WO2004024985A1 - Electroless-plating solution, method of electroless plating with the same, and object plated by electroless plating - Google Patents

Electroless-plating solution, method of electroless plating with the same, and object plated by electroless plating Download PDF

Info

Publication number
WO2004024985A1
WO2004024985A1 PCT/JP2003/011663 JP0311663W WO2004024985A1 WO 2004024985 A1 WO2004024985 A1 WO 2004024985A1 JP 0311663 W JP0311663 W JP 0311663W WO 2004024985 A1 WO2004024985 A1 WO 2004024985A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroless plating
plating
electroless
plating solution
solution
Prior art date
Application number
PCT/JP2003/011663
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Saiki
Tsutomu Aoyagi
Heitaro Ban
Original Assignee
Inspire Technology Resource Management Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inspire Technology Resource Management Corporation filed Critical Inspire Technology Resource Management Corporation
Priority to JP2004535952A priority Critical patent/JP4294589B2/en
Priority to AU2003264410A priority patent/AU2003264410A1/en
Publication of WO2004024985A1 publication Critical patent/WO2004024985A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50

Definitions

  • Electroless plating solution electroless plating method using the same, and electroless plating object
  • the present invention relates to an electroless plating solution, an electroless plating method using the same, and an electroless plating object.
  • Fluororesins have extremely high durability against chemicals, have excellent electrical properties, and are stable at high temperatures. It is common practice to coat fluororesin. In order to improve the adhesion of such a fluororesin to the object to be treated, a method of roughening the surface of the object to be treated in advance and then coating the fluororesin is generally performed.
  • a method of applying a relatively thick coating of a fluorine resin so that the layer thickness becomes about 100 to 200 ⁇ m is also performed (see, for example, 1-3 2 8 1 2 1 JP, JP 2 00 0-3 2 8 2 56 6 JP, JP-A 4 3 6 5 8 7 5 JP, Tokuhei 1 1 6 0 5 8 4 Gazette, JP-A-61-234202, JP-A-5-11112348).
  • an object of the present invention is to provide an electroless plating object having a fluororesin coating having extremely good adhesion to an object, an electroless plating method thereof, and an electroless plating solution used for the same. To provide.
  • the present inventor has conducted intensive studies in order to solve the above-mentioned problems.
  • the first object containing at least one selected from ammonia water and a composition solution containing thiosulfate, and thiourea is described.
  • Forming a first plating layer by exposing to a second plating liquid containing a fluororesin on the surface of the first plating layer to form a second plating layer; It has been found that a good fluororesin thin film is formed.
  • the present invention provides an electroless plating solution characterized by containing:
  • the concentration of the thiourea may be 0.1 to 100 ppm.
  • the metal complexing agent may be lactic acid.
  • the concentration of the metal complexing agent is 1 to 1;
  • the metal salt is at least one selected from the group consisting of a nickel salt, a cobalt salt, a chromium salt, a titanium salt, and a hypophosphite. Can be.
  • the metal salt contained in the second electroless plating solution is selected from the group consisting of a nickel salt, a cobalt salt, a chromium salt, a titanium salt, and a hypophosphite. It can be at least one or more species.
  • the surfactant contained in the second electroless plating solution may be at least one of a group consisting of a cationic surfactant and a nonionic surfactant. it can.
  • the concentration of the fluororesin contained in the second electroless plating solution may be 20 to 60 g / 1.
  • an object to be plated which is obtained by the above electroless plating method.
  • the plating hardness is 400 HV or more. Can be.
  • the plating adhesion strength may be 350 kgf / cm or more.
  • FIG. 1 is a cross-sectional view showing a state in which a first plating layer is formed on a plating object.
  • FIG. 2 is a cross-sectional view showing a state where a first plating layer and a second plating layer are formed on a plating object.
  • the electroless plating solution (first electroless plating solution) according to the present invention comprises a metal salt, a metal complexing agent, a reducing agent, a composition solution containing aqueous ammonia and thiosulfate, and thiourea. At least one of the group and Further, in the electroless plating method according to the present invention, the first plating layer is formed on the surface of the processing object by exposing the processing object to the above electroless plating solution (first electroless plating solution). And further exposing the object to a second electroless plating solution containing a fluororesin, a metal salt, a metal complexing agent, and a surfactant to form a second plating layer on the first plating layer. Forming a step. FIG.
  • FIG. 1 is a cross-sectional view conceptually showing a state in which a first plating layer is formed on a plating object.
  • FIG. 2 is a cross-sectional view conceptually showing a state in which a first plating layer and a second plating layer are formed on an object to be treated.
  • 1 denotes an object to be processed
  • 2 denotes a convex portion
  • 3 denotes a concave portion
  • 4 denotes a first plating layer
  • 5 denotes a second plating layer.
  • the above “electroless plating” is a method of plating on an object to be processed without supplying electricity.
  • a wide range of materials, such as metal products, alumina products, rubber products, and synthetic resins, can be used for the object to be processed. It is desirable that the object to be treated is subjected to a pretreatment for improving the adhesion to the object to be treated, etc., according to each material.
  • the metal salt contained in the first electroless plating includes a nickel salt, a cobalt salt, a chromium salt, a titanium salt, a hypophosphite and the like, and can be used alone or in combination. However, it is not limited to these. It is preferably at least one or more selected from the group consisting of nickel salts and cobalt salts.
  • the metal complexing agent contained in the first electroless plating solution of the present invention is an organic substance or the like which forms a complex with a metal salt, but a metal complexing agent which can provide a preferable concave surface on the object to be treated is preferable.
  • lactic acid is preferably used as the metal complexing agent.
  • the metal complexing agent is reduced in the plating solution, fine particles of the metal complexing agent are formed in the plating solution, but when large metal complexing agent powder particles of about 2-3 zm are formed, It is not desirable to obtain concave surfaces because it becomes unstable in liquid and promotes liquid decomposition. Since lactic acid has a fine particle powder of 1 m or less, it is preferable for obtaining a concave surface due to small liquid decomposition.
  • a metal complexing agent such as glycine can be used as the metal complexing agent contained in the second electroless plating solution.
  • the concentration of the metal complexing agent contained in the first electroless plating solution is preferably from 1 to 100 g / 1, and more preferably from about 10 to 20 g / 1.
  • concentration of the metal complexing agent in the plating solution is increased, the plating layer is roughened, the degree of unevenness (difference in height) on the plating layer surface is increased, and good adhesion to the fluororesin coating can be obtained.
  • concentration of the metal complexing agent is in the above range, a difference in height of unevenness suitable for fluorine coating is obtained, and liquid decomposition is eliminated, so that particularly preferable adhesion to fluorine resin coating is obtained.
  • the ammonia solution and the thiosulfate-containing composition solution and thiourea contained in the first electroless plating solution are used to equalize the height of the projections of the irregularities formed on the plating layer surface.
  • an object to be treated having very good adhesion to the fluororesin coating can be obtained.
  • this will be described in more detail.
  • the surface of the plating layer has almost no irregularities. Even if a coating with a fluororesin is applied on a plating layer having a small surface (difference in height), good fluororesin coating cannot be obtained.
  • the first electroless plating solution contains the above composition solution or thiourea or a mixture thereof when forming the first plating layer formed on the surface of the object to be processed.
  • the height of the upper part of the layer surface is made uniform, that is, the first plating layer having only the concave portions formed on the flat surface of the plating layer is formed, and the first plating layer containing a fluororesin on the first plating layer is formed.
  • the present inventors have found that, when the fluororesin coating is performed with the electroless plating solution of No. 2, the fluororesin coating having an extremely good adhesion to an object to be processed is obtained, and the present invention has been achieved.
  • composition solution thiourea suppresses the precipitation of irregularities in some way.
  • composition solution containing aqueous ammonia and thiosulfate sodium thiosulfate and the like can be used.
  • the first nothing The composition solution containing aqueous ammonia and thiosulfate contained in the electrolytic plating solution may further contain chlorine and the like.
  • the content of the composition liquid contained in the first electroless plating solution is preferably 1 to 40 g Z1 from the viewpoint of obtaining a fluorine-containing resin coating having good adhesion. , 10 to 30 g Zl.
  • the content of thiourea contained in the electroless plating solution is set such that the concentration of thiourea contained in the first electroless plating solution is 0 from the viewpoint of obtaining a fluororesin coating having good adhesion. It is preferably from 1 to 100 ppm, more preferably from 50 to 100 ppm. In addition, when a large amount of thiourea is used, the toxic effect becomes stronger, the resin is decomposed by reacting with the fluororesin, and it becomes difficult to form a film of the fluororesin. A coating is obtained.
  • the reducing agent contained in the first electroless plating solution and the second electroless plating solution may be a reducing agent, for example, sodium borohydride or the like.
  • the pH of the first electroless plating solution and the second electroless plating solution may be a pH at which a metal salt contained in the plating solution can precipitate as a metal.
  • the metal salt in the plating solution forms a stable soluble complex with lactic acid, but the free metal ion concentration decreases as the pH increases, and the equilibrium potential shifts in the negative direction. If the pH is too high, the metal is less likely to precipitate, while if the pH is too low, the coating is redissolved, and the metal is less likely to precipitate.
  • the pH of the first electroless plating solution and the second electroless plating solution is more preferably from 4.1 to 6.0 in order to favorably perform metal deposition in the plating process of the present invention.
  • the fluorine resin contained in the second electroless plating solution is a resin containing a fluorine group, and a fluorine resin such as tetrafluoroethylene (PTFE) is used. Can be.
  • the concentration of the fluororesin in the second electroless plating solution can be arbitrarily selected depending on the application, and is preferably 20 to 60 g / 1, but is not limited thereto.
  • the surfactant contained in the second electroless plating solution prevents the precipitation of the substance to be complexed, and the dispersing agent of the fluororesin so that the fluororesin can be dispersed and penetrated well into the concave portions of the first plating layer. Demonstrate the function as.
  • a surfactant it is preferable to use at least one of the group consisting of a cationic surfactant and a nonionic surfactant.
