternating rectangular wave voltage starting from a negative rectangular wave voltage with the electric potential of the second electrode as a reference potential, to the first electrode. Circuit to apply
ことを特徴とする放電灯装置。 Discharge lamp device characterized by the above-mentioned.
2 . 前記第 2電極は発光管の管軸方向において複数個離間配置してなること を特徴とする請求項 1記載の放電灯装置。 2. The discharge lamp device according to claim 1, wherein a plurality of the second electrodes are spaced apart in a tube axis direction of the arc tube.
3 . 前記第 1電極は円筒状であることを特徴とする請求項 1又は 2記載の放 3. The discharge device according to claim 1, wherein the first electrode has a cylindrical shape.
4 . 少なくとも 1つの発光管と、 請求項 1乃至 3のいずれか 1つに記載の放 電灯装置とを備えたことを特徴とするバックライ ト。 4. A backlight comprising at least one arc tube and the discharge lamp device according to any one of claims 1 to 3.
5 . 液晶表示素子の背面に配置すべき導光板をさらに備え、 前記発光管を前 記導光板と対向して配置したことを特徴とする請求項 4記載のバックライ ト。 5. The backlight according to claim 4, further comprising a light guide plate to be arranged on the back surface of the liquid crystal display element, wherein the arc tube is arranged to face the light guide plate.
6 . 前記発光管は L字形状を有し、 前記導光板の側面に対向配置されること を特徴とする請求項 5記載のバックライト。 6. The backlight according to claim 5, wherein the arc tube has an L shape, and is arranged to face a side surface of the light guide plate.
PCT/JP2003/010832 2002-09-27 2003-08-27 Discharge lamp lighting device WO2004030421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003261751A AU2003261751A1 (en) 2002-09-27 2003-08-27 Discharge lamp lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002283169A JP2006079830A (en) 2002-09-27 2002-09-27 Discharge lamp lighting device
JP2002-283169 2002-09-27

Publications (1)

Publication Number Publication Date
WO2004030421A1 true WO2004030421A1 (en) 2004-04-08

Family

ID=32040553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010832 WO2004030421A1 (en) 2002-09-27 2003-08-27 Discharge lamp lighting device

Country Status (3)

Country Link
JP (1) JP2006079830A (en)
AU (1) AU2003261751A1 (en)
WO (1) WO2004030421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219537A (en) * 2015-05-18 2016-12-22 村田機械株式会社 Purge device and purge stocker

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324022B1 (en) 2018-11-13 2021-11-09 우시오덴키 가부시키가이샤 Excimer lamp light source device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140550A (en) * 1987-11-25 1989-06-01 Toshiba Corp Low pressure discharge lamp
JPH01143135A (en) * 1987-11-30 1989-06-05 Ushio Inc Fluorescent lamp
JPH09283287A (en) * 1996-04-09 1997-10-31 Nec Home Electron Ltd Lighting device for indication discharge lamp
US5818175A (en) * 1996-05-08 1998-10-06 Mitsubishi Denki Kabushiki Kaisha Gas discharge image display
JP2000106146A (en) * 1998-09-30 2000-04-11 Toshiba Lighting & Technology Corp Flash display lamp, method and device for lighting flash display lamp, and flash display device
WO2000058998A1 (en) * 1999-03-25 2000-10-05 Koninklijke Philips Electronics N.V. Lighting arrangement
JP2001243921A (en) * 2000-02-29 2001-09-07 Toshiba Lighting & Technology Corp Rare gas discharge lamp and illumination device
EP1146544A1 (en) * 1999-09-22 2001-10-17 Harison Toshiba Lighting Corporation Fluorescent lamp
JP2002093589A (en) * 2000-09-12 2002-03-29 Harison Toshiba Lighting Corp Electric discharge lamp equipment and illumination equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140550A (en) * 1987-11-25 1989-06-01 Toshiba Corp Low pressure discharge lamp
JPH01143135A (en) * 1987-11-30 1989-06-05 Ushio Inc Fluorescent lamp
JPH09283287A (en) * 1996-04-09 1997-10-31 Nec Home Electron Ltd Lighting device for indication discharge lamp
US5818175A (en) * 1996-05-08 1998-10-06 Mitsubishi Denki Kabushiki Kaisha Gas discharge image display
JP2000106146A (en) * 1998-09-30 2000-04-11 Toshiba Lighting & Technology Corp Flash display lamp, method and device for lighting flash display lamp, and flash display device
WO2000058998A1 (en) * 1999-03-25 2000-10-05 Koninklijke Philips Electronics N.V. Lighting arrangement
EP1146544A1 (en) * 1999-09-22 2001-10-17 Harison Toshiba Lighting Corporation Fluorescent lamp
JP2001243921A (en) * 2000-02-29 2001-09-07 Toshiba Lighting & Technology Corp Rare gas discharge lamp and illumination device
JP2002093589A (en) * 2000-09-12 2002-03-29 Harison Toshiba Lighting Corp Electric discharge lamp equipment and illumination equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219537A (en) * 2015-05-18 2016-12-22 村田機械株式会社 Purge device and purge stocker

Also Published As

Publication number Publication date
JP2006079830A (en) 2006-03-23
AU2003261751A1 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
JP2658506B2 (en) Rare gas discharge fluorescent lamp device
US6788006B2 (en) Discharge lamp ballast with dimming
TWI398191B (en) Rare gas fluorescent lamp lighting device
JP4934842B2 (en) Dimmable discharge lamp for dielectric disturbing discharge, method of operating the discharge lamp, and lighting device equipped with the discharge lamp
EP1372363B1 (en) Electric discharge lamp and electric discharge lamp drive apparatus
EP0765109A2 (en) Gas discharge lamps and systems
JP4695760B2 (en) Dimmable discharge lamp for dielectric barrier discharge
WO2004030421A1 (en) Discharge lamp lighting device
JPH11102790A (en) Discharge lamp lighting device
JP3540333B2 (en) Fluorescent lamp device
JP2005071857A (en) Lighting device for dielectric barrier discharge lamp
KR101181142B1 (en) Lighting apparatus for rare gas fluorescent lamp
JP3446099B2 (en) Discharge lamp lighting device
JP3627553B2 (en) Discharge device
JP2004127540A (en) Lighting method of fluorescent lamp, and lighting device of fluorescent lamp
JP4209937B2 (en) Dielectric barrier discharge lamp lighting device and lighting method
JP2006338897A (en) Lighting device and lighting method of dielectric barrier discharge lamp
JP2001126674A (en) Method of driving electric discharge light-emitting device, and illumination device and display using it
US20070090768A1 (en) Lighting device for a discharge lamp
KR20090050444A (en) Circuit for inverter in liquid crystal display device
JP2006338896A (en) Lighting device and lighting method of dielectrics barrier discharge lamp
JPH0393195A (en) Rare gas discharge fluorescent lamp device
GB2305540A (en) Discharge lamps
JP2000323289A (en) Driving method for discharge device
JPS63119154A (en) Lighting device for discharge lamp

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP