WO2004026564A1 - Apparatus and method for producing fiber-reinforced resin formed product - Google Patents

Apparatus and method for producing fiber-reinforced resin formed product Download PDF

Info

Publication number
WO2004026564A1
WO2004026564A1 PCT/JP2003/003638 JP0303638W WO2004026564A1 WO 2004026564 A1 WO2004026564 A1 WO 2004026564A1 JP 0303638 W JP0303638 W JP 0303638W WO 2004026564 A1 WO2004026564 A1 WO 2004026564A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing fiber
resin composition
fiber
reinforcing
polymerizable resin
Prior art date
Application number
PCT/JP2003/003638
Other languages
French (fr)
Japanese (ja)
Inventor
Takayasu Yoshii
Fumio Murata
Kiyoshi Yamamoto
Masahiro Tsukamoto
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002273614A external-priority patent/JP4404535B2/en
Priority claimed from JP2003040307A external-priority patent/JP4283558B2/en
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to KR1020057004676A priority Critical patent/KR100928379B1/en
Priority to CNB038223880A priority patent/CN100537198C/en
Publication of WO2004026564A1 publication Critical patent/WO2004026564A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • B29C70/323Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core on the inner surface of a rotating mould
    • B29C70/326Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core on the inner surface of a rotating mould by rotating the mould around its axis of symmetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/8008Component parts, details or accessories; Auxiliary operations specially adapted for winding and joining
    • B29C53/8016Storing, feeding or applying winding materials, e.g. reels, thread guides, tensioners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/8008Component parts, details or accessories; Auxiliary operations specially adapted for winding and joining
    • B29C53/8066Impregnating

