WO2004030238A1 - Packet data transmission in a mimo system - Google Patents
Packet data transmission in a mimo system Download PDFInfo
- Publication number
- WO2004030238A1 WO2004030238A1 PCT/IB2003/003985 IB0303985W WO2004030238A1 WO 2004030238 A1 WO2004030238 A1 WO 2004030238A1 IB 0303985 W IB0303985 W IB 0303985W WO 2004030238 A1 WO2004030238 A1 WO 2004030238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- station
- antennas
- secondary station
- primary
- packet data
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000012544 monitoring process Methods 0.000 claims abstract description 9
- 238000012546 transfer Methods 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 8
- 101000878595 Arabidopsis thaliana Squalene synthase 1 Proteins 0.000 claims 2
- 230000001629 suppression Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 4
- 230000001902 propagating effect Effects 0.000 abstract 1
- 230000002452 interceptive effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000010267 cellular communication Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 241000404883 Pisa Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- BJRNKVDFDLYUGJ-RMPHRYRLSA-N hydroquinone O-beta-D-glucopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=C(O)C=C1 BJRNKVDFDLYUGJ-RMPHRYRLSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0689—Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0691—Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
- H04B7/0871—Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
- H04B7/0874—Hybrid systems, i.e. switching and combining using subgroups of receive antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0042—Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0062—Avoidance of ingress interference, e.g. ham radio channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0078—Timing of allocation
- H04L5/0085—Timing of allocation when channel conditions change
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
Definitions
- the present invention relates to a packet data transmission system and further relates to primary and secondary stations for use in such a system and to a method of operating such a system.
- the present invention has particular, but not exclusive, application to UMTS (Universal Mobile Telecommunication System) otherwise referred to as 3GPP.
- UMTS Universal Mobile Telecommunication System
- MIMO Multiple Input Multiple Output antenna systems
- the performance gains which may be achieved from a MIMO system may be used to increase the total data rate at a given error rate, or to reduce the error rate for a given data rate, or some combination of the two.
- a MIMO system can also be controlled to reduce the total transmitted energy or power for a given data rate and error rate.
- HSDPA High-Speed Downlink Packet Access
- UMTS Universal Mobile Telecommunication System
- a secondary station for example a mobile station
- a secondary station for example a mobile station
- separate data streams using the same channelisation code are sent from respective antennas at a primary station, for example a base station, and the data streams can in principle be received and decoded by a secondary station having at least as many antennas as there are data streams.
- An ARQ (Automatic Repeat reQuest) scheme is needed to ensure correct delivery of each data packet, since accurate data transmission is viewed as more important than the reduced system throughput under poor channel conditions (due to multiple re-transmissions).
- a problem with the use of a MIMO system for packet data transmission is the impact of differing radio link qualities on the communication system.
- the scheme can perform well with low interference levels but not with high interference levels such as will occur near a cell border where interference from primary stations in adjacent cells will greatly reduce throughput.
- a method of operating a packet data transmission system comprising a primary station having a plurality of antennas and at least one secondary station having a plurality of antennas, the method comprising the primary station transmitting packet data on signal paths between pairs of primary and secondary station antennas, the secondary station monitoring its radio environment and sending information about its radio environment to the primary station, the primary station in response to this information adapting itself and the secondary station configuring its receiver resources for processing the received data and interference.
- a packet data transmission system comprising a primary station having a plurality of antennas, signal transmitting and receiving means and means for adapting itself in response to a received signal from a secondary station, and at least one secondary station having signal transmitting and receiving means, a plurality of antennas, means for monitoring its radio environment and for transmitting a signal including information about its radio environment, and means for configuring its receiver resources for processing data signals received from the adapted primary station and interference.
- the present invention is based on recognition of the fact that some of the receiver resources in a secondary station designed to receive MIMO transmissions can be used for interference cancellation.
- the allocation of these resources depends on the interference conditions at the secondary station, which conditions vary for example due to the current position of the secondary station in its cell and the proximity of an interfering primary station in an adjacent cell. Therefore the secondary station monitors the conditions and makes a decision as to what resources, for example number or choice of its antennas, it would prefer to use to receive packet data from the primary station and notifies the primary station by way of uplink signalling.
- Some or all of the receiver's resources not allocated in this way may be used in interference cancellation of signals from primary station(s) in adjacent cells.
- the decision concerning the allocation of resources is dynamic in so far that it is likely to be changed due to the conditions varying.
- a secondary station for use in a packet data transmission system comprising a primary station having a plurality of antennas and signal transmitting and receiving means, the secondary station having signal transmitting and receiving means, a plurality of antennas and means for monitoring its radio environment and for transmitting a signal including information about its radio environment, and means for configuring its receiver resources for processing received data signals and interference.
- a primary station for use in a packet data transmission system, the primary station comprising a plurality of antennas, signal transmitting and receiving means, and means responsive to a received signal from a secondary station for adapting the mode of transmission of the signals transmitted to the secondary station.
- Figure 1 is a diagram of a cellular communications system
- Figure 2 is a block schematic diagram of a MIMO system without interference
- Figure 3 is a block schematic diagram of a MIMO system with interference
- Figure 4 is a block schematic diagram of a MIMO system with interference cancellation by a secondary station
- Figure 5 is a block schematic diagram of a simplified MIMO system with Interference cancellation
- FIG. 6 is a flow chart illustrating an embodiment of the method in accordance with the present invention.
- the same reference numerals have been used to indicate corresponding features.
- the illustrated cellular communications system comprises primary stations PS1 , PS2, PS3, each of which consists of a plurality of antennas for use in MIMO transmission of data packets on a downlink channel in accordance with a transmission system such as HSDPA and a receiver for receiving uplink signals.
- the primary stations will be described in greater detail later with reference to Figure 2.
- the radio coverage areas C1, C2, C3, termed cells, of the primary stations are determined in part by topographical features which affect signal propagation. For convenience of illustration the cells are shown as equal sized regular hexagons.
- Each secondary station SS1 , SS2 comprises a plurality of antennas which may be used for MIMO reception and a transmitter for sending uplink signals.
- the quality of reception of the MIMO signals transmitted by the primary station PS1 will vary according to not only the distance from the primary station PS1 but also the distance from the primary station PS2 in the adjoining cell C2.
- the level of interfering signals 10 transmitted by the primary station PS2 increases and has an adverse effect on the reception quality of the wanted signal 12 received from the primary station PS1.
- Effective interference cancellation of the interfering signals 10 can be implemented by the secondary station SS1 because the format of the signals 10 is known.
- the illustrated example of a MIMO system comprises a primary station PS1 having a single source 14 of data coupled to a multiplexer 16 having four outputs coupled to respective transmitters Tx1 , Tx2, Tx3, Tx4, each having its own antenna PA1 , PA2, PA3, PA4.
- the primary station has a receiver for receiving uplink signals and a processor for controlling the operation of the primary station PS1.
- An in-range secondary station SS1 present in the same cell as the primary station PS1 receives the separate packet data streams, decodes them and combines the decoded data.
- the secondary station SS1 comprises as many radio receivers Rx1 , Rx2, Rx3, Rx4 as there are transmitters Tx1 to Tx4.
- Each of the receivers Rx1 to Rx4 has its own antenna SA1 to SA4.
- the received signals are passed to a processing stage 18 which recovers the transmitted packet data streams and recombines the data.
- the processing stage 18 also causes other functions to be carried-out such as monitoring the quality of the downlink channels, selecting modes of operation of the antennas SA1 to SA4 and their associated receivers Rx1 to Rx4 and the transmitting of uplink signals by way of a transmitter, not shown.
- each data stream is mapped to a separate one of the antennas PA1 to PA4, which is appropriate for spatially uncorrelated radio channels.
- the mapping may take into account the quality of the downlink path between each pair of the antennas, that is one of antennas PA1 to PA4 and one of antennas SA1 to SA4.
- wanted downlink signals WS1 to WS4 are subject to the combined power of two interferers (or interfering signals) IS1 , IS2 produced by transmitters Tx21 and Tx22 of a primary station PS2 located in an adjacent cell.
- the primary station PS2 includes a data source 24 coupled to a multiplexer 26 which supplies respective data streams to the transmitters Tx21 , Tx22, each of which has an antenna PA21 , PA22.
- the combined power of the two interferers IS1 , IS2 degrades the combined wanted signal received at the secondary station SS1. In order to reduce, and preferably eliminate, the effect of these interferers, some of the receiver resources are allocated to interference cancellation.
- the secondary station SS1 has configured its receiver resources for receiving wanted downlink signals WS1 and WS3 from transmitters Tx1 and Tx3 of the primary station PS1 and is also cancelling interference from the interferers IS1 , IS2.
- the secondary station SS1 may use one or more criteria determined by the secondary station SS1 , for example, (1) level of interference in channels between pairs of interfering transmitter and receiver antennas, (2) the transfer functions of channels between pairs of transmitter and receiver antennas, (3) channel quality for selected transmission formats, (4) the secondary station selecting the antenna coefficients for virtual antennas in order to optimise some parameter or parameters (for example minimise interference, maximise expected throughput), and (5) the number (or effective number) of receive antennas at the secondary station being a dynamic quantity.
- criteria determined by the secondary station SS1 for example, (1) level of interference in channels between pairs of interfering transmitter and receiver antennas, (2) the transfer functions of channels between pairs of transmitter and receiver antennas, (3) channel quality for selected transmission formats, (4) the secondary station selecting the antenna coefficients for virtual antennas in order to optimise some parameter or parameters (for example minimise interference, maximise expected throughput), and (5) the number (or effective number) of receive antennas at the secondary station being a dynamic quantity.
- the relevant information can take a multitude of forms, for example, (a) interference level at each of the receiver antennas SA1 to SA4, (b) the interference level defined with respect to a reference, where the reference for interference could be one receive antenna, (c) interference information for selected antennas only, (d) any one of (a) to (c) above with selection of antennas based on interference (for example, lowest interference level), (e) any one of (a) to (c) above with selection of antennas based on interference after cancellation (for example lowest interference level after cancellation using one or more spare receive antennas), (f) the transfer function between each pair of transmit and receive antennas, where the transfer function could be limited to a single complex number, (g) transfer function normalised with respect to interference level at a receiving antenna, (h) transfer function defined with respect to a reference, where the reference for transfer function could be one antenna pair, (i) transfer function information for selected pairs
- the primary station in response to the uplink signals may adapt (1 ) the transmission scheme in general (for example space time coding, diversity,
- MIMO techniques mapping of data to antennas, power allocation), (2) the number of transmit antennas used, (3) the allocation of the transmit antennas, and (4) allocation of (unused) antennas to signals for other users.
- At least part of the relevant information could be signalled at the physical layer which will produce a faster response than using say the protocol layer.
- Figure 5 illustrates a simplified MIMO system with interference cancellation.
- the wanted signal is referenced “s”
- the interfering signal is referenced “i”
- the secondary station antennas are referenced "A” and "B”, respectively.