  • Cationic surfactants include quaternary ammonium salts, secondary amines, tertiary amines, and indazolines
  • nonionic surfactants include polyoxyethylene, polyethylene, carboxylic acid, and sulfonic acid.
  • the nonionic surface activity of the system can be used, but is not limited thereto. It is also preferable to use a fluorine surfactant having a bond of a carbon element or a fluorine atom in the molecule.
  • the content of the surfactant in the second electroless plating solution is preferably from 0.1 to L gZl, and more preferably from 0.1 to 0.5 gZl. While the fluororesin containing the metal salt in the above range can satisfactorily disperse and penetrate into the recesses of the first plating layer, can the second plating layer have a low surface roughness and an appropriate smooth surface? It is.
  • the second electroless plating solution preferably contains a dispersing aid in order to further improve the penetration and penetration of the fluorine resin into the concave portions of the first plating layer.
  • a dispersing aid include, but are not limited to, cerium oxide and silicon carbide.
  • the electroless plating process of the present invention can be performed in the same manner as the electroless plating method generally used in the plating industry. Hereinafter, an example of the plating process will be described, but the present invention is not limited thereto.
  • the object to be treated is immersed in the first electroless plating solution at a solution temperature of about 60 to 70 ° C for about 5 to 30 minutes, taken out, washed with water, and left in an environment at room temperature of about 25 ° C. And dry.
  • Use the first electroless plating solution The height of the convex portions of the plating layer obtained by the keying treatment is made uniform.
  • the workpiece treated with the first plating solution is immersed in the second electroless plating solution at a temperature of about 60 to 70 ° C for about 60 to 120 minutes, taken out, washed with water, and then washed at room temperature at about 25 ° C. Leave to dry underneath.
  • the workpiece with the first plating layer and the second plating layer adhered to the surface is placed in a furnace maintained at a temperature of about 300 to 500 ° C and left for about 10 to 60 minutes for baking. The treatment is performed to obtain a plating object according to the present invention having a fluororesin coating on the surface of the object.
  • the thickness of the first plating layer of the plating object is preferably from 0.1 to 50 m, more preferably from 0.1 to 10 m, in order to obtain the adhesion between the object and the fluororesin.
  • the thickness of the second plating layer of the plating processing object is also preferably 0.1 to 50 m, and 0.1 to 30 xm, in order to obtain a film thickness capable of exhibiting good fluororesin adhesion. More preferred.
  • the plating object to be treated obtained by the above method has an excellent adhesion between the fluororesin coating and the object to be treated, and has an adhesion of 350 kgf Zcm, preferably 600 kgf / cm or more, and 750 kgf / cm or more. Has strength.
  • the plating object to be treated obtained by the above method has a hardness of 400 HV or more, preferably 500 HV or more, more preferably 950 HV or more.
  • the surface roughness was measured using a fluorescent X-ray method.
  • the plating adhesion strength was measured by a metal bending method specified in JIS B 7721 (ie, a method of bending a metal plate and confirming peeling of surface treatment by the bending force).
  • Shimadzu Micro Hardness Tester HNV-2000 manufactured by Shimadzu Corporation was used as the hardness tester.
  • the corrosion resistance test is as follows: (A) Soak in hydrochloric acid solution (concentration: 36.47%) at 100 ° C for 60 minutes, take out from the solution, wash with water, leave at room temperature and dry, (B) 100 ° After infiltrating into C sodium hydroxide solution (concentration 50%) for 80 minutes, take out from the solution and leave it at room temperature to dry. (C) Tricrene solution (concentration 50%) at 100 ° C (hydrofluoric acid solution, Hydrochloric acid solution and sulfuric acid solution both have a concentration of 20%, temperature 25 ° (: 24 hours after infiltration, take out from the solution, wash with pure water and dry at room temperature. This was investigated by observing the surface at a magnification of 50,000 times using).
  • the stainless steel plate was taken out of the first electroless plating solution, washed with water, allowed to stand at room temperature, and dried.
  • the surface roughness of the stainless steel plate was 0.18 m.
  • a first plating layer having a layer thickness of 52111 and a concave portion having a groove depth of about 4 ⁇ 111 was formed on a flat surface.
  • the stainless steel plate having the first plating layer is further immersed in the first electroless plating solution held at 70 ° C. for 20 minutes, and then the stainless steel plate is taken out from the second electroless plating solution. After washing with water, it was left in a normal temperature environment and dried.
  • the second electroless plating solution contains nickel sulfate 30 g / l, cobalt acetate 20 gZl, sodium hypophosphite 0.5 g / l, glycine 0.5 gZl as a metal complexing agent, and a dispersion aid.
  • a stainless steel plate with the first and second plating layers adhered to the surface is placed in a furnace maintained at 380 ° C and left for 30 minutes to perform baking treatment. To be processed, which is the final product formed in the above.
  • the surface roughness of the final object to be treated was 0.81. As described above, the surface roughness of the first plating layer and the surface roughness of the stainless steel plate are 0.35 m and 0.18 m, respectively. It can be seen that the roughness is extremely smooth.
  • the plating hardness of the thin film obtained as described above was an extremely high value of 480 HV.
  • the plating adhesion density of the final plating object is 750 k. g fZcm.
  • the above (A) to (C) were performed as corrosion resistance tests. In each case, no missing particles or abnormal pinholes were observed, and there was no change.
  • a stainless steel plate (J1S standard SUS 304) is immersed for 20 minutes in the first electroless plating solution maintained at a pH of 5.3, a liquid temperature of 70 ° C, containing 5 g Zl. Thereafter, the stainless steel plate was taken out of the first electroless plating solution, washed with water, left in a room temperature environment, and dried. The surface roughness of the stainless steel plate was about 1 m.
  • a first plating layer with a thickness of 10 ⁇ 311 and a concave part with a groove depth of about 3 m was formed on a flat surface.
  • the stainless steel plate having the first plating layer is further immersed in the first electroless plating solution maintained at 70 ° C. for 20 minutes, and then the stainless steel plate is taken out from the second electroless plating solution, After washing with water, it was left in a normal temperature environment and dried.
  • the second electroless plating solution contains nickel sulfate 40 gZl, cobalt acetate 20 g / l, sodium hypophosphite 0.5 g / l, glycine 0.5 gZl as a metal complexing agent, and cerium oxide as a dispersion aid.
  • a second plating layer having a bronze color and a thickness of 10 m is formed.
  • the surface of this second plating layer was flat by TEF.
  • the stainless steel plate with the first and second plating layers adhered to the surface is placed in a furnace maintained at a temperature of 70 ° C and left for 20 minutes to perform baking treatment, and a thin film by electroless plating is formed.
  • the surface roughness of the final plating object was 5 m.
  • the surface roughness of the first plating layer and the surface roughness of the stainless steel plate are 3 m and 4 m, respectively, which means that the surface roughness of the final plating object (second plating layer) is extremely high. It turns out that it is smooth.
  • the plating hardness of the thin film obtained as described above was an extremely high value of 980 HV.
  • the plating adhesion density of the final plating object was 750 kgf Zcm.
  • the above (A) to (C) were performed as corrosion resistance tests. In each case, no missing particles or abnormal pinholes were observed, and there was no change.
  • the stainless steel plate having the first plating layer was further kept at 70 ° C. After immersion in the obtained first electroless plating solution for 20 minutes, the stainless steel plate was taken out from the second electroless plating solution, washed with water, allowed to stand at room temperature and dried.
  • PTEF polytetrafluoroethylene
  • the stainless steel plate with the first and second plating layers adhered to the surface is placed in a furnace maintained at a temperature of 70 ° C and left for 20 minutes to perform baking treatment, and a thin film by electroless plating is formed.
  • the surface roughness of the final plating object was 2 zm. As described above, the surface roughness of the first plating layer and the surface roughness of the stainless steel plate are 1 and 2 m, respectively, which means that the surface roughness of the final plating object (second plating layer) is extremely high. It turns out that it is smooth.
  • the plating hardness of the thin film obtained as described above was an extremely high value of 480 HV.
  • the plating adhesion density of the final plating object was 750 kgf Zcm.
  • the above (A) to (C) were performed as corrosion resistance tests. In each case, no missing particles or abnormal pinholes were observed, and there was no change.
  • Example 4 Nickel sulfate 30 g "Cobalt acetate 10 g / l, Sodium hypophosphite 0.5 g / Lactic acid 15 gZ1 as metal complexing agent, and ammonia water 40% by weight, sodium thiosulfate 50% by weight and chlorine
  • a first electroless plating solution maintained at a solution pH of 5.3 and a solution temperature of 70 ° C
  • a stainless steel plate J13 standard 3113304 was added.
  • the stainless steel plate was taken out of the first electroless plating solution, washed with water, allowed to dry at room temperature, and dried using the same second electroless plating solution as in Example 1 above.
  • the stainless steel plate had a flat surface with a recess with a groove depth of about 2 m and a layer thickness of 2 m.
  • a first plating layer was formed On the first plating layer, a second layer having a thickness of 15 / m and having a bronze color was formed. Was formed.
  • the surface roughness of the final processed object was 2 / m.
  • the surface roughness of the first plating layer and the surface roughness of the stainless steel plate are 2 and 5 m, respectively, which means that the final plating object (second plating layer) has extremely smooth surface roughness. You can see that.
  • the plating hardness of the thin film obtained as described above was an extremely high value of 480 HV.
  • the plating adhesion density of the final plating object was 780 kgf / cm.
  • the above (A) to (C) were performed as corrosion resistance tests. In each case, no missing particles or abnormal pinholes were observed, and there was no change.
  • a first plating layer having a thickness of 3 m and a recess having a depth of about 2 m on a flat surface was formed on the surface of the stainless steel plate.
  • a second plating layer having a layer thickness of 10 m and having a bronze color was formed on the first plating layer.
  • the surface roughness of the object to be plated was 4 m.
  • the surface roughness of the first plating layer and the surface roughness of the stainless steel plate are 2 and 3, respectively, which means that the surface roughness of the final plating object (second plating layer) is extremely smooth. I understand.
  • the plating hardness of the thin film obtained as described above was an extremely high value of 480 HV.
  • the plating adhesion density of the final plating object was 780 kgfZcm.
  • the above (A) to (C) were performed as corrosion resistance tests. In each case, no missing particles or abnormal pinholes were observed, and there was no change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