Definitions

  • the present invention relates to an apparatus for producing a fiber-reinforced resin molded article such as a fiber-reinforced resin pipe, and a method for producing the same.
  • fiber-reinforced resin pipes which are one of the fiber-reinforced resin moldings, are lighter in weight than metal pipes and concrete pipes, and have excellent workability, and are therefore widely used.
  • Such a fiber-reinforced resin pipe is formed by continuously winding a plurality of circumferential reinforcing fibers for a circumferentially rotating core while moving in the axial direction while simultaneously winding a plurality of the reinforcing fibers.
  • a regular meandering is performed between the circumferential direction reinforcing fiber reinforcing material wound between the upper side and the circumferential direction reinforcing fiber reinforcing material between the circumferential direction reinforcing fiber reinforcing material. It has been manufactured by continuously supplying in a shape, impregnating these long fiber reinforcing materials with a polymerizable resin composition, and thermally curing the polymerizable resin composition (see, for example, Japanese Patent Application Laid-Open No.
  • the fiber reinforced resin pipe described above shows that the resin ratio of the layer of the axial reinforcing long fiber reinforcement is compared with the layer of the long reinforcing fiber reinforcement for circumferential reinforcement and the layer of the long fiber reinforcing material for axial reinforcement.
  • the long-fiber reinforcing material for axial reinforcement is supplied in a meandering manner, and at the inflection point, is substantially parallel to the long-fiber reinforcing material for circumferential reinforcement. Since the reinforcing fibers are concentrated, the length of the reinforcing fiber between the circumferential reinforcing fiber layer and the reinforcing fiber layer for the axial strengthening is particularly increased during the rapid polymerization reaction. There was a risk of cracks being concentrated at the inflection points of the fiber reinforcement.
  • chopped strands are used instead of long fiber reinforcing materials for axial reinforcement. It is currently employed to manufacture fiber reinforced resin pipes using metal. Specifically, the long fiber reinforcing material for circumferential reinforcement, impregnated with the polymerizable resin composition on a core or in an impregnation tank, is wound around the core, and the chopped strands are placed on the core as necessary. To form a fiber-reinforced resin pipe by shaping the polymerizable resin composition with a heater or the like after shaping, and as a result, the chopped strands are almost randomly formed. It is possible to prevent cracks due to distribution and concentration in the fiber direction.
  • the polymerizable resin composition is polymerized by a low-temperature reaction-type polymerization initiator that starts a reaction at room temperature or lower, it takes a long time to complete the polymerization, and the productivity is low.
  • the glass fiber roving is cut with a hopper to obtain a chopped strand, so that the chopped strand scatters into the workplace during cutting and sprinkling, The working environment may deteriorate. Therefore, large-scale exhaust equipment is required, which increases equipment costs.
  • the present invention has been made in view of such a problem, and completes the polymerization reaction in a short time without using a chopped strand to prevent cracks! /, Fiber reinforced resin molding It is an object of the present invention to provide an apparatus for manufacturing a fiber-reinforced resin molded body for easily manufacturing a body, and a method for manufacturing the same. Disclosure of the invention
  • an apparatus for manufacturing a fiber-reinforced resin molded product according to the present invention includes a molding die that is supported by a rotating shaft, a molding section provided with a light irradiation device, and a plurality of reinforcing members.
  • a reinforced polyester fiber composition containing a photopolymerization initiator and a reinforcing fiber accumulating portion that arranges a reinforcing fiber group drawn out from each reinforcing fiber roll body on the downstream side in which a fiber bundle is arranged are stored.
  • an impregnating tank for impregnating the polymerizable resin composition into one of the reinforcing fiber groups and rotating the impregnating fibers of the other reinforcing fiber group by impregnating the polymerizable resin composition.
  • a reinforcing fiber supply unit provided with a filament winding supply device for supplying a meandering land and a meandering fiber group on one of the strong fiber groups to be wound into a mold, respectively, and impregnated with the polymerizable resin composition.
  • the reinforcing fiber group in a state where the other reinforcing fiber group meandering at random on the group is laminated is wound up by a rotating molding die, and the reinforcing fiber group wound up by the molding die is irradiated via a light irradiation device. It is characterized in that the polymerizable resin composition is cured by irradiation with light.
  • one-half of the reinforcing fibers of each of the plugs arranged in the reinforcing fiber accumulating portion are impregnated with the polymerizable resin composition through an impregnation device and pulled out as one of the reinforcing fiber groups, It is wound on a rotating mold. Further, the other half of the reinforcing fiber is drawn out to the filament winding supply device as the other reinforcing fiber group, and is fed out by the filament-inding supply device. Also, if the other reinforcing fiber group is supplied toward one reinforcing fiber group that is wound into a molding die, the other reinforcing fiber group is placed on one reinforcing fiber group while meandering at random.
  • the rotating molding die has a reinforcing fiber in a state in which one reinforcing fiber group impregnated with a random resin composition is impregnated on the other reinforcing fiber group impregnated with the resin composition.
  • the fibers are wound up.
  • one of the reinforcing fiber groups and the other reinforcing fiber group are cut.
  • a photopolymerization initiator is blended with the polymerizable resin composition impregnated in the reinforcing fiber group laminated on the mold. Therefore, it starts curing by receiving light.
  • the light irradiation is stopped, and the rotation of the mold is stopped. Take out the manufactured fiber reinforced resin pipe.
  • one reinforcing fiber group is laminated in the circumferential direction, and the other randomly meandering reinforcing fiber group is laminated in the axial direction. A portion where the reinforcing fibers of the reinforcing fiber group and the reinforcing fibers of the other reinforcing fiber group concentrate does not occur, and the generation of cracks can be reliably prevented.
  • the impregnating device may be provided with a comb-shaped guide member located downstream of the one reinforcing fiber group in the winding direction.
  • each of the reinforcing fibers in one of the reinforcing fiber groups impregnated with the polymerizable resin composition passes between the teeth of the comb-shaped guide member, thereby maintaining the interval between the reinforcing fibers and downstream. Can be guided to the side.
  • the reinforcing fibers of one reinforcing fiber group adhere to each other in a bundle by the polymerizable resin composition to form a void, and the other reinforcing fiber group supplied on one reinforcing fiber group becomes Dropping from the gap can be reliably prevented.
  • the length per unit time of the other forcing fiber group supplied from the filament winding supply device is larger than the length per unit time of the forcing fiber group wound on the forming die. Is also good.
  • each reinforcing fiber in the other reinforcing fiber group is placed on one reinforcing fiber group by an amount corresponding to a higher speed. And it is placed while meandering randomly in the front, rear, left and right directions. Since the polymerizable resin composition is impregnated in one of the reinforcing fiber groups, each reinforcing fiber of the other reinforcing fiber group is adhered to the one of the reinforcing fiber groups and held in a randomly meandering state. Is done.
  • the filament winding supply device may be provided with a guide plate that is located downstream of the other reinforcing fiber group in the supply direction and that controls the protrusion of the other reinforcing fiber group in the width direction.
  • the forming unit may be provided with a catching light irradiation device capable of irradiating the outer peripheral surface of the forming die with light.
  • one of the reinforcing fiber groups impregnated with the polymerizable resin composition is wound into a molding die in a portion where the reinforcing fibers are stacked thicker at a later time and light hardly transmits and hardly hardens.
  • lamination it is possible to irradiate light to hardly hard portions.
  • the fiber reinforced resin pipe has a different cross section as shown in FIG. 12 (when the thickness changes in the axial direction), it is particularly effective because light can be transmitted intensively. .
  • the polymerizable resin composition can be cured at the stage of starting to wind up one of the reinforcing fiber groups, thereby preventing the production of a fiber-reinforced resin pipe without hardening the hard-to-harden portions. can do.
  • the assisting light irradiating device preferably includes ultraviolet rays but is rich in visible light from the viewpoint of safety.
  • the mold may be opened and closed.
  • closing the mold is preferable because the manufactured fiber-reinforced resin pipe can be easily taken out of the molding die. This is particularly effective when the fiber-reinforced resin pipe has a different cross section from place to place. That is, since it is not necessary to forcibly pull out the mold, it is possible to remove the mold without damaging the obtained fiber-reinforced resin pipe.
  • the light irradiation device may be capable of moving forward and backward between the irradiation position facing the outer peripheral surface of the mold and the retracted position.
  • the reinforcing fiber supply unit may be capable of reciprocating between a working position approaching the mold and a separated retreat position.
  • the reinforcing fiber supply unit is advanced, and the reinforcing fiber group can be wound around the rotating mold and laminated with a certain thickness, while the reinforcing fiber group laminated with a certain thickness on the mold is irradiated with light.
  • the reinforcing fiber supply section can be retracted so as not to interfere with the light irradiation device.
  • a tray located below the mold for collecting the polymerizable resin composition may be provided, and a filter may be provided at the outflow opening.
  • the mold is rotated to laminate the reinforcing fiber group impregnated with the polymerizable resin composition.
  • the excessively impregnated polymerizable resin composition is extruded together with the polymerizable resin composition to be dropped, and the excess polymerizable resin thread to be dropped can be collected in a tray. That is, since the polymerizable resin composition has not been irradiated with light yet, curing has not been started and the polymerizable resin composition can be reused. Therefore, the pot life of the polymerizable resin composition is prolonged. Further, since the filter is provided on the tray, it is possible to prevent dust and the like from being mixed.
  • the polymerizable resin composition may be one in which a high-temperature reaction-type polymerization initiator is combined.
  • the high-temperature reaction-type polymerization initiator used in each of the above-mentioned constitutions means a substance that initiates polymerization at a normal temperature or higher. Can be selected as appropriate. Although not particularly limited, those which start the reaction at 50 ° C or higher are preferred. Specifically, the reaction started?
  • polymerization initiator having a temperature of 50 to 100 ° C.
  • t-butyl peroxetyl hexate bis (4-t / l-butyl / hexyl hexyl) -peroxydicarbonate, 1, 1-bis (t-butylperoxy) 1,3,3,5-trimethylcyclohexane, t-butynolepoxy 2-ethylhexanate, diarboxoxide
  • reaction start temperature 100 ° C to 160 ° C
  • examples of the polymerization initiator include t-butyl peroxybenzoate, dicumyl peroxide, and the like.
  • t-butyl peroxy-12-ethylhexanate diasil peroxide
  • Preferred are 1,1,3,3-tetramethylbutylperoxy-12-ethylhexanate, t-butylperoxylaurate and the like.
  • the polymerizable resin and the resin constituting the composition are not particularly limited, but include, for example, an unsaturated polyester, an epoxy resin, a vinyl ester resin, a urethane resin, and an acrylic resin, and an unsaturated polyester is preferable. .
  • the unsaturated polyester examples include, but are not limited to, orthophthalic unsaturated polyester, isophthalic unsaturated polyester, and bisphenol-based unsaturated polyester. And unsaturated polyesters.
  • the composition of these resins can be appropriately determined according to the application. For example, the viscosity can be adjusted according to the amount and molecular weight of the monomer. .
  • photopolymerization initiator examples include (bis) acylphosphine oxide, camphorquinone, benzyl, trimethylbenzoyldiphenylphosphinoxide, methylthioxanthone, bisventenyltitanium di, and aromatic diazonium salt. And sodium salt, sulfoium salt, sulfonate and the like, and these are used alone or in combination.
  • a photopolymerization initiator that reacts in a wavelength region including visible light may be combined.
  • the photopolymerization initiator when a photopolymerization initiator that reacts in a wavelength region including visible light is used, the photopolymerization initiator may be (bis) acylphosphine oxide, camphorquinone, benzyl, or trimethylbenzoyldiphenyl. -Ruphosphinoxide, methylthioxanthone, bisventenylyltitanium and the like. Particularly preferred are bisacylphosphinoxide and a mixture thereof with ⁇ - hydroxyketone.
  • the method for producing a fiber-reinforced resin molded product according to the present invention divides a plurality of reinforcing fibers into arbitrary plural groups to form a plurality of reinforcing fiber groups.
  • One of the reinforcing fiber groups impregnated with the polymerizable resin composition is continuously wound around a rotatable core mold and is shaped into a pipe.
  • the method for producing a fiber-reinforced resin molded article according to the present invention includes a method of separating a plurality of reinforcing fibers into arbitrary plural pieces to form a plurality of reinforcing fiber groups.
  • the other reinforcing fiber group supplied with the other reinforcing fiber group is continuously wound around a rotatable core mold and shaped into a pipe shape.
  • the other reinforcing fiber is continuously wound around the mold
  • the polymerization reaction is started by irradiating one of the reinforcing fiber groups supplied with light with light, and the heat of the reaction initiates the polymerization reaction by the high-temperature reaction type polymerization initiator to cure the polymerizable resin composition. And a curing step.
  • the polymerizable resin composition may contain a high-temperature reaction-type polymerization initiator.
  • the polymerizable resin composition may contain a photopolymerization initiator which reacts in a wavelength region including visible light.
  • one of the reinforcing fiber groups is shaped into a pipe to a certain thickness, and then the polymerizable resin composition is cured by irradiating light and shaped again into a pipe. It may have a re-hardening step of shaping and curing the polymerizable resin composition by light irradiation.
  • the polymerizable resin composition may be cured by irradiating light while continuously winding one of the reinforcing fibers in the hardening step.
  • the high-temperature reaction-type polymerization initiator used in each of the above-mentioned methods means one that initiates polymerization at room temperature or higher, and the time until the resin cures (hereinafter referred to as the pot life) and the heating of the resin It can be appropriately selected depending on conditions and the like. Although not particularly limited, those which initiate the reaction at 50 ° C. or higher are preferred.
  • the reaction initiation temperature is 50 to 1
  • polymerization initiators at 0 ° C t-butynoleoxyshexyl hexate, bis (4-t-butynolec hexyl) mono-baroxydicus levonate, 1,1-bis- (t-butyl propyl) oxy 3,3,5-Trimethyl _ / lecyclohexane, t-peptinoleoxy 2-ethylhexanate, diasilboxide, as a polymerization initiator at a reaction initiation temperature of 100 ° C to 160 ° C, T-butyl peroxybenzoate, dicumyl peroxide, etc. are considered.
  • 3,3-Tetramethylbutylperoxy-12-ethylhexanate, t-butylbisoxylaurate and the like are preferred.
  • the resin constituting the polymerizable resin composition is not particularly limited, but examples thereof include an unsaturated polyester, an epoxy resin, a butyl ester resin, a urethane resin, and an acrylic resin, and an unsaturated polyester is preferable.
  • the unsaturated polyester examples include, but are not limited to, onolesophthalic acid-based unsaturated polyester, isophthalic acid-based unsaturated polyester, and bisphenol-based unsaturated polyester.
  • the composition of these resins can be appropriately determined according to the application. For example, the viscosity can be adjusted according to the amount and molecular weight of the monomer.
  • photopolymerization initiator examples include (bis) acylphosphine oxide, camphorquinone, benzinole, trimethylbenzoyldiphenylphosphinoxide, methylthioxanthone, bisventager-titanium di, aromatic and diazoyum salts. And diaryldonium salts, sulfonium salts, sulfonic acid esters and the like, and these are used alone or in combination.
  • the photopolymerization initiator when a photopolymerization initiator that reacts in the wavelength region including visible light is used, the photopolymerization initiator may be (bis) acylphosphine oxide, camphorquinone, benzyl, trimethylbenzoyl. Diphenylphosphinoxide, methylthioxanthone, bisventenyltitanium and the like. Especially preferred For example, bis-acid / phosphinoxide or a mixture thereof with hydroxyketone may be mentioned.
  • the pot life when the pot life is required for several days, it is preferable to select one having a temperature range of about 70 to 100 ° C. for starting the reaction. That is, the photopolymerization initiator reacts upon irradiation with ultraviolet rays, and the resin generates heat up to about 100 to 130 ° C. At this heat generation temperature, the high-temperature reaction-type polymerization initiator can sufficiently exhibit its effect. . Therefore, the pot life is sufficient, and the resin is not unnecessarily cured during normal work (normal temperature).
  • the plurality of reinforcing fibers are not particularly limited, and examples thereof include inorganic fibers such as glass fibers and carbon fibers, and long fibers such as organic fibers such as vinylon fibers and aramide fibers.
  • the other reinforcing fiber group When the other reinforcing fiber group has an irregular meandering shape among the above-mentioned methods, it may be formed into a meandering shape or a loop shape mechanically by using a trappers device when the other reinforcing fiber group has an irregular meandering shape. , A winding habit may be used.
  • the irregular meandering shape or the loop shape is used to prevent the occurrence of regular overlapping with one reinforcing fiber group. If partial overlap occurs regularly, cracks are likely to occur. .
  • the feeding method utilizing the winding habit and the like can be performed by making the feeding speed of the other reinforcing fiber group faster than the winding speed of one of the reinforcing fiber groups (hereinafter, referred to as peripheral speed). . Preferably, it is at least twice the peripheral speed. Due to the difference in the supply speed between the one reinforcing fiber group and the other reinforcing fiber group, the other reinforcing fiber group is loosened and the one reinforcing fiber group is passed through the polymer resin composition in a state where it is passed. Can be supplied irregularly.
  • FIG. 1 is a front view showing an embodiment of an apparatus for manufacturing a fiber-reinforced resin pipe according to the first embodiment.
  • FIG. 2 is a plan view partially showing the manufacturing apparatus of FIG.
  • FIG. 3 is a front view showing the mold in an open state.
  • FIG. 4 is a front view showing the molding die in a closed state.
  • Fig. 5 is a cross-sectional view taken along line X-X in Fig. 3.
  • FIG. 6 is a front view showing a supply frame constituting a reinforcing fiber supply mechanism with a part thereof omitted.
  • FIG. 7 is a side view of FIG.
  • FIG. 8 is a perspective view showing a partially omitted impregnating device constituting the reinforcing fiber supply mechanism.
  • FIG. 9 is a front view showing a filament winding supply device that constitutes the supplementary fiber supply mechanism.
  • FIG. 10 is a side view of FIG.
  • FIG. 11 is a schematic diagram schematically showing the relationship between one reinforcing fiber drawn through an impregnating device and the other reinforcing fiber supplied through a filament winding supply device.
  • FIG. 12 is a cross-sectional view showing a fiber-reinforced resin pipe partially broken away.
  • FIG. 13 is a schematic perspective view of an apparatus for manufacturing a fiber-reinforced resin pipe according to the second embodiment.
  • FIG. 14 is a schematic perspective view of a light irradiation device provided in the manufacturing apparatus of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the fiber reinforced resin pipe 10 is a pipe joint for connecting ends of civil engineering pipes and other pipes. As shown in FIG. 12, a rubber ring 11 and the rubber ring 1 are connected to each other. And a cylindrical fiber-reinforced resin layer 12 which is concentrically laminated so as to cover the outer peripheral surface of No. 1.
  • the rubber ring 11 is disposed near both ends of the fiber-reinforced resin pipe 10, and has a plurality of recesses 11a formed on the outer peripheral surface.
  • the fiber-reinforced resin layer 12 has a convex portion 12a corresponding to the concave portion 11a of the rubber ring 11 described above on an inner peripheral surface thereof, and the fiber-reinforced resin layer 12 and the rubber ring 11 are formed. 1 1 does not leave each other.
  • FIG. 1 An embodiment of the manufacturing apparatus 1 of the present invention for manufacturing such a fiber-reinforced resin pipe 10 will be described with reference to FIGS. 1 and 2.
  • FIG. 1 An embodiment of the manufacturing apparatus 1 of the present invention for manufacturing such a fiber-reinforced resin pipe 10 will be described with reference to FIGS. 1 and 2.
  • FIG. 1 An embodiment of the manufacturing apparatus 1 of the present invention for manufacturing such a fiber-reinforced resin pipe 10 will be described with reference to FIGS. 1 and 2.
  • This manufacturing apparatus 1 is provided with a forming section 1A, a reinforcing fiber collecting section 1B which is installed at a distance from the forming section 1A, and between the forming section 1A and the reinforcing fiber collecting section 1B. And a supplementary fiber supply unit 1C.
  • the molding part 1A is provided with a light irradiation device 3 that rotatably supports the molding die 2 and cures the polymerizable resin composition 6A in which the photopolymerization initiator is mixed.
  • the molding die 2 has a flange member 21 (refer to FIG. 5) fixed to one end surface side thereof and an outer portion corresponding to the inner diameter of the fiber-reinforced resin pipe 10.
  • a fixed mold 22 having an outer peripheral surface having a diameter, and an outer peripheral surface having the same outer diameter as the outer diameter of the outer peripheral surface of the fixed mold 22.
  • a pair of swing dies 23 rotatably supported at both ends of the fixed dies 22, respectively, and an outer peripheral surface having the same outer diameter as the outer diameter of the outer peripheral surface of the fixed dies 22.
  • the fixed mold 22 and the swing mold are arranged so as to face the elevating mold 24 that can move up and down with respect to the fixed mold 22 and the flange member 21 fixed to the fixed mold 22. 3 and a lifting / lowering mold 24 each having a flange member 25 detachable from the other end face side and a force.
  • the outer peripheral surface of the fixed die 2, the outer peripheral surface of the pair of swing dies 23, and the outer peripheral surface of the elevating die 24 have a continuous outer diameter corresponding to the inner diameter of the fiber-reinforced resin pipe 10. To form a circumferential surface.
  • the molding die 2 when the molding die 2 is in the mold open state, the molding die 2 is closed via a driving device (not shown) so that the fixed die 22 is lifted with respect to the fixed die 22 as shown in FIG.
  • the pair of swing molds 2 3 rotate inward, and the outer peripheral surface of the fixed mold 2 2 and the swing mold 2 3 are larger than the outer diameter of the mold 2 when the molds are opened. The distance from the outer peripheral surface is reduced.
  • the blung member 25 can be attached to and detached from the fixed mold 22, the pair of swing molds 23, and the elevating mold 24, and the rubber ring 11 must be attached. Can be.
  • the elevating mold 24 is guided by a linear guide 22 provided on the fixed mold 22 to move up and down. ,
  • a peripheral groove having a shape substantially corresponding to the cross-sectional shape of the rubber ring 11 described above is attached on each outer peripheral surface of the fixed mold 22, the pair of swing molds 23, and the elevating mold 24, a peripheral groove having a shape substantially corresponding to the cross-sectional shape of the rubber ring 11 described above is attached.
  • a concave portion is formed at a position corresponding to the position, and a concave portion is formed near the other end surface (FIG. 5 shows the peripheral groove 22a and the concave portion 22b of the fixed mold 22).
  • a pair of swing molds 23 and a lift mold 24 are also formed with a circumferential groove and a recess which are continuous with the circumferential groove 22 a and the recess 22 b of the fixed mold 22. When the mold 2 is opened, the circumferential grooves and the concave portions are continuous in the circumferential direction.
  • the recesses 2 2b and The convex portions 25 a having a shape corresponding to the cross-sectional shapes of the concave portions of the in-ing die 23 and the concave portion of the elevating die 24 are formed corresponding to their formation positions, and the flange member 25 is formed by opening the mold.
  • the protrusions 25 a are fitted into the respective recesses of the fixed mold 22, the pair of swing molds 23, and the elevating mold 24, and are positioned relative to each other.
  • the light irradiation device 3 is composed of a pair of guide rails 31 laid in the left and right direction (up and down direction in FIG. 2) at an interval in the up and down direction on the molding section 1A, and slidably mounted on the guide rails 31.
  • a sliding frame 32 mounted thereon and a lamp shade 33 integrally connected to the sliding frame 32 and provided with a pair of UV lamps 34 (see FIG. 1).
  • 33 is connected to a ventilation duct 35 connected to a blower (not shown).
  • the light irradiation device 3 is configured to be able to move up and down with respect to the forming part 1A by using a combination of an electric motor and a starry shaft (not shown), and to correspond to the diameter of the molding die 2. be able to.
  • a curtain (not shown) is provided around the lamp shade 33 of the light irradiation device 3 so as to prevent harmful ultraviolet rays from leaking outside when the UV lamp 34 is turned on. Further, if necessary, a light-shielding curtain (not shown) can be stretched around the manufacturing apparatus 1, and at that time, the entrance of workers is restricted.
  • the molding unit 1A is provided with an auxiliary light irradiation device 36 provided with a lamp 361, which can irradiate light including ultraviolet rays but containing more visible light.
  • a lamp 361 which can irradiate light including ultraviolet rays but containing more visible light.
  • the auxiliary light irradiation device 36 is rotated to the irradiation position, the outer end surface of the rubber ring 11, the outer peripheral surface of the molding die 2, and the inner end surfaces of the flange members 21, 25 are formed.
  • a power bar (not shown) having a slit is mounted on the lamp 361 so that light can be mainly emitted to the portion A (see FIG. 5) formed by the lamp. '
  • a tray 9 for collecting the polymerizable resin composition 6A is provided in the molding section 1A so as to face the outer peripheral surface on the lower side of the molding die 2, and an opening formed at the junction of the gradient is provided. Is provided with a filter 91.
  • the polymerizable resin composition 6A that has passed through the filter 91 is collected in the collection mass 92, and is collected via the collection pump 93 in the impregnation tank 61 of the impregnation device 6 described later.
  • the collecting fiber accumulating portion 1B is configured by arranging a plurality of rolls R of reinforcing fibers F such as glass rovings on the loading platform 4, and the loading platform 4 has a number of holes through which each reinforcing fiber F passes.
  • the guide 4 1 formed is fixed.
  • the reinforcing fibers F respectively drawn out from the rolls R are aligned and divided into two by a guide 41, and one half of the reinforcing fibers F is sent to the impregnating device 6 of the reinforcing fiber supply unit 1C described later and the other half.
  • the sections are respectively guided by filament winding supply devices 7.
  • the group of the reinforcing fibers guided to the impregnating device 6 is referred to as one of the reinforcing fibers, and the symbol FA is used, and the group of the reinforcing fibers guided to the filament winding supply device 7 is The symbol FC is used as the other reinforcing fiber group.
  • the mouth R of the plurality of reinforcing fibers F guided to the impregnating device 6 of the reinforcing fiber supply unit 1C and the roll R of the reinforcing fibers F guided to the filament winding supply device 7 are individually adapted to each device. And supply it to each device.
  • the reinforcing fiber supply section 1C includes a supply frame 5 movable in the front-rear direction (the left-right direction in FIG. 1), an impregnation device 6 provided on the supply frame 5, a filament winding supply device 7, And a pressing roller device 8.
  • the supply frame 5 is composed of a pair of guide rails 51 laid in the front-rear direction and a frame book slidably mounted on the guide rails 51.
  • Body 52 an electric motor 53 provided on the frame body 52, a chain wheel 54 provided on the output shaft thereof, and a rotating shaft 55 rotatably supported by the frame body 52.
  • a chain wheel 56 and a pinion 57 fixed to the rotating shaft 55 and a rack 58 laid between the pair of guide rails 51 are provided between the chain wheels 54 and 56.
  • a chain 59 is wound endlessly, and a pinion 57 is combined with a rack 58.
  • the frame body 52 can be moved in the front-rear direction along the guide rail 51 with respect to the rack 58.
  • the reinforcing body F of the other reinforcing fiber group FC drawn from the reinforcing fiber accumulating portion 1B is changed in direction to the filament winding supply device 7 by changing the direction.
  • a guide 59 is provided in which a number of holes are formed to allow each reinforcing fiber F to pass through.
  • the frame main body 52 of the supply frame 5 has a gutter 50 (see FIG. 1) extending below the reinforcing fiber group FA toward the downstream side. Therefore, the polymerizable resin composition 6A dropped from one of the reinforcing fiber groups FA impregnated with the polymerizable resin composition 6A can be collected and led to the toy 9.
  • the length of the gutter 0 is set according to the advance / retreat distance of the supply frame 5.
  • the impregnating device 6 is fixed to the frame main body 5 2 of the supply frame 5 and has an impregnating tank 61 for storing a polymerizable resin composition 6 A containing a photopolymerization initiator. , A pair of guide rollers 62 provided above the front and rear ends of the impregnation tank 61, a lifting cylinder 63 fixed to the frame body 52 (see Fig.
  • the impregnation tank 61 is provided with a comb-shaped guide member 66 located on the downstream side of the front guide roller 62.
  • the guide member 66 is impregnated with the polymerizable resin composition 6A, and each reinforcing fiber F of one of the reinforcing fiber groups FA guided forward adheres through the polymerizable resin composition 6A, The formation of a bundle prevents the formation of voids in one of the reinforcing fiber groups FA. That is, as described later, when the other reinforcing fiber group FC is supplied onto one reinforcing fiber group FA, each trapping of the other reinforcing fiber group FC is performed through a gap formed in one reinforcing fiber group FA. Prevents strong fiber F from falling to the ground.
  • each reinforcing fiber F of one of the reinforcing fiber groups FA drawn out from the above-described reinforcing fiber accumulating portion 1B is located on the upstream side of the rear guide roller 62, and changes the direction of each reinforcing fiber F of one of the reinforcing fiber groups FA drawn out from the above-described reinforcing fiber accumulating portion 1B.
  • a guide 67 having a number of holes through which the reinforcing fibers F pass is provided in order to guide the reinforcing fibers F horizontally.
  • the filament winding supply device 7 includes a pair of guide rails 7 1 extending vertically in the frame main body 52 of the supply frame 5 at intervals in the left-right direction.
  • a lifting frame 72 slidably mounted on the guide rail 71, and a screw rotatably supported by the frame body 52 and having a handle 731 screwed to the lifting frame 72
  • the shaft '73, the supply roller 74 rotatably supported by the lifting frame 72, and the catch rotatably supported by the lifting frame 72 in contact with the outer peripheral surface of the supply roller 74.
  • the supply roller 74 is rotated at a set reduction ratio via the chain wheels 76, 77 and the chain 78, and at the same time, the auxiliary roller 7 in contact with the supply roller 74. 4 1 can be rotated in the opposite direction. At this time, make sure to pass between the supply roller 74 and the auxiliary roller 74.
  • the other group of reinforcing fibers FC guided by this can be supplied toward the front.
  • the rotation speed of the supply roller 74 that is, the supply length of the other reinforcing fiber group FC per unit time is determined by the peripheral speed of the molding die 2, that is, the one reinforcing fiber per unit time. It is set slightly larger than the winding length of group FA. For this reason, as described later, when the other reinforcing fiber group FC is supplied onto one of the reinforcing fiber groups FC which is drawn and wound on the molding die 2, each reinforcing fiber in the other reinforcing fiber group FC is supplied.
  • the fiber F is slackened on one of the forcing fiber groups FA by an amount corresponding to the higher speed, and is placed on one of the forcing fiber groups FA while meandering randomly in the front-rear and left-right directions (No. 11). See figure). '
  • the screw shaft 7 3 rotates, and the elevating frame 7 2 screwed to the screw shaft 7 3 can be moved up and down along the guide rail 7 1 .
  • the supply height position of the other reinforcing fiber group FC can be adjusted according to the height at which one reinforcing fiber group FA wound on the molding die 2 passes.
  • a pair of guide plates 79 are mounted on the lifting frame 72 in front of the support frame 72 so as to be rotatable around the support pad 72.
  • the guide plate 79 regulates the other reinforcing fiber group FC supplied through the filament winding supply device 7 so as not to deviate beyond the width of the one reinforcing fiber group FA.
  • the reinforcing fibers F of the other reinforcing fiber group FC drawn out from the reinforcing fiber accumulating portion 1B and passing through the guide 59 provided in the supply frame 5 are changed in direction.
  • a guide 70 having a large number of holes through which each reinforcing fiber F is inserted is provided to guide the reinforcing fiber F substantially horizontally to the supply roller 74.
  • the pressing roller device 8 includes a guide rail / layer 81 extending vertically in the frame main body 52 of the supply frame 5 with a horizontal space therebetween, and a guide rail rail.
  • 8 1 An elevating frame 8 2 slidably mounted on 1, an arm 8 3 rotatably supported on the elevating frame 8 2 around a horizontal axis, an arm 8 3 and an elevating frame 8 2, a pressing cylinder 84, a pressing roller 85 rotatably supported at the tip of an arm 83, an electric motor 86 provided on a lifting frame 82, and an electric motor 86.
  • a screw shaft 8 7 screwed to the lifting frame 82 and connected to the output shaft of the molding die 2.
  • the screw shaft 87 rotates, and the lifting frame 82 with the screw 87 is screwed can be moved up and down along the guide rail 81.
  • the pressing roller 85 can be adjusted so as to be in contact with the outer peripheral surface of the molding die 2 according to the size of the molding die 2.
  • the mold 2 is closed.
  • a rubber ring 1 1 is attached to the circumferential groove 2 2a of the fixed mold 2 2 of the closed mold 2.
  • the flange member 25 is attached to the fixed mold 25 again.
  • the protrusion 25 a of the flange member 25 is fitted into the recess 22 b of the fixed mold 22, and the flange member 25 is positioned with respect to the fixed mold 22.
  • each rubber ring 11 is attached to each circumferential groove of each swing mold 23 and each circumferential groove of the elevating mold 24.
  • the forcing fiber F of each vitreous body arranged in the forcing fiber accumulating portion 1 B is passed through each hole of the guide 4 ′ 1, is aligned and bisected, and then is cut into one half. Is passed through each hole of the guide 67 of the impregnating device 6 as one reinforcing fiber group FA, and then passed between them so as to be sandwiched between a pair of front and rear guide rollers 62. , And The guide member 66 is drawn out to the downstream side of the impregnation tank 61 through each tooth.
  • the other half is passed through each hole of guides 59 and 59 provided on the frame body 52 as the other group of the reinforcing fibers FC, and then the guide 7 of the filament winding supply device 7 is used. It is inserted into each hole of No. 0 and is inserted between them so as to be sandwiched between the supply roller 74 and the auxiliary roller 741, and is pulled out downstream thereof.
  • one of the reinforcing fiber groups FA drawn out to the impregnating device 6 is not shown, but after being bound to a jig, the jig is locked to the forming die 2 and the forming die 2 is slightly rotated, so that one of the collecting fibers
  • the strong fiber group FA is wound around the outer peripheral surface of the mold 2 approximately one round.
  • the polymerizable resin composition is applied to one of the force-absorbing fiber groups FA wound around the outer peripheral surface of the force forming mold 2 (not shown in detail).
  • the handle 731 is rotated to raise and lower the lifting frame 72, and adjust the height of the supply roller 74 and the auxiliary roller 741.
  • the electric motor 86 of the pressing roller device 8 is driven, and the height is adjusted so that the pressing roller 85 contacts the outer peripheral surface of the molding die 2.
  • the auxiliary light irradiation device 36 is rotated to the irradiation position so as to face the outer peripheral surface of the mold 2. Also, the lifting cylinder 63 of the impregnating device 6 is extended, the pressing roller 65 enters the inside of the impregnating tank 61, and one reinforcing fiber drawn out between the pair of front and rear guide rollers 62. The group FA is immersed in the polymerizable resin composition 6A in the impregnation tank 61. '
  • one of the reinforcing fiber groups FA adhered to the outer peripheral surface of the molding die 2 is wound around the outer peripheral surface of the molding die 2. Will be taken away.
  • one of the reinforcing fiber groups FA passes through the polymerizable resin composition 6A stored in the impregnation tank 61, so that the polymerizable resin composition 6A is impregnated and wound around the molding die 2. Will be taken away.
  • the lamp 3 61 of the auxiliary light irradiation device 36 is turned on, the rubber ring W
  • a portion formed by the outer end surface of 1, the outer peripheral surface of the mold 2 and the inner end surfaces of the flange members 21 and 25 is irradiated with light, and one of the reinforcements laminated on the A portion
  • the polymerizable resin composition 6A impregnated in the fiber group FA is light-cured.
  • the polymerizable resin composition 6A impregnated in one of the reinforcing fiber groups FA wound around the part A has a thicker product thickness in the relevant part, so that one of the reinforcing fiber groups FA is laminated later. Light is less likely to pass through, and it is difficult to harden. Therefore, by fiber-curing the polymerizable resin composition 6A at the stage of starting the winding of one of the reinforcing fiber groups FA, the fiber-reinforced resin pipe 10 is manufactured with the part A uncured. Can be prevented. ''
  • the lamp 36 1 of the assisting light irradiating device 36 contains ultraviolet rays, it has visible light, so there is no problem in safety.
  • the polymerizable resin composition 6A impregnated in the one reinforcing fiber group FA laminated on the portion A of the molding die 2 is subjected to light curing by the auxiliary light irradiation device 36. Meanwhile, one of the reinforcing fiber groups FA impregnated with the polymerizable resin composition 6 A is wound up into the mold 2.
  • one of the reinforcing fiber groups FA is wound around the molding die 2 for a certain period of time, and once the rubber ring 11 protruding from the outer peripheral surface of the molding die 2 is laminated by the height and almost the thickness, once the molding die 2 Is stopped, and the auxiliary light irradiation device 36 is stored at the retracted position. Then, by simultaneously rotating the molding die 2 again and simultaneously driving the electric motor 75 of the filament winding / feeding device 7, the supply roller # 4 and the auxiliary roller 741 are rotated, and the other capture force is applied. Feed out fiber group FC.
  • the rotation speed of the supply roller 74 that is, the supply length of the other reinforcing fiber group FC per unit time is determined by the peripheral speed of the molding die 2, that is, the one reinforcing fiber group FA per unit time. Since the length is set slightly larger than the winding length, when the other reinforcing fiber group FC is supplied onto one reinforcing fiber group FA wound on the molding die 2, the other reinforcing fiber group FC is supplied.
  • the other reinforcing fiber group FC is supplied onto one reinforcing fiber group FA wound on the molding die 2, the other reinforcing fiber group FC is supplied.
  • each reinforcing fiber F It will be slack on the fiber group FA and, as shown in Fig. 11, it will be placed while meandering randomly in the front, rear, left and right directions.
  • the reinforcing fibers F of one of the reinforcing fiber groups FA pass between the teeth of the guide member 66 and are maintained at an interval from each other, and are adhered in a bundle by the polymerizable resin composition 6A. This ensures that voids are not created. For this reason, one reinforcing fiber group F A in which each reinforcing fiber F moves at a substantially constant interval, and each of the reinforcing fiber groups F C in the other reinforcing fiber group F C is reliably disposed.
  • each of the reinforcing fibers F of the other reinforcing fiber group FC attempts to deviate beyond the width of one of the reinforcing fiber groups FA, since it is regulated by the pair of left and right guide plates 79, one of the reinforcing fibers F is surely removed.
  • Located on the strong fiber group FA since one of the reinforcing fiber groups FA is impregnated with the polymerizable resin composition 6A, each of the reinforcing fibers F of the other reinforcing fiber group FC is randomly adhered to the one of the reinforcing fiber groups FA. It is kept in a meandering state.
  • the rotating mold 2 has a state in which the other reinforcing fiber group FC, which is randomly meandered and adhered, is laminated on one reinforcing fiber group FA impregnated with the polymerizable resin composition 6A. Is wound up. That is, in the circumferential direction of the outer peripheral surface of the molding die 2, the negative reinforcing fiber group FA is laminated, and in the axial direction, the other reinforcing fiber group FC meandering at random is laminated, and one reinforcing fiber group FC is laminated.
  • the reinforcing fiber group is wound around the mold 2 without generating a location where the reinforcing fiber F of the group FA and the reinforcing fiber F of the other reinforcing fiber group FC concentrate.
  • a reinforcing fiber group in a state where the other reinforcing fiber group FC meandering and sticking in a random manner on one of the reinforcing fiber groups FA in which the mold 2 is impregnated with the polymerizable resin composition 6 A is wound.
  • the elevating cylinder 63 is contracted to raise the impregnation roller 65 from the polymerizable resin composition 6A, and the electric motor 75 of the filament winding supply device 7 Stop driving. Further, if a certain length is wound in this state, after the rotation of the molding die 2 is stopped, one of the reinforcing fiber groups FA and the other reinforcing fiber group FC are fed to the downstream side of the filament winding supply device 7. Off Then, the supply frame 5 is retracted to the reinforcing fiber accumulation section 1B side.
  • the filter 91 provided on the tray 9.
  • This is particularly effective when the fiber reinforced resin pipes have different cross sections. That is, when forming a pipe having the above-described shape, it is preferable to use a light irradiation auxiliary lamp, and irradiation during the winding of the auxiliary lamp is likely to cause excess resin gelling. . It is possible to prevent that the gelly dangling material falls into the tray 9 together with the dripped resin and is collected in the impregnation tank 71 to cause clogging and the like, and also prevented from being mixed into the collected resin. Can be.
  • the size of the mesh of the filter 91 is desirably selected between 3 and 4 Omm.
  • the electric motor (not shown) of the light irradiation device 3 is driven to move the driving frame 32, that is, the lamp shade 33, to the irradiation position facing the upper outer peripheral surface of the molding die 2, and Adjust the distance to the outer peripheral surface of the mold 2. Then, after a light-shielding curtain (not shown) is stretched around the manufacturing apparatus 1, the mold 2 is rotated and the light of the UV lamp 34 is irradiated.
  • the photopolymerization initiator is mixed in the polymerizable resin composition 6 A impregnated in the reinforcing fiber group laminated on the molding die 2, the light from the ultraviolet lamp 34 from the UV lamp 34 is irradiated. Receiving starts curing. Then, if the polymerizable resin composition 6A is hardened by irradiating the light of the UV lamp 34 for a certain period of time, that is, the fiber-reinforced resin pipe 1 When 0 is manufactured, the irradiation of the light from the UV lamps 34 is stopped, and the mold is moved to the retracted position and the rotation of the mold 2 is stopped. At the same time, return the blackout curtain to its original position.
  • the flange member 25 is released from the fixed mold 22. Then, a band or the like is wrapped around the manufactured fiber-reinforced resin pipe 10, lifted by an overhead crane or the like, and moved to the next step.
  • the fiber reinforced resin pipe 10 manufactured in this manner one reinforcing fiber group FA is laminated in the circumferential direction, and the other reinforcing fiber group FC meandering randomly in the axial direction.
  • the reinforcing fiber F of one reinforcing fiber group FA and the reinforcing fiber F of the other reinforcing fiber group FC concentrate, and the generation of cracks can be securely stopped by the P force. it can.
  • the photopolymerization initiator is blended with the polymerizable resin composition 6A, curing can be started promptly by irradiating light, so that the fiber reinforced resin pipe 10 can be manufactured in a short time. Work efficiency can be improved.
  • the hard coating is not started unless light is irradiated, the excess polymerizable resin composition 6A can be recovered and reused.
  • the fiber-reinforced resin It is preferable to start the operation after winding a release film around the outer peripheral surface of the mold 2 before manufacturing the pipe 10.
  • an apparatus 1 for manufacturing the fiber-reinforced resin pipe 10 according to the first embodiment an apparatus for manufacturing another fiber-reinforced resin pipe different from the method for manufacturing the same, and a method for manufacturing the same will be described. Note that the same reference numerals are given to constituent members having the same names as the constituent members of the manufacturing apparatus 1 of the fiber-reinforced resin pipe 10 according to the first embodiment.
  • the manufacturing apparatus 1 includes a forming section 1A, a reinforcing fiber collecting section 1B provided separately from the forming section 1A, a forming section 1A and the reinforcing fiber collecting section 1A. And a reinforcing fiber supply unit 1C, which is provided between the two.
  • the molding part 1A is a core-shaped molding die 2 having a drum shape rotatably supported on a shaft and a polymerizable resin composition 6A attached to a reinforcing fiber F described below. It comprises a light irradiation device 3 for irradiating light having a wavelength at which the polymerization initiator starts a reaction, and a nozzle 10 for spraying or dropping the polymerizable resin composition 6A, and the reinforcing fiber F is formed into a molding die 2. Is wound around the outer peripheral surface a predetermined number of times and shaped into a pipe.
  • the light irradiation device 3 is provided with a shutter 37, and by opening and closing the shutter 37, the light of the lamp 34 is reinforced by the reinforcing fiber F wound around the mold 2. Irradiated toward.
  • the light irradiation device 3 includes an air supply pipe 38 1 and an exhaust pipe 38 2 connected to a blower (not shown), and a heat ray filter 39 for controlling the amount of light emitted from the lamp 34. Is provided.
  • a tray 9 for collecting the polymerizable resin composition (polymerizable resin composition 6A containing a photopolymerization initiator) is provided in the molding portion 1A so as to face the lower outer peripheral surface of the molding die 2.
  • the polymerizable resin composition 6A collected in the tray 9 is collected in an impregnation tank 61 of an impregnation device (not shown) described later via a collection pump 93.
  • the reinforcing fiber accumulating portion 1B is configured by arranging a plurality of jaws R of reinforcing fibers F such as glass roving.
  • the reinforcing fibers F drawn out from the respective rolls R are divided into two in a aligned state, and one half of the reinforcing fibers F is impregnated with the impregnating device (impregnating tank 6 1 in FIG. The other half is guided to a filament winding supply device (not shown, see supply roller 74 in FIG. 13) of reinforcing fiber supply section 1C.
  • the reinforcing fiber group guided to the impregnating device is referred to as one reinforcing fiber group and the symbol FA is used, and the reinforcing fiber group guided to the filament winding supply device is used as the other reinforcing fiber group.
  • the code FC See Figure 13
  • the mullet R of the plurality of reinforcing fibers F guided to the impregnating device of the reinforcing fiber supply unit 1C and the mullet R of the reinforcing fiber F guided to the filament winding supply device are matched to each device. You may arrange
  • Reinforcing fiber supply section 1.C is provided with an impregnating device for storing polymerizable resin composition 6A containing a photopolymerization initiator, and feed of the other reinforcing fiber group FC drawn from reinforcing fiber accumulating section 1B. And a filament winding supply device for changing the feeding direction. The other reinforcing fiber group FC sent out from the filament winding supply device is adhered. The adhesion of the other reinforcing fiber group F C prevents the reinforcing fiber group F from becoming a bundle, thereby preventing a void from being generated in the one reinforcing fiber group F A.
  • each reinforcing fiber F of the other reinforcing fiber group FC passes through the void formed in the one reinforcing fiber group FA. To prevent it from falling to the ground.
  • the filament winding supply device is provided with a supply roller 74 for feeding out the other reinforcing fiber group FC, and the feeding speed for sending out the other reinforcing fiber group FC by the supply roller 74 is a drum-shaped forming die.
  • the rotation speed is set faster than 2. That is, the supply length of the other reinforcing fiber group FC per unit time of the filament winding supply device 7 is set to be slightly larger than the winding length of one reinforcing fiber group FA per unit time of the mold 2. Have been.
  • each force «UF F in the other reinforcing fiber group FC is The higher the speed, the more slack it is on one of the reinforcing fiber groups FA, and it is placed on one of the reinforcing fiber groups FA while meandering randomly in the front-rear and left-right directions (see Fig. 11). That is, the other reinforcing fiber group FC sent by the supply roller 74 is sent out faster than the rotation speed of the molding die 2, and thus has an irregular loop or meandering due to its winding habit and feed pool.
  • one reinforcing fiber group FA as a circumferential long fiber reinforcing material drawn out from the reinforcing fiber supply section 1C and aligned in parallel is used as a polymer resin containing a photopolymerization initiator.
  • the impregnation tank 6 1 in which the composition 6 A is stored and impregnating one of the reinforcing fiber groups FA with the polymerizable resin composition 6 A it is wound around the rotating mold 2 a predetermined number of times. .
  • the other reinforcing fiber group FC as an axial long fiber reinforcing material drawn out from the reinforcing fiber supply unit 1C and sent by the supply roller 74 is sent out faster than the rotation speed of the molding die 2.
  • the fibers are continuously supplied between the impregnation tank 61 and the molding die 2 on one reinforcing fiber group FA in an irregular loop or meandering state due to the curl and feed pool.
  • the reinforcing fiber group FA is continuously wound around one of the reinforcing fiber groups F A to the molding die 2 until it reaches a predetermined thickness.
  • the polymerizable resin composition 6A is further sprayed or dropped from the nozzle 10 onto one of the reinforcing fiber groups FA and the other reinforcing fiber group FC wound around the molding die 2 from above the molding die 2,
  • the impregnating roll 101 forms a uniform and pipe shape along the peripheral surface of the mold 2.
  • the light irradiation device 3 is irradiated with light having a wavelength at which the photopolymerization initiator starts a reaction in the direction of the mold 2 to start the photopolymerization reaction.
  • the light irradiation device 3 is illuminated in the rear with light having a wavelength at which the photopolymerization initiator starts the reaction in the direction of the molding die 2, and the photopolymerization reaction is started during the shaping. Start.
  • the light irradiation from the light irradiation device 3 selects a wavelength and an irradiation amount at which the compounded photopolymerization initiator reacts most efficiently.
  • the polymerization reaction by the high-temperature reaction type polymerization initiator is started by reaction heat generated by the photopolymerization reaction, and light is irradiated by a reinforcing fiber or the like.
  • the hardening can be advanced to the inside even if the fiber pipe 10 has a small thickness. Even when the thickness is small, the curing speed can be increased by incorporating a high-temperature reaction-type polymerization initiator.
  • the entire molding speed can be increased.
  • the constant thickness is preferably not more than 20 mm, more preferably about 8 to 15 mm, from the viewpoint of prevention of force cracks.
  • Light irradiation may be performed while winding to increase the molding speed or prevent cracking due to poor curing. In that case, if the light irradiation amount is too large, the curing is too fast, and cracks between the layers are likely to occur. .
  • the fiber reinforced resin pipe 10 is removed from the mold 2 to produce the fiber reinforced resin pipe 10.
  • Example 1 using the following polymerizable resin composition 6A, the other reinforcing fiber group FC (Nitto Boshoku ECRRSE1200), and one of the reinforcing fiber group FA (Nitto Boshoku ECRRSE2400), Under the following manufacturing conditions, a fiber-reinforced resin pipe 10 having an outer diameter of 1,099 mm, an inner diameter of 1,070 mm, and a wall thickness of 14.5 mm was manufactured.
  • the rotation speed of the mold 2 was set to a peripheral speed of 6 minutes
  • the output of the light irradiation device 3 was set to 12 O WZ cm XZ lamp
  • one reinforcing fiber group FA layer was 12 layers
  • the other was reinforced.
  • the fiber group was made into 11 FC layers and irradiated with a metal halide lamp having a wavelength of 200 to 500 nm for 6 minutes.
  • Comparative Example 1 the polymerizable resin composition 6A described below, glass fiber roving (Direct made by Nitto Boseki Co., Ltd.) as one of the reinforcing fiber groups FA and chopped strand (Unitichika) were produced by the above-mentioned conventional production method.
  • a fiber-reinforced resin pipe 10 having an outer diameter of 109 mm, an inner diameter of 107 Omm, and a wall thickness of 14.5 mm was manufactured under the following manufacturing conditions by using ER2310 plying yarn manufactured by the company. .
  • the rotational speed of the mold 2 was set to a peripheral speed of 6 mZ
  • the FA layer of one reinforcing fiber group was set to 15 layers
  • the chirop layer was set to 15 layers
  • the heating time was set to 12 minutes.
  • Comparative Example 2 a fiber-reinforced resin pipe 10 was manufactured in the same manner as in Comparative Example 1 except that the heating time was set to 6 minutes. However, the polymerizable resin composition 6A was not completely cured and could not be removed properly.
  • Example 2 the following polymerizable resin composition 6A, the other reinforcing fiber group FB (Nittobo ECR SE1200CF) and one reinforcing fiber group FA (Nittobo ECRRSE2400CF), the following
  • the fiber-reinforced resin pipe 10 having an inner diameter of 1800 mm and a wall thickness of 2 Omm was manufactured depending on the manufacturing conditions.
  • the iso-unsaturated polyester resin 100 Parts by weight, 2 parts by weight of high temperature reaction type polymerization initiator '(trade name Percure 0, manufactured by NOF CORPORATION) and bisacinolephosphinoxide (trade name: IRGACURE 8 manufactured by Chipas Specialty Chemicals, Inc.) as a photopolymerization initiator 1 9) 0.2 parts by weight.
  • the rotational speed of the mold 2 was set to a peripheral speed of 6 mZ
  • the output of the light irradiation device 3 was set to 120 WZ cm ⁇ 2 lights
  • the thickness of the fiber-reinforced resin pipe 10 was set to 10 mm.
  • Example 3 has the same configuration as that of Example 2 described above. After the entire thickness (2 O mm) is wound around the mold 2, light is applied for 20 minutes using the same metal nitride lamp as in Example 2. To complete the curing to produce a fiber-reinforced resin pipe 10.
  • the fiber-reinforced resin pipe 10 was manufactured in the same manner as in the first embodiment except that the thickness was different from that of the first embodiment.
  • the thickness of the fiber reinforced tree pipe 10 is set to 3 O mm.
  • the reinforcing fibers F were wound around the mold 2 until the total thickness became 30 mm. Thereafter, the wound reinforcing fiber F was cured by irradiating it with 120 wZ cm X 2 lamps. The completion time of the curing by the light irradiation was 60 minutes.
  • the reinforcing fiber F was wound around the molding die 2, light irradiation was performed with one lamp of 8 OwZ cmX, and winding was performed until the total thickness became 3 Omm. After that, the wound reinforcing fiber F was cured by irradiating light with two lights of 120 wZcmX. The completion time of hardening by this light irradiation was 15 minutes.
  • the reinforcing fiber F was wound around the mold 2 while irradiating light with an 8 Ow / cmX2 lamp until the entire thickness became 3 Omm. Thereafter, the wound captive fiber F was irradiated with light using a 120 w / C mX2 lamp to be cured. The completion time of the stiffening by this irradiation was 10 minutes.
  • the polymerization reaction speed is increased and productivity is improved. Further, since the polymerization reaction by the high-temperature reaction-type polymerization initiator is started by the heat of the reaction due to the photopolymerization, it is possible to react and harden the portion not exposed to the light. For each layer, curing can be evenly promoted by blending a photopolymerization initiator that reacts in a wavelength region including visible light, continuous light irradiation, and multi-step light irradiation. Therefore, the occurrence of cracks between layers can be suppressed.
  • the reaction does not open rapidly even if left at room temperature unless exposed to light, so that the polymerizable resin composition 6 ⁇ that has fallen off during spraying can be reused as it is. Also impregnated
  • the potable life of the polymerizable resin composition 6A in the tank is long, and maintenance work such as cleaning of the impregnation tank and the like can be reduced, and costs can be reduced.
  • the axially long fiber reinforcing material is not a chopped strand but a continuous fiber, there is no scattering around the fiber, the working environment is good, and the polymerizable resin composition 6A that has spilled out. It is suitable for reuse of resin without clogging the pump 93 and piping because it does not mix. Since there is no scattering of fibers, the reinforcing fibers F do not adhere to the surface of the lamp 34 and do not hinder light irradiation.
  • one of the reinforcing fiber groups FA is impregnated with the polymerizable resin composition 6A, and then the other reinforcing fiber group FC is supplied onto the one reinforcing fiber group FA.
  • one reinforcing fiber group FA is sandwiched between one reinforcing fiber group FA and one reinforcing fiber group FA, and the other reinforcing fiber group FA and the other reinforcing fiber group FC are impregnated in the impregnation tank.
  • impregnating tank 61 impregnating polymerizable resin composition 6A into one of the reinforcing fiber groups FA and simultaneously impregnating polymerizable resin composition 6A into the other reinforcing fiber group FC. No problem.
  • the force of making the other reinforcing fiber group FC into an irregular meandering shape or a loop shape by utilizing the winding habit of the other reinforcing fiber group FC is limited to this.
  • the trapezoidal mechanism may be used to meander irregularly. In this case, since the shape becomes a meandering shape or a loop shape at random, even if the direction overlaps with one of the reinforcing fiber groups FA, no crack is generated.
  • the reinforcing fiber F made of glass fiber roving is used to capture the strength of the fiber reinforced resin pipe 10 to be manufactured, but the present invention is not limited to this.
  • a nonwoven fabric or the like may be laminated on the inner surface side and outer surface side of the fiber reinforced resin pipe 10 to be produced.
  • Cross-shaped, or mat-shaped reinforcing materials may be laminated.
  • the cylindrical body made of rubber may be provided coaxially with the cylindrical body of the fiber-reinforced resin pipe 10 manufactured in the second embodiment. It is preferable for improving the degree. Industrial applicability
  • the fiber-reinforced resin pipe free of cracks by completing the polymerization reaction in a short time without using chopped strands can be easily manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A method for producing a fiber-reinforced resin formed product, wherein one reinforcing fiber group (FA) is withdrawn out of each roll (R) of reinforcing fibers (F), is passed through an impregnation vessel (61) of an impregnation device (6) to be impregnated with a polymerizable resin composition (6A) containing a photopolymerization initiator, and then is wound up by a rotating mold (2) for forming, wherein the other reinforcing fiber group (FC) is withdrawn out of each roll (R) of reinforcing fibers (F), is introduced to a filament winding supply device (7) and is supplied to the reinforcing fiber group (FA) being impregnated with a polymerizable resin composition (6A) and wound up by the mold (2) for forming, wherein each reinforcing fiber (F) of the above other reinforcing fiber group (FC) is allowed to meander randomly and is placed on the above one reinforcing fiber group (FA) and adhered thereto by the polymerizable resin composition (6A), and wherein the one reinforcing fiber group (FA) having the other reinforcing fiber group (FC) laminated thereon is wound up by the mold (2) for forming, is irradiated with a light through a light irradiation device (3) to cure the polymerizable resin composition (6A).

Description

明細書 繊維強化樹脂成形体の製造装置、 およびその製造方法 技術分野  Description Apparatus for producing fiber-reinforced resin molded article and method for producing the same
この発明は、繊維強ィ匕榭脂パイプなどの繊維強化榭脂成形体の製造装置、および その製造方法に関するものである。 背景技術  The present invention relates to an apparatus for producing a fiber-reinforced resin molded article such as a fiber-reinforced resin pipe, and a method for producing the same. Background art
従来、繊維強化樹脂成形体の 1つである繊維強化樹脂パイプは、 金属管、 コンク リート管に比べて軽量であることから、施工性に優れており、 このため、広く普及 している。  Conventionally, fiber-reinforced resin pipes, which are one of the fiber-reinforced resin moldings, are lighter in weight than metal pipes and concrete pipes, and have excellent workability, and are therefore widely used.
このような繊維強化樹脂パイプは、軸方向に移動しつつ周方向 回転する芯型の 周囲に、複数本の周方向強ィ匕用長繊維補強材を連続的に卷回するとともに、下側と 上側に巻回される周方向強ィ匕用長繊維補強材の間に、軸方向強ィ匕用長繊維捕強材を 周方向強化用長繊維捕強材に交差するように規則的な蛇行形状で連続的に供給し、 これらの長繊 ϋ補強材に重合性樹脂組成物を含浸させ、重合性樹脂組成物を熱硬化 させることにより製造されていた(例えば、特開昭 5 6 - 1 0 4 0 2 7号公報参照)。 しかしながら、前述した繊維強化榭脂パイプは、周方向強化用長繊維補強材の層 と軸方向強化用長繊維補強材の層とを比較すると、軸方向強化用長繊維補強材の層 の樹脂比率が高いため、かつ、軸方向強ィ匕用長繊維補強材は、規則的に蛇行して供 給されること力ゝら、その変曲点において、周方向強化用長繊維補強材と略平行とな り、補強繊維が集中するため、急激な重合反応時に周方向強化用長繊維捕強材層と 軸方向強ィ匕用長繊維禰強材層の間において、特に、軸方向強化用長繊維補強材の変 曲点部分に集中してクラックが入るおそれがあつた。  Such a fiber-reinforced resin pipe is formed by continuously winding a plurality of circumferential reinforcing fibers for a circumferentially rotating core while moving in the axial direction while simultaneously winding a plurality of the reinforcing fibers. A regular meandering is performed between the circumferential direction reinforcing fiber reinforcing material wound between the upper side and the circumferential direction reinforcing fiber reinforcing material between the circumferential direction reinforcing fiber reinforcing material. It has been manufactured by continuously supplying in a shape, impregnating these long fiber reinforcing materials with a polymerizable resin composition, and thermally curing the polymerizable resin composition (see, for example, Japanese Patent Application Laid-Open No. Reference is made to Japanese Patent Application Publication No. However, the fiber reinforced resin pipe described above shows that the resin ratio of the layer of the axial reinforcing long fiber reinforcement is compared with the layer of the long reinforcing fiber reinforcement for circumferential reinforcement and the layer of the long fiber reinforcing material for axial reinforcement. Is high, and the long-fiber reinforcing material for axial reinforcement is supplied in a meandering manner, and at the inflection point, is substantially parallel to the long-fiber reinforcing material for circumferential reinforcement. Since the reinforcing fibers are concentrated, the length of the reinforcing fiber between the circumferential reinforcing fiber layer and the reinforcing fiber layer for the axial strengthening is particularly increased during the rapid polymerization reaction. There was a risk of cracks being concentrated at the inflection points of the fiber reinforcement.
このような問題点から、軸方向強化用長繊維補強材に代えてチョップドストラン ドを用いて繊維強化樹脂パイプを製造することが現在採用されている。具体的には、 重合性樹脂組成物を芯型上もしくは含浸槽にて含浸させた周方向強化用長繊維捕 強材を芯型に卷回するとともに、必要に応じてチョップドストランドを芯型上に振 りかけてパイプ状に賦形し、賦形後にヒータなどにより重合性樹脂組成物を硬ィ匕さ せて繊維強化樹脂パイプを製造するものであり、この結果、チョップドストランド がほぼランダムに分布し、繊維方向の集中によるクラックの発生を防止することが できる。 Due to these problems, chopped strands are used instead of long fiber reinforcing materials for axial reinforcement. It is currently employed to manufacture fiber reinforced resin pipes using metal. Specifically, the long fiber reinforcing material for circumferential reinforcement, impregnated with the polymerizable resin composition on a core or in an impregnation tank, is wound around the core, and the chopped strands are placed on the core as necessary. To form a fiber-reinforced resin pipe by shaping the polymerizable resin composition with a heater or the like after shaping, and as a result, the chopped strands are almost randomly formed. It is possible to prevent cracks due to distribution and concentration in the fiber direction.
ところで、 このようにして繊維強ィ匕榭脂パイプを製造するに際しては、次のよう な問題点がある。  By the way, there are the following problems in producing the fiber-reinforced dagger pipe in this way.
第 1に、重合性樹脂組成物が、常温以下で反応が開始される低温反応型重合開始 剤によって重合するようになっているため、重合完了までに時間がかかり、生産性 が低い。  First, since the polymerizable resin composition is polymerized by a low-temperature reaction-type polymerization initiator that starts a reaction at room temperature or lower, it takes a long time to complete the polymerization, and the productivity is low.
第 2に、余剰の重合性樹脂組成物を芯型などの下方に設けた容器で受けて再利用 を図るようにしている力 重合性樹脂組成物には、常温以下で反応が開始される低 温反応型重合開始剤が配合されているため、常温で放置している間も硬化が進行し、 十分に再利用が図れない。また、回収された重合性樹脂組成物にチヨップドストラ ンドが混入するため、チョップドストランドを除去する必要があり、作業効率が悪 い。  Secondly, the force of receiving excess polymerizable resin composition in a container provided below, such as a core mold, so that the polymerizable resin composition can be reused. Since a temperature-reaction type polymerization initiator is incorporated, curing proceeds even when left at room temperature, and it cannot be sufficiently reused. Further, since chopped strands are mixed in the recovered polymerizable resin composition, it is necessary to remove the chopped strands, and the working efficiency is poor.
第 3に、チヨップドストランドが振りかけられる直前に、ガラス繊 ロービング をチヨッパーで切断してチヨップドストランドを得るようにしているため、切断時 および振りかけ時に、チョップドス ランドが作業場内に飛散し、作業環境が悪化 するおそれがある。 したがって、大がかりな排気設備などが必要となり、設備コス トがかかる。  Thirdly, just before the chopped strand is sprinkled, the glass fiber roving is cut with a hopper to obtain a chopped strand, so that the chopped strand scatters into the workplace during cutting and sprinkling, The working environment may deteriorate. Therefore, large-scale exhaust equipment is required, which increases equipment costs.
第 4に、チヨッパーの刃の交換作業等も行わなければならず、作業が煩雑である。 本発明は、 このような問題点に鑑みてなされたもので、チヨップドストランドを 用いることなく、重合反応を短時間で完了させてクラックのな!/、繊維強化樹脂成形 体を簡単に製造する繊維強化樹脂成形体の製造装置、およびその製造方法を提供す ることを目的としている。 発明の開示 Fourth, the work of replacing the blade of the chopper must be performed, and the work is complicated. The present invention has been made in view of such a problem, and completes the polymerization reaction in a short time without using a chopped strand to prevent cracks! /, Fiber reinforced resin molding It is an object of the present invention to provide an apparatus for manufacturing a fiber-reinforced resin molded body for easily manufacturing a body, and a method for manufacturing the same. Disclosure of the invention
上記した目的を達成するために、本発明にかかる繊維強化樹脂成形体の製造装置 は、 成形型が回転自 に軸支されるとともに、 光照射装置が設けられた成形部と、 複数個の補強繊維の口ール体が配列され、各補強繊維ロール体からそれぞれ引き出 された補強繊維群を下流側に導く補強繊維集積部と、光重合開始剤を含む重合性樹 脂組成物が貯留された含浸槽を備え、一方の捕強繊維群に重合性樹脂組成物を含浸 させる含浸装置とともに、他方の捕強繊維群の各捕強繊維を、重合性樹脂組成物が 含浸されて回転する成形型に巻き取られる一方の捕強繊維群上にそれぞれランダ ,ムに蛇行するように供給するフイラメントワインディング供給装置が設けられた 補強繊維供給部と、から構成され、重合性樹脂組成物が含浸された一方の補強繊維 群上にランダムに蛇行した他方の補強繊維群を積層した状態の補強繊維群が回転 する成形型に巻き取られる.とともに、成形型に巻き取られた補強繊維群に光照射装 置を介して光が照射されて重合性樹脂組成物が硬化されることを特徴とする。  In order to achieve the above object, an apparatus for manufacturing a fiber-reinforced resin molded product according to the present invention includes a molding die that is supported by a rotating shaft, a molding section provided with a light irradiation device, and a plurality of reinforcing members. A reinforced polyester fiber composition containing a photopolymerization initiator and a reinforcing fiber accumulating portion that arranges a reinforcing fiber group drawn out from each reinforcing fiber roll body on the downstream side in which a fiber bundle is arranged are stored. With an impregnating tank for impregnating the polymerizable resin composition into one of the reinforcing fiber groups and rotating the impregnating fibers of the other reinforcing fiber group by impregnating the polymerizable resin composition. And a reinforcing fiber supply unit provided with a filament winding supply device for supplying a meandering land and a meandering fiber group on one of the strong fiber groups to be wound into a mold, respectively, and impregnated with the polymerizable resin composition. Other reinforcing fiber The reinforcing fiber group in a state where the other reinforcing fiber group meandering at random on the group is laminated is wound up by a rotating molding die, and the reinforcing fiber group wound up by the molding die is irradiated via a light irradiation device. It is characterized in that the polymerizable resin composition is cured by irradiation with light.
本発明によれば、補強繊維集積部に配置された各口一ル体の補強繊維の一半部は、 一方の補強繊維群として、含浸装置を経て重合性樹脂組成物を含浸されて引き出さ れ、 回転する成形型に卷き取られる。 また、補強繊維の他半部は、 他方の補強繊維 群として、 フィラメントワインデイング供給装置まで引き出され、 フィラメントヮ インディング供給装置によって繰り出される。また、他方の補強繊維群を成形型に 巻き取られる一方の補強繊維群に向けて供給すれば、他方の補強繊維群は、 ランダ ムに蛇行しながら一方の補強繊維群上に載置されるとともに、重合性樹脂組成物が 含浸された一方の捕強繊維群に粘着されてランダムに蛇行した状態に保持される。 したがって、回転する成形型には、童合性樹脂組成物が含浸された一方の補強繊維 群上にランダムに蛇行して粘着された他方の補強繊維群を積層した状態の補強繊 維群が巻き取られる。このようにして成形型に補強繊維群が巻き取られて一定の厚 みに到達すれば、含浸装置による一方の捕強繊維群の重合性樹脂組成物の含浸を停 止するとともに、 フィラメントワインディング供給装置を停止させ、 さらに、成形 型の回転を停止した後、一方の捕強繊維群および他方の補強繊維群を切断する。次 いで、成形型を回転させるとともに、光照射装置を介して光を照射すると、成形型 に積層された捕強繊維群に含浸された重合性樹脂組成物には、光重合開始剤が配合 されているため、光を受けて硬化を開始する。 そして、一定時間にわたって光を照 射することにより、重合性樹脂組成物が硬ィ匕して繊維強化樹脂パイプが製造された ならば、光照射を停止させるとともに、成形型の回転を停止させ、製造された繊維 強化樹脂パイプを取り出す。 According to the present invention, one-half of the reinforcing fibers of each of the plugs arranged in the reinforcing fiber accumulating portion are impregnated with the polymerizable resin composition through an impregnation device and pulled out as one of the reinforcing fiber groups, It is wound on a rotating mold. Further, the other half of the reinforcing fiber is drawn out to the filament winding supply device as the other reinforcing fiber group, and is fed out by the filament-inding supply device. Also, if the other reinforcing fiber group is supplied toward one reinforcing fiber group that is wound into a molding die, the other reinforcing fiber group is placed on one reinforcing fiber group while meandering at random. At the same time, it is adhered to one of the force-absorbing fibers impregnated with the polymerizable resin composition, and is maintained in a meandering state at random. Therefore, the rotating molding die has a reinforcing fiber in a state in which one reinforcing fiber group impregnated with a random resin composition is impregnated on the other reinforcing fiber group impregnated with the resin composition. The fibers are wound up. When the reinforcing fiber group is wound up to a certain thickness in the molding die in this way, impregnation of the polymerizable resin composition of one of the reinforcing fiber groups by the impregnating device is stopped, and filament winding is supplied. After stopping the apparatus and further stopping the rotation of the mold, one of the reinforcing fiber groups and the other reinforcing fiber group are cut. Next, when the mold is rotated and light is irradiated through a light irradiation device, a photopolymerization initiator is blended with the polymerizable resin composition impregnated in the reinforcing fiber group laminated on the mold. Therefore, it starts curing by receiving light. Then, by irradiating light for a certain period of time, if the polymerizable resin composition is hardened to produce a fiber-reinforced resin pipe, the light irradiation is stopped, and the rotation of the mold is stopped. Take out the manufactured fiber reinforced resin pipe.
この結果、製造された繊維強化樹脂成形体は、その周方向に一方の補強繊維群が 積層され、その軸線方向には、ランダムに蛇行した他方の補強繊維群が積層される ことになり、一方の補強繊維群の補強繊維と、他方の補強繊維群の捕強繊維が集中 する箇所は発生せず、 クラックの発生を確実に防止することができる。  As a result, in the manufactured fiber-reinforced resin molded body, one reinforcing fiber group is laminated in the circumferential direction, and the other randomly meandering reinforcing fiber group is laminated in the axial direction. A portion where the reinforcing fibers of the reinforcing fiber group and the reinforcing fibers of the other reinforcing fiber group concentrate does not occur, and the generation of cracks can be reliably prevented.
また、重合性樹脂組成物に光重合開始剤を配合していることにより、光を照射す れば、速やかに硬化が開始されるため、繊維強化樹脂パイプを短時間に製造するこ とが可能となり、作業効率を向上させることができる。 また、光を照射しなければ 硬化が開始されないことから、余剰の重合性樹脂組成物を回収して再利用を図るこ とができる。  In addition, by incorporating a photopolymerization initiator into the polymerizable resin composition, curing can be started promptly by irradiating light, so that fiber-reinforced resin pipes can be manufactured in a short time. And work efficiency can be improved. Further, since curing does not start unless light is irradiated, excess polymerizable resin composition can be recovered and reused.
上記構成において、含浸装置に、一方の補強繊維群の巻き取り方向の下流側に位 置して櫛状のガイド部材が設けられてもよい。  In the above configuration, the impregnating device may be provided with a comb-shaped guide member located downstream of the one reinforcing fiber group in the winding direction.
この場合、重合性樹脂組成物が含浸された一方の補強繊維群における各捕強繊維 が櫛状のガイド部材の各歯間を通過することにより、それらの補強繊維の間隔を保 持して下流側に導くことができる。 このため、一方の補強繊維群の補強繊維同士が 重合性樹脂組成物によつて束状に粘着して空隙が発生し、一方の補強繊維群上に供 給される他方の捕強繊維群が空隙から脱落するのを確実に防止することができる。 上記構成において、フィラメントワインディング供給装置から供給される他方の 捕強繊維群の単位時間あたりの長さが、成形型に卷き取られる一方の捕強繊維群の 単位時間あたりの長さよりも大きくてもよい。 In this case, each of the reinforcing fibers in one of the reinforcing fiber groups impregnated with the polymerizable resin composition passes between the teeth of the comb-shaped guide member, thereby maintaining the interval between the reinforcing fibers and downstream. Can be guided to the side. For this reason, the reinforcing fibers of one reinforcing fiber group adhere to each other in a bundle by the polymerizable resin composition to form a void, and the other reinforcing fiber group supplied on one reinforcing fiber group becomes Dropping from the gap can be reliably prevented. In the above configuration, the length per unit time of the other forcing fiber group supplied from the filament winding supply device is larger than the length per unit time of the forcing fiber group wound on the forming die. Is also good.
この場合、成形型に巻き取られる一方の補強繊維群上に他方の捕強繊維群を供給 するとき、他方の補強繊維群における各補強繊維は、その速度の速い分だけ一方の 補強繊維群上で弛むことになり、前後左右方向にランダムに蛇行しながら載置され る。 し力も、一方の補強繊維群に重合性樹脂組成物が含浸されているため、他方の 補強繊維群の各補強繊維は、一方の捕強繊維群に粘着されてランダムに蛇行した状 態に保持される。  In this case, when the other reinforcing fiber group is supplied onto the one reinforcing fiber group wound on the forming die, each reinforcing fiber in the other reinforcing fiber group is placed on one reinforcing fiber group by an amount corresponding to a higher speed. And it is placed while meandering randomly in the front, rear, left and right directions. Since the polymerizable resin composition is impregnated in one of the reinforcing fiber groups, each reinforcing fiber of the other reinforcing fiber group is adhered to the one of the reinforcing fiber groups and held in a randomly meandering state. Is done.
上記構成において、フィラメントワインディング供給装置に、他方の補強繊維群 の供給方向の下流側に位置して他方の補強繊維群の幅方向のはみだしを規制する ガイド板が設けられてもよい。  In the above configuration, the filament winding supply device may be provided with a guide plate that is located downstream of the other reinforcing fiber group in the supply direction and that controls the protrusion of the other reinforcing fiber group in the width direction.
この場合、他方の補強繊維群が、重合性樹脂組成物が含浸されて成形型に巻き取 られる一方の補強繊維群の幅を越えて逸脱するのを規制することができ、一方の捕 ^繊維群に他方の補強繊維群の各補強繊維を脱落させることなく確実に載置する ことができる。  In this case, it is possible to restrict the other reinforcing fiber group from deviating beyond the width of the one reinforcing fiber group impregnated with the polymerizable resin composition and wound on the molding die. Each reinforcing fiber of the other reinforcing fiber group can be reliably placed on the group without falling off.
上記構成において、成形部に、成形型の外周面に光を照射可能な捕助光照射装置 が設けられてもよい。  In the above configuration, the forming unit may be provided with a catching light irradiation device capable of irradiating the outer peripheral surface of the forming die with light.
この場合、後になるほど補強繊維が厚く積層されて光が透過しにくく、硬化しに くくなるような箇所においては、重合性樹脂組成物を含浸した一方の補強繊維群が 成形型に卷き取られて積層きれる際、硬ィヒしにくい箇所に光を照射することができ る。 また、繊維強化樹脂パイプが第 1 2図のような異なる断面 (肉厚が軸方向で変 化する場合) を有する場合には、特に集中的に光を透過させることができるため有 効である。 このため、一方の補強繊維群の卷き取り開始段階で重合性樹脂組成物を 硬化させることができ、硬化しにくい箇所が未硬化のまま繊維強ィヒ樹脂パイプが製 造されるのを防止することができる。 また、 この場合、捕助光照射装置としては、安全性の観点から、 紫外線を含むも のの、 可視光リッチとなっていることが好ましい。 In this case, one of the reinforcing fiber groups impregnated with the polymerizable resin composition is wound into a molding die in a portion where the reinforcing fibers are stacked thicker at a later time and light hardly transmits and hardly hardens. When lamination is completed, it is possible to irradiate light to hardly hard portions. Also, when the fiber reinforced resin pipe has a different cross section as shown in FIG. 12 (when the thickness changes in the axial direction), it is particularly effective because light can be transmitted intensively. . For this reason, the polymerizable resin composition can be cured at the stage of starting to wind up one of the reinforcing fiber groups, thereby preventing the production of a fiber-reinforced resin pipe without hardening the hard-to-harden portions. can do. In this case, the assisting light irradiating device preferably includes ultraviolet rays but is rich in visible light from the viewpoint of safety.
上記構成において、 成形型が型開き、 型閉め可能であってもよい。  In the above configuration, the mold may be opened and closed.
この場合、型閉めすることにより、製造された繊維強化樹脂パイプを成形型から 簡単に取り出すことができるため、好ましい。 これは、繊維強化榭脂パイプが場所 によって異なる断面を有する場合に、特に効果を発揮する。すなわち、強引に型を 引き抜く必要がないため、得られる繊維強化樹脂パイプに損傷を与えることなく脱 型することができる。  In this case, closing the mold is preferable because the manufactured fiber-reinforced resin pipe can be easily taken out of the molding die. This is particularly effective when the fiber-reinforced resin pipe has a different cross section from place to place. That is, since it is not necessary to forcibly pull out the mold, it is possible to remove the mold without damaging the obtained fiber-reinforced resin pipe.
上記構成において、光照射装置が、成形型の外周面に対向する照射位置と退避位 置間を進退自在であってもよい。  In the above configuration, the light irradiation device may be capable of moving forward and backward between the irradiation position facing the outer peripheral surface of the mold and the retracted position.
この場合、光照射装置を退避位置に移動させることにより、成形型を回転させて 補強繊維群を巻き取る際、成形型と光照射装置との干渉を防止することができると ともに、製造された繊維強化樹脂パイプを取.り出す際、円滑に作業することができ る。  In this case, by moving the light irradiating device to the retracted position, it is possible to prevent interference between the mold and the light irradiating device when rotating the forming die and winding up the reinforcing fiber group, and manufacturing When taking out the fiber reinforced resin pipe, it can work smoothly.
上記構成において、補強繊維供給部が、成形型に接近する作業位置と、離隔した 退避位置間を往復移動可能であってもよい。  In the above configuration, the reinforcing fiber supply unit may be capable of reciprocating between a working position approaching the mold and a separated retreat position.
この場合、補強繊維供給部を前進させて、回転する成形型に補強繊維群を卷き取 つて一定厚み積層することができ、一方、成形型に一定厚み積層された補強繊維群 に光を照射して含浸された重合性榭脂組成物を硬化させる際、光照射装置の邪魔に ' ならないように捕強繊維供給部を後退させることができる。また、直径の異なる繊 維強化樹脂パイプに対してそれぞれ補強繊維供給部の作業位置を決め'ることがで き、 1台の製造装置によつて各種直径の繊維強化樹脂パイプを製造することができ る。  In this case, the reinforcing fiber supply unit is advanced, and the reinforcing fiber group can be wound around the rotating mold and laminated with a certain thickness, while the reinforcing fiber group laminated with a certain thickness on the mold is irradiated with light. When the impregnated polymerizable resin composition is cured, the reinforcing fiber supply section can be retracted so as not to interfere with the light irradiation device. In addition, it is possible to determine the working position of the reinforcing fiber supply section for fiber reinforced resin pipes having different diameters, and it is possible to manufacture fiber reinforced resin pipes of various diameters with one manufacturing apparatus. it can.
上記構成において、成形型の下方に位置して重合性樹脂組成物を回収するトレー が設置され、 その流出開口にフィルターが設けられてもよい。  In the above configuration, a tray located below the mold for collecting the polymerizable resin composition may be provided, and a filter may be provided at the outflow opening.
この場合、成形型を回転して重合性樹脂組成物が含浸された補強繊維群を積層す る際、滴下する重合性樹脂組成物とともに、余剰に含浸された重合性榭脂組成物を 押し出して、 滴下する余剰の重合性樹脂糸且成物をトレーに回収することができる。 すなわち、重合性樹脂組成物は、未だ光が照射されていないため、硬化は開始され ておらず、再利用が可能である。 このため、重合性樹脂組成物の可使時間が長くな る。 また、 トレーにフィルターが設けられているため、 ゴミなどが混入することを 防止することができる。 In this case, the mold is rotated to laminate the reinforcing fiber group impregnated with the polymerizable resin composition. In this case, the excessively impregnated polymerizable resin composition is extruded together with the polymerizable resin composition to be dropped, and the excess polymerizable resin thread to be dropped can be collected in a tray. That is, since the polymerizable resin composition has not been irradiated with light yet, curing has not been started and the polymerizable resin composition can be reused. Therefore, the pot life of the polymerizable resin composition is prolonged. Further, since the filter is provided on the tray, it is possible to prevent dust and the like from being mixed.
さらに、上記構成において、記重合性樹脂組成物は、 高温反応型重合開始剤が配 合されたものであってもよい。  Further, in the above configuration, the polymerizable resin composition may be one in which a high-temperature reaction-type polymerization initiator is combined.
上記した各構成において用いられる高温反応型重合開始剤としては、常温以上で 重合を開始するものを意味し、樹脂が硬化するまでの時間(以下、可使時間という) と樹脂を加熱する条件等で適宜選択することができる。 特に限定されないが、 5 0 °C以上で反応を開始するものが好ましレ、。具体的には、反応開始?显度が 5 0〜 1 0 0 °Cの重合開始剤として、 t—ブチルパーォキシェチルへキサエート、 ビス (4 一 t一プチ/レシク口へキシル) 一パーォキシジカルボネート、 1 , 1—ビス ( t一 ブチルパーォキシ) 一 3, 3, 5—トリメチルシクロへキサン、 tーブチノレパーォ キシー 2—ェチルへキサネート、ジァシルバーォキサイド、反応開始温度 1 0 0 °C 〜1 6 0 °Cの重合開始剤として、 t—ブチルパーォキシベンゾエート、ジクミルパ ーォキサイド等が挙げられ、常温での保管可能性、硬化速度等を考慮すると、 t― プチルパーォキシ一 2—ェチルへキサネート、 ジァシルパーオキサイド、 1, 1, 3 , 3—テトラメチルブチルパーォキシ一 2—ェチルへキサネート、 t—ブチルパ 一ォキシラウレート等が好ましい。  The high-temperature reaction-type polymerization initiator used in each of the above-mentioned constitutions means a substance that initiates polymerization at a normal temperature or higher. Can be selected as appropriate. Although not particularly limited, those which start the reaction at 50 ° C or higher are preferred. Specifically, the reaction started? As a polymerization initiator having a temperature of 50 to 100 ° C., t-butyl peroxetyl hexate, bis (4-t / l-butyl / hexyl hexyl) -peroxydicarbonate, 1, 1-bis (t-butylperoxy) 1,3,3,5-trimethylcyclohexane, t-butynolepoxy 2-ethylhexanate, diarboxoxide, reaction start temperature 100 ° C to 160 ° C Examples of the polymerization initiator include t-butyl peroxybenzoate, dicumyl peroxide, and the like. Taking into account the storage stability at normal temperature, the curing speed, and the like, t-butyl peroxy-12-ethylhexanate, diasil peroxide, Preferred are 1,1,3,3-tetramethylbutylperoxy-12-ethylhexanate, t-butylperoxylaurate and the like.
また、重合性樹脂,袓成物を構成する樹脂には、特に限定されないが、例えば、 不 ^和ポリエステル、 エポキシ樹脂、 ビニルエステル樹脂、 ウレタン樹脂、 アクリル 樹脂等が挙げられ、 不飽和ポリエステルが好ましい。  The polymerizable resin and the resin constituting the composition are not particularly limited, but include, for example, an unsaturated polyester, an epoxy resin, a vinyl ester resin, a urethane resin, and an acrylic resin, and an unsaturated polyester is preferable. .