- the channel transfer functions are: hjA, hie, h SA and h SB - If the received signals at antennas A and B are combined with weights "1" and "a", respectively, the receiver output is: s.h S A + i.hjA + s.a.h S B + i.a.h iB
- the channel coefficients could be obtained by measurement of pilot symbols from each of the antennas. This approach can be extended to calculation of optimum combining weights in the presence of noise, and with more than one transmitter antenna in operation.
- the primary station In applying this concept to a combination of MIMO and HSDPA in a system such as UMTS, the primary station would select the modulation, coding scheme and other relevant characteristics to be used in the downlink for transmission to a predetermined secondary station. This selection would take into account channel information provided by the secondary station. In making the selection the primary station would decide on the use of one or more antennas and whether MIMO (or other diversity techniques) would be used.
- the channel information could be provided in terms of the received (complex) amplitude of the pilot symbols sent from the primary station, together with the interference level at the secondary station.
- the interference level at the secondary station.
- the primary station If the primary station is to make the decision on how many transmit antennas to use, it would need to know all of the channel coefficients (including those for the interferer) as well as the capability of the secondary station to cancel interference. This would require a significant signalling load.
- Allowing the secondary station to make all or some of the decisions would reduce the potential signalling load. If a particular signalled pilot amplitude is assigned to indicate a low or zero pilot amplitude, this value could also be used by the mobile to indicate that the corresponding antenna should not be used for transmission. This would allow the secondary station to at least partly determine how many transmit antennas are to be used by the primary station. Therefore the secondary station could ensure that it had sufficient resources to carry out interference cancellation (if needed). In another situation, if full MIMO is applied (using all the receiver antennas), the secondary station might determine that only part of the downlink data can be reliably recovered. If so, the secondary station may be able to use the resulting extra degree(s) of freedom to cancel interference.
- the flow chart comprises a block 30 which relates to a secondary station making measurements about its radio environment which measurements include measuring the channel characteristics between each path of the channel and measuring the characteristics of the interferers.
- Block 32 relates to the secondary station sending information about the measurements made to a primary station. This information may also include a recommendation on the transmission format to be used and/or the number of antennas or a specific choice of antennas or subset of antennas.
- Block 34 relates to the primary station making a decision on the transmission format and/or antennas to be used. In one example of making a decision the primary station follows the recommendation of the secondary station which has the advantage of reducing the amount of downlink signalling that may be necessary. In another example the primary station informs the secondary station what it is going to do which may be part or all of the secondary station's recommendation.
- block 36 relates to the secondary station deciding what to do with the received transmissions and interference and configuring its receiver resources accordingly.
- the secondary station may have more or less autonomy in the decision making.
- the present invention is aimed at a FDD mode of operation it can be applied to a TDD mode if the uplink and downlink channel use different time slots at the same frequency.
- the channel will be reciprocal and the need for the signalling of channel information reduced.
- a primary station in the above description may in practice be the responsibility of a variety of parts of the fixed infrastructure, for example a "Node B", which in UMTS is the part of the fixed infrastructure directly interfacing with a secondary station, or at a higher level in the Radio Network Controller (RNC).
- RNC Radio Network Controller
- the use of the term "primary station” should therefore to be understood to include the parts of the network fixed infrastructure involved in an embodiment of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Communication Control (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT03798276T ATE455402T1 (en) | 2002-09-28 | 2003-09-12 | PACKET DATA TRANSMISSION IN A MIMO SYSTEM |
US10/528,940 US9178600B2 (en) | 2002-09-28 | 2003-09-12 | Packet data transmission in a mimo system |
EP03798276A EP1547275B1 (en) | 2002-09-28 | 2003-09-12 | Packet data transmission in a mimo system |
AU2003259509A AU2003259509A1 (en) | 2002-09-28 | 2003-09-12 | Packet data transmission in a mimo system |
JP2004539296A JP4689271B2 (en) | 2002-09-28 | 2003-09-12 | Packet data transmission in MIMO system |
KR1020057005175A KR101224347B1 (en) | 2002-09-28 | 2003-09-12 | Packet data transmission in a mimo system |
CN038229382A CN1685631B (en) | 2002-09-28 | 2003-09-12 | Packet data transmission in a MIMO system |
DE60330975T DE60330975D1 (en) | 2002-09-28 | 2003-09-12 | |