A work to be treated is exposed to a first electroless-plating solution containing a metal salt, a metal complexing agent, a reducing agent, and at least one member selected from the group consisting of a composition comprising ammonia water and a thiosulfate and of thiourea to thereby form a first deposit layer on the surface of the work. This work is then exposed to a second electroless-plating solution containing a fluororesin, a metal salt, a metal complexing agent, and a surfactant to form a second deposit layer on the first deposit layer. Thus, a plated work is provided which has a fluororesin coating having excellent adhesion to the base work.

Description

明 細 書 無電解メツキ液、 及びこれを用いた無電解メツキ方法及び無電解メツキ被処理 物 技術分野  Description Electroless plating solution, electroless plating method using the same, and electroless plating object
本発明は、無電解メツキ液、及びこれを用いた無電解メツキ法及び無電解メッ キ被処理物に関する。 背景技術  The present invention relates to an electroless plating solution, an electroless plating method using the same, and an electroless plating object. Background art
フッ素樹脂は化学薬品に対する耐久性が極めて強く、 電気的性質も優れ、 高 温にも安定であるという諸特性を具備していることより、従来より、機械部品、 電気、 電子部品等の表面にフッ素樹脂をコーティングすることが一般的に行わ れている。 このようなフッ素樹脂をコーティングの被処理物に対する密着性を 向上させるため、 予め被処理物の表面を粗化形成処理をした後にフッ素樹脂を コーティングする方法が一般的に行われているほか、 無機又は有機バインダー による処理を行った後、 層厚が 1 0 0〜2 0 0 ^ m程度になるようにフッ素樹 脂を比較的厚くコーティングする方法も行われている (例えば、 特開 2 0 0 1 - 3 2 8 1 2 1号公報、 特開 2 0 0 0— 3 2 8 2 5 6号公報、 特開平 4一 3 6 5 8 7 5号公報、 特公平 1一 6 0 5 8 4号公報、 特開昭 6 1— 2 3 4 2 0 2号 公報、 特開昭 5 1 - 1 1 1 2 3 4 8号公報参照)。  Fluororesins have extremely high durability against chemicals, have excellent electrical properties, and are stable at high temperatures. It is common practice to coat fluororesin. In order to improve the adhesion of such a fluororesin to the object to be treated, a method of roughening the surface of the object to be treated in advance and then coating the fluororesin is generally performed. Alternatively, after a treatment with an organic binder, a method of applying a relatively thick coating of a fluorine resin so that the layer thickness becomes about 100 to 200 ^ m is also performed (see, for example, 1-3 2 8 1 2 1 JP, JP 2 00 0-3 2 8 2 56 6 JP, JP-A 4 3 6 5 8 7 5 JP, Tokuhei 1 1 6 0 5 8 4 Gazette, JP-A-61-234202, JP-A-5-11112348).
しかしながら、 上記従来技術のように、 被処理物の表面を粗化形成処理後、 粗 化面にフッ素榭脂コ一ティングする方法では、 凹凸の形状によっては次のよう な不具合が生じる場合がある。 つまり凹部と凸部との高低差が 1 ^程度のあま り高くない凹凸形状の粗面化が形成された場合、 フッ素樹脂によるメツキ層が 凹部を埋め尽くして凹凸の高さが殆どなくなり、 フッ素樹脂の密着性が著しく 低く、 剥離等が発生するという問題点があつた。 However, in the method of applying a fluorine resin coating on the roughened surface after the roughening forming treatment of the surface of the object to be processed as in the above-described conventional technology, the following problems may occur depending on the shape of the unevenness. . In other words, if the unevenness of the concave and convex portions is not so high, about 1 ^, and the roughened surface is formed, There was a problem that the height of the unevenness almost disappeared by filling up the concave portion, the adhesion of the fluororesin was remarkably low, and peeling occurred.
また、 フッ素樹脂は、 比較的高価であるため、 フッ素樹脂の層厚を薄くし、 フッ素樹脂の使用量を少量化して低コストを図ることが市場から要請されてい る。 しかしながら、 フッ素樹脂のコーティングを単に薄くするのみでは、 フッ 素樹脂とフッ素樹脂コ一ティング物との摩擦係数の低さを理由に密着性が極め て悪く、 しかも被膜にピンホールが発生しやすく、 層厚の薄いフッ素樹脂コ一 ティング被膜を形成することは不可能であるという問題点があった。 発明の開示  In addition, since fluororesins are relatively expensive, the market demands that the thickness of the fluororesin be reduced, the amount of the fluororesin used be reduced, and the cost be reduced. However, simply reducing the thickness of the fluororesin coating results in extremely poor adhesion due to the low coefficient of friction between the fluororesin and the fluororesin coating, and pinholes are easily generated in the coating. There was a problem that it was impossible to form a thin fluororesin coating film. Disclosure of the invention
したがって、 本発明の目的は、 被処理物との密着性が極めて良好なフッ素樹脂 被膜を有する無電解メツキ被処理物及びその無電解メツキ方法、 並びにそのた めに使用される無電解メツキ液を提供することである。 Therefore, an object of the present invention is to provide an electroless plating object having a fluororesin coating having extremely good adhesion to an object, an electroless plating method thereof, and an electroless plating solution used for the same. To provide.
本発明者は上記諸問題を解決するために鋭意研究を行った結果、 被処理物を アンモニア水及びチォ硫酸塩を含有する組成液及びチォ尿素から選択される少 なくとも 1つを含む第 1のメツキ液に曝して第 1のメツキ層を形成し、 該第 1 メツキ層の表面にフッ素樹脂を含有する第 2メツキ液に曝して第 2のメツキ層 を形成することにより、 密着性の極めて良好なフッ素樹脂被膜の薄膜が形成さ れることを見出した。  The present inventor has conducted intensive studies in order to solve the above-mentioned problems. As a result, the first object containing at least one selected from ammonia water and a composition solution containing thiosulfate, and thiourea is described. Forming a first plating layer by exposing to a second plating liquid containing a fluororesin on the surface of the first plating layer to form a second plating layer; It has been found that a good fluororesin thin film is formed.
すなわち、 本発明の最初の実施態様において、 金属塩と、 金属錯化剤と、 還 元剤と、 アンモニア水及びチォ硫酸塩を含有する組成液並びにチォ尿素からな る群のうち少なくとも 1つと、 を含有することを特徴とする無電解メツキ液を 提供する。  That is, in a first embodiment of the present invention, at least one of a group consisting of a metal salt, a metal complexing agent, a reducing agent, a composition solution containing aqueous ammonia and thiosulfate, and thiourea, The present invention provides an electroless plating solution characterized by containing:
上記本発明に係る無電解メツキ液において、 前記チォ尿素の濃度が 0 . 1〜 1 0 0 p p mであることができる。 上記本発明に係る無電解メツキ液において、 前記金属錯化剤が乳酸であるこ とができる。 In the electroless plating solution according to the present invention, the concentration of the thiourea may be 0.1 to 100 ppm. In the electroless plating solution according to the present invention, the metal complexing agent may be lactic acid.
上記本発明に係る無電解メツキ液において、 前記金属錯化剤の濃度が 1〜 1 In the electroless plating solution according to the present invention, the concentration of the metal complexing agent is 1 to 1;
0 0 g Z 1であることができる。 0 0 g Z 1.
上記本発明に係る無電解メツキ液において、 前記金属塩がニッケル塩、 コバ ルト塩、 クロム塩、 チタン塩、 及び次亜リン酸塩からなる群から選択された少 なくとも 1種以上であることができる。  In the electroless plating solution according to the present invention, the metal salt is at least one selected from the group consisting of a nickel salt, a cobalt salt, a chromium salt, a titanium salt, and a hypophosphite. Can be.
本発明の第 2の実施態様において、 上記の第 1の無電解メツキ液中に被処理 物を曝すことにより前記被処理物の表面上に第 1メツキ層を形成する工程と、 フッ素樹脂、 金属塩、 金属錯化剤、 還元剤、 及び界面活性剤を含有する第 2の 無電解メツキ液に前記被処理物をさらに曝すことにより前記第 1メツキ層上に 第 2メツキ層を形成する工程と、 を含むことを特徴とする無電解メツキ方法を 提供する。  In a second embodiment of the present invention, a step of exposing the object to be processed to the first electroless plating solution to form a first plating layer on the surface of the object to be processed; Forming a second plating layer on the first plating layer by further exposing the object to be treated to a second electroless plating liquid containing a salt, a metal complexing agent, a reducing agent, and a surfactant; An electroless plating method is provided, comprising:
上記本発明に係る無電解メツキ方法において、 前記第 2の無電解メツキ液に 含有される前記金属塩がニッケル塩、 コバルト塩、 クロム塩、 チタン塩、 及び 次亜リン酸塩からなる群から選択された少なくとも 1種以上であることができ る。  In the electroless plating method according to the present invention, the metal salt contained in the second electroless plating solution is selected from the group consisting of a nickel salt, a cobalt salt, a chromium salt, a titanium salt, and a hypophosphite. It can be at least one or more species.
上記本発明に係る無電解メツキ方法において、 前記第 2の無電解メツキ液に 含有される前記界面活性剤がカチオン系界面活性剤及び非イオン界面活性から なる群のうち少なくとも 1つであることができる。  In the electroless plating method according to the present invention, the surfactant contained in the second electroless plating solution may be at least one of a group consisting of a cationic surfactant and a nonionic surfactant. it can.
上記本発明に係る無電解メツキ方法において、 前記第 2の無電解メツキ液に 含有されるフッ素樹脂の濃度が 2 0〜6 0 g / 1であることができる。  In the electroless plating method according to the present invention, the concentration of the fluororesin contained in the second electroless plating solution may be 20 to 60 g / 1.
本発明の第 3の実施態様において、 上記無電解メツキ方法により得られるこ とを特徴とするメッキ被処理物を提供する。  In a third embodiment of the present invention, there is provided an object to be plated, which is obtained by the above electroless plating method.
上記の本発明に係るメツキ被処理物において、 メツキ硬度が 4 0 0 HV以上 であることができる。 In the plating object to be treated according to the present invention, the plating hardness is 400 HV or more. Can be.
上記の本発明に係るメツキ被処理物において、 メツキ密着強度が 3 5 0 k g f / c m以上であることができる。 図面の簡単な説明  In the plating object to be treated according to the present invention described above, the plating adhesion strength may be 350 kgf / cm or more. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 メツキ被処理物に第 1のメツキ層を形成した状態を示す断面図であ る。 FIG. 1 is a cross-sectional view showing a state in which a first plating layer is formed on a plating object.
第 2図は、 メツキ被処理物に第 1のメツキ層及び第 2のメツキ層を形成した状 態を示す断面図である。 発明を実施するための最良の形態 FIG. 2 is a cross-sectional view showing a state where a first plating layer and a second plating layer are formed on a plating object. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本願発明に係る無電解メツキ液、 及びこれを用いた無電解メツキ方 法及び無電解メツキ被処理物の好ましい形態について詳細に説明する。  Hereinafter, preferred embodiments of the electroless plating solution according to the present invention, an electroless plating method using the same, and an electroless plating object to be processed will be described in detail.
