WO2004027883A1 - Method for producing led bodies with the aid of a cross-sectional restriction - Google Patents

Method for producing led bodies with the aid of a cross-sectional restriction Download PDF

Info

Publication number
WO2004027883A1
WO2004027883A1 PCT/DE2003/003060 DE0303060W WO2004027883A1 WO 2004027883 A1 WO2004027883 A1 WO 2004027883A1 DE 0303060 W DE0303060 W DE 0303060W WO 2004027883 A1 WO2004027883 A1 WO 2004027883A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
led
chip
cross
distance
Prior art date
Application number
PCT/DE2003/003060
Other languages
German (de)
French (fr)
Inventor
Thomas Manth
Original Assignee
G.L.I. Global Light Industries Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G.L.I. Global Light Industries Gmbh filed Critical G.L.I. Global Light Industries Gmbh
Priority to AU2003269827A priority Critical patent/AU2003269827A1/en
Priority to US10/528,007 priority patent/US7241637B2/en
Priority to DE10393816T priority patent/DE10393816D2/en
Publication of WO2004027883A1 publication Critical patent/WO2004027883A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0046Details relating to the filling pattern or flow paths or flow characteristics of moulding material in the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14836Preventing damage of inserts during injection, e.g. collapse of hollow inserts, breakage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/33Moulds having transversely, e.g. radially, movable mould parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the light-emitting diode to be manufactured is a radial LED, the shape of which is filled by radial injection of flowable material.
  • the material is normally injected beneath the chip into a surface spanned by the electrodes.
  • the material filling the mold flows around the chip and the bond wire arranged above it from below. This process protects the bond wire to such an extent that it is no longer torn off by the inflowing material.
  • the LED is energized later, the component fails due to a short circuit.
  • the present invention is therefore based on the problem of developing a method for producing light-guiding LED bodies in which the LED electronics are not impaired in the usual performance of the known injection molding or casting processes.
  • the volume flow of a flowable material is at a distance of the electrode level from the insertion point that is greater than 30% of the distance between the insertion point and the mold side of the mold opposite the insertion point - above the insertion point and below the chip level on the mold side of the insertion point is throttled by at least one cross-sectional constriction, while - at a distance that is less than or equal to 30% of this distance - the throttling takes place on the mold side opposite the insertion point.
  • a specific input location and direction in conjunction with a predetermined throttling of the material volume flow at a defined location Current condition created, which allows a controlled, uniform filling of the mold without any damage to the LED electronics.
  • a shaped element is arranged in the individual mold cavity opposite the electrode fence, which narrows the flow cross section between the front edge of the shaped element and the chip.
  • the geometric dimension of the molded element and its surface structure facing the volume flow may be specially selected. This is easy to handle when using interchangeable throttle valves that support the molded element.
  • the inflowing material is throttled at least on one side in such a way that the flow fronts migrating from below to the chip on both sides of the electrodes contact and flow around the chip and the bonding wire almost simultaneously.
  • the almost simultaneous sheathing of the bond wire stabilizes the bond wire in its pre-planned position.
  • the method can also be used on luminescent diodes with multiple chips and electrodes.
  • Figure 1 LED shape with narrowing of the cross section over the
  • Figure 3 Side view of an LED in a mold with a retracted mold slide
  • Figure 4 Front view of the LED from Figure 3
  • Figure 5 Top view of an LED manufacturing network next to
  • FIG. 7 side view of an LED in a mold with the slide element extended
  • Figure 8 Top view of Figure 7 largely without shape.
  • FIGS. 3 to 6 show an LED (10), the light-conducting body (20) of which is produced, for example, by injection molding in one injection step.
  • the LED (10) shown here has an LED body (20) theoretically divided into two zones (21, 41), cf. Figure 4.
  • the lower zone (41) of the body (20) is a so-called electronics protection zone, while the upper zone (21) is referred to as the light guiding zone. Both zones are separated from each other by a fictitious parting line (39).
  • the parting line (39) is only shown in dotted lines in FIG. 4.
  • the electronics protection zone (41) generally surrounds the electrical connections (1, 4) lying in one plane (19), the light-emitting chip (6), a bonding wire (2) and a reflector trough (5).
  • the latter is part of the cathode (4), for example.
  • the chip (6) is seated in the reflector trough (5).
  • the chip (6) contacts the anode (1) via the bonding wire (2).
  • the bonding wire (2) is preferably in a plane (19) which is spanned by the center lines of the electrodes (1, 4).
  • the light guiding zone (21) located above the chip transports the light emitted by the chip (6) to the outer surface (14, 15) of the LED (10) with as little loss as possible.
  • the LED body (20) of the exemplary embodiment consists of three geometrical bodies (11, 14, 15) placed one against the other.
  • the lower geometric body (11) is at least approximately a straight cylinder with two at least approximately parallel end faces and, for example, two flat flats (12, 13).
  • the flats (12, 13) are parallel to the LED longitudinal axis (18) and form a right angle with each other.
  • a flattening (12) is parallel to the electrode plane (19) formed by the center lines of the electrodes (1, 4).
  • the lower end face forms the so-called bottom area (42).
  • a straight truncated cone (14) adjoins the upper end face and tapers away from the cylinder (11).
  • a dome (15) sits on the truncated cone (14) as the third geometric body.
  • In the LED longitudinal section there is, for example, a tangential transition between the spherical cap (15) and the truncated cone (14).
  • the larger end face diameter of the truncated cone (14) measures approximately 5 mm in the exemplary embodiment. It is called the base size.
  • the taper of the truncated cone (14) is e.g. 20% of the basic size.
  • the total height of the LED (10) corresponds to approx. 180% of the basic size.
  • the depth of the flats (12, 13) is approx. 8% of the basic size.
  • the electrodes (1, 4) are part of a flat, punched, so-called electrode fence (80). Within this fence, the electrodes (1, 4) are connected to one another continuously via webs (81).
  • a fence (80) contains, for example, 32 electrodes for 16 LEDs (10).
  • the minimum distance the LEDs (10) integrated side by side in the fence (80) is at least 10% of the maximum diameter or the maximum width of the individual LEDs (10) in the electrode or fence level (19). In the exemplary embodiment, the distance between the center lines (18) of two adjacent luminescent diodes (10) is approximately 150% of the basic size.
  • a multi-part is used for the injection molding of the LEDs (10)
  • Form (61-63) used, which together with the spray nozzle (71) specifies the shape of the luminescent diode (10).
  • the majority of the diode (10) to be manufactured is encompassed by a slide shape (62).
  • the latter forms, for example, a seamless main light exit surface and the part of the peripheral surfaces of the electronics protection zone (41) which faces away from an adjacent basic shape (61).
  • a suction channel (66) and the spray nozzle system the base area (42) and the remaining peripheral surfaces of the LED (10) are closed by the basic shape (61) and a lifting shape (63), e.g.
  • a throttle slide (31) is integrated in the basic shape (61) according to FIGS. 3 to 8.
  • the basic form (61) is e.g. one of the basic elements of the injection mold. It is attached to the stationary part of the tool and is not moved during demolding. It has a recess (73) into which the spray nozzle (71) projects in a sealing manner.
  • a throttle slide (31) is inserted into a rectangular channel (91) for each mold cavity (60) in the base frame (61).
  • the throttle slide (31) are connected to one another in their rear areas via webs, cf. FIGS. 5 and 8.
  • the direction of movement of the throttle slide (31) is oriented, for example, parallel to the base area (42) of the LED (10) and normal to the electrode fence (80).
  • the luminescent diode (10) is the top of the respective free end of a throttle valve (31) on or just below the chip level (7).
  • the throttle slide (31) with the electrode fence level (19) can also form an angle of 5 to 45 °. Possibly. the throttle slide (31) can also be moved by swiveling or screwing within the mold (61-63).
  • the end of the throttle slide (31) projecting into the cavity (60) is referred to as the shaped element (32).
  • Its end face facing the LED center line (18) is e.g. a curved spatial surface (33) which corresponds exactly to the cut surface which arises in a spatial cut between the truncated cone (14) and the channel (91), i.e. the curvature corresponds to that of the conical surface of the outer surface (14).
  • the shaped element (32) has a trapezoidal cross section in the plane of the drawing in FIG. 3, that is to say in longitudinal section. The shear of the trapezoidal cross section with respect to the LED center line (18) corresponds here to the truncated cone angle of the truncated cone (14).
  • This upper edge (36), which is also the front edge of the molded element (26, 28 32), can assume any curvature, even not flat. It can also be equipped with a structure that influences the flow and projects into the volume flow.
  • the structure can be a corrugation, a wave profile, a knob structure or the like.
  • the throttle slide (31) adjoins the slide shape (62) in some areas.
  • a projection (26) protrudes into the cavity (60) instead of the throttle slide (31).
  • the projection (26) is part of the basic shape (61).
  • the longitudinal section contour (35) of this projection or shaped element closes with the LED center line (18) e.g. a 24 ° angle.
  • the stroke shape (63) is arranged opposite the base shape (61). According to this illustration, the latter is moved to the right away from the basic shape (61) for demolding.
  • the mold (61-63) is closed, the molded parts (61) and (63) touch in a parting line (65) shown in FIG.
  • the parting line (65) divides in the area between the electrodes (1, 4) to form an opening (67).
  • the opening (67) is an edge of the suction channel (66) touching the bottom region (42), cf.
  • Figure 3 The suction channel (66) is offset by several tenths of a millimeter from the electrode plane (19) - away from the spray nozzle (71).
  • a hold-down device (69) is arranged in the lifting form (63).
  • the hold-down device (69) can be moved - e.g. towards the opening stroke of the mold - stored there. He clamps the electrode fence (80) against the basic shape (61).
  • the slide shape ( 62) On the plane formed by the molded parts (61, 63), on which the future bottom area (42) of the LED (10) rests, and on the contour of the basic shape (61) surrounding the spray nozzle (71), the slide shape ( 62).
  • a spatially graduated parting line (64) lies between the slide form (62) and the base form (61).
  • the slide mold (62), which surrounds the majority of the future LED surface, is crossed by at least one temperature control channel (68) in order to temper the mold and the other tool parts surrounding it, for example by means of water or oil at, for example, 40-160 ° C.
  • the carriage shape (62) is shown only as an example from one part.
  • the carriage shape (62) in a separate carriage carrier, the latter can also be equipped with the temperature control channel.
  • the carriage shape (62) may have a projection (28). Its upper edge is also on or below the chip level (7).
  • the mold (61-63) is open to prepare for injection molding.
  • the molded parts (63, 69), according to FIG. 3, are pulled off to the right.
  • the carriage shape (62) is moved obliquely to the right at the top right by means of a guide, not shown, at an angle of, for example, 25 ° with respect to the spray nozzle center line (75).
  • the electrode fence (80) equipped with the chips (6) and the corresponding bonding wires (2) is inserted and centered on the base shape via index pins (not shown).
  • the lifting mold (63) moves towards the basic mold (61).
  • the hold-down device (69) stored in it continues in the closing direction until the electrode fence (80) is clamped onto the base mold (61).
  • the slide shape (62) moves towards the shapes (61) and (63) at the same time.
  • the throttle slide (31) is now inserted into the cavity (60) to such an extent that the cross-sectional area (30), shown in dashed lines in FIG. 5, of the narrowest point between the electrode fence (80) has reached its minimum.
  • the reduction in cross-section can amount to 20 - 80% of the original cross-section.
  • the cavity of the mold (61-63) to be sprayed with flowable material is evacuated via the suction channel (66) and, for example, via the gap between the lifting mold (63) and the hold-down device (69). The vacuum is maintained throughout the injection molding process.
  • the hot, flowable material (8) or (9) is sprayed through the respective spray nozzle (71), e.g. a so-called torpedo nozzle, inserted into the corresponding cavity of the mold (61-63).
  • the center line (75) of the spray nozzle (71) and the jet emerging from it is oriented normal to the electrode plane (19). It lies between the bottom area (42) and the lowest point of the reflector trough (5).
  • the center line (75) is at half the height of the cylinder (11). It runs centrally between the electrodes (1, 4), cf. Figures 5 and 8.
  • the liquid plastic (8) for example an injectable transparent, possibly colored thermoplastic, such as modified polymethyl methacrylimide (PMMI)
  • PMMI modified polymethyl methacrylimide
  • the inflow speed is, for example, 0.2 to 10 millimeters per second.
  • the beam passes the electrodes (1, 4), which are offset to the insertion point (70) - offset by a distance calculated from the difference between the clear distance (86) and the distance (85) - and divides at the insertion point (70) opposite wall of the form (62).
  • the beam loses so much energy that the inflowing plastic when filling the cavity, cf.
  • molded elements (26, 32) are used to throttle the volume flow, which are located directly above the insertion point (70), cf. Figures 1, 3 and 7.
  • the material (8, 9) jams in front of the electrode fence (80) and pushes up there - without a corresponding shaped element (26, 28) - faster than behind the fence (80).
  • the respective material (8, 9) pushes past the chip (6) almost simultaneously, at least in the area of the bonding wire (2). Even with this flow around the chip, the optimal position of the bonding wire (2) is not changed.
  • the webs (81) between the luminescence diodes (10) and the electrodes (1, 4) of the individual LEDs (10) are removed, for example by stamping, in a separating process.
  • Mold cavity basic form, slide form, stroke form, parting line between (61) and (62) parting line between (61) and (63) suction channel opening, temperature control channel hold-down device

Abstract

The invention relates to a method for producing light-conductive LED bodies from a free-flowing material by feeding the latter into a mould. According to said method, if the distance between the electrode plane and the feed point is greater than 35 % of the distance between the feed point and the side of the mould lying opposite said point, the volumetric flow of a free-flowing material is reduced by at least one cross-sectional restriction, above the feed point and below the chip plane on the side of the mould comprising the feed point. If, on the other hand, said former distance is less than or equal to 35 % of the latter distance, the reduction takes place on the side of the mould lying opposite the feed point. The invention provides a method for producing light-conductive LED bodies, in which the LED electronics remain undamaged by the conventional effects of the feed process.

Description

Verfahren zum Herstellen von LED-Körpern mit Hilfe einer Querschnittverengung Process for manufacturing LED bodies using a cross-sectional constriction
Beschreibung:Description:
Verfahren zum Herstellen von lichtleitenden LED-Körpern, aus ei¬ nem vor dem endgültigen Erstarren fließfähigen Werkstoff durch Einbringen in eine Form, wobei der einzelne LED-Körper mindes- tens einen lichtemittierenden Chip und mindestens zwei - mit dem Chip elektrisch verbundene - Elektroden umfasst und wobei der fließfähige Werkstoff zwischen einem Bodenbereich der Form und dem Chip zumindest annähernd parallel zur Chipebene und zumindest annähernd normal zu einer von zwei Elektroden gebildeten Ebene zwischen die Elektroden eingespritzt wird.A process for the manufacture of light-conducting LED bodies, from egg ¬ NEM prior to the final solidification of the flowable material by introducing into a mold, wherein the LED body and at least individual at least one light-emitting chip two - comprises electrodes, and - electrically connected to the chip wherein the flowable material is injected between a bottom region of the mold and the chip at least approximately parallel to the plane of the chip and at least approximately normal to a plane formed by two electrodes between the electrodes.
Aus der DE 101 59 522 ist ein derartiges Verfahren zur Herstellung von Leuchtdioden bekannt. Bei der herzustellenden Leuchtdiode handelt es sich um eine Radial-LED, deren Form durch radiales Einspritzen von fließfähigem Werkstoff gefüllt wird. Der Werkstoff wird unterhalb des Chips normal zu einer von den Elektroden aufgespannten Fläche eingespritzt. Bei diesem Verfahren umströmt der die Form füllende Werkstoff von unten her den Chip und den darüber angeordneten Bonddraht. Durch dieses Verfahren wird der Bonddraht soweit geschützt, dass er durch den einströmenden Werkstoff nicht mehr abgerissen wird. Allerdings kommt es häufig vor, dass sich - gesehen aus der Richtung der Werkstoffeinspritzung - vor oder hinter den Elektroden der in die Form eingebrachte Werkstoff einseitig aufstaut. Dadurch kann die den Chip vorwiegend einseitig anströmende Fließfront den Bonddraht so stark zur Seite drücken, dass dieser in Kontakt mit der Kathode gelangt. Bei einem späteren Bestromen der Leuchtdiode fällt dann das Bauteil durch Kurzschluss aus.DE 101 59 522 discloses such a method for producing light-emitting diodes. The light-emitting diode to be manufactured is a radial LED, the shape of which is filled by radial injection of flowable material. The material is normally injected beneath the chip into a surface spanned by the electrodes. In this method, the material filling the mold flows around the chip and the bond wire arranged above it from below. This process protects the bond wire to such an extent that it is no longer torn off by the inflowing material. However, it often happens that - seen from the direction of Material injection - in front of or behind the electrodes, the material introduced into the mold builds up on one side. As a result, the flow front, which flows predominantly on one side, can push the bonding wire to the side so strongly that it comes into contact with the cathode. When the LED is energized later, the component fails due to a short circuit.
Der vorliegenden Erfindung liegt daher die Problemstellung zugrunde, ein Verfahren zum Herstellen von lichtleitenden LED-Körpern zu entwickeln, bei dem bei üblichen Leistungen der bekannten Spritz- oder Gießvorgänge die LED-Elektronik nicht beeinträchtigt wird.The present invention is therefore based on the problem of developing a method for producing light-guiding LED bodies in which the LED electronics are not impaired in the usual performance of the known injection molding or casting processes.
Diese Problemstellung wird mit den Merkmalen des Hauptanspruches gelöst. Dazu wird der Volumenstrom eines fließfähigen Werkstof- fes bei einer Entfernung der Elektrodenebene von der Einbringstelle, die größer ist als 30% des Abstandes zwischen der Einbringstelle und der der Einbringstelle gegenübergelegenen Formseite der Form - oberhalb der Einbringstelle und unterhalb der Chipebene auf der Formseite der Einbringstelle durch mindestens eine Querschnittsverengung gedrosselt wird, während - bei einer Entfernung, die kleiner oder gleich 30% dieses Abstandes ist - die Drosselung auf der der Einbringstelle gegenüber gelegenen Formseite erfolgt.This problem is solved with the features of the main claim. For this purpose, the volume flow of a flowable material is at a distance of the electrode level from the insertion point that is greater than 30% of the distance between the insertion point and the mold side of the mold opposite the insertion point - above the insertion point and below the chip level on the mold side of the insertion point is throttled by at least one cross-sectional constriction, while - at a distance that is less than or equal to 30% of this distance - the throttling takes place on the mold side opposite the insertion point.
Mit diesem Verfahren zur Herstellung einer Lumineszenzdiode wird durch eine bestimmte Vorgabe des Einbringortes und der Einbringrichtung in Verbindung mit einer vorgegebenen Drosselung des Werkstoffvolumenstroms an einem definierten Ort eine Ein- Strömbedingung geschaffen, die ein kontrolliertes, gleichförmiges Füllen der Form ohne jede Beschädigung der LED-Elektronik zulässt. Zur Drosselung wird im einzelnen Formhohlraum gegenüber dem Elektrodenzaun ein Formelement angeordnet, das den Strö- mungsquerschnitt zwischen der Vorderkante des Formelements und dem Chip verengt. Die geometrische Abmessung des Formelements und dessen dem Volumenstrom zugewandte Oberflächenstruktur wird je nach Kunststoffart ggf. speziell ausgewählt. Dies ist bei der Verwendung von austauschbaren, das Formelement tragenden Dros- selschiebern einfach zu handhaben.With this method for producing a luminescent diode, a specific input location and direction in conjunction with a predetermined throttling of the material volume flow at a defined location Current condition created, which allows a controlled, uniform filling of the mold without any damage to the LED electronics. For throttling, a shaped element is arranged in the individual mold cavity opposite the electrode fence, which narrows the flow cross section between the front edge of the shaped element and the chip. Depending on the type of plastic, the geometric dimension of the molded element and its surface structure facing the volume flow may be specially selected. This is easy to handle when using interchangeable throttle valves that support the molded element.
Durch das Formelement wird der einfließende Werkstoff zumindest einseitig derart gedrosselt, dass die von unten an den Chip beidseits der Elektroden heranwandernden Fließfronten nahezu zeitgleich den Chip und den Bonddraht kontaktieren und umfließen. Das nahezu zeitgleiche Umhüllen des Bonddrahtes stabilisiert den Bonddraht in seiner konstruktiv vorgeplanten Lage.Due to the shaped element, the inflowing material is throttled at least on one side in such a way that the flow fronts migrating from below to the chip on both sides of the electrodes contact and flow around the chip and the bonding wire almost simultaneously. The almost simultaneous sheathing of the bond wire stabilizes the bond wire in its pre-planned position.
Das Verfahren ist auch auf Lumineszenzdioden mit mehreren Chips und Elektroden anwendbar.The method can also be used on luminescent diodes with multiple chips and electrodes.
Weitere Einzelheiten der Erfindung ergeben sich aus den Unteran- Sprüchen und der nachfolgenden Beschreibung von mehreren schematisch dargestellten Ausführungsbeispielen.Further details of the invention emerge from the subclaims and the following description of several schematically illustrated exemplary embodiments.
Figur 1: LED-Form mit Querschnittsverengung über derFigure 1: LED shape with narrowing of the cross section over the
Einspritzstelle; Figur 2: LED-Form mit Querschnittsverengung gegenüber derInjection site; Figure 2: LED shape with cross-sectional narrowing compared to
Einspritzstelle Figur 3: Seitenansicht einer LED in einer Form mit einem eingefahrenen FormelementSchieber; Figur 4: Vorderansicht zur LED aus Figur 3; Figur 5: Draufsicht auf einen LED-Fertigungsverbund nebenInjection point Figure 3: Side view of an LED in a mold with a retracted mold slide; Figure 4: Front view of the LED from Figure 3; Figure 5: Top view of an LED manufacturing network next to
Spritzdüsen; Figur 6: Unteransicht der LED aus Figur 1 mit mehrerenSpray nozzles; Figure 6: Bottom view of the LED from Figure 1 with several
Trennfugenverläufen . Figur 7: Seitenansicht einer LED in einer Form mit ausgefahrenem FormelementSchieber; Figur 8: Draufsicht zu Figur 7 großteils ohne Form.Parting lines. FIG. 7: side view of an LED in a mold with the slide element extended; Figure 8: Top view of Figure 7 largely without shape.
Die Figuren 3 bis 6 zeigen eine LED (10) , deren lichtleitender Körper (20) beispielsweise spritzgusstechnisch in einem Spritzschritt hergestellt wird.FIGS. 3 to 6 show an LED (10), the light-conducting body (20) of which is produced, for example, by injection molding in one injection step.
Die dargestellte LED (10) hat hierbei einen theoretisch in zwei Zonen (21, 41) aufgeteilten LED-Körper (20), vgl. Figur 4. Die untere Zone (41) des Körpers (20) ist eine sog. Elektronikschutzzone, während die obere Zone (21) als Lichtleitzone bezeichnet wird. Beide Zonen sind durch eine fiktive Trennfuge (39) voneinander getrennt. Die Trennfuge (39) ist punktiert nur in Figur 4 dargestellt.The LED (10) shown here has an LED body (20) theoretically divided into two zones (21, 41), cf. Figure 4. The lower zone (41) of the body (20) is a so-called electronics protection zone, while the upper zone (21) is referred to as the light guiding zone. Both zones are separated from each other by a fictitious parting line (39). The parting line (39) is only shown in dotted lines in FIG. 4.
Die Elektronikschutzzone (41) umgibt in der Regel die in einer Ebene (19) liegenden elektrischen Anschlüsse (1, 4), den lichtemittierenden Chip (6), einen Bonddraht (2) und eine Reflektor- wanne (5). Letztere ist z.B. Teil der Kathode (4). In der Reflektorwanne (5) sitzt der Chip (6). Der Chip (6) kontaktiert über den Bonddraht (2) die Anode (1) . Der Bonddraht (2) liegt dabei vorzugsweise in einer Ebene (19) , die von den Mittellinien der Elektroden (1, 4) aufgespannt wird. Die oberhalb des Chips liegende Lichtleitzone (21) transportiert das vom Chip (6) emittierte Licht möglichst verlustfrei zur Außenfläche (14, 15) der LED (10) . Der LED-Körper (20) des Ausführungsbeispiels besteht bezüglich seiner räumlichen Gestaltung aus drei aneinandergesetzten Geometriekörpern (11, 14, 15) . Der untere Geometriekörper (11) ist zumindest annähernd ein gerader Zylinder mit zwei zumindest an- nähernd parallelen Stirnflächen und z.B. zwei ebenen Abflachungen (12, 13) . Die Abflachungen (12, 13) sind parallel zur LED- Längsachse (18) und schließen untereinander einen rechten Winkel ein. Eine Abflachung (12) ist parallel zur - durch die Mittellinien der Elektroden (1, 4) gebildeten - Elektrodenebene (19). Die untere Stirnfläche bildet den sog. Bodenbereich (42) . An die obere Stirnfläche schließt sich ein gerader Kegelstumpf (14) an, der sich vom Zylinder (11) weg verjüngt. Auf dem Kegelstumpf (14) sitzt als dritter Geometriekörper eine Kalotte (15). Im LED-Längsschnitt befindet sich zwischen der Kalotte (15) und dem Kegelstumpf (14) beispielsweise ein tangentialer Übergang.The electronics protection zone (41) generally surrounds the electrical connections (1, 4) lying in one plane (19), the light-emitting chip (6), a bonding wire (2) and a reflector trough (5). The latter is part of the cathode (4), for example. The chip (6) is seated in the reflector trough (5). The chip (6) contacts the anode (1) via the bonding wire (2). The bonding wire (2) is preferably in a plane (19) which is spanned by the center lines of the electrodes (1, 4). The light guiding zone (21) located above the chip transports the light emitted by the chip (6) to the outer surface (14, 15) of the LED (10) with as little loss as possible. With regard to its spatial design, the LED body (20) of the exemplary embodiment consists of three geometrical bodies (11, 14, 15) placed one against the other. The lower geometric body (11) is at least approximately a straight cylinder with two at least approximately parallel end faces and, for example, two flat flats (12, 13). The flats (12, 13) are parallel to the LED longitudinal axis (18) and form a right angle with each other. A flattening (12) is parallel to the electrode plane (19) formed by the center lines of the electrodes (1, 4). The lower end face forms the so-called bottom area (42). A straight truncated cone (14) adjoins the upper end face and tapers away from the cylinder (11). A dome (15) sits on the truncated cone (14) as the third geometric body. In the LED longitudinal section there is, for example, a tangential transition between the spherical cap (15) and the truncated cone (14).
Der größere Stirnflächendurchmesser des Kegelstumpfes (14) misst im Ausführungsbeispiel ca. 5 mm. Er wird als Basisgröße bezeichnet. Die Verjüngung des Kegelstumpfes (14) beträgt z.B. 20% der Basisgröße. Die Gesamthöhe der LED (10) entspricht ca. 180% der Basisgröße. Die Höhe des Zylinders (11), der als flanschartiger Kragen bezüglich seines Radius über den Kegelstumpf um ca. 10% der Basisgröße übersteht, bemisst ca. 30% der Basisgröße. Die Tiefe der Abflachungen (12, 13) beträgt ca. 8% der Basisgröße.The larger end face diameter of the truncated cone (14) measures approximately 5 mm in the exemplary embodiment. It is called the base size. The taper of the truncated cone (14) is e.g. 20% of the basic size. The total height of the LED (10) corresponds to approx. 180% of the basic size. The height of the cylinder (11), which, as a flange-like collar, protrudes beyond the truncated cone with respect to its radius by approximately 10% of the basic size, measures approximately 30% of the basic size. The depth of the flats (12, 13) is approx. 8% of the basic size.
Der oberhalb des Chips (6) liegende Bereich des Kegelstumpfes (14) und die Kalotte (15) bilden die Hauptlichtaustritts- lache.The area of the truncated cone (14) above the chip (6) and the spherical cap (15) form the main light-emitting surface.
Für die LED-Fertigung sind die Elektroden (1, 4) Teil eines i.d.R. ebenen, gestanzten, sog. Elektrodenzauns (80). Innerhalb dieses Zauns sind die Elektroden (1, 4) durchgehend über Stege (81) miteinander verbunden. Ein Zaun (80) beinhaltet beispielsweise 32 Elektroden für 16 LEDs (10) . Der minimale Abstand der nebeneinander im Zaun (80) integrierten LEDs (10) beträgt mindestens 10% des maximalen Durchmessers bzw. der maximalen Breite der einzelnen LED (10) in der Elektroden- bzw. Zaunebene (19) . Im Ausführungsbeispiel beträgt der Abstand der Mit- tellinien (18) zweier benachbarter Lumineszenzdioden (10) ca. 150% der Basisgröße.For LED production, the electrodes (1, 4) are part of a flat, punched, so-called electrode fence (80). Within this fence, the electrodes (1, 4) are connected to one another continuously via webs (81). A fence (80) contains, for example, 32 electrodes for 16 LEDs (10). The minimum distance the LEDs (10) integrated side by side in the fence (80) is at least 10% of the maximum diameter or the maximum width of the individual LEDs (10) in the electrode or fence level (19). In the exemplary embodiment, the distance between the center lines (18) of two adjacent luminescent diodes (10) is approximately 150% of the basic size.
Für das Spritzgießen der LEDs (10) wird eine mehrteiligeA multi-part is used for the injection molding of the LEDs (10)
Form (61-63) verwendet, die zusammen mit der Spritzdüse (71) die Gestalt der Lumineszenzdiode (10) vorgibt. Der größte Teil der zu fertigenden Diode (10) wird von einer Schlittenform (62) um- fasst. Letztere formt beispielsweise eine nahtlose Hauptlicht- austrittsflache und den Teil der Umfangsflachen der Elektronikschutzzone (41) , die einer benachbarten Basisform (61) abgewandt ist. Der Bodenbereich (42) und die restlichen Umfangsflachen der LED (10) werden mit Ausnahme eines Saugkanals (66) und der Spritzdüsenanlage durch die Basisform (61) und eine Hubform (63) verschlossen, wobei z.B. in der Basisform (61) nach den Figuren 3 - 8 ein Drosselschieber (31) integriert ist.Form (61-63) used, which together with the spray nozzle (71) specifies the shape of the luminescent diode (10). The majority of the diode (10) to be manufactured is encompassed by a slide shape (62). The latter forms, for example, a seamless main light exit surface and the part of the peripheral surfaces of the electronics protection zone (41) which faces away from an adjacent basic shape (61). With the exception of a suction channel (66) and the spray nozzle system, the base area (42) and the remaining peripheral surfaces of the LED (10) are closed by the basic shape (61) and a lifting shape (63), e.g. A throttle slide (31) is integrated in the basic shape (61) according to FIGS. 3 to 8.
Die Basisform (61) ist z.B. eines der Grundelemente des Spritzgießwerkzeuges. Sie ist hier auf dem ortsfesten Teil des Werkzeuges befestigt und wird beim Entformen nicht bewegt. Sie weist eine Aussparung (73) auf, in die die Spritzdüse (71) abdichtend hineinragt .The basic form (61) is e.g. one of the basic elements of the injection mold. It is attached to the stationary part of the tool and is not moved during demolding. It has a recess (73) into which the spray nozzle (71) projects in a sealing manner.
In der Basisfrom (61) ist nach den Figuren 3 - 8 für jeden Formhohlraum (60) ein Drosselschieber (31) in einen hier rechteckigen Kanal (91) eingesetzt. Die Drosselschieber (31) sind z.B. in ihren rückwärtigen Bereichen über Stege miteinander verbunden, vgl. Figuren 5 und 8. Die Bewegungsrichtung der Drosselschieber (31) ist beispielsweise parallel zum Bodenbereich (42) der LED (10) und normal zum Elektrodenzaun (80) orientiert. Im Bezug auf die Lumineszenzdiode (10) befindet sich die Oberseite des jeweiligen freien Endes eines Drosselschiebers (31) auf oder knapp unterhalb der Chipebene (7) .According to FIGS. 3 to 8, a throttle slide (31) is inserted into a rectangular channel (91) for each mold cavity (60) in the base frame (61). The throttle slide (31) are connected to one another in their rear areas via webs, cf. FIGS. 5 and 8. The direction of movement of the throttle slide (31) is oriented, for example, parallel to the base area (42) of the LED (10) and normal to the electrode fence (80). In relation to the luminescent diode (10) is the top of the respective free end of a throttle valve (31) on or just below the chip level (7).
Je nach den Platzverhältnissen in der Form (61-63) kann der Drosselschieber (31) mit der Elektrodenzaunebene (19) auch einen Winkel von 5 bis 45° einschließen. Ggf. kann der Drosselschieber (31) auch durch eine Schwenk- oder Schraubbewegung innerhalb der Form (61-63) bewegt werden.Depending on the space available in the mold (61-63), the throttle slide (31) with the electrode fence level (19) can also form an angle of 5 to 45 °. Possibly. the throttle slide (31) can also be moved by swiveling or screwing within the mold (61-63).
Das in den Hohlraum (60) hineinragende Ende des Drosselschiebers (31) wird als Formelement (32) bezeichnet. Seine, der LED- Mittellinie (18) zugewandte Stirnfläche, ist z.B. eine gekrümmte Raumfläche (33) , die genau der Schnittfläche entspricht, die bei einem räumlichen Schnitt zwischen dem Kegelstumpf (14) und dem Kanal (91) entsteht, d.h. die Krümmung entspricht der des Kegelmantels der Außenfläche (14) . Das Formelement (32) hat in der Zeichnungsebene von Figur 3 - also im Längsschnitt - einen trapezförmigen Querschnitt. Die Scherung des Trapezquerschnittes gegenüber der LED-Mittellinie (18) entspricht hier dem Kegel- stumpfwinkel des Kegelstumpfes (14). In der horizontalen Draufsicht, vgl. Figur 5 unten, ist die Oberfläche des in den Hohlraum (60) hineinstehenden Formelements (32) schraffiert dargestellt. Die zur LED-Mittellinie (18) hin orientierte gekrümmte Umrandung dieser Fläche (34) stellt als Kreisbogenabschnitt die Oberkante (36) dar.The end of the throttle slide (31) projecting into the cavity (60) is referred to as the shaped element (32). Its end face facing the LED center line (18) is e.g. a curved spatial surface (33) which corresponds exactly to the cut surface which arises in a spatial cut between the truncated cone (14) and the channel (91), i.e. the curvature corresponds to that of the conical surface of the outer surface (14). The shaped element (32) has a trapezoidal cross section in the plane of the drawing in FIG. 3, that is to say in longitudinal section. The shear of the trapezoidal cross section with respect to the LED center line (18) corresponds here to the truncated cone angle of the truncated cone (14). In the horizontal top view, cf. Figure 5 below, the surface of the molded element (32) protruding into the cavity (60) is shown hatched. The curved border of this surface (34) oriented towards the LED center line (18) represents the upper edge (36) as an arc section.
Diese Oberkante (36) , die gleichzeitig die Vorderkante des Formelements (26, 28 32) ist, kann jede beliebige, auch nicht ebene Krümmung einnehmen. Sie ist zusätzlich mit einer in den Volumen- ström hineinragenden Strömungsbeeinflussenden Struktur ausstattbar. Die Struktur kann eine Riffeiung, ein Wellenprofil, eine Noppenstruktur oder dergleichen sein. Im Ausführungsbeispiel nach Figur 3 und 7 grenzt der Drosselschieber (31) bereichsweise an der Schlittenform (62) an.This upper edge (36), which is also the front edge of the molded element (26, 28 32), can assume any curvature, even not flat. It can also be equipped with a structure that influences the flow and projects into the volume flow. The structure can be a corrugation, a wave profile, a knob structure or the like. In the exemplary embodiment according to FIGS. 3 and 7, the throttle slide (31) adjoins the slide shape (62) in some areas.
In Figur 1 ragt anstelle des Drosselschiebers (31) in den Hohl- räum (60) ein Vorsprung (26) hinein. Der Vorsprung (26) ist Teil der Basisform (61). Die Längsschnittkontur (35) dieses Vorsprungs bzw. Formelements schließt mit der LED-Mittellinie (18) z.B. einen 24°-Winkel ein.In FIG. 1, a projection (26) protrudes into the cavity (60) instead of the throttle slide (31). The projection (26) is part of the basic shape (61). The longitudinal section contour (35) of this projection or shaped element closes with the LED center line (18) e.g. a 24 ° angle.
Nach Figur 3 ist gegenüber der Basisform (61) die Hubform (63) angeordnet. Letztere wird nach dieser Darstellung zum Entformen nach rechts von der Basisform (61) wegbewegt. Bei geschlossener Form (61-63) berühren sich die Formteile (61) und (63) in einer in Figur 6 dargestellten Trennfuge (65). Die Trennfuge (65) teilt sich im Bereich zwischen den Elektroden (1, 4) zur Ausformung einer Öffnung (67). Die Öffnung (67) ist eine den Bodenbereich (42) berührende Kante des Saugkanals (66), vgl. Figur 3. Der Saugkanal (66) ist gegenüber der Elektrodenebene (19) um mehrere Zehntelmillimeter - von der Spritzdüse (71) weg - ver- setzt.According to FIG. 3, the stroke shape (63) is arranged opposite the base shape (61). According to this illustration, the latter is moved to the right away from the basic shape (61) for demolding. When the mold (61-63) is closed, the molded parts (61) and (63) touch in a parting line (65) shown in FIG. The parting line (65) divides in the area between the electrodes (1, 4) to form an opening (67). The opening (67) is an edge of the suction channel (66) touching the bottom region (42), cf. Figure 3. The suction channel (66) is offset by several tenths of a millimeter from the electrode plane (19) - away from the spray nozzle (71).
In der Hubform (63) ist ein Niederhalter (69) angeordnet. Der Niederhalter (69) ist verschiebbar - z.B. in Richtung des Öffnungshubs der Form - dort gelagert. Er klemmt den Elektroden- zäun (80) gegen die Basisform (61).A hold-down device (69) is arranged in the lifting form (63). The hold-down device (69) can be moved - e.g. towards the opening stroke of the mold - stored there. He clamps the electrode fence (80) against the basic shape (61).
An der durch die Formteile (61, 63) gebildeten Ebene, an der der spätere Bodenbereich (42) der LED (10) anliegt, und an die - die Spritzdüse (71) umgebende - Kontur der Basisform (61) schließt sich die Schlittenform (62) an. Zwischen der Schlittenform (62) und der Basisform (61) liegt eine räumlich abgestufte Trennfuge (64) . Die Schlittenform (62), die den größten Teil der künftigen LED- Oberfläche umgibt, ist durch mindestens einen Temperierkanal (68) durchzogen, um die Form und die sie umgebenden anderen Werkzeugteile z.B. mittels Wasser oder Öl bei beispielsweise 40- 160 °C zu temperieren. In der Figur 3 ist die Schlittenform (62) nur beispielhaft aus einem Teil dargestellt. Für den Fall, dass das diodenformgebende Teil innerhalb der Schlittenform (62) in einem separaten Schlittenträger sitzt, kann auch letzterer mit dem Temperierkanal ausgestattet sein. Nach Figur 2 trägt ggf. die Schlittenform (62) einen Vorsprung (28). Auch seine Oberkante liegt auf oder unterhalb der Chipebene (7) .On the plane formed by the molded parts (61, 63), on which the future bottom area (42) of the LED (10) rests, and on the contour of the basic shape (61) surrounding the spray nozzle (71), the slide shape ( 62). A spatially graduated parting line (64) lies between the slide form (62) and the base form (61). The slide mold (62), which surrounds the majority of the future LED surface, is crossed by at least one temperature control channel (68) in order to temper the mold and the other tool parts surrounding it, for example by means of water or oil at, for example, 40-160 ° C. , In Figure 3, the carriage shape (62) is shown only as an example from one part. In the event that the diode-shaping part is seated within the carriage shape (62) in a separate carriage carrier, the latter can also be equipped with the temperature control channel. According to FIG. 2, the carriage shape (62) may have a projection (28). Its upper edge is also on or below the chip level (7).
Zur Vorbereitung des Spritzgießens ist die Form (61-63) geöff- net . Dazu sind die Formteile (63, 69), gemäß Figur 3, nach rechts abgezogen. Die Schlittenform (62) ist mittels einer nicht dargestellten Führung - unter einem Winkel von beispielsweise 25° gegenüber der Spritzdüsenmittellinie (75) - schräg nach rechts oben zur Seite gefahren. Der mit den Chips (6) und den entsprechenden Bonddrähten (2) ausgestattete Elektrodenzaun (80) wird eingelegt und über nicht dargestellte Indexstifte an der Basisform zentriert. Zum Schließen der Form (61-63) fährt die Hubform (63) auf die Basisform (61) zu. Der in ihr gelagerte Niederhalter (69) fährt solange in Schließrichtung weiter, bis der Elektrodenzaun (80) auf der Basisform (61) festgeklemmt ist. Beispielsweise zeitgleich bewegt sich die Schlittenform (62) auf die Formen (61) und (63) zu. Der Drosselschieber (31) ist nun soweit in den Hohlraum (60) eingeschoben, dass die in Figur 5 gestrichelt dargestellte Querschnittsfläche (30) der engsten Stelle zwischen dem Elektrodenzaun (80) ihr Minimum erreicht hat. Die Querschnittsverringerung kann hierbei 20 - 80% des ursprünglichen Querschnitts betragen. Über den Saugkanal (66) und z.B. über den Spalt zwischen der Hubform (63) und dem Niederhalter (69) wird der mit fließfähigem Werkstoff auszuspritzende Hohlraum der Form (61-63) evakuiert. Das Vakuum wird während des gesamten Spritzgießprozesses auf- rechterhalten.The mold (61-63) is open to prepare for injection molding. For this purpose, the molded parts (63, 69), according to FIG. 3, are pulled off to the right. The carriage shape (62) is moved obliquely to the right at the top right by means of a guide, not shown, at an angle of, for example, 25 ° with respect to the spray nozzle center line (75). The electrode fence (80) equipped with the chips (6) and the corresponding bonding wires (2) is inserted and centered on the base shape via index pins (not shown). To close the mold (61-63), the lifting mold (63) moves towards the basic mold (61). The hold-down device (69) stored in it continues in the closing direction until the electrode fence (80) is clamped onto the base mold (61). For example, the slide shape (62) moves towards the shapes (61) and (63) at the same time. The throttle slide (31) is now inserted into the cavity (60) to such an extent that the cross-sectional area (30), shown in dashed lines in FIG. 5, of the narrowest point between the electrode fence (80) has reached its minimum. The reduction in cross-section can amount to 20 - 80% of the original cross-section. The cavity of the mold (61-63) to be sprayed with flowable material is evacuated via the suction channel (66) and, for example, via the gap between the lifting mold (63) and the hold-down device (69). The vacuum is maintained throughout the injection molding process.
Unmittelbar nach dem Evakuieren wird der heiße, fließfähige Werkstoff (8) oder (9) über die jeweilige Spritzdüse (71), z.B. eine sog. Torpedodüse, in den entsprechenden Hohlraum der Form (61-63) eingebracht. Die Mittellinie (75) der Spritzdüse (71) und des aus ihr austretenden Strahls ist hierbei normal zur Elektrodenebene (19) ausgerichtet. Sie liegt zwischen dem Bodenbereich (42) und dem untersten Punkt der Reflektorwanne (5) . Im Ausführungsbeispiel befindet sich die Mittel- linie (75) auf der halben Höhe des Zylinders (11) . Dabei verläuft sie mittig zwischen den Elektroden (1, 4), vgl. Figur 5 und 8.Immediately after the evacuation, the hot, flowable material (8) or (9) is sprayed through the respective spray nozzle (71), e.g. a so-called torpedo nozzle, inserted into the corresponding cavity of the mold (61-63). The center line (75) of the spray nozzle (71) and the jet emerging from it is oriented normal to the electrode plane (19). It lies between the bottom area (42) and the lowest point of the reflector trough (5). In the exemplary embodiment, the center line (75) is at half the height of the cylinder (11). It runs centrally between the electrodes (1, 4), cf. Figures 5 and 8.
Während des Spritzgießvorganges schießt nach Figur 2 der flüs- sige Kunststoff (8), beispielsweise ein spritzfähiger transparenter, ggf. eingefärbter Thermoplast, wie modifiziertes Poly- methylmethacrylimid (PMMI) , mit einem Druck von 700 ± 300 bar in die evakuierte, temperierte Form (61-63) ein. Die Einströmgeschwindigkeit beträgt beispielsweise 0,2 bis 10 Millimeter pro Sekunde. Der Strahl passiert die zur Einbringstelle (70) hin - um eine aus der Differenz aus dem lichten Abstand (86) und der Entfernung (85) errechneten Strecke - versetzten Elektroden (1, 4) mittig und teilt sich an der der Einbringstelle (70) gegenüberliegenden Wandung der Form (62) auf. Hierbei verliert der Strahl soviel Energie, dass der einströmende Kunststoff beim Auffüllen des Hohlraumes, vgl. Figur 1, vor und hinter der Elektrodenebene (19) von unten nach oben fließt. Die durch den Vorsprung (28) erzeugte Drosselung des Volumenstroms erzwingt vor und hinter dem Elektrodenzaun (80) ein annähernd gleichför- iges nach oben Wandern der Fließfront (92-95) . Zwischen den Positionen (94) und (95) der Fließfront erreicht der schnelle fließende Werkstoff (8) den Bonddraht (2) vor und hinter den Elektrodenzaun (80) zeitgleich und mit einer Fließrichtung die parallel zur LED-Mittellinie (18) verläuft. Der Bonddraht (2) wird umströmt ohne seine vorgeschriebene Position zu verändern. Der Bonddraht (2) wird weder zu Seite gedrückt noch abreißen.According to FIG. 2, the liquid plastic (8), for example an injectable transparent, possibly colored thermoplastic, such as modified polymethyl methacrylimide (PMMI), shoots into the evacuated, tempered mold during the injection molding process with a pressure of 700 ± 300 bar ( 61-63) a. The inflow speed is, for example, 0.2 to 10 millimeters per second. The beam passes the electrodes (1, 4), which are offset to the insertion point (70) - offset by a distance calculated from the difference between the clear distance (86) and the distance (85) - and divides at the insertion point (70) opposite wall of the form (62). The beam loses so much energy that the inflowing plastic when filling the cavity, cf. Figure 1, in front of and behind the electrode plane (19) flows from the bottom up. The throttling of the volume flow generated by the projection (28) forces an approximately equally large amount in front of and behind the electrode fence (80). hike up the flow front (92-95). Between the positions (94) and (95) of the flow front, the fast flowing material (8) reaches the bonding wire (2) in front of and behind the electrode fence (80) simultaneously and with a flow direction that runs parallel to the LED center line (18). The bonding wire (2) is flowed around without changing its prescribed position. The bond wire (2) is neither pushed to the side nor torn off.
Wird der Werkstoff (8) oder (9) in eine Form eingebracht, in der die Elektroden (1, 4) bzw. die Elektrodenebene (19) von der Einbringstelle weiter entfernt sind bzw. ist als 35% des zwischen den Formseiten (78) und (79) gelegenen Abstandes (86), z.B. bei mittiger Lage innerhalb der Form (61-63), werden zur Drosselung des Volumenstroms Formelemente (26, 32) benutzt, die direkt oberhalb der Einbringstelle (70) liegen, vgl. Figur 1, 3 und 7. Hier staut sich der Werkstoff (8, 9) vor dem Elektrodenzaun (80) und schiebt sich dort - ohne ein entsprechendes Formelement (26, 28) - schneller nach oben als hinter dem Zaun (80) . Bei der Verwendung der Formelemente (26, 32) schiebt sich der jeweilige Werkstoff (8, 9) zumindest im Bereich des Bonddrahtes (2) nahezu zeitgleich am Chip (6) vorbei. Auch bei dieser Chipumströmung wird die optimale Lage des Bonddrahtes (2) nicht verändert.If the material (8) or (9) is introduced into a mold in which the electrodes (1, 4) or the electrode plane (19) are further away from the insertion point or is than 35% of the space between the mold sides (78) and (79) located distance (86), e.g. in the case of a central position within the mold (61-63), molded elements (26, 32) are used to throttle the volume flow, which are located directly above the insertion point (70), cf. Figures 1, 3 and 7. Here the material (8, 9) jams in front of the electrode fence (80) and pushes up there - without a corresponding shaped element (26, 28) - faster than behind the fence (80). When using the shaped elements (26, 32), the respective material (8, 9) pushes past the chip (6) almost simultaneously, at least in the area of the bonding wire (2). Even with this flow around the chip, the optimal position of the bonding wire (2) is not changed.
Bei der Vorrichtung nach den Figuren 3-8 wird nach dem vollstän- digen Vorbefüllen der Form der Werkstoffdruck aufrechterhalten und der Drosselschieber (31) bis an die Außenkontur (14) der LED (10) zurückgezogen. Dadurch füllt sich der vom Drosselschieber (31) freigegebene Raum.In the device according to FIGS. 3-8, after the mold has been completely pre-filled, the material pressure is maintained and the throttle slide (31) is pulled back to the outer contour (14) of the LED (10). This fills the space released by the throttle slide (31).
Nach dem Spritzgießen und dem Entformen werden in einem Vereinzelungsvorgang die Stege (81) zwischen den Lumineszenzdioden (10) und den Elektroden (1, 4) der einzelnen LEDs (10) z.B. durch Stanzen entfernt. Bezugszeichenliste :After the injection molding and the demolding, the webs (81) between the luminescence diodes (10) and the electrodes (1, 4) of the individual LEDs (10) are removed, for example by stamping, in a separating process. Reference symbol list:
1 Anschluss, Anode, Elektrode1 connection, anode, electrode
2 Bonddraht, Aludraht 4 Anschluss, Kathode, Elektrode2 bond wire, aluminum wire 4 connection, cathode, electrode
5 Reflektorwanne5 reflector pan
6 Chip6 chip
7 Chipebene7 chip level
8 Werkstoff , Thermoplast 9 Werkstoff , Duroplast , Epoxidharz8 Material, thermoplastic 9 Material, thermoset, epoxy resin
10 LED, Lumineszenzdiode , Diode10 LEDs, luminescent diode, diode
11 Zylinder, flanschartiger Kragen 12 , 13 Abflachungen11 cylinders, flange-like collar 12, 13 flats
14 Kegelstumpf , Außenkontur14 truncated cone, outer contour
15 Kalotte15 calotte
16 Abdruck der Spritzgießdüse16 Impression of the injection molding nozzle
18 LED-Mittellinien, LED-Längsachsen18 LED center lines, LED longitudinal axes
19 Elektrodenebene, Zaunebene19 electrode level, fence level
20 LED-Körper 21 Lichtleitkörper20 LED bodies 21 light guide bodies
22 1. Fließfront zu (26)22 1st flow front to (26)
23 2. Fließfront zu (26)23 2nd flow front to (26)
24 3. Fließfront zu (26)24 3rd flow front to (26)
25 4. Fließfront zu (26) 26 Vorsprung, Formelement an (61)25 4th flow front to (26) 26 projection, molded element to (61)
28 Vorsprung, Formelement an (63) Querschnittsverengung, Drosselstelle, QuerSchnittsfläche Schieber, Drosselschieber Formelement Raumfläche, gekrümmt Formelementfläche, die in (60) hineinragt Kontur, Längsschnittkontur Oberkante28 projection, molded element on (63) Cross-sectional constriction, throttling point, cross-sectional area slide, throttle slide molded element, surface area, curved molded element surface that protrudes into (60) Contour, longitudinal cut contour upper edge
Trennfuge zwischen (61) und (31) Trennfuge, fiktiv zwischen (21) und (41)Parting line between (61) and (31) Parting line, fictional between (21) and (41)
Elektronikschutzzone BodenbereichElectronics protection zone floor area
Formhohlraum Basisform Schlittenform Hubform Trennfuge zwischen (61) und (62) Trennfuge zwischen (61) und (63) Saugkanal Öffnung Temperierkanal NiederhalterMold cavity, basic form, slide form, stroke form, parting line between (61) and (62) parting line between (61) and (63) suction channel opening, temperature control channel hold-down device
Einbringstelle für Werkstoff (8, 9) Spritzdüsen, Torpedodüsen, Heißkanaldüsen Heizpatronen Aussparung in (61) 75 Mittellinien der SpritzdüsenFeed point for material (8, 9) spray nozzles, torpedo nozzles, hot runner nozzles, heating cartridges, recess in (61) 75 center lines of the spray nozzles
78 Formseite, auf der die Spritzdüse (71) liegt78 Mold side on which the spray nozzle (71) lies
79 Formseite gegenüber der Spritzdüse (71)79 mold side opposite the spray nozzle (71)
80 Elektrodenzaun (Leadframe-Streifen) , eben80 electrode fence (leadframe strips), even
81 Stege, obere81 bridges, upper
85 Entfernung zwischen (70) und (81)85 Distance between (70) and (81)
86 Abstand zwischen (70) und (79) im Bereich des Kragens (11)86 distance between (70) and (79) in the region of the collar (11)
91 Kanal91 channel
92 1. Fließfront zu (28)92 1st flow front to (28)
93 2. Fließfront zu (28)93 2nd flow front to (28)
94 3. Fließfront zu (28)94 3rd flow front to (28)
95 4. Fließfront zu (28) 95 4th flow front to (28)

Claims

Patentansprüche : Claims:
1. Verfahren zum Herstellen von lichtleitenden LED-Körpern (20), aus einem vor dem endgültigen Erstarren fließfähigen Werkstoff durch Einbringen in eine Form (61-63), wobei der einzelne LED- Körper (20) mindestens einen lichtemittierenden Chip (6) und mindestens zwei - mit dem Chip (6) elektrisch verbundene - Elektroden (1, 4) umfasst und wobei der fließfähige Werkstoff zwischen einem Bodenbereich (42) der Form (61-63) und dem Chip (6) zumindest annähernd parallel zur Chipebene (7) und zumindest annähernd normal zu einer von zwei Elektroden (1, 4) gebildeten Ebene (19) zwischen die Elektroden (1, 4) eingespritzt wird, dadurch gekennzeichnet,1. A method for producing light-guiding LED bodies (20) from a material which is flowable before the final solidification by introducing them into a mold (61-63), the individual LED body (20) having at least one light-emitting chip (6) and comprises at least two electrodes (1, 4), which are electrically connected to the chip (6), and the flowable material between a bottom region (42) of the shape (61-63) and the chip (6) at least approximately parallel to the chip plane (7 ) and is injected at least approximately normal to a plane (19) formed by two electrodes (1, 4) between the electrodes (1, 4), characterized in that
- dass der Volumenstrom eines fließfähigen Werkstoffes (8, 9) - bei einer Entfernung (85) der Elektrodenebene (19) von der- That the volume flow of a flowable material (8, 9) - at a distance (85) of the electrode plane (19) from the
Einbringstelle (70), die größer ist als 35% des Abstandes (86) zwischen der Einbringstelle (70) und der der Einbringstelle (70) gegenüber gelegenen Formseite (79) der Form (61- 63) - oberhalb der Einbringstelle (70) und unterhalb der Chip- ebene (7) auf der Formseite (78) der Einbringstelle (70) durch mindestens eine Querschnittsverengung (30) gedrosselt wird, während - bei einer Entfernung (85) , die kleiner oder gleich 35% des Abstandes (86) ist - die Drosselung auf der der Einbringstelle (70) gegenüber gelegenen Formseite (79) erfolgt.Insertion point (70) that is greater than 35% of the distance (86) between the insertion point (70) and the mold side (79) opposite the insertion point (70) of the mold (61-63) - above the insertion point (70) and below the chip level (7) on the mold side (78) of the insertion point (70) is throttled by at least one cross-sectional constriction (30), while - at a distance (85) that is less than or equal to 35% of the distance (86) - The throttling takes place on the mold side (79) opposite the introduction point (70).
2. Herstellverfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Querschnittsverengung (30) durch mindestens ein in den Hohlraum (60) der Form (61-63) hineinragendes Formelement (26, 28, 32) erzeugt wird. 2. Manufacturing method according to claim 1, characterized in that the cross-sectional constriction (30) is produced by at least one shaped element (26, 28, 32) projecting into the cavity (60) of the mold (61-63).
3. Herstellverfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das Formelement (32) Teil eines Schiebers (31) ist, der vor dem Einbringen des fließfähigen Werkstoffs (8, 9) in den Hohlraum (60) der Form (61-63) hineinbewegt wird.3. Manufacturing method according to claim 1, characterized in that the shaped element (32) is part of a slide (31) which moves into the cavity (60) of the mold (61-63) before the flowable material (8, 9) is introduced becomes.
4. Herstellverfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass nach einem Vorbefüllen der durch das Formelement (32) volu- metrisch verkleinerten Form der Schieber (31) zur endgültigen Befüllung der Form (61-63) mit der der LED-Mittellinie (18) zugewandten Raumfläche (33) des Formelements (32) zumindest partiell an oder hinter die dortige Außenkontur (14) der Lumines- zenzdiode (10) zurückbewegt wird.4. Manufacturing method according to claim 3, characterized in that after a pre-filling of the shape by the shaped element (32) volumetrically reduced shape of the slide (31) for the final filling of the shape (61-63) with that of the LED center line (18) facing room surface (33) of the molded element (32) is at least partially moved back to or behind the outer contour (14) of the luminescence diode (10) there.
5. Herstellverfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass der vor dem Einbringen des fließfähigen Werkstoffs (8, 9) eingeschobene Schieber (31) währende des Einbringens kontinuierlich - über den gesamten Befüllvorgang - zurückbewegt wird.5. Manufacturing method according to claim 3, characterized in that the slide (31) inserted before the introduction of the flowable material (8, 9) during the introduction is continuously moved back - over the entire filling process.
6. Vorrichtung zu dem Herstellungsverfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die Querschnittsverengung (30) durch ein - im Längsschnitt der Lumineszenzdiode (10) gesehenes - keilartig in die Form hineinragendes Formelement (26, 28, 32) erzeugt wird.6. The device for the production method according to claim 2, characterized in that the cross-sectional constriction (30) is produced by a shaped element (26, 28, 32) projecting into the shape in a wedge-like manner, as seen in the longitudinal section of the luminescent diode (10).
7. Vorrichtung zu dem Herstellungsverfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die im Längsschnitt dargestellte Kontur (35) der der LED-Mittellinie (18) zugewandten Raumfläche (33) mit der LED-Mittellinie (18) einen Winkel von 5 bis 45 Winkelgraden einschließt, wobei der Schnittpunkt zwischen der Verlängerung der Kontur (35) und der LED-Mittellinie (18) oberhalb der Chipebene (7) liegt.7. The device for the production method according to claim 2, characterized in that the contour (35) shown in longitudinal section of the space surface (33) facing the LED center line (18) with the LED center line (18) forms an angle of 5 to 45 Includes degrees of angle, the intersection between the extension of the contour (35) and the LED center line (18) above the chip plane (7).
8. Vorrichtung zu dem Herstellungsverfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die Querschnittverengung (30) durch ein - im Querschnitt durch die Lumineszenzdiode (10) gesehenes - sichel- oder kreisringstückartiges Formelement (26, 28, 32) er- zeugt wird.8. The device for the production method according to claim 2, characterized in that the cross-sectional constriction (30) is produced by a shaped element (26, 28, 32), seen in cross-section through the luminescent diode (10), in the form of a sickle or annular piece.
9. Vorrichtung zu dem Herstellverfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass die der LED-Mittellinie (18) zuge- wandte Raumfläche (33) des Formelements (32) ein Mantelteil der Außenkontur (14) der Lumineszenzdiode (10) ist.9. Device for the manufacturing method according to claim 2, characterized in that the surface area (33) of the molded element (32) facing the LED center line (18) is a jacket part of the outer contour (14) of the luminescence diode (10).
10. Vorrichtung zu dem Herstellungsverfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass der Punkt der Oberkante (36) des Formelements (26, 28, 32), der der LED-Mittellinie (18) am nächsten kommt, auf oder unterhalb der Chipebene (7) liegt. 10. The device for the production method according to claim 2, characterized in that the point of the upper edge (36) of the molding element (26, 28, 32) that comes closest to the LED center line (18) on or below the chip level (7 ) lies.
PCT/DE2003/003060 2002-09-16 2003-09-15 Method for producing led bodies with the aid of a cross-sectional restriction WO2004027883A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003269827A AU2003269827A1 (en) 2002-09-16 2003-09-15 Method for producing led bodies with the aid of a cross-sectional restriction
US10/528,007 US7241637B2 (en) 2002-09-16 2003-09-15 Method of producing LED bodies with the aid of a cross-sectional constriction
DE10393816T DE10393816D2 (en) 2002-09-16 2003-09-15 Verfahren zum herstellen von led-körpern mit hilfe einer querschnittverengung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10242947.2 2002-09-16
DE10242947A DE10242947B8 (en) 2002-09-16 2002-09-16 Method for producing LED bodies by means of a cross-sectional constriction and apparatus for carrying out the production method

Publications (1)

Publication Number Publication Date
WO2004027883A1 true WO2004027883A1 (en) 2004-04-01

Family

ID=31896044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003060 WO2004027883A1 (en) 2002-09-16 2003-09-15 Method for producing led bodies with the aid of a cross-sectional restriction

Country Status (5)

Country Link
US (1) US7241637B2 (en)
CN (1) CN1682382A (en)
AU (1) AU2003269827A1 (en)
DE (2) DE10242947B8 (en)
WO (1) WO2004027883A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10159522A1 (en) * 2001-12-05 2003-06-26 G L I Global Light Ind Gmbh Light conducting LED members are formed by locating electrical components in an injection mould, evacuating the mould, and injecting a material through an injection opening
US20030214070A1 (en) * 2002-05-08 2003-11-20 General Electric Company Multiwall polycarbonate sheet and method for its production
TW200635085A (en) * 2005-01-20 2006-10-01 Barnes Group Inc LED assembly having overmolded lens on treated leadframe and method therefor
JP7074668B2 (en) * 2015-10-29 2022-05-24 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Hot melt elastic attachment adhesive for low temperature applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469020A (en) * 1987-09-10 1989-03-15 Nissei Plastics Ind Co Method of sealing light-emitting diode with resin
JPH04329680A (en) * 1991-05-01 1992-11-18 Sharp Corp Light emitting device
JPH0730152A (en) * 1993-07-09 1995-01-31 Mitsubishi Cable Ind Ltd Molding method for electronic component mounted on board and board structure for molding
DE19604492C1 (en) * 1996-02-08 1997-06-12 Wustlich Hans Dieter Injection moulding tool for LED manufacture
US5811132A (en) * 1995-07-25 1998-09-22 Samsung Electronics Co., Ltd. Mold for semiconductor packages

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0290697A3 (en) * 1987-05-12 1989-03-15 Shen-Yuan Chen Light emitting diodes (led) lamp and its quick manufacturing method
JPS6469019A (en) * 1987-09-10 1989-03-15 Nissei Plastics Ind Co Method of sealing light-emitting diode with resin
JPH06216412A (en) 1993-01-20 1994-08-05 Stanley Electric Co Ltd Manufacture of led
JP2927660B2 (en) * 1993-01-25 1999-07-28 シャープ株式会社 Method for manufacturing resin-encapsulated semiconductor device
US5964030A (en) * 1994-06-10 1999-10-12 Vlsi Technology, Inc. Mold flow regulating dam ring
JPH10159522A (en) * 1996-11-28 1998-06-16 Takashi Hikita Variable valve timing and lift mechanism
JPH11103097A (en) * 1997-07-30 1999-04-13 Rohm Co Ltd Semiconductor light emitting element
JPH11121488A (en) * 1997-10-15 1999-04-30 Toshiba Corp Manufacture of semiconductor device and resin sealing device
EP1075022A1 (en) * 1999-08-04 2001-02-07 STMicroelectronics S.r.l. Offset edges mold for plastic packaging of integrated semiconductor devices
DE10159522A1 (en) * 2001-12-05 2003-06-26 G L I Global Light Ind Gmbh Light conducting LED members are formed by locating electrical components in an injection mould, evacuating the mould, and injecting a material through an injection opening
DE10163116B4 (en) * 2001-12-24 2008-04-10 G.L.I. Global Light Industries Gmbh Method for producing light-conducting LED bodies in two spatially and temporally separate stages

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469020A (en) * 1987-09-10 1989-03-15 Nissei Plastics Ind Co Method of sealing light-emitting diode with resin
JPH04329680A (en) * 1991-05-01 1992-11-18 Sharp Corp Light emitting device
JPH0730152A (en) * 1993-07-09 1995-01-31 Mitsubishi Cable Ind Ltd Molding method for electronic component mounted on board and board structure for molding
US5811132A (en) * 1995-07-25 1998-09-22 Samsung Electronics Co., Ltd. Mold for semiconductor packages
DE19604492C1 (en) * 1996-02-08 1997-06-12 Wustlich Hans Dieter Injection moulding tool for LED manufacture

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 285 (E - 780) 29 June 1989 (1989-06-29) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 174 (E - 1346) 5 April 1993 (1993-04-05) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 04 31 May 1995 (1995-05-31) *

Also Published As

Publication number Publication date
DE10393816D2 (en) 2005-08-25
DE10242947A1 (en) 2004-03-25
AU2003269827A1 (en) 2004-04-08
DE10242947B4 (en) 2008-12-18
DE10242947B8 (en) 2009-06-18
US7241637B2 (en) 2007-07-10
US20060051901A1 (en) 2006-03-09
CN1682382A (en) 2005-10-12

Similar Documents

Publication Publication Date Title
DE10163117C1 (en) Transparent LED body manufacturing method uses 2-stage moulding process for preventing damage to light-emitting chip and its current leads
DE4417404C2 (en) Process for the production of a plastic cover plate
EP0162037B1 (en) Method for producing injection-moulded parts, and injection mould for carrying out this method
DE10137336A1 (en) Collimating lamp
EP1461835B1 (en) Method for producing light emitting diodes with light-guiding bodies in two spatially and temporally separate steps
DE3245571A1 (en) Needle shut-off nozzle for injection moulds
DE19623308C2 (en) Valve needle centering insert for an injection molding nozzle
DE102014101107B4 (en) mold
DE4022530C2 (en) Nozzle for injection molding machines
WO2004027883A1 (en) Method for producing led bodies with the aid of a cross-sectional restriction
DE60300133T2 (en) Locking valve needle in a nozzle by injection molding
EP1454368B1 (en) Method for the production of light emitting diodes
AT514828B1 (en) Method and mold for the production of sealing plates by injection molding as well as correspondingly produced sealing plates
EP1911564B1 (en) Injection nozzle for introducing a molten mass into a plastic injection moulding form
AT520140B1 (en) Injection molding machine with second injection unit
WO2005058574A2 (en) Method for producing injection molded parts, injection molding device for implementing said method and injection molded part produced according to said method
DE102004050141A1 (en) Injection of plastic around a semi-finished product involves injection of melt streams onto both sides of semi-finished product in molding tool
EP1338398A1 (en) Apparatus for multicomponent moulding of plastic parts
EP3000576B1 (en) Mould with roughness at the weldlinewall
DE102016105761B4 (en) Molding system with movable mold and method for molding a semiconductor package
EP0853812B1 (en) Method and device for the final assembly of a computer keyboard
DE3832422C2 (en)
EP2732950B1 (en) Injection mould and injection moulded part
DE10233962A1 (en) Injection adapter used in low pressure casting comprises a bushing through which a melt can pass and arranged in the closed melt path between a low pressure oven and a mold structure
EP2633968A1 (en) Method for producing a plastic container and plastic container

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006051901

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10528007

Country of ref document: US

Ref document number: 20038219743

Country of ref document: CN

REF Corresponds to

Ref document number: 10393816

Country of ref document: DE

Date of ref document: 20050825

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393816

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 10528007

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP