WO2004030067A1 - Ozone processing apparatus - Google Patents

Ozone processing apparatus Download PDF

Info

Publication number
WO2004030067A1
WO2004030067A1 PCT/JP2003/012112 JP0312112W WO2004030067A1 WO 2004030067 A1 WO2004030067 A1 WO 2004030067A1 JP 0312112 W JP0312112 W JP 0312112W WO 2004030067 A1 WO2004030067 A1 WO 2004030067A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing gas
substrate
cooling fluid
flow path
mounting table
Prior art date
Application number
PCT/JP2003/012112
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Kikuchi
Takeo Yamanaka
Yukitaka Yamaguchi
Tokiko Kanayama
Original Assignee
Sumitomo Precision Products Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co., Ltd. filed Critical Sumitomo Precision Products Co., Ltd.
Priority to JP2004539484A priority Critical patent/JPWO2004030067A1/en
Publication of WO2004030067A1 publication Critical patent/WO2004030067A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02054Cleaning before device manufacture, i.e. Begin-Of-Line process combining dry and wet cleaning steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • a processing gas containing at least ozone is blown onto a substrate surface such as a semiconductor substrate or a liquid crystal substrate to form an oxide film on the substrate surface or to form an oxide film formed on the substrate surface.
  • the present invention relates to an ozone treatment apparatus for modifying and further removing a resist film formed on a substrate surface.
  • the ozone treatment apparatus has a predetermined internal volume, a processing chamber having an open top, a lid provided so as to close an upper opening of the processing chamber, and disposed in the processing chamber. It comprises a mounting table on which a substrate is mounted on the upper surface, lifting means for supporting the lower surface of the mounting table and elevating the same, and a processing gas supply head disposed above the mounting table.
  • the gas in the processing chamber is appropriately discharged from the discharge port to the outside.
  • the mounting table has a built-in heater, and the substrate mounted thereon is heated by the heater. .
  • the processing gas supply head 100 is fixed to a block-shaped head main body 101 and a lower surface of the head main body 101 so as to hang therefrom.
  • FIG. 9 is a cross-sectional view showing a part of a processing gas supply head according to a conventional example.
  • the head body 101 has an ozone gas passage 103 and a coolant passage 1.
  • An ozone gas generation device (not shown) is connected to the ozone gas flow path 103, and a cooling liquid circulation device (not shown) is connected to the cooling liquid flow path 104. It is connected.
  • the head main body 101 has a plurality of communication holes 105 communicating with the ozone gas flow passage 103 and opening to the lower surface of the head main body 101. .
  • Each of the nozzle bodies 102 is formed of a tubular member.
  • An upper opening 102 a is connected to each of the communication holes 105, while a lower opening 102 b is a substrate K. Each faces the surface.
  • the substrate K when the substrate K is appropriately mounted on a mounting table (not shown), the substrate K is heated to a predetermined temperature by a heater (not shown).
  • the mounting table (not shown) is raised by elevating means (not shown) so that the substrate K and the lower opening 102 b of the nozzle body 102 are separated from each other by a predetermined distance.
  • a coolant is supplied and circulated from a coolant circulating device (not shown) to the coolant passage 104, and the head body 101 is cooled by the coolant.
  • ozone gas processing gas
  • an ozone gas generation device not shown
  • the ejected ozone gas collides with the substrate K and forms an ozone gas layer flowing along the substrate K.
  • the ozone (O 3 ) is heated by the substrate K, However, it comes into contact with the substrate K or the resist and is decomposed into oxygen (O 2 ) and active oxygen (O *), and the active oxygen (O *) forms an oxide film on the surface of the substrate K, Alternatively, the oxide film on the substrate K surface is modified, The formed resist film is removed by a thermochemical reaction with active oxygen (O *).
  • the temperature of the atmosphere in the processing chamber (not shown) is raised by a heater (not shown) and becomes high. Therefore, the temperature of the atmosphere and the heat radiated from the heated substrate K may be reduced. As a result, the head body 101 is heated up, but the head body 101 is cooled by the coolant flowing through the coolant passage 104.
  • the ozone gas flowing through the ozone gas flow path 103 is cooled by the coolant, and the temperature is maintained within a certain range. This prevents thermal decomposition of ozone due to a rise in temperature, and prevents a decrease in ozone concentration in the ozone gas.
  • the head body 101 and each nozzle body 102 are provided integrally, and not only the head body 101 but also each nozzle body 102 Is cooled by the cooling liquid, so that the ozone gas is not only cooled when flowing through the ozone gas flow passage 103 of the head body 101 but also the nozzle body 10 is cooled.
  • the cooling state is maintained even when flowing through the inside of 2. Therefore, the ozone gas is discharged from the opening 102b of the nozzle body 102 toward the surface of the substrate K at a low temperature.
  • each nozzle body 102 is installed with its opening 102 b as close to the surface of the substrate K as possible. For this reason, when low-temperature ozone gas is discharged from the nozzle body 102, it takes a long time for the temperature of the ozone after discharge to reach the thermal decomposition temperature, and the ozone gas immediately below each nozzle body 102 On the surface of the substrate K, sufficient active oxygen (O *) was not generated, causing problems such as uneven processing and inefficient processing.
  • the substrate K is cooled by the nozzle body 102, which also activates the active oxygen (O * ) Is less likely to be produced, and the processing speed of the substrate K will decrease. If the temperature of the nozzle body 102 drops to about 150 ° C or less, the registry removed from the surface of the substrate K A large amount of particles adhered to the outer peripheral surface of the body 102, causing problems such as the generation of a large number of particles and an increase in maintenance frequency.
  • the substrate K Since the opposite plate 106 is cooled together with the substrate 2, the substrate K is cooled by the opposite plate 106 to reduce the processing speed of the substrate K, or the resist removed from the surface of the substrate K becomes the opposite plate 106. There was a drawback that it adhered to the lower surface (opposite surface) or upper surface of 6 and was easily contaminated.
  • the present invention has been made in view of the above circumstances, and provides an ozone treatment apparatus that can efficiently treat a substrate surface without unevenness and can prevent adhesion of a removed registry. Aim. Disclosure of the invention
  • the present invention provides a mounting table on which a substrate is mounted on an upper surface
  • a processing gas supply head disposed above the mounting table, wherein ozone A head main body having a processing gas flow path through which a processing gas containing: and a cooling fluid flow path through which a cooling fluid flows; and a head body fixed to the lower surface of the head body so as to hang therefrom,
  • a processing gas supply head comprising a nozzle body having a processing gas discharge path communicating with the processing gas flow path and opening toward the upper surface of the substrate on the mounting table;
  • Gas supply means for supplying the processing gas to the processing gas flow path and discharging the processing gas from the opening of the nozzle body;
  • a cooling fluid circulation means for supplying and circulating a cooling fluid to the cooling fluid flow path
  • An ozone treatment apparatus is characterized in that the nozzle body is made of a material having a heat insulating property.
  • the cooling fluid is supplied and circulated to the cooling fluid flow path of the head body by the cooling fluid circulating means, and the processing gas containing ozone is supplied from the gas supply means to the processing gas flow path, It is discharged toward the substrate surface from the opening of the processing gas discharge path of the nozzle body communicating with the processing gas flow path.
  • the substrate mounted on the mounting table is heated by a heating unit.
  • the discharged processing gas collides with the substrate and forms a processing gas layer flowing along the substrate, and in such a flow, the ozone (o 3 ) is heated by the substrate and is thus heated.
  • the ozone (o 3 ) is heated by the substrate and is thus heated.
  • it comes into contact with a substrate or a resist, it is decomposed into oxygen (o 2 ) and active oxygen (o *), and an oxide film is formed on the substrate surface by the active oxygen (o *).
  • the oxide film of the substrate is modified, and the resist film formed on the substrate surface is removed by a thermochemical reaction with active oxygen.
  • the processing gas flowing through the nozzle body Is in a state of being cooled to just before discharge by the cooling fluid for cooling the head body, and it takes a long time for the temperature of ozone after discharge to rise to the pyrolysis temperature.
  • the temperature of the nozzle body itself is also low.
  • the nozzle body cools the substrate, which also makes it difficult for active oxygen (O *) to be generated, thereby reducing the processing speed of the substrate.
  • the temperature of the nozzle body is reduced to about 150 °. If the temperature drops below C, there is a problem that a large amount of the resist removed from the substrate surface adheres to the outer peripheral surface of the nozzle body.
  • the nozzle body is made of a material having heat insulating properties so that heat conduction between the head body and the nozzle body hardly occurs.
  • the head body is cooled by the cooling fluid flowing through the cooling fluid flow path, but the nozzle body is not cooled, and conversely, from the atmosphere heated by the heating means or from the heated substrate.
  • the temperature is raised by radiation heat.
  • the processing gas flowing in the processing gas flow path of the head body is cooled by the cooling fluid and its temperature is maintained within a certain range. Is prevented, and a decrease in the ozone concentration in the processing gas is prevented.
  • the processing gas flowing through the processing gas discharge path of the nozzle body is heated by the heated nozzle body, and a part of the processing gas is decomposed into oxygen and active oxygen. Since the liquid is discharged from the opening toward the surface of the substrate, a sufficient amount of active oxygen (O *) is generated when the liquid reaches the surface of the substrate.
  • the substrate surface can be treated uniformly and efficiently.
  • a high-temperature processing gas is sprayed on the substrate.
  • the substrate is also prevented from being cooled by the rise in the temperature of the nozzle body. Further, it is possible to prevent the resist removed from the surface of the substrate from adhering to the outer peripheral surface of the nozzle body and contaminating the same, thereby facilitating maintenance.
  • a heat insulating member is interposed between the nozzle body and the head body, that is, the lower surface of the head body is interposed via the heat insulating member. It is preferable to dispose a nozzle body in this case, and the same effect as described above can be obtained in this case.
  • an opposing plate disposed so as to oppose an upper surface of the substrate on the mounting table is fixed to a lower end portion of the nozzle body, and the gas discharge path is connected to the opposing plate.
  • the nozzle body and the opposing plate are made of a material having a heat insulating property, or a heat insulating member is provided between the nozzle body and the head body in the same manner as described above. An interposed configuration can be used.
  • the layer pressure of the ozone gas flow flowing along the upper surface of the substrate is controlled by the opposing plate opposing the upper surface of the substrate, and the distance between the upper surface of the substrate and the opposing plate is appropriately adjusted.
  • the ratio of ozone molecules that can reach the upper surface of the substrate can be increased, and thus, efficient ozone treatment can be performed.
  • the nozzle body and the opposed plate are insulated from the head main body, they are not cooled by the cooling fluid flowing through the cooling fluid flow path of the head main body, so that the heated atmosphere and However, the temperature is raised by the radiation heat from the heated substrate and the temperature becomes high.
  • an ozone treatment apparatus is characterized in that the treatment gas supply head is provided so as to face the upper surface of the substrate on the mounting table, and has a through-hole vertically penetrating therethrough; A support member for connecting the opposing plate to the lower surface of the head body; and a nozzle member fixedly mounted on the head body such that a lower end portion of the nozzle body is inserted into a through hole of the opposing plate.
  • At least the opposing plate and the support member are made of a heat-insulating material, or at least one of the heat insulating member is provided between the support member and the head body or at the other between the opposing plate and the support member. May be interposed. It is preferable that the opposing plate is arranged such that the lower end of the nozzle body is located above the lower surface of the opposing plate.
  • the opposing plate is insulated from the head main body, and is not cooled by the cooling fluid flowing through the cooling fluid flow path of the head main body.
  • the substrate is cooled by the opposing plate, and the resist removed from the substrate surface is re-adhered to the lower or upper surface of the opposing plate. Can be prevented.
  • a lower surface is a heat reflecting surface, for example, a heat reflecting plate made of stainless steel or the like is provided between the head body and the opposing plate, the radiation heat passing from the substrate to the opposing plate is reduced. Then, the heat is reflected by the heat reflecting surface of the heat reflecting plate to irradiate the upper surface of the opposing plate, and the radiant heat further raises the temperature of the opposing plate, so that the substrate is more difficult to cool and the resist is more attached to the opposing plate. It is preferable because it is difficult to perform.
  • Preferred examples of the material of the heat insulating member and the material having the heat insulating property include a fluororesin represented by polytetrafluoroethylene and a ceramic.
  • Suitable materials other than the above-mentioned heat-insulating material for the facing plate include stainless steel, silicon, aluminum alloy and titanium alloy. it can.
  • the opposing plate may be composed of a single plate or a plurality of plates arranged side by side on the same plane.
  • the shape thereof is not limited at all, and may be a triangle or a square. , Besides hexagonal, circular or oval may be used.
  • the opposing plate and the nozzle body may be formed integrally as one member, or may be formed of two members.
  • the heating temperature of the substrate is preferably in the range of 200 ° C. to 500 ° C. Within this range, the impurities contained in the substrate can be evaporated at the same time as the above processing.
  • the processing gas is suitably those containing 1 4 wt% or more O zone down, ozone and TEOS (Tetr aethy lor thos i I i cate, Gay San ⁇ Toraechiru, S i (C 2 H 5 0 )
  • TEOS Tetr aethy lor thos i I i cate, Gay San ⁇ Toraechiru, S i (C 2 H 5 0 )
  • the mixed gas of 4 may be used.
  • FIG. 1 is a sectional view showing a schematic configuration of an ozone treatment apparatus according to one embodiment of the present invention.
  • FIG. 2 is a bottom view in the direction of arrow A in FIG. 1
  • FIG. 3 is a cross-sectional view in the direction of arrow B—B in FIG. 1
  • FIG. 5 is a bottom view in the direction of arrow C in FIG.
  • FIG. 5 is a cross-sectional view taken along the line DD in FIG. 3
  • FIGS. 6 to 8 are a part of a processing gas supply head according to another embodiment of the present invention.
  • FIG. 9 and 10 are sectional views showing a part of a processing gas supply head according to a conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
  • BEST MODE FOR CARRYING OUT THE INVENTION BEST MODE FOR CARRYING OUT THE INVENTION
  • an ozone treatment apparatus 1 of the present example has a predetermined internal volume, is provided so as to close a processing chamber 10 having an open upper part, and an upper opening of the processing chamber 10.
  • It comprises a lifting device 15 for raising and lowering the support device 25 in the vertical direction, and a processing gas supply head 30 disposed above the mounting table 20. Gas is discharged to the outside through an appropriate outlet (not shown).
  • the mounting table 20 is composed of an upper member 21 on which a substrate K is mounted on a flat upper surface, and a lower member 22 provided thereunder.
  • the bottom surface of the lower member 22 is a supporting device 25.
  • a heater (not shown) is provided between the upper member 21 and the lower member 22, and the heater (not shown) allows the substrate placed on the upper surface of the upper member 21.
  • K is heated to a predetermined temperature.
  • a suitable material for the upper member 21 and the lower member 22 aluminum or the like can be used. However, when the heating temperature of the substrate K is extremely high (for example, when the substrate K is heated to 500 ° C.), it is preferable to use stainless steel having excellent heat resistance.
  • the support device 25 is provided at a predetermined interval with a first support mechanism 26 fixedly supported at the center of the bottom surface of the lower member 22 and supporting the same.
  • the second support mechanism 27 will not be described in detail for its structure.
  • the vertical support position for supporting the mounting table 20 can be adjusted. By appropriately adjusting the supporting position, the bending and distortion generated in the mounting table 20 can be corrected. However, the flatness of the upper surface can be adjusted to an appropriate one.
  • stainless steel having excellent heat resistance can be used. Further, since the base 28 is formed of a hollow square pipe, its weight can be reduced.
  • a heat reflecting plate 18 is provided at a position above the base 28 so as to face the bottom surface of the mounting table 20 (lower member 22).
  • the heat reflecting plate 18 is fixed on a base 28 via a fixing member 19. Thereby, it is possible to suppress a rise in the temperature of the base 28 due to radiation heat from the mounting table 20.
  • stainless steel having excellent heat resistance can be used as a suitable material of the heat reflecting plate 18.
  • the elevating device 15 includes an elevating rod 16 provided through the bottom of the processing chamber 10, and the elevating rod 16 supports a base 28 via a support member 17.
  • the support device 25 and the mounting table 20 are raised and lowered by the operation of the lifting device 15.
  • the lifting device 15 is composed of a pneumatic cylinder and an electric cylinder.
  • a tip is sharply formed, and a plurality of support needles 12 on which the substrate K is temporarily placed are provided upright at the tip thereof.
  • the mounting table 20 is inserted into a through hole (not shown) formed in the mounting table 20, and its tip projects upward from the upper surface of the mounting table 20.
  • the support needles 12 are erected at positions corresponding to the lattice holes of the base 28, and are provided in through holes (not shown) formed in the heat reflection plate 18. Is also being communicated.
  • the support needles 12 are moved to the mounting table 20.
  • the substrate K is placed on the mounting table 20 (upper member 21).
  • the elevating device 15 is mounted on the mounting table 20 so that when the mounting table 20 is located at the rising end, a gap g between the lower surface of the opposing plate 41 described later and the surface of the substrate K becomes a predetermined interval.
  • the processing gas supply head 30 is provided so as to surround the block-shaped head body 31 and the head body 31.
  • a plurality of nozzle bodies 40 fixed so as to hang down from the lower surface of the apparatus, and supported by a suspending device 60 in a state of being suspended downward from the lid 11. Note that the nozzle body 40 is disposed over the entire lower surface of the head body 31, but FIG. 4 shows only a part of the nozzle body 40.
  • a plurality of zigzag grooves are formed on the upper surface of the head body 31, and a coolant pipe 47 is respectively formed in each of the grooves (not shown). It is buried.
  • the coolant is supplied from a coolant circulating device 46 into the coolant pipe 47 so that the coolant can circulate.
  • a plurality of ozone gas flow paths 32 penetrating from the end to the other end, and a plurality of communication holes 33 communicating with the ozone gas flow path 32 and opening on the lower surface of the head body 31 are respectively formed.
  • the fixing plate 35 is provided with an ozone gas supply hole 36, the ozone gas supply hole 36 and one end opening of each of the ozone gas flow paths 32.
  • a plurality of connection holes 37 are formed to connect with each other.
  • the ozone gas (processing gas) having a predetermined concentration generated by the ozone gas generator 45 is supplied to 36 from the ozone gas generator 45.
  • the other end opening of each ozone gas flow path 32 is sealed with a fixing plate 35.
  • Each of the nozzle bodies 40 is formed of a tubular member having an internal space functioning as an ozone gas discharge passage, and upper openings 40a are respectively connected to the communication holes 33, while lower nozzles 40 are connected to the respective communication holes 33.
  • the openings 40b face the substrate K surface, respectively.
  • each nozzle body 40 At the lower end of each nozzle body 40, an opposing plate 41 having a hexagonal shape in plan view, which is arranged in the same plane so as to oppose the substrate K, is fixedly provided. A predetermined gap 42 is formed between the counter plate 41 and the counter plate 41. Suitable materials for the opposing plate 41 include, for example, stainless steel, silicon, an aluminum alloy, and a titanium alloy. Also, the upper end of each nozzle body 40 and the lower surface of the head body 31 may be used. An annular heat insulating member 50 is interposed therebetween, and each nozzle body 40 is fixed to the lower surface of the head body 31 via the heat insulating member 50. That is, each nozzle body
  • a heat insulating member 51 is also interposed between the fixing member 43 for attaching each nozzle body 40 to the head body 31 and the nozzle body 31.
  • the fixing member 43 is made of a material having extremely low thermal conductivity. In this case, it is possible to ensure heat insulation between each nozzle body 40 and the head body 31 without providing the heat insulating member 51.
  • the heat reflecting plate 55 is made of stainless steel or the like, and the lower surface thereof is mirror-finished, and radiant heat from the substrate K passing between the opposing plates 41, 41 is applied to the upper surface of the opposing plate 41. Reflect toward.
  • the head body 31 is cooled by the coolant flowing through the coolant pipe 47, the nozzle body 40 and the opposing plate 41 are cooled by the coolant.
  • the temperature is raised by the atmosphere heated by a heater (not shown) or by the radiant heat from the heated substrate K.
  • the opposing plate 41 is also heated by radiation heat from the substrate K reflected by the heat reflecting plate 55, and the temperature is further increased.
  • suitable materials for the heat insulating members 50 and 51 include fluororesins typified by polytetrafluoroethylene, ceramics, glass, quartz, and the like. Regarding 0, it is preferable that this is made of a material having as small a thermal conductivity as possible.
  • the suspension device 60 includes a first suspension mechanism 61 that supports the center of the upper surface of the head body 31 and a plurality of second suspension mechanisms 6 that support a plurality of end portions of the fixed plate 35. Consists of two.
  • the head body 31 and the fixed plate 35 are moved upward.
  • the head body 31 and the fixing plate 35 and the relative positional relationship between the lid 11 and the head body 31 and the fixing plate 35 can be adjusted.
  • the attitude of the processing gas supply head 30 is adjusted so that the opposing plate 41 assumes a horizontal attitude without being affected by the deformation of the lid 11. You can do it.
  • the ozone treatment apparatus 1 of the present example configured as described above, first, the substrate K is placed on the support needle 12 by appropriate means. At this time, the position of the mounting table 20 is located at the lower end. The coolant is supplied and circulated from the coolant circulation device 46 into the coolant tube 47.
  • the support needles 12 relatively sink with respect to the mounting table 20, and the substrate K is placed on the mounting table 20.
  • the mounting table 20 reaches the rising end position, and the gap g between the lower surface of the opposing plate 41 and the surface of the substrate K becomes a predetermined gap.
  • the substrate K mounted on the mounting table 20 is heated to a predetermined temperature by a heater (not shown).
  • the ozone gas of a predetermined concentration is supplied from the ozone gas generator 45 to the ozone gas supply hole 36, each connection hole 37, and each ozone!
  • the gas is supplied to each nozzle body 40 through the gas passage 32 and each communication hole 33 sequentially, and is discharged from the lower opening 40b toward the surface of the substrate K.
  • the ejected ozone gas collides with the substrate K and forms an ozone gas layer flowing along the substrate K.
  • the ozone (O 3 ) is heated by the substrate K and thus heated.
  • oxygen (O 2 ) and active oxygen (O *) When it comes into contact with the substrate K or the resist, it is decomposed into oxygen (O 2 ) and active oxygen (O *), and the active oxygen (o *) forms an oxide film on the surface of the substrate K, or
  • the oxide film on the surface of the substrate K is modified, and the resist film formed on the surface of the substrate K is removed by a thermochemical reaction with active oxygen.
  • the layer pressure of the ozone gas flow flowing along the surface of the substrate K can be controlled.
  • the ratio of ozone molecules that can reach the surface of the substrate K can be increased, and efficient ozone treatment can be performed.
  • the ozone gas discharged from each nozzle body 40 and flowing along the substrate K thereafter collides with each other and flows toward the gap 42 between the opposed plates 41, and the ozone gas flows from the gap 42 to the opposed plate. Air is exhausted from the back (upper) side of 41, that is, from between the substrate K and the opposing plate 41.
  • the ozone gas flowing through the nozzle body 40 cools the head body 31. Since it takes a long time for the ozone after being discharged to reach the pyrolysis temperature after the ozone is heated up to the thermal decomposition temperature, the surface of the substrate K immediately below each nozzle body 40 is cooled by the cooling liquid. However, sufficient active oxygen (O *) is not generated, resulting in uneven processing and inefficient processing, and a decrease in the temperature of the nozzle body 40 and the facing plate 41 itself.
  • the substrate K is cooled by the nozzle body 40 and the opposing plate 41, which also makes it difficult for active oxygen (O *) to be generated, thereby lowering the processing speed of the substrate K. Further, the resist removed from the surface of the substrate K is kept at a low temperature. Cooled in contact with the nozzle body 4 0 and the counter plate 4 1 in the state, there is liable to adhere to the outer peripheral surface and the facing plate 4 1 of the lower surface (opposing surface) or the top surface of the nozzle body 4 0. In particular, when the temperature of the nozzle body 40 drops to about 150 ° C. or less, a large amount of the resist re-adheres to the nozzle body 40.
  • a heat insulating member 50 is interposed between the head body 31 and the nozzle body 40, and a heat insulating member is provided between the nozzle body 40 and the fixing member 43. 5 1 With the head body 3 1 and nozzle body 4 0 Insulation between them. As a result, the head body 31 is cooled by the coolant flowing through the coolant pipe 47, but the nozzle body 40 is insulated from the head body 31 so that the nozzle body 40 is cooled by the coolant. Conversely, the temperature is raised by the atmosphere heated by a heater (not shown) or by the radiant heat from the heated substrate K.
  • the ozone gas flowing through each ozone gas flow path 32 of the head body 31 is cooled by the coolant, and its temperature is maintained within a certain range. Thermal decomposition of ozone is prevented, and a decrease in ozone concentration in ozone gas is prevented.
  • the ozone gas flowing through the nozzle body 31 is heated by the heated nozzle body 40 and discharged toward the substrate K in a state where a part of the ozone gas is decomposed into oxygen and active oxygen. When this reaches the surface of the substrate K, a sufficient amount of active oxygen (O *) has been generated. As a result, the surface of the substrate K is uniformly and uniformly processed.
  • the high-temperature ozone gas is blown onto the substrate K, the cooling of the substrate K by the ozone gas is prevented.
  • the temperature of the nozzle body 40 is too high, a large amount of ozone is thermally decomposed in the process of passing through the nozzle body 40, and conversely, the processing speed is reduced.
  • heat insulation is provided between the head body 31 and the nozzle body 40, and a heat reflection plate 55 is provided between the facing plate 41 and the head body 31 so that the facing plate 41, Since the radiation heat from the board passing through the space 41 is reflected by the heat reflecting plate 55 toward the upper surface of the facing plate 41, the facing plate 41 can be heated to a high temperature.
  • the substrate K is cooled by the opposed plate 41 and the nozzle body 40 can be prevented.
  • the resist removed from the surface of the base plate K adheres to the outer peripheral surface of the nozzle body 40 or the lower surface (opposed surface) or upper surface of the opposing plate 41, it is difficult for the maintenance to occur. Nonce can be facilitated.
  • the heating temperature of the substrate K is preferably in the range of 200 ° C. to 500 ° C. Within this range, the impurities contained in the substrate K can be evaporated at the same time as the above processing. Further, the ozone gas, 1 4 those containing% by weight or more of ozone are preferred, ozone and TEOS gas mixture of (Tetraethyl ortho si I icate, Gay Sante Toraechiru, S i (C 2 H 5 0) 4) It may be.
  • a heat insulating member 50 is interposed between the head body 31 and the nozzle body 40, and a heat insulating member 51 is interposed between the nozzle body 40 and the fixing member 43.
  • the heat insulation between the head body 31 and the nozzle body 40 is configured, the invention is not limited to this.
  • the heat insulation members 50 and 51 are not interposed.
  • the nozzle body 80 and the opposing plate 81 may be made of a material having heat insulating properties, and the nozzle body 80 may be directly attached to the head body 31 by a fixing member 43. The same effect as above can be obtained.
  • the nozzle body 80 and the opposing plate 81 are preferably made of fluororesin represented by polytetrafluoroethylene, ceramic, glass, quartz, or the like.
  • the opposed plate 41 is fixed to the lower end of each nozzle body 40.
  • the present invention is not limited to this, and as shown in FIG. 0 may be fixed to the lower surface of the head body 31 by a plurality of support members 71.
  • a through hole 70a is formed in each of the opposed plates 70, and a lower end portion of the nozzle body 40 is fitted into the through hole 70a.
  • each opposing plate 70 is They are arranged so that the lower end is located above the lower surface of the opposing plate 70 and a predetermined gap 73 is formed between each adjacent opposing plate 70.
  • Insulating members 72 and 74 are interposed between the head body 31 and each support member 71, and between the opposing plate 70 and each support member 71, respectively. Each of the support members 71 and each of the facing plates 70 are not cooled by the cooling liquid flowing through the liquid pipe 47.
  • the heat insulating members 72 and 74 are disposed between the head body 31 and each support member 71 and between each opposing plate 70 and each support member 71. It is also possible to interpose only one of the head body 31 and each support member 71 or the one between each opposing plate 70 and each support member 71. .
  • the nozzle body 41 does not necessarily have to be insulated by the heat insulating members 50 and 51, but in this case, only the opposing plate 70 is insulated and the nozzle body 40 is cooled. Therefore, it is preferable that the nozzle body 41 be insulated by the heat insulating members 50 and 51.
  • the opposing plates 41, 81 and the nozzle bodies 40, 80 are one member. It may be formed integrally as one, or may be composed of two members.
  • the heat reflecting plate 55 may not be provided, and the lower surface of the fixing member 43 may be mirror-finished. In this way, irradiating heat from the substrate K can be reflected by the lower surface of the fixing member 43 toward the upper surface of the opposing plate 41 irrespective of the heat reflecting plate 55. The temperature of the facing plate 41 can be increased.
  • the ozone treatment apparatus is capable of forming an oxide film on a substrate surface such as a semiconductor substrate or a liquid crystal substrate, modifying an oxide film formed on the substrate surface, or forming an oxide film on the substrate surface. It can be suitably used when removing the formed resist film.

Abstract

An ozone processing apparatus (1) capable uniformly and efficiently processing the surface of a substrate, comprising a loading table (20) for loading the substrate (K) thereon, a heating device for heating the substrate (K), a process gas feed head (30) having a head body (31) with a process gas flow passage (32) for flowing the process gas containing ozone therethrough and a cooling fluid flow passage for flowing cooling fluid therethrough and a nozzle body (40) fixedly installed on the lower surface of the head body (31), communicating with the process gas flow passage (32), and having a process gas discharge passage opening toward the upper surface of the substrate (K), a gas feeding device for feeding the process gas into the process gas flow passage (32), and a cooling fluid circulating device for feeding and circulating the cooling fluid into the cooling fluid flow passage, wherein an insulation member is installed between the head body (31) and the nozzle body (40), and the nozzle body (40) insulated from the head body (31) by the insulation member is, to the contrary, heated by the heating device and the process gas circulating in the nozzle body (40) is partly discharged in a thermally-decomposed state.

Description

明 細 書 ォゾン処理装置 技術分野  Description ozone processing equipment Technical field
本発明は、 半導体基板や液晶基板などの基板表面に、 少なく ともォゾ ンを含んだ処理ガスを吹きかけて、 当該基板表面に酸化膜を形成したり 、 或いは基板表面に形成された酸化膜を改質したり、 更には、 基板表面 に形成されたレジス ト膜を除去するオゾン処理装置に関する。 背景技術  According to the present invention, a processing gas containing at least ozone is blown onto a substrate surface such as a semiconductor substrate or a liquid crystal substrate to form an oxide film on the substrate surface or to form an oxide film formed on the substrate surface. The present invention relates to an ozone treatment apparatus for modifying and further removing a resist film formed on a substrate surface. Background art
従来、 上記オゾン処理装置は、 所定の内容積を有し、 上部が開口した 処理チャンバと、 処理チャンバの上部開口部を閉塞するように設けられ た蓋体と、 処理チャンバ内に配設され、 上面に基板が載置される載置台 と、 載置台の底面を支持してこれを昇降させる昇降手段と、 載置台の上 方に配設された処理ガス供給へッ ドなどを備えて構成されており、 処理 チャンバ内のガスが適宜排出口から外部に排出されるようになっている 前記載置台には、 ヒータが内蔵されており、 これに載置された基板が このヒータによって加熱される。 前記処理ガス供給ヘッ ド 1 0 0は、 第 9図に示すように、 ブロック状のへッ ド本体 1 0 1 と、 へッ ド本体 1 0 1 の下面にこれから垂下するように固設された複数のノズル体 1 0 2と を備えておリ、 前記へッ ド本体 1 0 1 が前記処理チヤンバ (図示せず) の側壁や前記蓋体 (図示せず) の下面に適宜固定されている。 尚、 第 9 図は、 従来例に係る処理ガス供給へッ ドの一部を示した断面図である。 前記へッ ド本体 1 0 1 には、 オゾンガス流路 1 0 3及び冷却液流路 1 0 4が形成されており、 オゾンガス流路 1 0 3には、 オゾンガス生成装 置 (図示せず) が接続され、 冷却液流路 1 0 4には、 冷却液循環装置 ( 図示せず) が接続されている。 また、 ヘッ ド本体 1 0 1 には、 前記ォゾ ンガス流路 1 0 3 と連通し、 当該へッ ド本体 1 0 1 の下面に開口する複 数の連通孔 1 0 5が形成されている。 Conventionally, the ozone treatment apparatus has a predetermined internal volume, a processing chamber having an open top, a lid provided so as to close an upper opening of the processing chamber, and disposed in the processing chamber. It comprises a mounting table on which a substrate is mounted on the upper surface, lifting means for supporting the lower surface of the mounting table and elevating the same, and a processing gas supply head disposed above the mounting table. The gas in the processing chamber is appropriately discharged from the discharge port to the outside. The mounting table has a built-in heater, and the substrate mounted thereon is heated by the heater. . As shown in FIG. 9, the processing gas supply head 100 is fixed to a block-shaped head main body 101 and a lower surface of the head main body 101 so as to hang therefrom. A plurality of nozzle bodies 102 are provided, and the head body 101 is appropriately fixed to a side wall of the processing chamber (not shown) or a lower surface of the lid (not shown). . FIG. 9 is a cross-sectional view showing a part of a processing gas supply head according to a conventional example. The head body 101 has an ozone gas passage 103 and a coolant passage 1. An ozone gas generation device (not shown) is connected to the ozone gas flow path 103, and a cooling liquid circulation device (not shown) is connected to the cooling liquid flow path 104. It is connected. The head main body 101 has a plurality of communication holes 105 communicating with the ozone gas flow passage 103 and opening to the lower surface of the head main body 101. .
前記各ノズル体 1 0 2は、 管状の部材からなリ、 上側の開口部 1 0 2 aが前記各連通孔 1 0 5にそれぞれ接続する一方、 下側の開口部 1 0 2 bが基板 K表面とそれぞれ対向している。  Each of the nozzle bodies 102 is formed of a tubular member. An upper opening 102 a is connected to each of the communication holes 105, while a lower opening 102 b is a substrate K. Each faces the surface.
このように構成されたオゾン処理装置によれば、 基板 Kが載置台 (図 示せず) 上に適宜載置されると、 これがヒータ (図示せず) によって所 定温度に加熱されるとともに、 当該基板 Kとノズル体 1 0 2の下側の開 口部 1 0 2 bとが所定間隔を隔てた状態となるように、 載置台 (図示せ ず) が昇降手段 (図示せず) によって上昇せしめられる。  According to the ozone treatment apparatus configured as described above, when the substrate K is appropriately mounted on a mounting table (not shown), the substrate K is heated to a predetermined temperature by a heater (not shown). The mounting table (not shown) is raised by elevating means (not shown) so that the substrate K and the lower opening 102 b of the nozzle body 102 are separated from each other by a predetermined distance. Can be
また、 冷却液流路 1 0 4には、 冷却液循環装置 (図示せず) から冷却 液が供給, 循環されており、 この冷却液によって、 ヘッ ド本体 1 0 1 が 冷却されている。  A coolant is supplied and circulated from a coolant circulating device (not shown) to the coolant passage 104, and the head body 101 is cooled by the coolant.
そして、 オゾンガス生成装置 (図示せず) によって生成された所定濃 度のオゾンガス (処理ガス) が、 オゾンガス流路 1 0 3及び各連通子し 1 0 5を介して各ノズル体 1 0 2に供給され、 その下側の開口部 1 0 2 b から基板 K表面に向けてそれぞれ吐出される。  Then, a predetermined concentration of ozone gas (processing gas) generated by an ozone gas generation device (not shown) is supplied to each nozzle body 102 via an ozone gas flow path 103 and each communicating element 105. Then, the liquid is discharged from the lower opening 102 b toward the surface of the substrate K.
吐出されたオゾンガスは、 基板 Kに衝突した後、 これに沿って流れる オゾンガス層を形成し、 このような流れの中で、 オゾン ( O 3 ) は基板 Kによって加熱され、 このように加熱されたり、 基板 Kやレジス トと接 触したりすることによって酸素 ( O 2 ) と活性酸素 ( O * ) に分解され 、 この活性酸素 (O * ) によって、 基板 K表面に酸化膜が形成されたり 、 或いは基板 K表面上の酸化膜が改質されたり、 更には、 基板 K表面に 形成されたレジス ト膜が活性酸素 (O * ) との熱化学反応によって除去 される。 The ejected ozone gas collides with the substrate K and forms an ozone gas layer flowing along the substrate K. In such a flow, the ozone (O 3 ) is heated by the substrate K, However, it comes into contact with the substrate K or the resist and is decomposed into oxygen (O 2 ) and active oxygen (O *), and the active oxygen (O *) forms an oxide film on the surface of the substrate K, Alternatively, the oxide film on the substrate K surface is modified, The formed resist film is removed by a thermochemical reaction with active oxygen (O *).
尚、 処理チャンバ (図示せず) 内の雰囲気温度は、 ヒータ (図示せず ) によって昇温せしめられて高温となるため、 この高温となった雰囲気 や、 加熱された基板 Kからのふく射熱などによつて、 へッ ド本体 1 0 1 は昇温せしめられるが、 当該へッ ド本体 1 0 1 を、 その冷却液流路 1 0 4内を流通する冷却液によって冷却するようにしているので、 オゾンガ ス流路 1 0 3内を流通するオゾンガスがこの冷却液によって冷却され、 その温度が一定の範囲内に維持される。 これにより、 温度上昇に伴うォ ゾンの熱分解が防止され、 前記オゾンガス中のオゾン濃度の低下が防止 される。  The temperature of the atmosphere in the processing chamber (not shown) is raised by a heater (not shown) and becomes high. Therefore, the temperature of the atmosphere and the heat radiated from the heated substrate K may be reduced. As a result, the head body 101 is heated up, but the head body 101 is cooled by the coolant flowing through the coolant passage 104. The ozone gas flowing through the ozone gas flow path 103 is cooled by the coolant, and the temperature is maintained within a certain range. This prevents thermal decomposition of ozone due to a rise in temperature, and prevents a decrease in ozone concentration in the ozone gas.
ところが、 上記従来のオゾン処理装置は、 へッ ド本体 1 0 1 と各ノズ ル体 1 0 2とが一体的に設けられ、 へッ ド本体 1 0 1 のみならず各ノズ ル体 1 0 2もが前記冷却液によって冷却される構造となっているので、 オゾンガスは、 へッ ド本体 1 0 1 のオゾンガス流路 1 0 3内を流通する 際に冷却されるだけでなく、 ノズル体 1 0 2内を流通する際にも冷却さ れた状態が維持される。 したがって、 オゾンガスは低温状態でノズル体 1 0 2の開口部 1 0 2 bから基板 K表面に向けて吐出される。  However, in the conventional ozone treatment apparatus described above, the head body 101 and each nozzle body 102 are provided integrally, and not only the head body 101 but also each nozzle body 102 Is cooled by the cooling liquid, so that the ozone gas is not only cooled when flowing through the ozone gas flow passage 103 of the head body 101 but also the nozzle body 10 is cooled. The cooling state is maintained even when flowing through the inside of 2. Therefore, the ozone gas is discharged from the opening 102b of the nozzle body 102 toward the surface of the substrate K at a low temperature.
一般に、 各ノズル体 1 0 2は、 その開口部 1 0 2 bを基板 K表面に可 能な限り接近させた状態に設置される。 このため、 低温のオゾンガスが ノズル体 1 0 2から吐出されると、 吐出後のオゾンが昇温して熱分解温 度に達するまでに長時間を要し、 各ノズル体 1 0 2直下付近の基板 K表 面では、 十分な活性酸素 (O * ) が生成されず、 処理ムラを生じたり、 効率的な処理を行うことができないという問題を生じていた。  Generally, each nozzle body 102 is installed with its opening 102 b as close to the surface of the substrate K as possible. For this reason, when low-temperature ozone gas is discharged from the nozzle body 102, it takes a long time for the temperature of the ozone after discharge to reach the thermal decomposition temperature, and the ozone gas immediately below each nozzle body 102 On the surface of the substrate K, sufficient active oxygen (O *) was not generated, causing problems such as uneven processing and inefficient processing.
また、 ノズル体 1 0 2自体の温度も低下しているため、 当該ノズル体 1 0 2によって基板 Kが冷却され、 このことによつても活性酸素 ( O * ) が生成され難くなつて、 基板 Kの処理速度が低下するという問題や、 ノズル体 1 0 2の温度が約 1 5 0 °C以下まで低下すると、 基板 K表面か ら除去したレジス 卜がノズル体 1 0 2の外周面に多量に付着し、 パ一テ ィクルが大量発生したり、 メンテナンス頻度が増加するという問題を生 じていた。 In addition, since the temperature of the nozzle body 102 itself is also lowered, the substrate K is cooled by the nozzle body 102, which also activates the active oxygen (O * ) Is less likely to be produced, and the processing speed of the substrate K will decrease.If the temperature of the nozzle body 102 drops to about 150 ° C or less, the registry removed from the surface of the substrate K A large amount of particles adhered to the outer peripheral surface of the body 102, causing problems such as the generation of a large number of particles and an increase in maintenance frequency.
また、 基板 Kに沿って流れるオゾンガス層は、 これが厚くなればなる ほど、 基板 κ表面に到達し得るオゾン分子の割合が低下して、 効率的な オゾン処理を行うことができないため、 本願発明者らは、 オゾンガス層 の層圧を制御する対向板 1 0 6を、 基板 Kと対向するように各ノズル体 1 0 2の下端部にそれぞれ固設した、 第 1 0図に示すような処理ガス供 給ヘッ ド 1 1 0を既に提案している。  In addition, as the thickness of the ozone gas layer flowing along the substrate K increases, the ratio of ozone molecules that can reach the surface of the substrate κ decreases, and efficient ozone treatment cannot be performed. Have fixed a counter plate 106 for controlling the layer pressure of the ozone gas layer at the lower end of each nozzle body 102 so as to face the substrate K, respectively, as shown in FIG. A supply head of 110 has already been proposed.
ところが、 このような構成にすると、 オゾン処理の効率を高めること ができるという利点がある反面、 上記と同様の理由から、 ノズル体 1 0 However, such a configuration has an advantage that the efficiency of ozone treatment can be improved, but the nozzle body 10 has the same reason as described above.
2とともに対向板 1 0 6が冷却されるため、 当該対向板 1 0 6によって 基板 Kが冷却されて基板 Kの処理速度が低下したり、 基板 K表面から除 去したレジス トが対向板 1 0 6の下面 (対向面) 又は上面に付着してこ れが汚損され易いという欠点があった。 Since the opposite plate 106 is cooled together with the substrate 2, the substrate K is cooled by the opposite plate 106 to reduce the processing speed of the substrate K, or the resist removed from the surface of the substrate K becomes the opposite plate 106. There was a drawback that it adhered to the lower surface (opposite surface) or upper surface of 6 and was easily contaminated.
本発明は、 以上の実情に鑑みなされたものであって、 基板表面をムラ なく効率的に処理することができるとともに、 除去したレジス 卜の付着 を防止することができるオゾン処理装置の提供をその目的とする。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides an ozone treatment apparatus that can efficiently treat a substrate surface without unevenness and can prevent adhesion of a removed registry. Aim. Disclosure of the invention
上記目的を達成するための本発明は、 上面に基板が載置される載置台 と、  To achieve the above object, the present invention provides a mounting table on which a substrate is mounted on an upper surface,
該載置台上に載置された基板を加熱する加熱手段と、  Heating means for heating the substrate mounted on the mounting table,
前記載置台の上方に配設される処理ガス供給へッ ドであって、 オゾン を含んだ処理ガスが流通する処理ガス流路、 及び冷却流体が流通する冷 却流体流路を有するへッ ド本体と、 該へッ ド本体の下面にこれから垂下 するように固設され、 前記処理ガス流路と連通し且つ前記載置台上の基 板上面に向けて開口した処理ガス吐出路を有するノズル体とを備えた処 理ガス供給へッ ドと、 A processing gas supply head disposed above the mounting table, wherein ozone A head main body having a processing gas flow path through which a processing gas containing: and a cooling fluid flow path through which a cooling fluid flows; and a head body fixed to the lower surface of the head body so as to hang therefrom, A processing gas supply head comprising a nozzle body having a processing gas discharge path communicating with the processing gas flow path and opening toward the upper surface of the substrate on the mounting table;
前記処理ガス流路に前記処理ガスを供給して、 前記ノズル体の開口部 から吐出させるガス供給手段と、  Gas supply means for supplying the processing gas to the processing gas flow path and discharging the processing gas from the opening of the nozzle body;
前記冷却流体流路に冷却流体を供給して、 循環させる冷却流体循環手 段とを備えて構成されるオゾン処理装置において、  A cooling fluid circulation means for supplying and circulating a cooling fluid to the cooling fluid flow path,
前記ノズル体を、 断熱性を有する材料から構成したことを特徴とする オゾン処理装置に係る。  An ozone treatment apparatus according to the present invention is characterized in that the nozzle body is made of a material having a heat insulating property.
この発明によれば、 冷却流体循環手段によってへッ ド本体の冷却流体 流路に冷却流体が供給, 循環されるとともに、 オゾンを含んだ処理ガス がガス供給手段から処理ガス流路に供給され、 この処理ガス流路と連通 したノズル体の処理ガス吐出路の開口部から基板表面に向けて吐出され る。 尚、 載置台の上面に載置された基板は加熱手段によって加熱されて いる。  According to the present invention, the cooling fluid is supplied and circulated to the cooling fluid flow path of the head body by the cooling fluid circulating means, and the processing gas containing ozone is supplied from the gas supply means to the processing gas flow path, It is discharged toward the substrate surface from the opening of the processing gas discharge path of the nozzle body communicating with the processing gas flow path. The substrate mounted on the mounting table is heated by a heating unit.
吐出された処理ガスは、 基板に衝突した後、 これに沿って流れる処理 ガス層を形成し、 このような流れの中で、 オゾン (o 3 ) は基板により 加熱され、 このように加熱されたり、 基板やレジス トと接触することに よって酸素 (o 2 ) と活性酸素 (o * ) に分解され、 この活性酸素 (o * ) によって、 基板表面に酸化膜が形成されたり、 或いは基板表面上の酸 化膜が改質されたり、 更には、 基板表面に形成されたレジス ト膜が活性 酸素との熱化学反応によって除去される。 The discharged processing gas collides with the substrate and forms a processing gas layer flowing along the substrate, and in such a flow, the ozone (o 3 ) is heated by the substrate and is thus heated. When it comes into contact with a substrate or a resist, it is decomposed into oxygen (o 2 ) and active oxygen (o *), and an oxide film is formed on the substrate surface by the active oxygen (o *). The oxide film of the substrate is modified, and the resist film formed on the substrate surface is removed by a thermochemical reaction with active oxygen.
ところで、 上述したように、 ヘッ ド本体とノズル体とがー体的に設け られた上記従来のオゾン処理装置では、 ノズル体内を流通する処理ガス がヘッ ド本体を冷却するための冷却流体によって吐出間際まで冷却され た状態にあり、 吐出後のオゾンが昇温して熱分解温度に達するまでに長 時間を要するため、 各ノズル体の直下付近の基板表面では、 十分な活性 酸素 (O * ) が生成されず、 処理ムラを生じたり、 効率的な処理を行う ことができないという問題や、 ノズル体自体の温度も低下しているため 、 当該ノズル体によって基板が冷却され、 このことによつても活性酸素 ( O * ) が生成され難く なつて、 基板の処理速度が低下するという問題 、 更には、 ノズル体の温度が約 1 5 0 °C以下まで低下すると、 基板表面 から除去したレジス トがノズル体の外周面に多量に付着するという問題 がある。 By the way, as described above, in the above-mentioned conventional ozone treatment apparatus in which the head body and the nozzle body are provided integrally, the processing gas flowing through the nozzle body Is in a state of being cooled to just before discharge by the cooling fluid for cooling the head body, and it takes a long time for the temperature of ozone after discharge to rise to the pyrolysis temperature. On the surface of the substrate, sufficient active oxygen (O *) is not generated, causing processing unevenness and inefficient processing, and the temperature of the nozzle body itself is also low. The nozzle body cools the substrate, which also makes it difficult for active oxygen (O *) to be generated, thereby reducing the processing speed of the substrate. In addition, the temperature of the nozzle body is reduced to about 150 °. If the temperature drops below C, there is a problem that a large amount of the resist removed from the substrate surface adheres to the outer peripheral surface of the nozzle body.
そこで、 本発明に係るオゾン処理装置では、 ノズル体を、 断熱性を有 する材料から構成し、 へッ ド本体とノズル体との間における熱伝導が生 じ難くなるようにしている。 これにより、 ヘッ ド本体は冷却流体流路内 を流通する冷却流体によって冷却されるものの、 ノズル体は冷却されず 、 逆に、 加熱手段により昇温せしめられた雰囲気や、 加熱された基板か らのふく射熱などによって昇温せしめられる。  Therefore, in the ozone treatment apparatus according to the present invention, the nozzle body is made of a material having heat insulating properties so that heat conduction between the head body and the nozzle body hardly occurs. As a result, the head body is cooled by the cooling fluid flowing through the cooling fluid flow path, but the nozzle body is not cooled, and conversely, from the atmosphere heated by the heating means or from the heated substrate. The temperature is raised by radiation heat.
斯く して、 へッ ド本体の処理ガス流路内を流通する処理ガスは、 冷却 流体によリ冷却されてその温度が一定の範囲内に維持され、 これによリ 、 温度上昇に伴うオゾンの熱分解が防止され、 前記処理ガス中のオゾン 濃度の低下が防止される。 その一方、 ノズル体の処理ガス吐出路内を流 通する処理ガスは、 昇温したノズル体により加熱されて、 その一部が酸 素と活性酸素とに分解された状態で処理ガス吐出路の開口部から基板表 面に向けて吐出せしめられるので、 これが基板表面に達した時点では十 分な量の活性酸素 (O * ) が生成されている。  In this way, the processing gas flowing in the processing gas flow path of the head body is cooled by the cooling fluid and its temperature is maintained within a certain range. Is prevented, and a decrease in the ozone concentration in the processing gas is prevented. On the other hand, the processing gas flowing through the processing gas discharge path of the nozzle body is heated by the heated nozzle body, and a part of the processing gas is decomposed into oxygen and active oxygen. Since the liquid is discharged from the opening toward the surface of the substrate, a sufficient amount of active oxygen (O *) is generated when the liquid reaches the surface of the substrate.
これにより、 基板表面をムラなく均一に、 しかも効率的に処理するこ とができる。 また、 高温の処理ガスが基板に吹きかけられるので、 当該 処理ガスによつて基板が冷却されるのが防止される他、 ノズル体の温度 が上昇していることによつても基板が冷却されるのが防止される。 また 、 更に、 基板表面から除去したレジス トがノズル体の外周面に付着して これが汚損されるのを防止することができ、 メンテナンスの容易化を図 ることができる。 As a result, the substrate surface can be treated uniformly and efficiently. In addition, since a high-temperature processing gas is sprayed on the substrate, In addition to preventing the substrate from being cooled by the processing gas, the substrate is also prevented from being cooled by the rise in the temperature of the nozzle body. Further, it is possible to prevent the resist removed from the surface of the substrate from adhering to the outer peripheral surface of the nozzle body and contaminating the same, thereby facilitating maintenance.
尚、 ノズル体を、 断熱性を有しない材料から構成した場合には、 当該 ノズル体とヘッ ド本体との間に断熱部材を介装する、 即ち、 断熱部材を 介してへッ ド本体の下面にノズル体を配設すると良く、 このようにして も、 上記と同様の効果が得られる。  When the nozzle body is made of a material having no heat insulating property, a heat insulating member is interposed between the nozzle body and the head body, that is, the lower surface of the head body is interposed via the heat insulating member. It is preferable to dispose a nozzle body in this case, and the same effect as described above can be obtained in this case.
また、 本発明に係るオゾン処理装置は、 前記ノズル体の下端部に、 前 記載置台上の基板上面と対向するように配置された対向板を固設すると ともに、 前記ガス吐出路を前記対向板の基板との対向面に開口せしめ、 前記ノズル体及び対向板を、 断熱性を有する材料から構成したり、 或い は、 上記と同様に、 ノズル体とヘッ ド本体との間に断熱部材を介装した 構成とすることができる。  In the ozone treatment apparatus according to the present invention, an opposing plate disposed so as to oppose an upper surface of the substrate on the mounting table is fixed to a lower end portion of the nozzle body, and the gas discharge path is connected to the opposing plate. The nozzle body and the opposing plate are made of a material having a heat insulating property, or a heat insulating member is provided between the nozzle body and the head body in the same manner as described above. An interposed configuration can be used.
このオゾン処理装置によれば、 基板上面と対向する対向板によって、 基板上面に沿って流れるオゾンガス流の層圧が制御され、 基板上面と対 向板との間の間隔を適宜調整することで、 基板上面に到達し得るオゾン 分子の割合を高めることができ、 このようにすることで、 効率的なォゾ ン処理を行うことができる。  According to this ozone treatment apparatus, the layer pressure of the ozone gas flow flowing along the upper surface of the substrate is controlled by the opposing plate opposing the upper surface of the substrate, and the distance between the upper surface of the substrate and the opposing plate is appropriately adjusted. The ratio of ozone molecules that can reach the upper surface of the substrate can be increased, and thus, efficient ozone treatment can be performed.
また、 ノズル体及び対向板は、 ヘッ ド本体から断熱されているので、 へッ ド本体の冷却流体流路内を流通する冷却流体によつて冷却されるこ とはなく、 昇温した雰囲気や、 加熱された基板からのふく射熱などによ リ昇温せしめられて高温となる。 これにより、 ノズル体や対向板によつ て基板が冷却されて処理効率が低下するのを防止することができ、 また 、 基板表面から除去したレジス トがノズル体の外周面や対向板の下面 ( 対向面) 又は上面に付着するのを防止して、 メンテナンスを容易にする ことができる。 Further, since the nozzle body and the opposed plate are insulated from the head main body, they are not cooled by the cooling fluid flowing through the cooling fluid flow path of the head main body, so that the heated atmosphere and However, the temperature is raised by the radiation heat from the heated substrate and the temperature becomes high. Thus, it is possible to prevent the substrate from being cooled by the nozzle body and the opposing plate, thereby preventing the processing efficiency from being lowered. ( It can be prevented from adhering to the opposing surface) or the upper surface to facilitate maintenance.
また、 本発明に係るオゾン処理装置は、 前記処理ガス供給ヘッ ドに、 前記載置台上の基板上面と対向するように配置され、 上下に貫通する貫 通孔が形成された対向板と、 該対向板を前記ヘッ ド本体の下面に連結す る支持部材とを更に設け、 前記ノズル体を、 その下端部が前記対向板の 貫通孔に嵌挿されるようにへッ ド本体に固設し、 少なく とも前記対向板 及び支持部材を、 断熱性を有する材料から構成したり、 或いは、 少なく とも前記支持部材とへッ ド本体との間、 前記対向板と支持部材との間の 一方に断熱部材を介装した構成とすることもできる。 尚、 対向板は、 ノ ズル体の下端部が当該対向板の下面より上方に位置するように配置され ていることが好ましい。  Further, an ozone treatment apparatus according to the present invention is characterized in that the treatment gas supply head is provided so as to face the upper surface of the substrate on the mounting table, and has a through-hole vertically penetrating therethrough; A support member for connecting the opposing plate to the lower surface of the head body; and a nozzle member fixedly mounted on the head body such that a lower end portion of the nozzle body is inserted into a through hole of the opposing plate. At least the opposing plate and the support member are made of a heat-insulating material, or at least one of the heat insulating member is provided between the support member and the head body or at the other between the opposing plate and the support member. May be interposed. It is preferable that the opposing plate is arranged such that the lower end of the nozzle body is located above the lower surface of the opposing plate.
このようにすれは、 少なく とも対向板が、 ヘッ ド本体から断熱され、 へッ ド本体の冷却流体流路内を流通する冷却流体によつて冷却されるこ とはなく、 昇温した雰囲気や、 加熱された基板からのふく射熱などによ リ昇温せしめられて高温となるので、 対向板によって基板が冷却された リ、 基板表面から除去したレジス 卜が対向板の下面又は上面に再付着す るのを防止することができる。  In this way, at least the opposing plate is insulated from the head main body, and is not cooled by the cooling fluid flowing through the cooling fluid flow path of the head main body. However, since the temperature is raised by the heat of radiation from the heated substrate, etc., the substrate is cooled by the opposing plate, and the resist removed from the substrate surface is re-adhered to the lower or upper surface of the opposing plate. Can be prevented.
尚、 前記ヘッ ド本体と対向板との間に、 下面が熱反射面となった、 例 えば、 ステンレスなどから構成される熱反射板を配設すると、 基板から 対向板間を通過したふく射熱が、 熱反射板の熱反射面によって反射され て対向板の上面に照射し、 かかるふく射熱によって対向板が更に昇温さ れるため、 基板がより冷却され難くなるとともに、 対向板にレジス トが より付着し難くなつて好ましい。  If a lower surface is a heat reflecting surface, for example, a heat reflecting plate made of stainless steel or the like is provided between the head body and the opposing plate, the radiation heat passing from the substrate to the opposing plate is reduced. Then, the heat is reflected by the heat reflecting surface of the heat reflecting plate to irradiate the upper surface of the opposing plate, and the radiant heat further raises the temperature of the opposing plate, so that the substrate is more difficult to cool and the resist is more attached to the opposing plate. It is preferable because it is difficult to perform.
また、 前記断熱部材の材料や前記断熱性を有する材料の好適なものと しては、 ポリテトラフルォロエチレンに代表されるフッ素樹脂やセラミ ック, ガラス, 石英などを挙げることができ、 前記対向板の、 上記断熱 性を有する材料以外の好適な材料と しては、 ステンレス, シリコン, ァ ルミニゥ厶合金及びチタン合金などを挙げることができる。 Preferred examples of the material of the heat insulating member and the material having the heat insulating property include a fluororesin represented by polytetrafluoroethylene and a ceramic. Suitable materials other than the above-mentioned heat-insulating material for the facing plate include stainless steel, silicon, aluminum alloy and titanium alloy. it can.
また、 前記対向板は、 一枚の板から構成されるものでも、 複数枚の板 を同一平面上に並設したものでも良く、 その形状も、 何ら限定されるも のではなく、 三角形や四角形, 六角形の他、 円形や楕円形のものであつ ても良い。 また、 更に、 対向板及びノズル体は、 これらが一部材として 一体的に形成されていても良く、 二部材から構成されていても良い。 また、 前記基板の加熱温度は、 2 0 0 °C〜 5 0 0 °Cの範囲が好ましい 。 この範囲内であれば、 基板内に含まれる不純物の蒸発を上記処理と同 時に行うことができる。 また、 前記処理ガスは、 1 4重量%以上のォゾ ンを含むものが好適であり、 オゾンと T E O S ( Tetr aethy l o r thos i I i cate、 ゲイ酸亍 トラエチル、 S i ( C 2 H 5 0 ) 4 ) の混合ガスであって も良い。 図面の簡単な説明 Further, the opposing plate may be composed of a single plate or a plurality of plates arranged side by side on the same plane. The shape thereof is not limited at all, and may be a triangle or a square. , Besides hexagonal, circular or oval may be used. Further, the opposing plate and the nozzle body may be formed integrally as one member, or may be formed of two members. Further, the heating temperature of the substrate is preferably in the range of 200 ° C. to 500 ° C. Within this range, the impurities contained in the substrate can be evaporated at the same time as the above processing. Further, the processing gas is suitably those containing 1 4 wt% or more O zone down, ozone and TEOS (Tetr aethy lor thos i I i cate, Gay San亍 Toraechiru, S i (C 2 H 5 0 ) The mixed gas of 4 ) may be used. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の一実施形態に係るオゾン処理装置の概略構成を示 した断面図である。 また、 第 2図は、 第 1 図における矢視 A方向の底面 図であり、 第 3図は、 第 1 図における矢視 B— B方向の断面図であり、 第 4図は、 第 1 図における矢視 C方向の底面図である。 また、 第 5図は 、 第 3図における矢視 D— D方向の断面図であり、 第 6図乃至第 8図は 、 本発明の他の実施形態に係る処理ガス供給へッ ドの一部を示した断面 図である。 また、 第 9図及び第 1 0図は、 従来例に係る処理ガス供給へ ッ ドの一部を示した断面図である。 発明を実施するための最良の形態 以下、 本発明をより詳細に説明するために、 添付図面に基づいてこれ を説明する。 FIG. 1 is a sectional view showing a schematic configuration of an ozone treatment apparatus according to one embodiment of the present invention. FIG. 2 is a bottom view in the direction of arrow A in FIG. 1, FIG. 3 is a cross-sectional view in the direction of arrow B—B in FIG. 1, and FIG. 5 is a bottom view in the direction of arrow C in FIG. FIG. 5 is a cross-sectional view taken along the line DD in FIG. 3, and FIGS. 6 to 8 are a part of a processing gas supply head according to another embodiment of the present invention. FIG. 9 and 10 are sectional views showing a part of a processing gas supply head according to a conventional example. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
第 1 図に示すように、 本例のオゾン処理装置 1 は、 所定の内容積を有 し、 上部が開口した処理チャンバ 1 0と、 処理チャンバ 1 0の上部開口 部を閉塞するように設けられた蓋体 1 1 と、 処理チャンバ 1 0内に水平 に配設され、 その上面に基板 Kが載置される載置台 2 0と、 載置台 2 0 の底面を支持する支持装置 2 5と、 この支持装置 2 5を上下方向に昇降 させる昇降装置 1 5と、 載置台 2 0の上方に配設された処理ガス供給へ ッ ド 3 0などを備えて構成されており、 処理チャンバ 1 0内のガスが適 宜排出口 (図示せず) から外部に排出されるようになっている。  As shown in FIG. 1, an ozone treatment apparatus 1 of the present example has a predetermined internal volume, is provided so as to close a processing chamber 10 having an open upper part, and an upper opening of the processing chamber 10. A lid 11, a mounting table 20 horizontally disposed in the processing chamber 10, on which the substrate K is mounted, and a supporting device 25 for supporting the bottom surface of the mounting table 20. It comprises a lifting device 15 for raising and lowering the support device 25 in the vertical direction, and a processing gas supply head 30 disposed above the mounting table 20. Gas is discharged to the outside through an appropriate outlet (not shown).
前記載置台 2 0は、 平坦な上面に基板 Kが載置される上部部材 2 1 、 及びその下側に設けられた下部部材 2 2からなリ、 下部部材 2 2の底面 が支持装置 2 5によって支持されている。 また、 上部部材 2 1 と下部部 材 2 2との間には、 ヒータ (図示せず) が設けられており、 このヒータ (図示せず) によって、 上部部材 2 1 上面に載置された基板 Kが所定温 度に加熱される。 尚、 上部部材 2 1 及び下部部材 2 2の好適な材料とし ては、 アルミニウムなどを挙げることができる。 但し、 基板 Kの加熱温 度が極めて高温である場合 (例えば、 基板 Kを 5 0 0 °Cに加熱する場合 ) には、 耐熱性に優れたステンレスを用いるのが好ましい。  The mounting table 20 is composed of an upper member 21 on which a substrate K is mounted on a flat upper surface, and a lower member 22 provided thereunder. The bottom surface of the lower member 22 is a supporting device 25. Supported by In addition, a heater (not shown) is provided between the upper member 21 and the lower member 22, and the heater (not shown) allows the substrate placed on the upper surface of the upper member 21. K is heated to a predetermined temperature. As a suitable material for the upper member 21 and the lower member 22, aluminum or the like can be used. However, when the heating temperature of the substrate K is extremely high (for example, when the substrate K is heated to 500 ° C.), it is preferable to use stainless steel having excellent heat resistance.
第 1 図及び第 2図に示すように、 前記支持装置 2 5は、 下部部材 2 2 の底面中央部に固着されてこれを支持する第 1 支持機構 2 6と、 所定の 間隔で配設され、 前記下部部材 2 2の底面を支持する複数の第 2支持機 構 2 7 と、 中空の角パイプによって格子状に形成され、 これら第 1 支持 機構 2 6及び各第 2支持機構 2 7が載置, 固定される基台 2 8などから 構成される。  As shown in FIGS. 1 and 2, the support device 25 is provided at a predetermined interval with a first support mechanism 26 fixedly supported at the center of the bottom surface of the lower member 22 and supporting the same. A plurality of second support mechanisms 27 supporting the bottom surface of the lower member 22 and a grid formed by hollow square pipes, and the first support mechanisms 26 and the second support mechanisms 27 are mounted. It consists of a base 28 that is mounted and fixed.
尚、 第 2支持機構 2 7は、 その詳しい構造についての説明はこれを省 略するが、 載置台 2 0を支持するその上下方向の支持位置を調節可能と なっており、 かかる支持位置を適宜調節することにより、 当該載置台 2 0に生じた撓みや歪を矯正して、 その上面の平面度を適正なものに調節 することができるようになつている。 また、 基台 2 8の好適な材料とし ては、 耐熱性に優れたステンレスなどを挙げることができる。 また、 基 台 2 8を中空の角パイプから構成しているので、 その軽量化を図ること ができる。 The second support mechanism 27 will not be described in detail for its structure. Although not shown, the vertical support position for supporting the mounting table 20 can be adjusted. By appropriately adjusting the supporting position, the bending and distortion generated in the mounting table 20 can be corrected. However, the flatness of the upper surface can be adjusted to an appropriate one. As a suitable material for the base 28, stainless steel having excellent heat resistance can be used. Further, since the base 28 is formed of a hollow square pipe, its weight can be reduced.
第 1 図に示すように、 前記基台 2 8の上方位置には、 前記載置台 2 0 (下部部材 2 2 ) の底面と対向するように熱反射板 1 8が設けられてお り、 この熱反射板 1 8は固定部材 1 9を介して基台 2 8上に固設されて いる。 これにより、 載置台 2 0からのふく射熱によって基台 2 8が温度 上昇するのを抑制することができる。 尚、 熱反射板 1 8の好適な材料と しては、 耐熱性に優れたステンレスなどを挙げることができる。  As shown in FIG. 1, a heat reflecting plate 18 is provided at a position above the base 28 so as to face the bottom surface of the mounting table 20 (lower member 22). The heat reflecting plate 18 is fixed on a base 28 via a fixing member 19. Thereby, it is possible to suppress a rise in the temperature of the base 28 due to radiation heat from the mounting table 20. In addition, as a suitable material of the heat reflecting plate 18, stainless steel having excellent heat resistance can be used.
前記昇降装置 1 5は、 処理チャンバ 1 0の底面を貫通して設けられる 昇降ロッ ド 1 6を備え、 この昇降ロッ ド 1 6により支持部材 1 7を介し 基台 2 8を支持しており、 当該昇降装置 1 5の作動によって支持装置 2 5及び載置台 2 0が昇降せしめられる。 尚、 昇降装置 1 5は、 空圧シリ ンダゃ電動シリンダなどから構成される。  The elevating device 15 includes an elevating rod 16 provided through the bottom of the processing chamber 10, and the elevating rod 16 supports a base 28 via a support member 17. The support device 25 and the mounting table 20 are raised and lowered by the operation of the lifting device 15. The lifting device 15 is composed of a pneumatic cylinder and an electric cylinder.
また、 前記処理チャンバ 1 0の底面には、 先端が先鋭に形成され、 そ の先端部に基板 Kが仮置きされる複数の支持針 1 2が立設されており、 この支持針 1 2は、 載置台 2 0が下降端位置にある時に、 当該載置台 2 0に形成された貫通孔 (図示せず) に挿通されて、 その先端が載置台 2 0の上面より上方に突出する一方、 載置台 2 0が上昇端位置にある時に 、 前記貫通孔 (図示せず) から抜き取られるようになつている。 また、 支持針 1 2は、 図示はしないが、 基台 2 8の格子穴と一致する位置に立 設されており、 また、 熱反射板 1 8に形成された貫通孔 (図示せず) に も揷通されているようになっている。 Further, on the bottom surface of the processing chamber 10, a tip is sharply formed, and a plurality of support needles 12 on which the substrate K is temporarily placed are provided upright at the tip thereof. When the mounting table 20 is at the lower end position, the mounting table 20 is inserted into a through hole (not shown) formed in the mounting table 20, and its tip projects upward from the upper surface of the mounting table 20. When the mounting table 20 is at the rising end position, it is extracted from the through hole (not shown). Although not shown, the support needles 12 are erected at positions corresponding to the lattice holes of the base 28, and are provided in through holes (not shown) formed in the heat reflection plate 18. Is also being communicated.
斯く して、 載置台 2 0が下降端位置にある時に、 支持針 1 2上に基板 Kが仮置きされた後、 載置台 2 0が上昇せしめられると、 支持針 1 2が 載置台 2 0に対して相対的に没して、 基板 Kが載置台 2 0 (上部部材 2 1 ) 上に載置される。 尚、 昇降装置 1 5は、 載置台 2 0が上昇端に位置 したとき、 後述する対向板 4 1 下面と基板 K表面との間の間隔 gが所定 の間隔となるように、 載置台 2 0を前記上昇端位置に上昇させる。 第 1 図, 第 3図乃至第 5図に示すように、 前記処理ガス供給ヘッ ド 3 0は、 ブロック状のヘッ ド本体 3 1 と、 ヘッ ド本体 3 1 を取り囲むよう に設けられ、 これを支持, 固定する固定プレー ト 3 5と、 固定部材 4 3 、 その下方に配設された熱反射板 5 5及びこの熱反射板 5 5に螺合され るボルト 5 6によってへッ ド本体 3 1 の下面にこれから垂下するように 固定された複数のノズル体 4 0とを備えており、 吊下装置 6 0によって 蓋体 1 1 から下方に吊下した状態に支持されている。 尚、 ノズル体 4 0 はヘッ ド本体 3 1 下面の全面に渡って配設されるが、 第 4図では、 その 一部のみを図示している。  Thus, when the mounting table 20 is at the lower end position, and after the substrate K is temporarily placed on the support needles 12 and the mounting table 20 is raised, the support needles 12 are moved to the mounting table 20. And the substrate K is placed on the mounting table 20 (upper member 21). The elevating device 15 is mounted on the mounting table 20 so that when the mounting table 20 is located at the rising end, a gap g between the lower surface of the opposing plate 41 described later and the surface of the substrate K becomes a predetermined interval. To the rising end position. As shown in FIGS. 1, 3 to 5, the processing gas supply head 30 is provided so as to surround the block-shaped head body 31 and the head body 31. A fixing plate 35 for supporting and fixing, a fixing member 43, a heat reflecting plate 55 disposed therebelow, and bolts 56 screwed to the heat reflecting plate 55, the head body 31. And a plurality of nozzle bodies 40 fixed so as to hang down from the lower surface of the apparatus, and supported by a suspending device 60 in a state of being suspended downward from the lid 11. Note that the nozzle body 40 is disposed over the entire lower surface of the head body 31, but FIG. 4 shows only a part of the nozzle body 40.
前記へッ ド本体 3 1 の上面には、 ジグザグ状の凹溝 (図示せず) が複 数個形成されており、 これら各凹溝 (図示せず) 内にはそれぞれ冷却液 管 4 7が埋設されている。 そして、 この冷却液管 4 7内には、 冷却液循 環装置 4 6から冷却液が供給され、 循環せしめられるようになつている また、 前記へッ ド本体 3 1 には、 その側面の一方端部から他方端部に 貫通する複数のオゾンガス流路 3 2、 及びこのオゾンガス流路 3 2と連 通し、 へッ ド本体 3 1 下面に開口する複数の連通孔 3 3がそれぞれ形成 され、 前記固定プレート 3 5には、 オゾンガス供給孔 3 6、 及びこのォ ゾンガス供給孔 3 6と前記各オゾンガス流路 3 2の一方端開口部とをそ れぞれ接続する複数の接続孔 3 7が形成されておリ、 ォゾンガス供給孔A plurality of zigzag grooves (not shown) are formed on the upper surface of the head body 31, and a coolant pipe 47 is respectively formed in each of the grooves (not shown). It is buried. The coolant is supplied from a coolant circulating device 46 into the coolant pipe 47 so that the coolant can circulate. A plurality of ozone gas flow paths 32 penetrating from the end to the other end, and a plurality of communication holes 33 communicating with the ozone gas flow path 32 and opening on the lower surface of the head body 31 are respectively formed. The fixing plate 35 is provided with an ozone gas supply hole 36, the ozone gas supply hole 36 and one end opening of each of the ozone gas flow paths 32. A plurality of connection holes 37 are formed to connect with each other.
3 6には、 オゾンガス生成装置 4 5によって生成された所定濃度のォゾ ンガス (処理ガス) が当該オゾンガス生成装置 4 5から供給される。 尚 、 各オゾンガス流路 3 2の他方端開口部は、 固定プレート 3 5によって それぞれ封止されている。 The ozone gas (processing gas) having a predetermined concentration generated by the ozone gas generator 45 is supplied to 36 from the ozone gas generator 45. The other end opening of each ozone gas flow path 32 is sealed with a fixing plate 35.
前記各ノズル体 4 0は、 ォゾンガス吐出路と して機能する内部空間を 備えた管状の部材からなり、 上側の開口部 4 0 aが前記各連通孔 3 3に それぞれ接続する一方、 下側の開口部 4 0 bが基板 K表面 それぞれ対 向している。 斯く して、 オゾンガス生成装置 4 5からオゾンガス供給孔 3 6 , 各接続孔 3 7, 各オゾンガス流路 3 2及び各連通孔 3 3を順次介 して各ノズル体 4 0に供給されたオゾンガスは、 その下側の開口部 4 0 bから基板 K表面に向けてそれぞれ吐出される。  Each of the nozzle bodies 40 is formed of a tubular member having an internal space functioning as an ozone gas discharge passage, and upper openings 40a are respectively connected to the communication holes 33, while lower nozzles 40 are connected to the respective communication holes 33. The openings 40b face the substrate K surface, respectively. Thus, the ozone gas supplied from the ozone gas generator 45 to the nozzle bodies 40 via the ozone gas supply holes 36, the connection holes 37, the ozone gas flow paths 32, and the communication holes 33 in order is The liquid is discharged from the lower opening 40 b toward the surface of the substrate K.
また、 各ノズル体 4 0の下端部には、 基板 Kと対向するように同一平 面内に配置された平面視六角形状の対向板 4 1 がそれぞれ固設されてお リ、 これら隣接する各対向板 4 1 との間には所定の隙間 4 2が形成され ている。 尚、 対向板 4 1 の好適な材料としては、 例えば、 ステンレス, シリコン, アルミニウム合金及びチタン合金などを挙げることができる また、 各ノズル体 4 0の上端部とへッ ド本体 3 1 の下面との間には、 環状の断熱部材 5 0がそれぞれ介装され、 各ノズル体 4 0が断熱部材 5 0を介してヘッ ド本体 3 1 の下面に固設されている。 即ち、 各ノズル体 At the lower end of each nozzle body 40, an opposing plate 41 having a hexagonal shape in plan view, which is arranged in the same plane so as to oppose the substrate K, is fixedly provided. A predetermined gap 42 is formed between the counter plate 41 and the counter plate 41. Suitable materials for the opposing plate 41 include, for example, stainless steel, silicon, an aluminum alloy, and a titanium alloy. Also, the upper end of each nozzle body 40 and the lower surface of the head body 31 may be used. An annular heat insulating member 50 is interposed therebetween, and each nozzle body 40 is fixed to the lower surface of the head body 31 via the heat insulating member 50. That is, each nozzle body
4 0は、 へッ ド本体 3 1 に直接接触しない状態で当該へッ ド本体 3 1 に 固設されている。 また、 各ノズル体 4 0をへッ ド本体 3 1 に取り付ける 固定部材 4 3 とノズル体 3 1 との間にも断熱部材 5 1 が介装されている 。 以上により、 各ノズル体 4 0とへッ ド本体 3 1 との間の断熱が図られ ている。 尚、 固定部材 4 3が熱伝導率の極めて低い材料から構成される 場合には、 断熱部材 5 1 を設けるまでもなく、 各ノズル体 4 0とへッ ド 本体 3 1 との間の断熱を確保することができる。 また、 前記熱反射板 5 5はステンレスなどから構成され、 その下面が鏡面状に仕上げられて、 対向板 4 1 , 4 1 間を通過した基板 Kからのふく射熱を当該対向板 4 1 の上面に向けて反射する。 40 is fixed to the head main body 31 in a state where the head 40 does not directly contact the head main body 31. Further, a heat insulating member 51 is also interposed between the fixing member 43 for attaching each nozzle body 40 to the head body 31 and the nozzle body 31. As described above, heat insulation between each nozzle body 40 and the head body 31 is achieved. The fixing member 43 is made of a material having extremely low thermal conductivity. In this case, it is possible to ensure heat insulation between each nozzle body 40 and the head body 31 without providing the heat insulating member 51. Further, the heat reflecting plate 55 is made of stainless steel or the like, and the lower surface thereof is mirror-finished, and radiant heat from the substrate K passing between the opposing plates 41, 41 is applied to the upper surface of the opposing plate 41. Reflect toward.
斯く して、 ヘッ ド本体 3 1 については、 これが冷却液管 4 7内を流通 する冷却液によって冷却されるものの、 ノズル体 4 0と対向板 4 1 につ いては、 当該冷却液によっては冷却されず、 逆に、 ヒータ (図示せず) によって昇温せしめられた雰囲気や、 加熱された基板 Kからのふく射熱 などによって昇温せしめられる。 また、 対向板 4 1 は、 熱反射板 5 5に よって反射された基板 Kからのふく射熱によっても加熱され、 一層高温 に昇温される。 尚、 前記断熱部材 5 0, 5 1 の好適な材料としては、 ポ リテ 卜ラフルォロェチレンに代表されるフッ素樹脂やセラミック, ガラ ス, 石英などを挙げることができ、 また、 前記ノズル体 4 0についても 、 これを極力熱伝導率の小さい材料から構成するのが好ましい。  Thus, although the head body 31 is cooled by the coolant flowing through the coolant pipe 47, the nozzle body 40 and the opposing plate 41 are cooled by the coolant. Instead, the temperature is raised by the atmosphere heated by a heater (not shown) or by the radiant heat from the heated substrate K. Further, the opposing plate 41 is also heated by radiation heat from the substrate K reflected by the heat reflecting plate 55, and the temperature is further increased. Examples of suitable materials for the heat insulating members 50 and 51 include fluororesins typified by polytetrafluoroethylene, ceramics, glass, quartz, and the like. Regarding 0, it is preferable that this is made of a material having as small a thermal conductivity as possible.
前記吊下装置 6 0は、 へッ ド本体 3 1 の上面中央部を支持する第 1 吊 下機構 6 1 と、 固定プレート 3 5の端部複数個所を支持する複数の第 2 吊下機構 6 2とからなる。  The suspension device 60 includes a first suspension mechanism 61 that supports the center of the upper surface of the head body 31 and a plurality of second suspension mechanisms 6 that support a plurality of end portions of the fixed plate 35. Consists of two.
前記第 1 吊下機構 6 1 及び各第 2吊下機構 6 2は、 その詳しい構造に ついての説明はこれを省略するが、 ヘッ ド本体 3 1及び固定プレー卜 3 5を、 これらの上方への移動が可能であり且つ下方への移動が規制され るように支持するとともに、 へッ ド本体 3 1 及び固定プレート 3 5と蓋 体 1 1 との相対的な位置関係を調節可能となっており、 かかる位置関係 を調節することにより、 蓋体 1 1 に生じた変形の影響を受けることなく 対向板 4 1 が水平姿勢をとるように処理ガス供給へッ ド 3 0の姿勢を調 節することができるようになつている。 以上のように構成された本例のオゾン処理装置 1 によると、 まず、 適 宜手段によって基板 Kが支持針 1 2上に載置される。 この時、 載置台 2 0の位置は下降端に位置している。 また、 冷却液循環装置 4 6から冷却 液管 4 7内に冷却液が供給, 循環されている。 The detailed description of the first suspension mechanism 61 and the second suspension mechanisms 62 will be omitted, but the head body 31 and the fixed plate 35 are moved upward. The head body 31 and the fixing plate 35 and the relative positional relationship between the lid 11 and the head body 31 and the fixing plate 35 can be adjusted. By adjusting such a positional relationship, the attitude of the processing gas supply head 30 is adjusted so that the opposing plate 41 assumes a horizontal attitude without being affected by the deformation of the lid 11. You can do it. According to the ozone treatment apparatus 1 of the present example configured as described above, first, the substrate K is placed on the support needle 12 by appropriate means. At this time, the position of the mounting table 20 is located at the lower end. The coolant is supplied and circulated from the coolant circulation device 46 into the coolant tube 47.
次に、 昇降装置 1 5によって載置台 2 0及び支持装置 2 5が上昇せし められると、 支持針 1 2が載置台 2 0に対し相対的に没して、 基板 Kが 載置台 2 0の上面に載置されるとともに、 載置台 2 0が上昇端位置に達 して、 対向板 4 1 下面と基板 K表面との間の間隔 gが所定の間隔となる 。 尚、 載置台 2 0上に載置された基板 Kは、 ヒータ (図示せず) によつ て所定温度に加熱される。  Next, when the mounting table 20 and the supporting device 25 are lifted by the elevating device 15, the support needles 12 relatively sink with respect to the mounting table 20, and the substrate K is placed on the mounting table 20. The mounting table 20 reaches the rising end position, and the gap g between the lower surface of the opposing plate 41 and the surface of the substrate K becomes a predetermined gap. The substrate K mounted on the mounting table 20 is heated to a predetermined temperature by a heater (not shown).
そして、 所定濃度のオゾンガスがオゾンガス生成装置 4 5から、 ォゾ ンガス供給孔 3 6 , 各接続孔 3 7, 各ォゾ!ンガス流路 3 2及び各連通孔 3 3を順次介して各ノズル体 4 0に供給され、 その下側の開口部 4 0 b から基板 K表面に向けてそれぞれ吐出される。  Then, the ozone gas of a predetermined concentration is supplied from the ozone gas generator 45 to the ozone gas supply hole 36, each connection hole 37, and each ozone! The gas is supplied to each nozzle body 40 through the gas passage 32 and each communication hole 33 sequentially, and is discharged from the lower opening 40b toward the surface of the substrate K.
吐出されたオゾンガスは、 基板 Kに衝突した後、 これに沿って流れる オゾンガス層を形成し、 このような流れの中で、 オゾン ( O 3 ) は基板 Kにより加熱され、 このように加熱されたリ、 基板 Kやレジス トと接触 することによって酸素 (0 2 ) と活性酸素 ( O * ) に分解され、 この活 性酸素 (o * ) によって、 基板 K表面に酸化膜が形成されたり、 或いは 基板 K表面上の酸化膜が改質されたり、 更には、 基板 K表面に形成され たレジス ト膜が活性酸素との熱化学反応によつて除去される。 The ejected ozone gas collides with the substrate K and forms an ozone gas layer flowing along the substrate K. In such a flow, the ozone (O 3 ) is heated by the substrate K and thus heated. When it comes into contact with the substrate K or the resist, it is decomposed into oxygen (O 2 ) and active oxygen (O *), and the active oxygen (o *) forms an oxide film on the surface of the substrate K, or The oxide film on the surface of the substrate K is modified, and the resist film formed on the surface of the substrate K is removed by a thermochemical reaction with active oxygen.
そして、 基板 Kとこれに対向する対向板 4 1 との間の間隔 gを適宜調 整することにより、 基板 K表面に沿って流れるオゾンガス流の層圧を制 御することができ、 かかるオゾンガス流の層圧を薄くすることで、 基板 Kの表面に到達し得るオゾン分子の割合を高めることができ、 効率的な オゾン処理を行うことができる。 また、 各ノズル体 4 0から吐出され、 基板 Kに沿って流れるオゾンガ スは、 その後、 相互に衝突して各対向板 4 1 間の隙間 4 2に向かう流れ となり、 この隙間 4 2から対向板 4 1 の裏面 (上面) 側に、 即ち、 基板 Kと対向板 4 1 との間から排気される。 これにより、 処理後のオゾンガ スが基板 K表面付近に滞留して、 各ノズル体 4 0から吐出されるオゾン ガスが基板 K表面に達し難くなるのが防止され、 酸化膜の形成やその改 質、 レジス ト膜の除去といった上記処理を効果的に行うことが可能とな る。 By appropriately adjusting the distance g between the substrate K and the opposing plate 41 facing the substrate K, the layer pressure of the ozone gas flow flowing along the surface of the substrate K can be controlled. By reducing the layer pressure, the ratio of ozone molecules that can reach the surface of the substrate K can be increased, and efficient ozone treatment can be performed. Further, the ozone gas discharged from each nozzle body 40 and flowing along the substrate K thereafter collides with each other and flows toward the gap 42 between the opposed plates 41, and the ozone gas flows from the gap 42 to the opposed plate. Air is exhausted from the back (upper) side of 41, that is, from between the substrate K and the opposing plate 41. This prevents the treated ozone gas from staying near the surface of the substrate K and preventing the ozone gas discharged from each nozzle body 40 from reaching the surface of the substrate K, thereby forming an oxide film and modifying the oxide film. This makes it possible to effectively perform the above-described processing such as removal of the resist film.
ところで、 上述したように、 ヘッ ド本体 3 1 とノズル体 4 0とが直接 固設されている場合には、 ノズル体 4 0内を流通するオゾンガスがへッ ド本体 3 1 を冷却するための冷却液によって吐出間際まで冷却された状 態となリ、 吐出後のオゾンが昇温して熱分解温度に達するまでに長時間 を要するため、 各ノズル体 4 0の直下付近の基板 K表面では、 十分な活 性酸素 (O * ) が生成されず、 処理ムラを生じたり、 効率的な処理を行 うことができないという問題や、 ノズル体 4 0や対向板 4 1 自体の温度 も低下しているため、 当該ノズル体 4 0や対向板 4 1 によって基板 Kが 冷却され、 このことによつても活性酸素 (O * ) が生成され難くなつて 、 基板 Kの処理速度が低下するという問題、 更には、 基板 K表面から除 去されたレジス 卜が、 低温状態にあるノズル体 4 0や対向板 4 1 に接触 して冷却され、 当該ノズル体 4 0の外周面や対向板 4 1 の下面 (対向面 ) 又は上面に付着し易いという問題があった。 特に、 ノズル体 4 0の温 度が約 1 5 0 °C以下まで低下した場合には、 レジス トがノズル体 4 0に 多量に再付着することになる。  By the way, as described above, when the head body 31 and the nozzle body 40 are directly fixed, the ozone gas flowing through the nozzle body 40 cools the head body 31. Since it takes a long time for the ozone after being discharged to reach the pyrolysis temperature after the ozone is heated up to the thermal decomposition temperature, the surface of the substrate K immediately below each nozzle body 40 is cooled by the cooling liquid. However, sufficient active oxygen (O *) is not generated, resulting in uneven processing and inefficient processing, and a decrease in the temperature of the nozzle body 40 and the facing plate 41 itself. Therefore, the substrate K is cooled by the nozzle body 40 and the opposing plate 41, which also makes it difficult for active oxygen (O *) to be generated, thereby lowering the processing speed of the substrate K. Further, the resist removed from the surface of the substrate K is kept at a low temperature. Cooled in contact with the nozzle body 4 0 and the counter plate 4 1 in the state, there is liable to adhere to the outer peripheral surface and the facing plate 4 1 of the lower surface (opposing surface) or the top surface of the nozzle body 4 0. In particular, when the temperature of the nozzle body 40 drops to about 150 ° C. or less, a large amount of the resist re-adheres to the nozzle body 40.
そこで、 本例のオゾン処理装置 1 では、 ヘッ ド本体 3 1 とノズル体 4 0との間に断熱部材 5 0を介装するとともに、 ノズル体 4 0と固定部材 4 3との間に断熱部材 5 1 を介装して、 へッ ド本体 3 1 とノズル体 4 0 との間を断熱するようにしている。 これにより、 へッ ド本体 3 1 は冷却 液管 4 7内を流通する冷却液によって冷却されるものの、 ノズル体 4 0 はへッ ド本体 3 1 から断熱されているので、 冷却液によっては冷却され ず、 逆に、 ヒータ (図示せず) によって昇温せしめれた雰囲気や、 加熱 された基板 Kからのふく射熱などによって昇温せしめられる。 Therefore, in the ozone treatment apparatus 1 of this example, a heat insulating member 50 is interposed between the head body 31 and the nozzle body 40, and a heat insulating member is provided between the nozzle body 40 and the fixing member 43. 5 1 With the head body 3 1 and nozzle body 4 0 Insulation between them. As a result, the head body 31 is cooled by the coolant flowing through the coolant pipe 47, but the nozzle body 40 is insulated from the head body 31 so that the nozzle body 40 is cooled by the coolant. Conversely, the temperature is raised by the atmosphere heated by a heater (not shown) or by the radiant heat from the heated substrate K.
斯く して、 へッ ド本体 3 1 の各オゾンガス流路 3 2内を流通するォゾ ンガスは、 冷却液により冷却されてその温度が一定の範囲内に維持され 、 これにより、 温度上昇に伴うオゾンの熱分解が防止され、 オゾンガス 中のオゾン濃度の低下が防止される。 その一方、 ノズル体 3 1 内を流通 するオゾンガスは、 昇温したノズル体 4 0により加熱されて、 その一部 が酸素と活性酸素とに分解された状態で基板 Kに向けて吐出せしめられ 、 これが基板 Kの表面に達した時点では十分な量の活性酸素 (O * ) が 生成されている。 これにより、 基板 Kの表面がムラなく均一に、 しかも 効率的に処理される。 また、 高温のオゾンガスが基板 Kに吹きかけられ るので、 当該オゾンガスによる基板 Kの冷却が防止される。 但し、 ノズ ル体 4 0の温度があまりにも高いと、 ノズル体 4 0を通過する過程で多 量のオゾンが熱分解してしまうため、 逆に、 処理速度が低下することに なる。  In this way, the ozone gas flowing through each ozone gas flow path 32 of the head body 31 is cooled by the coolant, and its temperature is maintained within a certain range. Thermal decomposition of ozone is prevented, and a decrease in ozone concentration in ozone gas is prevented. On the other hand, the ozone gas flowing through the nozzle body 31 is heated by the heated nozzle body 40 and discharged toward the substrate K in a state where a part of the ozone gas is decomposed into oxygen and active oxygen. When this reaches the surface of the substrate K, a sufficient amount of active oxygen (O *) has been generated. As a result, the surface of the substrate K is uniformly and uniformly processed. Further, since the high-temperature ozone gas is blown onto the substrate K, the cooling of the substrate K by the ozone gas is prevented. However, if the temperature of the nozzle body 40 is too high, a large amount of ozone is thermally decomposed in the process of passing through the nozzle body 40, and conversely, the processing speed is reduced.
また、 ヘッ ド本体 3 1 とノズル体 4 0との間を断熱するとともに、 対 向板 4 1 とへッ ド本体 3 1 との間に熱反射板 5 5を設けて、 対向板 4 1 , 4 1 間を通過した基板 からのふく射熱をこの熱反射板 5 5により対 向板 4 1 の上面に向けて反射するようにしているので、 対向板 4 1 を高 温に昇温せしめることができ、 当該対向板 4 1 やノズル体 4 0によって 基板 Kが冷却されるといった不都合を防止することができる。 また、 基 板 K表面から除去したレジス 卜がノズル体 4 0の外周面や対向板 4 1 の 下面 (対向面) 又は上面に付着するといつたことが起こり難く、 メンテ ナンスの容易化を図ることができる。 In addition, heat insulation is provided between the head body 31 and the nozzle body 40, and a heat reflection plate 55 is provided between the facing plate 41 and the head body 31 so that the facing plate 41, Since the radiation heat from the board passing through the space 41 is reflected by the heat reflecting plate 55 toward the upper surface of the facing plate 41, the facing plate 41 can be heated to a high temperature. However, such an inconvenience that the substrate K is cooled by the opposed plate 41 and the nozzle body 40 can be prevented. Further, if the resist removed from the surface of the base plate K adheres to the outer peripheral surface of the nozzle body 40 or the lower surface (opposed surface) or upper surface of the opposing plate 41, it is difficult for the maintenance to occur. Nonce can be facilitated.
尚、 前記基板 Kの加熱温度は、 2 0 0°C〜 5 00°Cの範囲が好ましい 。 この範囲内であれば、 基板 K内に含まれる不純物の蒸発を上記処理と 同時に行うことができる。 また、 前記オゾンガスは、 1 4重量%以上の オゾンを含むものが好適であり、 オゾンと T E O S (Tetraethyl ortho si I icate, ゲイ酸テ トラエチル、 S i ( C 2 H 50) 4 ) の混合ガスであ つても良い。 The heating temperature of the substrate K is preferably in the range of 200 ° C. to 500 ° C. Within this range, the impurities contained in the substrate K can be evaporated at the same time as the above processing. Further, the ozone gas, 1 4 those containing% by weight or more of ozone are preferred, ozone and TEOS gas mixture of (Tetraethyl ortho si I icate, Gay Sante Toraechiru, S i (C 2 H 5 0) 4) It may be.
以上、 本発明の一実施形態について説明したが、 本発明の採り得る具 体的な態様は、 何らこれに限定されるものではない。  As mentioned above, although one Embodiment of this invention was described, the concrete aspect which this invention can take is not limited to this at all.
上例では、 ヘッ ド本体 3 1 とノズル体 40との間に断熱部材 5 0を介 装するとともに、 ノズル体 4 0と固定部材 4 3との間に断熱部材 5 1 を 介装して、 へッ ド本体 3 1 とノズル体 40との間を断熱するように構成 したが、 これに限られるものではなく、 第 6図に示すように、 断熱部材 5 0 , 5 1 を介装せずに、 ノズル体 8 0及び対向板 8 1 を、 断熱性を有 する材料から構成し、 ノズル体 8 0をヘッ ド本体 3 1 に固定部材 4 3に よつて直接取リ付けるようにしても、 上記と同様の効果を得ることがで きる。  In the above example, a heat insulating member 50 is interposed between the head body 31 and the nozzle body 40, and a heat insulating member 51 is interposed between the nozzle body 40 and the fixing member 43. Although the heat insulation between the head body 31 and the nozzle body 40 is configured, the invention is not limited to this. As shown in FIG. 6, the heat insulation members 50 and 51 are not interposed. Alternatively, the nozzle body 80 and the opposing plate 81 may be made of a material having heat insulating properties, and the nozzle body 80 may be directly attached to the head body 31 by a fixing member 43. The same effect as above can be obtained.
この場合、 ノズル体 8 0及び対向板 8 1 は、 ポリテ トラフルォロェチ レンに代表されるフッ素樹脂やセラミック, ガラス, 石英などから構成 すると良い。  In this case, the nozzle body 80 and the opposing plate 81 are preferably made of fluororesin represented by polytetrafluoroethylene, ceramic, glass, quartz, or the like.
また、 上例では、 各ノズル体 4 0の下端部に対向板 4 1 を固設した構 成と したが、 これに限られるものではなく、 第 7図に示すように、 各対 向板 7 0を、 複数の支持部材 7 1 によって前記へッ ド本体 3 1 の下面に 固設した構成とすることもできる。 前記各対向板 7 0には、 貫通孔 7 0 aがそれぞれ形成されており、 当該貫通孔 7 0 a内に前記ノズル体 40 の下端部がそれぞれ嵌挿される。 尚、 各対向板 7 0は、 ノズル体 40の 下端部が当該対向板 7 0の下面より上方に位置するように、 且つ隣接す る各対向板 7 0との間に所定の隙間 7 3が形成されるようにそれぞれ配 置される。 In the above example, the opposed plate 41 is fixed to the lower end of each nozzle body 40. However, the present invention is not limited to this, and as shown in FIG. 0 may be fixed to the lower surface of the head body 31 by a plurality of support members 71. A through hole 70a is formed in each of the opposed plates 70, and a lower end portion of the nozzle body 40 is fitted into the through hole 70a. In addition, each opposing plate 70 is They are arranged so that the lower end is located above the lower surface of the opposing plate 70 and a predetermined gap 73 is formed between each adjacent opposing plate 70.
また、 へッ ド本体 3 1 と各支持部材 7 1 、 及び各対向板 7 0と各支持 部材 7 1 との間には断熱部材 7 2 , 7 4がそれぞれ介装されており、 前 記冷却液管 4 7内を流通する冷却液によって、 各支持部材 7 1 及び各対 向板 7 0が冷却されないようになっている。 尚、 断熱部材 7 2 , 7 4は 、 へッ ド本体 3 1 と各支持部材 7 1 との間、 及び各対向板 7 0と各支持 部材 7 1 との間の両方にそれぞれ介装するようにしなくても、 ヘッ ド本 体 3 1 と各支持部材 7 1 との間、 又は各対向板 7 0と各支持部材 7 1 と の間のどちらか一方のみに介装するようにしても良い。 また、 ノズル体 4 1 は、 必ずしも断熱部材 5 0 , 5 1 によって断熱されていなくても良 いが、 このようにすると、 対向板 7 0 しか断熱されず、 ノズル体 4 0が 冷却されてしまうので、 当該ノズル体 4 1 は断熱部材 5 0, 5 1 によつ て断熱されていることが好ましい。  Insulating members 72 and 74 are interposed between the head body 31 and each support member 71, and between the opposing plate 70 and each support member 71, respectively. Each of the support members 71 and each of the facing plates 70 are not cooled by the cooling liquid flowing through the liquid pipe 47. The heat insulating members 72 and 74 are disposed between the head body 31 and each support member 71 and between each opposing plate 70 and each support member 71. It is also possible to interpose only one of the head body 31 and each support member 71 or the one between each opposing plate 70 and each support member 71. . Further, the nozzle body 41 does not necessarily have to be insulated by the heat insulating members 50 and 51, but in this case, only the opposing plate 70 is insulated and the nozzle body 40 is cooled. Therefore, it is preferable that the nozzle body 41 be insulated by the heat insulating members 50 and 51.
また、 この場合においても、 上記と同様、 第 8図に示すように、 へッ ド本体 3 1 とノズル体 4 0との間、 ノズル体 4 0と固定部材 4 3との間 、 及びヘッ ド本体 3 1 と支持部材 7 1 との間に断熱部材 5 0 , 5 1 , 7 2をそれぞれ介装せずに、 ノズル体 8 2, 対向板 8 3及び支持部材 8 4 を、 断熱性を有する材料から構成し、 ノズル体 8 0及び支持部材 8 4を へッ ド本体 3 1 に直接取リ付けるようにしても、 上記と同様の効果を得 ることができる。 尚、 上記と同様に、 ノズル体 8 2は必ずしも断熱性を 有する材料から構成しなくても良いが、 このようにすると、 対向板 8 3 しか断熱されず、 ノズル体 8 2が冷却されてしまうので、 当該ノズル体 8 2も断熱性を有する材料から構成することが好ましい。  Also in this case, similarly to the above, as shown in FIG. 8, between the head body 31 and the nozzle body 40, between the nozzle body 40 and the fixing member 43, and the head. No heat insulation members 50, 51, 72 are interposed between the main body 31 and the support member 71, and the nozzle body 82, the facing plate 83, and the support member 84 have heat insulation properties. The same effect as described above can be obtained even if the nozzle body 80 and the support member 84 are made of a material and are directly attached to the head body 31. Note that, similarly to the above, the nozzle body 82 does not necessarily need to be made of a material having heat insulating properties. However, in this case, only the opposing plate 83 is insulated, and the nozzle body 82 is cooled. Therefore, it is preferable that the nozzle body 82 is also made of a material having heat insulating properties.
また、 対向板 4 1 , 8 1 及びノズル体 4 0 , 8 0は、 これらが一部材 として一体的に形成されていても良く、 二部材から構成されていても良 い。 Also, the opposing plates 41, 81 and the nozzle bodies 40, 80 are one member. It may be formed integrally as one, or may be composed of two members.
また、 上記熱反射板 5 5を設けないで、 固定部材 4 3の下面を鏡面に 仕上げた構成と しても良い。 このようにすれば、 上記熱反射板 5 5に依 らずとも、 基板 Kからのふく射熱を、 固定部材 4 3の下面によって対向 板 4 1 の上面に向けて反射させることができ、 同様に、 対向板 4 1 を昇 温させることができる。 産業上の利用可能性  Further, the heat reflecting plate 55 may not be provided, and the lower surface of the fixing member 43 may be mirror-finished. In this way, irradiating heat from the substrate K can be reflected by the lower surface of the fixing member 43 toward the upper surface of the opposing plate 41 irrespective of the heat reflecting plate 55. The temperature of the facing plate 41 can be increased. Industrial applicability
以上のように、 本発明に係るオゾン処理装置は、 半導体基板や液晶基 板などといった基板表面への酸化膜の形成や当該基板表面に形成された 酸化膜の改質、 或いは、 当該基板表面に形成されたレジス ト膜の除去の 際に、 好適に用いることができる。  As described above, the ozone treatment apparatus according to the present invention is capable of forming an oxide film on a substrate surface such as a semiconductor substrate or a liquid crystal substrate, modifying an oxide film formed on the substrate surface, or forming an oxide film on the substrate surface. It can be suitably used when removing the formed resist film.

Claims

請 求 の 範 囲 The scope of the claims
1 . 上面に基板が載置される載置台と、 1. A mounting table on which the substrate is mounted on the upper surface,
該載置台上に載置された基板を加熱する加熱手段と、  Heating means for heating the substrate mounted on the mounting table,
前記載置台の上方に配設される処理ガス供給ヘッ ドであって、 オゾン を含んだ処理ガスが流通する処理ガス流路、 及び冷却流体が流通する冷 却流体流路を有するへッ ド本体と、 該へッ ド本体の下面に れから垂下 するように固設され、 前記処理ガス流路と連通し且つ前記載置台上の基 板上面に向けて開口した処理ガス吐出路を有するノズル体とを備えた処 理ガス供給へッ ドと、  A processing gas supply head disposed above the mounting table, wherein the head body has a processing gas flow path through which a processing gas containing ozone flows and a cooling fluid flow path through which a cooling fluid flows. A nozzle body fixedly mounted on the lower surface of the head body so as to hang down therefrom, and having a processing gas discharge path communicating with the processing gas flow path and opening toward the upper surface of the substrate on the mounting table. A processing gas supply head with
前記処理ガス流路に前記処理ガスを供給して、 前記ノズル体の開口部 から吐出させるガス供給手段と、  Gas supply means for supplying the processing gas to the processing gas flow path and discharging the processing gas from the opening of the nozzle body;
前記冷却流体流路に冷却流体を供給して、 循環させる冷却流体循環手 段とを備えて構成されるオゾン処理装置において、  A cooling fluid circulation means for supplying and circulating a cooling fluid to the cooling fluid flow path,
前記ノズル体を、 断熱性を有する材料から構成したことを特徴とする ォゾン処理装置。  The ozone treatment device, wherein the nozzle body is made of a material having a heat insulating property.
2 . 上面に基板が載置される載置台と、  2. A mounting table on which the substrate is mounted on the upper surface,
該載置台上に載置された基板を加熱する加熱手段と、  Heating means for heating the substrate mounted on the mounting table,
前記載置台の上方に配設される処理ガス供給へッ ドであって、 オゾン を含んだ処理ガスが流通する処理ガス流路、 及び冷却流体が流通する冷 却流体流路を有するへッ ド本体と、 該へッ ド本体の下面にこれから垂下 するように固設され、 前記処理ガス流路と連通し且つ前記載置台上の基 板上面に向けて開口した処理ガス吐出路を有するノズル体とを備えた処 理ガス供給へッ ドと、  A processing gas supply head disposed above the mounting table, wherein the processing gas flow path through which a processing gas containing ozone flows and a cooling fluid flow path through which a cooling fluid flows. A nozzle body fixedly mounted on the lower surface of the head body so as to hang down therefrom, and having a processing gas discharge path communicating with the processing gas flow path and opening toward the upper surface of the substrate on the mounting table. A processing gas supply head with
前記処理ガス流路に前記処理ガスを供給して、 前記ノズル体の開口部 から吐出させるガス供給手段と、 前記冷却流体流路に冷却流体を供給して、 循環させる冷却流体循環手 段とを備えて構成されるオゾン処理装置において、 Gas supply means for supplying the processing gas to the processing gas flow path and discharging the processing gas from the opening of the nozzle body; A cooling fluid circulation means for supplying and circulating a cooling fluid to the cooling fluid flow path,
前記へッ ド本体とノズル体との間に断熱部材を介装したことを特徴と するオゾン処理装置。  An ozone treatment apparatus, wherein a heat insulating member is interposed between the head body and the nozzle body.
3 . 上面に基板が載置される載置台と、 3. A mounting table on which the substrate is mounted on the upper surface,
該載置台上に載置された基板を加熱する加熱手段と、  Heating means for heating the substrate mounted on the mounting table,
前記載置台の上方に配設される処理ガス供給へッ ドであって、 オゾン を含んだ処理ガスが流通する処理ガス流路、 及び冷却流体が流通する冷 却流体流路を有するへッ ド本体と、 前記載置台上の基板上面と対向する ように配置された対向板と、 該ヘッ ド本体の下面にこれから垂下するよ うに固設されるとともに、 下端部に前記対向板が固設され、 前記処理ガ ス流路と連通し且つ前記対向板の基板との対向面に開口した処理ガス吐 出路を有するノズル体とを備えた処理ガス供給へッ ドと、  A processing gas supply head disposed above the mounting table, wherein the processing gas flow path through which a processing gas containing ozone flows and a cooling fluid flow path through which a cooling fluid flows. A main body, an opposing plate disposed so as to oppose the upper surface of the substrate on the mounting table, and the lower end of the head plate is fixedly mounted on the lower surface of the head main body so as to hang therefrom. A processing gas supply head comprising: a nozzle body having a processing gas discharge passage communicating with the processing gas flow path and opening on a surface of the facing plate facing the substrate;
前記処理ガス流路に前記処理ガスを供給して、 前記ノズル体の開口部 から吐出させるガス供給手段と、  Gas supply means for supplying the processing gas to the processing gas flow path and discharging the processing gas from the opening of the nozzle body;
前記冷却流体流路に冷却流体を供給して、 循環させる冷却流体循環手 段とを備えて構成されるオゾン処理装置において、  A cooling fluid circulation means for supplying and circulating a cooling fluid to the cooling fluid flow path,
前記ノズル体及び対向板を、 断熱性を有する材料から構成したことを 特徴とするオゾン処理装置。  The ozone treatment apparatus, wherein the nozzle body and the opposing plate are made of a material having a heat insulating property.
4 . 上面に基板が載置される載置台と、 4. A mounting table on which the substrate is mounted on the upper surface,
該載置台上に載置された基板を加熱する加熱手段と、  Heating means for heating the substrate mounted on the mounting table,
前記載置台の上方に配設される処理ガス供給へッ ドであって、 オゾン を含んだ処理ガスが流通する処理ガス流路、 及び冷却流体が流通する冷 却流体流路を有するへッ ド本体と、 前記載置台上の基板上面と対向する ように配置された対向板と、 該ヘッ ド本体の下面にこれから垂下するよ うに固設されるとともに、 下端部に前記対向板が固設され、 前記処理ガ ス流路と連通し且つ前記対向板の基板との対向面に開口した処理ガス吐 出路を有するノズル体とを備えた処理ガス供給へッ ドと、 A processing gas supply head disposed above the mounting table, wherein the processing gas flow path through which a processing gas containing ozone flows and a cooling fluid flow path through which a cooling fluid flows. A main body, an opposing plate disposed so as to oppose the upper surface of the substrate on the mounting table, and the lower end of the head plate is fixedly mounted on the lower surface of the head main body so as to hang therefrom. The processing gas A processing gas supply head comprising: a nozzle body having a processing gas discharge path that communicates with a gas flow path and is opened on a surface of the opposing plate facing the substrate;
前記処理ガス流路に前記処理ガスを供給して、 前記ノズル体の開口部 から吐出させるガス供給手段と、  Gas supply means for supplying the processing gas to the processing gas flow path and discharging the processing gas from the opening of the nozzle body;
前記冷却流体流路に冷却流体を供給して、 循環させる冷却流体循環手 段とを備えて構成されるオゾン処理装置において、  A cooling fluid circulation means for supplying and circulating a cooling fluid to the cooling fluid flow path,
前記へッ ド本体とノズル体との間に断熱部材を介装したことを特徴と するオゾン処理装置。  An ozone treatment apparatus, wherein a heat insulating member is interposed between the head body and the nozzle body.
5 . 上面に基板が載置される載置台と、  5. A mounting table on which the substrate is mounted on the upper surface,
該載置台上に載置された基板を加熱する加熱手段と、  Heating means for heating the substrate mounted on the mounting table,
前記載置台の上方に配設される処理ガス供給へッ ドであって、 オゾン を含んだ処理ガスが流通する処理ガス流路、 及び冷却流体が流通する冷 却流体流路を有するへッ ド本体と、 前記載置台上の基板上面と対向する ように配置され、 上下に貫通する貫通孔が形成された対向板と、 該対向 板を前記ヘッ ド本体の下面に連結する支持部材と、 前記ヘッ ド本体の下 面にこれから垂下するように固設されて下端部が前記対向板の貫通孔に 嵌挿され、 前記処理ガス流路と連通し且つ前記載置台上の基板上面に向 けて開口した処理ガス吐出路を有するノズル体とを備えた処理ガス供給 へッ ドと、  A processing gas supply head disposed above the mounting table, wherein the processing gas flow path through which a processing gas containing ozone flows and a cooling fluid flow path through which a cooling fluid flows. A main body, an opposing plate arranged to face the upper surface of the substrate on the mounting table, and formed with a through hole penetrating vertically, a support member connecting the opposing plate to a lower surface of the head main body, It is fixed to the lower surface of the head body so as to hang down therefrom, and the lower end is inserted into the through hole of the opposite plate, communicates with the processing gas flow path, and faces the upper surface of the substrate on the mounting table. A processing gas supply head comprising: a nozzle body having an open processing gas discharge path; and
前記処理ガス流路に前記処理ガスを供給して、 前記ノズル体の開口部 から吐出させるガス供給手段と、  Gas supply means for supplying the processing gas to the processing gas flow path and discharging the processing gas from the opening of the nozzle body;
前記冷却流体流路に冷却流体を供給して、 循環させる冷却流体循環手 段とを備えて構成されるオゾン処理装置において、  A cooling fluid circulation means for supplying and circulating a cooling fluid to the cooling fluid flow path,
少なく とも前記対向板及び支持部材を、 断熱性を有する材料から構成 したことを特徴とするオゾン処理装置。  An ozone treatment apparatus characterized in that at least the opposing plate and the support member are made of a material having a heat insulating property.
6 . 上面に基板が載置される載置台と、 該載置台上に載置された基板を加熱する加熱手段と、 前記載置台の上方に配設される処理ガス供給へッ ドであって、 オゾン を含んだ処理ガスが流通する処理ガス流路、 及び冷却流体が流通する冷 却流体流路を有するへッ ド本体と、 前記載置台上の基板上面と対向する ように配置され、 上下に貫通する貫通孔が形成された対向板と、 該対向 板を前記へッ ド本体の下面に連結する支持部材と、 前記へッ ド本体の下 面にこれから垂下するように固設されて下端部が前記対向板の貫通孔に 嵌挿され、 前記処理ガス流路と連通し且つ前記載置台上の基板上面に向 けて開口した処理ガス吐出路を有するノズル体とを備えた処理ガス供給 ヘッ ドと、 6. A mounting table on which the substrate is mounted on the upper surface, A heating means for heating the substrate mounted on the mounting table; and a processing gas supply head disposed above the mounting table, the processing gas flow path through which a processing gas containing ozone flows. A head body having a cooling fluid flow path through which a cooling fluid flows, and an opposing plate arranged to face the upper surface of the substrate on the mounting table and having a through hole vertically penetrating therethrough, A support member for connecting the opposing plate to the lower surface of the head main body; a lower member fixedly mounted on a lower surface of the head main body so as to hang therefrom, and a lower end fitted into a through hole of the opposing plate; A processing gas supply head having a nozzle body having a processing gas discharge path communicating with the processing gas flow path and opening toward the upper surface of the substrate on the mounting table;
前記処理ガス流路に前記処理ガスを供給して、 前記ノズル体の開口部 から吐出させるガス供給手段と、  Gas supply means for supplying the processing gas to the processing gas flow path and discharging the processing gas from the opening of the nozzle body;
前記冷却流体流路に冷却流体を供給して、 循環させる冷却流体循環手 段とを備えて構成されるオゾン処理装置において、  A cooling fluid circulation means for supplying and circulating a cooling fluid to the cooling fluid flow path,
少なく とも前記支持部材とへッ ド本体との間、 前記対向板と支持部材 との間の一方に断熱部材を介装したことを特徴とするオゾン処理装置。  An ozone treatment apparatus characterized in that a heat insulating member is interposed at least between the support member and the head main body and between the opposing plate and the support member.
7 . 下面が熱反射面となった熱反射板を、 前記ヘッ ド本体と対向板との 間に配設したことを特徴とする請求の範囲第 1 項乃至第 6項記載のいず れかのオゾン処理装置。 7. A heat reflecting plate having a lower surface as a heat reflecting surface, disposed between the head body and the opposing plate, according to any one of claims 1 to 6, wherein Ozone treatment equipment.
PCT/JP2003/012112 2002-09-27 2003-09-22 Ozone processing apparatus WO2004030067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004539484A JPWO2004030067A1 (en) 2002-09-27 2003-09-22 Ozone treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002282308 2002-09-27
JP2002-282308 2002-09-27

Publications (1)

Publication Number Publication Date
WO2004030067A1 true WO2004030067A1 (en) 2004-04-08

Family

ID=32040533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012112 WO2004030067A1 (en) 2002-09-27 2003-09-22 Ozone processing apparatus

Country Status (3)

Country Link
JP (1) JPWO2004030067A1 (en)
TW (1) TW200415728A (en)
WO (1) WO2004030067A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501826A (en) * 2018-09-29 2022-01-06 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Multi-station chamber lid with accurate temperature and flow control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143081A (en) * 1996-07-12 2000-11-07 Tokyo Electron Limited Film forming apparatus and method, and film modifying apparatus and method
JP2001279450A (en) * 2000-03-31 2001-10-10 Hitachi Kokusai Electric Inc Substrate treatment apparatus
JP2002064090A (en) * 2000-08-21 2002-02-28 Sumitomo Precision Prod Co Ltd Film formation treating equipment
JP2002217183A (en) * 2001-01-22 2002-08-02 Tokyo Electron Ltd Equipment and method of heat treatment
JP2003092292A (en) * 2001-09-19 2003-03-28 Sumitomo Precision Prod Co Ltd Ozone treatment apparatus
JP2003092290A (en) * 2001-09-19 2003-03-28 Sumitomo Precision Prod Co Ltd Ozone treatment apparatus
JP2003218094A (en) * 2002-01-24 2003-07-31 Sumitomo Precision Prod Co Ltd Ozone processing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143081A (en) * 1996-07-12 2000-11-07 Tokyo Electron Limited Film forming apparatus and method, and film modifying apparatus and method
JP2001279450A (en) * 2000-03-31 2001-10-10 Hitachi Kokusai Electric Inc Substrate treatment apparatus
JP2002064090A (en) * 2000-08-21 2002-02-28 Sumitomo Precision Prod Co Ltd Film formation treating equipment
JP2002217183A (en) * 2001-01-22 2002-08-02 Tokyo Electron Ltd Equipment and method of heat treatment
JP2003092292A (en) * 2001-09-19 2003-03-28 Sumitomo Precision Prod Co Ltd Ozone treatment apparatus
JP2003092290A (en) * 2001-09-19 2003-03-28 Sumitomo Precision Prod Co Ltd Ozone treatment apparatus
JP2003218094A (en) * 2002-01-24 2003-07-31 Sumitomo Precision Prod Co Ltd Ozone processing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501826A (en) * 2018-09-29 2022-01-06 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Multi-station chamber lid with accurate temperature and flow control
JP7121447B2 (en) 2018-09-29 2022-08-18 アプライド マテリアルズ インコーポレイテッド Multi-station chamber lid with precise temperature and flow control

Also Published As

Publication number Publication date
TW200415728A (en) 2004-08-16
JPWO2004030067A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
KR101645262B1 (en) Gas dispersion apparatus
US8196619B2 (en) Load lock apparatus, processing system and substrate processing method
KR100758744B1 (en) Treatment device
JP5235407B2 (en) Substrate mounting mechanism and substrate processing apparatus
CN102651923A (en) Microwave irradiation apparatus
JPS63108712A (en) Method and apparatus for heating semiconductor substrate and for inducing reaction
WO2005064254A1 (en) Vertical heat treatment device and method of controlling the same
TW202008467A (en) Heat treatment device and heat treatment method
KR100900318B1 (en) Showerhead for depositing thin film on wafer and method for cleaning apparatus for depositing thin film on wafer
KR101543699B1 (en) Substrate treating apparatus
WO2004030067A1 (en) Ozone processing apparatus
JP4190422B2 (en) Ozone treatment equipment
US6759633B2 (en) Heat treating device
KR102258248B1 (en) Substrate heating unit
JP3770409B2 (en) HMDS supply device
KR20200102725A (en) Apparatus for loading substrate and apparatus for processing substrate
JP2004088033A (en) Ozone treatment device
JP2004088035A (en) Ozone treatment device
KR102258244B1 (en) Substrate heating unit
KR102258246B1 (en) Substrate heating unit
KR102258247B1 (en) Substrate heating unit
JP2578567Y2 (en) Heat treatment equipment
WO2004013906A1 (en) Ozone processing apparatus
KR20200060701A (en) Substrate heating unit
JP2004071761A (en) Ozone treatment device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

WWE Wipo information: entry into national phase

Ref document number: 2004539484

Country of ref document: JP