本願発明に係る無電解メツキ液 (第 1の無電解メツキ液) は、 金属塩と、 金 属錯化剤と、 還元剤と、 アンモニア水及びチォ硫酸塩を含有する組成液並びに チォ尿素からなる群のうち少なくとも 1つと、 を含有する。 さらに、 本発明に 係る無電解メツキ方法は、 上記の無電解メツキ液 (第 1の無電解メツキ液) 中 に被処理物を曝すことにより前記被処理物の表面上に第 1メツキ層を形成する 工程と、 フッ素樹脂、 金属塩、 金属錯化剤、 及び界面活性剤を含有する第 2の 無電解メツキ液に前記被処理物をさらに曝すことにより前記第 1メツキ層上に 第 2メツキ層を形成する工程とを含む。 なお、 第 1図は、 メツキ被処理物に第 1のメツキ層を形成した状態を概念的に示す断面図である。 第 2図は、 メツキ 被処理物に第 1のメツキ層及ぴ第 2のメツキ層を形成した状態を概念的に示す 断面図である。 1は被処理物を、 2は凸部を、 3は凹部を、 4は第 1メツキ層 を、 5は第 2メツキ層を示す。 上記「無電解メツキ」 とは、通電せずに被処理物上にメツキする方法である。 上記被処理物には、 金属製品、 アルミナ製品、 ゴム製品、 合成樹脂などの広 範な素材を用いることができる。 なお、 被処理物は、 各材質に応じ、 被処理物 との密着性向上等のための前処理をしておくことが望ましい。 The electroless plating solution (first electroless plating solution) according to the present invention comprises a metal salt, a metal complexing agent, a reducing agent, a composition solution containing aqueous ammonia and thiosulfate, and thiourea. At least one of the group and Further, in the electroless plating method according to the present invention, the first plating layer is formed on the surface of the processing object by exposing the processing object to the above electroless plating solution (first electroless plating solution). And further exposing the object to a second electroless plating solution containing a fluororesin, a metal salt, a metal complexing agent, and a surfactant to form a second plating layer on the first plating layer. Forming a step. FIG. 1 is a cross-sectional view conceptually showing a state in which a first plating layer is formed on a plating object. FIG. 2 is a cross-sectional view conceptually showing a state in which a first plating layer and a second plating layer are formed on an object to be treated. 1 denotes an object to be processed, 2 denotes a convex portion, 3 denotes a concave portion, 4 denotes a first plating layer, and 5 denotes a second plating layer. The above “electroless plating” is a method of plating on an object to be processed without supplying electricity. A wide range of materials, such as metal products, alumina products, rubber products, and synthetic resins, can be used for the object to be processed. It is desirable that the object to be treated is subjected to a pretreatment for improving the adhesion to the object to be treated, etc., according to each material.
上記第 1の無電解メツキ中に含有される金属塩には、 ニッケル塩、 コバルト 塩、 クロム塩、 チタン塩、 次亜リン酸塩などが含まれ、 単独でまたは組み合わ せて用いることができるが、 これらに限定するものではない。 ニッケル塩及び コバルト塩からなる群から選択された少なくとも 1種以上であることが好まし い。  The metal salt contained in the first electroless plating includes a nickel salt, a cobalt salt, a chromium salt, a titanium salt, a hypophosphite and the like, and can be used alone or in combination. However, it is not limited to these. It is preferably at least one or more selected from the group consisting of nickel salts and cobalt salts.
本発明の第 1の無電解メツキ液には含有される金属錯化剤は金属塩と錯体を 形成する有機物等であるが、 被処理物上に好ましい凹面が得られるものが好ま しい。 限定するものではないが、 金属錯化剤として乳酸を用いることが好まし い。 金属錯化剤がメツキ液中で還元された場合、 メツキ溶液中に金属錯化剤の 粉末微粒子が生成するが、 約 2〜 3 z mの大きな金属錯化剤粉末微粒子が生成 する場合には、 液中で不安定になり、 液分解を促すため、 凹面を得るのに好ま しくない。 乳酸では微粒子粉末が 1 m以下であるため、 液分解が小さく、 凹 面を得るのに好ましい。 なお、 第 2の無電解メツキ液に含有される金属錯化剤 はグリシンなどの'置用のものを用いることができる。  The metal complexing agent contained in the first electroless plating solution of the present invention is an organic substance or the like which forms a complex with a metal salt, but a metal complexing agent which can provide a preferable concave surface on the object to be treated is preferable. Although not limited, lactic acid is preferably used as the metal complexing agent. When the metal complexing agent is reduced in the plating solution, fine particles of the metal complexing agent are formed in the plating solution, but when large metal complexing agent powder particles of about 2-3 zm are formed, It is not desirable to obtain concave surfaces because it becomes unstable in liquid and promotes liquid decomposition. Since lactic acid has a fine particle powder of 1 m or less, it is preferable for obtaining a concave surface due to small liquid decomposition. Incidentally, as the metal complexing agent contained in the second electroless plating solution, a metal complexing agent such as glycine can be used.
上記第 1の無電解メツキ液中に含有される金属錯化剤の濃度は、 1〜1 0 0 g / 1であることが好ましく、 約 1 0〜2 0 g / 1がさらに好ましい。 メツキ 液中の金属錯化剤の濃度を増加させるとメツキ層が粗化し、 メツキ層表面の凹 凸の程度 (高低差) が大きくなり、 フッ素樹脂コーティングとの良好な密着性 が得ることができる。 金属錯化剤の濃度が上記範囲においてはフッ素コーティ ングに適した凹凸の高低差が得られ、 かつ、 液分解がなくなるため、 フッ素樹 脂コ一ティングとの特に好ましい密着性が得られる。 上記第 1の無電解メツキ液に含有されるアンモニア水及びチォ硫酸塩を含有 する組成液及びチォ尿素は、 メツキ層表面に形成される凹凸の凸部の高さを均 一化するのに用いることができ、 これによりフッ素樹脂コーティングと非常に 良好な密着性を有する被処理物が得られる。 以下、 より詳細に説明する。 上記 の通り、 低濃度の金属錯化剤を含む無電解メツキ液 (第 1無電解メツキ液) で 被処理物をメツキした場合にはメツキ層の表面は凹凸が殆どなく、 このような 凹凸の程度 (高低差) が小さい表面を有するメツキ層の上にフッ素樹脂でコ一 ティングを施し.ても良好なフッ素樹脂コ一ティングが得られない。 一方、 メッ キ液中の金属錯化剤の濃度を増加させるに従ってメツキ層が粗化し、 メツキ層 表面における凹凸の程度 (高低差) が大きくなるが、 凸部の高さが不均一で一 定化しないメツキ層が形成される。 このような表面凸部の高さが不均一なメッ キ層の上にフッ素樹脂コ一ティングを施しても密着性が良好なフッ素樹脂コ一 ティングが得られない。 本発明者らは、 被処理物表面に形成される第 1メツキ 層を形成する際に第 1無電解メツキ液に上記組成液またはチォ尿素またはこれ らの混合物を含有することにより、 第 1メツキ層表面の ώ部の高さが均一化さ れた、 すなわち、 メツキ層平坦表面に凹部のみが形成された第 1メツキ層が形 成され、 この第 1メツキ層の上にフッ素樹脂を含む第 2の無電解メツキ液で フッ素樹脂コーティングを行うと、 被処理物との密着性が非常に良好なフッ素 樹脂コーティングを有することを見出し、 本発明に至ったものである。 なお、 上記組成液ゃチォ尿素を用いると表面の凸部の高さが一定化され、 平坦部に凹 部のみが形成されたメッキ層が形成されるメ力ニズムは未だ解明されていない が、 上記組成液ゃチォ尿素が何らかの形で凹凸の析出を抑制しているものと思 われる。 The concentration of the metal complexing agent contained in the first electroless plating solution is preferably from 1 to 100 g / 1, and more preferably from about 10 to 20 g / 1. When the concentration of the metal complexing agent in the plating solution is increased, the plating layer is roughened, the degree of unevenness (difference in height) on the plating layer surface is increased, and good adhesion to the fluororesin coating can be obtained. . When the concentration of the metal complexing agent is in the above range, a difference in height of unevenness suitable for fluorine coating is obtained, and liquid decomposition is eliminated, so that particularly preferable adhesion to fluorine resin coating is obtained. The ammonia solution and the thiosulfate-containing composition solution and thiourea contained in the first electroless plating solution are used to equalize the height of the projections of the irregularities formed on the plating layer surface. As a result, an object to be treated having very good adhesion to the fluororesin coating can be obtained. Hereinafter, this will be described in more detail. As described above, when the object to be treated is plated with an electroless plating solution containing a low concentration of a metal complexing agent (first electroless plating solution), the surface of the plating layer has almost no irregularities. Even if a coating with a fluororesin is applied on a plating layer having a small surface (difference in height), good fluororesin coating cannot be obtained. On the other hand, as the concentration of the metal complexing agent in the plating solution increases, the plating layer becomes rougher and the degree of unevenness (difference in height) on the plating layer surface increases, but the height of the projections is not uniform and constant. A plating layer that does not change is formed. Even if a fluororesin coating is applied on such a plating layer having uneven surface protrusions, a fluororesin coating with good adhesion cannot be obtained. The present inventors have found that the first electroless plating solution contains the above composition solution or thiourea or a mixture thereof when forming the first plating layer formed on the surface of the object to be processed. The height of the upper part of the layer surface is made uniform, that is, the first plating layer having only the concave portions formed on the flat surface of the plating layer is formed, and the first plating layer containing a fluororesin on the first plating layer is formed. The present inventors have found that, when the fluororesin coating is performed with the electroless plating solution of No. 2, the fluororesin coating having an extremely good adhesion to an object to be processed is obtained, and the present invention has been achieved. It should be noted that the mechanism of forming the plating layer in which only the concave portion is formed on the flat portion by making the height of the convex portion on the surface constant by using the above-mentioned composition liquid thiourea has not been elucidated yet, It is considered that the composition solution thiourea suppresses the precipitation of irregularities in some way.
上記アンモニア水及びチォ硫酸塩を含有する組成液に含有されるチォ硫酸塩 としては、 チォ硫酸ナトリウムなどとして用いることができる。 上記第 1の無 電解メツキ液に含有されるアンモニア水及びチォ硫酸塩を含有する組成液には さらに塩素などを含有することができる。 As the thiosulfate contained in the above-mentioned composition solution containing aqueous ammonia and thiosulfate, sodium thiosulfate and the like can be used. The first nothing The composition solution containing aqueous ammonia and thiosulfate contained in the electrolytic plating solution may further contain chlorine and the like.
上記第 1の無電解メツキ液に含有される上記組成液の含有量は、 良好な密 着性を有するフッ素榭脂コ一ティングを得る観点から、 1〜4 0 g Z 1である ことが好ましく、 1 0〜3 0 g Z lであることがさらに好ましい。  The content of the composition liquid contained in the first electroless plating solution is preferably 1 to 40 g Z1 from the viewpoint of obtaining a fluorine-containing resin coating having good adhesion. , 10 to 30 g Zl.
無電解メツキ液中に含有されるチォ尿素の含有量は、 良好な密着性を有する フッ素樹脂コ一ティングを得る観点から、 第 1の無電解メツキ液中に含有され るチォ尿素の濃度は 0 . 1〜1 0 0 p p mであることが好ましく、 より好まし くは 5 0〜1 0 0 p p mであることが好ましい。 なお、 チォ尿素を多量に用い ると毒性作用が強くなり、 フッ素樹脂と反応して樹脂が分解し、 フッ素榭脂の 被膜生成が困難となるが、 上記の濃度範囲であれば良好なフッ素樹脂コーティ ングが得られる。  The content of thiourea contained in the electroless plating solution is set such that the concentration of thiourea contained in the first electroless plating solution is 0 from the viewpoint of obtaining a fluororesin coating having good adhesion. It is preferably from 1 to 100 ppm, more preferably from 50 to 100 ppm. In addition, when a large amount of thiourea is used, the toxic effect becomes stronger, the resin is decomposed by reacting with the fluororesin, and it becomes difficult to form a film of the fluororesin. A coating is obtained.
上記第 1の無電解メツキ液及び第 2の無電解メツキ液に含有される還元剤は «用のものを用いることができ、 例えば、 水素化ホウ素ナトリウムなどを用い ることができる。  The reducing agent contained in the first electroless plating solution and the second electroless plating solution may be a reducing agent, for example, sodium borohydride or the like.
上記第 1の無電解メッキ液及び第 2の無電解メッキ液の p Hは、 これらの メツキ液に含有される金属塩が金属として析出できる P Hであればよい。 メッ キ液中の金属塩は乳酸と安定な可溶性錯体を形成しているが、 p Hの上昇に 伴って遊離の金属イオン濃度が低下し、 平衡電位が負の方向に移動するため、 p Hが高すぎると金属が析出しにくくなる一方、 p Hが低すぎても被膜が再溶 解するため、 金属が析出しにくくなる。 本発明のメツキ処理において良好に金 属析出を行うために、 第 1の無電解メッキ液及び第 2の無電解メッキ液の p H は、 4. 1〜6 . 0がより好ましい。  The pH of the first electroless plating solution and the second electroless plating solution may be a pH at which a metal salt contained in the plating solution can precipitate as a metal. The metal salt in the plating solution forms a stable soluble complex with lactic acid, but the free metal ion concentration decreases as the pH increases, and the equilibrium potential shifts in the negative direction. If the pH is too high, the metal is less likely to precipitate, while if the pH is too low, the coating is redissolved, and the metal is less likely to precipitate. The pH of the first electroless plating solution and the second electroless plating solution is more preferably from 4.1 to 6.0 in order to favorably perform metal deposition in the plating process of the present invention.
上記第 2の無電解メッキ液に含有するフッ素樹脂はフッ素基を含有する樹脂 をいい、 テトラフルォロエチレン (P T F E) などのフッ素樹脂を用いること ができる。 第 2の無電解メツキ液中のフッ素樹脂の含有濃度は用途に応じて任 意に選択することができ、 2 0〜6 0 g/ 1が好ましいが、 これに限定するも のではない。 The fluorine resin contained in the second electroless plating solution is a resin containing a fluorine group, and a fluorine resin such as tetrafluoroethylene (PTFE) is used. Can be. The concentration of the fluororesin in the second electroless plating solution can be arbitrarily selected depending on the application, and is preferably 20 to 60 g / 1, but is not limited thereto.
上記第 2無電解メツキ液に含有される界面活性剤は、 複合化する物質の沈殿 を防ぎ、第 1メツキ層の凹部にフッ素樹脂の分散侵入が良好になるように、フッ 素樹脂の分散剤としての機能を発揮する。 このような界面活性剤には、 カチォ ン系界面活性剤及び非イオン界面活性からなる群のうち少なくとも 1つ用いる ことが好ましい。 カチオン系界面活性剤には、 第 4アンモニゥム塩、 第 2アミ ン類、 第 3アミン類、 インダゾリン類が含まれ、 非イオン界面活性には、 ポリ ォキシエチレン系、 ポリエチレン系、 カルボン酸系、 スルホン酸系の非イオン 界面活性を用いることができるが、 これらに限定するものではない。 また、 分 子内に炭素元素やフッ素原子の結合を有するフッ素界面活性剤を用いることも 好ましい。 第 2無電解メツキ液中の界面活性剤の含有量は、 0 . 1〜; L gZ l が好ましく、 0 . 1〜0 . 5 gZ lがより好ましい。 上記範囲で金属塩を含有 するフッ素樹脂が第 1メッキ層の凹部に良好に分散侵入することができる一方 で、 第 2メツキ層の表面粗度が低く適度な滑らかな表面とすることができるか らである。 なお、 第 2無電解メツキ液には、 第 1メツキ層の凹部にフッ素榭脂 の分散侵入が一層良好にするため、 分散補助剤を含有することが好ましい。 こ のような分散補助剤には酸化セリウム、 炭化ケィ素が含まれるが、 これらに限 定するものではない。  The surfactant contained in the second electroless plating solution prevents the precipitation of the substance to be complexed, and the dispersing agent of the fluororesin so that the fluororesin can be dispersed and penetrated well into the concave portions of the first plating layer. Demonstrate the function as. As such a surfactant, it is preferable to use at least one of the group consisting of a cationic surfactant and a nonionic surfactant. Cationic surfactants include quaternary ammonium salts, secondary amines, tertiary amines, and indazolines, and nonionic surfactants include polyoxyethylene, polyethylene, carboxylic acid, and sulfonic acid. The nonionic surface activity of the system can be used, but is not limited thereto. It is also preferable to use a fluorine surfactant having a bond of a carbon element or a fluorine atom in the molecule. The content of the surfactant in the second electroless plating solution is preferably from 0.1 to L gZl, and more preferably from 0.1 to 0.5 gZl. While the fluororesin containing the metal salt in the above range can satisfactorily disperse and penetrate into the recesses of the first plating layer, can the second plating layer have a low surface roughness and an appropriate smooth surface? It is. The second electroless plating solution preferably contains a dispersing aid in order to further improve the penetration and penetration of the fluorine resin into the concave portions of the first plating layer. Such dispersing aids include, but are not limited to, cerium oxide and silicon carbide.
上記本発明の無電解メツキ処理工程は、 メツキ業界で通常行われている無電 解メツキ方法と同様にして行うことができる。 以下、 メツキ処理工程の例示説 明するが、 これに限定するものではない。 まず、被処理物を液温約 6 0〜7 0 °C の上記第 1無電解メツキ液に約 5〜3 0分間浸漬した後に取り出し、 水洗した 後、 常温約 2 5 °C環境下に放置し、 乾燥する。 上記第 1無電解メツキ液でメッ キ処理することにより得られるメツキ層は凸部の高さが均一化されている。 次 いで、 第 1メツキ液で処理された被処理物を液温約 60〜 70 °Cの第 2無電解 メツキ液に約 60〜120分間浸漬した後に取り出し、 水洗した後、 常温約 2 5 環境下に放置し乾燥する。 次いで、 第 1メツキ層及び第 2メツキ層が表面 に被着形成された被処理物を約 300〜500°Cに昇温保持した炉内に配設し、 約 10〜 60分間放置して焼付け処理を行い、 被処理物の表面にフッ素樹脂 コ一ティングを有する本発明に係るメツキ被処理物を得る。 The electroless plating process of the present invention can be performed in the same manner as the electroless plating method generally used in the plating industry. Hereinafter, an example of the plating process will be described, but the present invention is not limited thereto. First, the object to be treated is immersed in the first electroless plating solution at a solution temperature of about 60 to 70 ° C for about 5 to 30 minutes, taken out, washed with water, and left in an environment at room temperature of about 25 ° C. And dry. Use the first electroless plating solution The height of the convex portions of the plating layer obtained by the keying treatment is made uniform. Next, the workpiece treated with the first plating solution is immersed in the second electroless plating solution at a temperature of about 60 to 70 ° C for about 60 to 120 minutes, taken out, washed with water, and then washed at room temperature at about 25 ° C. Leave to dry underneath. Next, the workpiece with the first plating layer and the second plating layer adhered to the surface is placed in a furnace maintained at a temperature of about 300 to 500 ° C and left for about 10 to 60 minutes for baking. The treatment is performed to obtain a plating object according to the present invention having a fluororesin coating on the surface of the object.
以下、 上記本発明に係る無電解メツキ方法によりメツキされたメツキ被処理 物について説明する。 メツキ被処理物の第 1メツキ層の膜厚は、 被処理物との フッ素樹脂との密着性を得るため、 0. 1〜50 mであることが好ましく、 0. 1〜10 mがより好ましい。 メツキ被処理物の第 2メツキ層の膜厚も、 良好なフッ素樹脂の密着性を発揮できる膜厚とするために、 0. l〜50 m であることが好ましく、 0. 1〜30 xmがより好ましい。  Hereinafter, the plating object processed by the electroless plating method according to the present invention will be described. The thickness of the first plating layer of the plating object is preferably from 0.1 to 50 m, more preferably from 0.1 to 10 m, in order to obtain the adhesion between the object and the fluororesin. . The thickness of the second plating layer of the plating processing object is also preferably 0.1 to 50 m, and 0.1 to 30 xm, in order to obtain a film thickness capable of exhibiting good fluororesin adhesion. More preferred.
上記の方法により得られるメツキ被処理物は、 フッ素樹脂コーティングと被 処理物とが優れた密着性を有し、 350 kg f Zcm、 好ましくは 600 kg f/cm以上、 750 k g f /cm以上の密着強度を有する。 また、 上記の方 法により得られるメツキ被処理物は、 400HV以上の硬度を有するが、 好ま しくは 500HV以上の硬度、 さらに好ましくは 950HV以上の硬度を有す る。 実施例  The plating object to be treated obtained by the above method has an excellent adhesion between the fluororesin coating and the object to be treated, and has an adhesion of 350 kgf Zcm, preferably 600 kgf / cm or more, and 750 kgf / cm or more. Has strength. The plating object to be treated obtained by the above method has a hardness of 400 HV or more, preferably 500 HV or more, more preferably 950 HV or more. Example
以下に本発明に係る無電解メツキ液、 これを用いた無電解メツキ方法及び メツキ被処理物の具体例を示すが、 該実施例は本発明の実施態様の例示であり、 これらに何ら限定されるものでない。 なお、 各実施例で得られたメツキ処理物 について、 以下の測定条件の下、 表面粗さ測定、 メツキ硬度測定、 メツキ密着 強度測定、 耐腐食性試験、 及び表面分析を行った。 Hereinafter, specific examples of the electroless plating solution according to the present invention, the electroless plating method using the same, and the plating object are shown, but the examples are exemplifications of embodiments of the present invention, and are not limited thereto. Not something. In addition, under the following measurement conditions, the surface roughness measurement, the plating hardness measurement, and the plating adhesion were performed on the plated material obtained in each example. A strength measurement, a corrosion resistance test, and a surface analysis were performed.
表面粗さ測定は蛍光 X線方式を用いて行った。  The surface roughness was measured using a fluorescent X-ray method.
メツキ密着強度測定は、 J I S B 7721に規定する金属折り曲げ方式(す なわち、 金属板を折り曲げ、 その折り曲げる力によって表面処理の剥れを確認 する方式) より測定した。  The plating adhesion strength was measured by a metal bending method specified in JIS B 7721 (ie, a method of bending a metal plate and confirming peeling of surface treatment by the bending force).
メツキ硬度測定では、 硬度計として、 島津微小硬度計 HNV— 2000 (株) (島津製作所製) を用いた。  In the hardness measurement, Shimadzu Micro Hardness Tester HNV-2000 (manufactured by Shimadzu Corporation) was used as the hardness tester.
耐腐食性試験は、 (A) 100°Cの塩酸液 (濃度 36. 47%) に 60分間浸 透後、 液中より取り出し、 水洗後、 常温に放置して乾燥する、 (B) 100°Cの 水酸化ナトリウム液 (濃度 50%) に 80分間浸透後、 液中より取り出し、 常 温に放置して乾燥する、 (C) 100°Cのトリクレン液 (濃度 50%) (フッ酸 液、 塩酸液、 硫酸液共に濃度 20%)、 温度 25° (:、 24時間浸透後、 液中より 取り出し、 純水洗浄後常温乾燥したものをそれぞれ、 電子顕微鏡 (S c ann i n g E l e c t r on Mi c r o s c o) を用いて表面を 50000倍 に拡大して観察することにより調べた。  The corrosion resistance test is as follows: (A) Soak in hydrochloric acid solution (concentration: 36.47%) at 100 ° C for 60 minutes, take out from the solution, wash with water, leave at room temperature and dry, (B) 100 ° After infiltrating into C sodium hydroxide solution (concentration 50%) for 80 minutes, take out from the solution and leave it at room temperature to dry. (C) Tricrene solution (concentration 50%) at 100 ° C (hydrofluoric acid solution, Hydrochloric acid solution and sulfuric acid solution both have a concentration of 20%, temperature 25 ° (: 24 hours after infiltration, take out from the solution, wash with pure water and dry at room temperature. This was investigated by observing the surface at a magnification of 50,000 times using).
表面分析は、 粒子の欠落やピンホールの発生があるか否かを調べるためのも のである。 被処理物の表面を電子顕微鏡により 50000倍に拡大して観察す ることにより調べた。 実施例 1  Surface analysis is to check for missing particles or pinholes. It was examined by observing the surface of the object to be processed at a magnification of 50,000 with an electron microscope. Example 1
硫酸ニッケル 40 g/71、 酢酸コバルト 25 gZl、 次亜リン酸ナトリウム 0. 5 gZl、 金属錯化剤としての乳酸 10 gZ 1、 及びアンモニア水 40重 量%とチォ硫酸ナトリウム 50重量%と塩素 10重量%とからなる組成液 40 gZlを含有させ、 液の pHを 5. 8、 液温 80°Cに保持された第 1の無電解 メツキ液中に、 ステンレス板 (J 1 S規格 SUS 304) を 30分間浸漬後、 このステンレス板を第 1の無電解メツキ液より取出し、 水洗後常温環境下に放 置し乾燥した。 ステンレス板の表面粗さは 0. 18 mであった。 ステンレス 板の表面には、 平坦面に溝の深さが約 4 ^111の凹部を有する層厚5 2111の第1 のメツキ層が形成された。 Nickel 40 g / 7 1 sulfate, cobalt acetate 25 GZL, sodium hypophosphite 0. 5 GZL, lactate 10 gZ 1, and aqueous ammonia 40 by weight% and Chio sodium sulfate 50 wt% and chlorine as a metal complexing agent A 10% by weight solution containing 40 gZl, a pH of 5.8, and a first electroless plating solution maintained at a temperature of 80 ° C, a stainless steel plate (J1S standard SUS 304 ) For 30 minutes, The stainless steel plate was taken out of the first electroless plating solution, washed with water, allowed to stand at room temperature, and dried. The surface roughness of the stainless steel plate was 0.18 m. On the surface of the stainless steel plate, a first plating layer having a layer thickness of 52111 and a concave portion having a groove depth of about 4 ^ 111 was formed on a flat surface.
次いで、 上記第 1メツキ層を有するステンレス板をさらに、 70°Cに保持さ れた第 1の無電解メツキ液中に 20分間浸漬後、 このステンレス板を第 2の無 電解メツキ液より取出し、 水洗後常温環境下に放置し乾燥した。 上記第 2の無 電解メツキ液には、 硫酸ニッケル 30 g/l、 酢酸コバルト 20 gZl、 次亜 リン酸ナトリウム 0. 5 g/l、 金属錯化剤としてグリシン 0. 5 gZl、 分 散補助剤としての酸化セリウム 15 gZl、 フッ素樹脂としてポリテトラフル ォロエチレン (PTEF) 60 g/l、 表面安定効果として酸化リン 10 gZ 1、 カチオン性界面活性剤であるメガファック F— 150 (大日本インキ工業 (株))、 及び非イオン界面活性剤である T r i t omnx- 100 (石津製薬 (株)) を含有させ、 液の pHを 3. 5した。 上記ステンレス板の第 1メツキ層 上には、 ブロンズ色を有する、 層厚 7 mの第 2のメツキ層が形成された。 こ の第 2のメツキ層の表面は PTFEにより平坦面となっていた。  Next, the stainless steel plate having the first plating layer is further immersed in the first electroless plating solution held at 70 ° C. for 20 minutes, and then the stainless steel plate is taken out from the second electroless plating solution. After washing with water, it was left in a normal temperature environment and dried. The second electroless plating solution contains nickel sulfate 30 g / l, cobalt acetate 20 gZl, sodium hypophosphite 0.5 g / l, glycine 0.5 gZl as a metal complexing agent, and a dispersion aid. 15 gZl as cerium oxide, 60 g / l polytetrafluoroethylene (PTEF) as fluororesin, 10 gZ1 phosphorus oxide as surface stabilizing effect, Megafac F-150 as a cationic surfactant (Dainippon Ink Industries, Ltd.) ), And Triomnx-100, a nonionic surfactant (Ishizu Pharmaceutical Co., Ltd.), and the pH of the solution was adjusted to 3.5. On the first plating layer of the stainless steel plate, a second plating layer having a thickness of 7 m and having a bronze color was formed. The surface of this second plating layer was flat by PTFE.
第 1及び第 2メツキ層が表面に被着形成されたステンレス板を 380°Cに昇 温保持した炉内に配設し、 30分間放置して焼付け処理を行い、 無電解メツキ による薄膜が表面に形成された最終製品である被メツキ被処理物を得た。  A stainless steel plate with the first and second plating layers adhered to the surface is placed in a furnace maintained at 380 ° C and left for 30 minutes to perform baking treatment. To be processed, which is the final product formed in the above.
上記最終被メツキ被処理物の表面粗さは 0.81 であった。上記の通り、 第 1メツキ層の表面粗さ及びステンレス板の表面粗さはそれぞれ 0. 35 m 及び 0. 18 mであり、 このことは最終被メッキ被処理物 (第 2メツキ層) の表面粗さが極めて滑らかであることが分かる。  The surface roughness of the final object to be treated was 0.81. As described above, the surface roughness of the first plating layer and the surface roughness of the stainless steel plate are 0.35 m and 0.18 m, respectively. It can be seen that the roughness is extremely smooth.
また、 上記のようにして得られた薄膜のメツキ硬度は 480HVという極め て高い値であった。 また、 最終被メツキ被処理物のメツキ密着密度は 750 k g fZcmであった。 さらに、 耐腐食性試験として上記 (A)から (C) を行つ たが、 いずれの場合にも粒子の欠落やピンホールの異常は見られず、 何ら変化 はなかった。 実施例 2 Further, the plating hardness of the thin film obtained as described above was an extremely high value of 480 HV. The plating adhesion density of the final plating object is 750 k. g fZcm. In addition, the above (A) to (C) were performed as corrosion resistance tests. In each case, no missing particles or abnormal pinholes were observed, and there was no change. Example 2
硫酸ニッケル 30gZl、 酢酸コバルト 20gZl、 次亜リン酸ナトリウム 0. 5 g/ 金属錯化剤としての乳酸 1. 5 g/ 及びアンモニア水 40 重量%とチォ硫酸ナトリウム 50重量%と塩素 10重量%とからなる組成液 1 5gZlを含有させ、 液の pHを 5. 3、 液温 70°Cに保持された第 1の無電 解メツキ液中に、ステンレス板( J 1 S規格 SUS 304)を 20分間浸漬後、 このステンレス板を第 1の無電解メツキ液より取出し、 水洗後常温環境下に放 置し乾燥した。 ステンレス板の表面粗さは約 1 mであった。 ステンレス板の 表面には、 平坦面に溝の深さが約 3 mの凹部を有する層厚 10^311の第1の メツキ層が形成された。  Nickel sulfate 30gZl, Cobalt acetate 20gZl, Sodium hypophosphite 0.5g / Lactic acid 1.5g / as metal complexing agent and 40% by weight of ammonia water, 50% by weight of sodium thiosulfate and 10% by weight of chlorine A stainless steel plate (J1S standard SUS 304) is immersed for 20 minutes in the first electroless plating solution maintained at a pH of 5.3, a liquid temperature of 70 ° C, containing 5 g Zl. Thereafter, the stainless steel plate was taken out of the first electroless plating solution, washed with water, left in a room temperature environment, and dried. The surface roughness of the stainless steel plate was about 1 m. On the surface of the stainless steel plate, a first plating layer with a thickness of 10 ^ 311 and a concave part with a groove depth of about 3 m was formed on a flat surface.
次いで、 上記第 1メツキ層を有するステンレス板をさらに、 70°Cに保持さ れた第 1の無電解メツキ液中に 20分間浸漬後、 このステンレス板を第 2の無 電解メツキ液より取出し、 水洗後常温環境下に放置し乾燥した。 上記第 2の無 電解メツキ液には、 硫酸ニッケル 40gZl、 酢酸コバルト 20g/l、 次亜 リン酸ナトリウム 0. 5g/l、 金属錯化剤としてグリシン 0. 5gZl、 分 散補助剤としての酸化セリウム 1. 5gZl、 フッ素樹脂としてポリテトラフ ルォロエチレン (PTEF) 40gZし 還元剤としての酸化チタン 1. 5g Z 1、 カチォン性界面活性剤であるメガファック F— 150 (大日本ィンキエ 業 (株))、 及び非イオン界面活性剤である T r i t omnx-100 (石津製 薬 (株)) を含有させ、 液の pHを 5. 3とした。 上記ステンレス板の第 1メッ キ層上には、 ブロンズ色を有する、 層厚 10 mの第 2のメツキ層が形成され た。 この第 2のメツキ層の表面は TEFにより平坦面となっていた。 Next, the stainless steel plate having the first plating layer is further immersed in the first electroless plating solution maintained at 70 ° C. for 20 minutes, and then the stainless steel plate is taken out from the second electroless plating solution, After washing with water, it was left in a normal temperature environment and dried. The second electroless plating solution contains nickel sulfate 40 gZl, cobalt acetate 20 g / l, sodium hypophosphite 0.5 g / l, glycine 0.5 gZl as a metal complexing agent, and cerium oxide as a dispersion aid. 1.5gZl, 40gZ of polytetrafluoroethylene (PTEF) as fluororesin and titanium oxide as reducing agent 1.5gZ1, Megafax F-150 (Dainippon Inkie Co., Ltd.) which is a cationic surfactant, and non- Triomnx-100 (Ishizu Pharmaceutical Co., Ltd.), which is an ionic surfactant, was added, and the pH of the solution was adjusted to 5.3. On the first plating layer of the stainless steel plate, a second plating layer having a bronze color and a thickness of 10 m is formed. Was. The surface of this second plating layer was flat by TEF.
第 1及び第 2メツキ層が表面に被着形成されたステンレス板を 70 °Cに昇温 保持した炉内に配設し、 20分間放置して焼付け処理を行い、 無電解メツキに よる薄膜が表面に形成された最終製品である被処理物を得た。  The stainless steel plate with the first and second plating layers adhered to the surface is placed in a furnace maintained at a temperature of 70 ° C and left for 20 minutes to perform baking treatment, and a thin film by electroless plating is formed. An object to be treated, which is a final product formed on the surface, was obtained.
上記最終被メツキ被処理物の表面粗さは 5 mであった。 上記の通り、 第 1 メッキ層の表面粗さ及びステンレス板の表面粗さはそれぞれ 3 m及び 4 m であり、 このことは最終被メツキ被処理物 (第 2メツキ層) の表面粗さが極め て滑らかであることが分かる。  The surface roughness of the final plating object was 5 m. As described above, the surface roughness of the first plating layer and the surface roughness of the stainless steel plate are 3 m and 4 m, respectively, which means that the surface roughness of the final plating object (second plating layer) is extremely high. It turns out that it is smooth.
また、 上記のようにして得られた薄膜のメツキ硬度は 980HVという極め て高い値であった。 また、 最終被メツキ被処理物のメツキ密着密度は 750 k g f Zcmであった。 さらに、 耐腐食性試験として上記 (A) から (C) を行つ たが、 いずれの場合にも粒子の欠落やピンホールの異常は見られず、 何ら変化 はなかった。 実施例 3  In addition, the plating hardness of the thin film obtained as described above was an extremely high value of 980 HV. The plating adhesion density of the final plating object was 750 kgf Zcm. In addition, the above (A) to (C) were performed as corrosion resistance tests. In each case, no missing particles or abnormal pinholes were observed, and there was no change. Example 3
硫酸ニッケル 40 g/l、 酢酸コバルト 40 gZl、 次亜リン酸ナトリウム 0. 5 g/l、 金属錯化剤としての乳酸 1. 5 gZ 1、 及びアンモニア水 40 重量%とチォ硫酸ナトリウム 50重量%と塩素 10重量%とからなる組成液 1 5 gZlを含有させ、 液の pHを 6. 0、 液温 75 °Cに保持された第 1の無電 解メツキ液中に、ステンレス板(J 1 S規格 SUS 304) を 30分間浸漬後、 このステンレス板を第 1の無電解メツキ液より取出し、 水洗後常温環境下に放 置し乾燥した。 ステンレス板の表面粗さは 3 mであった。 ステンレス板の表 面には、 平坦面に溝の深さが約 3 mの凹部を有する層厚 10; mの第 1の メツキ層が形成された。  Nickel sulfate 40 g / l, cobalt acetate 40 gZl, sodium hypophosphite 0.5 g / l, lactic acid 1.5 gZ1 as a metal complexing agent, and ammonia water 40% by weight and sodium thiosulfate 50% by weight And a 10% by weight of chlorine solution, containing a stainless steel plate (J1S) in the first electroless plating solution maintained at a solution pH of 6.0 and a solution temperature of 75 ° C. After immersing standard SUS 304) for 30 minutes, the stainless steel plate was taken out from the first electroless plating solution, washed with water, allowed to stand at room temperature, and dried. The surface roughness of the stainless steel plate was 3 m. On the surface of the stainless steel plate, a first plating layer having a thickness of 10 m with a recess having a depth of about 3 m on a flat surface was formed.
次いで、 上記第 1メツキ層を有するステンレス板をさらに、 70°Cに保持さ れた第 1の無電解メツキ液中に 20分間浸漬後、' このステンレス板を第 2の無 電解メツキ液より取出し、 水洗後常温環境下に放置し乾燥した。 上記第 2の無 電解メツキ液には、 硫酸ニッケル 20 g/ 1、 酢酸コバルト 15 gZ 1、 次亜 リン酸ナトリウム 0. 5 g/l、 金属錯化剤としてグリシン 0. 5 gZl、 分 散補助剤としての酸化セリウム 0. 5 gZl、 フッ素樹脂としてポリテトラフ ルォロエチレン (PTEF) 45 g l、 還元剤としての酸化チタン 10 g/ 1カチオン性界面活性剤であるメガファック F— 150 (大日本インキ工業 (株))、 及び非イオン界面活性剤である Tr i t omnx- 100 (石津製薬 (株)) を含有させ、 液の pHを 5. 8とした。 上記ステンレス板の第 1メツキ 層上には、ブロンズ色を有する、層厚 10 imの第 2のメツキ層が形成された。 この第 2のメツキ層の表面は T E Fにより平坦面となっていた。 Next, the stainless steel plate having the first plating layer was further kept at 70 ° C. After immersion in the obtained first electroless plating solution for 20 minutes, the stainless steel plate was taken out from the second electroless plating solution, washed with water, allowed to stand at room temperature and dried. In the second electroless plating solution, nickel sulfate 20 g / 1, cobalt acetate 15 gZ1, sodium hypophosphite 0.5 g / l, glycine 0.5 gZl as a metal complexing agent, dispersion aid 0.5 gZl of cerium oxide as a surfactant, 45 gl of polytetrafluoroethylene (PTEF) as a fluororesin, 10 g of titanium oxide as a reducing agent / 1 Megafac F-150, a cationic surfactant (Dai Nippon Ink Kogyo Co., Ltd. )) And Tritonx-100 (Nonionic surfactant) (Ishizu Pharmaceutical Co., Ltd.), and the pH of the solution was adjusted to 5.8. On the first plating layer of the stainless steel plate, a second plating layer having a bronze color and a layer thickness of 10 im was formed. The surface of this second plating layer was flat by TEF.
第 1及び第 2メツキ層が表面に被着形成されたステンレス板を 70 °Cに昇温 保持した炉内に配設し、 20分間放置して焼付け処理を行い、 無電解メツキに よる薄膜が表面に形成された最終製品である被メツキ被処理物を得た。  The stainless steel plate with the first and second plating layers adhered to the surface is placed in a furnace maintained at a temperature of 70 ° C and left for 20 minutes to perform baking treatment, and a thin film by electroless plating is formed. An object to be treated, which is a final product formed on the surface, was obtained.
上記最終被メツキ被処理物の表面粗さは 2 zmであった。 上記の通り、 第 1 メツキ層の表面粗さ及びステンレス板の表面粗さはそれぞれ 1 及び 2 m であり、 このことは最終被メツキ被処理物 (第 2メツキ層) の表面粗さが極め て滑らかであることが分かる。  The surface roughness of the final plating object was 2 zm. As described above, the surface roughness of the first plating layer and the surface roughness of the stainless steel plate are 1 and 2 m, respectively, which means that the surface roughness of the final plating object (second plating layer) is extremely high. It turns out that it is smooth.
また、 上記のようにして得られた薄膜のメツキ硬度は 480HVという極め て高い値であった。 また、 最終被メツキ被処理物のメツキ密着密度は 750 k g f Zcmであった。 さらに、 耐腐食性試験として上記 (A) から (C) を行つ たが、 いずれの場合にも粒子の欠落やピンホ一ルの異常は見られず、 何ら変化 はなかった。 実施例 4 硫酸ニッケル 30 g "し 酢酸コバルト 10 g/l、 次亜リン酸ナトリウム 0. 5 g/ 金属錯化剤としての乳酸 15 gZ 1、 及びアンモニア水 40重 量%とチォ硫酸ナトリウム 50重量%と塩素 10重量%とからなる組成液 15 g/1を含有させ、 液の pHを 5. 3、 液温 70°Cに保持された第 1の無電解 メツキ液中に、 ステンレス板 (J 13規格3113304) を 20分間浸漬後、 このステンレス板を第 1の無電解メツキ液より取出し、 水洗後常温環境下に放 置し乾燥した。 次いで、 上記実施例 1と同じ第 2無電解メツキ液を用いて同様 にメツキ処理し、 同様の条件で焼付け処理を行ってメツキ被処理物を得た。 ステンレス板の表面には、 平坦面に溝の深さが約 2 mの凹部を有する層厚 2 mの第 1のメツキ層が形成された。 上記第 1メツキ層上には、 ブロンズ色 を有する、 層厚 15 /mの第 2のメツキ層が形成された。 Further, the plating hardness of the thin film obtained as described above was an extremely high value of 480 HV. The plating adhesion density of the final plating object was 750 kgf Zcm. In addition, the above (A) to (C) were performed as corrosion resistance tests. In each case, no missing particles or abnormal pinholes were observed, and there was no change. Example 4 Nickel sulfate 30 g "Cobalt acetate 10 g / l, Sodium hypophosphite 0.5 g / Lactic acid 15 gZ1 as metal complexing agent, and ammonia water 40% by weight, sodium thiosulfate 50% by weight and chlorine In a first electroless plating solution maintained at a solution pH of 5.3 and a solution temperature of 70 ° C, a stainless steel plate (J13 standard 3113304) was added. ) Was immersed for 20 minutes, the stainless steel plate was taken out of the first electroless plating solution, washed with water, allowed to dry at room temperature, and dried using the same second electroless plating solution as in Example 1 above. In the same manner, plating was performed, and baking was performed under the same conditions to obtain a workpiece to be treated.The stainless steel plate had a flat surface with a recess with a groove depth of about 2 m and a layer thickness of 2 m. A first plating layer was formed On the first plating layer, a second layer having a thickness of 15 / m and having a bronze color was formed. Was formed.
上記最終被メツキ被処理物の表面粗さは 2 /mであった。 第 1メツキ層の表 面粗さ及びステンレス板の表面粗さはそれぞれ 2 及び 5 mであり、 この ことは最終被メツキ被処理物 (第 2メツキ層) の表面粗さが極めて滑らかであ ることが分かる。  The surface roughness of the final processed object was 2 / m. The surface roughness of the first plating layer and the surface roughness of the stainless steel plate are 2 and 5 m, respectively, which means that the final plating object (second plating layer) has extremely smooth surface roughness. You can see that.
また、 上記のようにして得られた薄膜のメツキ硬度は 480HVという極め て高い値であった。 また、 最終被メツキ被処理物のメツキ密着密度は 780 k g f /cmであった。 さらに、 耐腐食性試験として上記 (A) から (C) を行つ たが、 いずれの場合にも粒子の欠落やピンホールの異常は見られず、 何ら変化 はなかった。 実施例 5  Further, the plating hardness of the thin film obtained as described above was an extremely high value of 480 HV. The plating adhesion density of the final plating object was 780 kgf / cm. In addition, the above (A) to (C) were performed as corrosion resistance tests. In each case, no missing particles or abnormal pinholes were observed, and there was no change. Example 5
硫酸ニッケル 40 g/l、 酢酸コバルト 5 g/l、 次亜リン酸ナトリウム 2 0 g/l、 金属錯化剤としての乳酸 15 gZ 1、 及びチォ尿素 0. 5 ppmを 含有させ、液の pHを 5、液温 60°Cに保持された第 1の無電解メツキ液中に、 ステンレス板 (J 1 S規格 S U S 3 0 4 ) を 2 0分間浸漬後、 このステンレス 板を第 1の無電解メツキ液より取出し、 水洗後常温環境下に放置し乾燥した。 次いで、 上記実施例 1と同じ第 2無電解メツキ液を用いて同様にメツキ処理し、 同様の条件で焼付け処理を行ってメツキ被処理物を得た。 ステンレス板の表面 には、 平坦面に溝の深さが約 2 mの凹部を有する層厚 3 mの第 1のメツキ 層が形成された。 上記第 1メツキ層上には、 ブロンズ色を有する、 層厚 1 0 mの第 2のメッキ層が形成された。 Contains nickel sulfate 40 g / l, cobalt acetate 5 g / l, sodium hypophosphite 20 g / l, lactic acid 15 gZ1 as a metal complexing agent, and 0.5 ppm of thiourea. 5, into the first electroless plating solution maintained at a solution temperature of 60 ° C, After immersing a stainless plate (J1S standard SUS304) for 20 minutes, the stainless plate was taken out of the first electroless plating solution, washed with water, allowed to stand at room temperature, and dried. Next, the same plating process was performed using the same second electroless plating solution as in Example 1 described above, and a baking process was performed under the same conditions to obtain a plating processed object. On the surface of the stainless steel plate, a first plating layer having a thickness of 3 m and a recess having a depth of about 2 m on a flat surface was formed. On the first plating layer, a second plating layer having a layer thickness of 10 m and having a bronze color was formed.
上記最終被メッキ被処理物の表面粗さは 4 mであった。 第 1メツキ層の表 面粗さ及びステンレス板の表面粗さはそれぞれ 2 及び 3 であり、 この ことは最終被メツキ被処理物 (第 2メツキ層) の表面粗さが極めて滑らかであ ることが分かる。  The surface roughness of the object to be plated was 4 m. The surface roughness of the first plating layer and the surface roughness of the stainless steel plate are 2 and 3, respectively, which means that the surface roughness of the final plating object (second plating layer) is extremely smooth. I understand.
また、 上記のようにして得られた薄膜のメツキ硬度は 4 8 0 HVという極め て高い値であった。 また、 最終被メツキ被処理物のメツキ密着密度は 7 8 0 k g f Z c mであった。 さらに、 耐腐食性試験として上記 (A) から (C) を行つ たが、 いずれの場合にも粒子の欠落やピンホールの異常は見られず、 何ら変化 はなかった。  Further, the plating hardness of the thin film obtained as described above was an extremely high value of 480 HV. The plating adhesion density of the final plating object was 780 kgfZcm. In addition, the above (A) to (C) were performed as corrosion resistance tests. In each case, no missing particles or abnormal pinholes were observed, and there was no change.

Claims

請 求 の 範 囲 The scope of the claims
1 . 金属塩と、 金属錯化剤と、 還元剤と、 アンモニア水及びチォ硫酸塩を含有 する組成液並びにチォ尿素からなる群のうち少なくとも 1つと、 を含有するこ とを特徴とする無電解メツキ液。 1. An electroless method characterized by comprising a metal salt, a metal complexing agent, a reducing agent, at least one of a group consisting of a composition solution containing aqueous ammonia and thiosulfate, and thiourea. Meat liquid.
2 . 前記チォ尿素の濃度が 0 . l〜1 0 0 p p mであることを特徴とする請 求項 1に記載の無電解メッキ液。  2. The electroless plating solution according to claim 1, wherein the concentration of the thiourea is 0.1 to 100 ppm.
3 . 前記金属錯化剤が乳酸であることを特徴とする請求項 1または 2に記載 の無電解メツキ液。  3. The electroless plating solution according to claim 1, wherein the metal complexing agent is lactic acid.
4. 前記金属錯化剤の濃度が 1〜1 0 0 g / 1であることを特徴とする請求 項 1〜 3のいずれか 1項に記載の無電解メツキ液。 4. The electroless plating solution according to any one of claims 1 to 3, wherein the concentration of the metal complexing agent is 1 to 100 g / 1.
5 . 前記金属塩がニッケル塩、 コバルト塩、 クロム塩、 チタン塩、 及び次亜 リン酸塩からなる群から選択された少なくとも 1種以上であることを特徴とす る請求項 1〜4のいずれか 1項に記載の無電解メツキ液。  5. The metal salt is at least one selected from the group consisting of a nickel salt, a cobalt salt, a chromium salt, a titanium salt, and a hypophosphite. Or the electroless plating solution according to item 1.
6 . 上記請求項 1〜 5のいずれか 1項に記載の第 1の無電解メツキ液中に被 処理物を曝すことにより前記被処理物の表面上に第 1メツキ層を形成する工程 と、 フッ素樹脂、 金属塩、 金属錯化剤、 還元剤、 及び界面活性剤を含有する第 2の無電解メツキ液に前記被処理物をさらに曝すことにより前記第 1メツキ層 上に第 2メツキ層を形成する工程と、 を含むことを特徴とする無電解メッキ方 法。 6.A step of forming a first plating layer on the surface of the workpiece by exposing the workpiece to the first electroless plating solution according to any one of claims 1 to 5, A second plating layer is formed on the first plating layer by further exposing the object to a second electroless plating liquid containing a fluororesin, a metal salt, a metal complexing agent, a reducing agent, and a surfactant. Forming an electroless plating method.
7 . 前記第 2の無電解メツキ液に含有される前記金属塩がニッケル塩、 コバ ルト塩、 クロム塩、 チタン塩、 及び次亜リン酸塩からなる群から選択された少 なくとも 1種以上であることを特徴とする請求項 6に記載の無電解メッキ方法。  7. The metal salt contained in the second electroless plating solution is at least one selected from the group consisting of a nickel salt, a cobalt salt, a chromium salt, a titanium salt, and a hypophosphite. 7. The electroless plating method according to claim 6, wherein:
8 . 前記第 2の無電解メツキ液に含有される前記界面活性剤がカチオン系界 面活性剤及び非イオン界面活性からなる群のうち少なくとも 1つであることを 特徴とする請求項 6または 7に記載の無電解メツキ方法。 8. The surfactant contained in the second electroless plating solution is at least one of a group consisting of a cationic surfactant and a nonionic surfactant. The electroless plating method according to claim 6, wherein the electroless plating method is used.
9. 前記第 2の無電解メツキ液に含有されるフッ素樹脂の濃度が 20〜60 g Z 1であることを特徴とする請求項 6〜 8に記載の無電解メッキ方法。 9. The electroless plating method according to claim 6, wherein the concentration of the fluororesin contained in the second electroless plating solution is 20 to 60 gZ1.
10. 請求項 6〜 9のいずれか 1項に記載の無電解メツキ方法により得られ ることを特徴とするメツキ被処理物。 10. A plating object to be processed, obtained by the electroless plating method according to any one of claims 6 to 9.
11. メツキ硬度が 400HV以上であることを特徴とする請求項 10に記 載のメツキ被処理物。  11. The plating object according to claim 10, wherein the plating hardness is 400 HV or more.
12. メツキ密着強度が 350 kg fZcm以上であることを特徴とする請 求項 10または 11に記載のメツキ被処理物。  12. The plating object to be treated according to claim 10 or 11, wherein the plating adhesion strength is 350 kg fZcm or more.
PCT/JP2003/011663 2002-09-11 2003-09-11 Electroless-plating solution, method of electroless plating with the same, and object plated by electroless plating WO2004024985A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004535952A JP4294589B2 (en) 2002-09-11 2003-09-11 Electroless plating solution, electroless plating method and electroless plating object using the same
AU2003264410A AU2003264410A1 (en) 2002-09-11 2003-09-11 Electroless-plating solution, method of electroless plating with the same, and object plated by electroless plating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002306397 2002-09-11
JP2002-306397 2002-09-11

Publications (1)

Publication Number Publication Date
WO2004024985A1 true WO2004024985A1 (en) 2004-03-25

Family

ID=31987234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011663 WO2004024985A1 (en) 2002-09-11 2003-09-11 Electroless-plating solution, method of electroless plating with the same, and object plated by electroless plating

Country Status (4)

Country Link
JP (2) JP4294589B2 (en)
AU (1) AU2003264410A1 (en)
TW (1) TW200406504A (en)
WO (1) WO2004024985A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032483A (en) * 2004-07-13 2006-02-02 Seiko Epson Corp Manufacturing method of wiring circuit board
JP2006032484A (en) * 2004-07-13 2006-02-02 Seiko Epson Corp Manufacturing method of wiring circuit board
US9017051B2 (en) 2005-07-07 2015-04-28 Oerlikon Leybold Vacuum Gmbh Rotary vacuum pump with a discharge compensating channel
DE102014113543A1 (en) * 2014-09-19 2016-03-24 Endress + Hauser Gmbh + Co. Kg Media-resistant multi-layer coating for a measuring device for process technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100960689B1 (en) 2009-09-11 2010-05-31 씨앤지머트리얼즈(주) Preparation method of stainless steel shaped body with plating layer and the shaped body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033913B2 (en) * 1982-09-24 1985-08-06 日本バルカ−工業株式会社 Fluorine resin coating method
JPS61234202A (en) * 1985-04-10 1986-10-18 Mazda Motor Corp Apex seal of rotary piston engine
JPH083753A (en) * 1994-06-14 1996-01-09 Sumitomo Metal Ind Ltd Electroless ni plating solution for aln substrate
US5645628A (en) * 1994-07-14 1997-07-08 Matsushita Electric Industrial Co., Ltd. Electroless plating bath used for forming a wiring of a semiconductor device, and method of forming a wiring of a semiconductor device
EP1020542A2 (en) * 1999-01-12 2000-07-19 C. Uyemura & Co, Ltd Electroless composite plating solution and electroless composite plating method
JP2001192850A (en) * 2000-01-11 2001-07-17 Ebe Katsuo Surface treating solution for sliding parts, surface treating method for sliding parts and sliding parts
JP2002180261A (en) * 2000-12-08 2002-06-26 Nikko Metal Plating Kk Electroless nickel plating liquid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157169A (en) * 1990-10-17 1992-05-29 Hitachi Chem Co Ltd Electroless nickel-phosphorus plating solution
JPH04341667A (en) * 1991-01-24 1992-11-27 C Uyemura & Co Ltd Gas cock
JP2936129B2 (en) * 1995-04-12 1999-08-23 セイコー精機株式会社 Anti-corrosion structure
JP3533880B2 (en) * 1997-05-02 2004-05-31 上村工業株式会社 Electroless nickel plating solution and electroless nickel plating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033913B2 (en) * 1982-09-24 1985-08-06 日本バルカ−工業株式会社 Fluorine resin coating method
JPS61234202A (en) * 1985-04-10 1986-10-18 Mazda Motor Corp Apex seal of rotary piston engine
JPH083753A (en) * 1994-06-14 1996-01-09 Sumitomo Metal Ind Ltd Electroless ni plating solution for aln substrate
US5645628A (en) * 1994-07-14 1997-07-08 Matsushita Electric Industrial Co., Ltd. Electroless plating bath used for forming a wiring of a semiconductor device, and method of forming a wiring of a semiconductor device
EP1020542A2 (en) * 1999-01-12 2000-07-19 C. Uyemura & Co, Ltd Electroless composite plating solution and electroless composite plating method
JP2001192850A (en) * 2000-01-11 2001-07-17 Ebe Katsuo Surface treating solution for sliding parts, surface treating method for sliding parts and sliding parts
JP2002180261A (en) * 2000-12-08 2002-06-26 Nikko Metal Plating Kk Electroless nickel plating liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032483A (en) * 2004-07-13 2006-02-02 Seiko Epson Corp Manufacturing method of wiring circuit board
JP2006032484A (en) * 2004-07-13 2006-02-02 Seiko Epson Corp Manufacturing method of wiring circuit board
US9017051B2 (en) 2005-07-07 2015-04-28 Oerlikon Leybold Vacuum Gmbh Rotary vacuum pump with a discharge compensating channel
DE102014113543A1 (en) * 2014-09-19 2016-03-24 Endress + Hauser Gmbh + Co. Kg Media-resistant multi-layer coating for a measuring device for process technology

Also Published As

Publication number Publication date
JP2009102750A (en) 2009-05-14
JPWO2004024985A1 (en) 2006-01-12
JP4294589B2 (en) 2009-07-15
AU2003264410A1 (en) 2004-04-30
JP4910005B2 (en) 2012-04-04
TW200406504A (en) 2004-05-01

Similar Documents

Publication Publication Date Title
Novakovic et al. Electroless NiP–TiO2 composite coatings: their production and properties
Georgiza et al. Production and properties of composite electroless Ni-B-SiC coatings
US5178745A (en) Acidic palladium strike bath
Zhu et al. A rapid one-step process for the construction of corrosion-resistant bionic superhydrophobic surfaces
Novakovic et al. Vacuum thermal treated electroless NiP–TiO2 composite coatings
Bund et al. Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and copper
JP4910005B2 (en) Electroless plating solution using thiourea, electroless plating method and electroless plating object using the same
Fayyad et al. Effect of electroless bath composition on the mechanical, chemical, and electrochemical properties of new NiP–C3N4 nanocomposite coatings
Forooshani et al. Fabrication of hierarchical dual structured (HDS) nickel surfaces and their corrosion behavior
JPH0539580A (en) Electroless palladium plating liquid
JP4494155B2 (en) Gold-plated structure and fuel cell separator comprising this gold-plated structure
KR20180025959A (en) Metal coating and method of making the same
Chen et al. Electro-less plating nickel-phosphorus of low carbon steel using various pretreatments and an external magnetic field
JP2001192850A (en) Surface treating solution for sliding parts, surface treating method for sliding parts and sliding parts
JP4467794B2 (en) Nickel / boron-containing paint
JP4780585B2 (en) Electroless nickel plating solution
US3467584A (en) Plating platinum metals on chromium
KR101383323B1 (en) Electroless plating method and plating film obtained by the electroless plating method
CN112501595A (en) Method for forming metal plating film
KR20070005332A (en) Electroless plating method and plating film obtained by the electroless plating method
Cojocaru et al. Electrodeposition of Au/nanosized diamond composite coatings
US5182172A (en) Post-plating passivation treatment
CN113874549A (en) Laminate and method for producing same
Zuniga et al. Electrodeposition of Zinc from an Alkaline Non-cyanide Bath: Influence of a Quaternary Alipahatic Polyamine
Wang et al. Investigation into the roles of sulfur-containing amino acids in electroless nickel plating bath

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004535952

Country of ref document: JP

122 Ep: pct application non-entry in european phase