US14/929,572 US10645709B2 (en) | 2002-09-28 | 2015-11-02 | Packet data transmission in a MIMO system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0222555.5 | 2002-09-28 | ||
GBGB0222555.5A GB0222555D0 (en) | 2002-09-28 | 2002-09-28 | Packet data transmission system |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/528,940 A-371-Of-International US9178600B2 (en) | 2002-09-28 | 2003-09-12 | Packet data transmission in a mimo system |
US14/929,572 Continuation US10645709B2 (en) | 2002-09-28 | 2015-11-02 | Packet data transmission in a MIMO system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004030238A1 true WO2004030238A1 (en) | 2004-04-08 |
Family
ID=9944941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2003/003985 WO2004030238A1 (en) | 2002-09-28 | 2003-09-12 | Packet data transmission in a mimo system |
Country Status (10)
Country | Link |
---|---|
US (2) | US9178600B2 (en) |
EP (1) | EP1547275B1 (en) |
JP (1) | JP4689271B2 (en) |
KR (1) | KR101224347B1 (en) |
CN (1) | CN1685631B (en) |
AT (1) | ATE455402T1 (en) |
AU (1) | AU2003259509A1 (en) |
DE (1) | DE60330975D1 (en) |
GB (1) | GB0222555D0 (en) |
WO (1) | WO2004030238A1 (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1643781A1 (en) * | 2004-09-30 | 2006-04-05 | Fujitsu Limited | Mobile radio communication system using grouped user equipments |
EP1650883A2 (en) * | 2004-10-22 | 2006-04-26 | Samsung Electronics Co.,Ltd. | Method for transmission scheme selection based on the number of antennas and the data rate |
JP2006148388A (en) * | 2004-11-18 | 2006-06-08 | Sony Corp | Wireless communication system, wireless communication apparatus and wireless communication method, and computer program |
WO2006113872A1 (en) * | 2005-04-19 | 2006-10-26 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
JP2009506656A (en) * | 2005-08-22 | 2009-02-12 | クゥアルコム・インコーポレイテッド | Method and apparatus for providing antenna diversity in a wireless communication system |
US7916624B2 (en) | 2000-09-13 | 2011-03-29 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US8045512B2 (en) | 2005-10-27 | 2011-10-25 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US8446892B2 (en) | 2005-03-16 | 2013-05-21 | Qualcomm Incorporated | Channel structures for a quasi-orthogonal multiple-access communication system |
US8462859B2 (en) | 2005-06-01 | 2013-06-11 | Qualcomm Incorporated | Sphere decoding apparatus |
US8477684B2 (en) | 2005-10-27 | 2013-07-02 | Qualcomm Incorporated | Acknowledgement of control messages in a wireless communication system |
US8565194B2 (en) | 2005-10-27 | 2013-10-22 | Qualcomm Incorporated | Puncturing signaling channel for a wireless communication system |
US8582548B2 (en) | 2005-11-18 | 2013-11-12 | Qualcomm Incorporated | Frequency division multiple access schemes for wireless communication |
US8582509B2 (en) | 2005-10-27 | 2013-11-12 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US8599945B2 (en) | 2005-06-16 | 2013-12-03 | Qualcomm Incorporated | Robust rank prediction for a MIMO system |
US8611284B2 (en) | 2005-05-31 | 2013-12-17 | Qualcomm Incorporated | Use of supplemental assignments to decrement resources |
US8644292B2 (en) | 2005-08-24 | 2014-02-04 | Qualcomm Incorporated | Varied transmission time intervals for wireless communication system |
US8693405B2 (en) | 2005-10-27 | 2014-04-08 | Qualcomm Incorporated | SDMA resource management |
US8879511B2 (en) | 2005-10-27 | 2014-11-04 | Qualcomm Incorporated | Assignment acknowledgement for a wireless communication system |
US8885628B2 (en) | 2005-08-08 | 2014-11-11 | Qualcomm Incorporated | Code division multiplexing in a single-carrier frequency division multiple access system |
US8917654B2 (en) | 2005-04-19 | 2014-12-23 | Qualcomm Incorporated | Frequency hopping design for single carrier FDMA systems |
US9088384B2 (en) | 2005-10-27 | 2015-07-21 | Qualcomm Incorporated | Pilot symbol transmission in wireless communication systems |
US9107207B2 (en) | 2009-09-25 | 2015-08-11 | Sony Corporation | Communication system, method, base station, and communication device |
US9130810B2 (en) | 2000-09-13 | 2015-09-08 | Qualcomm Incorporated | OFDM communications methods and apparatus |
US9137822B2 (en) | 2004-07-21 | 2015-09-15 | Qualcomm Incorporated | Efficient signaling over access channel |
US9136974B2 (en) | 2005-08-30 | 2015-09-15 | Qualcomm Incorporated | Precoding and SDMA support |
US9143305B2 (en) | 2005-03-17 | 2015-09-22 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9144060B2 (en) | 2005-10-27 | 2015-09-22 | Qualcomm Incorporated | Resource allocation for shared signaling channels |
US9148256B2 (en) | 2004-07-21 | 2015-09-29 | Qualcomm Incorporated | Performance based rank prediction for MIMO design |
US9154211B2 (en) | 2005-03-11 | 2015-10-06 | Qualcomm Incorporated | Systems and methods for beamforming feedback in multi antenna communication systems |
US9172453B2 (en) | 2005-10-27 | 2015-10-27 | Qualcomm Incorporated | Method and apparatus for pre-coding frequency division duplexing system |
US9179319B2 (en) | 2005-06-16 | 2015-11-03 | Qualcomm Incorporated | Adaptive sectorization in cellular systems |
US9184870B2 (en) | 2005-04-01 | 2015-11-10 | Qualcomm Incorporated | Systems and methods for control channel signaling |
US9209956B2 (en) | 2005-08-22 | 2015-12-08 | Qualcomm Incorporated | Segment sensitive scheduling |
US9210651B2 (en) | 2005-10-27 | 2015-12-08 | Qualcomm Incorporated | Method and apparatus for bootstraping information in a communication system |
