WO2004028037A1 - Radio communication system - Google Patents

Radio communication system Download PDF

Info

Publication number
WO2004028037A1
WO2004028037A1 PCT/JP2002/009704 JP0209704W WO2004028037A1 WO 2004028037 A1 WO2004028037 A1 WO 2004028037A1 JP 0209704 W JP0209704 W JP 0209704W WO 2004028037 A1 WO2004028037 A1 WO 2004028037A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal power
base station
radio base
communication system
beams
Prior art date
Application number
PCT/JP2002/009704
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunari Kihira
Yoshitaka Hara
Takashi Sekiguchi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2002/009704 priority Critical patent/WO2004028037A1/en
Priority to JP2003136258A priority patent/JP4107494B2/en
Publication of WO2004028037A1 publication Critical patent/WO2004028037A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • the present invention relates to wireless communication between a wireless base station and a terminal station used for mobile communication and the like, and particularly achieves good information transmission efficiency by following a change in propagation path characteristics while reducing interference.
  • Wireless communication systems centering on mobile phones have been recognized for their convenience and are spreading at a remarkable pace.
  • problems such as tight use of frequencies and deterioration of communication quality have arisen.
  • the occurrence of multipath fading due to reflection and scattering at surrounding structures is a problem peculiar to wireless communication, and is a major factor in deterioration of communication quality.
  • a radio base station adopts a sector configuration in which a plurality of directional antennas having different directivities are arranged, thereby sequentially selecting the antenna having the best reception state. Have been.
  • a plurality of spatially orthogonal multiple stations are located according to the positions of multiple terminal stations unevenly distributed in the service area and the direction of arrival of signals transmitted from the terminal stations. Beams are formed and allocated for receiving signals from each terminal station.
  • an adaptive array antenna that actively removes a signal from a terminal station (interfering station) that is present in an arbitrary direction and is different from the terminal station that desires communication.
  • An adaptive array antenna is a signal processing system that uses a plurality of antenna elements to adjust the amplitude and phase of their received signals and combine them to suppress interference signals at the output. That is, in an environment where there is an interference signal that affects the communication quality, the beam is directed to the arrival direction of the desired signal, and the interference signal Operates so as to form a directional null for the arrival direction. Adjusting the amplitude and phase of the received signal is equivalent to complex weighting the output signals from the antenna elements # 1 to #N as shown in FIG.
  • the transmission and reception channel characteristics are In the case of a sector configuration, the antenna selected in the uplink (base station reception, terminal station transmission) can be used for the downlink as well, and when using an adaptive array antenna, By turning the directivity null toward the interfering station, suboptimal control can be performed.
  • TDD Time Division Duplex
  • pilot symbols for each beam are inserted into each slot in the downlink information symbol sequence.
  • the terminal station detects the N pilot symbol sequences transmitted from each beam, measures the received power of each, and broadcasts the beam number having the highest received power on the uplink, so that In the slot, the radio base station transmits information symbols using the selected beam.
  • the information to be broadcast in the uplink includes the propagation path transfer coefficient for each antenna element of the radio base station and the estimation of the transmission weight at the terminal station. Is the weighting factor for each antenna element, o
  • the terminal station estimates the parameters related to the propagation path characteristics, Broadcasting to a radio base station using a transmission line enables beam control that follows fluctuations in propagation path characteristics even in systems with different uplink and downlink frequencies.
  • the ratio of pilot symbols to information symbols in the entire slot increases, resulting in deterioration of information transmission efficiency in the downlink.
  • the channel transfer coefficient or weight coefficient broadcast from the terminal station is a complex number composed of amplitude and phase information, and each coefficient corresponding to the number of antenna elements is fed back in the uplink.
  • the amount of information is increased.
  • the number of bits per weighting coefficient is k and the number of beams is n
  • the amount of information to be fed back is also k * n bits.
  • the technique of forming a null in the direction of the interfering station is an extremely effective method in ideal operation.However, considering the actual operation, the processing delay in the terminal station divided by the control delay due to feedback The effect of this is large, and there is a possibility that the interference suppression effect cannot be sufficiently obtained for the processing complexity.
  • An object of the present invention is to provide a wireless communication system which solves the above-mentioned problems and realizes improvement of communication quality while maintaining information transmission efficiency while being robust, that is, capable of responding to environmental changes.
  • the present invention relates to a radio communication system including a radio base station forming beams having a plurality of different directional directions and a plurality of terminal stations communicating with the radio base station, wherein each of the terminal stations is Means for estimating the ratio of desired signal power to interference signal power of the downlink transmitted from the plurality of beams of the station, and beam selecting means for selecting an optimal beam from the desired signal power to interference signal power ratio. Means for notifying the selected beam number using an uplink from the terminal station to the radio base station; Transmission control means for transmitting an information signal to the terminal station by using a beam corresponding to the beam number if there is the beam number broadcasted from the terminal station.
  • a wireless communication system characterized by the following.
  • the radio base station includes an array antenna configured by a plurality of antenna elements for forming a plurality of beams, and a beam forming apparatus that arbitrarily sets a beam shape according to an environment in which the radio base station is installed. Means are provided. Further, the transmission control means of the radio base station multiplexes and adds a known signal different for each of a plurality of beams formed by the radio base station to an information signal transmitted from the radio base station to the terminal station. The desired signal power to interference signal power ratio estimating means of the terminal station detects the known signal and estimates the desired signal power to interference signal power ratio.
  • the radio communication system performs a communication of the CDMA communication system, and the transmission control means of the radio base station spreads the known signal by orthogonal codes, and outputs the spread known signal for each beam.
  • the multiplexed signal is added to the information signal transmitted to the terminal station, and the desired signal power to interference signal power ratio estimating means of the terminal station detects the spread known signal, and It is characterized by estimating the interference signal power ratio.
  • the desired signal power to interference signal power ratio estimating means of the terminal station detects the known signal after R AKE combining and estimates the desired signal power to interference signal power ratio.
  • the desired signal power to interference signal power ratio estimating means of the terminal station detects the known signal included in a path having the highest received power among the desired signal group received by the terminal station, and obtains the desired signal power. It is characterized by estimating an interference signal power ratio.
  • the beam selection means of the terminal station selects all beams whose desired signal power to interference signal power ratio is larger than a set threshold, and the transmission control means of the radio base station uses these beams to transmit information. It is characterized by transmitting a signal.
  • a desired signal power to interference signal power ratio estimating means of the terminal station In the notification means, and in the transmission control means of the radio base station, in the initial state of communication start, after determining the beam number using all beams, a beam corresponding to the beam number and a beam adjacent thereto are determined. And estimating the ratio of the power of the desired signal to the power of the interference signal in the downlink and sequentially updating the beam to be selected.
  • a desired signal power to interference signal power ratio estimating means In the terminal station, a desired signal power to interference signal power ratio estimating means, a beam selecting means, a notifying means, and a transmission controlling means of the radio base station, wherein in the initial state of communication start, the terminal station uses all beams.
  • the terminal station uses all beams.
  • the present invention is characterized in that the ratio of the desired signal power to the interference signal power in the downlink is periodically estimated using all the beams, and information on the angle range in which the reception state is good is updated.
  • a plurality of beams are re-formed within the range by using the allowed degree of freedom to the maximum extent.
  • a plurality of array antennas for forming beams having a plurality of different directional directions are arranged at a distance such that the correlation characteristics of the propagation path can be ignored sufficiently, and a beam to be used for transmission is selected and transmitted. It is characterized by the following.
  • a plurality of array antennas for forming beams having a plurality of different directional directions are arranged at a distance such that the correlation characteristics of the propagation path can be sufficiently ignored, and one optimal beam is selected from all the beams. It is characterized by transmitting.
  • FIG. 1 is a block diagram showing a configuration of a wireless base station of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a terminal station in a wireless communication system according to an embodiment of the present invention.
  • FIG. 3 is a signal diagram of a transmission slot in a radio base station according to an embodiment of the present invention. Diagram showing an example of the format
  • FIG. 4 is a diagram showing an example of a specific configuration of each beam SIR estimator in FIG. 2,
  • FIG. 5 is a block diagram showing the configuration of a wireless base station of the wireless communication system according to the present invention provided with a plurality of array antennas,
  • FIG. 6 is a block diagram showing a configuration of a wireless base station of a wireless communication system according to another embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a specific configuration of the beam forming circuit of FIG. 6,
  • FIG. 8 is a diagram showing an example of a specific configuration of each beam SIR estimator of the terminal station in the CDMA communication system of the present invention.
  • FIG. 9 is a diagram showing another example of a specific configuration of each beam SIR estimator of the terminal station in the CDMA communication system of the present invention.
  • FIG. 10 is a diagram showing an example of a signal format of a transmission slot in a radio base station according to another embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a transmission beam forming method in a radio base station according to another embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a transmission beam forming method in a radio base station according to still another embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a transmission beam forming method in a radio base station according to still another embodiment of the present invention.
  • FIG. 14 is a diagram for explaining a conventional wireless communication system
  • FIG. 15 is a diagram for describing insertion of a pilot symbol for beam selection in a conventional antenna selection type control method.
  • FIG. 1 and 2 are block diagrams each showing an example of the configuration of a wireless base station and a terminal station of a wireless communication system according to an embodiment of the present invention.
  • An example of the slot signal format is shown.
  • -It is a figure.
  • the radio base station in FIG. 1 includes a plurality of antenna elements (# 1 to #N) 101 to 103 having directivity in different directions, a duplexer 104 to 106, a transmitter (Tx) 107 to 109, and a receiver. (Rx) 110 to 112, a reception beam control circuit 113, a demodulator 114, a beam number detector 115, a modulator 116, a pilot symbol generator 117, and a beam switching circuit 118.
  • the terminal station in FIG. 2 includes an antenna element 141, a duplexer 142, a receiver (Rx) 143, a transmitter (Tx) 144, each beam SIR estimator 145, a beam selection circuit 146, and a modulator 147. Be composed.
  • a signal received by an antenna 141 is input to a receiver (Rx) 143 via a duplexer 142.
  • the receiver 143 converts: a received signal in an RF (Radio Frequency) band into a baseband digital signal.
  • Each beam SIR estimator 145 detects a pilot symbol (known signal) of each beam multiplexed and inserted at the head of each slot as shown in FIG. 3 described later, and calculates a desired signal power for each beam. Estimate the interference signal power ratio (SIR: Signal-to-Interference Ratio).
  • each beam SIR estimating section 145 a configuration as shown in FIG. 4 is cited. (1 to N) 155 to 157, SIR calculator (1 to N) 158 to: 160.
  • Pilot symbol generator 151 generates the same pilot symbol for each beam as that inserted into the transmission slot in the radio base station.
  • the correlators 152 to 154 a correlation operation is performed between these pilot symbols and the output signal from the receiver 143 to extract a desired signal component.