この不飽和ポリエステルとしては、特に限定されないが、例えば、 オルソフタル 酸系不飽和ポリエステル、イソフタル酸系不飽和ポリエステル、 ビスフエノール系 不飽和ポリエステル等が挙げられる。 これらの樹脂の組成は、用途に応じて適宜の ものとすることができる。例えば、粘度調整は、モノマーの量や分子量によって調 整することができる。 . Examples of the unsaturated polyester include, but are not limited to, orthophthalic unsaturated polyester, isophthalic unsaturated polyester, and bisphenol-based unsaturated polyester. And unsaturated polyesters. The composition of these resins can be appropriately determined according to the application. For example, the viscosity can be adjusted according to the amount and molecular weight of the monomer. .
また、 光重合開始剤としては、 (ビス) ァシルフォスフィンオキサイド、 カンフ ァーキノン、 ベンジル、 トリメチルベンゾィルジフエニルフォスフィンォキシド、 メチルチオキサントン、 ビスべンタジェニルチタニウムージ、芳香族ジァゾニゥム 塩、 ジァリールョードニゥム塩、 スルホユウム塩、 スルホン酸エステル等が挙げら れ、 これらから単独又は複数選択されて使用される。  Examples of the photopolymerization initiator include (bis) acylphosphine oxide, camphorquinone, benzyl, trimethylbenzoyldiphenylphosphinoxide, methylthioxanthone, bisventenyltitanium di, and aromatic diazonium salt. And sodium salt, sulfoium salt, sulfonate and the like, and these are used alone or in combination.
さらに、上記構成において、可視光を含む波長領域で反応する光重合開始剤が配 合されたものであってもよい。  Further, in the above configuration, a photopolymerization initiator that reacts in a wavelength region including visible light may be combined.
上記した各構成において、可視光を含む波長領域で反応する光重合開始剤を用い る場合、 光重合開始剤としては、 (ビス) ァシルフォスフィンオキサイド、 カンフ ァーキノン、 ベンジル、 トリメチルベンゾィルジフエ-ルフォスフィンォキシド、 メチルチオキサントン、 ビスべンタジェニルチタニウム等が挙げられる。特に好ま しくは、ビスァシルフォスフィンォキサイドやその α—ヒ ドロキシケトンとの混合 物が挙げられる。 In each of the above configurations, when a photopolymerization initiator that reacts in a wavelength region including visible light is used, the photopolymerization initiator may be (bis) acylphosphine oxide, camphorquinone, benzyl, or trimethylbenzoyldiphenyl. -Ruphosphinoxide, methylthioxanthone, bisventenylyltitanium and the like. Particularly preferred are bisacylphosphinoxide and a mixture thereof with α- hydroxyketone.
また、上記した目的を達成するために、本発明にかかる繊維強化樹脂成形体の製 造方法は、複数個の補強繊維を任意の複数個ずつに分けて複数個の捕強繊維群とす る分離工程と、 この分離工程により分けた一方の捕強繊維群に、光重合開始剤と高 温反応型重合開始剤が配合された重合性樹脂組成物を含浸させる含浸工程と、この 含浸工程により重合性樹脂組成物を含浸させた一方の捕強繊維群を、回転自在の芯 型の成形型に連続的に卷回してパイプ状に賦形する賦形工程と、賦形工程により芯 型の成形型に連続的に卷回す一方の補強繊維群を光照射することにより重合反応 を開始させるとともに、その反応熱によって高温反応型重合開始剤による重合反応 を開始させて重合性樹脂組成物を硬化させる硬化工程と、を有することを特徴とす る。 - さらに、上記した目的を達成するために、本発明にかかる繊維強ィ匕樹脂成形体の 製造方法は、複数個の補強繊維を任意の複数個ずつに分けて複数個の補強繊維群と する分離工程と、分離;!:程により分けた一方の補強繊維群に、光重合開始剤が配合 された重合性樹脂組成物を含浸させる含浸工程と、分離工程により分けた他方の捕 強繊維群を、 含浸工程により重合性樹脂組成物を含浸させた一方の補強繊維群に、 この一方の補強繊維群と交差するように不規則な蛇行形状またはループ形状に連 続的に供給する供給工程と、この供給工程により他方の補強繊維群を供給した一方 の補強繊維を、回転自在の芯型の成形型に連続的に卷回してパイプ状に賦形する賦 形工程と、賦形工程により芯型の成形型に連続的に卷回す、他方の補強繊維群を供 給した一方の補強繊維群を光照射することにより重合反応を開始させるとともに、 その反応熱によつて高温反応型重合開始剤による重合反応を開始させて重合性樹 脂組成物を硬化させる硬化工程と、 を有することを特徴とする。 Further, in order to achieve the above-mentioned object, the method for producing a fiber-reinforced resin molded product according to the present invention divides a plurality of reinforcing fibers into arbitrary plural groups to form a plurality of reinforcing fiber groups. A separating step, an impregnating step of impregnating a polymerizable resin composition in which a photopolymerization initiator and a high-temperature reaction type polymerization initiator are blended into one of the reinforcing fiber groups separated by the separating step, One of the reinforcing fiber groups impregnated with the polymerizable resin composition is continuously wound around a rotatable core mold and is shaped into a pipe. The polymerization reaction is started by irradiating one of the reinforcing fiber groups continuously wound around the mold with light, and the heat of the reaction initiates the polymerization reaction by the high-temperature reaction type polymerization initiator to cure the polymerizable resin composition. And a curing step of causing That. - Furthermore, in order to achieve the above-mentioned object, the method for producing a fiber-reinforced resin molded article according to the present invention includes a method of separating a plurality of reinforcing fibers into arbitrary plural pieces to form a plurality of reinforcing fiber groups. Step: Separation:!: One reinforcing fiber group divided according to the process is impregnated with a polymerizable resin composition containing a photopolymerization initiator, and the other reinforcing fiber group divided according to the separation step is divided into two groups. A supply step of continuously supplying one of the reinforcing fiber groups impregnated with the polymerizable resin composition in the impregnation step into an irregular meandering shape or a loop shape so as to intersect with the one reinforcing fiber group; In the supplying step, the other reinforcing fiber group supplied with the other reinforcing fiber group is continuously wound around a rotatable core mold and shaped into a pipe shape. The other reinforcing fiber is continuously wound around the mold The polymerization reaction is started by irradiating one of the reinforcing fiber groups supplied with light with light, and the heat of the reaction initiates the polymerization reaction by the high-temperature reaction type polymerization initiator to cure the polymerizable resin composition. And a curing step.
上記した方法において、重合性樹脂組成物は、高温反応型重合開始剤が配合され たものであってもよい。  In the above method, the polymerizable resin composition may contain a high-temperature reaction-type polymerization initiator.
上記した方法において、重合性榭脂組成物は、可視光を含む波長領域で反応する 光重合開始 が配合されたものであってもよい。  In the above method, the polymerizable resin composition may contain a photopolymerization initiator which reacts in a wavelength region including visible light.
上記した方法において、賦形工程において一方の補強繊維群を一定の肉厚までパ イブ状に賦形させた後、.光照射することにより重合性樹脂組成物を硬化させ、再度 パイプ状に賦形し、光照射することにより重合性樹脂組成物を硬化させる再硬化工 程を有してもよい。  In the above-mentioned method, in the shaping step, one of the reinforcing fiber groups is shaped into a pipe to a certain thickness, and then the polymerizable resin composition is cured by irradiating light and shaped again into a pipe. It may have a re-hardening step of shaping and curing the polymerizable resin composition by light irradiation.
上記した方法において、硬ィ匕工程において一方の捕強繊維群を連続的に卷回しな がら光照射することにより重合性樹脂組成物を硬化させてもよい。  In the above-described method, the polymerizable resin composition may be cured by irradiating light while continuously winding one of the reinforcing fibers in the hardening step.
上記した各方法において用レ、られる高温反応型重合開始剤としては、常温以上で 重合を開始するものを意味し、樹脂が硬化するまでの時間(以下、可使時間という) と樹脂を加熱する条件等で適宜選択することができる。 特に限定されないが、 5 0 °C以上で反応を開始するものが好ましい。具体的には、反応開始温度が 5 0〜1 0 0 °Cの重合開始剤として、 t—ブチノレパーォキシェチルへキサエート、 ビス (4 一 tーブチノレシク口へキシル) 一バーオキシジカスレボネート、 1, 1一ビス ( t一 プチルパーォキシ) 一3, 3 , 5—トリメチ _ /レシクロへキサン、 t一プチノレパーォ キシー 2—ェチルへキサネート、 ジァシルバーォキサイド、反応開始温度 1 0 0 °C 〜 1 6 0 °Cの重合開始剤として、 t一ブチルパーォキシベンゾエート、 ジクミルパ ーォキサイド等が挙げられ、 常温での保管可能性、硬化速度等を考盧すると、 t一 プチルパーォキシ一 2—ェチルへキサネート、 ジァシルパーォキサイド、 1 , 1, 3, 3—テトラメチルプチルパーォキシ一 2—ェチルへキサネート、 t—ブチルバ 一ォキシラウレート等が好ましい。 The high-temperature reaction-type polymerization initiator used in each of the above-mentioned methods means one that initiates polymerization at room temperature or higher, and the time until the resin cures (hereinafter referred to as the pot life) and the heating of the resin It can be appropriately selected depending on conditions and the like. Although not particularly limited, those which initiate the reaction at 50 ° C. or higher are preferred. Specifically, the reaction initiation temperature is 50 to 1 As polymerization initiators at 0 ° C, t-butynoleoxyshexyl hexate, bis (4-t-butynolec hexyl) mono-baroxydicus levonate, 1,1-bis- (t-butyl propyl) oxy 3,3,5-Trimethyl _ / lecyclohexane, t-peptinoleoxy 2-ethylhexanate, diasilboxide, as a polymerization initiator at a reaction initiation temperature of 100 ° C to 160 ° C, T-butyl peroxybenzoate, dicumyl peroxide, etc. are considered. Considering the storability at room temperature and the curing speed, etc. , 3,3-Tetramethylbutylperoxy-12-ethylhexanate, t-butylbisoxylaurate and the like are preferred.
また、 重合性樹脂組成物を構成する樹脂には、 特に限定されないが、 例えば、 不 飽和ポリエステル、 エポキシ榭脂、 ビュルエステル樹脂、 ウレタン樹脂、 アクリル 樹脂等が挙げられ、 不飽和ポリエステルが好ましい。  The resin constituting the polymerizable resin composition is not particularly limited, but examples thereof include an unsaturated polyester, an epoxy resin, a butyl ester resin, a urethane resin, and an acrylic resin, and an unsaturated polyester is preferable.
この不飽和ポリエステルとしては、特に限定されないが、例えば、 オノレソフタル 酸系不飽和ポリエステル、イソフタル酸系不飽和ポリエステル、 ビスフエノール系 不飽和ポリエステル等が挙げられる。 これらの樹脂の組成は、用途に応じて適宜の ものとすることができる。 例えば、 粘度調整は、 モノマーの量や分子量によって調 整することができる。  Examples of the unsaturated polyester include, but are not limited to, onolesophthalic acid-based unsaturated polyester, isophthalic acid-based unsaturated polyester, and bisphenol-based unsaturated polyester. The composition of these resins can be appropriately determined according to the application. For example, the viscosity can be adjusted according to the amount and molecular weight of the monomer.
また、 光重合開始剤としては、 (ビス) ァシルフォスフィンオキサイ ド、 カンフ ァーキノン、 ベンジノレ、 トリメチルベンゾィルジフエニルフォスフィンォキシド、 メチルチオキサントン、 ビスべンタジェ-ルチタニウムージ、芳香族、ジァゾユウム 塩、 ジァリール 一ドニゥム塩、 スルホニゥム塩、 スルホン酸エステル等が挙げら れ、 これらから単独又は複数選択されて使用される。  Examples of the photopolymerization initiator include (bis) acylphosphine oxide, camphorquinone, benzinole, trimethylbenzoyldiphenylphosphinoxide, methylthioxanthone, bisventager-titanium di, aromatic and diazoyum salts. And diaryldonium salts, sulfonium salts, sulfonic acid esters and the like, and these are used alone or in combination.
上記した各方法において、可視光を含む波長領域で反応する光重合開 台剤を用い る場合、 光重合開始剤としては、 (ビス) ァシルフォスフィンオキサイド、 カンフ ァーキノン、 ベンジル、 トリメチルベンゾィルジフエニルフォスフィンォキシド、 メチルチオキサントン、 ビスべンタジェニルチタニウム等が挙げられる。 特に好ま しくは、ビスアシ^/フォスフィンォキサイドやその (¾ーヒ ドロキシケトンとの混合 物が挙げられる。 In each of the above methods, when a photopolymerization initiator that reacts in the wavelength region including visible light is used, the photopolymerization initiator may be (bis) acylphosphine oxide, camphorquinone, benzyl, trimethylbenzoyl. Diphenylphosphinoxide, methylthioxanthone, bisventenyltitanium and the like. Especially preferred For example, bis-acid / phosphinoxide or a mixture thereof with hydroxyketone may be mentioned.
上記した各方法において、可使時間が数日要求される場合には、反応開始が 7 0 〜1 0 0 °C程度の温度域のものを選択することが好ましい。すなわち、紫外線照射 により光重合開始剤が反応し、樹脂が 1 0 0〜 1 3 0 °C程度まで発熱し、 この発熱 温度で高温反応型重合開始剤も十分にその効果を発揮させることができる。よって、 可使時間も十分とれ、 通常作業 (常温) で不必要に樹脂が硬化することがない。 上記した各方法において、複数個の補強繊維としては、特に限定されないが、例 えば、 ガラス繊維、炭素繊維等の無機質繊維や、 ビニロン繊維、 ァラミド繊維等の 有機質繊維などの長繊維が挙げられる。  In each of the above-mentioned methods, when the pot life is required for several days, it is preferable to select one having a temperature range of about 70 to 100 ° C. for starting the reaction. That is, the photopolymerization initiator reacts upon irradiation with ultraviolet rays, and the resin generates heat up to about 100 to 130 ° C. At this heat generation temperature, the high-temperature reaction-type polymerization initiator can sufficiently exhibit its effect. . Therefore, the pot life is sufficient, and the resin is not unnecessarily cured during normal work (normal temperature). In each of the above-described methods, the plurality of reinforcing fibers are not particularly limited, and examples thereof include inorganic fibers such as glass fibers and carbon fibers, and long fibers such as organic fibers such as vinylon fibers and aramide fibers.
上記した各方法のうち、他方の補強繊維群を不規則な蛇行形状あるレ、はループ形 状にする場合、 トラパース装置等を用いて機械的に蛇行形状あるいはループ形状に する方法でも構わないが、巻き癖等を利用しても構わない。不規則な蛇行形状ある いはループ形状にするのは、一方の補強繊維群との部分的な重なりが規則的発生す るのを防止するためである。部分的な重なりが規則的に発生すると、 クラックが生 じやすくなる。 .  When the other reinforcing fiber group has an irregular meandering shape among the above-mentioned methods, it may be formed into a meandering shape or a loop shape mechanically by using a trappers device when the other reinforcing fiber group has an irregular meandering shape. , A winding habit may be used. The irregular meandering shape or the loop shape is used to prevent the occurrence of regular overlapping with one reinforcing fiber group. If partial overlap occurs regularly, cracks are likely to occur. .
この卷き癖等を利用した供給方法としては、 一方の捕強繊維群の巻き回し速度 (以下、周速という) よりも、他方の補強繊維群の供給速度を早くすることにより 行うことができる。好ましくは、周速の 2倍以上である。一方の補強繊維群と他方 の補強繊維群の供給速度の差異によって、他方の捕強繊維群を弛ませた状態で、重 合性樹脂組成物を通過させた状態の一方の補強繊維群上に不規則に供給すること ができる。  The feeding method utilizing the winding habit and the like can be performed by making the feeding speed of the other reinforcing fiber group faster than the winding speed of one of the reinforcing fiber groups (hereinafter, referred to as peripheral speed). . Preferably, it is at least twice the peripheral speed. Due to the difference in the supply speed between the one reinforcing fiber group and the other reinforcing fiber group, the other reinforcing fiber group is loosened and the one reinforcing fiber group is passed through the polymer resin composition in a state where it is passed. Can be supplied irregularly.
また、不規則な蛇行形状あるいはループ形状が形成できるのであれば、他方の補 強繊維群の吐出位置をフィ一ドアイ、 トラバース装置などを使用して調整してもよ い。 図面の簡単な説明 - 第 1図は、本実施の形態 1にかかる繊維強化樹脂パイプの製造装置の一実施形態 を示す正面図である。 If an irregular meandering shape or a loop shape can be formed, the discharge position of the other reinforcing fiber group may be adjusted using a feed eye, a traverse device, or the like. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view showing an embodiment of an apparatus for manufacturing a fiber-reinforced resin pipe according to the first embodiment.
第 2図は、 第 1図の製造装置を一部省略して示す平面図であ'る。  FIG. 2 is a plan view partially showing the manufacturing apparatus of FIG.
第 3図は、 型開き状態の成形型を示す正面図である。  FIG. 3 is a front view showing the mold in an open state.
第 4図は、 型閉め状態の成形型を示す正面図である。  FIG. 4 is a front view showing the molding die in a closed state.
' · 第 5図は、 第 3図の X— X線断面図である。 '· Fig. 5 is a cross-sectional view taken along line X-X in Fig. 3.
第 6図は、補強繊維供給機構を構成する供給フレームを一部省略して示す正面図 である。  FIG. 6 is a front view showing a supply frame constituting a reinforcing fiber supply mechanism with a part thereof omitted.
第 7図は、 第 6図の側面図である。  FIG. 7 is a side view of FIG.
第 8図ほ、捕強繊維供給機構を構成する含浸装置を一部省略して示す斜視図であ る。  FIG. 8 is a perspective view showing a partially omitted impregnating device constituting the reinforcing fiber supply mechanism.
第 9図は、捕強繊維供給機構を構成するフイラメントワインディング供給装置を 示す正面図である。  FIG. 9 is a front view showing a filament winding supply device that constitutes the supplementary fiber supply mechanism.
第 1 0図は、 第 9図の側面図である。  FIG. 10 is a side view of FIG.
第 1 1図は、含浸装置を経て引き出された一方の補強繊維上にフィラメントワイ ンディング供給装置を経て供給された他方の補強繊維との関係を模式的に示す概 略図である。 ·  FIG. 11 is a schematic diagram schematically showing the relationship between one reinforcing fiber drawn through an impregnating device and the other reinforcing fiber supplied through a filament winding supply device. ·
第 1 2図は、 繊維補強樹脂パイプを一部破断して示す断面図である。  FIG. 12 is a cross-sectional view showing a fiber-reinforced resin pipe partially broken away.
第 1 3図は、本実施の形態 2にかかる繊維強化樹脂パイプの製造装置の概略斜視 図である。  FIG. 13 is a schematic perspective view of an apparatus for manufacturing a fiber-reinforced resin pipe according to the second embodiment.
第 1 4図は、 第 1 3図の製造装置に設けられた光照射装置の概略斜視図である。 発明を実施するための最良の形態  FIG. 14 is a schematic perspective view of a light irradiation device provided in the manufacturing apparatus of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について図面を参照 て説明する。 なお、以下に示す 各実施の形態では、繊維強化樹脂成形体として繊維強化樹脂パイプに本発明を適用 W Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the embodiments described below, the present invention is applied to a fiber-reinforced resin pipe as a fiber-reinforced resin molded body. W
13  13
した場合を示す。 なお、本実施の形態では、繊維強化樹脂成形体として繊維強化榭 脂パイプに本発明を適用した場合を示すが、 これに限定されるものでない。 The following shows the case. In the present embodiment, a case is shown in which the present invention is applied to a fiber-reinforced resin pipe as a fiber-reinforced resin molded body, but the present invention is not limited to this.
く実施の形態 1 > Embodiment 1>
まず、本実施の形態 1にかかる繊維強化樹脂パイプ 1 0の製造装置 1を説明する のに先立って、 繊維強化樹脂パイプ 1 0について説明する。  First, prior to describing the manufacturing apparatus 1 of the fiber-reinforced resin pipe 10 according to the first embodiment, the fiber-reinforced resin pipe 10 will be described.
繊維強化樹脂パイプ 1 0は、土木用配管、その他の配管の端部同士を接続する配 管用継手であって、第 1 2図に示すように、 ゴム製リング 1 1と、該ゴム製リング 1 1の外周面を覆ってその同心上に積層された筒状の繊維強化樹脂層 1 2と、から 形成されている。  The fiber reinforced resin pipe 10 is a pipe joint for connecting ends of civil engineering pipes and other pipes. As shown in FIG. 12, a rubber ring 11 and the rubber ring 1 are connected to each other. And a cylindrical fiber-reinforced resin layer 12 which is concentrically laminated so as to cover the outer peripheral surface of No. 1.
ゴム製リング 1 1は、繊維強化樹脂パイプ 1 0の両端近傍に配設され、外周面に 複数個の凹部 1 1 aが形成されている。 '  The rubber ring 11 is disposed near both ends of the fiber-reinforced resin pipe 10, and has a plurality of recesses 11a formed on the outer peripheral surface. '
繊維強化樹脂層 1 2は、その内周面に前述したゴム製リング 1 1の凹部 1 1 aに 対応した凸部 1 2 aが形成されており、繊維強化榭脂層 1 2とゴム製リング 1 1が 相互に離脱しないよう なっている。  The fiber-reinforced resin layer 12 has a convex portion 12a corresponding to the concave portion 11a of the rubber ring 11 described above on an inner peripheral surface thereof, and the fiber-reinforced resin layer 12 and the rubber ring 11 are formed. 1 1 does not leave each other.
このような繊維強化榭脂パイプ 1 0に土木用配管などを挿入することにより、ゴ ム製リング 1 1の内周面が土木用配管などの外周面に密着し、 两者を止水する。 次に、このような繊維強化樹脂パイプ 1 0を製造する本発明の製造装置 1の一実 施形態について、 第 1図乃至第 2図に基づいて説明する。  By inserting civil engineering piping or the like into such a fiber-reinforced resin pipe 10, the inner peripheral surface of the rubber ring 11 is in close contact with the outer peripheral surface of the civil engineering piping or the like, thereby stopping water. Next, an embodiment of the manufacturing apparatus 1 of the present invention for manufacturing such a fiber-reinforced resin pipe 10 will be described with reference to FIGS. 1 and 2. FIG.
この製造装置 1は、成形部 1 Aと、成形部 1 Aから離隔して設置された補強繊維 集積部 1 Bと、成形部 1 Aと補強繊維集積部 1 Bとの間に配設された捕強繊維供給 部 1 Cと、 から構成されている。  This manufacturing apparatus 1 is provided with a forming section 1A, a reinforcing fiber collecting section 1B which is installed at a distance from the forming section 1A, and between the forming section 1A and the reinforcing fiber collecting section 1B. And a supplementary fiber supply unit 1C.
成形部 1 Aには、成形型 2が回転自在に軸支されるとともに、光重合開始剤が配 合された重合性樹脂組成物 6 Aを硬化させる光照射装置 3が設けられている。 成形型 2は、第 3図乃至第 5図に示すように、一端面側にフランジ部材 2 1 (第 5図参照)がー体に固定され、繊維強化樹脂パイプ 1 0の内径に相当する外径の外 周面を有する固定金型 2 2と、固定金型 2 2の外周面の外径と同一の外径の外周面 を有し、固定金型 2 2の両端部にそれぞれ回動自在に軸支された一対のスィング金 型 2 3と、固定金型 2 2の外周面の外径と同一の外径の外周面を有し、固定金型 2 2に対して昇降自在な昇降金型 2 4と、固定金型 2 2に固定されたフランジ部材 2 1と対向するように、固定金型 2 2、 スィング金型 2 3および昇降金型 2 4の各他 端面側に対して着脱自在なフランジ部材 2 5と、力 らなり、図示しない駆動装置を 介して成形型 2を型開きすることにより、第 3図に示すように、固定金型 2の外周 面、一対のスイング金型 2 3の外周面おょぴ昇降金型 2 4の外周面によって繊維強 化樹脂パイプ 1 0の内径に相当する外径の連続する円周面を形成する。 The molding part 1A is provided with a light irradiation device 3 that rotatably supports the molding die 2 and cures the polymerizable resin composition 6A in which the photopolymerization initiator is mixed. As shown in FIGS. 3 to 5, the molding die 2 has a flange member 21 (refer to FIG. 5) fixed to one end surface side thereof and an outer portion corresponding to the inner diameter of the fiber-reinforced resin pipe 10. A fixed mold 22 having an outer peripheral surface having a diameter, and an outer peripheral surface having the same outer diameter as the outer diameter of the outer peripheral surface of the fixed mold 22. And a pair of swing dies 23 rotatably supported at both ends of the fixed dies 22, respectively, and an outer peripheral surface having the same outer diameter as the outer diameter of the outer peripheral surface of the fixed dies 22. The fixed mold 22 and the swing mold are arranged so as to face the elevating mold 24 that can move up and down with respect to the fixed mold 22 and the flange member 21 fixed to the fixed mold 22. 3 and a lifting / lowering mold 24 each having a flange member 25 detachable from the other end face side and a force. As shown, the outer peripheral surface of the fixed die 2, the outer peripheral surface of the pair of swing dies 23, and the outer peripheral surface of the elevating die 24 have a continuous outer diameter corresponding to the inner diameter of the fiber-reinforced resin pipe 10. To form a circumferential surface.
一方、成形型 2が型開き状態にあるとき、図^しない駆動装置を介して成形型 2 を型閉めすることにより、第 4図に示すように、固定金型 2 2に対して昇降金型 2 4が上昇するとともに 一対のスイング金型 2 3が内方に回動し、型開きしたとき の成形型 2の外径よりも、固定金型 2 2の外周面とスイング金型 2 3の外周面との 間隔が縮小する。 この状態において、 固定金型 2 2、一対のスイング金型 2 3およ び昇降金型 2 4に対してブランジ部材 2 5を着脱するこどができるとともに、ゴム 製リング 1 1を装着することができる。  On the other hand, when the molding die 2 is in the mold open state, the molding die 2 is closed via a driving device (not shown) so that the fixed die 22 is lifted with respect to the fixed die 22 as shown in FIG. As the 2 4 rises, the pair of swing molds 2 3 rotate inward, and the outer peripheral surface of the fixed mold 2 2 and the swing mold 2 3 are larger than the outer diameter of the mold 2 when the molds are opened. The distance from the outer peripheral surface is reduced. In this state, the blung member 25 can be attached to and detached from the fixed mold 22, the pair of swing molds 23, and the elevating mold 24, and the rubber ring 11 must be attached. Can be.
また、昇降金型 2 4は、固定金型 2 2に設けたリニアガイド 2 2 2に案内されて 昇降する。 ,  The elevating mold 24 is guided by a linear guide 22 provided on the fixed mold 22 to move up and down. ,
また、固定金型 2 2、一対のスイング金型 2 3および昇降金型 2 4の各外周面に は、前述したゴム製リング 1 1の断面形状に略対応する形状の周溝がそれらの取付 位置に対応する位置に形成されるとともに、他端面側近傍に位置して凹部が形成さ れ(第 5図に固定金型 2 2の周溝 2 2 aおよぴ凹部 2 2 bが示されている力 一対 のスイング金型 2 3および昇降金型 2 4についても、図示しないが、固定金型 2 2 の周溝 2 2 aおよび凹部 2 2 bに連続する周溝および凹部が形成されている。)、成 形型 2の型開き時において、それらの周溝およぴ凹部は、周方向に連続するように なっている。  Also, on each outer peripheral surface of the fixed mold 22, the pair of swing molds 23, and the elevating mold 24, a peripheral groove having a shape substantially corresponding to the cross-sectional shape of the rubber ring 11 described above is attached. A concave portion is formed at a position corresponding to the position, and a concave portion is formed near the other end surface (FIG. 5 shows the peripheral groove 22a and the concave portion 22b of the fixed mold 22). Although not shown, a pair of swing molds 23 and a lift mold 24 are also formed with a circumferential groove and a recess which are continuous with the circumferential groove 22 a and the recess 22 b of the fixed mold 22. When the mold 2 is opened, the circumferential grooves and the concave portions are continuous in the circumferential direction.
一方、 フランジ部材 2 5の内周面には、連続する固定金型 2 2の凹部 2 2 b、 ス イング金型 2 3の凹部および昇降金型 2 4の凹部の断面形状に対応する形状の凸 部 2 5 aがそれらの形成位置に対応して形成されており、 フランジ部材 2 5は、型 開きした固定金型 2 2、一対のスイング金型 2 3および昇降金型 2 4の各凹部にそ れぞれ凸部 2 5 aが嵌合することにより相互に位置決めされる。 On the other hand, on the inner peripheral surface of the flange member 25, the recesses 2 2b and The convex portions 25 a having a shape corresponding to the cross-sectional shapes of the concave portions of the in-ing die 23 and the concave portion of the elevating die 24 are formed corresponding to their formation positions, and the flange member 25 is formed by opening the mold. The protrusions 25 a are fitted into the respective recesses of the fixed mold 22, the pair of swing molds 23, and the elevating mold 24, and are positioned relative to each other.
光照射装置 3は、成形部 1 Aに上下方向に間隔をおいて左右方向(第 2図の上下 方向) に敷設された一対のガイドレール 3 1と、ガイドレール 3 1上に摺動自在に 載置された摺動フレーム 3 2と、摺動フレーム 3 2に一体に連結され、一対の UV ランプ 3 4 (第 1図参照) が配設されたランプシェード 3 3と、 からなり、 ランプ シエード 3 3には、図示しない送風機に接続された送排気ダクト 3 5が接続されて いる ·。  The light irradiation device 3 is composed of a pair of guide rails 31 laid in the left and right direction (up and down direction in FIG. 2) at an interval in the up and down direction on the molding section 1A, and slidably mounted on the guide rails 31. A sliding frame 32 mounted thereon and a lamp shade 33 integrally connected to the sliding frame 32 and provided with a pair of UV lamps 34 (see FIG. 1). 33 is connected to a ventilation duct 35 connected to a blower (not shown).