US9225416B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Varied signaling channels for a reverse link in a wireless communication system |
US9225488B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Shared signaling channel |
US9246560B2 (en) | 2005-03-10 | 2016-01-26 | Qualcomm Incorporated | Systems and methods for beamforming and rate control in a multi-input multi-output communication systems |
US9461859B2 (en) | 2005-03-17 | 2016-10-04 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9520972B2 (en) | 2005-03-17 | 2016-12-13 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4832087B2 (en) * | 2005-01-26 | 2011-12-07 | パナソニック株式会社 | Radio base station apparatus and terminal apparatus |
WO2007064252A1 (en) * | 2005-11-29 | 2007-06-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and arrangement for improved relaying |
CN1996785B (en) * | 2006-01-06 | 2012-05-09 | 华为技术有限公司 | Forwarding system and its method for the broadband wireless access |
DE602006012279D1 (en) * | 2006-03-23 | 2010-04-01 | Imec Inter Uni Micro Electr | Communication method with adaptive connection control |
US8873585B2 (en) | 2006-12-19 | 2014-10-28 | Corning Optical Communications Wireless Ltd | Distributed antenna system for MIMO technologies |
WO2008099383A2 (en) * | 2007-02-12 | 2008-08-21 | Mobileaccess Networks Ltd. | Mimo-adapted distributed antenna system |
WO2008133576A1 (en) * | 2007-04-30 | 2008-11-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Recommending a transmission mode for a mimo -supporting ue |
EP2161852B1 (en) * | 2007-05-10 | 2014-10-01 | Alcatel Lucent | Method for uplink transmission scheduling of wireless communication system and relevant device |
KR100955818B1 (en) * | 2007-07-31 | 2010-05-06 | 삼성전자주식회사 | Apparatus and method for supportting of multi antenna service in wireless communication system |
CN101971540B (en) * | 2008-01-24 | 2014-10-22 | 爱立信电话股份有限公司 | Hs-scch orders for cqi mode selection |
CN102106162B (en) * | 2008-06-23 | 2013-06-05 | 上海贝尔股份有限公司 | Low-complexity multi-base-station MIMO method and apparatus for up-link |
EP2246992B1 (en) * | 2009-04-27 | 2015-03-18 | Alcatel Lucent | A method for uplink transmission of data from a user terminal, a base station, a coordination device, and a communication network therefor |
JP2011066874A (en) * | 2009-08-17 | 2011-03-31 | Sony Corp | Communication system, communication apparatus, communication method, and computer program |
EP3002888B1 (en) | 2010-06-23 | 2017-06-14 | Telefonaktiebolaget LM Ericsson (publ) | Reference signal interference management in heterogeneous network deployments |
KR101301302B1 (en) * | 2011-10-31 | 2013-08-28 | 주식회사 케이티 | System for processing signal and method for processing signal |
WO2013148986A1 (en) | 2012-03-30 | 2013-10-03 | Corning Cable Systems Llc | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods |
US8953482B2 (en) * | 2012-05-11 | 2015-02-10 | Intel Corporation | Methods and apparatuses to improve on-time throughput for integrated multi-rat heterogeneous networks |
WO2014085115A1 (en) | 2012-11-29 | 2014-06-05 | Corning Cable Systems Llc | HYBRID INTRA-CELL / INTER-CELL REMOTE UNIT ANTENNA BONDING IN MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) DISTRIBUTED ANTENNA SYSTEMS (DASs) |
US9525472B2 (en) | 2014-07-30 | 2016-12-20 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US9729267B2 (en) | 2014-12-11 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
US10567043B2 (en) * | 2017-02-10 | 2020-02-18 | Huawei Technologies Co., Ltd. | Antenna arrangements for interference alignment in line of sight wireless communications |
US10271260B2 (en) * | 2017-09-22 | 2019-04-23 | Dell Products L.P. | Dynamic antenna configuration on systems with spare antennas |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001076110A2 (en) | 2000-03-30 | 2001-10-11 | Qualcomm Incorporated | Method and apparatus for measuring channel state information |
EP1207645A1 (en) * | 2000-11-16 | 2002-05-22 | Lucent Technologies Inc. | Feedback technique for wireless systems with multiple transmit and receive antennas |
EP1211820A1 (en) | 2000-12-01 | 2002-06-05 | Lucent Technologies Inc. | Method for simultaneously conveying information to multiple mobiles over multiple antennas |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3987444A (en) * | 1974-08-12 | 1976-10-19 | Hazeltine Corporation | Interference rejection system for multi-beam antenna having single control loop |
DE3110602C2 (en) | 1980-03-28 | 1985-07-04 | Nippon Telegraph & Telephone Public Corp., Tokio/Tokyo | Interference compensation system |
US4736455A (en) * | 1985-12-23 | 1988-04-05 | Nippon Telegraph And Telephone Corporation | Interference cancellation system |
DE3817643C1 (en) | 1988-05-25 | 1989-06-15 | Rohde & Schwarz Gmbh & Co Kg, 8000 Muenchen, De | Arrangement for the suppression of interference signals in an adaptive antenna system |
EP0371433B1 (en) * | 1988-11-28 | 1994-10-12 | Nec Corporation | Demodulator with multiple interference cancellers responsive to correlations between undesired signals and error signals |
GB2240695B (en) | 1989-12-29 | 1994-06-08 | American Nucleonics Corp | Interference cancellation system for interference signals having an arbitrary and unknown duration and direction |
US5117505A (en) * | 1990-02-22 | 1992-05-26 | American Nucleonics Corporation | Interference cancellation system having noise reduction features and method |
US5818517A (en) * | 1993-11-12 | 1998-10-06 | Northern Telecom Limited | Broadband interference reduction |