  • the timing detectors 155 to 157 detect the sample whose timing coincides with the pilot symbol included in the received signal, that is, the timing of the sample whose SIR is most improved, and then determine the timing of the detected timing.
  • SIR calculators 158 to 160 derive the SIR of each beam. The SIR value of each of these beams is input to the subsequent beam selection circuit 146.
  • the SIR calculators 158 to 160 use multiple samples By performing the averaging process, it is possible to estimate an accurate value.
  • the beam selection circuit 146 selects a beam having the highest SIR. This is reported to the radio base station on the uplink. The procedure is to insert the information of the selected beam number into the information symbol to be transmitted, perform modulation processing in the modulator 147, and then transmit the signal to the transmitter (Tx The signal is converted into an RF band signal at) 144 and radiated from the antenna 141 via the duplexer 142.
  • the information fed back from the terminal station need only be the beam number, and thus has little effect on the transmission efficiency of the uplink. For example, when using eight beams, only three bits are required as control information.
  • the beam number is broadcast, no matter what shape the beam is used in the radio base station, it is not necessary for the terminal station to consider them, and the system expandability is excellent.
  • a signal component including various information data such as voices transmitted from the radio base station is detected by a demodulator or the like. However, in the configuration example of FIG. This part has been omitted to make the features easier to understand.
  • the modulated signal transmitted from the terminal station is received by ⁇ ⁇ ⁇ ⁇ antenna elements 101 to 103 having directivities in different directions, and is received by the duplexers 104 to 106.
  • the receivers (Rx) 110 to 112 Via the receivers (Rx) 110 to 112 to convert the RF band signal into a base band digital signal.
  • the antenna element groups 101 to 103 have different directivities, and are set according to the communication range of the radio base station. For example, when 360 degrees around the entire circumference are covered by eight antenna elements, the beam width of each antenna element may be set to about 45 degrees and arranged evenly.
  • the reception beam control circuit 113 adjusts the amplitude and phase of the reception signal of each antenna element and combines them to obtain an output signal.
  • the control means of the reception beam control circuit 113 uses various existing algorithms, for example, diversity combining techniques such as selective combining and maximum ratio combining, and an adaptive array that forms nulls for interference signals.
  • Various control algorithms of the antenna are included.
  • the output signal after the array synthesis is demodulated by the demodulator 114, and the beam number detector At 115, the information of the selected beam number included in the received data is detected.
  • the process of determining information symbols from the received data obtained from demodulator 114 is omitted in FIG. 1 to simplify the description and to make the features of the present invention easier to understand.
  • Pilot symbol generator 117 generates pilot symbols of the specified length by the number of beams to be formed, and modulates information symbols by modulator 116 and beam numbers detected by beam number detector 115 The information is input to the beam switching circuit 118 together with the information.
  • the beam switching circuit 118 creates a format transmission slot as shown in FIG. That is, an information symbol is added to the back of the pilot symbol of the beam corresponding to the beam number detected by the beam number detector 115 (FIG. 3 shows an example when Beam2 is selected). For other beams, either add nothing or insert a null symbol such as an all zero value. By performing multiplexing for simultaneously transmitting the transmission slots (N in this case) of these beams, it is possible to reduce the ratio of pilot symbols in the slot and prevent a reduction in transmission efficiency.
  • the correlation characteristic of each pilot symbol is as small as possible in consideration of the accuracy of SIR estimation at the terminal station. It is desirable to set each pilot symbol to be orthogonal.
  • CDMA Code Division Multiple Access
  • communication at the same time is enabled by identifying users by using spreading codes.
  • orthogonal spreading codes By allocating orthogonal spreading codes to the pilot symbols of each beam and performing spreading processing, the present invention can be applied to the CDMA system, and an efficient transmission system can be realized.
  • the signals are converted into RF band signals by transmitters (Tx) 107 to 109 and radiated by antenna elements 101 to 103 via duplexers 104 to 106.
  • the radio base station forms a plurality of beams, multiplexes and transmits signals orthogonal to each other from each, and selects and broadcasts the beam having the best reception state at the terminal station.
  • Wireless communication using different frequencies for downlink and In a communication system it is possible to maintain the information transmission efficiency and follow the fluctuation of the propagation path characteristics.
  • a plurality of array antennas 10a and 10b-- consisting of antenna elements 101 to 103 are installed, and the intervals are set so that the propagation path characteristics are unrelated to each other.
  • Array antennas 10a and 101 that form beams having a plurality of different directional directions may be used to select and transmit a beam to be used for transmission, or may be configured to transmit the whole (all)
  • One of the optimal beams (with the highest SIR) may be selected and transmitted.
  • the control section consisting of 104 to 118 in FIG. 1 may be provided individually for each array antenna, or one set may be provided in common and switched for connection.
  • FIG. 6 is a block diagram showing a configuration of a radio base station according to another embodiment of the present invention.
  • the radio base station shown in FIG. 6 forms each beam by digital signal processing, and has a plurality of omnidirectional antenna elements (# 1 to #N) 121 to 123 and duplexers 124 to 126.
  • Transmitter (Tx) 127 to 129, receiver (Rx) 130 to: 132, receive beam control circuit 133, demodulator 134, beam number detector 135, modulator 136, pilot symbol It comprises a generator 137, a beam switching circuit 138, and a beam forming circuit 139 for forming a plurality of beams by digital signal processing.
  • the elements other than the antenna elements (# 1 to #N) 121 to 123 and the beam forming circuit 139 are basically the same as the corresponding parts shown in FIG. Omitted.
  • Arbitrary N antenna elements 121 to 123 are each formed of a so-called non-directional antenna element having no directivity in a specific direction.
  • FIG. 7 shows an example of a specific configuration of the beam forming circuit 139.
  • the beam forming circuit includes distributors (1 to L) 171 to 173, a weighting coefficient adder 174 for assigning weighting coefficients, and combiners (1 to N) 175 to 177.
  • FIG. 7 shows an example in which the number of beams to be formed is L, but the number of beams L does not need to be the same as the number N of antenna elements.
  • the transmission slot of each beam generated by the beam switching circuit 138 in FIG. 6 is distributed to N by the distributors 171 to 173.
  • wij ⁇ w N j corresponds to the weighting factor of the array antenna for beam j, by such a weighting coefficient L sets prepared performs beamforming in daisy evening Le stage.
  • each beam by the digital signal processing, that is, setting the beam shape, it is possible to freely re-form the beam according to the installation environment of the wireless base station and environmental fluctuations. Become.
  • FIG. 8 shows an example of the configuration of each beam SIR estimator (see 145 in FIG. 2) of the terminal station according to the present invention in the CDMA communication system.
  • Each beam SIR estimator 145a in FIG. 8 includes a spreading code generator 181, a MF (Matched Filter) (1-N) 182-: 184, and a path timing detector (1-N) 185.
  • the spreading code generator 181, MF (Matched Filter) 182-: 184, each path timing detector 185-187, and the SIR calculators 191-193 are composed of the pilot symbol generator 151 shown in FIG. , Correlator 152-154, Evening detector 155-: 157, SIR calculation unit 158-: Performs an operation similar to 160.
  • a spread code with a higher data rate than information symbols is spread over a wideband signal and transmitted.
  • the original information symbols are reproduced by performing correlation detection using the same spreading code as that used on the transmitting side (despreading process).
  • the smaller the cross-correlation characteristic of the spreading code assigned to each user the greater the interference suppression effect in the despreading process.
  • this characteristic is used for beam selection processing in the terminal station. This will be specifically described below.
  • the spreading code generator 181 shown in FIG. Generate the same spreading code as used in the station and input it to MF182 ⁇ : 184.
  • the RAKE combiners 188 to 190 perform RAKE combining for maximal ratio combining of each path component based on each path timing, and use the combined output to calculate the SIR value of each beam in the SIR calculators 191 to 193.
  • FIG. 9 shows an example of the configuration of each beam SIR estimator of the terminal station in another embodiment of the present invention in the CDMA communication system.
  • Each beam SIR estimator 145b in FIG. 9 includes a spreading code generator 201, MF (Matched Filter) (1 to N) 202 to 204, and a maximum path timing detector (1 to N) 205 to 207 and SIR calculators (1 to N) 208 to 210.
  • MF Melched Filter
  • the spreading code generator 201, the MFs 202 to 204, and the SIR calculators 208 to 210 perform the same operations as the spreading code generator 181 in the third embodiment, the MFs 182 to 184, and the SIR calculators 191 to 193. Therefore, the description is omitted.
  • Maximum path timing detectors 205 to 207 detect the timing of the path having the highest reception level among the paths of the desired signal arriving through various propagation paths. Then, based on the detected sample timing of the maximum path, the SIR calculators 208 to 210 estimate the SIR value of each beam.
  • the timing detector can be simplified and the number of RAKE combiners can be reduced, so that the device configuration of the terminal station can be simplified.
  • the terminal station selects the beam with the best SIR.
  • a beam with a high SIR may occur due to multipath arriving from a distant angle. May exist multiple times. The beam selection method in such a case will be described.
  • the terminal station sets the target SIR as a threshold value in advance.
  • the SIR of each beam is estimated using the pilot symbol in the transmission slot from the radio base station, and a plurality of beams having a value larger than the target SIR are selected. Each of these selected beam numbers is reported to the radio base station via the uplink, and the radio base station transmits information symbols using the plurality of beams.
  • FIG. 10 shows a transmission slot configuration in a radio base station according to the present embodiment. Multiplexing is performed to simultaneously transmit the transmission slots of these N beams.
  • Fig. 10 shows an example in which J out of N beams are selected by the terminal station.The transmission slot of the selected beam and an information symbol must be added and multiplexed. Thus, it is possible to efficiently use a beam having a good propagation path characteristic.
  • Embodiment 6
  • FIG. 11 shows an example in which beams are formed at equal intervals in a horizontal plane.
  • the selected beam 221 is a beam selected by the terminal station, and is used by the radio base station to transmit information symbols in the next slot.
  • the adjacent beams 222 and 223 are beams adjacent thereto.
  • the amount of information affects uplink information transmission efficiency. Therefore, it is desirable that the control information is as small as possible.
  • This embodiment shows a method for realizing it.
  • the radio base station detects the selected beam number and creates a transmission slot. At this time, a transmission slot is not created using all beams, but a slot is created using only the selected beam 221 and the adjacent beams 222 and 223 adjacent thereto. Then, the beam to be selected is updated successively.
  • Fig. 11 shows an example in the horizontal plane, but in the case of forming a beam also in the vertical plane, the beam configuration of each wireless base station is supported by using adjacent beams around the selected beam 221 it can.
  • FIG. 12 shows an example in which beams are formed at equal intervals in a horizontal plane.
  • the selected beam group 225 is a set of beams selected by the terminal station in the initial state.
  • the wireless base station transmits pilot symbols of all beams as described in the first embodiment.
  • the terminal station estimates the SIR of each beam, and designates the selected beam group 255 from a favorable angle range of the SIR. At this time, the number of beams included in the selected beam group 255 is specified in advance.
  • the range setting of the beam group there are a method of sliding one beam completely and a method of setting continuously.
  • the radio base station notified of this selected beam group information by the uplink transmits the pilot symbol using the beam in the selected beam group 225, and sequentially selects the beam. Update the process.
  • FIG. 13 shows an example in which beams are formed at equal intervals in a horizontal plane.
  • a is the initial state
  • b is the beam group at the start of communication.
  • the selected beam group 230 is a set of beams initially selected by the terminal station. The method of setting the selected beam group 230 is the same as that described in the seventh embodiment.
  • the radio base station densely reshapes the beam using the maximum allowed degree of freedom in the angular range of the selected beam group 230 broadcast from the terminal station. After the start of communication, the information symbols are transmitted using the reconstructed beam group 231.
  • the wireless communication system of the present invention is useful as a device that improves communication quality while maintaining information transmission efficiency while being robust, that is, capable of responding to environmental changes.