そして、詳細には図示しないが、成形部 1 Aに設置された電動モータを回転駆動 させることにより、スクリュー軸が回転し、スクリュー軸が!^合された摺動フレー ム 3 2がガイドレール 3 1に沿って左右方向に移動し、ランプシエード 3 3を成形 型 2の上方側外周面に対向する照射位置と、成形部 1 Aに退避した退避位置との間 を往復移動することができる。 また、 同様に、 光照射装置 3は、 図示しない電動モ 一タとスタリユー軸の組み合わせを利用して成形部 1 Aに対して昇降自在となつ ており、 成形型 2の直径の大小に対応することができる。  Then, although not shown in detail, by rotating the electric motor installed in the forming section 1A, the screw shaft rotates, and the sliding frame 32 with which the screw shaft is joined is formed by the guide rail 3 The lamp shade 33 moves in the left-right direction along 1 and can reciprocate between the irradiation position facing the upper outer peripheral surface of the molding die 2 and the retracted position retracted to the molding portion 1A. Similarly, the light irradiation device 3 is configured to be able to move up and down with respect to the forming part 1A by using a combination of an electric motor and a starry shaft (not shown), and to correspond to the diameter of the molding die 2. be able to.
また、光照射装置 3のランプシエード 3 3の周囲には、 U Vランプ 3 4の点灯時、 有害な紫外線が外部に漏洩しないように、カーテン(図示せず)が垂設されている。 また、必要に応じて製造装置 1の周囲に遮光カーテン(図示せず) を張りめぐらせ ることができ、 その際、 作業者の立ち入りを規制するようにしている。  A curtain (not shown) is provided around the lamp shade 33 of the light irradiation device 3 so as to prevent harmful ultraviolet rays from leaking outside when the UV lamp 34 is turned on. Further, if necessary, a light-shielding curtain (not shown) can be stretched around the manufacturing apparatus 1, and at that time, the entrance of workers is restricted.
なお、成形部 1 Aには、前述した光照射装置 3と合わせて、紫外線を含むものの、 可視光をより多く含む光を照射可能なランプ 3 6 1を備えた補助光照射装置 3 6 が設けられており、成形型 2の外周面に対向する照射位置(第 2図の鎖線状態)と,、 成形型 2から離隔した格納位置(第 2図の実線状態) との間を回動することができ る。 ここで、補助光照射装置 3 6が照射位置に回動した場合、 ゴム製リ'ング 1 1の外 側端面と、成形型 2の外周面と、 フランジ部材 2 1、 2 5の内端面とによって形成 される A部分 (第 5図参照) に主に光を照射できるように、 スリットを形成した力 バー (図示せず) がランプ 3 6 1に装着されている。 ' In addition, in addition to the light irradiation device 3 described above, the molding unit 1A is provided with an auxiliary light irradiation device 36 provided with a lamp 361, which can irradiate light including ultraviolet rays but containing more visible light. Rotating between the irradiation position facing the outer peripheral surface of the mold 2 (indicated by the dashed line in FIG. 2) and the retracted position away from the mold 2 (indicated by the solid line in FIG. 2). Can be done. Here, when the auxiliary light irradiation device 36 is rotated to the irradiation position, the outer end surface of the rubber ring 11, the outer peripheral surface of the molding die 2, and the inner end surfaces of the flange members 21, 25 are formed. A power bar (not shown) having a slit is mounted on the lamp 361 so that light can be mainly emitted to the portion A (see FIG. 5) formed by the lamp. '
また、成形部 1 Aには、成形型 2の下方側外周面に対向して重合性樹脂組成物 6 Aを回収するトレイ 9が配設されており、その勾配の合流部に形成された開口には、 フィルター 9 1が設けられている。このフィルター 9 1を通過した重合性樹脂組成 物 6 A 回収マス 9 2に回収され、回収ポンプ 9 3を介して後述する含浸装置 6の 含浸槽 6 1に回収される。  Further, a tray 9 for collecting the polymerizable resin composition 6A is provided in the molding section 1A so as to face the outer peripheral surface on the lower side of the molding die 2, and an opening formed at the junction of the gradient is provided. Is provided with a filter 91. The polymerizable resin composition 6A that has passed through the filter 91 is collected in the collection mass 92, and is collected via the collection pump 93 in the impregnation tank 61 of the impregnation device 6 described later.
捕強繊維集積部 1 Bは、ガラスロービングなどの補強繊維 Fのロール体 Rを荷台 4上に複数個配列して構成され、荷台 4には、各補強繊維 Fをそれぞれ揷通させる 多数の穴を形成したガイド 4 1が固定されている。そして、各ロール体 Rからそれ ぞれ引き出された補強繊維 Fは、ガイド 4 1を経て引き揃えられて二分され、その 一半部が後述する補強繊維供給部 1 Cの含浸装置 6に、その他半部がフィラメント ワインディング供給装置 7にそれぞれ導力れている。  The collecting fiber accumulating portion 1B is configured by arranging a plurality of rolls R of reinforcing fibers F such as glass rovings on the loading platform 4, and the loading platform 4 has a number of holes through which each reinforcing fiber F passes. The guide 4 1 formed is fixed. The reinforcing fibers F respectively drawn out from the rolls R are aligned and divided into two by a guide 41, and one half of the reinforcing fibers F is sent to the impregnating device 6 of the reinforcing fiber supply unit 1C described later and the other half. The sections are respectively guided by filament winding supply devices 7.
ここで、含浸装置 6に導かれた捕強繊維群を、一方の捕強繊維群と記載して符号 F Aを用い、また、 フィラメントワインデイング供給装置 7に導かれた捕強繊維群 ' を、 他方の補強繊維群と記載して符号 F Cを用いるものとする。  Here, the group of the reinforcing fibers guided to the impregnating device 6 is referred to as one of the reinforcing fibers, and the symbol FA is used, and the group of the reinforcing fibers guided to the filament winding supply device 7 is The symbol FC is used as the other reinforcing fiber group.
なお、補強繊維供給部 1 Cの含浸装置 6に導く複数個の補強繊維 Fの口ール体 R と、フィラメントワインディング供給装置 7に導く補強繊維 Fのロール体 Rとを各 装置に合わせて個別に配置し、 各装置に供給するようにしてもい。 ' 補強繊維供給部 1 Cは、前後方向 (第 1図の左右方向) に移動自在な供給フレー ム 5と、供給フレーム 5にそれぞれ設けられた含浸装置 6と、フィラメントワイン デイング供給装置 7と、 押圧ローラ装置 8と、 から構成されている。  In addition, the mouth R of the plurality of reinforcing fibers F guided to the impregnating device 6 of the reinforcing fiber supply unit 1C and the roll R of the reinforcing fibers F guided to the filament winding supply device 7 are individually adapted to each device. And supply it to each device. '' The reinforcing fiber supply section 1C includes a supply frame 5 movable in the front-rear direction (the left-right direction in FIG. 1), an impregnation device 6 provided on the supply frame 5, a filament winding supply device 7, And a pressing roller device 8.
供給フレーム 5は、第 6図および第 7図に示すように、前後方向に敷設された一 対のガイドレーノレ 5 1と、ガイドレーノレ 5 1上に摺動自在に载置されたフレーム本 体 5 2と、 フレーム本体 5 2に設けられた電動モータ 5 3と、その出力軸に設けら れた鎖車 5 4と、フレーム本体 5 2に回転自在に軸支された回転軸 5 5と、回転軸 5 5に固定された鎖車 5 6およぴピニオン 5 7と、一対のガイドレール 5 1間に敷 設されたラック 5 8と、 からなり、鎖車 5 4、 5 6間にはチェーン 5 9が無端状に 卷回され、 また、 ピニオン 5 7がラック 5 8と嚙合されている。 As shown in FIGS. 6 and 7, the supply frame 5 is composed of a pair of guide rails 51 laid in the front-rear direction and a frame book slidably mounted on the guide rails 51. Body 52, an electric motor 53 provided on the frame body 52, a chain wheel 54 provided on the output shaft thereof, and a rotating shaft 55 rotatably supported by the frame body 52. A chain wheel 56 and a pinion 57 fixed to the rotating shaft 55 and a rack 58 laid between the pair of guide rails 51 are provided between the chain wheels 54 and 56. A chain 59 is wound endlessly, and a pinion 57 is combined with a rack 58.
したがって、電動モータ 5 3を回転駆動させることにより、鎖車 5 4、 5 6およ びチヱーン 5 9を介して設定された減速比で回転軸 5 5を回転させると同時に、ラ ック 5 8と嚙み合うピニオン 5 7を回転させる。 このため、 ラック 5 8に対してフ レーム本体 5 2をガイドレール 5 1に沿って前後方向に移動させることができる。 なお、供給フレーム 5のフレーム本体 5 2には、前述した補強繊維集積部 1 Bか ら引き出された他方の補強繊維群 F Cの各補強強繊 Fを方向を変えてフィラメン トワインディング供給装置 7に導くため、各補強繊維 Fを揷通させる多数の穴が形 成されたガイド 5 9が設けられている。  Therefore, by rotating the electric motor 53, the rotating shaft 55 is rotated at the reduction ratio set via the chain wheels 54, 56 and the chain 59, and at the same time, the rack 58 is rotated. The pinion 5 7 that engages is rotated. Therefore, the frame body 52 can be moved in the front-rear direction along the guide rail 51 with respect to the rack 58. The reinforcing body F of the other reinforcing fiber group FC drawn from the reinforcing fiber accumulating portion 1B is changed in direction to the filament winding supply device 7 by changing the direction. For guiding, a guide 59 is provided in which a number of holes are formed to allow each reinforcing fiber F to pass through.
また、供給フレーム 5のフレーム本体 5 2には、一方の補強繊維群 F Aの下方に 位置するとともに、 下流側に向けて樋 5 0 (第 1図参照) が延設されている。 この ため、重合性樹脂組成物 6 Aが含浸された一方の捕強繊維群 F Aから滴下した重合 性樹脂組成物 6 Aを集めてト ィ 9に導くことができる。 この場合、供給フレーム 5の進退距離に合わせて、 樋 0の長さが設定されている。  Further, the frame main body 52 of the supply frame 5 has a gutter 50 (see FIG. 1) extending below the reinforcing fiber group FA toward the downstream side. Therefore, the polymerizable resin composition 6A dropped from one of the reinforcing fiber groups FA impregnated with the polymerizable resin composition 6A can be collected and led to the toy 9. In this case, the length of the gutter 0 is set according to the advance / retreat distance of the supply frame 5.
含浸装置 6は、第 8図に詳細に示すように、供給フレーム 5のフレーム本体 5 2 に固定され、光重合開始剤が配合された重合性樹脂組成物 6 Aを貯留する含浸槽 6 1と、含浸槽 6 1の前後各端部上方にそれぞれ一対ずつ設けられたガイドローラ 6 2と、 フレーム本体 5 2に固定された昇降シリンダ 6 3 (第 1図参照) と、 昇降シ. リンダ 6 3のピストンロッドに固定され、図示しないガイドに洽つて昇降自在な力 バー 6 4と、 力パー 6 4に垂設された一対の含浸ローラ 6 5と、 カゝらなり、 昇降シ リンダ 6 3を伸長作動させることにより、左右各一対のガイドローラ 6 2間におい て、カバー 6 4を介して一対の含浸ローラ 6 5を下降させ、左右各一対のガイドロ ーラ 6 2間を通過する一方の捕強繊維群 F Aを含浸槽 6 1に貯留された重合性樹 月旨組成物 6 Aに浸漬させることができる。 ( As shown in detail in FIG. 8, the impregnating device 6 is fixed to the frame main body 5 2 of the supply frame 5 and has an impregnating tank 61 for storing a polymerizable resin composition 6 A containing a photopolymerization initiator. , A pair of guide rollers 62 provided above the front and rear ends of the impregnation tank 61, a lifting cylinder 63 fixed to the frame body 52 (see Fig. 1), and a lifting cylinder 63 A force bar 64 fixed to the piston rod and movable up and down by a guide (not shown), a pair of impregnated rollers 65 suspended from the force par 64, and a lifting cylinder 63 By performing the extension operation, the pair of impregnating rollers 65 is lowered through the cover 64 between the pair of left and right guide rollers 62, and the pair of left and right guide rollers One of the strong fiber groups FA passing between the rollers 62 can be immersed in the polymerizable luster composition 6A stored in the impregnation tank 61. (
さらに、含浸槽 6 1には、前方のガイドローラ 6 2の下流側に位置して櫛状のガ ィド部材 6 6が設けられている。 このガイド部材 6 6は、重合性榭脂組成物 6 Aが 含浸されて前方に導かれた一方の補強繊維群 F Aの各補強繊維 Fが重合性樹脂組 成物 6 Aを介して付着し、束状となることによつて一方の捕強繊維群 F Aに空隙が 生じるのを防止している。すなわち、後述するように、他方の補強繊維群 F Cを一 方の補強繊維群 F A上に供給するとき、一方の補強繊維群 F Aに形成された空隙を 通して他方の補強繊維群 F Cの各捕強繊維 Fが地上に落下するのを防止する。  Further, the impregnation tank 61 is provided with a comb-shaped guide member 66 located on the downstream side of the front guide roller 62. The guide member 66 is impregnated with the polymerizable resin composition 6A, and each reinforcing fiber F of one of the reinforcing fiber groups FA guided forward adheres through the polymerizable resin composition 6A, The formation of a bundle prevents the formation of voids in one of the reinforcing fiber groups FA. That is, as described later, when the other reinforcing fiber group FC is supplied onto one reinforcing fiber group FA, each trapping of the other reinforcing fiber group FC is performed through a gap formed in one reinforcing fiber group FA. Prevents strong fiber F from falling to the ground.
なお、後方のガイドローラ 6 2の上流側に位置して、前述しチこ補強繊維集積部 1 Bから引き出された一方の捕強繊維群 F Aの各補強強繊 Fを方向を変えて、ほぼ水 平にガイドローラ 6 2に導くため、各補強繊維 Fを揷通させる多数の穴が形成され たガイド 6 7が設けられている。  In addition, it is located on the upstream side of the rear guide roller 62, and changes the direction of each reinforcing fiber F of one of the reinforcing fiber groups FA drawn out from the above-described reinforcing fiber accumulating portion 1B. In order to guide the reinforcing fibers F horizontally, a guide 67 having a number of holes through which the reinforcing fibers F pass is provided.
フィラメントワインディング供給装置 7は、第 9図おょぴ第 1 0図に示すように、 供給フレーム 5のフレーム本体 5 2に左右方向に間隔をおいて上下方向に延びる 一対のガイドレール 7 1と、ガイドレール 7 1に摺動自在に載置された昇降フレー ム 7 2と、 フレーム本体 5 2に回転自在に軸支されるとともに、昇降フレーム 7 2 に螺合されたハンドル 7 3 1を有するスクリュー軸' 7 3と、昇降フレーム 7 2に回 転自在に軸支された供給ローラ 7 4と、供給ローラ 7 4の外周面に接して昇降フレ ーム 7 2に回転自在に軸支された捕助ローラ 7 4 1と、昇降フレーム 7 2に設けら れた電動モータ 7 5と、電動モータ 7 5の出力軸に設けられた鎖車 7 6と、供給口 ーラ 7 4の回転軸に設けられた鎖車 7 7と、鎖車 7.6、 7 7間に無端状に巻回され たチェーン 7 8と、 からなり、電動モータ 7 5を回転駆動させることにより、 鎖車 7 6 , 7 7およびチェーン 7 8を介して設定された減速比で供給ローラ 7 4を回転 させると同時に、供給ローラ 7 4に接する補助ローラ 7 4 1を逆方向に回転させる ことができる。 この際、供給ローラ 7 4および補助ローラ 7 4 1間を通過するよう に導力れた他方の補強繊維群 F Cをその前方に向けて供給することができる。 ここで、供給ローラ 7 4の回転速度、 すなわち、単位時間当たりの他方の補強繊 維群 F Cの供給長さは、前述した成形型 2の周速、すなわち、単位時間当たりの一 方の補強繊維群 F Aの卷き取り長さよりも若干大きく設定されている。 このため、 後述するように、引き揃えられて成形型 2に巻き取られる一方の捕強繊維群 F A上 に他方の捕強繊維群 F Cを供給するとき、他方の補強繊維群 F Cにおける各補強繊 維 Fは、その速度の速い分だけ一方の捕強繊維群 F A上で弛むことになり、一方の 捕強繊維群 F A上に前後左右方向にランダムに蛇行しながら載置される(第 1 1図 参照)。 ' As shown in FIG. 9 and FIG. 10, the filament winding supply device 7 includes a pair of guide rails 7 1 extending vertically in the frame main body 52 of the supply frame 5 at intervals in the left-right direction. A lifting frame 72 slidably mounted on the guide rail 71, and a screw rotatably supported by the frame body 52 and having a handle 731 screwed to the lifting frame 72 The shaft '73, the supply roller 74 rotatably supported by the lifting frame 72, and the catch rotatably supported by the lifting frame 72 in contact with the outer peripheral surface of the supply roller 74. Auxiliary roller 7 41, electric motor 75 provided on lifting frame 72, chain wheel 76 provided on output shaft of electric motor 75, and provided on rotating shaft of supply roller 74 And a chain 778 wound endlessly between the chainwheels 7.6 and 77, By rotating the driving motor 75, the supply roller 74 is rotated at a set reduction ratio via the chain wheels 76, 77 and the chain 78, and at the same time, the auxiliary roller 7 in contact with the supply roller 74. 4 1 can be rotated in the opposite direction. At this time, make sure to pass between the supply roller 74 and the auxiliary roller 74. The other group of reinforcing fibers FC guided by this can be supplied toward the front. Here, the rotation speed of the supply roller 74, that is, the supply length of the other reinforcing fiber group FC per unit time is determined by the peripheral speed of the molding die 2, that is, the one reinforcing fiber per unit time. It is set slightly larger than the winding length of group FA. For this reason, as described later, when the other reinforcing fiber group FC is supplied onto one of the reinforcing fiber groups FC which is drawn and wound on the molding die 2, each reinforcing fiber in the other reinforcing fiber group FC is supplied. The fiber F is slackened on one of the forcing fiber groups FA by an amount corresponding to the higher speed, and is placed on one of the forcing fiber groups FA while meandering randomly in the front-rear and left-right directions (No. 11). See figure). '
この場合、ハンドル 7 3 1を回転操作することにより、スクリュー軸 7 3が回転 し、該スクリュー軸 7 3に螺合された昇降フレーム 7 2をガイドレール 7 1に沿つ て昇降させることができる。すなわ 、成形型 2に卷き取られる一方の補強繊維群 F Aの通過する高さに合わせて、他方の補強繊維群 F Cの供給高さ位置を調整する ことができる。  In this case, by rotating the handle 7 31, the screw shaft 7 3 rotates, and the elevating frame 7 2 screwed to the screw shaft 7 3 can be moved up and down along the guide rail 7 1 . In other words, the supply height position of the other reinforcing fiber group FC can be adjusted according to the height at which one reinforcing fiber group FA wound on the molding die 2 passes.
なお、昇降フレーム 7 2には、その前方に位置して一対のガイド板 7 9が支持口 ッド 7 2 1回りに回動自在に装着されている。 このガイド板 7 9は、 フィラメント ワインディング供給装置 7を介して供給される他方の補強繊維群 F C,が、一方の補 強繊維群 F Aの幅を超えて逸脱しないように規制するものである。  In addition, a pair of guide plates 79 are mounted on the lifting frame 72 in front of the support frame 72 so as to be rotatable around the support pad 72. The guide plate 79 regulates the other reinforcing fiber group FC supplied through the filament winding supply device 7 so as not to deviate beyond the width of the one reinforcing fiber group FA.
また、供給フレーム 5には、補強繊維集積部 1 Bから引き出されて、供給フレー ム 5に設けたガイド 5 9を通過した他方の捕強繊維群 F Cの各補強強繊 Fを方向 を変えて、ほぼ水平に供給ローラ 7 4に導くため、各補強繊維 Fを挿通させる多数 の穴が形成されたガイド 7 0が設けられている。  In the supply frame 5, the reinforcing fibers F of the other reinforcing fiber group FC drawn out from the reinforcing fiber accumulating portion 1B and passing through the guide 59 provided in the supply frame 5 are changed in direction. A guide 70 having a large number of holes through which each reinforcing fiber F is inserted is provided to guide the reinforcing fiber F substantially horizontally to the supply roller 74.
押圧ローラ装置 8は、第 1図および第 2図に示すように、供給フレーム 5のフレ —ム本体 5 2に左右方向に間隔をおいて上下方向に延びるガイドレー/レ 8 1と、ガ ィドレーノレ 8 1上に摺動自在に載置された昇降フレーム 8 2と、昇降フレーム 8 2 に水平軸回りに回動自在に軸支されたアーム 8 3と、アーム 8 3と昇降フレーム 8 2間に配設された押圧シリンダ 8 4と、アーム 8 3の先端に回転自在に軸支された 押圧ローラ 8 5と、昇降フレーム 8 2に設けられた電動モータ 8 6と、電動モータ 8 6の出力軸に連結されて、 昇降フレーム 8 2に螺合されたスクリユー軸 8 7と、 からなり、押圧シリンダ 8 4を伸縮作動させることにより、押圧ローラ 8' 5を成形 型 2の外周面に接する押圧位置と、その外周面から離隔した退避位置との間に揺動 させることができる。 また、電動モータ 8 6を回転駆動させることにより、 スクリ ユー軸 8 7が回転し、スクリユー 8 7が螺合された昇降フレーム 8 2をガイドレ ール 8 1に沿って上下方向に移動させることができ、成形型 2の大きさに合わせて、 押圧ローラ 8 5を成形型 2の外周面に接するように調整することができる。 As shown in FIGS. 1 and 2, the pressing roller device 8 includes a guide rail / layer 81 extending vertically in the frame main body 52 of the supply frame 5 with a horizontal space therebetween, and a guide rail rail. 8 1 An elevating frame 8 2 slidably mounted on 1, an arm 8 3 rotatably supported on the elevating frame 8 2 around a horizontal axis, an arm 8 3 and an elevating frame 8 2, a pressing cylinder 84, a pressing roller 85 rotatably supported at the tip of an arm 83, an electric motor 86 provided on a lifting frame 82, and an electric motor 86. And a screw shaft 8 7 screwed to the lifting frame 82 and connected to the output shaft of the molding die 2. It is possible to swing between the contacting pressing position and the retracted position separated from the outer peripheral surface. In addition, by rotating the electric motor 86, the screw shaft 87 rotates, and the lifting frame 82 with the screw 87 is screwed can be moved up and down along the guide rail 81. The pressing roller 85 can be adjusted so as to be in contact with the outer peripheral surface of the molding die 2 according to the size of the molding die 2.
次に、 このように構成された繊維強化樹脂パイプ 1 0の製造工程について、図面 を用いて以下に説明する。  Next, a manufacturing process of the fiber reinforced resin pipe 10 configured as described above will be described below with reference to the drawings.
まず、 第 4図に示すように、成形型 2を型閉めする。次いで、 フランジ部材 2 5 を簡易クレーンなどを利用して固定金型 2 2から取り外した後、型閉めされた成形 型 2の固定金型 2 2の周溝 2 2 aにゴム製リング 1 1を装着する。そして、フラン ジ部材 2 5を再び固定金型 2 5に装着する。 この際、固定金型 2 2の凹部 2 2 bに フランジ部材 2 5の凸部 2 5 aを嵌合させ、固定金型 2 2に対してフランジ部材 2 5を位置決めする。  First, as shown in FIG. 4, the mold 2 is closed. Next, after removing the flange member 25 from the fixed mold 22 using a simple crane or the like, a rubber ring 1 1 is attached to the circumferential groove 2 2a of the fixed mold 2 2 of the closed mold 2. Installing. Then, the flange member 25 is attached to the fixed mold 25 again. At this time, the protrusion 25 a of the flange member 25 is fitted into the recess 22 b of the fixed mold 22, and the flange member 25 is positioned with respect to the fixed mold 22.
フランジ部材 2 5を装着したならば、第 3図に示すように、成形型 2を型開きす る。 この際、各スイング金型 2 3の凹部おょぴ昇降金型 2 4の凹部をフランジ部材 2 5の凸部 2 5 aに嵌め込むことにより、 それぞれ位置決めする。 また、各ゴム製 リング 1 1を各スィング金型 2 3の各周溝および昇降金型 2 4の各周溝にそれぞ れ装着する。  When the flange member 25 is attached, the mold 2 is opened as shown in FIG. At this time, the concave portions of the swing molds 23 and the concave portions of the elevating molds 24 are fitted into the convex portions 25a of the flange members 25, respectively, so as to be positioned. Further, each rubber ring 11 is attached to each circumferential groove of each swing mold 23 and each circumferential groove of the elevating mold 24.
一方、捕強繊維集積部 1 Bに配置された各口ール体: の捕強繊維 Fは、ガイド 4' 1の各穴に揷通され、 引き揃えられて二分された後、その一半部は、一方の補強繊 維群 F Aとして、含浸装置 6のガイド 6 7の各穴に揷通され、次いで、前後各一対 ずつのガイドローラ 6 2に挟み込まれるように、 それらの間に揷通され、 さらに、 ガイド部材 6 6の各歯間を通過して含浸槽 6 1の下流側まで引き出される。 On the other hand, the forcing fiber F of each vitreous body arranged in the forcing fiber accumulating portion 1 B: is passed through each hole of the guide 4 ′ 1, is aligned and bisected, and then is cut into one half. Is passed through each hole of the guide 67 of the impregnating device 6 as one reinforcing fiber group FA, and then passed between them so as to be sandwiched between a pair of front and rear guide rollers 62. , And The guide member 66 is drawn out to the downstream side of the impregnation tank 61 through each tooth.
また、.他半部は、他方の捕強繊維群 F Cとして、 フレーム本体 5 2に設けたガイ ド 5 9、 5 9の各穴に揷通された後、 フィラメントワインディング供給装置 7のガ イド 7 0の各穴に挿通され、供給ローラ 7 4および補助ローラ 7 4 1に挟み込まれ るように、 それらの間に挿通され、 その下流側に引き出される。  The other half is passed through each hole of guides 59 and 59 provided on the frame body 52 as the other group of the reinforcing fibers FC, and then the guide 7 of the filament winding supply device 7 is used. It is inserted into each hole of No. 0 and is inserted between them so as to be sandwiched between the supply roller 74 and the auxiliary roller 741, and is pulled out downstream thereof.
この後、供給フレーム 5の電動モー 5 3を駆動させ、鎖車 5 4、 5 6およぴチ エーン 5 9を介してラック 5 8に嚙み合うピユオン 5 7を回転させ、フレーム本体 Thereafter, the electric motor 53 of the supply frame 5 is driven, and the pinion 57 that engages with the rack 58 via the chain wheels 54, 56 and the chain 59 is rotated to rotate the frame body.
5 2を作業位置まで前進させる。 5 Advance 2 to the working position.
次いで、含浸装置 6まで引き出された一方の捕強繊維群 F Aを図示しな 、治具に 結束した後、治具を成形型 2に係止して成形型 2を若干回転させ、一方の捕強繊維 群 F Aを成形型 2の外周面に略 1周ほど巻き付ける。 この際、詳細には図示しない 力 成形型 2の外周面に巻き付けられた一方の捕強繊維群 F Aに重合性樹脂組成物 Next, one of the reinforcing fiber groups FA drawn out to the impregnating device 6 is not shown, but after being bound to a jig, the jig is locked to the forming die 2 and the forming die 2 is slightly rotated, so that one of the collecting fibers The strong fiber group FA is wound around the outer peripheral surface of the mold 2 approximately one round. At this time, the polymerizable resin composition is applied to one of the force-absorbing fiber groups FA wound around the outer peripheral surface of the force forming mold 2 (not shown in detail).
6 Aを塗布し、成形型 2に粘着させる。 また、 ハンドル 7 3 1を回転操作して昇降 フレーム 7 2を昇降させ、供給ローラ 7 4および補助ローラ 7 4 1の高さを調整す る。合わせて、押圧ローラ装置 8の電動モータ 8 6を駆動させ、押圧ローラ 8 5が 成形型 2の外周面に接するように、 高さを調整する。 6 A is applied and adhered to the mold 2. In addition, the handle 731 is rotated to raise and lower the lifting frame 72, and adjust the height of the supply roller 74 and the auxiliary roller 741. At the same time, the electric motor 86 of the pressing roller device 8 is driven, and the height is adjusted so that the pressing roller 85 contacts the outer peripheral surface of the molding die 2.
さらに、補助光照射装置 3 6を照射位置に回動させ、成形型 2の外周面に対向さ せる。 また、含浸装置 6の昇降シリンダ 6 3を伸長作動させ、押圧ローラ 6 5を含 浸槽 6 1の内部に進入させ、前後各一対ずつのガイドローラ 6 2間にわたって引き 出された一方の補強繊維群 F Aを含浸槽 6 1の重合性樹脂組成物 6 Aに浸漬させ る。 '  Further, the auxiliary light irradiation device 36 is rotated to the irradiation position so as to face the outer peripheral surface of the mold 2. Also, the lifting cylinder 63 of the impregnating device 6 is extended, the pressing roller 65 enters the inside of the impregnating tank 61, and one reinforcing fiber drawn out between the pair of front and rear guide rollers 62. The group FA is immersed in the polymerizable resin composition 6A in the impregnation tank 61. '
この後、図示しない治具を成形型 2から離脱させて成形型 2を回転させると、成 形型 2の外周面に粘着された一方の補強繊維群 F Aは、成形型 2の外周面に卷き取 られる。 この際、一方の補強繊維群 F Aは、含浸槽 6 1に貯留された重合性榭脂組 成物 6 A中を通過するため、重合性樹脂組成物 6 Aが含浸されて成形型 2に卷き取 られる。 ここで、捕助光照射装置 3 6のランプ 3 6 1を点灯すれば、 ゴム製リング W Thereafter, when the jig (not shown) is removed from the molding die 2 and the molding die 2 is rotated, one of the reinforcing fiber groups FA adhered to the outer peripheral surface of the molding die 2 is wound around the outer peripheral surface of the molding die 2. Will be taken away. At this time, one of the reinforcing fiber groups FA passes through the polymerizable resin composition 6A stored in the impregnation tank 61, so that the polymerizable resin composition 6A is impregnated and wound around the molding die 2. Will be taken away. Here, if the lamp 3 61 of the auxiliary light irradiation device 36 is turned on, the rubber ring W
22  twenty two
1 1の外側端面と、成形型 2の外周面と、 フランジ部材 2 1、 2 5の内端面とによ つて形成される A部分に光が照射され、この A部分に積層された一方の補強繊維群 F Aに含浸された重合性樹脂組成物 6 Aは光硬化する。  11 A portion formed by the outer end surface of 1, the outer peripheral surface of the mold 2 and the inner end surfaces of the flange members 21 and 25 is irradiated with light, and one of the reinforcements laminated on the A portion The polymerizable resin composition 6A impregnated in the fiber group FA is light-cured.
すなわち、 A部分に巻き付けられた一方の補強繊維群 F Aに含浸された重合性樹 脂組成物 6 Aは、当該部分の製品肉厚が厚いため、後になるほど一方の補強繊維群 F Aが積層されて光が透過しにくく、硬ィ匕しにくくなる。 したがって、重合性樹脂 組成物 6 Aを一方の補強繊維群 F Aの卷き取り開始段階で光硬化させることによ り、 A部分が未硬化のまま繊維強ィヒ樹脂パイプ 1 0が製造されるのを防止すること ができる。 ' '  That is, the polymerizable resin composition 6A impregnated in one of the reinforcing fiber groups FA wound around the part A has a thicker product thickness in the relevant part, so that one of the reinforcing fiber groups FA is laminated later. Light is less likely to pass through, and it is difficult to harden. Therefore, by fiber-curing the polymerizable resin composition 6A at the stage of starting the winding of one of the reinforcing fiber groups FA, the fiber-reinforced resin pipe 10 is manufactured with the part A uncured. Can be prevented. ''
この場合、捕助光照射装置 3 6のランプ 3 6 1は、紫外線を含むものの、可視光 リツチとなっているため、 安全性に問題はない。  In this case, although the lamp 36 1 of the assisting light irradiating device 36 contains ultraviolet rays, it has visible light, so there is no problem in safety.
このように、成形型 2の回転により、成形型 2の A部分に積層された一方の補強 繊維群 F Aに含浸された重合性樹脂組成物 6 Aが補助光照射装置 3 6によって光 硬ィ匕しつつ、重合性樹脂組成物 6 Aが含浸された一方の捕強繊維群 F Aが成形型 2 に卷き取られる。  As described above, by the rotation of the molding die 2, the polymerizable resin composition 6A impregnated in the one reinforcing fiber group FA laminated on the portion A of the molding die 2 is subjected to light curing by the auxiliary light irradiation device 36. Meanwhile, one of the reinforcing fiber groups FA impregnated with the polymerizable resin composition 6 A is wound up into the mold 2.
この状態で、 一方の補強繊維群 F Aを一定時間にわたって成形型 2に巻き付け、 成形型 2の外周面から突出するゴム製リング 1 1の高さとほぼ厚みだけ積層され たならば、いったん成形型 2の回転を停止し、補助光照射装置 3 6を退避位置に格 納する。 そして、再び成形型 2を回転させると同時に、 フィラメントワインディン, グ供給装置 7の電動モータ 7 5を駆動させることにより、供給ローラ Ί 4および補 助ローラ 7 4 1を回転させ、 他方の捕強繊維群 F Cを繰り出す。  In this state, one of the reinforcing fiber groups FA is wound around the molding die 2 for a certain period of time, and once the rubber ring 11 protruding from the outer peripheral surface of the molding die 2 is laminated by the height and almost the thickness, once the molding die 2 Is stopped, and the auxiliary light irradiation device 36 is stored at the retracted position. Then, by simultaneously rotating the molding die 2 again and simultaneously driving the electric motor 75 of the filament winding / feeding device 7, the supply roller # 4 and the auxiliary roller 741 are rotated, and the other capture force is applied. Feed out fiber group FC.
ここで、供給ローラ 7 4の回転速度、すなわち、単位時間当たりの他方の補強繊 維群 F Cの供給長さは、成形型 2の周速、すなわち、単位時間当たりの一方の補強 繊維群 F Aの卷き取り長さよりも若干大きく設定されていることから、成形型 2に 卷き取られる一方の補強繊維群 F A上に他方の補強繊維群 F Cを供給するとき、他 方の捕強繊維群 F Cにおける各補強繊維 Fは、その速度の速い分だけ一方の捕強繊 維群 F A上で弛むことになり、第 1 1図に示したように、前後左右方向にランダム に蛇行しながら载置される。 Here, the rotation speed of the supply roller 74, that is, the supply length of the other reinforcing fiber group FC per unit time is determined by the peripheral speed of the molding die 2, that is, the one reinforcing fiber group FA per unit time. Since the length is set slightly larger than the winding length, when the other reinforcing fiber group FC is supplied onto one reinforcing fiber group FA wound on the molding die 2, the other reinforcing fiber group FC is supplied. Of each reinforcing fiber F It will be slack on the fiber group FA and, as shown in Fig. 11, it will be placed while meandering randomly in the front, rear, left and right directions.
この際、一方の補強繊維群 F Aの捕強繊維 Fは、ガイド部材 6 6の各齒間を通過 して互いの間隔が維持されており、重合性樹脂組成物 6 Aによって束状に粘着して 空隙が発生するのを確実に防止している。 このため、各補強繊維 Fがほぼ一定の間 隔をおいて移動する一方の捕強繊維群 F Aに、他方の補強繊維群 F Cの各ネ翁強繊維 Fが確実に载置される。,  At this time, the reinforcing fibers F of one of the reinforcing fiber groups FA pass between the teeth of the guide member 66 and are maintained at an interval from each other, and are adhered in a bundle by the polymerizable resin composition 6A. This ensures that voids are not created. For this reason, one reinforcing fiber group F A in which each reinforcing fiber F moves at a substantially constant interval, and each of the reinforcing fiber groups F C in the other reinforcing fiber group F C is reliably disposed. ,
また、一方の補強繊維群 F Aの幅を越えて他方の補強繊維群 F Cの各捕強繊維 F が逸脱しようとしても、左右一対のガイド板 7 9によって規制されているため、確 実に一方の捕強繊維群 F A上に载置される。 しかも、一方の補強繊維群 F Aに重合 性樹脂組成物 6 Aが含浸されているため、他方の補強繊維群 F Cの各捕強繊維 Fは、 一方の捕強繊維群 F Aに粘着されてランダムに蛇行した状態に保持される。  Also, even if each of the reinforcing fibers F of the other reinforcing fiber group FC attempts to deviate beyond the width of one of the reinforcing fiber groups FA, since it is regulated by the pair of left and right guide plates 79, one of the reinforcing fibers F is surely removed. Located on the strong fiber group FA. In addition, since one of the reinforcing fiber groups FA is impregnated with the polymerizable resin composition 6A, each of the reinforcing fibers F of the other reinforcing fiber group FC is randomly adhered to the one of the reinforcing fiber groups FA. It is kept in a meandering state.
この結果、回転する成形型 2には、重合性樹脂組成物 6 Aが含浸された一方の補 強繊維群 F A上にランダムに蛇行して粘着された他方の補強繊維群 F Cを積層し た状態の補強繊維群が卷き取られる。 すなわち、 成形型 2の外周面の周方向には、 —方の捕強繊維群 F Aが積層され、その軸線方向には、 ランダムに蛇行した他方の 補強繊維群 F Cが積層され、一方の補強繊維群 F Aの補強繊維 Fと、他方の補強繊 維群 F Cの補強繊維 Fとが集中する箇所を発生することなく成形型 2に補強繊維 群が卷き取られる。  As a result, the rotating mold 2 has a state in which the other reinforcing fiber group FC, which is randomly meandered and adhered, is laminated on one reinforcing fiber group FA impregnated with the polymerizable resin composition 6A. Is wound up. That is, in the circumferential direction of the outer peripheral surface of the molding die 2, the negative reinforcing fiber group FA is laminated, and in the axial direction, the other reinforcing fiber group FC meandering at random is laminated, and one reinforcing fiber group FC is laminated. The reinforcing fiber group is wound around the mold 2 without generating a location where the reinforcing fiber F of the group FA and the reinforcing fiber F of the other reinforcing fiber group FC concentrate.
成形型 2に重合性樹脂組成物 6 Aが含浸された一方の捕強繊維群 F A上にラン ダムに蛇行して粘着された他方の補強繊維群 F Cを積層した状態の補強繊維群が 卷き取られて一定の厚みに到達すれば、昇降シリンダ 6 3を縮小作動させ、含浸口 ーラ 6 5を重合性樹脂組成物 6 Aから引き上げるとともに、フィラメントワインデ ィング供給装置 7の電動モータ 7 5の駆動を停止させる。 さらに、その状態で一定 長さ卷き取ったならば、成形型 2の回転を停止した後、一方の補強繊維群 F Aおよ ぴ他方の補強繊維群 F Cをフィラメントワインディング供給装置 7の下流側で切 断し、 供給フレーム 5を補強繊維集積部 1 B側に後退させる。 A reinforcing fiber group in a state where the other reinforcing fiber group FC meandering and sticking in a random manner on one of the reinforcing fiber groups FA in which the mold 2 is impregnated with the polymerizable resin composition 6 A is wound. When it is removed and reaches a certain thickness, the elevating cylinder 63 is contracted to raise the impregnation roller 65 from the polymerizable resin composition 6A, and the electric motor 75 of the filament winding supply device 7 Stop driving. Further, if a certain length is wound in this state, after the rotation of the molding die 2 is stopped, one of the reinforcing fiber groups FA and the other reinforcing fiber group FC are fed to the downstream side of the filament winding supply device 7. Off Then, the supply frame 5 is retracted to the reinforcing fiber accumulation section 1B side.
その後、成形型 2を再び回転させ、詳細には図示しないが、積層された補強繊維 群にローラを押し当て、積層された捕強繊維群に混入した空気を排出するとともに、 余剰に含浸された重合性樹脂組成物 6 Aを押し出す。押し出された余剰の重合性榭 脂組成物 6 Aは、成形型 2からトレ一 9に滴卞し、成形型 2の回転時に滴下した重 合性樹脂組成物 6 Aとともにフィルター 9 1を経て回収マス 9 2に回収された後、 回収ポンプ 9 3によって再ぴ含浸槽 7 1に回収される。すなわち、重合性樹脂組成 物 6 Aは、未だ光が照射されていないため、硬化は開始されておらず、再利用が可 能である。 このため、 重合性樹脂組成物 6 Aの可使時間が長くなる。  Thereafter, the molding die 2 was rotated again, and although not shown in detail, a roller was pressed against the laminated reinforcing fiber group to discharge air mixed in the laminated reinforcing fiber group, and excessively impregnated. Extrude 6 A of the polymerizable resin composition. Extruded excess polymerizable resin composition 6A is dropped from tray 2 onto tray 9 and collected through filter 91 together with polymer resin composition 6A dropped during rotation of mold 2. After being collected in the mass 92, it is collected in the regeneration impregnation tank 71 by the collection pump 93. That is, since the polymerizable resin composition 6A has not been irradiated with light yet, curing has not been started and the polymerizable resin composition 6A can be reused. Therefore, the pot life of the polymerizable resin composition 6A is prolonged.
この際、 トレー 9に設けられたフィルター 9 1により、 ゴミなどが混入すること が防止される。 これは、繊維強化樹脂パイプが異なる断面を有する場合に、 特に効 果を発揮する。すなわち、上記のような形状のパイプを成形する際には、光照射補 助ランプを使用することが好ましく、この補助ランプの卷回中の照射により余剰樹 脂のゲルィ匕が起こる可能性が高い。このゲルィ匕物が滴下樹脂とともにトレー 9に落 下し、 含浸槽 7 1に回収されてつまりなどの原因となるのを防止することができ、 また、回収樹脂内に混入するのも防止することができる。 この場合におけるフィル ター 9 1の網目の大きさとしては、 3〜4 O mmの間で選択するのが望ましい。 脱泡作業が終了すれば、光照射装置 3の図示しない電動モータを駆動させ、攆動 フレーム 3 2、すなわち、 ランプシェード 3 3を成形型 2の上方外周面に対向する 照射位置まで移動させるとともに、成形型 2の外周面までの間隔を調整する。そし て、製造装置 1の周囲に図示しない遮光カーテンを張りめぐらせた後、成形型 2を 回転させるとともに、 U Vランプ 3 4の光を照射させる。  At this time, dust and the like are prevented from being mixed in by the filter 91 provided on the tray 9. This is particularly effective when the fiber reinforced resin pipes have different cross sections. That is, when forming a pipe having the above-described shape, it is preferable to use a light irradiation auxiliary lamp, and irradiation during the winding of the auxiliary lamp is likely to cause excess resin gelling. . It is possible to prevent that the gelly dangling material falls into the tray 9 together with the dripped resin and is collected in the impregnation tank 71 to cause clogging and the like, and also prevented from being mixed into the collected resin. Can be. In this case, the size of the mesh of the filter 91 is desirably selected between 3 and 4 Omm. When the defoaming operation is completed, the electric motor (not shown) of the light irradiation device 3 is driven to move the driving frame 32, that is, the lamp shade 33, to the irradiation position facing the upper outer peripheral surface of the molding die 2, and Adjust the distance to the outer peripheral surface of the mold 2. Then, after a light-shielding curtain (not shown) is stretched around the manufacturing apparatus 1, the mold 2 is rotated and the light of the UV lamp 34 is irradiated.
この際、成形型 2に積層された捕強繊維群に含浸された重合性樹脂組成物 6 Aに は、光重合開始剤が配合されているため、 UVランプ 3 4からの紫外線リツチの光 を受けて硬化を開始する。そして、一定時間 U Vランプ 3 4.の光を照射することに より、重合性樹脂組成物 6 Aが硬ィ匕したならば、すなわち、繊維強化樹脂パイプ 1 0が製造されたならば、 U Vランプ 3 4の光の照射を中止し、退避位置に移動させ るとともに、成形型 2の回転を停止する。合わせて、遮光カーテンを元の位置に戻 す。 At this time, since the photopolymerization initiator is mixed in the polymerizable resin composition 6 A impregnated in the reinforcing fiber group laminated on the molding die 2, the light from the ultraviolet lamp 34 from the UV lamp 34 is irradiated. Receiving starts curing. Then, if the polymerizable resin composition 6A is hardened by irradiating the light of the UV lamp 34 for a certain period of time, that is, the fiber-reinforced resin pipe 1 When 0 is manufactured, the irradiation of the light from the UV lamps 34 is stopped, and the mold is moved to the retracted position and the rotation of the mold 2 is stopped. At the same time, return the blackout curtain to its original position.
次いで、前述とは逆に、成形型 2を型閉めした後、 フランジ部材 2 5を固定金型 2 2力、ら離脱させる。そして、製造された繊維強化樹脂パイプ 1 0の周囲にパンド などを掛け回して天井クレーンなどによって吊り上げ、 次の工程に移動させる。 . このようにして製造された繊維強化樹脂パイプ 1 0は、その周方向には、一方の 補強繊維群 F Aが積層され、その軸線方向には、 ランダムに蛇行した他方の補強繊 維群 F Cが積層されることになり、一方の補強繊維群 F Aの補強繊維 Fと、他方の 補強繊維群 F Cの補強繊維 Fが集中する箇所は発生せず、クラックの発生を確実に P力止することができる。  Next, contrary to the above, after closing the mold 2, the flange member 25 is released from the fixed mold 22. Then, a band or the like is wrapped around the manufactured fiber-reinforced resin pipe 10, lifted by an overhead crane or the like, and moved to the next step. In the fiber reinforced resin pipe 10 manufactured in this manner, one reinforcing fiber group FA is laminated in the circumferential direction, and the other reinforcing fiber group FC meandering randomly in the axial direction. As a result, there is no place where the reinforcing fiber F of one reinforcing fiber group FA and the reinforcing fiber F of the other reinforcing fiber group FC concentrate, and the generation of cracks can be securely stopped by the P force. it can.
また、重合性樹脂組成物 6 Aに光重合開始剤を配合していることにより、光を照 射すれば、速やかに硬化が開始されるため、繊維強化樹脂パイプ 1 0を短時間に製 造することが可能となり、作業効率を向上させることができる。 また、光を照射し なければ硬ィヒが開始されないことから、余剰の重合性樹脂組成物 6 Aを回収して再 利用を図ることができる。  In addition, since the photopolymerization initiator is blended with the polymerizable resin composition 6A, curing can be started promptly by irradiating light, so that the fiber reinforced resin pipe 10 can be manufactured in a short time. Work efficiency can be improved. In addition, since the hard coating is not started unless light is irradiated, the excess polymerizable resin composition 6A can be recovered and reused.
なお、 '前述した実施形態においては、一方の補強繊維群 F Aを成形型 2に直接卷 き取る場合を説明したが、成形型 2の外周面との離型性を考慮して、繊維強化樹脂 パイプ 1 0の製造に先立って、成形型 2の外周面に離型フィルムを卷き付けてから 作業を開始することが好ましい。 ,  In the above-described embodiment, the case where one reinforcing fiber group FA is directly wound on the molding die 2 has been described. However, in consideration of the releasability from the outer peripheral surface of the molding die 2, the fiber-reinforced resin It is preferable to start the operation after winding a release film around the outer peripheral surface of the mold 2 before manufacturing the pipe 10. ,
次に、本実施の形態 1にかかる繊維強化樹脂パイプ 1 0の製造装置 1、およびそ の製造方法とは異なる他の繊維強化樹脂パイプの製造装置、およびその製造方法に ついて説明する。 なお、本実施の形態 1にかかる繊維強化樹脂パイプ 1 0の製造装 置 1の構成部材と同一名称の構成部材には、 同一の符号を付す。  Next, an apparatus 1 for manufacturing the fiber-reinforced resin pipe 10 according to the first embodiment, an apparatus for manufacturing another fiber-reinforced resin pipe different from the method for manufacturing the same, and a method for manufacturing the same will be described. Note that the same reference numerals are given to constituent members having the same names as the constituent members of the manufacturing apparatus 1 of the fiber-reinforced resin pipe 10 according to the first embodiment.
く実施の形態 2〉 Embodiment 2>
次に、本実施の形態 2にかかる繊維強化樹脂パイプ 1 0の製造装置 1の一実施形 態について、 第 1 3図、 第 1 4図を用いて説明する。 ' Next, one embodiment of the manufacturing apparatus 1 for the fiber-reinforced resin pipe 10 according to the second embodiment The state will be described with reference to FIGS. 13 and 14. '
この製造装置 1は、第 1 3図に示すように、成形部 1 Aと、成形部 1 Aから離隔 して設置された補強繊維集積部 1 Bと、成形部 1 Aと補強繊維集積部 1 Bとの間に 配設された補強 維供給部 1 Cと、 から構成,されている。  As shown in FIG. 13, the manufacturing apparatus 1 includes a forming section 1A, a reinforcing fiber collecting section 1B provided separately from the forming section 1A, a forming section 1A and the reinforcing fiber collecting section 1A. And a reinforcing fiber supply unit 1C, which is provided between the two.
成形部 1 Aは.、回転自在に軸支されたドラム状からなる芯型の成形型 2と、下記 する補強繊維 Fに付着された重合性樹脂組成物 6 Aを硬化させるために下記する 光重合開始剤が反応を開始する波長の光を照射する光照射装置 3と、重合性樹脂組 成物 6 Aを嘖霧または滴下するノズル 1 0と、から構成され、補強繊維 Fが成形型 2の外周面に所定周回数巻き付けられて、 パイプ状に賦形される。  The molding part 1A is a core-shaped molding die 2 having a drum shape rotatably supported on a shaft and a polymerizable resin composition 6A attached to a reinforcing fiber F described below. It comprises a light irradiation device 3 for irradiating light having a wavelength at which the polymerization initiator starts a reaction, and a nozzle 10 for spraying or dropping the polymerizable resin composition 6A, and the reinforcing fiber F is formed into a molding die 2. Is wound around the outer peripheral surface a predetermined number of times and shaped into a pipe.
光照射装置 3には、第 1 4図に示すよ に、 シャッター 3 7が設けられ、 このシ ャッター 3 7を開閉することにより、ランプ 3 4の光が成形型 2に巻き付けられた 補強繊維 Fに向けて照射される構成となっている。 また、 この光照射装置 3には、 図示しない送風機に接続された送気管 3 8 1および排気管 3 8 2と、ランプ 3 4か らの光の照射量を制御するための熱線フィルタ 3 9とが設けられている。  As shown in FIG. 14, the light irradiation device 3 is provided with a shutter 37, and by opening and closing the shutter 37, the light of the lamp 34 is reinforced by the reinforcing fiber F wound around the mold 2. Irradiated toward. The light irradiation device 3 includes an air supply pipe 38 1 and an exhaust pipe 38 2 connected to a blower (not shown), and a heat ray filter 39 for controlling the amount of light emitted from the lamp 34. Is provided.
また、成形部 1 Aには、成形型 2の下方側外周面に対向して重合性榭脂組成物(光 重合開始剤を む重合性樹脂組成物 6 A) を回収するトレイ 9が配設されており、 このトレィ 9に回収された重合性樹脂組成物 6 Aは、回収ポンプ 9 3を介して後述 する含浸装置 (図示省略) の含浸槽 6 1に回収される。  In addition, a tray 9 for collecting the polymerizable resin composition (polymerizable resin composition 6A containing a photopolymerization initiator) is provided in the molding portion 1A so as to face the lower outer peripheral surface of the molding die 2. The polymerizable resin composition 6A collected in the tray 9 is collected in an impregnation tank 61 of an impregnation device (not shown) described later via a collection pump 93.
補強繊維集積部 1 Bは、ガラスロービングなどの補強繊維 Fの口ール体 Rを複数 個配列して構成されている。そして、各ロール体 Rからそれぞれ引き出された補強 繊維 Fは、引き揃えられた状態で二分され、その一半部が後述する補強繊維供給部 1 Cの含浸装置(第 1 3図の含浸槽 6 1参照) に、 その他半部が補強繊維供給部 1 Cのフィラメントワインデイング供給装置(図示省略、第 1 3図の供給ローラ 7 4 参照) にそれぞれ導かれる。 なお、含浸装置に導かれた補強繊維群を、一方の補強 繊維群と記載して符号 F Aを用い、また、 フィラメントワインデイング供給装置に 導かれた捕強繊維群を、他方の捕強繊維群と記載して符号 F Cを用いるものとする (第 1 3図参照)。 The reinforcing fiber accumulating portion 1B is configured by arranging a plurality of jaws R of reinforcing fibers F such as glass roving. The reinforcing fibers F drawn out from the respective rolls R are divided into two in a aligned state, and one half of the reinforcing fibers F is impregnated with the impregnating device (impregnating tank 6 1 in FIG. The other half is guided to a filament winding supply device (not shown, see supply roller 74 in FIG. 13) of reinforcing fiber supply section 1C. The reinforcing fiber group guided to the impregnating device is referred to as one reinforcing fiber group and the symbol FA is used, and the reinforcing fiber group guided to the filament winding supply device is used as the other reinforcing fiber group. And use the code FC (See Figure 13).
なお、補強繊維供給部 1 Cの含浸装置に導く複数個の捕強繊維 Fの口ール体 Rと、 フィラメントワインディング供給装置に導く補強繊維 Fの口ール体 Rとを各装置 に合わせて個別に配置し、 各装置に供給するようにしてもよい。 、  In addition, the mullet R of the plurality of reinforcing fibers F guided to the impregnating device of the reinforcing fiber supply unit 1C and the mullet R of the reinforcing fiber F guided to the filament winding supply device are matched to each device. You may arrange | position individually and supply it to each apparatus. ,
補強繊維供給部 1 .Cは、光重合開始剤が配合された重合性樹脂組成物 6 Aを貯留 する含浸装置と、補強繊維集積部 1 Bから引き出された他方の補強繊維群 F Cの送 り出し方向を変えるフィラメントワインデイング供給装置と、から構成され、一方 の補強繊維群 F Aが含浸装置に貯留された重合性樹脂組成物 6 Aに浸漬され、この 浸漬された.一方の補強繊維群 F Aにフィラメントワインディング供給装置から送 り出された他方の補強繊維群 F Cが粘着される。この他方の補強繊維群 F Cの粘着 により、補強繊維群 Fが束状となり、一方の補強繊維群 F Aに空隙が生じるのを防 止している。すなわち、後述するように、他方の補強繊維群 F Cを一方の捕強繊維 群 F A上に供給するとき、一方の補強繊維群 F Aに形成された空隙を通して他方の 補強繊維群 F Cの各補強繊維 Fが地上に落下するのを防止する。  Reinforcing fiber supply section 1.C is provided with an impregnating device for storing polymerizable resin composition 6A containing a photopolymerization initiator, and feed of the other reinforcing fiber group FC drawn from reinforcing fiber accumulating section 1B. And a filament winding supply device for changing the feeding direction. The other reinforcing fiber group FC sent out from the filament winding supply device is adhered. The adhesion of the other reinforcing fiber group F C prevents the reinforcing fiber group F from becoming a bundle, thereby preventing a void from being generated in the one reinforcing fiber group F A. That is, as described later, when the other reinforcing fiber group FC is supplied onto the one reinforcing fiber group FA, each reinforcing fiber F of the other reinforcing fiber group FC passes through the void formed in the one reinforcing fiber group FA. To prevent it from falling to the ground.
フィラメントワインディング供給装置には、他方の捕強繊維群 F Cを送り出す供 給ローラ 7 4が設けられ、この供給ローラ 7 4による他方の補強繊維群 F Cを送り 出す送り出し速度は、ドラム状からなる成形型 2の回転速度よりも速く設定されて いる。すなわち、 フィラメントワインディング供給装置 7の単位時間当たりめ他方 の補強繊維群 F Cの供給長さは、成?^型 2の単位時間当たりの一方の補強繊維群 F Aの卷き取り長さよりも若干大きく設定されている。 このため、引き揃えられて成 形型 2に巻き取られる一方の補強繊維群 F A上に他方の補強繊維群 F Cを供給す るとき、他方の補強繊維群 F Cにおける各捕強 «隹 Fは、その速度の速い分だけ一 方の補強繊維群 F A上で弛むことになり、一方の補強繊維群 F A上に前後左右方向 にランダムに蛇行しながら载置される (第 1 1図参照)。 すなわち、 供給ローラ 7 4で送られる他方の補強繊維群 F Cは、成形型 2の回転速度よりも速く送りだされ ることにより、その卷き癖及び送り溜まりによって不規則なループ状あるいは蛇行 した状態で、含浸槽 6 1と成形型 2との間で一方の補強繊維群 F A上に連続的に供 給され、一方の補強繊維群 F Aとともに成形型 2への所定の厚みになるまで連続的 に巻き付けられる。 The filament winding supply device is provided with a supply roller 74 for feeding out the other reinforcing fiber group FC, and the feeding speed for sending out the other reinforcing fiber group FC by the supply roller 74 is a drum-shaped forming die. The rotation speed is set faster than 2. That is, the supply length of the other reinforcing fiber group FC per unit time of the filament winding supply device 7 is set to be slightly larger than the winding length of one reinforcing fiber group FA per unit time of the mold 2. Have been. For this reason, when the other reinforcing fiber group FC is supplied onto one reinforcing fiber group FA that is aligned and wound into the molding die 2, each force «UF F in the other reinforcing fiber group FC is The higher the speed, the more slack it is on one of the reinforcing fiber groups FA, and it is placed on one of the reinforcing fiber groups FA while meandering randomly in the front-rear and left-right directions (see Fig. 11). That is, the other reinforcing fiber group FC sent by the supply roller 74 is sent out faster than the rotation speed of the molding die 2, and thus has an irregular loop or meandering due to its winding habit and feed pool. In this state, it is continuously supplied onto one of the reinforcing fiber groups FA between the impregnation tank 61 and the forming die 2 and continuously with the one reinforcing fiber group FA until the thickness of the forming die 2 reaches a predetermined value. It is wound around.
次に、 このように構成された繊維強化樹脂パイプ 1 0の製造工程について、第 1 3図を用いて以下に説明する。  Next, a manufacturing process of the fiber reinforced resin pipe 10 configured as described above will be described below with reference to FIG.
この製造方法は、補強繊維供給部 1 Cから引き出されて平行に引き揃えられた複 数の周方向長繊維捕強材としての一方の補強繊維群 F Aを光重合開始剤を含む重 合性樹脂組成物 6 Aが貯め れた含浸槽 6 1に連続的に通し、一方の補強繊維群 F Aに重合性樹脂組成物 6 Aを含浸させたのち、回転する成形型 2に所定周回数卷き 付ける。  In this manufacturing method, one reinforcing fiber group FA as a circumferential long fiber reinforcing material drawn out from the reinforcing fiber supply section 1C and aligned in parallel is used as a polymer resin containing a photopolymerization initiator. After continuously passing through the impregnation tank 6 1 in which the composition 6 A is stored and impregnating one of the reinforcing fiber groups FA with the polymerizable resin composition 6 A, it is wound around the rotating mold 2 a predetermined number of times. .
そして、補強繊維供給部 1 Cから引き出され、供給ローラ 7 4で送られる軸方向 長繊維補強材としての他方の補強繊維群 F Cは、成形型 2の回転速度よりも速く送 りだされることにより、その巻き癖及び送り溜まりによって不規則なループ状ある いは蛇行した状態で、含浸槽 6 1と成形型 2との間で一方の補強繊維群 F A上に連 続的に供給されて一方の補強繊維群 F Aに粘着される。そして、一方の補強繊維群 F Aとどもに成形型 2への所定の厚みになるまで連続的に卷き付ける。  Then, the other reinforcing fiber group FC as an axial long fiber reinforcing material drawn out from the reinforcing fiber supply unit 1C and sent by the supply roller 74 is sent out faster than the rotation speed of the molding die 2. As a result, the fibers are continuously supplied between the impregnation tank 61 and the molding die 2 on one reinforcing fiber group FA in an irregular loop or meandering state due to the curl and feed pool. To the reinforcing fiber group FA. Then, it is continuously wound around one of the reinforcing fiber groups F A to the molding die 2 until it reaches a predetermined thickness.
また、成形型 2の上方から成形型 2に卷回された一方の捕強繊維群 F Aおよび他 方の補強繊維群 F Cにノズル 1 0からさらに重合性樹脂組成物 6 Aを噴霧または 滴下し、含浸ロール 1 0 1によって成形型 2の周面に沿うように均レ、パイプ状に 賦形する。その後、光照射装置 3を光重合開始剤が反応を開始する波長の光を成形 型 2の方向に向けて照射し、 光重合反応を開始させる。  Further, the polymerizable resin composition 6A is further sprayed or dropped from the nozzle 10 onto one of the reinforcing fiber groups FA and the other reinforcing fiber group FC wound around the molding die 2 from above the molding die 2, The impregnating roll 101 forms a uniform and pipe shape along the peripheral surface of the mold 2. Thereafter, the light irradiation device 3 is irradiated with light having a wavelength at which the photopolymerization initiator starts a reaction in the direction of the mold 2 to start the photopolymerization reaction.
あるいは、芯型へ卷回時に同時に、後方で光照射装置 3を光重合開始剤が反応を 開始する波長の光を成形型 2の方向に向けて照射し、賦形途中から光重合反応を開 始させる。  Alternatively, simultaneously with the winding around the core mold, the light irradiation device 3 is illuminated in the rear with light having a wavelength at which the photopolymerization initiator starts the reaction in the direction of the molding die 2, and the photopolymerization reaction is started during the shaping. Start.
また、一定の厚みになるまで成形型 2へ卷回し、光照射して硬化させた後、 また 一定の厚みになるまで卷回し、再度光照射させて硬ィ匕させるような多段硬化を行つ てもよい。 In addition, after being wound around the mold 2 until a certain thickness is obtained, and then cured by irradiating light, it is wound again until the thickness becomes a certain thickness, and then subjected to light irradiation again to perform multi-stage curing such as stiffening. You may.
また、成形型 2への卷回と同時に光照射装置 3から光を照射する場合は、卷回中 全時間にわたって、 あるいは、部分的に照射する方法が考えられる。 部分的に照射 する場食は卷回、賦形完了後、やはり光を照射し、光を照射しなかった積層を硬化 させる。  In the case of irradiating the light from the light irradiation device 3 simultaneously with the winding on the molding die 2, a method of irradiating the whole time or partly during the winding can be considered. After the winding and shaping of the partially illuminated table meal, light is again irradiated, and the unirradiated laminate is cured.
また、光照射装置 3からの光の照射は、配合されている光重合開始剤がもっとも 効率良く反応する波長、 及び照射量を選択する。  The light irradiation from the light irradiation device 3 selects a wavelength and an irradiation amount at which the compounded photopolymerization initiator reacts most efficiently.
ま^、高温反応型重合開始剤が配合されている場合には、光重合反応によって発 生する反応熱により高温反応型重合開始剤による重合反応を開始させ、補強繊維な どによって光が照射されにくい肉厚の繊維強ィ匕榭脂パイプ 1 0であっても内部ま で硬化を進めることができる。また、 肉厚が薄い場合も高温反応型重合開始剤を配 合することで硬化のスピードアップを図ることができる。  In the case where a high-temperature reaction type polymerization initiator is blended, the polymerization reaction by the high-temperature reaction type polymerization initiator is started by reaction heat generated by the photopolymerization reaction, and light is irradiated by a reinforcing fiber or the like. The hardening can be advanced to the inside even if the fiber pipe 10 has a small thickness. Even when the thickness is small, the curing speed can be increased by incorporating a high-temperature reaction-type polymerization initiator.
また、可視光を含む波長領域で反応する光重合開始剤が配合されている場合には、 繊維補強材などによつて光が遮断される可能性が高い肉厚の成形体であつても、可 視光により内部まで硬化を進めることができる。また、卷回時に可視光によりゆつ くり硬化が進行するため、 全体の成形速度を上げることができる。  In addition, when a photopolymerization initiator that reacts in the wavelength region including visible light is included, even if the thickness of the molded product is high, the light is likely to be blocked by a fiber reinforcing material or the like. The curing can be advanced to the inside with visible light. In addition, since the film is slowly cured by visible light during winding, the entire molding speed can be increased.
また、肉厚のものを成形する場合には、光の照射が不十分となり硬化不良による クラックが発生する可能性があるため、一定の厚みまで卷き付けた後、光照射を行 つた硬化を行い、その後再度卷き付け、硬ィ匕を行う多段硬化を行うことが有効であ る。 一定の厚みとしては、全体の厚みにもよるが、 2 0 mm以下で、 より好ましく は 8〜 1 5 mmほどで多段硬化を行うこと力 クラックの防止の観点から好ましい。 また、成形速度を上げるためや硬化不良によるクラック防止のため、卷回しなが ら光照射を行ってもよい。その場合には、光の照射量が大きすぎると硬化が早すぎ るため、 層間のクラックが発生しやすい。 .  When molding thick-walled products, light irradiation is insufficient and cracks may occur due to poor curing.Therefore, after winding to a certain thickness, curing by light irradiation is performed. After that, it is effective to carry out multi-stage hardening for re-winding and stiffening. Although it depends on the entire thickness, the constant thickness is preferably not more than 20 mm, more preferably about 8 to 15 mm, from the viewpoint of prevention of force cracks. Light irradiation may be performed while winding to increase the molding speed or prevent cracking due to poor curing. In that case, if the light irradiation amount is too large, the curing is too fast, and cracks between the layers are likely to occur. .
つぎに、所定回数一方の補強繊維群 F Aおよび他方の補強繊維群 F Cを成形型 2 に巻回し終わつたら、成形型 2の回転を停止し、重合性樹脂組成物 6 Aの重合反応 が完了したら、成形型 2から繊維強化樹脂パイプ 1 0を脱型して、繊維強化樹脂パ イブ 1 0が製造される。 Next, when the one reinforcing fiber group FA and the other reinforcing fiber group FC are wound around the molding die 2 a predetermined number of times, the rotation of the molding die 2 is stopped, and the polymerization reaction of the polymerizable resin composition 6A is completed. After the completion of the process, the fiber reinforced resin pipe 10 is removed from the mold 2 to produce the fiber reinforced resin pipe 10.
次に、本実施の形態 2にかかる製造装置 1および製造方法を用いて実際に繊維強 化樹脂パイプ 1 0を製造した実施例を以下に説明する。  Next, an example in which the fiber-reinforced resin pipe 10 is actually manufactured using the manufacturing apparatus 1 and the manufacturing method according to the second embodiment will be described below.
く実施例 1 > Example 1>
実施例 1では、 下記する重合性樹脂組成物 6 Aと、他方の補強繊維群 F C (日東 紡社製 ECRRSE1200) と、 一方の捕強繊維群 F A (日東紡社製 ECRRSE2400) とを用いて、 下記する製造条件により、 外径 1 0 9 9 mm, 内径 1 0 7 0 mm, 肉 厚 1 4 . 5 mmからなる繊維—補強樹脂パイプ 1 0を製造した。  In Example 1, using the following polymerizable resin composition 6A, the other reinforcing fiber group FC (Nitto Boshoku ECRRSE1200), and one of the reinforcing fiber group FA (Nitto Boshoku ECRRSE2400), Under the following manufacturing conditions, a fiber-reinforced resin pipe 10 having an outer diameter of 1,099 mm, an inner diameter of 1,070 mm, and a wall thickness of 14.5 mm was manufactured.
まず、重合性樹脂組成物 6 Aに関しては、不飽和ポリエステル樹脂 (長興化学ェ 業 (台湾) 社製 商品名 2 8 4 5 ) 1 0 0重量部と、 高温反応型重 開始剤 (日本 油脂社製 商品名パーキュア O) 1〜 2重量部と、光重合開始剤としてビスァシル フォスフィンォキサイド(チバスぺシャリティーケミカルズ社製 商品名ィルガキ ユア 8 1 9 ) 0、 2重量部とから構成されている。  First, regarding the polymerizable resin composition 6A, 100 parts by weight of an unsaturated polyester resin (trade name: 2845) manufactured by Changxing Chemical (Taiwan) Co., Ltd., and a high temperature reaction type heavy initiator (Nihon Yushi Co., Ltd.) 1 to 2 parts by weight (trade name: Percure O), and 0 to 2 parts by weight of bisacyl phosphinoxide (trade name: Irgaki Yua 8 19) manufactured by Cibas Charity Chemicals as a photopolymerization initiator. I have.
次に、製造条件に関しては、成形型 2の回転速度を周速 6 分、光照射装置 3 の出力を 1 2 O WZ c m X Z灯、一方の補強繊維群 F A層を 1 2層、他方の補強繊 維群 F C層を 1 1層とし、波長が 2 0 0〜5 0 0 n mであるメタルハライドランプ を用いて 6分間照射した。  Next, regarding the manufacturing conditions, the rotation speed of the mold 2 was set to a peripheral speed of 6 minutes, the output of the light irradiation device 3 was set to 12 O WZ cm XZ lamp, one reinforcing fiber group FA layer was 12 layers, and the other was reinforced. The fiber group was made into 11 FC layers and irradiated with a metal halide lamp having a wavelength of 200 to 500 nm for 6 minutes.
<比較例 1〉 <Comparative Example 1>
比較例 1では、上記した従来の製造方法により、下記する重合性樹脂組成物 6 A と、一方の補強繊維群 F Aとしてのガラス繊維ロービング(日東紡社製 ダイレク ト) と、 チョップトストランド (ュニチカ社製 ER2310合糸) とを用い、 下記す る製造条件により、外径 1 0 9 9 mm, 内径 1 0 7 O mm、 肉厚 1 4 . 5 mmから なる繊維補強樹脂パイプ 1 0を製造した。  In Comparative Example 1, the polymerizable resin composition 6A described below, glass fiber roving (Direct made by Nitto Boseki Co., Ltd.) as one of the reinforcing fiber groups FA and chopped strand (Unitichika) were produced by the above-mentioned conventional production method. A fiber-reinforced resin pipe 10 having an outer diameter of 109 mm, an inner diameter of 107 Omm, and a wall thickness of 14.5 mm was manufactured under the following manufacturing conditions by using ER2310 plying yarn manufactured by the company. .
まず、重合性榭脂組成物 6 Aに関しては、不飽和ポリエステル樹脂(長興化学ェ 業 (台湾) 社製 商品名 2 8 4 5 ) 1 0 0重量部と、 低温反応型重合開始剤 (日本 油脂社製 商品名パーメック S) 1. 5重量部と、促進剤 (丸善社製 ナフテン酸 コパルト 6 %溶液) 0. 4重量部と、顔料(東洋ィンキ社製 TR9784 J) 1. 0重量部とから構成されている。 First, with regard to the polymerizable resin composition 6A, 100 parts by weight of an unsaturated polyester resin (product name: 2845, manufactured by Changxing Chemical (Taiwan) Co., Ltd.) and a low-temperature reaction-type polymerization initiator (Japan) 1.5 parts by weight of a trade name of Permec S) manufactured by Yushi Co., Ltd. 0.4 parts by weight of an accelerator (6% solution of naphthenic acid copalte manufactured by Maruzen) and 1.0 parts by weight of a pigment (TR9784 J manufactured by Toyo Ink) It is composed of
次に、製造条件に関しては、成形型 2の回転速度を周速 6 mZ分、一方の補強繊 維群 FA層を 15層、 チヨップ層を 15層とし、 加熱時間を 12分とした。  Next, regarding the manufacturing conditions, the rotational speed of the mold 2 was set to a peripheral speed of 6 mZ, the FA layer of one reinforcing fiber group was set to 15 layers, the chirop layer was set to 15 layers, and the heating time was set to 12 minutes.
上記実施例 1および比較例 1において製造した繊維補強樹脂パイプ 10パイ の、 比重、樹脂とガラス繊維との重量比、 曲げ強度、 引張り強さ、 曲げ弾性率を調 ベ、 その結果を表 1に示した。  The specific gravity, weight ratio between resin and glass fiber, bending strength, tensile strength, and flexural modulus of the 10 pie fiber-reinforced resin pipes manufactured in Example 1 and Comparative Example 1 were measured. The results are shown in Table 1. Indicated.
<表 1 >  <Table 1>
Figure imgf000033_0001
Figure imgf000033_0001
この表 1に示すように、実施例 1によれば、比較例 1と比較して、短時間で略同 等か少し優れた繊維補強樹脂パイプ 10を得られることがよくわかる。  As shown in Table 1, according to Example 1, it can be clearly understood that a fiber-reinforced resin pipe 10 which is almost the same or slightly better than Comparative Example 1 can be obtained in a short time.
<比較例 2 >  <Comparative Example 2>
次に、比較例 2では、加熱時間を 6分とし、 これ以外は比較例 1と同様にして繊 維強ィ匕樹脂パイプ 10を製造した。 しカゝし、重合性樹脂組成物 6 Aが完全に硬化せ ず、 うまく脱型できなかった。  Next, in Comparative Example 2, a fiber-reinforced resin pipe 10 was manufactured in the same manner as in Comparative Example 1 except that the heating time was set to 6 minutes. However, the polymerizable resin composition 6A was not completely cured and could not be removed properly.
次に、 上記した実施例 1とは異なる実施例を以下に示す。  Next, an embodiment different from the first embodiment will be described below.
ぐ実施例 2 >  Example 2>
実施例 2では、下記する重合性樹脂組成物 6Aと、他方の補強繊維群 FB (日東 紡社製 ECR SE1200CF) と、 一方の補強繊維群 F A (日東紡社製 ECRRSE2400CF) とを用いて、 下記する製造条件により、 内径 1800mm、 肉 厚 2 Ommからなる繊維強化樹脂パイプ 10を製造した。  In Example 2, the following polymerizable resin composition 6A, the other reinforcing fiber group FB (Nittobo ECR SE1200CF) and one reinforcing fiber group FA (Nittobo ECRRSE2400CF), the following The fiber-reinforced resin pipe 10 having an inner diameter of 1800 mm and a wall thickness of 2 Omm was manufactured depending on the manufacturing conditions.
まず、重合性樹脂組成物 6 Aに関しては、イソ系不飽和ポリエステル樹脂 100 重量部と、高温反応型重合開始剤'(日本油脂社製 商品名パーキュア 0) 2重量部 と、光重合開始剤としてビスアシノレフォスフィンォキサイド(チパスぺシャリティ ケミカルズ社製 商品名ィルガキュア 8 1 9 ) 0 . 2重量部とから構成されている。 次に、製造条件に関しては、成形型 2の回転速度を周速 6 mZ分、光照射装置 3 の出力を 1 2 0 WZ c m X 2灯とし、繊維強化樹脂パイプ 1 0の厚みが 1 0 mmに なったところで、波長が 2 0 0〜5 0 0 n mであるメタノレハライドランプを用いて 6分間照射した。その後に、最終的に繊維強化樹脂パイプ 1 0の厚みが 2 O mmに なったところで同じ波長であるメタルハライドランプを用いて 5分間照射して硬 化を完了させて、 繊維強ィ匕樹脂パイプ 1 0を製造した。 ■ First, regarding the polymerizable resin composition 6 A, the iso-unsaturated polyester resin 100 Parts by weight, 2 parts by weight of high temperature reaction type polymerization initiator '(trade name Percure 0, manufactured by NOF CORPORATION) and bisacinolephosphinoxide (trade name: IRGACURE 8 manufactured by Chipas Specialty Chemicals, Inc.) as a photopolymerization initiator 1 9) 0.2 parts by weight. Next, regarding the manufacturing conditions, the rotational speed of the mold 2 was set to a peripheral speed of 6 mZ, the output of the light irradiation device 3 was set to 120 WZ cm × 2 lights, and the thickness of the fiber-reinforced resin pipe 10 was set to 10 mm. Then, irradiation was performed for 6 minutes using a methanol halide lamp having a wavelength of 200 to 500 nm. After that, when the thickness of the fiber reinforced resin pipe 10 finally becomes 2 O mm, it is irradiated with a metal halide lamp having the same wavelength for 5 minutes to complete the hardening. 0 was manufactured. ■
く実施例 3 > Example 3>
実施例 3では、上記した実施例 2と同一の構成からなり、成形型 2に全厚み( 2 O mm) を巻き付けた後に、実施例 2と同様のメタルノヽライドランプを用いて 2 0 分間光を照射して硬化を完了させて、 繊維強化榭脂パイプ 1 0を製造した。  Example 3 has the same configuration as that of Example 2 described above. After the entire thickness (2 O mm) is wound around the mold 2, light is applied for 20 minutes using the same metal nitride lamp as in Example 2. To complete the curing to produce a fiber-reinforced resin pipe 10.
上記したように実施例 2、 3において製造された繊維強化樹脂パイプ 1 0の断面 を観察したところ、実施例 2では剥離などは一切観察されなかったが、実施例 3の 繊維強化樹脂パイプ 1 0の断面は、外表面から 1 5 mm付近でかすかなクラックの 発生が見られた。  When the cross section of the fiber reinforced resin pipe 10 manufactured in Examples 2 and 3 was observed as described above, no peeling or the like was observed in Example 2, but the fiber reinforced resin pipe 10 of Example 3 was observed. In the cross section, slight cracking was observed at about 15 mm from the outer surface.
く実施例 4 > , Example 4>,
実施 4では、上記した実施例 1に関する繊維強化樹脂パイプ 1 0と厚みが異な るだけで、他の構成を同一にして繊維強化樹脂パイプ 1 0を製造した。 この実施例 4では、 繊維強化樹月旨パイプ 1 0の厚さを 3 O mmと設定している。  In the fourth embodiment, the fiber-reinforced resin pipe 10 was manufactured in the same manner as in the first embodiment except that the thickness was different from that of the first embodiment. In the fourth embodiment, the thickness of the fiber reinforced tree pipe 10 is set to 3 O mm.
次に、この実施例 4における構成からなる繊維強化樹脂パイプ 1 0を下記する各 製造条件により製造した。 その結果を以下に説明する。  Next, a fiber reinforced resin pipe 10 having the configuration in Example 4 was manufactured under the following manufacturing conditions. The results will be described below.
まず、第 4— 1製造条件では、成形型 2に捕強繊維 Fを全厚みが 3 0 mmになる まで卷回した。その後、卷回した補強繊維 Fを 1 2 0 wZ c m X 2灯で光照射して 硬化させた。 この光照射による硬化の完了時間は 6 0分であった。 次に、第 4— 2製造条件では、成形型 2に補強繊維 Fを卷回しながら、 8 OwZ cmX 1灯で光照射し、全厚みが 3 Ommになるまで卷回した。 その後、卷回した 補強繊維 Fを 1 20 wZcmX 2灯で光照射して硬化させた。この光照射による硬 化の完了時間は 15分であった。 First, under the 4-1 production conditions, the reinforcing fibers F were wound around the mold 2 until the total thickness became 30 mm. Thereafter, the wound reinforcing fiber F was cured by irradiating it with 120 wZ cm X 2 lamps. The completion time of the curing by the light irradiation was 60 minutes. Next, under the fourth-second production conditions, while the reinforcing fiber F was wound around the molding die 2, light irradiation was performed with one lamp of 8 OwZ cmX, and winding was performed until the total thickness became 3 Omm. After that, the wound reinforcing fiber F was cured by irradiating light with two lights of 120 wZcmX. The completion time of hardening by this light irradiation was 15 minutes.
次に、第 4一 3製造条件では、成形型 2に補強繊維 Fを卷回しながら、 8 Ow/ cmX2灯で光照射し、全厚みが 3 Ommになるまで巻回した。 その後、卷回した 捕強織維 Fを 120w/CmX2灯で光照射して硬化させた。この照射による硬ィ匕 の完了時間は 10分であった。 Next, under the fourth to thirteenth production conditions, the reinforcing fiber F was wound around the mold 2 while irradiating light with an 8 Ow / cmX2 lamp until the entire thickness became 3 Omm. Thereafter, the wound captive fiber F was irradiated with light using a 120 w / C mX2 lamp to be cured. The completion time of the stiffening by this irradiation was 10 minutes.
次に、第 4— 4製造条件では、成形型 2に捕強繊維 Fを巻回しながら、 40 wノ cmX 1灯で光照射し、全厚みが 3 Ommになるまで卷回した。 その後、卷回した 補強繊維 Fを 1 20w/cniX2灯で光照射して硬化させた。この照射による硬化 の完了時間は 60分であった。  Next, under the fourth-fourth production conditions, while the reinforcing fiber F was wound around the molding die 2, light irradiation was performed with a single lamp of 40 wcm x 1 until the total thickness became 3 Omm. Thereafter, the wound reinforcing fiber F was cured by irradiating light with a 120 w / cniX2 lamp. The completion time of curing by this irradiation was 60 minutes.
この実施例 4の各製造条件により製造した繊維強化榭脂パイプ 10の各断面に は、第 4一 1に関する繊維強化樹脂パイプ 10だけに力 ^"かなクラックの発生が見 られたが、 全体的に効率良く繊維強化樹脂パイプ 10の製造を行うことができた。 上記したように、本実施の形態 2にかかる繊維強ィ匕樹脂パイプ 10の製造装置 1、 およびその製造方法は、上記した実施例からもわかるように、以下のような優れた 効果を有している。  In each section of the fiber-reinforced resin pipe 10 manufactured under the respective manufacturing conditions of Example 4, a force crack was generated only in the fiber-reinforced resin pipe 10 relating to the eleventh-first embodiment. As a result, the production apparatus 1 for the fiber-reinforced resin pipe 10 according to the second embodiment and the method for producing the same were as described above. As can be seen from the examples, it has the following excellent effects.
第 1に、光重合開始剤により重合反応を開始させることにより重合反応速度がは やく、生産性が向上する。 また、光重合による反応熱によって高温反応型重合開始 剤による重合反応が開始するため、光が当たらない部分も反応硬化させることがで きる。 し力も、 可視光を含む波長領域で反応する光重合開始剤、連続光照射、 およ び多段光照射の配合により各層とも均等に硬化を促進させることができる。したが つて、 層間のクラック発生を抑制することができる。  First, by initiating a polymerization reaction with a photopolymerization initiator, the polymerization reaction speed is increased and productivity is improved. Further, since the polymerization reaction by the high-temperature reaction-type polymerization initiator is started by the heat of the reaction due to the photopolymerization, it is possible to react and harden the portion not exposed to the light. For each layer, curing can be evenly promoted by blending a photopolymerization initiator that reacts in a wavelength region including visible light, continuous light irradiation, and multi-step light irradiation. Therefore, the occurrence of cracks between layers can be suppressed.
第 2'に、光を当てなければ常温で放置していても反応が急激に開台されないので、 噴霧時にこぼれ落ちた重合性樹脂組成物 6Αをそのまま再利用できる。また、含浸 槽中の重合性樹脂組成物 6 Aの可使時間 (表 1に示すライフ参照) も長く、含浸槽 等の清掃等のメンテナンス作業を軽減でき、 コストダウンを図ることができる。 第 3に、軸方向長繊維強化材はチヨップドストランドでなく連続繊維であるため 、繊維の周囲への飛散がなく、作業環境が良好であるとともに、零れ落ちた重合性 樹脂組成物 6 Aへ混じることもないので、ポンプ 9 3、配管を詰まらせたりするこ となく、榭脂の再利用に好適である。繊維の飛散がないので、 ランプ 3 4表面に補 強繊維 Fが付着して光照射を妨げることもない。 Secondly, the reaction does not open rapidly even if left at room temperature unless exposed to light, so that the polymerizable resin composition 6Α that has fallen off during spraying can be reused as it is. Also impregnated The potable life of the polymerizable resin composition 6A in the tank (see the life shown in Table 1) is long, and maintenance work such as cleaning of the impregnation tank and the like can be reduced, and costs can be reduced. Third, since the axially long fiber reinforcing material is not a chopped strand but a continuous fiber, there is no scattering around the fiber, the working environment is good, and the polymerizable resin composition 6A that has spilled out. It is suitable for reuse of resin without clogging the pump 93 and piping because it does not mix. Since there is no scattering of fibers, the reinforcing fibers F do not adhere to the surface of the lamp 34 and do not hinder light irradiation.
なお、本実施の形態 2では、一方の補強繊維群 F Aに重合性樹脂組成物 6 Aを含 浸したのち、他方の補強繊維群 F Cを一方の補強繊維群 F Aの上に供給するように しているが、 これに限定されない。例えば、一方の補強繊維群 F Aと一方の補強繊 維群 F Aとの間に他方の捕強繊維群 F Cをはさみ込んだ状態で一方の補強繊維群 F Aとともに他方の捕強繊維群 F Cを含浸槽に通し、含浸槽 6 1で一方の捕強繊維 群 F Aに重合性樹脂組成物 6 Aを含浸すると同時に、他方の補強繊維群 F Cにも重 合性樹脂組成物 6 Aを含浸するようにしても構わない。  In Embodiment 2, one of the reinforcing fiber groups FA is impregnated with the polymerizable resin composition 6A, and then the other reinforcing fiber group FC is supplied onto the one reinforcing fiber group FA. But not limited to this. For example, one reinforcing fiber group FA is sandwiched between one reinforcing fiber group FA and one reinforcing fiber group FA, and the other reinforcing fiber group FA and the other reinforcing fiber group FC are impregnated in the impregnation tank. At the same time as impregnating tank 61, impregnating polymerizable resin composition 6A into one of the reinforcing fiber groups FA and simultaneously impregnating polymerizable resin composition 6A into the other reinforcing fiber group FC. No problem.
また、本実施の形態 2では、他方の補強繊維群 F Cの巻き癖等を利用して、他方 の補強繊維群 F Cを不規則な蛇行形状あるいはループ形状にしていた力 これに限 定されるものでなく、例えば、 トラパース機構を用いて不規則に蛇行させるように しても構わない。 この場合、 ランダムに蛇行形状、 ループ形状になるため、 一方の 補強繊維群 F Aと方向が重なる場合でも、 クラックが発生することがない。  Further, in the second embodiment, the force of making the other reinforcing fiber group FC into an irregular meandering shape or a loop shape by utilizing the winding habit of the other reinforcing fiber group FC is limited to this. Instead, for example, the trapezoidal mechanism may be used to meander irregularly. In this case, since the shape becomes a meandering shape or a loop shape at random, even if the direction overlaps with one of the reinforcing fiber groups FA, no crack is generated.
また、本実施の形態 2では、製造する繊維強化樹脂パイプ 1 0の強度を捕うため • にガラス繊維ロービングからなる補強繊維 Fのみが用いられているが、これに限定 されるものではなく、補強繊維 Fに加え必要に応じて、製造する繊維強化樹脂パイ プ 1 0の内面側おょぴ外面側に不織布等を積層してもよく、また、厚み方向の中央 部 (積層途中) にネット状、 クロス状、 マット状の補強材を積層してもよレ、。 また、 本実施の形態 2において製造された繊維補強榭脂パイプ 1 0の筒状体に、 同軸上にゴム製からなる筒状体が備えられてもよく、繊維補強樹脂パイプ 1 0の強 度向上に好ましい。 産業上の利用可能性 Further, in the second embodiment, only the reinforcing fiber F made of glass fiber roving is used to capture the strength of the fiber reinforced resin pipe 10 to be manufactured, but the present invention is not limited to this. In addition to the reinforcing fiber F, if necessary, a nonwoven fabric or the like may be laminated on the inner surface side and outer surface side of the fiber reinforced resin pipe 10 to be produced. , Cross-shaped, or mat-shaped reinforcing materials may be laminated. Further, the cylindrical body made of rubber may be provided coaxially with the cylindrical body of the fiber-reinforced resin pipe 10 manufactured in the second embodiment. It is preferable for improving the degree. Industrial applicability
以上のように本発明にかかる繊維強化樹脂成形体の製造装置、およびその製造方 法によれば、チョップドストランドを用いることなく、重合反応を短時間で完了さ せてクラックのない繊維強化樹脂パイプを簡単に製造することができる。  ADVANTAGE OF THE INVENTION As mentioned above, according to the manufacturing apparatus of the fiber-reinforced resin molded body and the manufacturing method thereof according to the present invention, the fiber-reinforced resin pipe free of cracks by completing the polymerization reaction in a short time without using chopped strands Can be easily manufactured.

Claims

請求の範囲 The scope of the claims
1 . 成形型が回転自在に軸支されるとともに、光照射装置が設けられた成形部と、 複数個の補強繊維の口ール体が配列され、各補強繊維口一ル体からそれぞれ弓 Iき出 された補強繊維群を下流側に導く補強繊維集積部と、光重合開始剤を含む重合性樹 脂組成物が貯留された含浸槽を備え、一方の補強繊維群に重合性樹脂組成物を含浸 させる含浸装置とともに、他方の捕強繊維群の各補強繊維を、重合性樹脂組成物が 含浸されて回転する成形型に巻き取られる一方の捕強繊維群上にそれぞれランダ ムに蛇行するように供給ずるフィラメントワインディング供給装置が設けられた 補強繊維供給部と、から構成され、前記重合性樹脂組成物が含浸された前記一方の 捕強繊維群上にランダムに蛇行した前記他方の補強繊維群を積層した状態の捕強 繊維群が回転する前記成形型に卷き取られるとともに、前記成形型に巻き取られた 捕強繊維群に前記光照射装置を介して光が照射されて前記重合性樹脂組成物が硬 化されることを特徴とする繊維強化樹脂成形体の製造装置。 1. A mold is rotatably supported on a shaft, a molding section provided with a light irradiation device, and a plurality of reinforcing fiber jaws are arranged. A reinforcing fiber accumulating portion for guiding the extracted reinforcing fiber group to the downstream side, and an impregnation tank in which a polymerizable resin composition containing a photopolymerization initiator is stored, wherein one of the reinforcing fiber groups has a polymerizable resin composition. Along with the impregnating device for impregnating the reinforcing fibers, the reinforcing fibers of the other group of the reinforcing fibers are randomly meandered on one of the group of the reinforcing fibers, which is impregnated with the polymerizable resin composition and wound around a rotating mold. And a reinforcing fiber supply unit provided with a filament winding supply device for supplying the filaments in a manner as described above, and the other reinforcing fiber randomly meandering on the one of the reinforcing fiber groups impregnated with the polymerizable resin composition. Captive in stacking group The fiber group is wound on the rotating mold, and the strong fiber group wound on the mold is irradiated with light through the light irradiating device to cure the polymerizable resin composition. An apparatus for producing a fiber-reinforced resin molded article, characterized in that:
2 . 前記含浸装置に、前記一方の捕強繊維群の卷き取り方向の下流側に位置して 櫛状のガイド部材が設けられたことを特徴とする請求項 1記載の繊維強化樹脂成 形体の製造装置。  2. The fiber-reinforced resin molded body according to claim 1, wherein the impregnating device is provided with a comb-shaped guide member located downstream of the one of the reinforcing fibers in the winding direction. Manufacturing equipment.
3 . 前記フイラメントワインディング供給装置から供給される前記他方の補強繊 維群の単位時間あたりの長さ力 S、前記成形型に巻き取られる前記一方の補強繊維群 の単位時間あたりの長さよりも大きいことを特徴とする請求項 1記載の繊維強化 樹脂成形体の製造装置。  3. The length force S per unit time of the other reinforcing fiber group supplied from the filament winding supply device is larger than the length per unit time of the one reinforcing fiber group wound around the forming die. 2. The apparatus for producing a fiber-reinforced resin molded product according to claim 1, wherein:
4 . 前記フィラメントワインディング供給装置に、前記他方の補強繊維群の供給 方向の下流側に位置して前記他方の補強繊維群の幅方向の蛇行を規制するガイド 板を設けたことを特徴とする請求項 1記載の繊維強化榭脂成形体の製造装置。  4. The filament winding supply device is provided with a guide plate located on the downstream side in the supply direction of the other reinforcing fiber group to regulate meandering in the width direction of the other reinforcing fiber group. Item 1. An apparatus for producing a fiber-reinforced resin molded article according to Item 1.
5 . 前記成形部に、前記成形型の外周面に光を照射可能な補助光照射装置が設け られたことを特徴とする請求項 1記載の繊維強化樹脂成形体の製造装置。 5. The apparatus for manufacturing a fiber-reinforced resin molded product according to claim 1, wherein an auxiliary light irradiation device capable of irradiating light to an outer peripheral surface of the molding die is provided in the molding section.
6 . 前記成形型が型開き、型閉め可能であることを特徴とする請求項 1記載の繊 維強化樹脂成形体の製造装置。 '6. The apparatus for producing a fiber-reinforced resin molded product according to claim 1, wherein the molding die can be opened and closed. '
7 . 前記光照射装置が、前記成形型の外周面に対向する照射位置と退避位置間を 進退自在であることを特徴とする請求項 1記載の繊維強化樹月旨成形体の製造装置。 7. The apparatus according to claim 1, wherein the light irradiation device is capable of moving back and forth between an irradiation position facing the outer peripheral surface of the molding die and a retreat position.
8 · 前記補強繊維供給部が、前記成形型に接近する作業位置と、離隔した退避位 置間を往復移動可能であることを特徴とする請求項 1記載の繊維強化樹脂成形体: 8.The fiber-reinforced resin molded product according to claim 1, wherein the reinforcing fiber supply unit is capable of reciprocating between a working position approaching the molding die and a separated retracted position.
9 . . 前記成形型の下方に位置して重合性樹脂組成物を回収するトレーが設置され、 その流出開口にフィルターが設けられたことを特徴とする請求項 1記載の繊維強 化樹脂成形体の製造装置。 9. The fiber-reinforced resin molded article according to claim 1, wherein a tray for recovering the polymerizable resin composition is provided below the molding die, and a filter is provided at an outlet of the tray. Manufacturing equipment.
1 0 . 前記重合性樹脂組成物は、高温反応型重合開始剤が酉'己合されたものである ことを特徴とする請求項 1乃至 9のいずれかに記載の繊維強化樹脂成形体の製造  10. The production of the fiber-reinforced resin molded article according to any one of claims 1 to 9, wherein the polymerizable resin composition is obtained by combining a high-temperature reaction-type polymerization initiator.
1 1 . 前記重合性榭脂組成物は、可視光を含む波長領域で反応する光重合開始剤 が配合されたものであることを特徴とする請求項 1乃至 9のいずれかに記載の繊 維強化樹脂成形体の製造装置。 11. The fiber according to any one of claims 1 to 9, wherein the polymerizable resin composition contains a photopolymerization initiator that reacts in a wavelength region including visible light. Equipment for manufacturing reinforced resin moldings.
1 2 . 複数個の補強繊維を任意の複数個ずつに分けて複数個の捕強繊維群とする 分離工程と、  1 2. A separation step in which a plurality of reinforcing fibers are divided into a plurality of arbitrary reinforcing fiber groups by dividing the plurality of reinforcing fibers into arbitrary plural groups.
この分離工程により分けた一方の補強繊維群に、光重合開始剤と高温反応型重合 開始剤が配合された重合性樹脂組成物を含浸させる含浸土程と、  One of the reinforcing fiber groups separated by this separation step, the impregnation soil impregnated with a polymerizable resin composition in which a photopolymerization initiator and a high-temperature reaction type polymerization initiator are blended,
この含浸工程により重合性樹脂組成物を含浸させた前記一方の補強繊維群を、回 転自在の芯型の成形型に連続的に卷回してパイプ状に賦形する賦形工程と、  A shaping step of continuously winding the one reinforcing fiber group impregnated with the polymerizable resin composition in the impregnating step into a rotatable core mold and shaping the pipe into a pipe shape;
賦形工程により芯型の成形型に連続的に卷回す前記一方の補強繊維群'を光照射 することにより重合反応を開始させるとともに、その反応熱によって前記髙温反応 型重合開始剤による重合反応を開始させて前記重合性樹脂組成物を硬化させる硬 化工程と、 を有することを特徴とする繊維強化樹脂成形体の製造方法。 The polymerization reaction is started by irradiating the one reinforcing fiber group ′ continuously wound around the core mold in the shaping step with light, and the heat of the reaction causes the polymerization reaction by the 髙 temperature reaction type polymerization initiator. And a curing step of curing the polymerizable resin composition by starting the process.
1 3 . 複数個の補強繊維を任意の複数個ずつに分けて複数個の補強繊維群とする 分離工程と、 13. A separation step of dividing a plurality of reinforcing fibers into arbitrary plural groups to form a plurality of reinforcing fiber groups;
前記分離工程により分けた一方の補強繊維群に、光重合開始剤が配合された重合 性樹脂組成物を含浸させる含浸工程と、  An impregnating step of impregnating one of the reinforcing fiber groups divided by the separation step with a polymerizable resin composition in which a photopolymerization initiator is blended;
前記分離工程により分けた他方の捕強繊維群を、前記含浸工程により重合性樹脂 組成物を含浸させた前記一方の捕強繊維群に、この一方の補強繊維群と交差するよ うに不規則な蛇行形状またはループ形状に連続的に供給する供給工程と、  The other reinforcing fiber group separated in the separation step is irregularly intersected with the one reinforcing fiber group impregnated with the polymerizable resin composition in the impregnating step so as to intersect with the one reinforcing fiber group. A supply step of continuously supplying a meandering shape or a loop shape,
この供給工程により前記他方の補強繊維群を供給した一方の補強繊維群を、回転 自在の芯型の成形型に連続的に巻回してパイプ状に賦形する賦形工程と、  A shaping step of continuously winding the one reinforcing fiber group supplied with the other reinforcing fiber group in the supply step around a rotatable core mold and shaping it into a pipe shape;
賦形工程により芯型の成形型に連続的に巻回す、前記他方の補強繊維群を供給し た前記一方の捕強繊維群を光照射することにより重合反応を開始させるとともに、 その反応熱によつて前記高温反応型重合開始剤による重合反応を開始させて前記 重合性樹月旨組成物を硬化させる硬化工程と、を有することを特徴とする繊維強化樹 脂成形体の製造方法。  The polymerization reaction is started by irradiating the one reinforcing fiber group, to which the other reinforcing fiber group is supplied, with light by irradiating the other reinforcing fiber group continuously wound around the core mold in the shaping step. A curing step of initiating a polymerization reaction by the high-temperature reaction-type polymerization initiator to cure the polymerizable luster composition, thereby producing a fiber-reinforced resin molded article.
1 4 . 前記重合性樹脂組成物は、高温反応型重合開始剤が配合されたものである ことを特徴とする請求項 1 3記載の繊維強化榭脂成形体の製造方法。 14. The method for producing a fiber-reinforced resin molded article according to claim 13, wherein the polymerizable resin composition contains a high-temperature reaction-type polymerization initiator.
1 5 . 前記重合性樹脂組成物は、可視光を含む波長領域で反応する光重合開始剤 が配合されたものであることを特徴とする請求項 1 2乃至 1 4のいずれかに記載 の繊維強化樹脂成形体の製造方法。  15. The fiber according to any one of claims 12 to 14, wherein the polymerizable resin composition contains a photopolymerization initiator that reacts in a wavelength region including visible light. A method for producing a reinforced resin molded article.
1 6 . 前記賦形工程において前記一方の捕強繊維群を一定の肉厚までパイプ状に 賦形させた後、光照射することにより重合性樹脂組成物を硬化させ、再度パイプ状 に賦形し、光照射することにより重合性樹脂組成物を硬化させる再硬化工程を有す ることを特徴とする請求項 1 2乃至 1 5のいず かに記載の繊維強化樹脂成形体 の製造方法。  16. In the shaping step, after forming the one of the captive fibers into a pipe shape to a certain thickness, the polymerizable resin composition is cured by light irradiation, and shaped again into a pipe shape. The method for producing a fiber-reinforced resin molded product according to any one of claims 12 to 15, further comprising a re-curing step of curing the polymerizable resin composition by light irradiation.
1 7 . 前記硬化工程において前記一方の補強繊維群を連続的に卷回しながら光照 射することにより前記重合性樹脂組成物を硬化させることを特徴とする請求項 1 乃至 1 5のいずれかに記載の繊維強化樹脂成形体の製造方法。 17. The polymerizable resin composition is cured by irradiating light while continuously winding the one reinforcing fiber group in the curing step. 16. The method for producing a fiber-reinforced resin molded article according to any one of items 15 to 15.
PCT/JP2003/003638 2002-09-19 2003-03-25 Apparatus and method for producing fiber-reinforced resin formed product WO2004026564A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020057004676A KR100928379B1 (en) 2002-09-19 2003-03-25 Manufacturing apparatus of fiber reinforced resin molded object, and its manufacturing method
CNB038223880A CN100537198C (en) 2002-09-19 2003-03-25 Method for producing fiber-reinforced resin formed product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-273614 2002-09-19
JP2002273614A JP4404535B2 (en) 2001-09-19 2002-09-19 Method for producing fiber-reinforced resin molded body
JP2003040307A JP4283558B2 (en) 2003-02-18 2003-02-18 Fiber reinforced plastic pipe manufacturing equipment
JP2003-40307 2003-02-18

Publications (1)

Publication Number Publication Date
WO2004026564A1 true WO2004026564A1 (en) 2004-04-01

Family

ID=32032877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003638 WO2004026564A1 (en) 2002-09-19 2003-03-25 Apparatus and method for producing fiber-reinforced resin formed product

Country Status (3)

Country Link
KR (1) KR100928379B1 (en)
CN (1) CN100537198C (en)
WO (1) WO2004026564A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106808707A (en) * 2017-03-27 2017-06-09 福建路通复合材料技术研究院有限公司 Continuous winding glass reinforced plastic pipe production technology and its production line
CN112497784A (en) * 2020-10-13 2021-03-16 北京玻钢院复合材料有限公司 Preparation device and preparation method of carbon fiber composite material tensile sample
US11452931B2 (en) * 2019-03-08 2022-09-27 Völkl Sports Gmbh Sliding board with fiber composite material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267235A (en) * 2011-07-13 2011-12-07 山西飞虹激光科技有限公司 Device and method for laying composite ribbons by using laser
CA2852376C (en) * 2011-10-26 2020-04-07 Snecma Impregnation mandrel comprising a clamping system for the production of gas turbine casings from composite material
FR2995555B1 (en) * 2012-09-17 2017-11-24 Snecma FIBROUS TEXTURE WINDING MACHINE FOR IMAGE ANALYSIS ALIGNMENT AND DECADING CONTROL
KR101422129B1 (en) * 2013-05-16 2014-07-22 재단법인 중소조선연구원 high speed laminated molding appartus using rotating mold
CN105946255B (en) * 2016-07-14 2019-02-22 安徽森德新材料科技发展有限公司 Pultrusion laser baking oven composite curing prepares composite material special muscle material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524340U (en) * 1991-04-25 1993-03-30 株式会社ゼロワン Core material for manufacturing cylindrical FRP products
JPH05237946A (en) * 1992-02-28 1993-09-17 Nitto Boseki Co Ltd Method and apparatus for manufacture of cylindrical matter made of frp
JP2000301622A (en) * 1999-04-21 2000-10-31 Sekisui Chem Co Ltd Manufacture of reinforced plastic tube
JP2001270005A (en) * 2000-03-23 2001-10-02 Sekisui Chem Co Ltd Producing method for fiber-reinforced resin pipe
JP2001322180A (en) * 2000-05-17 2001-11-20 Misawa Hoobasu Kk Method and equipment for manufacturing fiber reinforced plastic tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524340U (en) * 1991-04-25 1993-03-30 株式会社ゼロワン Core material for manufacturing cylindrical FRP products
JPH05237946A (en) * 1992-02-28 1993-09-17 Nitto Boseki Co Ltd Method and apparatus for manufacture of cylindrical matter made of frp
JP2000301622A (en) * 1999-04-21 2000-10-31 Sekisui Chem Co Ltd Manufacture of reinforced plastic tube
JP2001270005A (en) * 2000-03-23 2001-10-02 Sekisui Chem Co Ltd Producing method for fiber-reinforced resin pipe
JP2001322180A (en) * 2000-05-17 2001-11-20 Misawa Hoobasu Kk Method and equipment for manufacturing fiber reinforced plastic tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106808707A (en) * 2017-03-27 2017-06-09 福建路通复合材料技术研究院有限公司 Continuous winding glass reinforced plastic pipe production technology and its production line
CN106808707B (en) * 2017-03-27 2023-08-25 福建路通复合材料技术研究院有限公司 Production process and production line for continuously winding glass fiber reinforced plastic tube
US11452931B2 (en) * 2019-03-08 2022-09-27 Völkl Sports Gmbh Sliding board with fiber composite material
CN112497784A (en) * 2020-10-13 2021-03-16 北京玻钢院复合材料有限公司 Preparation device and preparation method of carbon fiber composite material tensile sample
CN112497784B (en) * 2020-10-13 2024-04-12 北京玻钢院复合材料有限公司 Preparation device and preparation method of carbon fiber composite tensile sample

Also Published As

Publication number Publication date
CN1681641A (en) 2005-10-12
KR20050057447A (en) 2005-06-16
CN100537198C (en) 2009-09-09
KR100928379B1 (en) 2009-11-23

Similar Documents

Publication Publication Date Title
US9688030B2 (en) Method of manufacturing a composite material
JP2007038678A (en) Method for forming three-dimensional preform by using anaerobic adhesive
JPH06320537A (en) Method and equipment for manufacturing preform
EP3317085B1 (en) Method of manufacturing a composite material
WO2004026564A1 (en) Apparatus and method for producing fiber-reinforced resin formed product
EA032209B1 (en) Method for producing a reinforcement rod
WO2021030512A1 (en) 3d printing of a composite material via sequential dual-curing polymerization
US20080193744A1 (en) Changing the State of a Body of Material
JPH06507857A (en) Shaded boundary process for continuous radiation curing of composites
EP0019149B2 (en) Molding process and apparatus therefor
JP4283558B2 (en) Fiber reinforced plastic pipe manufacturing equipment
JP4404535B2 (en) Method for producing fiber-reinforced resin molded body
WO2021097058A1 (en) Method of manufacturing a composite material
JP2010280100A (en) Mold for fiber-reinforced resin joint and method of manufacturing fiber-reinforced resin joint using the same
JP4478621B2 (en) Manufacturing method of fiber reinforced resin cylindrical body
CN212499070U (en) Pultrusion device
CN115284398B (en) Regenerated low-carbon wood square column and production line thereof
JPH0217344B2 (en)
JPH11348141A (en) Method for repairing erected molded body, sheet, and its preparation
JPS5948120A (en) Continuous draw forming of heat resisting fiber reinforced plastic pipe
JPH04270640A (en) Method for molding fiber reinforced synchetic resin molded product

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 1020057004676

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038223880

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057004676

Country of ref document: KR