US6037898A (en) * | 1997-10-10 | 2000-03-14 | Arraycomm, Inc. | Method and apparatus for calibrating radio frequency base stations using antenna arrays |
JP2991179B2 (en) | 1998-01-08 | 1999-12-20 | 日本電気株式会社 | CDMA multi-user receiver |
US6289004B1 (en) * | 1998-03-12 | 2001-09-11 | Interdigital Technology Corporation | Adaptive cancellation of fixed interferers |
US6067290A (en) | 1999-07-30 | 2000-05-23 | Gigabit Wireless, Inc. | Spatial multiplexing in a cellular network |
US6802035B2 (en) * | 2000-09-19 | 2004-10-05 | Intel Corporation | System and method of dynamically optimizing a transmission mode of wirelessly transmitted information |
US6917820B2 (en) * | 2001-01-26 | 2005-07-12 | Stanford University | Method and apparatus for selection and use of optimal antennas in wireless systems |
EP1255369A1 (en) * | 2001-05-04 | 2002-11-06 | TELEFONAKTIEBOLAGET LM ERICSSON (publ) | Link adaptation for wireless MIMO transmission schemes |
US6785341B2 (en) * | 2001-05-11 | 2004-08-31 | Qualcomm Incorporated | Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information |
US7047016B2 (en) * | 2001-05-16 | 2006-05-16 | Qualcomm, Incorporated | Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system |
US20020183010A1 (en) * | 2001-06-05 | 2002-12-05 | Catreux Severine E. | Wireless communication systems with adaptive channelization and link adaptation |
US20020193146A1 (en) * | 2001-06-06 | 2002-12-19 | Mark Wallace | Method and apparatus for antenna diversity in a wireless communication system |
US20030125040A1 (en) * | 2001-11-06 | 2003-07-03 | Walton Jay R. | Multiple-access multiple-input multiple-output (MIMO) communication system |
US20030109282A1 (en) * | 2001-12-06 | 2003-06-12 | Itzhak Shperling | Method and base station for providing phase-shift transmit diversity |
US7020110B2 (en) * | 2002-01-08 | 2006-03-28 | Qualcomm Incorporated | Resource allocation for MIMO-OFDM communication systems |
US20030162519A1 (en) * | 2002-02-26 | 2003-08-28 | Martin Smith | Radio communications device |
KR100464014B1 (en) * | 2002-03-21 | 2004-12-30 | 엘지전자 주식회사 | Closed -Loop Signal Processing Method of Multi Input, Multi Output Mobile Communication System |
US7012978B2 (en) * | 2002-03-26 | 2006-03-14 | Intel Corporation | Robust multiple chain receiver |
US7421039B2 (en) * | 2002-06-04 | 2008-09-02 | Lucent Technologies Inc. | Method and system employing antenna arrays |
US6968171B2 (en) * | 2002-06-04 | 2005-11-22 | Sierra Wireless, Inc. | Adaptive noise reduction system for a wireless receiver |
US7184713B2 (en) * | 2002-06-20 | 2007-02-27 | Qualcomm, Incorporated | Rate control for multi-channel communication systems |
US6907272B2 (en) * | 2002-07-30 | 2005-06-14 | UNIVERSITé LAVAL | Array receiver with subarray selection |
US20040042569A1 (en) * | 2002-09-03 | 2004-03-04 | Electro-Radiation Incorporated | Method and apparatus to provide communication protection technology for satellite earth stations |
JP3629261B2 (en) * | 2002-11-26 | 2005-03-16 | 松下電器産業株式会社 | Wireless receiver |
US8249518B2 (en) * | 2003-12-29 | 2012-08-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Network controlled feedback for MIMO systems |
JP2006067070A (en) * | 2004-08-25 | 2006-03-09 | Fujitsu Ltd | Mimo system receiving method and receiver |
-
2002
- 2002-09-28 GB GBGB0222555.5A patent/GB0222555D0/en not_active Ceased
-
2003
- 2003-09-12 US US10/528,940 patent/US9178600B2/en not_active Expired - Lifetime
- 2003-09-12 KR KR1020057005175A patent/KR101224347B1/en active IP Right Grant
- 2003-09-12 AU AU2003259509A patent/AU2003259509A1/en not_active Abandoned
- 2003-09-12 JP JP2004539296A patent/JP4689271B2/en not_active Expired - Lifetime
- 2003-09-12 CN CN038229382A patent/CN1685631B/en not_active Expired - Lifetime
- 2003-09-12 WO PCT/IB2003/003985 patent/WO2004030238A1/en active Application Filing
- 2003-09-12 EP EP03798276A patent/EP1547275B1/en not_active Expired - Lifetime
- 2003-09-12 AT AT03798276T patent/ATE455402T1/en not_active IP Right Cessation
- 2003-09-12 DE DE60330975T patent/DE60330975D1/de not_active Expired - Lifetime
-
2015
- 2015-11-02 US US14/929,572 patent/US10645709B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001076110A2 (en) | 2000-03-30 | 2001-10-11 | Qualcomm Incorporated | Method and apparatus for measuring channel state information |
EP1207645A1 (en) * | 2000-11-16 | 2002-05-22 | Lucent Technologies Inc. | Feedback technique for wireless systems with multiple transmit and receive antennas |
EP1211820A1 (en) | 2000-12-01 | 2002-06-05 | Lucent Technologies Inc. | Method for simultaneously conveying information to multiple mobiles over multiple antennas |
Non-Patent Citations (1)
Title |
---|
SANDHU S ET AL: "Near-optimal selection of transmit antennas for a MIMO channel based on shannon capacity", IEEE 2000, vol. 1, 29 October 2000 (2000-10-29), pages 567 - 571, XP010535430 * |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9426012B2 (en) | 2000-09-13 | 2016-08-23 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US7924699B2 (en) | 2000-09-13 | 2011-04-12 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US8014271B2 (en) | 2000-09-13 | 2011-09-06 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US10313069B2 (en) | 2000-09-13 | 2019-06-04 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US9130810B2 (en) | 2000-09-13 | 2015-09-08 | Qualcomm Incorporated | OFDM communications methods and apparatus |
US8098569B2 (en) | 2000-09-13 | 2012-01-17 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US8098568B2 (en) | 2000-09-13 | 2012-01-17 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US11032035B2 (en) | 2000-09-13 | 2021-06-08 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US7990844B2 (en) | 2000-09-13 | 2011-08-02 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US7990843B2 (en) | 2000-09-13 | 2011-08-02 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US7916624B2 (en) | 2000-09-13 | 2011-03-29 | Qualcomm Incorporated | Signaling method in an OFDM multiple access system |
US9148256B2 (en) | 2004-07-21 | 2015-09-29 | Qualcomm Incorporated | Performance based rank prediction for MIMO design |
US10237892B2 (en) | 2004-07-21 | 2019-03-19 | Qualcomm Incorporated | Efficient signaling over access channel |
US10849156B2 (en) | 2004-07-21 | 2020-11-24 | Qualcomm Incorporated | Efficient signaling over access channel |
US9137822B2 (en) | 2004-07-21 | 2015-09-15 | Qualcomm Incorporated | Efficient signaling over access channel |
US11039468B2 (en) | 2004-07-21 | 2021-06-15 | Qualcomm Incorporated | Efficient signaling over access channel |
US10517114B2 (en) | 2004-07-21 | 2019-12-24 | Qualcomm Incorporated | Efficient signaling over access channel |
US10194463B2 (en) | 2004-07-21 | 2019-01-29 | Qualcomm Incorporated | Efficient signaling over access channel |
US7392062B2 (en) | 2004-09-30 | 2008-06-24 | Fujitsu Limited | Mobile radio communication system |
CN100367807C (en) * | 2004-09-30 | 2008-02-06 | 富士通株式会社 | Mobile radio communication system |
EP1643781A1 (en) * | 2004-09-30 | 2006-04-05 | Fujitsu Limited | Mobile radio communication system using grouped user equipments |
EP1650883A3 (en) * | 2004-10-22 | 2007-01-03 | Samsung Electronics Co.,Ltd. | Method for transmission scheme selection based on the number of antennas and the data rate |
EP1650883A2 (en) * | 2004-10-22 | 2006-04-26 | Samsung Electronics Co.,Ltd. | Method for transmission scheme selection based on the number of antennas and the data rate |
JP2006148388A (en) * | 2004-11-18 | 2006-06-08 | Sony Corp | Wireless communication system, wireless communication apparatus and wireless communication method, and computer program |
US9246560B2 (en) | 2005-03-10 | 2016-01-26 | Qualcomm Incorporated | Systems and methods for beamforming and rate control in a multi-input multi-output communication systems |
US9154211B2 (en) | 2005-03-11 | 2015-10-06 | Qualcomm Incorporated | Systems and methods for beamforming feedback in multi antenna communication systems |
US8446892B2 (en) | 2005-03-16 | 2013-05-21 | Qualcomm Incorporated | Channel structures for a quasi-orthogonal multiple-access communication system |
US8547951B2 (en) | 2005-03-16 | 2013-10-01 | Qualcomm Incorporated | Channel structures for a quasi-orthogonal multiple-access communication system |
US9520972B2 (en) | 2005-03-17 | 2016-12-13 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9143305B2 (en) | 2005-03-17 | 2015-09-22 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9461859B2 (en) | 2005-03-17 | 2016-10-04 | Qualcomm Incorporated | Pilot signal transmission for an orthogonal frequency division wireless communication system |
US9184870B2 (en) | 2005-04-01 | 2015-11-10 | Qualcomm Incorporated | Systems and methods for control channel signaling |
US9307544B2 (en) | 2005-04-19 | 2016-04-05 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
US8917654B2 (en) | 2005-04-19 | 2014-12-23 | Qualcomm Incorporated | Frequency hopping design for single carrier FDMA systems |
US9036538B2 (en) | 2005-04-19 | 2015-05-19 | Qualcomm Incorporated | Frequency hopping design for single carrier FDMA systems |
WO2006113872A1 (en) * | 2005-04-19 | 2006-10-26 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
JP2008538487A (en) * | 2005-04-19 | 2008-10-23 | クゥアルコム・インコーポレイテッド | Channel quality reporting for adaptive sectorization. |
KR100956493B1 (en) * | 2005-04-19 | 2010-05-07 | 콸콤 인코포레이티드 | Channel quality reporting for adaptive sectorization |
US9408220B2 (en) | 2005-04-19 | 2016-08-02 | Qualcomm Incorporated | Channel quality reporting for adaptive sectorization |
US8611284B2 (en) | 2005-05-31 | 2013-12-17 | Qualcomm Incorporated | Use of supplemental assignments to decrement resources |
US8462859B2 (en) | 2005-06-01 | 2013-06-11 | Qualcomm Incorporated | Sphere decoding apparatus |
US8599945B2 (en) | 2005-06-16 | 2013-12-03 | Qualcomm Incorporated | Robust rank prediction for a MIMO system |
US9179319B2 (en) | 2005-06-16 | 2015-11-03 | Qualcomm Incorporated | Adaptive sectorization in cellular systems |
US9693339B2 (en) | 2005-08-08 | 2017-06-27 | Qualcomm Incorporated | Code division multiplexing in a single-carrier frequency division multiple access system |
US8885628B2 (en) | 2005-08-08 | 2014-11-11 | Qualcomm Incorporated | Code division multiplexing in a single-carrier frequency division multiple access system |
JP2009506656A (en) * | 2005-08-22 | 2009-02-12 | クゥアルコム・インコーポレイテッド | Method and apparatus for providing antenna diversity in a wireless communication system |
US9860033B2 (en) | 2005-08-22 | 2018-01-02 | Qualcomm Incorporated | Method and apparatus for antenna diversity in multi-input multi-output communication systems |
US9209956B2 (en) | 2005-08-22 | 2015-12-08 | Qualcomm Incorporated | Segment sensitive scheduling |
US9660776B2 (en) | 2005-08-22 | 2017-05-23 | Qualcomm Incorporated | Method and apparatus for providing antenna diversity in a wireless communication system |
US9240877B2 (en) | 2005-08-22 | 2016-01-19 | Qualcomm Incorporated | Segment sensitive scheduling |