Abstract

A radio communication system comprising a radio base station for forming beams having a plurality of different directivities and a plurality of terminal stations for performing communication with the radio base station. Each terminal station comprises a means for estimating the ratio of the desired signal power to the interference signal power of an downstream line transmitted from a plurality of beams of the radio base station, a beam selecting means for selecting the optimum beam from the ratio of the desired signal power to the interference signal power, and a means for informing the selected beam number by using an upstream line from the terminal station to the radio base station. The radio base station comprises a transmission control means for transmitting information signals to the terminal station by using the beam corresponding to the beam number if there is the beam number informed from the terminal station.

Description

明 細 書 無線通信システム  Description Wireless communication system
技術分野 本発明は、 移動体通信等に利用する無線基地局と端末局の間の無線通信に係り、 特に伝搬路特性の変動に追従しつつ、 干渉を低減し、 良好な情報伝送効率を達成 することができる無線通信システムに関する。 背景技術  TECHNICAL FIELD The present invention relates to wireless communication between a wireless base station and a terminal station used for mobile communication and the like, and particularly achieves good information transmission efficiency by following a change in propagation path characteristics while reducing interference. A wireless communication system capable of Background art
近年、 PDC(Personal Digital Cellular)や PHS(Personai Handy-phone  In recent years, PDC (Personal Digital Cellular) and PHS (Personai Handy-phone
System)等の携帯電話を中心とする無線通信システムは、 その利便性が認められ、 めざましい勢いで普及している。 一方で利用者の増加に伴い、 使用周波数の逼迫 や通信品質の劣化などの問題が生じてきている。 特に周囲の構造物での反射、 散 乱によるマルチパスフェージングの発生は無線通信特有の問題であり、 通信品質 劣化の大きな要因である。 従来、 この対策として、 無線基地局においては、 異な る指向性を有する複数の指向性アンテナを配置するセクタ構成とすることで、 最 も受信状態のよいアンテナを逐次選択するなどの方法が取られてきた。 Wireless communication systems centering on mobile phones, such as the Mobile Phone System, have been recognized for their convenience and are spreading at a remarkable pace. On the other hand, with the increase in users, problems such as tight use of frequencies and deterioration of communication quality have arisen. In particular, the occurrence of multipath fading due to reflection and scattering at surrounding structures is a problem peculiar to wireless communication, and is a major factor in deterioration of communication quality. Conventionally, as a countermeasure, a radio base station adopts a sector configuration in which a plurality of directional antennas having different directivities are arranged, thereby sequentially selecting the antenna having the best reception state. Have been.
また、 さらなる高機能化をはかる手法として、 サービスエリア内に偏在する複 数の端末局の位置や、 その端末局から送信される信号の到来方向に応じて、 互い に空間的に直交する複数のビームを形成し、 各端末局からの信号の受信のために 割り当てることが挙げられる。  In addition, as a technique for further enhancing the functionality, a plurality of spatially orthogonal multiple stations are located according to the positions of multiple terminal stations unevenly distributed in the service area and the direction of arrival of signals transmitted from the terminal stations. Beams are formed and allocated for receiving signals from each terminal station.
具体的には、 通信を希望する端末局と異なる、 任意の方向に存在する干渉とな る端末局 (干渉局)からの信号を積極的に除去するァダプティブアレーアンテナが ある。 ァダプティブアレーアンテナは、 複数のアンテナ素子を利用してそれらの 受信信号の振幅、 位相を調整し、 合成することで出力において干渉信号を抑圧す る信号処理システムである。 すなわち、 通信品質に影響を及ぼすような干渉信号 が存在する環境において、 所望とする信号の到来方向にビームを向け、 干渉信号 の到来方向に対しては指向性のヌルを形成するように動作する。 受信信号の振幅 と位相を調整することは、 図 1 4に示すように各アンテナ素子 #1〜#Nからの出 力信号を複素重み付けすることに等価である。 Specifically, there is an adaptive array antenna that actively removes a signal from a terminal station (interfering station) that is present in an arbitrary direction and is different from the terminal station that desires communication. An adaptive array antenna is a signal processing system that uses a plurality of antenna elements to adjust the amplitude and phase of their received signals and combine them to suppress interference signals at the output. That is, in an environment where there is an interference signal that affects the communication quality, the beam is directed to the arrival direction of the desired signal, and the interference signal Operates so as to form a directional null for the arrival direction. Adjusting the amplitude and phase of the received signal is equivalent to complex weighting the output signals from the antenna elements # 1 to #N as shown in FIG.
下り回線 (基地局送信、 端末局受信)については TDD(Time Division Duplex)方 式 (送信と受信で時間分割することで同一周波数を利用する方式)の場合には、 送 受の伝搬路特性が短区間変動において同一と見なせるため、 セクタ構成の場合に は上り回線 (基地局受信、 端末局送信)において選択したアンテナを下り回線にも 利用することで、 また、 ァダプティプアレ一アンテナを用いる場合には、 干渉局 方向に指向性のヌルを向けることで、 準最適な制御ができる。  For the downlink (base station transmission, terminal station reception) TDD (Time Division Duplex) method (a method in which the same frequency is used by time division for transmission and reception), the transmission and reception channel characteristics are In the case of a sector configuration, the antenna selected in the uplink (base station reception, terminal station transmission) can be used for the downlink as well, and when using an adaptive array antenna, By turning the directivity null toward the interfering station, suboptimal control can be performed.
一方、 上り回線と下り回線で周波数が異なる FDD(Frequency Division  On the other hand, FDD (Frequency Division
Duplex)方式の場合、 送受の伝搬路特性が異なり、 上り回線の受信信号から下り 回線の送信方法を決定する上記の方式では良好な特性が得られない場合がある。 そこで、 下り回線の伝搬路特性の情報を端末局にて測定し、 無線基地局におい て送信ビームを制御する際に必要となる情報を抽出する。 そして、 上り回線の送 信信号に当該情報を挿入することで、 無線基地局に報知するフィ一ドバック型の 制御方式がある。 この場合、 送受の周波数の差異に関わらず、 常に端末局の受信 状態が良好であるよう、 無線基地局側で送信に用いるビームを制御することが可 能となり、 通信品質の向上が期待できる。 , In the case of the (Duplex) method, transmission / reception propagation path characteristics are different, and good characteristics may not be obtained with the above method of determining the transmission method of the downlink from the received signal of the uplink. Therefore, information on the propagation path characteristics of the downlink is measured at the terminal station, and information necessary for controlling the transmission beam at the radio base station is extracted. Then, there is a feedback control method in which the information is inserted into an uplink transmission signal to notify the radio base station. In this case, it is possible to control the beam used for transmission on the radio base station side so that the reception state of the terminal station is always good irrespective of the difference between the transmission and reception frequencies, and the communication quality can be expected to be improved. ,
たとえば、 従来のアンテナ選択型の制御方式においては、 図 1 5に示すように、 下り回線の情報シンボル列に各ビーム (図では N本のビームを想定)のパイロヅト シンボルを各スロットに揷入し送信する。 この各ビームから送信された N個の パイロットシンボル列を端末局側で検知して、 それそれの受信電力を測定し、 最 も受信電力の大きいビーム番号を上り回線にて報知することで、 次スロットにお いて、 無線基地局はその選択ビームを用いて情報シンボルを送信する。  For example, in the conventional antenna selection control method, as shown in Fig. 15, pilot symbols for each beam (assuming N beams in the figure) are inserted into each slot in the downlink information symbol sequence. Send. The terminal station detects the N pilot symbol sequences transmitted from each beam, measures the received power of each, and broadcasts the beam number having the highest received power on the uplink, so that In the slot, the radio base station transmits information symbols using the selected beam.
またァダプティブアレーアンテナを適用した場合には、 上り回線において報知 する情報としては、 無線基地局のアンテナ素子毎の伝搬路伝達係数や、 端末局に て送信用のウェイ トを推定する場合には、 各アンテナ素子に対する重み係数とな o  Also, when an adaptive array antenna is applied, the information to be broadcast in the uplink includes the propagation path transfer coefficient for each antenna element of the radio base station and the estimation of the transmission weight at the terminal station. Is the weighting factor for each antenna element, o
このようにして、 端末局において伝搬路特性に関わるパラメ一夕を推定し、 上 り回線を利用して無線基地局に報知することで、 上りと下りの周波数が異なるシ ステムにおいても、 伝搬路特性の変動に追従したビーム制御が可能となる。 しかしながら、 従来のビーム選択型の制御方式では、 図 1 5のようにビーム数 が増えるほどに、 スロット全体での情報シンボルに対するパイロットシンボルの 比率が高まり、 その結果、 下り回線における情報伝送効率が劣化する問題があつ ノ In this way, the terminal station estimates the parameters related to the propagation path characteristics, Broadcasting to a radio base station using a transmission line enables beam control that follows fluctuations in propagation path characteristics even in systems with different uplink and downlink frequencies. However, in the conventional beam selection control method, as the number of beams increases, as shown in Fig. 15, the ratio of pilot symbols to information symbols in the entire slot increases, resulting in deterioration of information transmission efficiency in the downlink. Problem
一方で、 ァダプティブアレーアンテナを用いた場合、 端末局から報知する伝搬 路伝達係数あるいは重み係数は振幅および位相情報からなる複素数であり、 さら にアンテナ素子数分の各係数を上り回線においてフィードバックする必要がある ため、 その情報量は多くなる。 たとえば、 重み係数 1つ当りのビット数が k、 ビ —ム数が nの場合、 フィードバックする情報量は、 k*nビヅトにもなる。 この 制御信号をたとえば 1スロット毎に上り回線の情報シンボルに挿入する必要が あり、 上り回線の情報シンボルに対して挿入する制御シンボルの比率が高まるた め、 上り回線の情報伝送効率が著しく低下する可能性がある。  On the other hand, when an adaptive array antenna is used, the channel transfer coefficient or weight coefficient broadcast from the terminal station is a complex number composed of amplitude and phase information, and each coefficient corresponding to the number of antenna elements is fed back in the uplink. The amount of information is increased. For example, when the number of bits per weighting coefficient is k and the number of beams is n, the amount of information to be fed back is also k * n bits. For example, it is necessary to insert this control signal into the uplink information symbol every slot, and the ratio of the control symbol to be inserted to the uplink information symbol is increased, so that the uplink information transmission efficiency is significantly reduced. there is a possibility.
また、 干渉局方向に対してヌルを形成する技術は理想的動作においては、 極め て有効な方法であるが、 現実の運用を考慮したとき、 端末局内での処理遅延ゃフ イードバックによる制御遅延などの影響が大きく、 処理の複雑さに対して干渉抑 圧効果が十分に得られない可能性がある。  Also, the technique of forming a null in the direction of the interfering station is an extremely effective method in ideal operation.However, considering the actual operation, the processing delay in the terminal station divided by the control delay due to feedback The effect of this is large, and there is a possibility that the interference suppression effect cannot be sufficiently obtained for the processing complexity.
本発明の目的は以上の問題を解決し、 環境変動にロバストすなわち対応可能で ありながら、 情報伝送効率を保持しつつ、 通信品質の改善を実現する、 無線通信 システムを提供するものである。  An object of the present invention is to provide a wireless communication system which solves the above-mentioned problems and realizes improvement of communication quality while maintaining information transmission efficiency while being robust, that is, capable of responding to environmental changes.
発明の開示 Disclosure of the invention
本発明は、 複数の異なる指向方向を有するビームを形成する無線基地局と、 こ の無線基地局と通信を行う複数の端末局からなる無線通信システムにおいて、 前 記各端末局が、 前記無線基地局の複数のビームから送信された下り回線の所望信 号電力対干渉信号電力の比をそれそれ推定する手段と、 前記所望信号電力対干渉 信号電力比から最適なビームを選択するビーム選択手段と、 前記選択したビ一ム 番号を前記端末局から前記無線基地局への上り回線を用いて報知する手段と、 を 備え、 前記無線基地局が、 前記端末局から報知された前記ビーム番号があれば該 ビーム番号に対応するビームを用いて前記端末局に情報信号を送信する送信制御 手段と、 を備えたことを特徴とする無線通信システムにある。 The present invention relates to a radio communication system including a radio base station forming beams having a plurality of different directional directions and a plurality of terminal stations communicating with the radio base station, wherein each of the terminal stations is Means for estimating the ratio of desired signal power to interference signal power of the downlink transmitted from the plurality of beams of the station, and beam selecting means for selecting an optimal beam from the desired signal power to interference signal power ratio. Means for notifying the selected beam number using an uplink from the terminal station to the radio base station; Transmission control means for transmitting an information signal to the terminal station by using a beam corresponding to the beam number if there is the beam number broadcasted from the terminal station. A wireless communication system characterized by the following.
また、 前記無線基地局が、 複数のビームを形成するための複数のアンテナ素子 により構成されるアレーアンテナと、 前記無線基地局が設置される環境に応じて そのビーム形状を任意に設定するビーム形成手段と、 を備えたことを特徴とする。 また、 前記無線基地局の送信制御手段が、 前記無線基地局より前記端末局に送 信される情報信号に、 無線基地局で形成する複数のビーム毎に異なる既知の信号 を多重して付加し、 前記端末局の所望信号電力対干渉信号電力比推定手段が、 前 記既知信号を検出し、 所望信号電力対干渉信号電力比を推定することを特徴とす る。  Further, the radio base station includes an array antenna configured by a plurality of antenna elements for forming a plurality of beams, and a beam forming apparatus that arbitrarily sets a beam shape according to an environment in which the radio base station is installed. Means are provided. Further, the transmission control means of the radio base station multiplexes and adds a known signal different for each of a plurality of beams formed by the radio base station to an information signal transmitted from the radio base station to the terminal station. The desired signal power to interference signal power ratio estimating means of the terminal station detects the known signal and estimates the desired signal power to interference signal power ratio.
また、 前記既知信号として互いに直交するデータシンボルを用いることを特徴 とする。  Further, data symbols orthogonal to each other are used as the known signal.
また、 無線通信システムが C D MA通信方式の通信を行い、 前記無線基地局の 送信制御手段が、 前記既知信号を直交符号によりそれそれ拡散処理し、 各ビーム のための拡散処理された既知信号を多重化したものを前記端末局に送信される情 報信号に付加し、 前記端末局の所望信号電力対干渉信号電力比推定手段が、 前記 拡散処理された既知信号を検出し、 所望信号電力対干渉信号電力比を推定するこ とを特徴とする。  Also, the radio communication system performs a communication of the CDMA communication system, and the transmission control means of the radio base station spreads the known signal by orthogonal codes, and outputs the spread known signal for each beam. The multiplexed signal is added to the information signal transmitted to the terminal station, and the desired signal power to interference signal power ratio estimating means of the terminal station detects the spread known signal, and It is characterized by estimating the interference signal power ratio.
また、 前記端末局の所望信号電力対干渉信号電力比推定手段が、 R A K E合成 後の前記既知信号を検出して所望信号電力対干渉信号電力比を推定することを特 徴とする。  Further, it is characterized in that the desired signal power to interference signal power ratio estimating means of the terminal station detects the known signal after R AKE combining and estimates the desired signal power to interference signal power ratio.
また、 前記端末局の所望信号電力対干渉信号電力比推定手段が、 前記端末局で 受信される所望信号群の中で最も受信電力の大きいパスに含まれる前記既知信号 を検出して所望信号電力対干渉信号電力比を推定することを特徴とする。  Further, the desired signal power to interference signal power ratio estimating means of the terminal station detects the known signal included in a path having the highest received power among the desired signal group received by the terminal station, and obtains the desired signal power. It is characterized by estimating an interference signal power ratio.
また、 前記端末局のビーム選択手段が、 前記所望信号電力対干渉信号電力比が 設定した閾値より大きいビームをすベて選択し、 前記無線基地局の送信制御手段 がこれらのビームを用いて情報信号を送信することを特徴とする。  Also, the beam selection means of the terminal station selects all beams whose desired signal power to interference signal power ratio is larger than a set threshold, and the transmission control means of the radio base station uses these beams to transmit information. It is characterized by transmitting a signal.
また、 前記端末局の所望信号電力対干渉信号電力比推定手段、 ビーム選択手段、 報知手段、 および前記無線基地局の送信制御手段において、 通信開始の初期状態 において、 全ビームを用いて前記ビーム番号を決定した後は、 前記ビーム番号に 対応するビ一ムおよびそれに隣接するビームを用いて、 下り回線の前記所望信号 電力対干渉信号電力比を推定し、 逐次選択するビームを更新することを特徴とす る In addition, a desired signal power to interference signal power ratio estimating means of the terminal station, a beam selecting means, In the notification means, and in the transmission control means of the radio base station, in the initial state of communication start, after determining the beam number using all beams, a beam corresponding to the beam number and a beam adjacent thereto are determined. And estimating the ratio of the power of the desired signal to the power of the interference signal in the downlink and sequentially updating the beam to be selected.
また、 前記端末局の所望信号電力対干渉信号電力比推定手段、 ビーム選択手段、 報知手段、 および前記無線基地局の送信制御手段において、 通信開始の初期状態 において、 前記端末局では全ビームを用いて下り回線の前記所望信号電力対干渉 信号電力比を推定し、 受信状態の良い角度範囲の情報を前記無線基地局への上り 回線を用いて報知し、 その後、 前記無線基地局においては選択された範囲に形成 された複数のビームを用いて、 下り回線の前記所望信号電力対干渉信号電力比を 推定し、 逐次選択するビームを更新することを特徴とする。  In the terminal station, a desired signal power to interference signal power ratio estimating means, a beam selecting means, a notifying means, and a transmission controlling means of the radio base station, wherein in the initial state of communication start, the terminal station uses all beams. To estimate the ratio of the desired signal power to the interference signal power in the downlink, and broadcast information on the angle range in a good reception state using the uplink to the radio base station. A plurality of beams formed in the specified range, estimating the ratio of the desired signal power to the interference signal power in the downlink, and sequentially updating the beams to be selected.
また、 定期的に全ビームを用いて下り回線の前記所望信号電力対干渉信号電力 比を推定し、 受信状態の良い角度範囲の情報を更新することを特徴とする。  Further, the present invention is characterized in that the ratio of the desired signal power to the interference signal power in the downlink is periodically estimated using all the beams, and information on the angle range in which the reception state is good is updated.
また、 前記端末局より報知された角度範囲に基づき、 許容された自由度を最大 限利用して、 その範囲内に複数のビームを再形成することを特徴とする。  Further, based on the angle range notified from the terminal station, a plurality of beams are re-formed within the range by using the allowed degree of freedom to the maximum extent.
また、 前記複数の異なる指向方向を有するビームを形成するアレーアンテナを、 伝搬路の相関特性が十分に無視できる程度の距離に複数個配置し、 それそれで送 信に用いるビームを選択し、 送信することを特徴とする。  Also, a plurality of array antennas for forming beams having a plurality of different directional directions are arranged at a distance such that the correlation characteristics of the propagation path can be ignored sufficiently, and a beam to be used for transmission is selected and transmitted. It is characterized by the following.
また、 前記複数の異なる指向方向を有するビームを形成するアレーアンテナを、 伝搬路の相関特性が十分に無視できる程度の距離に複数個配置し、 全ビームの中 で 1つの最適なビームを選択し、 送信することを特徴とする。 図面の簡単な説明  Further, a plurality of array antennas for forming beams having a plurality of different directional directions are arranged at a distance such that the correlation characteristics of the propagation path can be sufficiently ignored, and one optimal beam is selected from all the beams. It is characterized by transmitting. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施の形態による無線通信システムの無線基地局の構成を示 すプロック図、  FIG. 1 is a block diagram showing a configuration of a wireless base station of a wireless communication system according to an embodiment of the present invention.
図 2は本発明の一実施の形態による無線通信システムの端末局の構成を示すブ 口ック図、  FIG. 2 is a block diagram showing a configuration of a terminal station in a wireless communication system according to an embodiment of the present invention.
図 3は本発明の一実施の形態による無線基地局における送信スロットの信号フ ォーマツ卜の一例を示す図、 FIG. 3 is a signal diagram of a transmission slot in a radio base station according to an embodiment of the present invention. Diagram showing an example of the format
図 4は図 2の各ビーム SIR推定部の具体的な構成の一例を示す図、  FIG. 4 is a diagram showing an example of a specific configuration of each beam SIR estimator in FIG. 2,
図 5は複数のアレーアンテナを設けた本発明による無線通信システムの無線基 地局の構成を示すプロック図、  FIG. 5 is a block diagram showing the configuration of a wireless base station of the wireless communication system according to the present invention provided with a plurality of array antennas,
図 6は本発明の別の実施の形態による無線通信システムの無線基地局の構成を 示すプロック図、  FIG. 6 is a block diagram showing a configuration of a wireless base station of a wireless communication system according to another embodiment of the present invention.
図 7は図 6のビーム形成回路の具体的な構成の一例を示す図、  FIG. 7 is a diagram showing an example of a specific configuration of the beam forming circuit of FIG. 6,
図 8は本発明の CDMA通信方式における端末局の各ビーム SIR推定部の具体 的な構成の一例を示す図、  FIG. 8 is a diagram showing an example of a specific configuration of each beam SIR estimator of the terminal station in the CDMA communication system of the present invention.
図 9は本発明の CDMA通信方式における端末局の各ビーム SIR推定部の具体 的な構成の別の例を示す図、  FIG. 9 is a diagram showing another example of a specific configuration of each beam SIR estimator of the terminal station in the CDMA communication system of the present invention.
図 1 0は本発明の別の実施の形態による無線基地局における送信スロットの信 号フォーマツトの一例を示す図、  FIG. 10 is a diagram showing an example of a signal format of a transmission slot in a radio base station according to another embodiment of the present invention.
図 1 1は本発明の別の実施の形態による無線基地局における送信ビームの形成 方法を説明するための図、  FIG. 11 is a diagram for explaining a transmission beam forming method in a radio base station according to another embodiment of the present invention,
図 1 2は本発明のさらに別の実施の形態による無線基地局における送信ビーム の形成方法を説明するための図、  FIG. 12 is a diagram for explaining a transmission beam forming method in a radio base station according to still another embodiment of the present invention.
図 1 3は本発明のさらに別の実施の形態による無線基地局における送信ビーム の形成方法を説明するための図、  FIG. 13 is a diagram for explaining a transmission beam forming method in a radio base station according to still another embodiment of the present invention.
図 1 4は従来の無線通信システムを説明するための図、  FIG. 14 is a diagram for explaining a conventional wireless communication system,
図 1 5は従来のアンテナ選択型の制御方式におけるビーム選択用パイロットシ ンボルの揷入について説明するための図である。 発明を実施するための最良の形態  FIG. 15 is a diagram for describing insertion of a pilot symbol for beam selection in a conventional antenna selection type control method. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 .  Embodiment 1
本発明の実施の形態に係る無線通信システム及び無線基地局及び端末局につい て図を用いて説明する。 図 1及び図 2は本発明の一実施の形態による無線通信シ ステムのそれそれ無線基地局、 端末局、 の構成の一例を示すブロック図であり、 図 3は本発明の無線基地局における送信スロッ卜の信号フォーマツトの一例を示 - す図である。 A radio communication system, a radio base station, and a terminal station according to an embodiment of the present invention will be described with reference to the drawings. 1 and 2 are block diagrams each showing an example of the configuration of a wireless base station and a terminal station of a wireless communication system according to an embodiment of the present invention. An example of the slot signal format is shown. -It is a figure.
図 1の無線基地局は、 異なる方向に指向性を有する複数のアンテナ素子 (#1〜 #N)101〜: 103と、 デュプレクサ 104〜106と、 送信機 (Tx)107〜109と、 受信機 (Rx)110~112と、 受信ビーム制御回路 113と、 復調器 114と、 ビーム番号検出 器 115と、 変調器 116と、 パイロットシンボル発生器 117と、 ビーム切替回路 118から構成される。  The radio base station in FIG. 1 includes a plurality of antenna elements (# 1 to #N) 101 to 103 having directivity in different directions, a duplexer 104 to 106, a transmitter (Tx) 107 to 109, and a receiver. (Rx) 110 to 112, a reception beam control circuit 113, a demodulator 114, a beam number detector 115, a modulator 116, a pilot symbol generator 117, and a beam switching circuit 118.
図 2の端末局は、 アンテナ素子 141と、 デュプレクサ 142と、 受信機 (Rx)143 と、 送信機 (Tx)144と、 各ビーム SIR推定部 145と、 ビーム選択回路 146と変 調器 147から構成される。  The terminal station in FIG. 2 includes an antenna element 141, a duplexer 142, a receiver (Rx) 143, a transmitter (Tx) 144, each beam SIR estimator 145, a beam selection circuit 146, and a modulator 147. Be composed.
本発明の実施の形態に係る無線通信システムの動作を説明する。 図 2に示す端 末局では、 アンテナ 141で受信した信号はデュプレクサ 142を介して受信機 (Rx)143に入力される。 受信機 143は、 : RF(Radio Frequency)帯の受信信号をべ —スバンドのディジタル信号に変換する。 各ビーム SIR推定部 145では、 後で 説明する図 3のように各スロットの先頭に多重化されて挿入されている各ビーム のパイロットシンボル (既知信号)を検出し、 それそれの所望信号電力対干渉信号 電力比 (SIR: Signal-to-Interference Ratio)を推定する。  An operation of the wireless communication system according to the embodiment of the present invention will be described. In the terminal station shown in FIG. 2, a signal received by an antenna 141 is input to a receiver (Rx) 143 via a duplexer 142. The receiver 143 converts: a received signal in an RF (Radio Frequency) band into a baseband digital signal. Each beam SIR estimator 145 detects a pilot symbol (known signal) of each beam multiplexed and inserted at the head of each slot as shown in FIG. 3 described later, and calculates a desired signal power for each beam. Estimate the interference signal power ratio (SIR: Signal-to-Interference Ratio).
各ビーム SIR推定部 145の具体的な構成の一例としては、 図 4に示すような 構成が挙げられ、 ノ Wロットシンボル発生器 151、 相関器 (1〜N)152〜: 154、 夕 ィミング検出器 (1〜N)155〜157、 SIR演算器 (1〜N)158〜: 160から成る。  As an example of a specific configuration of each beam SIR estimating section 145, a configuration as shown in FIG. 4 is cited. (1 to N) 155 to 157, SIR calculator (1 to N) 158 to: 160.
パイロットシンボル発生器 151では、 無線基地局において送信スロヅ トに揷 入したものと同じ各ビームのパイロットシンボルを発生する。 相関器 152〜: 154 において、 これらパイロヅトシンボルと受信機 143からの出力信号との相関演 算を施し、 所望信号成分を抽出する。 その後、 タイミング検出器 155〜: 157にお いて、 受信信号に含まれるパイロットシンボルとのタイミングが最も一致するサ ンプル、 すなわち最も SIRが改善されているサンプルのタイミングを検出した 後に、 検出したタイミングのサンプルを用いて、 SIR演算器 158〜 160において 各ビームの SIRを導出する。 これら各ビームの SIR値は後段のビーム選択回路 146に入力される。  Pilot symbol generator 151 generates the same pilot symbol for each beam as that inserted into the transmission slot in the radio base station. In the correlators 152 to 154, a correlation operation is performed between these pilot symbols and the output signal from the receiver 143 to extract a desired signal component. After that, the timing detectors 155 to 157 detect the sample whose timing coincides with the pilot symbol included in the received signal, that is, the timing of the sample whose SIR is most improved, and then determine the timing of the detected timing. Using the samples, SIR calculators 158 to 160 derive the SIR of each beam. The SIR value of each of these beams is input to the subsequent beam selection circuit 146.
なお、 SIR演算器 158〜160における演算においては、 複数のサンプルを用い た平均化処理を施すことで、 精度の良い値を推定することが可能である。 It should be noted that the SIR calculators 158 to 160 use multiple samples By performing the averaging process, it is possible to estimate an accurate value.
ビーム選択回路 146においては、 最も SIRが高いビームを選択する。 これを 上り回線において無線基地局に報知するのであるが、 その手順は、 送信する情報 シンボルに選択したビーム番号の情報を挿入し、 変調器 147にて変調処理を施 した後、 送信機 (Tx)144にて RF帯の帯域信号に変換され、 デュプレクサ 142を 介して、 アンテナ 141から放射される。  The beam selection circuit 146 selects a beam having the highest SIR. This is reported to the radio base station on the uplink. The procedure is to insert the information of the selected beam number into the information symbol to be transmitted, perform modulation processing in the modulator 147, and then transmit the signal to the transmitter (Tx The signal is converted into an RF band signal at) 144 and radiated from the antenna 141 via the duplexer 142.
このように、 端末局からフィードバックする情報はビーム番号のみでよいため、 上り回線の伝送効率にほとんど影響を与えない。 たとえば、 8つのビームを使用 する際には、 制御情報としては 3ビットあればよい。 また、 ビーム番号を報知 する形式であるので無線基地局においてどのような形状のビームを使用しても端 末局においてはそれらを考慮する必要はなく、 システムの拡張性に優れている。 なお、 無線基地局から送信される音声などの各種情報データを含む信号成分につ いては、 復調器などにより検出されるのであるが、 図 2の構成例においては説明 を簡単にしてこの発明の特徴をより分かり易くするために当該部分を省略してい る。  In this way, the information fed back from the terminal station need only be the beam number, and thus has little effect on the transmission efficiency of the uplink. For example, when using eight beams, only three bits are required as control information. In addition, since the beam number is broadcast, no matter what shape the beam is used in the radio base station, it is not necessary for the terminal station to consider them, and the system expandability is excellent. A signal component including various information data such as voices transmitted from the radio base station is detected by a demodulator or the like. However, in the configuration example of FIG. This part has been omitted to make the features easier to understand.
一方、 図 1の無線基地局では、 端末局から送信された変調信号をそれそれ異な る方向の指向性を有する Ν個のアンテナ素子 101〜: 103で受信し、 それをデュ プレクサ 104〜106を介して、 受信機 (Rx)110〜; 112において検波し、 RF帯の信 号をべ一スバンドのディジタル信号に変換する。  On the other hand, in the radio base station of FIG. 1, the modulated signal transmitted from the terminal station is received by ア ン テ ナ antenna elements 101 to 103 having directivities in different directions, and is received by the duplexers 104 to 106. Via the receivers (Rx) 110 to 112 to convert the RF band signal into a base band digital signal.
アンテナ素子群 101〜103はそれそれが異なる指向性を有するものであり、 無 線基地局の通信範囲に応じて設定されるものである。 たとえば、 全周 360度を 8 本のアンテナ素子でカバ一する場合には、 各アンテナ素子のビーム幅は 45度程 度として、 均等に配置すればよい。  The antenna element groups 101 to 103 have different directivities, and are set according to the communication range of the radio base station. For example, when 360 degrees around the entire circumference are covered by eight antenna elements, the beam width of each antenna element may be set to about 45 degrees and arranged evenly.
受信ビーム制御回路 113では、 各アンテナ素子の受信信号の振幅、 位相を調 整して合成し、 出力信号を得る。 このとき、 受信ビーム制御回路 113の制御手 段では既存の各種アルゴリズムが利用され、 例えば選択合成や最大比合成などの ダイバ一シチ合成手法や干渉信号に対してヌルを形成するァダプティプアレーア ンテナの各種制御アルゴリズムが挙げられる。  The reception beam control circuit 113 adjusts the amplitude and phase of the reception signal of each antenna element and combines them to obtain an output signal. At this time, the control means of the reception beam control circuit 113 uses various existing algorithms, for example, diversity combining techniques such as selective combining and maximum ratio combining, and an adaptive array that forms nulls for interference signals. Various control algorithms of the antenna are included.
アレー合成後の出力信号は復調器 114により復調され、 ビーム番号検出器 115において、 受信データに含まれる選択ビーム番号の情報を検出する。 なお、 説明を簡単にしてこの発明の特徴をより分かり易くするため図 1においては、 復 調器 114から得られる受信デ一夕から情報シンボルを判定する処理については 省略してある。 The output signal after the array synthesis is demodulated by the demodulator 114, and the beam number detector At 115, the information of the selected beam number included in the received data is detected. In FIG. 1, the process of determining information symbols from the received data obtained from demodulator 114 is omitted in FIG. 1 to simplify the description and to make the features of the present invention easier to understand.
送信の動作について説明する。 パイロットシンボル発生器 117において指定 された長さのパイロットシンボルを、 形成するビームの数だけ発生させ、 変調器 116にて変調処理を施した情報シンボルとビーム番号検出器 115にて検出され たビーム番号情報と共に、 ビーム切替回路 118に入力する。  The transmission operation will be described. Pilot symbol generator 117 generates pilot symbols of the specified length by the number of beams to be formed, and modulates information symbols by modulator 116 and beam numbers detected by beam number detector 115 The information is input to the beam switching circuit 118 together with the information.
ビーム切替回路 118では、 図 3に示されるようなフォーマツトの送信スロヅ トを作成する。 すなわち、 ビーム番号検出器 115にて検出されたビーム番号に 対応するビーム(図 3は Beam2が選択された場合の例)のパイロットシンボルの 後方に情報シンボルを付加する。 他のビームについては、 何も付加しないか全て ゼロ値のようなヌルシンボルを揷入する。 これら各ビームの送信スロヅ ト(ここ では N個)を同時に送信する多重化を行うことで、 スロット内におけるパイロヅ トシンボルの比率を低減し、 伝送効率の低下を防止することができる。  The beam switching circuit 118 creates a format transmission slot as shown in FIG. That is, an information symbol is added to the back of the pilot symbol of the beam corresponding to the beam number detected by the beam number detector 115 (FIG. 3 shows an example when Beam2 is selected). For other beams, either add nothing or insert a null symbol such as an all zero value. By performing multiplexing for simultaneously transmitting the transmission slots (N in this case) of these beams, it is possible to reduce the ratio of pilot symbols in the slot and prevent a reduction in transmission efficiency.
本発明の実施の形態においては、 各ビームのパイロットシンボルを同一時間に 多重化して送信する構成であるので、 端末局における SIR推定の精度を考慮す ると、 各パイロットシンボルの相関特性はできるだけ小さいことが望ましく、 各 パイ.ロットシンボルを直交するように設定する。  In the embodiment of the present invention, since the pilot symbols of each beam are multiplexed and transmitted at the same time, the correlation characteristic of each pilot symbol is as small as possible in consideration of the accuracy of SIR estimation at the terminal station. It is desirable to set each pilot symbol to be orthogonal.
たとえば、 CDMA(Code Division Multiple Access:符号分割多元接続)通信方 式においては、 拡散符号によりユーザの識別を行うことで同一時間での通信を可 能にするのであるが、 これを拡張して、 各ビームのパイロットシンボルにそれそ れ直交する拡散符号を割り当てて拡散処理を施すことで、 本発明を CDMA方式 に適用可能となり、 効率の良い伝送方式が実現できる。  For example, in the CDMA (Code Division Multiple Access) communication system, communication at the same time is enabled by identifying users by using spreading codes. By allocating orthogonal spreading codes to the pilot symbols of each beam and performing spreading processing, the present invention can be applied to the CDMA system, and an efficient transmission system can be realized.
その後、 送信機 (Tx)107〜 109によって、 RF帯の帯域信号に変換され、 デュ プレクサ 104〜106を介してアンテナ素子 101~103により放射される。  Then, the signals are converted into RF band signals by transmitters (Tx) 107 to 109 and radiated by antenna elements 101 to 103 via duplexers 104 to 106.
このように、 無線基地局において複数のビ一ムを形成し、 おのおのから互いに 直交する信号を多重化して送信し、 端末局において最も受信状態の良いビームを 選択して報知することで、 上り回線と下り回線で利用する周波数が異なる無線通 信システムにおいても、 情報伝送効率を保持し、 伝搬路特性の変動に追従するこ とが可能となる。 In this way, the radio base station forms a plurality of beams, multiplexes and transmits signals orthogonal to each other from each, and selects and broadcasts the beam having the best reception state at the terminal station. Wireless communication using different frequencies for downlink and In a communication system, it is possible to maintain the information transmission efficiency and follow the fluctuation of the propagation path characteristics.
また、 図 5に示すように無線基地局ではアンテナ素子 101〜 103からなるァレ 一アンテナ 10a、 10b—を複数個設置し、 それそれを伝搬路特性が互いに無相 関になる程度の間隔として、 それそれのアレーアンテナにおいて上記の制御を施 すことで、 ダイバ一シチ効果を得ることも可能である。 そしてこれらの複数の異 なる指向方向を有するビームを形成するァレ一アンテナ 10a、 101)· · ·それそれ で送信に用いるビームを選択し、 送信するようにしてもよいし、 あるいは全体 (全ビームの中)で 1つの最適なビーム(S I Rが最も高い)を選択し、 送信するよ うにしてもよい。 なお、 図 1の 104〜: 118からなる制御部分は、 各アレーアンテ ナに個々に設けても、 あるいは共通に 1組設けて切り換えて接続するようにして もよい。  Further, as shown in FIG. 5, in the radio base station, a plurality of array antennas 10a and 10b-- consisting of antenna elements 101 to 103 are installed, and the intervals are set so that the propagation path characteristics are unrelated to each other. By performing the above control on each array antenna, it is possible to obtain a diversity effect. Array antennas 10a and 101 that form beams having a plurality of different directional directions may be used to select and transmit a beam to be used for transmission, or may be configured to transmit the whole (all) One of the optimal beams (with the highest SIR) may be selected and transmitted. The control section consisting of 104 to 118 in FIG. 1 may be provided individually for each array antenna, or one set may be provided in common and switched for connection.
実施の形態 2 .  Embodiment 2
次に、 本発明の他の実施の形態による無線基地局について説明する。 図 6は本 発明の他の実施の形態による無線基地局の構成を示すプロック図である。 図 6の 無線基地局は各ビームをディジ夕ル信号処理にて形成するもので、 無指向性を有 する複数のアンテナ素子 (#1〜#N)121〜: 123と、 デュプレクサ 124〜: 126と、 送 信機 (Tx)127〜129と、 受信機 (Rx) 130〜: 132と、 受信ビーム制御回路 133と、 復調器 134と、 ビーム番号検出器 135と、 変調器 136と、 パイロットシンボル 発生器 137と、 ビーム切替回路 138と、 ディジ夕ル信号処理にて複数のビーム を形成するビーム形成回路 139から成る。  Next, a radio base station according to another embodiment of the present invention will be described. FIG. 6 is a block diagram showing a configuration of a radio base station according to another embodiment of the present invention. The radio base station shown in FIG. 6 forms each beam by digital signal processing, and has a plurality of omnidirectional antenna elements (# 1 to #N) 121 to 123 and duplexers 124 to 126. Transmitter (Tx) 127 to 129, receiver (Rx) 130 to: 132, receive beam control circuit 133, demodulator 134, beam number detector 135, modulator 136, pilot symbol It comprises a generator 137, a beam switching circuit 138, and a beam forming circuit 139 for forming a plurality of beams by digital signal processing.
具体的動作について説明すると、 アンテナ素子 (#1~#N)121〜123とビーム形 成回路 139以外はそれそれ図 1に示された対応する部分と基本的には同じであ るので説明を省略する。  Explaining the specific operation, the elements other than the antenna elements (# 1 to #N) 121 to 123 and the beam forming circuit 139 are basically the same as the corresponding parts shown in FIG. Omitted.
任意の N個から成るアンテナ素子 121〜123はそれぞれ特定の方向に指向性 を有さない、 いわゆる無指向性のアンテナ素子から構成される。  Arbitrary N antenna elements 121 to 123 are each formed of a so-called non-directional antenna element having no directivity in a specific direction.
その後の動作は、 図 1の無線基地局と同様の処理がなされるが、 ビーム切替回 路 138にて各ビームの送信スロヅトを作成した後、 ビーム形成回路 139にてデ ィジ夕ル信号処理によって複数の指向方向を有するビームが形成され、 アンテナ 素子 121〜: 123にて送信される。 Subsequent operations are the same as those of the wireless base station in FIG. 1, except that the beam switching circuit 138 creates a transmission slot for each beam, and the beam forming circuit 139 performs digit signal processing. Form a beam with multiple pointing directions Element 121-: Transmitted by 123.
図 7にビーム形成回路 139の具体的な構成の一例を示す。 図 7においてビ一 ム形成回路は、 分配器 (1〜L)171〜: 173、 重み係数を与える重み係数付加器 174 および合成器 (1~N)175〜177からなる。 図 7は形成するビーム数が L個の例を 示しているが、 ビーム数 Lはアンテナ素子数 Nと同じである必要はない。 図 6 のビーム切替回路 138にて発生した各ビームの送信スロヅトは、 分配器 171〜 173によって、 N分配される。  FIG. 7 shows an example of a specific configuration of the beam forming circuit 139. In FIG. 7, the beam forming circuit includes distributors (1 to L) 171 to 173, a weighting coefficient adder 174 for assigning weighting coefficients, and combiners (1 to N) 175 to 177. FIG. 7 shows an example in which the number of beams to be formed is L, but the number of beams L does not need to be the same as the number N of antenna elements. The transmission slot of each beam generated by the beam switching circuit 138 in FIG. 6 is distributed to N by the distributors 171 to 173.
分配された各スロットは、 複素数の重み係数 Wii(i=l,...,N; j=l,...,L)r74により 振幅、 位相成分を調整された後、 合成器 (1〜Ν)175〜Γ77により合成され、 多重 化される。  Each of the distributed slots has its amplitude and phase components adjusted by complex weighting factors Wii (i = l, ..., N; j = l, ..., L) r74, and then the combiners (1 to Ν) Combined by 175 to Γ77 and multiplexed.
すなわち、 wij〜wNjはビーム jに対するアレーアンテナの重み係数に対応し、 このような重み係数を L組用意することにより、 ディジ夕ル段でのビーム形成 を行う。 That, wij~w N j corresponds to the weighting factor of the array antenna for beam j, by such a weighting coefficient L sets prepared performs beamforming in daisy evening Le stage.
また、 これらの処理は図 7のようなハ一ドウヱァによる実現だけでなく、 ソフ トウエアによっても実現可能である。 従って、 DFT(Discrete Fourier  These processes can be realized not only by a hardware as shown in FIG. 7 but also by software. Therefore, DFT (Discrete Fourier
Transform)や FFT(Fast Fourier Transform)による直交マルチビームを使用す ることも容易となる。 Transform) and FFT (Fast Fourier Transform) can be used easily.
このようにディジ夕ル信号処理によって、 各ビームを形成すなわちビーム形状 の設定を行うことで、 無線基地局の設置環境に応じて、 また環境変動に応じて、 自由にビームの再形成が可能となる。  In this way, by forming each beam by the digital signal processing, that is, setting the beam shape, it is possible to freely re-form the beam according to the installation environment of the wireless base station and environmental fluctuations. Become.
実施の形態 3 .  Embodiment 3.
CDMA通信方式における本発明による端末局の各ビーム SIR推定部 (図 2の 145参照)の構成の一例を図 8に示す。 図 8の各ビーム SIR推定部 145aは、 拡 散符号発生器 181と、 MF(Matched Filter:整合フィル夕) (1〜N)182〜: 184と、 各パスタイミング検出器 (1〜N)185〜: 187 と、 RAKE(1〜N)合成器 188〜190 と、 SIR演算器 (1〜N) 191〜: 193から成る。  FIG. 8 shows an example of the configuration of each beam SIR estimator (see 145 in FIG. 2) of the terminal station according to the present invention in the CDMA communication system. Each beam SIR estimator 145a in FIG. 8 includes a spreading code generator 181, a MF (Matched Filter) (1-N) 182-: 184, and a path timing detector (1-N) 185. ~: 187, RAKE (1-N) combiners 188-190, and SIR calculators (1-N) 191-: 193.
拡散符号発生器 181と、 MF(Matched Filter:整合フィル夕) 182〜: 184と、 各 パスタイミング検出器 185〜187と、 SIR演算器 191〜193は、 図 4に示すパイ 口ットシンボル発生器 151、 相関器 152〜154、 夕イミング検出器 155〜: 157、 SIR演算部 158〜: 160と類似した動作を実行する。 The spreading code generator 181, MF (Matched Filter) 182-: 184, each path timing detector 185-187, and the SIR calculators 191-193 are composed of the pilot symbol generator 151 shown in FIG. , Correlator 152-154, Evening detector 155-: 157, SIR calculation unit 158-: Performs an operation similar to 160.
CDMA通信方式においては、 情報シンボルに比べて高速なデータレートの拡 散符号で広帯域の信号に拡散して伝送する。 受信機側では、 送信側で用いた拡散 符号と同じ拡散符号を用いて相関検出を行う (逆拡散処理という)ことにより元の 情報シンボルを再生する。 このとき、 各ユーザに割り当てる拡散符号の相互相関 特性が小さいほど、 逆拡散処理における干渉抑圧効果が大きい。  In the CDMA communication system, a spread code with a higher data rate than information symbols is spread over a wideband signal and transmitted. On the receiver side, the original information symbols are reproduced by performing correlation detection using the same spreading code as that used on the transmitting side (despreading process). At this time, the smaller the cross-correlation characteristic of the spreading code assigned to each user, the greater the interference suppression effect in the despreading process.
本発明の実施の形態に係る無線通信システムでは、· この特性を端末局における ビーム選択処理に利用する。 以下に具体的に説明する。  In the wireless communication system according to the embodiment of the present invention, this characteristic is used for beam selection processing in the terminal station. This will be specifically described below.
実施の形態 1でも述べたように、 各ビーム毎に直交する拡散符号を使用してパ イロットシンボルを拡散した送信スロットを端末局で受信したとき、 図 8に示す 拡散符号発生器 181は無線基地局において使用したものと同じ拡散符号を生成 し、 MF182〜: 184に入力する。 MF182〜: 184において、 受信信号と拡散符号と の相関検出処理 (逆拡散処理)を施した後、 各パスタイミング検出器 185〜: 187に おいて、 様々な伝搬路を通って到来した所望信号の各パスの遅延タイミングを検 出する。 RAKE合成器 188〜190においては、 各パスタイミングに基づき、 各 パス成分を最大比合成する RAKE合成を施し、 その合成出力を使用して SIR演 算器 191〜193において、 各ビームの SIR値を推定する。  As described in Embodiment 1, when a terminal station receives a transmission slot in which a pilot symbol is spread using an orthogonal spreading code for each beam, the spreading code generator 181 shown in FIG. Generate the same spreading code as used in the station and input it to MF182 ~: 184. After performing correlation detection processing (despreading processing) between the received signal and the spreading code in MF182 ~: 184, the desired signal arriving through various propagation paths in each path timing detector 185 ~: 187 The delay timing of each path is detected. The RAKE combiners 188 to 190 perform RAKE combining for maximal ratio combining of each path component based on each path timing, and use the combined output to calculate the SIR value of each beam in the SIR calculators 191 to 193. presume.
このようにビーム毎に直交する拡散符号を割り当てることで、 相関検出時に高 い干渉抑圧効果が得られ、 さらに RAKE合成後の信号を用いて各ビームの SIR を推定することで、 より正確で最も効率のよいビームの選択が可能となる。  By assigning orthogonal spreading codes to each beam in this way, a high interference suppression effect can be obtained at the time of correlation detection, and further accurate and most accurate by estimating the SIR of each beam using the RAKE-combined signal. Efficient selection of a beam becomes possible.
実施の形態 4 .  Embodiment 4.
CDMA通信方式における本発明の別の実施の形態における端末局の各ビーム SIR推定部の構成の一例を図 9に示す。 図 9の各ビーム SIR推定部 145bは、 拡 散符号発生器 201と、 MF(Matched Filter:整合フィル夕) (1〜N)202〜204と、 最大パスタイミング検出器 (1〜N)205~207と、 SIR演算器 (1〜N)208~210か ら成る。  FIG. 9 shows an example of the configuration of each beam SIR estimator of the terminal station in another embodiment of the present invention in the CDMA communication system. Each beam SIR estimator 145b in FIG. 9 includes a spreading code generator 201, MF (Matched Filter) (1 to N) 202 to 204, and a maximum path timing detector (1 to N) 205 to 207 and SIR calculators (1 to N) 208 to 210.
拡散符号発生器 201と、 MF202〜204と、 SIR演算器 208〜210は、 実施の 形態 3における拡散符号発生器 181と、 MF182〜: 184と、 SIR演算部 191〜: 193 と同じ動作であるので説明を省略する。 最大パスタイミング検出器 205〜207において、 様々な伝搬路を通って到来し た所望信号の各パスの中で、 最も受信レベルが高いパスのタイミングを検出する。 その後、 検出した最大パスのサンプルタイミングに基づき、 SIR演算器 208〜 210において、 各ビームの SIR値を推定する。 The spreading code generator 201, the MFs 202 to 204, and the SIR calculators 208 to 210 perform the same operations as the spreading code generator 181 in the third embodiment, the MFs 182 to 184, and the SIR calculators 191 to 193. Therefore, the description is omitted. Maximum path timing detectors 205 to 207 detect the timing of the path having the highest reception level among the paths of the desired signal arriving through various propagation paths. Then, based on the detected sample timing of the maximum path, the SIR calculators 208 to 210 estimate the SIR value of each beam.
このように最大受信レベルのパスのみを検出する構成とすることで、 タイミン グ検出器を簡易化でき、 RAKE合成器を削減できるため、 端末局の装置構成を 簡略化できる。  By adopting a configuration in which only the path having the maximum reception level is detected, the timing detector can be simplified and the number of RAKE combiners can be reduced, so that the device configuration of the terminal station can be simplified.
実施の形態 5 .  Embodiment 5
上記の実施の形態においては、 端末局にて SIRが最も良いビームを選択する ようにしていたが、 伝搬路特性によっては、 離れた角度からマルチパスが到来す るなどして、 SIRの高いビームが複数存在する可能性がある。 このような場合 のビーム選択法について説明する。  In the above embodiment, the terminal station selects the beam with the best SIR. However, depending on the propagation path characteristics, a beam with a high SIR may occur due to multipath arriving from a distant angle. May exist multiple times. The beam selection method in such a case will be described.
端末局においては、 予め閾値として目標 SIRを設定する。 無線基地局からの 送信スロヅト内のパイ口ットシンボルを用いて各ビームの SIRを推定し、 先の 目標 SIRよりも大きな値を有するビームを複数選択する。 これら選択した各ビ —ム番号を上り回線によって無線基地局に報知し、 無線基地局においてはそれら 複数のビームを利用して情報シンボルを送信する。  The terminal station sets the target SIR as a threshold value in advance. The SIR of each beam is estimated using the pilot symbol in the transmission slot from the radio base station, and a plurality of beams having a value larger than the target SIR are selected. Each of these selected beam numbers is reported to the radio base station via the uplink, and the radio base station transmits information symbols using the plurality of beams.
図 1 0は本実施の形態における無線基地局における送信スロット構成を示す。 これら N個の各ビームの送信スロットを同時に送信する多重化を行う。 図 1 0は N個のビームの中で、 J個のビームが端末局にて選択された場合の例であるが、 選択されたビームの送信スロットそれそれに情報シンボルを付加し、 多重化する ことで、 伝搬路特性の良い状態のビームを効率よく利用することが可能となる。 実施の形態 6 .  FIG. 10 shows a transmission slot configuration in a radio base station according to the present embodiment. Multiplexing is performed to simultaneously transmit the transmission slots of these N beams. Fig. 10 shows an example in which J out of N beams are selected by the terminal station.The transmission slot of the selected beam and an information symbol must be added and multiplexed. Thus, it is possible to efficiently use a beam having a good propagation path characteristic. Embodiment 6
本実施の形態に係る無線基地局における送信ビームの形成法について説明する。 図 1 1は水平面内に等間隔でビームを形成した場合の例を示す。 選択されたビ一 ム 221は端末局にて選択されたビームであり、 無線基地局において次スロット にて情報シンボルを送信するのに使用する。 隣接ビーム 222、 223はそれに隣接 したビームである。  A method of forming a transmission beam in the radio base station according to the present embodiment will be described. FIG. 11 shows an example in which beams are formed at equal intervals in a horizontal plane. The selected beam 221 is a beam selected by the terminal station, and is used by the radio base station to transmit information symbols in the next slot. The adjacent beams 222 and 223 are beams adjacent thereto.
端末局から何らかの制御情報を無線基地局にフィードバックするシステムにお いては、 その情報量によって、 上り回線の情報伝送効率が影響を受ける。 そのた め、 なるべく少ない制御情報であることが望ましい。 本実施の形態はそれを実現 する方法を示す。 A system that feeds back some control information from a terminal station to a radio base station. In addition, the amount of information affects uplink information transmission efficiency. Therefore, it is desirable that the control information is as small as possible. This embodiment shows a method for realizing it.
具体的動作について説明する。 通信の初期状態で、 全ビームを用いてパイロッ トシンボルを送信し、 端末局で選択されたビーム番号情報が、 上り回線により無 線基地局に報知されたとする。 先の実施の形態で説明したように無線基地局では、 選択されたビーム番号を検出し、 送信スロットを作成する。 このとき、 全ビーム を用いて送信スロットを作成するのはなく、 選択されたビーム 221および、 そ れに隣り合う隣接ビーム 222、 223のみを用いてスロットを作成する。 そして逐 次選択するビームを更新する。  A specific operation will be described. In the initial state of communication, it is assumed that a pilot symbol is transmitted using all beams, and that the beam number information selected by the terminal station is broadcast to the radio base station via the uplink. As described in the previous embodiment, the radio base station detects the selected beam number and creates a transmission slot. At this time, a transmission slot is not created using all beams, but a slot is created using only the selected beam 221 and the adjacent beams 222 and 223 adjacent thereto. Then, the beam to be selected is updated successively.
こうすることで、 無線基地局における処理量を低減できるほか、 端末局でのビ 一ム選択処理および上り回線に挿入する制御情報シンボル数も削減が可能となる。 なお、 図 1 1は水平面内の例であるが、 垂直面内にもビームを形成する場合は 選択ビーム 221の周囲の隣接ビームを利用するなどして、 各無線基地局のビー ム構成に対応できる。  By doing so, the amount of processing at the radio base station can be reduced, and the beam selection processing at the terminal station and the number of control information symbols to be inserted into the uplink can be reduced. Note that Fig. 11 shows an example in the horizontal plane, but in the case of forming a beam also in the vertical plane, the beam configuration of each wireless base station is supported by using adjacent beams around the selected beam 221 it can.
また、 定期的に全ビームを使用して選択ビームを決定することで、 より精度良 く伝搬路特性の変化に追従することが可能となる。  Also, by determining the selected beam periodically using all the beams, it becomes possible to more accurately follow the change in the propagation path characteristics.
実施の形態 7 .  Embodiment 7
本実施の形態に係る無線基地局における別の送信ビームの形成法について説明 する。 図 1 2は水平面内に等間隔でビームを形成した場合の例を示す。 選択ビー ム群 225は初期状態で端末局にて選択されたビームの組である。  A method for forming another transmission beam in the radio base station according to the present embodiment will be described. FIG. 12 shows an example in which beams are formed at equal intervals in a horizontal plane. The selected beam group 225 is a set of beams selected by the terminal station in the initial state.
通信の初期状態において、 無線基地局では実施の形態 1で説明したように全ビ ームのパイロヅトシンボルを送信する。 端末局では各ビームの SIRを推定し、 SIRの良好な角度範囲から選択ビーム群 255を指定する。 このとき、 選択ビー ム群 255に含まれるビーム数は予め指定するものとする。  In the initial state of communication, the wireless base station transmits pilot symbols of all beams as described in the first embodiment. The terminal station estimates the SIR of each beam, and designates the selected beam group 255 from a favorable angle range of the SIR. At this time, the number of beams included in the selected beam group 255 is specified in advance.
ビーム群の範囲設定については、 1ビームずっスライ ドさせる方法や連続的に 設定する方法などが挙げられる。  As for the range setting of the beam group, there are a method of sliding one beam completely and a method of setting continuously.
上り回線によりこの選択ビーム群の情報を報知された無線基地局では選択ビー ム群 225内のビームを使用してパイ口.ットシンボルを送信し、 順次ビーム選択 処理を更新していく。 The radio base station notified of this selected beam group information by the uplink transmits the pilot symbol using the beam in the selected beam group 225, and sequentially selects the beam. Update the process.
また、 定期的に上記のような使用するビーム群の再設定を行うことで、 伝搬路 特性の変化に追従することが可能となる。  In addition, by periodically resetting the beam group to be used as described above, it becomes possible to follow a change in propagation path characteristics.
実施の形態 8 .  Embodiment 8
本実施の形態に係る無線基地局における別の送信ビームの形成法について説明 する。 図 1 3は水平面内に等間隔でビームを形成した場合の例を示す。 図 1 3に おいて aは初期状態、 bは通信開始時のビーム群を示す。 選択ビーム群 230は 初期状態で端末局にて選択されたビームの組である。 選択ビーム群 230の設定 法は実施の形態 7にて説明したのと同様である。  A method for forming another transmission beam in the radio base station according to the present embodiment will be described. FIG. 13 shows an example in which beams are formed at equal intervals in a horizontal plane. In Fig. 13, a is the initial state, and b is the beam group at the start of communication. The selected beam group 230 is a set of beams initially selected by the terminal station. The method of setting the selected beam group 230 is the same as that described in the seventh embodiment.
無線基地局では、 端末局より報知された選択ビーム群 230の角度範囲に、 許 される最大の自由度を使用して、 ビームを密に再形成する。 これら再形成された ビーム群 231を利用して通信開始後は情報シンボルを送信する。  The radio base station densely reshapes the beam using the maximum allowed degree of freedom in the angular range of the selected beam group 230 broadcast from the terminal station. After the start of communication, the information symbols are transmitted using the reconstructed beam group 231.
このように SIRの良い角度範囲にビームを密に配置することで、 伝搬路特性 の変動により精度良く追従することができる。  By densely arranging the beams in the good SIR angle range in this way, it is possible to accurately follow the fluctuation of the propagation path characteristics.
また、 定期的に上記のような使用するビーム群の再設定を行うことで、 伝搬路 特性の変化に追従することが可能となる。 産業上の利用の可能性  Further, by periodically resetting the beam group to be used as described above, it becomes possible to follow a change in propagation path characteristics. Industrial potential
本発明の無線通信システムは、 環境変動にロバストすなわち対応可能でありな がら、 情報伝送効率を保持しつつ、 通信品質の改善を実現したものとして有用で あ o  The wireless communication system of the present invention is useful as a device that improves communication quality while maintaining information transmission efficiency while being robust, that is, capable of responding to environmental changes.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数の異なる指向方向を有するビームを形成する無線基地局と、 この無線 基地局と通信を行う複数の端末局からなる無線通信システムにおいて、 1. In a wireless communication system including a wireless base station that forms beams having a plurality of different directional directions and a plurality of terminal stations that communicate with the wireless base station,
刖 s3各 ¾未局が、  各 s3 each ¾
前記無線基地局の複数のビームから送信された下り回線の所望信号電力対干渉 信号電力の比をそれそれ推定する手段と、  Means for estimating the ratio of desired signal power to interference signal power of the downlink transmitted from the plurality of beams of the radio base station,
前記所望信号電力対干渉信号電力比から最適なビームを選択するビーム選択手 段と、  Beam selection means for selecting an optimal beam from the desired signal power to interference signal power ratio;
前記選択したビーム番号を前記端末局から前記無線基地局への上り回線を用い て報知する手段と、  Means for reporting the selected beam number using an uplink from the terminal station to the radio base station,
を備え、  With
前記無線基地局が、  The wireless base station,
前記端末局から報知された前記ビーム番号があれば該ビーム番号に対応するビ ームを用いて前記端末局に情報信号を送信する送信制御手段と、  Transmission control means for transmitting an information signal to the terminal station using a beam corresponding to the beam number if the beam number is broadcast from the terminal station;
を備えたことを特徴とする無線通信システム。  A wireless communication system comprising:
2 . 前記無線基地局が、 複数のビームを形成するための複数のアンテナ素子に より構成されるアレーアンテナと、 前記無線基地局が設置される環境に応じてそ のビーム形状を任意に設定するビーム形成手段と、 を備えたことを特徴とする請 求の範囲第 1項記載の無線通信システム。  2. The radio base station arbitrarily sets an array antenna composed of a plurality of antenna elements for forming a plurality of beams and the beam shape according to an environment in which the radio base station is installed. 2. The wireless communication system according to claim 1, further comprising: a beam forming unit.
3 . 前記無線基地局の送信制御手段が、 前記無線基地局より前記端末局に送信 される情報信号に、 無線基地局で形成する複数のビーム毎に異なる既知の信号を 多重して付加し、 前記端末局の所望信号電力対干渉信号電力比推定手段が、 前記 既知信号を検出し、 所望信号電力対干渉信号電力比を推定することを特徴とする 請求の範囲第 1項記載の無線通信システム。  3. The transmission control means of the radio base station multiplexes and adds a known signal different for each of a plurality of beams formed by the radio base station to an information signal transmitted from the radio base station to the terminal station, The wireless communication system according to claim 1, wherein the desired signal power to interference signal power ratio estimating means of the terminal station detects the known signal and estimates a desired signal power to interference signal power ratio. .
4 . 前記既知信号として互いに直交するデータシンボルを用いることを特徴と する請求の範囲第 1項記載の無線通信システム。  4. The wireless communication system according to claim 1, wherein mutually orthogonal data symbols are used as the known signal.
5 . 無線通信システムが C D MA通信方式の通信を行い、 前記無線基地局の送 信制御手段が、 前記既知信号を直交符号によりそれそれ拡散処理し、 各ビームの ための拡散処理された既知信号を多重化したものを前記端末局に送信される情報 信号に付加し、 前記端末局の所望信号電力対干渉信号電力比推定手段が、 前記拡 散処理された既知信号を検出し、 所望信号電力対干渉信号電力比を推定すること を特徴とする請求の範囲第 1項記載の無線通信システム。 5. The wireless communication system performs communication according to the CDMA communication method, and the transmission control means of the wireless base station spreads the known signal using orthogonal codes. A multiplexed known signal subjected to spread processing is added to an information signal to be transmitted to the terminal station, and the desired signal power to interference signal power ratio estimating means of the terminal station performs the spread processing on the known signal. 2. The wireless communication system according to claim 1, wherein a signal is detected, and a desired signal power to interference signal power ratio is estimated.
6 . 前記端末局の所望信号電力対干渉信号電力比推定手段が、 R A K E合成後 の前記既知信号を検出して所望信号電力対干渉信号電力比を推定することを特徴 とする請求の範囲第 1項記載の無線通信システム。  6. The desired signal power to interference signal power ratio estimating means of the terminal station detects the known signal after RAKE combining and estimates the desired signal power to interference signal power ratio. The wireless communication system according to claim 1.
7 . 前記端末局の所望信号電力対干渉信号電力比推定手段が、 前記端末局で受 信される所望信号群の中で最も受信電力の大きいパスに含まれる前記既知信号を 検出して所望信号電力対干渉信号電力比を推定することを特徴とする請求の範囲 第 1項記載の無線通信システム。  7. The desired signal power to interference signal power ratio estimating means of the terminal station detects the known signal included in the path having the highest received power in the desired signal group received by the terminal station and outputs the desired signal. 2. The wireless communication system according to claim 1, wherein a power-to-interference signal power ratio is estimated.
8 . 前記端末局のビーム選択手段が、 前記所望信号電力対干渉信号電力比が設 定した閾値より大きいビームをすベて選択し、 前記無線基地局の送信制御手段が これらのビームを用いて情報信号を送信することを特徴とする請求の範囲第 1項 記載の無線通信システム。  8. The beam selection means of the terminal station selects all beams whose desired signal power to interference signal power ratio is larger than the set threshold, and the transmission control means of the radio base station uses these beams. The wireless communication system according to claim 1, wherein the wireless communication system transmits an information signal.
9 . 前記端末局の所望信号電力対干渉信号電力比推定手段、 ビーム選択手段、 報知手段、 および前記無線基地局の送信制御手段において、 通信開始の初期状態 において、 全ビームを用いて前記ビーム番号を決定した後は、 前記ビーム番号に 対応するビームおよびそれに隣接するビームを用いて、 下り回線の前記所望信号 電力対干渉信号電力比を推定し、 逐次選択するビームを更新することを特徴とす る請求の範囲第 1項記載の無線通信システム。  9. The desired signal power to interference signal power ratio estimating means of the terminal station, the beam selecting means, the notifying means, and the transmission controlling means of the radio base station, wherein in the initial state of communication start, the beam number is determined using all beams. Is determined, the desired signal power to interference signal power ratio of the downlink is estimated using the beam corresponding to the beam number and the beam adjacent thereto, and the beam to be sequentially selected is updated. The wireless communication system according to claim 1, wherein:
1 0 . 前記端末局の所望信号電力対干渉信号電力比推定手段、 ビーム選択手段、 報知手段、 および前記無線基地局の送信制御手段において、 通信開始の初期状態 において、 前記端末局では全ビームを用いて下り回線の前記所望信号電力対干渉 信号電力比を推定し、 受信状態の良い角度範囲の情報を前記無線基地局への上り 回線を用いて報知し、 その後、 前記無線基地局においては選択された範囲に形成 された複数のビームを用いて、 下り回線の前記所望信号電力対干渉信号電力比を 推定し、 逐次選択するビームを更新することを特徴とする請求の範囲第 1項記載 の無線通信システム。 10. In the terminal station, the desired signal power to interference signal power ratio estimating means, the beam selecting means, the notifying means, and the transmission control means of the radio base station, in the initial state of communication start, Estimate the desired signal power to interference signal power ratio of the downlink by using, and broadcast the information of the good reception angle range using the uplink to the radio base station, and then select in the radio base station The plurality of beams formed in the specified range are used to estimate the ratio of the desired signal power to the interference signal power in the downlink, and the beam to be sequentially selected is updated. Wireless communication system.
1 1 . 定期的に全ビームを用いて下り回線の前記所望信号電力対干渉信号電力 比を推定し、 受信状態の良い角度範囲の情報を更新することを特徴とする請求の 範囲第 1 0項記載の無線通信システム。 11. The system according to claim 10, wherein the ratio of the desired signal power to the interference signal power in the downlink is periodically estimated using all beams, and information on an angle range in a good reception state is updated. A wireless communication system as described.
1 2 . 前記端末局より報知された角度範囲に基づき、 許容された自由度を最大 限利用して、 その範囲内に複数のビームを再形成することを特徴とする請求の範 囲第 1 0項記載の無線通信システム。  12. The method according to claim 10, wherein a plurality of beams are re-formed within the range based on the angle range notified from the terminal station by using an allowable degree of freedom to a maximum extent. The wireless communication system according to claim 1.
1 3 . 前記複数の異なる指向方向を有するビームを形成するアレーアンテナを、 伝搬路の相関特性が十分に無視できる程度の距離に複数個配置し、 それそれで送 信に用いるビームを選択し、 送信することを特徴とする請求の範囲第 1項記載の 無線通信システム。  13 3. A plurality of array antennas that form beams having a plurality of different directional directions are arranged at a distance such that the correlation characteristics of the propagation path can be ignored sufficiently, and a beam to be used for transmission is selected, and transmission is performed. 2. The wireless communication system according to claim 1, wherein:
PCT/JP2002/009704 2002-09-20 2002-09-20 Radio communication system WO2004028037A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/009704 WO2004028037A1 (en) 2002-09-20 2002-09-20 Radio communication system
JP2003136258A JP4107494B2 (en) 2002-09-20 2003-05-14 Wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/009704 WO2004028037A1 (en) 2002-09-20 2002-09-20 Radio communication system

