WO2004029613A1 - Method of measuring glycoprotein - Google Patents

Method of measuring glycoprotein Download PDF

Info

Publication number
WO2004029613A1
WO2004029613A1 PCT/JP2003/012232 JP0312232W WO2004029613A1 WO 2004029613 A1 WO2004029613 A1 WO 2004029613A1 JP 0312232 W JP0312232 W JP 0312232W WO 2004029613 A1 WO2004029613 A1 WO 2004029613A1
Authority
WO
WIPO (PCT)
Prior art keywords
fructosylamine
measuring
glycated protein
amount
glycated
Prior art date
Application number
PCT/JP2003/012232
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Sode
Original Assignee
Koji Sode
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koji Sode filed Critical Koji Sode
Priority to AU2003266612A priority Critical patent/AU2003266612A1/en
Priority to JP2004539527A priority patent/JP4330534B2/en
Publication of WO2004029613A1 publication Critical patent/WO2004029613A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin

Definitions

  • the present invention relates to a method for measuring glycated protein and hemoglobin A 1c used as a marker for diagnosing diabetes in the field of clinical examination. More specifically, the present invention provides a method for quantifying glycated protein and hemoglobin A1c based on the fact that glycated protein and hemoglobin A1c antagonistically inhibit the fructosylamine oxidation reaction catalyzed by fructosylamine oxidation. On how to do. Furthermore, the present invention relates to a glycated protein and a kit for measuring hemoglobin A1c and a sensor constructed based on the method of the present invention. Background art
  • the amino groups of the protein main chain and side chains are non-enzymatically linked to the reducing end of a reducing sugar such as glucose to produce an Amadori compound, ie, a glycated protein.
  • a reducing sugar such as glucose
  • an Amadori compound ie, a glycated protein.
  • hemoglobin is glycated in blood to produce glycated hemoglobin (glycohemoglobin; HbAlc). Since the presence of HbAlc in hemoglobin is higher in diabetic patients than in healthy subjects, and the blood concentration of HbAlc reflects blood glucose levels in the past few weeks, the HbAlc blood concentration can be used for diagnosis of diabetes and diabetes. It is extremely important in clinical trials as an indicator of glycemic control in patients.
  • fructosylamine oxidation catalysts reported so far cannot oxidize unhydrolyzed sugarcane protein as a substrate. For this reason, glycated protein is first hydrolyzed, and the resulting low-molecular-weight glycated peptide or fructosylamine is oxidized using a fructosylamic acid catalyst to obtain a glycated protein. The protein was being measured. Therefore, there is a need in the art for a method for measuring a glycated protein without decomposing it.
  • An object of the present invention is to provide a novel method for measuring a saccharified protein and a saccharified protein in which the concentrations of glycated proteins and hemoglobin A 1c are measured without hydrolysis. More specifically, the present invention provides a method for measuring a glycated protein, particularly hemoglobin A1c (HbAlc) or glycated albumin, which is used in the field of clinical testing and the like, and a measuring reagent and a sensor constructed based on the method. The purpose is to: Disclosure of the invention
  • the present inventors have found that glycated proteins can competitively inhibit the fructosylamine oxidation reaction catalyzed by a fructosylamine oxidation catalyst, and have completed the present invention. That is, the present invention relates to a method for measuring a glycated protein in a sample, comprising contacting the sample with a fructosylamic acid catalyst in the presence of a fixed amount of fructosylamine. A method is provided wherein the amount of the glycated protein is measured by measuring the amount of fructosylamine oxidized by the catalyst. According to the present invention, glycated protein can be measured without hydrolyzing the glycated protein, using the competitive inhibition of the fructosylamine oxidation catalyst by the glycated protein as an index.
  • fructosylamine oxidation catalyst refers to a catalyst that catalyzes the oxidation reaction of fructosylamine, which inhibits the reaction in a concentration-dependent manner in the presence of glycated protein. Represents the catalyst to be used.
  • examples of fructosylamine oxidation catalysts include fructosylamine oxidase and polymers that catalyze the oxidation of fructosylamine in the presence of an electron acceptor, for example, polymers containing imidazole groups.
  • the present invention provides a method for measuring a glycated protein, wherein the fructosylamine oxidation catalyst described above is a molecule having an imidazole group. In a preferred embodiment, the present invention provides a method for measuring a glycated protein, wherein the fructosylamine oxidation catalyst is fructosylamine oxidase. More preferably, the fructosylamine oxidation catalyst is selective for fructosyl valine.
  • the step of measuring the amount of fructosylamine is performed by spectrophotometrically measuring the amount of an electron acceptor reduced as the fructosylamine is oxidized.
  • the step of measuring the amount of fructosylamine is performed by electrochemically measuring the amount of an electron acceptor reduced with the oxidation of fructosylamine using an electrode. Done.
  • the present invention provides a method for measuring a glycated protein, wherein the glycated protein described above is hemoglobin A1c.
  • the present invention also provides a glycated protein measurement kit based on the above principle.
  • the kit comprises a fructosylamine oxidation catalyst and fructosylamine.
  • the present invention also provides a hemoglobin A1c measurement kit based on the above-described principle.
  • the present invention provides a glycated protein measuring sensor based on the above principle.
  • the present invention also provides a sensor for measuring hemoglobin A1c based on the principle described above.
  • FIG. 1 shows the sensor system constructed in the second embodiment.
  • FIG. 2 shows a decrease in the steady-state current value when the HbAlc sample was added to the sensor system constructed in Example 2.
  • Fig. 3 shows that various proteins were added to the sensor shown in The graph shows the dependence of the decrease in the steady-state current value upon the addition of white matter and HbAlc on the sample concentration.
  • FIG. 4 shows the results of measuring HbA1c using the sensor system created in Example 2.
  • FIG. 5 shows the results of measuring HbA1c using the sensor system created in Example 5.
  • the method for measuring a glycated protein of the present invention is based on the discovery that glycated proteins can competitively inhibit the fructosylamine oxidation reaction catalyzed by a fructosylamine oxidation catalyst. That is, when a sample containing a glycated protein is brought into contact with a fructosylamine oxidation catalyst in the presence of a fixed amount of fructosylamine, the amount of fructosylamine oxidized by the fructosylamine oxidation catalyst becomes saccharified. It varies depending on the protein concentration. Therefore, by measuring the amount or oxidation rate of oxidized fructosylamine, the concentration of glycated protein in a sample can be determined.
  • a fructosylamine oxidation catalyst for example, a synthetic polymer having an imidazole group or a fructosylamine oxidase can be used.
  • a catalyst having an activity of oxidizing fructosylamine and being antagonized by glycated protein is used. If there is, it is not limited.
  • imidazole it is possible to use a polymer obtained by polymerizing a functional group that functions as a general base catalyst, for example, a monomer containing bipyridyl containing pyridine.
  • HbAlc has a fructosyl rubulin moiety in its molecule and acts antagonistically to a fructosylamine oxidation catalyst selective for fructosyl valine.
  • a fructosylamine oxidation catalyst selective for fructosyl valine.
  • the enzyme can be used, but it is limited as long as it has the oxidizing activity of fructosyl valine and is subject to competitive inhibition by HbAlc. It is not something to be done.
  • fructosyl valine but also a catalyst polymer having an imidazole group, which is synthesized using an analog, methyl valine, as ⁇ -type can be used as the catalyst.
  • the measurement of the glycated protein in the present invention can be easily performed by measuring the amount or reduction rate of the electron acceptor reduced by the fructosylamine oxidation by the fructosylamine oxidation catalyst.
  • a sample is added to a solution containing a fixed amount of a fructosylamine oxidation catalyst, fructosylamine, and an electron acceptor, and the amount or reduction rate of the electron acceptor reduced by oxidation of fructosylamine is measured.
  • the amount of the electron acceptor or the reduction rate in the absence of the sample the glycated protein in the sample can be measured.
  • Electron acceptors can be measured by spectroscopic methods based on the characteristic spectrum of the reduced state of the electron acceptor, or by reoxidizing the electron acceptor in the reduced state on the electrode. An electrochemical method by measuring the obtained current can be used.
  • an unknown concentration of HbA1c can be quantified with a sensitivity of 10 nM or less in the presence of PMS and DCIP as electron acceptors.
  • various artificial electron acceptors may be used.
  • the electron acceptor potassium phenocyanide, phlegmene, an osmium derivative, or the like can be used.
  • oxygen can be used as an electron acceptor in addition to the above-mentioned electron acceptor.
  • the amount of oxygen decrease and the rate of decrease or the amount of hydrogen peroxide produced
  • the inhibition of the enzyme by glycated protein can be measured, and the concentration of glycated protein can be measured.
  • the present invention features a kit for measuring a glycated protein such as HbA1c or glycated albumin, which includes a measuring method using the principle of the present invention.
  • the glycated protein measurement kit of the present invention contains the fructosylamine oxidizing catalyst according to the present invention, fructosylamine, and an electron acceptor in an amount sufficient for at least one time of the assay.
  • the kit contains a fructosylamic acid catalyst; a buffer adjusted to pH 6.0 to 10; a suitable mediator; and a glycated protein or a derivative thereof for preparing a calibration curve. Includes standard solutions, as well as guidelines for use.
  • the glycated protein analysis kit according to the present invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution. Sensor
  • the present invention features a sensor for measuring a glycated protein such as glycated albumin, HbAle, or the like.
  • the glycated protein sensor of the present invention electrochemically oxidizes a mediae, which is reduced as fructosylamine is oxidized by a fructosylamine oxidation catalyst, on an electrode, and determines a current value at this time. Measure.
  • the oxidation reaction is competitively inhibited depending on the concentration of glycated protein.Therefore, a current curve was measured in the presence of various concentrations of glycated protein, and a standard curve was prepared.
  • the glycated protein concentration in the sample can be determined.
  • the electrode a carbon electrode, a gold electrode, a platinum electrode, or the like is used, and a fructosylamine oxidation catalyst is fixed on the electrode.
  • the immobilization method include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a method of using a photocrosslinkable polymer, a conductive polymer, and a redox polymer. May be used.
  • a sensor for measuring HbAlc can be constructed as follows. Measured in an ambrometric system using a carbon electrode, gold electrode, platinum electrode, etc. In this case, use an electrode on which a fructosylamine oxidation catalyst is immobilized as a working electrode, and use a buffer solution containing a mediator together with a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an AgZAgC1 electrode). And keep it at a constant temperature. Apply a constant voltage to the working electrode, add a fixed amount of fructosylamine and a sample, and measure the increase in current. As a medium, potassium ferricyanide, phlegmene, osmium derivatives, phenazine methosulfate and the like can be used.
  • an electrode in which a fructosylamine oxidation catalyst and an electron mediator such as potassium ferricyanide, phenocene, osmium derivatives, and phenazine methosulfate are immobilized on a polymer matrix by adsorption or covalent bonding as a working electrode.
  • a buffer insert it into a buffer with a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCI electrode) and keep it at a constant temperature. Apply a constant potential to the working electrode, add a fixed amount of fructosylamine and sample, and measure the increase in current.
  • the concentration of glycated protein in the sample can be determined according to calibration curves prepared using glycated protein solutions of various concentrations.
  • HbAlc was measured using the inhibition of fructosyl valine response observed in the present sensor system as an index. That is, in this sensor system, the response current value to fructosyl valine 0. ImM in the absence of HbAlc decreases as the added HbAlc concentration increases. From the response current value for fructosyl valine 0.1 mM, the decrease in the non-specific response value observed in the presence of various proteins was subtracted to obtain the response current value for fructosyl palin 0.1 ImM. Fructosylvaline, which is observed in the presence of various concentrations of HbA1c, is subtracted from this value.
  • the response current to ImM is subtracted, and the difference in fructosylvaline in the absence of HbA1c is calculated.
  • the ratio of the response current to sylvaline 0.1 mM was defined as the inhibition rate.
  • the inhibition rate is plotted on the vertical axis, and the results of measurement of HbAlc are shown in FIG.
  • HbAlc could be detected at a sensitivity of 10 nM without denaturing or hydrolyzing using this sensor.
  • HbAlc hemoglobin Alc
  • HbAo hemoglobin Ao
  • FIG. 5 shows the result of plotting the increased current value against the Hb A 1c concentration. This measurement was carried out by varying the mixing ratio of 1181 cZHbAo in the HbA1.711180 mixture, which is the sample to be added.

Abstract

A method of measuring a glycoprotein such as hemoglobin Alc in a sample. This method is characterized by comprising contacting the sample with a fructosylamine-oxidizing catalyst in the presence of a definite amount of fructosylamine and then quantifying fructosylamine thus oxidized by the catalyst to thereby determine the amount of the glycoprotein. As the fructosylamine-oxidizing catalyst, use can be made of a molecule having an imidazole group, a fructosylamine oxidase, etc.

Description

明細書  Specification
糖化蛋白質測定方法 技術分野  Glycoprotein measurement method
本発明は臨床検査の分野で糖尿病診断のマーカとして利用されている糖化蛋白 質ならびにヘモグロビン A 1 cの測定方法に関する。 より詳細には、 本発明は、 糖化蛋白質およびヘモグロビン A 1 cがフルクトシルァミン酸化触媒によるフル クトシルァミンの酸化反応を拮抗的に阻害することに基づいて、 糖化蛋白質なら びにヘモグロビン A 1 cの定量を行う方法に関する。 さらに、 本発明は本発明の 方法に基づき構築された糖化蛋白質ならびにヘモグロビン A 1 c測定用キットな らびにセンサ一に関する。 背景技術  The present invention relates to a method for measuring glycated protein and hemoglobin A 1c used as a marker for diagnosing diabetes in the field of clinical examination. More specifically, the present invention provides a method for quantifying glycated protein and hemoglobin A1c based on the fact that glycated protein and hemoglobin A1c antagonistically inhibit the fructosylamine oxidation reaction catalyzed by fructosylamine oxidation. On how to do. Furthermore, the present invention relates to a glycated protein and a kit for measuring hemoglobin A1c and a sensor constructed based on the method of the present invention. Background art
蛋白質主鎖および側鎖のアミノ基はグルコースなどの還元糖の還元末端と非酵 素的に結合して、 アマドリ化合物すなわち糖化蛋白質を生ずる。 血中においては、 ヘモグロビンが糖化されて糖化ヘモグロビン (グリコヘモグロビン; HbAl c) を生ずることが知られている。 糖尿病患者では健常人に比べてヘモグロビン に対する HbAl cの存在比率が高いこと、 および HbAl cの血中濃度は過去 数週間の血糖値を反映することから、 HbAl c血中濃度は糖尿病の診断および 糖尿病患者の血糖コントロールの指標として、 臨床試験において極めて重要であ る。  The amino groups of the protein main chain and side chains are non-enzymatically linked to the reducing end of a reducing sugar such as glucose to produce an Amadori compound, ie, a glycated protein. It is known that hemoglobin is glycated in blood to produce glycated hemoglobin (glycohemoglobin; HbAlc). Since the presence of HbAlc in hemoglobin is higher in diabetic patients than in healthy subjects, and the blood concentration of HbAlc reflects blood glucose levels in the past few weeks, the HbAlc blood concentration can be used for diagnosis of diabetes and diabetes. It is extremely important in clinical trials as an indicator of glycemic control in patients.
これまでに、 種々の菌株からアマドリ化合物に対して作用する酵素、 フルクト シルァミン酸化酵素が単離されており、 これらの酵素を用いて糖化アルブミンゃ HbAl cなどの糖化蛋白質の加水分解産物を分析しうることが示唆されている (特開昭 61— 268178、 特開昭 61— 280297、 特開平 3— 1557 80、 特開平 5—192193、 特開平 7— 289253、 特開平 8—1 546 72、 Agric. Biol. Chem., 53(1), 103-110, 1989、 Agric. Biol. Chem., 55(2), 333-338, 1991、 J. Biol. Chem., 269(44), 27297-27302, 1994、 Appl. Environ. Microbiol., 61(12), 4487-4489, 1995、 Biosci. Biotech. Biochein., 59(3), 487.491, 1995、 J. Biol. Chem., 270(1), 218.224, 1995、 J. Biol. Chem., 271(51), 32803- 32809, 1996、 J. Biol. Chem., 272(6), 3437-3443, 1997) 。 To date, an enzyme that acts on Amadori compounds, fructosylamine oxidase, has been isolated from various strains. (Japanese Unexamined Patent Publication No. 61-268178, Japanese Unexamined Patent Publication No. 61-280297, Japanese Unexamined Patent Publication No. 3-155780, Japanese Unexamined Patent Publication No. 5-192193, Japanese Unexamined Patent Application Publication No. 7-289253, Japanese Unexamined Patent Application Publication No. Biol. Chem., 53 (1), 103-110, 1989, Agric. Biol. Chem., 55 (2), 333-338, 1991, J. Biol. Chem., 269 (44), 27297-27302. Biol., 1994, Appl. Environ. Microbiol., 61 (12), 4487-4489, 1995, Biosci. Biotech. Biochein., 59 (3), 487.491, 1995, J. Biol. Chem., 270 (1), 218.224, 1995, J. Biol. Chem., 271 (51), 32803-32809, 1996, J. Biol. Chem., 272 (6), 3437- 3443, 1997).
また、 フルクトシルァミンを酸ィヒする触媒作用を有する種々の合成高分子が合 成されており、 これらの触媒を用いて糖化アルブミンや H b A 1 cなどの糖化蛋 白質の加水分解産物を分析しうることが示唆されている (WO 0 1 / 9 0 7 3 5 WO 0 2 / 2 2 6 9 8 ) 、 Anal. Chim. Acta 435, 151-156, 2001) 。  In addition, various synthetic polymers having a catalytic action to oxidize fructosylamine have been synthesized. Using these catalysts, hydrolysis products of glycated proteins such as glycated albumin and HbA1c are used. (WO 01/09735, WO 02/22698), Anal. Chim. Acta 435, 151-156, 2001).
しかし、 これまでに報告されているフルクトシルァミン酸化触媒は、 加水分解 されていない糖ィ匕蛋白質を基質として酸化することはできない。 このため、 まず 糖化蛋白質の加水分解を行い、 その結果生じる低分子量化した糖化べプチドある いはフルクトシルァミンをフルクトシルァミン酸ィヒ触媒を用いて酸化することに より、 糖ィ匕蛋白質を測定していた。 したがって、 当該技術分野においては、 糖化 蛋白質を分解せずに測定する方法が望まれていた。  However, the fructosylamine oxidation catalysts reported so far cannot oxidize unhydrolyzed sugarcane protein as a substrate. For this reason, glycated protein is first hydrolyzed, and the resulting low-molecular-weight glycated peptide or fructosylamine is oxidized using a fructosylamic acid catalyst to obtain a glycated protein. The protein was being measured. Therefore, there is a need in the art for a method for measuring a glycated protein without decomposing it.
本発明は糖化蛋白質ならびにヘモグロビン A 1 cを加水分解せずにその濃度を 測定する新規な糖ィ匕蛋白質の測定方法を提供することを目的とする。 より詳細に は本発明は臨床検査などの分野で利用される糖化蛋白質、 特にヘモグロビン A 1 c (HbAlc) や糖化アルブミンの測定方法、 ならびにその方法に基づき構築さ れる測定用試薬ならびにセンサーを提供することを目的とする。 発明の開示  An object of the present invention is to provide a novel method for measuring a saccharified protein and a saccharified protein in which the concentrations of glycated proteins and hemoglobin A 1c are measured without hydrolysis. More specifically, the present invention provides a method for measuring a glycated protein, particularly hemoglobin A1c (HbAlc) or glycated albumin, which is used in the field of clinical testing and the like, and a measuring reagent and a sensor constructed based on the method. The purpose is to: Disclosure of the invention
本発明者は、 糖化蛋白質がフルクトシルァミン酸化触媒によるフルクトシルァ ミン酸化反応を拮抗的に阻害しうることを見いだし、 本発明を完成させた。 すな わち、 本発明は、 試料中の糖化蛋白質を測定する方法であって、 前記試料を一定 量のフルクトシルァミンの存在下でフルクトシルァミン酸ィヒ触媒と接触させ、 前 記触媒により酸化されたフルクトシルァミンの量を測定することにより、 前記糖 化蛋白質の量を測定することを特徴とする方法を提供する。 本発明にしたがえば、 糖化蛋白質を加水分解することなく、 糖化蛋白質によるフルクトシルァミン酸化 触媒の拮抗阻害を指標として糖化蛋白質を測定することが可能となる。  The present inventors have found that glycated proteins can competitively inhibit the fructosylamine oxidation reaction catalyzed by a fructosylamine oxidation catalyst, and have completed the present invention. That is, the present invention relates to a method for measuring a glycated protein in a sample, comprising contacting the sample with a fructosylamic acid catalyst in the presence of a fixed amount of fructosylamine. A method is provided wherein the amount of the glycated protein is measured by measuring the amount of fructosylamine oxidized by the catalyst. According to the present invention, glycated protein can be measured without hydrolyzing the glycated protein, using the competitive inhibition of the fructosylamine oxidation catalyst by the glycated protein as an index.
本明細書において、 「フルクトシルァミン酸化触媒」 とは、 フルクトシルアミ ンの酸化反応を触媒し、 力 ^つその反応が糖化蛋白質の存在下で濃度依存的に阻害 される触媒を表す。 フルクトシルァミン酸化触媒の例としては、 フルクトシルァ ミン酸化酵素、 および電子受容体の存在下でフルクトシルァミンの酸化を触媒す るポリマー、 例えばィミダゾール基含有ポリマーが挙げられる。 As used herein, the term "fructosylamine oxidation catalyst" refers to a catalyst that catalyzes the oxidation reaction of fructosylamine, which inhibits the reaction in a concentration-dependent manner in the presence of glycated protein. Represents the catalyst to be used. Examples of fructosylamine oxidation catalysts include fructosylamine oxidase and polymers that catalyze the oxidation of fructosylamine in the presence of an electron acceptor, for example, polymers containing imidazole groups.
好ましい態様においては、 本発明は上記記載のフルクトシルァミン酸化触媒が イミダゾール基を有する分子であることを特色とする糖化蛋白質の測定方法を提 供する。 また好ましい態様においては、 本発明は上記記載のフルクトシルァミン 酸化触媒がフルクトシルァミン酸化酵素であることを特色とする糖化蛋白質の測 定方法を提供する。 より好ましくは、 フルクトシルァミン酸化触媒はフルクトシ ルバリンに選択的である。  In a preferred embodiment, the present invention provides a method for measuring a glycated protein, wherein the fructosylamine oxidation catalyst described above is a molecule having an imidazole group. In a preferred embodiment, the present invention provides a method for measuring a glycated protein, wherein the fructosylamine oxidation catalyst is fructosylamine oxidase. More preferably, the fructosylamine oxidation catalyst is selective for fructosyl valine.
好ましくは、 本発明の方法において、 フルク卜シルァミンの量を測定する工程 は、 フルクトシルァミンの酸化に伴って還元された電子受容体の量を分光学的に 測定することにより行われる。 また好ましくは、 本発明の方法において、 フルク トシルアミンの量を測定する工程は、 フルクトシルアミンの酸化に伴って還元さ れた電子受容体の量を電極を用いて電気化学的に測定することにより行われる。 さらに本発明は上記記載の糖化蛋白質がヘモグロビン A 1 cであることを特色 とする糖化蛋白質の測定方法を提供する。  Preferably, in the method of the present invention, the step of measuring the amount of fructosylamine is performed by spectrophotometrically measuring the amount of an electron acceptor reduced as the fructosylamine is oxidized. Also preferably, in the method of the present invention, the step of measuring the amount of fructosylamine is performed by electrochemically measuring the amount of an electron acceptor reduced with the oxidation of fructosylamine using an electrode. Done. Further, the present invention provides a method for measuring a glycated protein, wherein the glycated protein described above is hemoglobin A1c.
また本発明は上記記載の原理に基づく糖化蛋白質測定キッ卜を提供する。 好ま しくは、 このキットは、 フルクトシルァミン酸化触媒およびフルクトシルァミン を含む。 本発明はまた上記記載の原理に基づくヘモグロビン A 1 c測定キットを 提供する。  The present invention also provides a glycated protein measurement kit based on the above principle. Preferably, the kit comprises a fructosylamine oxidation catalyst and fructosylamine. The present invention also provides a hemoglobin A1c measurement kit based on the above-described principle.
さらに本発明は上記記載の原理に基づく糖化蛋白質測定用センサ一を提供する。 本発明はまた、 上記記載の原理に基づくヘモグロビン A 1 c測定用センサーを提 供する。 図面の簡単な説明  Further, the present invention provides a glycated protein measuring sensor based on the above principle. The present invention also provides a sensor for measuring hemoglobin A1c based on the principle described above. BRIEF DESCRIPTION OF THE FIGURES
図 1は実施例 2で構築したセンサーシステムである。  FIG. 1 shows the sensor system constructed in the second embodiment.
図 2は実施例 2で構築したセンサーシステムに、 H b A l c試料を添加したと きの定常電流値の減少を示す。  FIG. 2 shows a decrease in the steady-state current value when the HbAlc sample was added to the sensor system constructed in Example 2.
図 3は実施例 2で示したセンサーにフルク卜シルバリン存在下でさまざまな蛋 白質や H b A l cを添加したときの、 定常電流値の減少の各々の試料濃度依存性 を示す。 Fig. 3 shows that various proteins were added to the sensor shown in The graph shows the dependence of the decrease in the steady-state current value upon the addition of white matter and HbAlc on the sample concentration.
図 4は実施例 2で作成したセンサーシステムを用いた H b A 1 cを計測した結 果である。  FIG. 4 shows the results of measuring HbA1c using the sensor system created in Example 2.
図 5は実施例 5で作成したセンサーシステムを用いた H b A 1 cを計測した結 果である。 発明の詳細な説明  FIG. 5 shows the results of measuring HbA1c using the sensor system created in Example 5. DETAILED DESCRIPTION OF THE INVENTION
本発明の糖化蛋白質の測定方法は、 糖化蛋白質がフルクトシルァミン酸化触媒 によるフルクトシルァミン酸化反応を拮抗的に阻害しうるという発見に基づく。 すなわち、 糖化蛋白質を含む試料を一定量のフルクトシルァミンの存在下でフル ク卜シルァミン酸化触媒と接触させると、 フルクトシルァミン酸化触媒により酸 化されるフルクトシルァミンの量は、 糖化蛋白質の濃度に依存して変化する。 し たがって、 酸化されたフルクトシルアミンの量または酸化速度を測定することに より、 試料中の糖化蛋白質の濃度を決定することができる。  The method for measuring a glycated protein of the present invention is based on the discovery that glycated proteins can competitively inhibit the fructosylamine oxidation reaction catalyzed by a fructosylamine oxidation catalyst. That is, when a sample containing a glycated protein is brought into contact with a fructosylamine oxidation catalyst in the presence of a fixed amount of fructosylamine, the amount of fructosylamine oxidized by the fructosylamine oxidation catalyst becomes saccharified. It varies depending on the protein concentration. Therefore, by measuring the amount or oxidation rate of oxidized fructosylamine, the concentration of glycated protein in a sample can be determined.
フルクトシルァミン酸化触媒としては、 たとえばイミダゾール基を有する合成 高分子あるいはフルクトシルァミン酸化酵素を用いることができるが、 フルク卜 シルァミンの酸化活性があり、 かつ糖化蛋白質による拮抗阻害を受ける触媒であ れば限定されるものではない。 たとえば、 イミダゾールに限らず、 一般塩基触媒 の機能を果たす官能基、 たとえばピリジンを含むビビリジルを含むモノマーを用 いて重合されたポリマーを用いることができる。  As a fructosylamine oxidation catalyst, for example, a synthetic polymer having an imidazole group or a fructosylamine oxidase can be used.A catalyst having an activity of oxidizing fructosylamine and being antagonized by glycated protein is used. If there is, it is not limited. For example, not limited to imidazole, it is possible to use a polymer obtained by polymerizing a functional group that functions as a general base catalyst, for example, a monomer containing bipyridyl containing pyridine.
本発明の方法は H b A l cの測定に特に有用である。 H b A l cはその分子内 にフルクトシ'ルバリン部分を有しており、 フルクトシルバリンに選択的なフルク トシルアミン酸化触媒に対して拮抗的に作用するため、 本発明の方法にしたがつ てこれを特異的に定量することができる。 このような触媒としては、 たとえばィ ミダゾ一ル基を有する合成高分子を重合時にフルク卜シルバリンを铸型として存 在させることにより合成した触媒ポリマー、 あるいはフルクトシルバリンに選択 的なフルクトシルァミン酸ィ匕酵素を用いることができるが、 フルクトシルバリン の酸化活性があり、 かつ H b A l cによる拮抗阻害を受ける触媒であれば限定さ れるものではない。 たとえば、 フルクトシルバリンに限らず、 類似体であるメチ ルバリンを錡型として合成されたイミダゾール基を有する触媒ポリマーも触媒と して用いることができる。 The method of the present invention is particularly useful for measuring HbAlc. According to the method of the present invention, HbAlc has a fructosyl rubulin moiety in its molecule and acts antagonistically to a fructosylamine oxidation catalyst selective for fructosyl valine. This can be specifically quantified. Examples of such a catalyst include a catalytic polymer synthesized by allowing a synthetic polymer having an imidazole group to exist in the presence of fructosyl valine as a type III during polymerization, or a fructosyl valine selective for fructosyl valine. The enzyme can be used, but it is limited as long as it has the oxidizing activity of fructosyl valine and is subject to competitive inhibition by HbAlc. It is not something to be done. For example, not only fructosyl valine, but also a catalyst polymer having an imidazole group, which is synthesized using an analog, methyl valine, as 錡 -type can be used as the catalyst.
本発明における糖化蛋白質の測定は、 フルクトシルァミン酸化触媒によるフル クトシルァミンの酸化にともなって還元される電子受容体の量あるいは還元速度 を計測することによって容易に行うことができる。 例えば、 一定量のフルクトシ ルァミン酸化触媒およびフルクトシルァミン、 ならびに電子受容体を含む溶液に 試料を加え、 フルクトシルァミンの酸化にともなって還元される電子受容体の量 あるいは還元速度を測定し、 試料の非存在下における電子受容体の量あるいは還 元速度と比較することにより、 試料中の糖化蛋白質の測定を行うことができる。 電子受容体の測定方法としては、 電子受容体の還元状態の特徴的なスぺクトルに 基づき分光学的手法により計測する方法、 あるいは還元状態の電子受容体を電極 上で再酸化することに基づき得られる電流を計測することによる電気化学的手法 などを用いることができる。  The measurement of the glycated protein in the present invention can be easily performed by measuring the amount or reduction rate of the electron acceptor reduced by the fructosylamine oxidation by the fructosylamine oxidation catalyst. For example, a sample is added to a solution containing a fixed amount of a fructosylamine oxidation catalyst, fructosylamine, and an electron acceptor, and the amount or reduction rate of the electron acceptor reduced by oxidation of fructosylamine is measured. By comparing the amount of the electron acceptor or the reduction rate in the absence of the sample, the glycated protein in the sample can be measured. Electron acceptors can be measured by spectroscopic methods based on the characteristic spectrum of the reduced state of the electron acceptor, or by reoxidizing the electron acceptor in the reduced state on the electrode. An electrochemical method by measuring the obtained current can be used.
電子受容体としてフエナジンメトスルフェート (PMS)とジクロロフエノールイ ンドフエノール (DCIP)を用いて、 基質としてフルクトシルバリンを用いたとき、 時間とともにフルクトシルバリンが酸化され、 PMSを介して DCIPが還元され 退色していくことが観測される。 この DCIP の退色の速度は存在するフルクト シルバリンの濃度に比例する。 したがって、 例えば、 H b A l eが存在するとき には、 フルクトシルバリンの酸化が拮抗的に阻害され、 結果として D C I Pの退 色速度が減少する。 この退色速度の減少の割合を指標に H b A 1 cの濃度を測定 することができる。 すなわち、 本発明の方法にしたがえば、 電子受容体として PMSと DCIPの存在下で未知濃度の H b A 1 cを 1 0 n M以下の感度で定量で きる。 さらに種々の人工電子受容体を利用してもよい。 電子受容体としては、 フ エリシアン化カリウム、 フエ口セン、 オスミウム誘導体などを用いることができ る。  When phenazine methosulfate (PMS) and dichlorophenol indphenol (DCIP) are used as electron acceptors and fructosyl valine is used as a substrate, fructosyl valine is oxidized with time and It is observed that DCIP is reduced and fades. The rate of this DCIP fade is proportional to the concentration of fructosylvaline present. Thus, for example, in the presence of HbAle, the oxidation of fructosyl valine is antagonistically inhibited, resulting in a decrease in the rate of bleaching of DCIP. The concentration of HbA1c can be measured using the rate of decrease in the fading speed as an index. That is, according to the method of the present invention, an unknown concentration of HbA1c can be quantified with a sensitivity of 10 nM or less in the presence of PMS and DCIP as electron acceptors. Further, various artificial electron acceptors may be used. As the electron acceptor, potassium phenocyanide, phlegmene, an osmium derivative, or the like can be used.
一方、 触媒としてフルクトシルァミン酸化酵素を用いるときには、 上記電子受 容体の他、 酸素を電子受容体として用いることができる。 この場合には酸素の減 少量 ·減少速度、 あるいは生成する過酸化水素の生成量 ·生成速度を指標として、 該酵素の糖化蛋白質による阻害を計測し、 糖ィヒ蛋白質濃度を計測することができ る。 On the other hand, when fructosylamine oxidase is used as a catalyst, oxygen can be used as an electron acceptor in addition to the above-mentioned electron acceptor. In this case, the amount of oxygen decrease and the rate of decrease or the amount of hydrogen peroxide produced The inhibition of the enzyme by glycated protein can be measured, and the concentration of glycated protein can be measured.
別の観点においては、 本発明は、 本発明の原理を用いた測定方法を含む、 H b A 1 cあるいは糖化アルブミン等の糖化蛋白質の測定キッ卜を特徴とする。 本発 明の糖化蛋白質測定キットは、 本発明に従うフルクトシルァミン酸ィ匕触媒、 フル クトシルァミンならびに電子受容体を、 少なくとも 1回のアツセィに十分な量で 含む。 典型的には、 キットは、 フルクトシルァミン酸ィ匕触媒と; p H 6 . 0〜1 0 に調整された緩衝液、 適当なメディエーター、 キャリブレーションカーブ作製の ための糖化蛋白質もしくはその誘導体の標準溶液、 ならびに使用の指針を含む。 本発明に従う糖化蛋白質分析キットは種々の形態で、 例えば、 凍結乾燥された試 薬として、 または適切な保存溶液中の溶液として提供することができる。 センサー In another aspect, the present invention features a kit for measuring a glycated protein such as HbA1c or glycated albumin, which includes a measuring method using the principle of the present invention. The glycated protein measurement kit of the present invention contains the fructosylamine oxidizing catalyst according to the present invention, fructosylamine, and an electron acceptor in an amount sufficient for at least one time of the assay. Typically, the kit contains a fructosylamic acid catalyst; a buffer adjusted to pH 6.0 to 10; a suitable mediator; and a glycated protein or a derivative thereof for preparing a calibration curve. Includes standard solutions, as well as guidelines for use. The glycated protein analysis kit according to the present invention can be provided in various forms, for example, as a lyophilized reagent or as a solution in a suitable storage solution. Sensor
別の観点においては、 本発明は、 糖化アルブミン、 H b A l e等の糖化蛋白質 を計測するためのセンサ一を特徴とする。 本発明の糖化蛋白質センサーは、 フル クトシルァミン酸化触媒によりフルクトシルァミンが酸ィ匕されるのにともなって 還元されるメディェ一夕を電極上で電気化学的に酸化し、 このときの電流値を測 定する。 糖化蛋白質の存在下では、 糖化蛋白質の濃度に依存して酸化反応が拮抗 的に阻害されるため、 種々の濃度の糖化蛋白質の存在下で電流値を測定して標準 曲線を作成し、 これをもとに試料中の糖化蛋白質濃度を決定することができる。 電極としては、 カーボン電極、 金電極、 白金電極などを用い、 この電極上にフル クトシルァミン酸化触媒を固定ィヒする。 固定化方法としては、 架橋試薬を用いる 方法、 高分子マトリックス中に封入する方法、 透析膜で被覆する方法、 光架橋性 ポリマー、 導電性ポリマー、 酸化還元ポリマーを用いる方法などがあり、 これら を組み合わせて用いてもよい。  In another aspect, the present invention features a sensor for measuring a glycated protein such as glycated albumin, HbAle, or the like. The glycated protein sensor of the present invention electrochemically oxidizes a mediae, which is reduced as fructosylamine is oxidized by a fructosylamine oxidation catalyst, on an electrode, and determines a current value at this time. Measure. In the presence of glycated protein, the oxidation reaction is competitively inhibited depending on the concentration of glycated protein.Therefore, a current curve was measured in the presence of various concentrations of glycated protein, and a standard curve was prepared. Based on this, the glycated protein concentration in the sample can be determined. As the electrode, a carbon electrode, a gold electrode, a platinum electrode, or the like is used, and a fructosylamine oxidation catalyst is fixed on the electrode. Examples of the immobilization method include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a method of using a photocrosslinkable polymer, a conductive polymer, and a redox polymer. May be used.
本発明の測定原理に従い、 以下のように H b A l c計測用センサーが構築でき る。 カーボン電極、 金電極、 白金電極などを用いてアンべロメトリック系で測定 する場合には、 作用電極としてフルクトシルァミン酸化触媒を固定ィ匕した電極を 用い、 対極 (例えば白金電極) および参照電極 (例えば A g ZA g C 1電極) と ともに、 メディエーターを含む緩衝液中に挿入して一定温度に保持する。 作用電 極に一定の電圧を印加し、 一定量のフルクトシルァミンおよび試料を加えて電流 の増加値を測定する。 メデイエ一夕一としては、 フェリシアン化カリウム、 フエ 口セン、 オスミウム誘導体、 フエナジンメトサルフェートなどを用いることがで ぎる。 According to the measurement principle of the present invention, a sensor for measuring HbAlc can be constructed as follows. Measured in an ambrometric system using a carbon electrode, gold electrode, platinum electrode, etc. In this case, use an electrode on which a fructosylamine oxidation catalyst is immobilized as a working electrode, and use a buffer solution containing a mediator together with a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an AgZAgC1 electrode). And keep it at a constant temperature. Apply a constant voltage to the working electrode, add a fixed amount of fructosylamine and a sample, and measure the increase in current. As a medium, potassium ferricyanide, phlegmene, osmium derivatives, phenazine methosulfate and the like can be used.
さらにカーボン電極、 金電極、 白金電極などを用いてアンべロメトリック系で 測定する方法として、 固定化電子メデイエ一夕を用いる系がある。 すなわち、 作 用電極としてフルクトシルァミン酸化触媒およびフェリシアン化カリウム、 フエ 口セン、 オスミウム誘導体、 フエナジンメトサルフェートなどの電子メディエー 夕を吸着あるいは共有結合法により高分子マ卜リックスに固定化した電極を用い、 対極 (例えば白金電極) および参照電極 (例えば A g /A g C I電極) とともに、 緩衝液中に挿入して一定温度に保持する。 作用電極に一定の電位を印加し、 一定 量のフルクトシルアミンおよび試料を加えて電流の増加値を測定する。  Furthermore, as a method of measuring with an amometric method using a carbon electrode, a gold electrode, a platinum electrode, or the like, there is a system using an immobilized electron media. In other words, an electrode in which a fructosylamine oxidation catalyst and an electron mediator such as potassium ferricyanide, phenocene, osmium derivatives, and phenazine methosulfate are immobilized on a polymer matrix by adsorption or covalent bonding as a working electrode. Using a buffer, insert it into a buffer with a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCI electrode) and keep it at a constant temperature. Apply a constant potential to the working electrode, add a fixed amount of fructosylamine and sample, and measure the increase in current.
いずれの電極を用いる場合にも、 種々の濃度の糖化蛋白質の溶液を用いて作製 したキヤリブレーションカーブに従い、 試料中の糖化蛋白質の濃度を求めること ができる。  Regardless of which electrode is used, the concentration of glycated protein in the sample can be determined according to calibration curves prepared using glycated protein solutions of various concentrations.
本明細書において明示的に引用される全ての特許および参考文献の内容は全て 本明細書の一部としてここに引用する。 また, 本出願が有する優先権主張の基礎 となる出願である日本特許出願 2 0 0 2 - 3 1 9 0 4 0号の明細書および図面に 記載の内容は全て本明細書の一部としてここに引用する。 実施例  The contents of all patents and references explicitly cited herein are hereby incorporated by reference. In addition, the entire contents described in the specification and drawings of Japanese Patent Application No. 2000-310900, which is the application on which the priority claim of the present application is based, are incorporated herein by reference. To quote. Example
以下に実施例により本発明をより詳細に説明するが, これらの実施例は本発明 の範囲を制限するものではない。 実施例 1  Hereinafter, the present invention will be described in more detail by way of examples, but these examples do not limit the scope of the present invention. Example 1
1ーピニルイミダゾール 1 . 6 mm o l、 4一ビニルフエ二ルポロン酸 0 . 8 mmo l、 架橋試薬としてエチレングリコールジメタクリレート (EGDMA) 2mmo 1、 重合開始剤として 2, 2, 一ァゾビスイソプチロニトリル 0. 06 mmo 1を混合し、 铸型分子としてフルクトシルバリン 0. 2mmo 1を加え、 溶媒として 522 n \のメタノールと 174 1の水を加えて、 アルゴン置換し た後、 45 °Cで 12時間重合反応を行った。 ここで得られたポリマー触媒を B I 一 MI Pとよぶ。 このポリマーを乳鉢にてすりつぶし、 ふるいによって粒子径 4 0 mのポリマーを調製した。 また铸型分子であるフルク卜シルバリンを添加し ないで、 上記と全く同じ操作を行うことによりコント口一ルポリマ一である B I — CPを合成した。 これらのポリマーをメタノール:酢酸 (7 : 2) で 2回、 ァ セトニトリル:酢酸 (9 : 1) で 2回、 ァセトニトリルで 1回、 メタノールで 1 回、 それぞれ洗浄した。 実施例 2 1-Pinylimidazole 1.6 mmol, 4-vinylphenylporonic acid 0.8 mmol, ethylene glycol dimethacrylate (EGDMA) 2mmo 1 as a crosslinking reagent, 2,2,1-azobisisobutyronitrile 0.06mmo 1 as a polymerization initiator, and fructosyl valine 0 as a 铸 -type molecule. 2 mmo 1 was added, 522 n \ of methanol and 1741 water were added as solvents, and the atmosphere was replaced with argon. Then, a polymerization reaction was performed at 45 ° C for 12 hours. The polymer catalyst obtained here is called BI-I MIP. This polymer was ground in a mortar and sieved to prepare a polymer having a particle size of 40 m. BI-CP, a control polymer, was synthesized by performing exactly the same operation as above without adding fructosylvaline, a type I molecule. These polymers were washed twice with methanol: acetic acid (7: 2), twice with acetonitrile: acetic acid (9: 1), once with acetonitrile, and once with methanol. Example 2
カーボンペースト 5 Omgに対して実施例 1で作成したポリマー触媒を 2 Om g混合し、 カーボンペースト電極に充填した。 この電極を ImM 1—メトキシ フエナジンメトスルフェート (mPMS) を含む 1 OmMリン酸緩衝化食塩水 (pH7. 4) の溶液に浸漬し、 印加電圧を l O OmV (v s. Ag/Ag C 1) とし、 基質にフルクトシルバリンを添加したときの応答を観測した。 さらに ここに HbAl cを添加したときの応答値の変化を観察するセンサーシステムを 構築した (図 1) 。 フルクトシルバリンを添加することにより、 ポリマー触媒に よりフルクトシルバリンが酸化され、 それに伴って溶:液中の mP MSが還元され る。 還元体 mP MSが力一ボンペースト電極に印加された電位により酸化される ため、 電流の増加が観察される。 この酸化還元反応ならびに電極反応は溶液中の フルクトシルバリン濃度に依存して一定の定常電流値を与える。 ここへ一定量の HbAl cを滴下すると、 定常電流値が低下する (図 2 ) 。 これは H b A 1 cに よるポリマー触媒の拮抗的阻害に基づく。 さらに定常電流値に達した時点で Hb Al eを滴下すると、 さらに定常電流値が低下する。 すなわち、 HbAl c濃度 に依存して、 ポリマ一触媒によるフルクトシルバリンの酸化反応が阻害されて電 流値が低下することが示された。 実施例 3 2 Omg of the polymer catalyst prepared in Example 1 was mixed with 5 Omg of carbon paste, and the mixture was filled in a carbon paste electrode. This electrode was immersed in a solution of ImM 1-methoxyphenazine methosulfate (mPMS) in 1 OmM phosphate buffered saline (pH 7.4), and the applied voltage was changed to lO OmV (vs. Ag / Ag C The response was observed when fructosyl valine was added to the substrate. Furthermore, a sensor system was constructed to observe the change in response value when HbAlc was added (Fig. 1). By adding fructosyl valine, fructosyl valine is oxidized by the polymer catalyst, and the mPMS in the solution is reduced accordingly. Since the reductant mPMS is oxidized by the potential applied to the carbon paste electrode, an increase in current is observed. The redox reaction and the electrode reaction give a constant steady-state current value depending on the fructosyl valine concentration in the solution. When a certain amount of HbAlc is dropped here, the steady-state current value decreases (Fig. 2). This is based on the competitive inhibition of the polymer catalyst by HbA1c. If Hb Ale is dropped when the steady-state current value is reached, the steady-state current value further decreases. In other words, it was shown that depending on the HbAlc concentration, the oxidation reaction of fructosyl valine by the polymer catalyst was inhibited and the current value decreased. Example 3
本センサーの選択性を調べることを目的として、 本センサーシステムに種々の 蛋白質を添加したときのセンサー応答の変化を観察した (図 3) 。 比較対象とし て用いた蛋白質は Hb AO, 牛血清アルブミン、 糖化アルブミンである。 いずれ の蛋白質を加えた場合もある程度の応答の低下がみられたが、 これは HbAl c を加えた時の低下と比較して無視しうる程度であった。 実施例 4  In order to examine the selectivity of this sensor, we observed changes in sensor response when various proteins were added to this sensor system (Fig. 3). The proteins used for comparison were Hb AO, bovine serum albumin, and glycated albumin. There was some decrease in response when all proteins were added, but this was negligible compared to when HbAl c was added. Example 4
実施例 3に基づき、 本センサーシステムにおいてみられるフルクトシルバリン への応答の阻害を指標に HbAl cの計測をおこなった。 すなわち、 本センサー システムにおいて、 添加する HbAl c濃度の増加にしたがい、 HbAl c非存 在下でのフルクトシルバリン 0. ImMに対する応答電流値が低下する。 このフ ルクトシルバリン 0. 1 mMに対する応答電流値から、 種々の蛋白質存在下で観 測された非特異的な応答値の低下を差し引き、 フルクトシルパリン 0. ImMに 対する応答電流値とした。 この値に対して、 種々の濃度の H b A 1 c存在下で観 測されるフルク卜シルバリン 0. ImMに対する応答電流値を差し引き、 その差 の H b A 1 c非存在下でのフルクトシルバリン 0. 1 mMに対する応答電流値に 対する比を阻害率とした。 この阻害率を縦軸にとり、 HbAl cの計測を行なつ た結果を図 4に示す。 このように、 本センサーを用いて、 HbAl cを変性ある いは加水分解することなく、 10 nMの感度で検出することができた。 実施例 5  Based on Example 3, HbAlc was measured using the inhibition of fructosyl valine response observed in the present sensor system as an index. That is, in this sensor system, the response current value to fructosyl valine 0. ImM in the absence of HbAlc decreases as the added HbAlc concentration increases. From the response current value for fructosyl valine 0.1 mM, the decrease in the non-specific response value observed in the presence of various proteins was subtracted to obtain the response current value for fructosyl palin 0.1 ImM. Fructosylvaline, which is observed in the presence of various concentrations of HbA1c, is subtracted from this value. The response current to ImM is subtracted, and the difference in fructosylvaline in the absence of HbA1c is calculated. The ratio of the response current to sylvaline 0.1 mM was defined as the inhibition rate. The inhibition rate is plotted on the vertical axis, and the results of measurement of HbAlc are shown in FIG. Thus, HbAlc could be detected at a sensitivity of 10 nM without denaturing or hydrolyzing using this sensor. Example 5
作用極として白金電極、 対極として白金線、 参照極として A g A g C 1電極 を用いるセンサーシステムを用いて、 試料中のヘモグロビン Al c (HbAl c) とヘモグロビン A o (HbAo) との比率を測定した。 この測定の原理は、 HbAl cがフルクトシルァミン酸化酵素 (FAOD) によるフルクトシルバリ ンの酸化作用を濃度依存的に阻害することに基づく。  Using a sensor system that uses a platinum electrode as the working electrode, a platinum wire as the counter electrode, and an AgAgC1 electrode as the reference electrode, the ratio of hemoglobin Alc (HbAlc) to hemoglobin Ao (HbAo) in the sample is determined. It was measured. The principle of this measurement is based on the fact that HbAlc inhibits the oxidation of fructosyl valin by fructosylamine oxidase (FAOD) in a concentration-dependent manner.
FAOD20mU、 Hb A 1 cZHb Ao混合物 (ヘモグロビンとして合計 0. 47 o 1 ) を 600 1の 5 OmMリン酸カリウム緩衝液に加え、 8°Cで 3 0分間ィンキュベートした後、 作用極に 600 mV V s . A g/A g C 1の電 位を印加し、 25 °Cで 20分間インキュベートした。 次に、 0. lmmo lのフ ルク卜シルバリンを加え (全量 650 H 1 ) 、 応答電流値 ( I C) の測定を行つ た。 増加電流値を Hb A 1 c濃度に対してプロットした結果を図 5に示す。 添加 している試料である Hb A 1。711 八0混合物にぉける11 八1 cZHbAo の混合比を種々変化させ、 本測定をおこなった。 図から明らかなように、 本試料 中の HbAl c濃度増加にともない、 フルクトシルバリンに対する応答電流値が 低下する。 この応答電流値の低下を指標として、 F AODを用いて 0— 800 η Μの H b A 1 cを検出することができた。 FAOD 20mU, Hb A 1 cZHb Ao mixture (Total 0. Add 47 o 1) to 600 1 of 5 OmM potassium phosphate buffer, incubate at 8 ° C for 30 minutes, and apply a potential of 600 mV Vs.Ag/AgC1 to the working electrode. Incubated at 25 ° C for 20 minutes. Next, 0.1 lmmol of fructosyl valine was added (total amount of 650 H 1), and the response current value (IC) was measured. FIG. 5 shows the result of plotting the increased current value against the Hb A 1c concentration. This measurement was carried out by varying the mixing ratio of 1181 cZHbAo in the HbA1.711180 mixture, which is the sample to be added. As is clear from the figure, the response current value to fructosyl valine decreases as the HbAlc concentration in this sample increases. Using this decrease in response current as an index, HbA1c of 0 to 800 η η could be detected using FAOD.

Claims

請求の範囲 The scope of the claims
1 . 試料中の糖化蛋白質を測定する方法であって、 前記試料を一定量のフルク トシルァミンの存在下でフルクトシルァミン酸化触媒と接触させ、 前記触媒によ り酸化されたフルクトシルァミンの量を測定することにより、 前記糖化蛋白質の 量を測定することを特徴とする方法。 1. A method for measuring glycated protein in a sample, comprising contacting the sample with a fructosylamine oxidation catalyst in the presence of a fixed amount of fructosylamine, and measuring the amount of fructosylamine oxidized by the catalyst. A method comprising measuring the amount of the glycated protein by measuring the amount.
2 . 請求項 1において、 フルクトシルァミン酸化触媒がイミダゾール基を有す る分子であることを特色とする糖化蛋白質の測定方法。  2. The method for measuring a glycated protein according to claim 1, wherein the fructosylamine oxidation catalyst is a molecule having an imidazole group.
3 . 請求項 1において、 フルクトシルアミン酸化触媒がフルクトシルアミン酸 化酵素であることを特色とする糖化蛋白質の測定方法。  3. The method for measuring a glycated protein according to claim 1, wherein the fructosylamine oxidation catalyst is a fructosylamine oxidase.
4 . 請求項 1から 3において、 フルクトシルァミン酸化触媒がフルクトシルバ リンに選択的であることを特色とする糖化蛋白質の測定方法。  4. The method for measuring a glycated protein according to claim 1, wherein the fructosylamine oxidation catalyst is selective for fructosyl valine.
5 . 請求項 1から 4において、 フルクトシルァミンの量を測定する工程が、 フ ルクトシルアミンの酸化に伴って還元された電子受容体の量を分光学的に測定す ることにより行われることを特色とする糖化蛋白質の測定方法。  5. The method according to any one of claims 1 to 4, wherein the step of measuring the amount of fructosylamine is performed by spectroscopically measuring the amount of an electron acceptor reduced as the fructosylamine is oxidized. A method for measuring a glycated protein that is a feature.
6 . 請求項 1から 4において、 フルクトシルァミンの量を測定する工程が、 フ ルクトシルアミンの酸ィ匕に伴って還元された電子受容体の量を電極を用いて電気 化学的に測定することにより行われることを特色とする糖化蛋白質の測定方法。 6. The method according to any one of claims 1 to 4, wherein the step of measuring the amount of fructosylamine comprises electrochemically measuring, using an electrode, the amount of the electron acceptor reduced along with the oxidation of fructosylamine. A method for measuring a glycated protein, characterized in that the method is performed by the following method.
7 . 言青求項 1から 6において、 糖化蛋白質がヘモグロビン A 1 cであることを 特色とする糖化蛋白質の測定方法。 7. The method for measuring a glycated protein according to claims 1 to 6, wherein the glycated protein is hemoglobin A1c.
8 . 請求項 1から 7のいずれかに記載の方法を実施するための糖化蛋白質測定 キッ卜。 '  8. A glycated protein measurement kit for performing the method according to any one of claims 1 to 7. '
9 . フルクトシルァミン酸化触媒およびフルクトシルァミンを含むことを特徴 とする、 請求項 1から 7のいずれかに記載の方法を実施するための糖ィ匕蛋白質測 定キッ卜。  9. A kit for measuring a sugarcane protein for carrying out the method according to any one of claims 1 to 7, comprising a fructosylamine oxidation catalyst and fructosylamine.
1 0 . 糖化蛋白質がヘモグロビン A 1 cである、 請求項 8または 9に記載の測 定キット。  10. The measurement kit according to claim 8, wherein the glycated protein is hemoglobin A1c.
1 1 . 請求項 1から 4ならびに 6に記載の方法を実施するための糖化蛋白質測 定用センサ一。 11. A sensor for measuring a glycated protein for performing the method according to claims 1 to 4 and 6.
12. 請求項 1から 4ならびに 6に記載の方法を実施するためのヘモグロビン Al c測定用センサー。 12. A sensor for measuring hemoglobin Alc for performing the method according to claims 1 to 4 and 6.
PCT/JP2003/012232 2002-09-26 2003-09-25 Method of measuring glycoprotein WO2004029613A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003266612A AU2003266612A1 (en) 2002-09-26 2003-09-25 Method of measuring glycoprotein
JP2004539527A JP4330534B2 (en) 2002-09-26 2003-09-25 Glycated protein measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-319040 2002-09-26
JP2002319040 2002-09-26

Publications (1)

Publication Number Publication Date
WO2004029613A1 true WO2004029613A1 (en) 2004-04-08

Family

ID=32040875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012232 WO2004029613A1 (en) 2002-09-26 2003-09-25 Method of measuring glycoprotein

Country Status (3)

Country Link
JP (1) JP4330534B2 (en)
AU (1) AU2003266612A1 (en)
WO (1) WO2004029613A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102144A (en) * 2012-11-20 2014-06-05 Nipro Corp Glycosylated hemoglobin measuring kit and glycosylated hemoglobin measuring method
WO2015005257A1 (en) * 2013-07-09 2015-01-15 協和メデックス株式会社 Method for measuring glycated hemoglobin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054398A (en) * 1999-08-18 2001-02-27 Asahi Chem Ind Co Ltd Selective fragmentation of protein
JP2001204494A (en) * 2000-01-25 2001-07-31 Koji Hayade Kit for assaying saccharified hemoglobin
JP2001215229A (en) * 2000-02-02 2001-08-10 Wako Pure Chem Ind Ltd Reagent for measuring glycorpotein
WO2001090735A1 (en) * 2000-05-23 2001-11-29 Koji Sode Kit for assaying saccharified protein
WO2002022698A1 (en) * 2000-09-12 2002-03-21 Koji Sode Enzyme-mimicking polymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054398A (en) * 1999-08-18 2001-02-27 Asahi Chem Ind Co Ltd Selective fragmentation of protein
JP2001204494A (en) * 2000-01-25 2001-07-31 Koji Hayade Kit for assaying saccharified hemoglobin
JP2001215229A (en) * 2000-02-02 2001-08-10 Wako Pure Chem Ind Ltd Reagent for measuring glycorpotein
WO2001090735A1 (en) * 2000-05-23 2001-11-29 Koji Sode Kit for assaying saccharified protein
WO2002022698A1 (en) * 2000-09-12 2002-03-21 Koji Sode Enzyme-mimicking polymers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHIE NAKAJIMA: "Kecchu fructosamine no kosoteki sokutei shiyaku (FOD-POD-TOOS-Kei), ni kansuru kisoteki kento", THE JOURNAL OF MEDICINE, vol. 40, no. 05, 25 November 1998 (1998-11-25), pages 897 - 902, XP002977410 *
FUMIMASA ISHIMURA: "Kaiyo kobo yurai fructosylamine sanka koso o mochiiru toka hemoglobin keisoku", THE ELECTROCHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 79, no. 02, 15 March 2001 (2001-03-15), pages 877, XP002977408 *
KISHIRI KOMIYAMA: "Kosoteki hoho ni yoru glycated protein no shinki sokuteiho no kaihatsu", RINSHO KAGAKU, vol. 27, no. 02, 30 June 1998 (1998-06-30), pages 99 - 106, XP002977409 *
SHIGENORI OTA: "Molecular inprinting catalysis o mochiita toka tanpaku-shitsu no sokutei", THE ELECTROCHEMICAL SOCIETY OF JAPAN TAIKAI KOEN YOSHISHU, vol. 96, 25 March 2002 (2002-03-25), pages 266, XP002977407 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102144A (en) * 2012-11-20 2014-06-05 Nipro Corp Glycosylated hemoglobin measuring kit and glycosylated hemoglobin measuring method
WO2015005257A1 (en) * 2013-07-09 2015-01-15 協和メデックス株式会社 Method for measuring glycated hemoglobin
US10006923B2 (en) 2013-07-09 2018-06-26 Kyowa Medex Co., Ltd. Method for measuring glycated hemoglobin

Also Published As

Publication number Publication date
JPWO2004029613A1 (en) 2006-01-26
AU2003266612A1 (en) 2004-04-19
JP4330534B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
Liu et al. Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin
US10067082B2 (en) Biosensor for determining an analyte concentration
US8962271B2 (en) Fructosyl peptidyl oxidase
AU2005295106B2 (en) Concentration determination in a diffusion barrier layer
JP3413323B2 (en) Method and apparatus for measuring the concentration of an analyte utilizing an amperometric sensor
EP1753872B1 (en) Electrochemical urea sensors and methods of making the same
EP2813854A1 (en) Hemolysis reagent composition for hemoglobin a1c quantitative analysis using enzymatic method
JPWO2007094354A1 (en) Hemoglobin A1c sensor
Carelli et al. An interference-free first generation alcohol biosensor based on a gold electrode modified by an overoxidised non-conducting polypyrrole film
Iveković et al. Amperometric uric acid biosensor with improved analytical performances based on alkaline-stable H2O2 transducer
JP4330534B2 (en) Glycated protein measurement method
JP4879441B2 (en) Glycated protein measurement kit
WO2002022698A1 (en) Enzyme-mimicking polymers
Shi et al. On‐line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system
US20060099666A1 (en) Analyzer for the simultaneous enzymatic detection of closely related analytes
AU2014218413B2 (en) Gated amperometry
AU2016213744B2 (en) Gated amperometry
EP3633044A1 (en) Potentiometric sensors for the selective and direct detection of hydrogen peroxide
JPH10262695A (en) Electrochemical measurement of amadori compound
AU2014274588B2 (en) Concentration determination in a diffusion barrier layer
JPS6012998A (en) Method of enzymatic quantitative analysis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004539527

Country of ref document: JP

122 Ep: pct application non-entry in european phase