US9246659B2 (en) | 2005-08-22 | 2016-01-26 | Qualcomm Incorporated | Segment sensitive scheduling |
US8644292B2 (en) | 2005-08-24 | 2014-02-04 | Qualcomm Incorporated | Varied transmission time intervals for wireless communication system |
US8787347B2 (en) | 2005-08-24 | 2014-07-22 | Qualcomm Incorporated | Varied transmission time intervals for wireless communication system |
US9136974B2 (en) | 2005-08-30 | 2015-09-15 | Qualcomm Incorporated | Precoding and SDMA support |
US9144060B2 (en) | 2005-10-27 | 2015-09-22 | Qualcomm Incorporated | Resource allocation for shared signaling channels |
US8842619B2 (en) | 2005-10-27 | 2014-09-23 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US9225416B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Varied signaling channels for a reverse link in a wireless communication system |
US8582509B2 (en) | 2005-10-27 | 2013-11-12 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US9088384B2 (en) | 2005-10-27 | 2015-07-21 | Qualcomm Incorporated | Pilot symbol transmission in wireless communication systems |
US8565194B2 (en) | 2005-10-27 | 2013-10-22 | Qualcomm Incorporated | Puncturing signaling channel for a wireless communication system |
US9210651B2 (en) | 2005-10-27 | 2015-12-08 | Qualcomm Incorporated | Method and apparatus for bootstraping information in a communication system |
US9172453B2 (en) | 2005-10-27 | 2015-10-27 | Qualcomm Incorporated | Method and apparatus for pre-coding frequency division duplexing system |
US8879511B2 (en) | 2005-10-27 | 2014-11-04 | Qualcomm Incorporated | Assignment acknowledgement for a wireless communication system |
US10805038B2 (en) | 2005-10-27 | 2020-10-13 | Qualcomm Incorporated | Puncturing signaling channel for a wireless communication system |
US8477684B2 (en) | 2005-10-27 | 2013-07-02 | Qualcomm Incorporated | Acknowledgement of control messages in a wireless communication system |
US8693405B2 (en) | 2005-10-27 | 2014-04-08 | Qualcomm Incorporated | SDMA resource management |
US8045512B2 (en) | 2005-10-27 | 2011-10-25 | Qualcomm Incorporated | Scalable frequency band operation in wireless communication systems |
US9225488B2 (en) | 2005-10-27 | 2015-12-29 | Qualcomm Incorporated | Shared signaling channel |
US8681764B2 (en) | 2005-11-18 | 2014-03-25 | Qualcomm Incorporated | Frequency division multiple access schemes for wireless communication |
US8582548B2 (en) | 2005-11-18 | 2013-11-12 | Qualcomm Incorporated | Frequency division multiple access schemes for wireless communication |
US9831990B2 (en) | 2009-09-25 | 2017-11-28 | Sony Corporation | Communication system, method, base station, and communication device |
US9107207B2 (en) | 2009-09-25 | 2015-08-11 | Sony Corporation | Communication system, method, base station, and communication device |
Also Published As
Publication number | Publication date |
---|---|
US9178600B2 (en) | 2015-11-03 |
JP4689271B2 (en) | 2011-05-25 |
DE60330975D1 (en) | 2010-03-04 |
EP1547275A1 (en) | 2005-06-29 |
US10645709B2 (en) | 2020-05-05 |
CN1685631A (en) | 2005-10-19 |
US20160073419A1 (en) | 2016-03-10 |
KR20050060076A (en) | 2005-06-21 |
ATE455402T1 (en) | 2010-01-15 |
GB0222555D0 (en) | 2002-11-06 |
EP1547275B1 (en) | 2010-01-13 |
KR101224347B1 (en) | 2013-03-19 |
JP2006500852A (en) | 2006-01-05 |
US20060046662A1 (en) | 2006-03-02 |
AU2003259509A1 (en) | 2004-04-19 |
CN1685631B (en) | 2010-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10645709B2 (en) | Packet data transmission in a MIMO system | |
US9635599B2 (en) | System, method, and devices for multi-path communication | |
JP5120700B2 (en) | MIMO radio communication system and method using a plurality of base stations and mobile stations | |
US9936496B2 (en) | Allocation of sub-channels of MIMO channels using a basestation with a plurality of sectors | |
EP1830509B1 (en) | Method and apparatus for allocating resources in a multiple-input multiple-output (MIMO) communication system | |
KR101084831B1 (en) | Method and apparatus in a mimo based communication system | |
EP1386421B1 (en) | Radio communication system | |
EP1650883A2 (en) | Method for transmission scheme selection based on the number of antennas and the data rate | |
US20100046462A1 (en) | Wireless communication system | |
US9025549B2 (en) | Access point and interference control method | |
KR20050120806A (en) | Methods and apparatus of enhancing performance in wireless communication systems | |
WO2006006826A1 (en) | Apparatus and method for beamforming in a multi-antenna system | |
KR20100046338A (en) | Device and method for precoding beam by channel sensitive scheduling in wireless communication system | |
US8971793B2 (en) | Apparatus and method for transmitting and receiving data in a communication system | |
KR101231912B1 (en) | method and transmitter for modifying beamforming vector iteratively | |
JP4869407B2 (en) | MIMO communication system | |
EP1929662B1 (en) | Data transmission scheme in wireless communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003798276 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006046662 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10528940 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038229382 Country of ref document: CN Ref document number: 1020057005175 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004539296 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057005175 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003798276 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10528940 Country of ref document: US |