Publications (1)

Publication Number Publication Date
WO2004028037A1 true WO2004028037A1 (en) 2004-04-01

Family

ID=32012236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009704 WO2004028037A1 (en) 2002-09-20 2002-09-20 Radio communication system

Country Status (1)

Country Link
WO (1) WO2004028037A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506656A (en) * 2005-08-22 2009-02-12 クゥアルコム・インコーポレイテッド Method and apparatus for providing antenna diversity in a wireless communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8787347B2 (en) 2005-08-24 2014-07-22 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
WO2016011634A1 (en) * 2014-07-24 2016-01-28 华为技术有限公司 Differential beam adjusting method, user equipment and base station
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9426012B2 (en) 2000-09-13 2016-08-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US10805038B2 (en) 2005-10-27 2020-10-13 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974375A (en) * 1995-09-06 1997-03-18 Toshiba Corp Radio communication system
JPH11252614A (en) * 1998-03-05 1999-09-17 Kokusai Electric Co Ltd Communication system, base station device and mobile station device
JP2001251233A (en) * 1999-12-27 2001-09-14 Toshiba Corp Wireless communications equipment using adaptive antenna
JP2002152108A (en) * 2000-11-09 2002-05-24 Ntt Docomo Inc Method and device for mobile communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974375A (en) * 1995-09-06 1997-03-18 Toshiba Corp Radio communication system
JPH11252614A (en) * 1998-03-05 1999-09-17 Kokusai Electric Co Ltd Communication system, base station device and mobile station device
JP2001251233A (en) * 1999-12-27 2001-09-14 Toshiba Corp Wireless communications equipment using adaptive antenna
JP2002152108A (en) * 2000-11-09 2002-05-24 Ntt Docomo Inc Method and device for mobile communication

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US11032035B2 (en) 2000-09-13 2021-06-08 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9426012B2 (en) 2000-09-13 2016-08-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US10849156B2 (en) 2004-07-21 2020-11-24 Qualcomm Incorporated Efficient signaling over access channel
US10517114B2 (en) 2004-07-21 2019-12-24 Qualcomm Incorporated Efficient signaling over access channel
US10237892B2 (en) 2004-07-21 2019-03-19 Qualcomm Incorporated Efficient signaling over access channel
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US11039468B2 (en) 2004-07-21 2021-06-15 Qualcomm Incorporated Efficient signaling over access channel
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9693339B2 (en) 2005-08-08 2017-06-27 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
JP2009506656A (en) * 2005-08-22 2009-02-12 クゥアルコム・インコーポレイテッド Method and apparatus for providing antenna diversity in a wireless communication system
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US9240877B2 (en) 2005-08-22 2016-01-19 Qualcomm Incorporated Segment sensitive scheduling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9860033B2 (en) 2005-08-22 2018-01-02 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
US9246659B2 (en) 2005-08-22 2016-01-26 Qualcomm Incorporated Segment sensitive scheduling
US8787347B2 (en) 2005-08-24 2014-07-22 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US10805038B2 (en) 2005-10-27 2020-10-13 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
WO2016011634A1 (en) * 2014-07-24 2016-01-28 华为技术有限公司 Differential beam adjusting method, user equipment and base station

Similar Documents

Publication Publication Date Title
JP4107494B2 (en) Wireless communication system
WO2004028037A1 (en) Radio communication system
US7340248B2 (en) Calibration apparatus
AU726702B2 (en) Radio communication apparatus and transmission power controlling method
EP1279234B1 (en) System and method for providing polarization matching on a cellular communication forward link
JP3464606B2 (en) Wireless communication device and wireless communication method
JP4131702B2 (en) Reduce interference using a simple antenna array
US9160427B1 (en) Transmit diversity with formed beams in a wireless communications system using a common pilot channel
US7831232B2 (en) Multiple input multiple output communication apparatus
JP2004511119A (en) Beam forming method
JP2003264501A (en) Adaptive antenna base station device
US7020445B1 (en) Wireless base station system, and wireless transmission method
JP2005525062A (en) Apparatus and method for forming forward transmission beam of smart antenna in mobile communication system
JP2005518760A (en) Signal selection system and method
WO2002054850A2 (en) Positioning method and radio system
JPH08274687A (en) Cdma radio transmission equipment and cdma radio transmission system
JP3554207B2 (en) Wireless communication device and wireless communication method
US7342912B1 (en) Selection of user-specific transmission parameters for optimization of transmit performance in wireless communications using a common pilot channel
KR20010032182A (en) Base station device and transmission method
EP1608084A2 (en) Method and apparatus for performing adaptive control of beam forming
JP2000059278A (en) Radio communication equipment
KR100435795B1 (en) Radio base station device and radio communication method
JP2001127699A (en) Transmission beam controller and control method
JP2002077010A (en) Base station unit and radio reception method
US6317611B1 (en) Communication device with adaptive antenna

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP