WO2004021054A1 - Optical fiber with island structure - Google Patents

Optical fiber with island structure Download PDF

Info

Publication number
WO2004021054A1
WO2004021054A1 PCT/JP2003/010969 JP0310969W WO2004021054A1 WO 2004021054 A1 WO2004021054 A1 WO 2004021054A1 JP 0310969 W JP0310969 W JP 0310969W WO 2004021054 A1 WO2004021054 A1 WO 2004021054A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
refractive
index
optical
organic compound
Prior art date
Application number
PCT/JP2003/010969
Other languages
French (fr)
Japanese (ja)
Inventor
Hidenobu Murofushi
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to AU2003261812A priority Critical patent/AU2003261812A1/en
Publication of WO2004021054A1 publication Critical patent/WO2004021054A1/en
Priority to US11/066,283 priority patent/US20050141834A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02361Longitudinal structures forming multiple layers around the core, e.g. arranged in multiple rings with each ring having longitudinal elements at substantially the same radial distance from the core, having rotational symmetry about the fibre axis

Definitions

  • the present invention relates to an optical transmission medium used as an optical fiber or the like, more specifically, an optical fiber having a sea-island structure having excellent heat resistance, flame retardancy, chemical resistance and solvent resistance, low transmission loss and a high transmission band.
  • an optical transmission medium used as an optical fiber or the like, more specifically, an optical fiber having a sea-island structure having excellent heat resistance, flame retardancy, chemical resistance and solvent resistance, low transmission loss and a high transmission band.
  • An optical fiber has excellent characteristics as a light propagation medium, and an inorganic glass-based optical fiber having excellent light transmission properties over a particularly wide wavelength is conventionally used.
  • these inorganic glass-based optical fibers are not only poor in workability, weak in bending stress, but also expensive, so that optical fibers (optical fiber wires) based on plastic have been developed and put into practical use. I have.
  • optical fibers have a graded-index structure in which a core material having a high refractive index is surrounded by a cladding material having a lower refractive index, and a core clad structure is formed using a combination of materials having different refractive indexes.
  • SI type Optical fiber is common. Many plastic optical fibers having such a structure have been proposed and some of them have been put to practical use.
  • a core (core) layer having a united body as a base material and a sheath (cladding) layer having a base material made of a substantially transparent fluoropolymer having a lower refractive index than these are used as basic constituent units.
  • Japanese Patent Application Laid-Open No. 2-244007 also proposes using a fluorine-containing resin for both the core layer and the cladding layer.
  • a refractive index distribution type (GI type) optical fiber in which the refractive index is attenuated by distributing the material in the radial direction from the axis to the circumferential direction is known together with the above-mentioned refractive index step type optical fiber.
  • GI type refractive index distribution type
  • Japanese Unexamined Patent Publication (Kokai) No. 5-173030, WO94 / 044949, W094 / 1.505 discloses a single case.
  • SM single mode
  • Japanese Patent Application Laid-Open No. 9-33737 describes that at least seven cores having a diameter of 50 to 200 ⁇ ⁇ made of a resin having a higher refractive index than the clad resin are contained in the clad resin. Embedded multi-core plastic optical fibers have been proposed.
  • An optical fiber (holey fiber) having a structure including holes is also known.
  • an optical fiber in which air is contained in a single material of silica glass is known as a total reflection type guided holey fiber in which light is guided by total reflection due to the presence of a low refractive index hole. ing.
  • a photonic crystal fiber in which a photonic crystal structure is formed by periodically arranging holes in which the holes extend in parallel in the major axis direction has been receiving attention.
  • One of the photonic crystal fibers has a core clad structure, and the presence of holes in the cladding lowers the effective refractive index of the cladding than that of the core, and guides light by total internal reflection. It is a total reflection type holey fiber.
  • PBG photonic band gap
  • the core may have a hollow structure as long as it breaks the periodicity of the holes, and this point is significantly different from the conventional high refractive index core structure.
  • Photonic crystal fibers can achieve broadband single-mode operation depending on the size, number, and arrangement of holes.
  • the holey fiber comprising a photonic crystal fiber as described above, are known silica fibers of the inorganic glass system, as its production method, to prepare a cylindrical body made of a S i 0 2 mainly, the cylindrical body Penetrates in the long axis direction around the shaft core 969
  • a method (1) in which a preform having a solid structure is produced by providing a large number of three small holes, and the preform is stretched (drawn) in the longitudinal direction to form pores, thereby forming an optical fiber.
  • plastic optical fibers have characteristics that inorganic glass-based optical fibers do not have, practical grade optical fibers cannot be obtained with conventional graded-index plastic optical fibers because of their narrow transmission band.
  • Japanese Unexamined Patent Publication No. Hei 9-133 737 describes that the difference in the refractive index between the core material and the clad material is reduced, and the bending loss reduced by that amount is bundled with a small core diameter while maintaining the incident light amount. Efforts have been made to improve the transmission bandwidth, but it has not been possible to achieve high-speed transmission of 1 GHz or more at 100 m.
  • a graded-index plastic optical fiber has a large transmission loss in near-infrared light, and a practical optical fiber for communication has not been obtained.
  • plastic optical fibers can only be used in a specific wavelength region due to wavelength absorption caused by vibration and bending motion of the C-H bond, that is, visible light (500-700 nm) It cannot be used in the near-infrared light (700 to 160 nm) region, and its use is limited.
  • the partition between adjacent small holes is extremely thin, and during processing, the partitioning portion is extremely thin. It is extremely difficult to create a preform because the partition may break. Furthermore, in the manufacturing method of the above (2), it is difficult to handle fine cavities and maintain cleanliness, and a process of fusing and integrating while maintaining the shape of a large number of cavities bundled in a close-packed state. Extremely difficult. Furthermore, since the fiber has many hollow portions, dust and water easily enter the gap, and the fiber strength is weak because the filling degree per fiber cross-sectional area is low.
  • plastic optical fibers can provide mechanical strength, The heat resistance, moisture resistance, chemical resistance and nonflammability were not always satisfactory.
  • the present invention relates to plastics mainly composed of polymers such as acrylic polymers represented by polymethyl methacrylate, polystyrene, polycarbonate and the like. It has the mechanical strength, heat resistance, moisture resistance, chemical resistance, and nonflammability required for LANs, apartments, medical equipment, automobiles, office automation (OA), home appliances, etc. that could not be achieved with optical fibers. It is another object of the present invention to provide an optical transmission medium that can be used as an optical fiber.
  • the present invention provides a method for producing visible light (500 to 700 nm) and near-infrared light (700 nm) which cannot be achieved by a plastic optical fiber mainly composed of a polymer such as an acrylic polymer, a polycarbonate, and norpolene. (0 to 160 nm) region, has mechanical strength not found in optical fibers containing holes (holey fibers including photonic crystal fibers), and a single core can be used if necessary. It is an object of the present invention to provide an optical transmission body that can be used as an optical fiber with a low transmission loss and a high transmission band that can provide ultra-high-speed transmission by setting a mode propagation condition.
  • the present invention provides an optical transmitter characterized by having a sea-island structure in which a low refractive index dispersed phase is dispersed in a high refractive index continuous phase in order to achieve the above object.
  • the low-refractive-index dispersed phases are arranged so as to have a periodicity for forming an optical waveguide.
  • each of the component constituting the continuous phase having a high refractive index and the component constituting the dispersed phase having a low refractive index is a polymer of an organic compound.
  • the component constituting the high-refractive-index continuous phase is composed of a non-crystalline fluoropolymer (a) having substantially no C—H bond, and the component constituting the low-refractive-index dispersed phase is as described above. It is preferable that it is made of a fluoropolymer (b) having a refractive index lower than that of the fluoropolymer (a) by 0.01 or more.
  • the fluorinated polymer (a) preferably contains a fluorinated ring structure.
  • the fluorinated ring structure may contain a ring member ether bond, and is preferably a fluorinated alicyclic structure.
  • the fluoropolymer having a fluorinated ring structure preferably has the fluorinated ring structure in the main chain.
  • both the fluoropolymers (a) and (b) have substantially no C—H bond, and may contain an ether bond in the main chain. It is preferably an amorphous fluoropolymer having an alicyclic structure.
  • the present invention is for producing an optical transmission body having the above-described sea-island structure, and comprises a long body made of a polymer of an organic compound having a high refractive index component, and an organic compound having a low refractive index component.
  • the polymer is dispersed, and the polymer of the organic compound of the low refractive index component extends in the longitudinal direction in the elongated body, thereby providing a preform having a sea-island structure.
  • it is a preform from which a stretched molded article (light transmitting body) having a homogenous diameter cross section is obtained after stretching.
  • the present invention is also characterized in that a pre-divided strand-shaped polymer of an organic compound of a low refractive index component is placed in a tube made of a polymer of an organic compound of a high refractive index component, and co-spun.
  • the present invention also provides a method for manufacturing an optical transmitter having a sea-island structure according to the present invention or a preform thereof.
  • a polymer of an organic compound, which is a low refractive index component, which is uniformly melted, is separated in an extrusion die, and after being finely divided, a polymer of an organic compound of a high refractive index component is supplied to a peripheral portion thereof. Then, the high-refractive-index component organic polymer is applied to the outer periphery of the low-refractive-index component organic polymer, and extruded from a common nozzle.
  • the present invention provides a method for manufacturing an optical transmitter having the same or a preform thereof.
  • the present invention also provides an optical fiber code obtained by coating the optical transmission body with one or more layers.
  • the present invention also provides a long body made of a thermoplastic resin in which a tensile strength reinforcing member is buried having a hole extending in the longitudinal direction therein, and the optical fiber cord stored in the hole of the long body.
  • an optical fiber cable comprising:
  • the present invention also provides a band comprising a plurality of the above optical fiber cords bundled. Provide fiber optics.
  • FIG. 1 is a cross-sectional view of an optical transmitter having a sea-island structure in which a dispersed phase is randomly dispersed in a continuous phase.
  • FIG. 2 is a cross-sectional view of an optical transmitter having a sea-island structure in which a dispersed phase is periodically dispersed throughout the continuous phase.
  • FIG. 3 is a cross-sectional view of an optical transmitter having a sea-island structure in which a disperse phase is periodically dispersed in a continuous phase in a mode different from that of FIG. 2. They are arranged concentrically.
  • FIG. 4 is a cross-sectional view of an optical transmitter that uses a photoband gap as a waveguide principle, in which a defect portion exists in a dispersed phase having a photonic crystal structure that is periodically arranged.
  • FIG. 5 is a cross-sectional view of the plastic optical fiber having the sea-island structure according to the present invention manufactured in the first embodiment.
  • FIG. 6 is a cross-sectional view of a plastic optical fiber having a sea-island structure according to the present invention manufactured in Example 2.
  • FIG. 7 is a cross-sectional view of a plastic optical fiber having a Sindal mode duplex sea-island structure according to the present invention manufactured in Examples 4 and 5.
  • the optical transmitter is specifically an optical fiber, an optical waveguide, a switch, a lens, or the like.
  • a substance having a lower refractive index (dispersion) in the continuous phase than the substance forming the continuous phase is used instead of providing the porous portion.
  • Phase) to form a sea-island structure It has the same function as holey fiber including photonic crystal fiber, and also has no voids in the fiber, thereby preventing dust and moisture from entering and improving the fiber strength. is there.
  • the light guiding principle is not particularly limited, such as a total reflection type, a graded index type, and a PBG guiding principle.
  • FIG. 1 is a sectional view showing an example of the optical transmission body of the present invention.
  • an optical transmitter 1 is a total reflection type optical transmitter in which a dispersed phase 3 is randomly dispersed in a continuous phase 2.
  • the disperse phase is dispersed with periodicity forming an optical waveguide. That is, in the optical transmission body of the present invention, the disperse phase has the same role as the porous portion of the hollow fiber including the photonic crystal fiber. It preferably has periodicity.
  • FIGS. 2 and 3 show that, in the diameter cross section of the optical transmitter 1, the disperse phase 2 extends over the entire continuous phase 3.
  • FIG. 4 is a radial cross-sectional view of an optical transmission body that is periodically arranged to form a photonic crystal structure.
  • the optical transmitter 1 shown in FIGS. 2 and 3 light is propagated by the principle of total reflection waveguide.
  • the dispersed phases 3 are arranged periodically in a strict sense, and they may be arranged to some extent randomly.
  • the disperse phase has a defect portion that breaks the photonic crystal structure in the periodically arranged photonic crystal structure as described above, so that a photonic band gap ( (PBG), and PBG may be a waveguide principle.
  • PBG photonic band gap
  • Fig. 4 shows an example of an embodiment using PBG as the guiding principle.
  • the dispersed phase 3 is periodically arranged in a honeycomb structure to form a photonic crystal structure, but the central portion of the honeycomb structure is not a dispersed phase 3 but a continuous phase 2.
  • the continuous phase 2 in the central portion of the honeycomb structure forms a defect that breaks the periodicity of the structure.
  • the component constituting the high-refractive-index continuous phase and the component constituting the low-refractive-index dispersed phase preferably have a difference in refractive index between each other of 0.001 or more.
  • the material is not particularly limited as long as it is suitable as a material of the optical transmission body. Therefore, for example, two inorganic glasses each having a difference in refractive index of 0.001 or more may be used, but preferably, the difference in refractive index of each other is 0.001 or more. It is a polymer of two organic compounds, and such a polymer of an organic compound widely includes a polymer of an organic compound used in the field of an optical transmitter.
  • the polymer of the organic compound examples include an acrylic polymer represented by polymethyl methacrylate, polystyrene, polycarbonate, norportene, and some or all of the C-H bonds in the organic compound polymer. Fluorine-containing polymers substituted by C-F bonds are exemplified.
  • the refractive index refers to a refractive index with respect to a sodium D line.
  • the continuous phase and the dispersed phase are preferably made of a non-crystalline fluorine-containing polymer having substantially no C—H bond.
  • the fluorinated polymer is not particularly limited as long as it is a non-crystalline fluorinated polymer having substantially no C—H bond, but a fluorinated polymer having a fluorinated ring structure is preferred.
  • a fluorinated polymer having a fluorinated ring structure include a fluorinated alicyclic structure which may contain a ring member ether bond (hereinafter, may be simply referred to as a fluorinated alicyclic structure), a fluorinated imide ring structure, And a fluorine-containing triazine ring structure or a fluorine-containing aromatic ring structure.
  • a fluorinated alicyclic structure and a fluorinated polyimide ring structure which may contain a ring member ether bond are preferable, and the former is more preferable.
  • a fluoropolymer having the above-mentioned fluorinated ring structure in the main chain is preferable, and furthermore, the main chain constituent unit containing the ring structure can form a substantially linear structure and can be melt-molded.
  • a fluorinated polymer having a fluorinated alicyclic structure in the main chain is preferable.
  • a fluorine-containing polymer having a fluorine-containing alicyclic structure in the main chain which is a particularly preferred fluorine-containing polymer, will be specifically described.
  • the fluoropolymer having a fluorinated alicyclic structure in the main chain is a fluorinated polymer having a main chain composed of a chain of carbon atoms and having a fluorinated alicyclic structure in the main chain.
  • Having a fluorinated alicyclic structure in the main chain means that at least one of the carbon atoms forming the alicyclic ring is a carbon atom in the carbon chain forming the main chain, and at least one of the carbon atoms forming the alicyclic ring is present. It has a structure in which a fluorine atom or a fluorine-containing group is partially bonded.
  • Examples of the main chain constituent unit having a fluorinated alicyclic structure which is a preferred embodiment of the fluorinated polymer according to the present invention, include the following structures.
  • 1 is 0 to 5
  • m is 0 to 4
  • n is 0 to 1
  • o, p, and q are independently 0 to 5
  • o + p + q is 1-6
  • each RR 2 and R 3 are independently, F, a C 1, CF 3, C 2 F 5, C 3 F 7 or OCF 3
  • X 1 and X 2 are independently to F, a C 1 or CF 3.
  • the polymer having a fluorinated alicyclic structure specifically,
  • a monomer having a fluorinated alicyclic structure (a monomer having a polymerizable double bond between a carbon atom forming a ring and a carbon atom not forming a ring, or between two carbon atoms forming a ring) A monomer having a polymerizable double bond),
  • a polymer having a fluorine-containing alicyclic structure in the main chain obtained by cyclopolymerization of a fluorine-containing monomer having two or more polymerizable double bonds is preferred.
  • the monomer having a fluorinated alicyclic structure is preferably a monomer having one polymerizable double bond, and the fluorinated monomer capable of undergoing cyclopolymerization has two polymerizable double bonds. Further, a monomer having no fluorinated alicyclic structure is preferable.
  • a copolymerizable monomer other than a fluorine-containing monomer capable of undergoing cyclopolymerization with a monomer having a fluorine-containing alicyclic structure is referred to as “another radically polymerizable monomer”.
  • the carbon atoms constituting the main chain of the fluoropolymer are composed of two carbon atoms of the polymerizable double bond of the monomer. Therefore, in a monomer having a fluorine-containing alicyclic structure having one polymerizable double bond, one or both of the two carbon atoms constituting the polymerizable double bond constitute an alicyclic ring.
  • Atom A fluorine-containing monomer having no alicyclic ring and having two polymerizable double bonds is composed of one carbon atom of one polymerizable double bond and one carbon atom of the other polymerizable double bond. The carbon atoms combine to form a ring.
  • An alicyclic ring is formed by the two bonded carbon atoms and the atoms between them (excluding atoms in the side chain), and an etheric oxygen atom is formed between the two polymerizable double bonds.
  • a fluorinated aliphatic ether ring structure is formed.
  • a polymer having a fluorinated alicyclic structure in the main chain obtained by polymerizing a monomer having a fluorinated alicyclic structure is perfluoro (2,2-dimethyl-1,3-dioxole)
  • PDD perfluoro (2-methyl-1,3-dioxol), perfluoro (2-ethyl-2-propyl-1,3-dioxole), perfluoro mouth (2,2-dimethyl-4-methyl-1,3-)
  • MMD 1,3 dioxolane
  • MMD perfluoro (2-methyl-1,4-dioxin
  • a polymer having a fluorinated alicyclic structure in the main chain obtained by copolymerizing this monomer with another radical polymerizable monomer containing no C—H bond may also be used.
  • the ratio of the polymerized unit of the other radical polymerizable monomer is increased, the light transmittance of the fluoropolymer may decrease.
  • the fluoropolymer may be a monomer having a fluoroalicyclic structure. Homopolymers and copolymers in which the ratio of the polymerized units of the monomers is 70 mol% or more are preferred.
  • Examples of such commercially available amorphous fluorine-containing polymers having substantially no C—H bond include the above-mentioned perfluoro-2,2-dimethyl-1,3-dioxole polymer (trade name: Teflon (registered trademark) ) AF: manufactured by DuPont), perfluoro-4-methyl-1,3-dioxole polymer (trade name: HYFLON AD: manufactured by Audimont).
  • JP-A-63-233 a polymer having a fluorinated alicyclic structure in the main chain obtained by cyclopolymerization of a fluorinated monomer having two or more polymerizable double bonds is disclosed in JP-A-63-233.
  • a monomer such as perfluoro (3-oxa-1,5_hexadiene) or perfluoro (3-oxa-11,6_hexadiene) (abbreviated as PBVE) is subjected to cyclopolymerization or a monomer thereof.
  • the main chain is obtained by copolymerizing such a monomer with other radically polymerizable monomers that do not contain a C-H bond, such as tetrafluoroethylene, black trifluoroethylene, and perfluoro (methyl vinyl ether).
  • a polymer having a fluorinated alicyclic structure is obtained.
  • a polymerization unit having a 5-membered ring ether structure represented by the above formula (I) in the main chain is formed by the bond at the 2,6-position carbon.
  • PBVE a monomer having a substituent on a saturated carbon of PBVE
  • PBVE— 4 Perfluoro (abbreviated as 4-black mouth-3-oxa-1, 6-butadiene)
  • PBVE-4 CL perfluoro (5-methoxy-3-oxa1-1, 6-butadiene)
  • PBVE perfluoro (5-methyl-3-oxa-1,6-butadiene) and the like are also preferable.
  • the ratio of the polymerized unit of the other radical polymerizable monomer increases, the light transmittance of the fluoropolymer may decrease.
  • the fluoropolymer two or more polymerizable double bonds are used.
  • Preferred is a homopolymer of a fluorine-containing monomer having the same or a copolymer having a ratio of polymerized units of the monomer of 40 mol% or more.
  • a commercial product of such a type of amorphous fluoropolymer having substantially no C—H bond is “CYTOP” (manufactured by Asahi Glass Co., Ltd.).
  • monomers having a fluorine-containing alicyclic structure such as perfluoro (2,2-dimethyl-1,3-dioxol), perfluoro (3-oxa1-1,5-hexagen), perfluoro (3 -Oxa-1,6-butadiene) (PBVE) and other copolymers with a fluorine-containing monomer having two or more polymerizable double bonds also have a fluorine-containing alicyclic structure in the main chain. Is obtained. Also in this case, the light transmittance may be reduced depending on the combination. Therefore, the proportion of the polymerized unit of the fluorine-containing monomer having two or more polymerizable double bonds is preferably 30 mol% or more. Coalescence is preferred.
  • the polymer having a fluorinated alicyclic structure a polymer having a ring structure in the main chain is suitable. Those containing at least mol% are preferred in terms of transparency, mechanical properties and the like. Further, the polymer having a fluorinated alicyclic structure is preferably a perfluoropolymer. That is, the polymer is preferably a polymer in which all of the hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • fluorine atoms of the perfluoropolymer may be replaced by atoms other than hydrogen atoms such as chlorine atoms and deuterium atoms. Since the presence of a chlorine atom has the effect of increasing the refractive index of the polymer, the polymer having a chlorine atom can be used particularly as a fluorine-containing polymer.
  • the above-mentioned fluoropolymers have a light transmitting body that exhibits heat resistance and softens even when exposed to high temperatures. It is desirable to have a sufficient molecular weight so as not to be difficult to reduce the light transmission performance.
  • the molecular weight of the fluoropolymer for exhibiting such properties is limited to the molecular weight that can be melt-molded, but the intrinsic viscosity measured in 30 perfluoro (2-butylethyltrahydrofuran) (PBTHF) [ 7?], Usually 0.1 to Ld 1 / g, more preferably 0.2 to 0.5 dl / g.
  • the number average molecular weight corresponding to the intrinsic viscosity is generally about 1 ⁇ 10 4 to 5 ⁇ 10 6 , preferably about 5 ⁇ 10 4 to 1 ⁇ 10 6 .
  • the melt viscosity of the fluoropolymer melted at 200 to 300 ° C is l x Preferably, it is about 10 2 to l X 10 5 Pa's.
  • the fluorinated polymer having a fluorinated alicyclic structure described above is heat-stretched or stretched compared to a fluorinated polymer having a fluorinated imido ring structure, a fluorinated triazine ring structure or a fluorinated aromatic ring structure described below. This is particularly preferable because the polymer molecules are less likely to be oriented even when processed into fibers by melt spinning, and therefore, light scattering is less likely to occur.
  • a fluorinated polymer having a fluorinated aliphatic ether ring structure is preferred.
  • the fluorinated polymer having a fluorinated alicyclic structure in the main chain is a preferred fluorinated polymer of the present invention, but as described above, the fluorinated polymer of the present invention is not limited thereto. .
  • a non-crystalline fluorine-containing polymer having a fluorine-containing ring structure such as a fluorine-containing imide ring structure, a fluorine-containing triazine ring structure, or a fluorine-containing aromatic ring structure in a main chain can be used.
  • the melt viscosity or molecular weight of these polymers is preferably in the same range as that of the above-mentioned fluorine-containing polymer having a fluorinated alicyclic structure in the main chain.
  • the fluorine-containing polymer having a fluorine-containing imide ring structure in the main chain which is a preferred fluorine-containing polymer of the present invention, specifically has a repeating unit represented by the following general formula. Is illustrated
  • R 1 is selected from the following,
  • R 2 is selected from:
  • R f is selected from a fluorine atom, a perfluoroalkyl group, a perfluoroaryl group, a perfluoroalkoxy group, and a perfluorophenoxy group.
  • Y is selected from the following. ⁇ 0-, -CO-, — S0 2 ⁇ , one S-, one R *,-,-OR ', ⁇ , R' t 0- r , ⁇ OR ', Of r ,
  • R ' f is selected from a perfluoroalkylene group and a perfluoroarylene group, which may be the same or different.
  • r is 1-10.
  • Y and two R f may form a ring across carbon, in which case the ring may be a saturated or unsaturated ring.
  • examples of the fluorine-containing polymer having a fluorine-containing aromatic ring structure include fluorine-substituted polymers of polymers having an aromatic ring in the side chain or main chain, such as polystyrene, polyacrylonitrile, and polyester. These may be perfluoro-substituted perfluorinated, or those obtained by substituting the remaining fluorine-substituted with chlorine or the like. Further, it may have a trifluoromethane substituent or the like.
  • a fluorine atom in the fluoropolymer may be partially substituted with a chlorine atom in order to increase the refractive index.
  • a substance for further increasing the refractive index may be contained in the fluorine-containing polymer of the present invention, it is preferable that the entire molding material of the present invention contains substantially no C—H bond.
  • the fluorinated polymer constituting the continuous phase and the dispersed phase of the light transmitting body has been described.
  • the above polymer that has been polymerized in advance may be used as a molding material to form the fluorinated polymer. Polymerization may be performed at the time of molding using a polymerizable monomer that can be used.
  • a preferred component constituting the continuous phase and the dispersed phase of the present invention is a non-crystalline fluoropolymer containing substantially no C—H bond. Since the refractive index needs to be 0.001 or lower, the fluorine-containing polymer constituting the dispersed phase may have a small amount of hydrogen atoms. However, the existence of hydrogen atoms is transmitted The fluoropolymer that constitutes the dispersed phase is also substantially different, because it may cause light absorption, and the presence of hydrogen atoms increases the refractive index of the polymer compared to fluorine atoms. A polymer having no hydrogen atom is preferred.
  • the production method is not particularly limited as long as the optical transmitter having the above-mentioned structure having a sea-island structure can be preferably obtained by using the above-mentioned fluoropolymer. Therefore, in the present invention, an optical transmission body having a sea-island structure may be directly manufactured, but the length of an organic compound having a high refractive index component is mixed with an organic compound having a low refractive index component. The coalesce is dispersed, and the polymer of the organic compound of the low refractive index component is produced by manufacturing a preform having a sea-island structure extending in the longitudinal direction in a long body and stretching and forming the preform. An optical transmission body having a desired diameter may be manufactured. Therefore, the present invention can also provide a preform having the above-mentioned sea-island structure.
  • the optical transmitter or preform having the sea-island structure of the present invention more specifically, the optical transmitter or preform in which both the continuous phase and the dispersed phase constituting the sea-island structure are made of a polymer of an organic compound, Melt spinning and extrusion can be used as a technique for forming a sea-island structure by dispersing a dispersed phase therein.
  • a pre-divided strand-shaped polymer of low refractive index organic compound (island material) is placed in a tube made of a polymer of high refractive index organic compound (sea material) and co-spun. Thereby, a sea-island structure can be formed.
  • a polymer (island material) of a low-refractive-index organic compound that has been uniformly melted is divided in an extrusion die, and after finely segmented, a polymer of a high-refractive-index organic compound (sea material) is placed around the periphery.
  • the high-refractive-index organic compound polymer is supplied to the outer periphery of the low-refractive-index organic compound polymer, and then extruded from a common nozzle to form a sea-island structure.
  • an optical fiber having a sea-island structure can be obtained directly or by stretching a preform.
  • the optical fiber thus obtained is usually coated with a thermoplastic resin or the like and used as an optical fiber cord.
  • the coating may be made of materials commonly used for coating optical fiber, such as polyethylene, polyvinyl chloride, polymer methyl acrylate (PMMA), ethylene- What is necessary is just to select suitably from thermoplastic resins, such as a trafluoroethylene-type copolymer.
  • a plurality of such optical fiber cable cords are provided on another covering in the form of a long body having a partition spacer and a hole for accommodating the optical fiber cable cords, For example, two cables are stored and used as an optical fiber cable.
  • Such a long-shaped covering is usually buried with a tensile strength reinforcing member (tension member) for preventing tensile elongation of the optical fiber.
  • the tension member may be appropriately selected from materials normally used for this purpose, for example, a wire such as a metal wire or an FRP wire, or a high-rigidity continuous filament such as aramid continuous filament.
  • a plurality of optical fiber cords obtained by coating optical fiber strands may be bundled and used as a bundle fiber.
  • Such a bundle fiber includes a multi-core tape core constituted by arranging a plurality of optical fiber cords in parallel, in addition to a bundle of a plurality of optical fiber cords in an annular shape.
  • the pandul fiber In the case of the pandul fiber, another coating is formed so as to cover a plurality of bundled optical fiber cords. Further, in such a bundle fiber, various cushioning materials such as a tensile strength reinforcing yarn, a string, a paper, a plastic, and the like are usually arranged in a space between the optical fiber cords. Here, an optical fin is obtained.
  • the present invention is not limited to this, and the present invention can be applied to an optical waveguide, an optical switch, a rod lens, and the like.
  • the light transmitting body of the present invention is preferably made of a fluoropolymer having substantially no CH bond, it is not affected by acidic chemicals such as sulfuric acid and hydrochloric acid and alkaline chemicals such as sodium hydroxide.
  • acidic chemicals such as sulfuric acid and hydrochloric acid and alkaline chemicals such as sodium hydroxide.
  • organic solvents such as toluene, benzene and acetone, so it can be used in poor environments such as in sewer pipes or in factories where hydraulic oil is scattered.
  • bending loss is improved, and it can be used for movable parts such as mouth pots that are frequently bent.
  • the optical fiber having the sea-island structure of the present invention can control the sea-island structure to have a single mode of light propagation in a continuous phase portion (core portion) surrounded by a disperse phase.
  • An ultra-wide band of 4 GHz ⁇ km can be achieved, and the transmission loss at 100 m at wavelengths of 600 to 1,600 nm can be reduced to 50 dB or less.
  • a fluoropolymer having an alicyclic structure in the main chain has a transmission loss of 100 Om at the same wavelength. Can be set to 20 dB or less. At a relatively long wavelength of 700 to 1,600 nm, such a low level of transmission loss is extremely advantageous.
  • the optical fiber having a sea-island structure of the present invention is used for LANs in public facilities such as subscriber communication lines, LANs in factories, LANs in hospitals, LANs in schools, LANs in sewer pipes, medical equipment, floor cables, and power lines.
  • High-speed, high-bandwidth communication such as surveillance communication lines, automotive applications, monitor image transmission of train operating conditions, communication in large vessels on ocean routes, data transmission in aircraft, and amusement-related applications such as business game machines
  • a perfluoro (3-oxa-1,6-butadiene) cyclized polymer (refractive index: 1.34) was selected.
  • the outer diameter was 20 mm and the length was 20 mm.
  • a 500mm cylindrical island base material (c) was formed.
  • 15% by mass of CTFE (clo-mouth trifluoroethylene) oligomer is added to the above perfluoro (3-oxa 1,6-butadiene) cyclized polymer, and heated to diffuse to obtain a high refractive index component (refractive index: 1.
  • the hollow tube (g) having an outer diameter of 20 mm, an inner diameter of 10 mm, and a length of 500 mm is formed by spin molding using the above perfluoro (3-oxa-1,6-butadiene) cyclized polymer. did.
  • a strand (e) made of a high-refractive-index fluorine-containing compound is arranged at the center, and a low-length 480 mm length cut around the strand (e).
  • 200 strands (f) made of a fluoropolymer having a refractive index were inserted concentrically into 200 strands, and the preform base material (h) prepared as the preform base material (h) was heated to 220 ° C. It is melt-spun in a furnace and has a diameter of 0.5 mm, which is a low-refractive-index fluorine-containing compound, in a continuous phase (sea material) 2 with an outer diameter of 0.5 mm and a high-refractive-index.
  • An optical fiber 1 made of a fluoropolymer having a sea-island structure in which 200 dispersed phases (island materials) 3 of m were dispersed was obtained. In the optical fiber shown in Fig.
  • the dispersed phase 3 is linearly arranged from the center to the outside in the vertical and horizontal directions and diagonally so that the continuous phase 2 is divided into six parts.
  • the dispersed phases 3 are dispersed with some periodicity between the arranged dispersed phases 3.
  • Laser light with a numerical aperture (NA) of 0.1 and a wavelength of 850 nm was incident on the obtained optical fiber 1 made of a fluoropolymer, and a 200 m transmission test was performed.
  • the transmission loss was 19 dBZkm and the bandwidth was 4 dB.
  • GHz ⁇ km When the fiber was bent at an R (curvature) of 10 and at an angle of 180 °, the loss was less than 0.1 dB.
  • a low refractive index fluoropolymer a copolymer of perfluoro (2,2-dimethyl-1,3-dioxoxol) [PDD] and tetrafluoroethylene [TFE] (mole percentage ratio 65:35) (Refractive index: 1.31) was selected to produce a solid rod with an outer diameter of 20 mm and a length of 30 Omm.
  • the solid rod (j) was heated and spun to obtain a strand (k) having an outer diameter of 2 mm.
  • a sea material (m) having an outer diameter of 40 mm, a length of 300 mm, and 30 through-holes with an inner diameter of 2 mm formed so as to form a concentric circle with a diameter of 20 mm was obtained.
  • One island material obtained by cutting a strand (k) made of a fluorine-containing compound having a low refractive index into a length of 300 mm was inserted into the through hole of the obtained sea material (m).
  • the sea material (m) and the island material (k) were integrated at the bottom so as not to slip, and melt-spun at 240.
  • the continuous phase (sea material) 2 which is a high-refractive-index fluorine-containing compound having an outer diameter of 0.5 mm as shown in Fig. 6, contains a low-refractive-index fluorine-containing compound, a dispersed phase (island material) (Optical fiber 1 made of a fluoropolymer having a diameter of 25 lim) 3 and having 30 dispersed sea-island structures was obtained.
  • the dispersed phase 3 is periodically and concentrically arranged with respect to the central axis of the optical fiber 1 in the continuous phase 2.
  • a laser beam with a wavelength of 0.25 NA and a wavelength of 130 nm was injected into the obtained optical fiber, and a transmission test was performed at 500 m.
  • the transmission loss was 17 dBZkm and the bandwidth was 1 GHzkm.
  • the loss when the fiber was bent at an angle of 180 ° at R10 was 0.1 dB.
  • a perfluoro (3-oxa-1,6-heptagene) cyclized polymer (refractive index: 1.34) was selected, and the outer diameter was 20 mm and the length was 20 mm. Formed a columnar body having a size of 500 mm. 7% by weight of perfluorotriphenylbenzene (TPB) was added to the mixture, and the mixture was heated and mixed at 250 ° C to produce a fluorine-containing compound having a high refractive index (refractive index: 1.355). A marine base material (n) having an outer diameter of 40 mm and a length of 500 mm was formed.
  • TPB perfluorotriphenylbenzene
  • a cyclized polymer of the above perfluoro (3-oxa-1,6-butadiene) By using it as it is, a fluoropolymer with a low refractive index (refractive index: 1.34) was formed into a cylindrical body (o) for an island base material with an outer diameter of 20 mm and a length of 550 mm in a metal tube. .
  • Two corrosion-resistant 20 mm screw type extruders were prepared, and an extruder 1 for supplying an island base material and an extruder 2 for supplying a sea base material on the outer periphery thereof were connected via a crosshead.
  • the island base material is divided into 19 streams in the crosshead, and the sea base material from the extruder 2 joins the outer periphery of each island base material. ⁇ Only the central part has a structure that does not supply island base material.
  • a nozzle with a diameter of 3 mm was installed at the end of the crosshead.
  • the extruder 1 was charged with the island base material (o) and melted at 200 ° C.
  • the columnar body for a base material (n) was charged into the extruder 2 and melted at 220 ° C. Both merge in the crosshead and are guided to the nozzle with a multi-layer cross section in which 19 island base materials are dispersed as a dispersed phase in the continuous phase of the sea base material.
  • the multilayer molten resin (P) extruded to the outside via the nozzle was stretched to an outer diameter of 5 mm to obtain the plastic optical filter shown in Fig. 3.
  • a low refractive index fluoropolymer a copolymer of perfluoro (2,2-dimethyl-1,3-dioxoxol) [PDD] tetrafluoroethylene [TFE] (mol percentage ratio 65:35) (refractive Index: 1.31) is selected as the island matrix, and high refractive index fluoropolymer is selected, and perfluoro (3-oxa-1,6-heppugen) (refractive index: 1.34) is selected as the sea matrix.
  • high refractive index fluoropolymer is selected
  • perfluoro (3-oxa-1,6-heppugen) perfluoro (3-oxa-1,6-heppugen)
  • the extruder (1) and the extruder (2) for supplying the marine base material on the outer periphery were connected via a crosshead.
  • the island base material is split into two streams in the crosshead, and further split into 100 streams at each point.
  • the sea base material from the extruder (2) merges with the outer periphery of the island base material.
  • the sea base material was arranged at the center of each of the 100 island base materials.
  • At the end of the crosshead was a buzzard with an elliptical cross section of 3 mm long and 5 mm wide.
  • the island base material was put into the extruder (1) and melted at 220 ° C.
  • the columnar material for the base material was put into the extruder (2) and melted at 250 ° C.
  • the obtained optical fiber 1 has an elliptical cross-sectional shape, and includes two dispersed phases arranged concentrically in the continuous phase (sea material) 2 in the axial direction of the optical fiber 1.
  • the transmission loss was 25 dBZkm and the bandwidth was 4.0 GHzkm.
  • bidirectional transmission could be performed with one fiber using the same fiber. The loss when bent at an angle of 180 ° with R10 was less than 0.01 dB.
  • Perfluoro (3_oxa 1,6-butadiene), which is a coalescence (refractive index: 1.34) was selected as the marine base material, and each was melted at 250 ° C and solidified in a metal tube with an inner diameter of 2 Omm. Thus, a cylindrical body having an outer diameter of 3 Omm and a length of 50 Omm was formed.
  • the extruder (1) and the extruder (2) for supplying the marine base material on the outer periphery were connected via a crosshead.
  • the island base material is split into two streams in the crosshead, and further split into 100 streams at each point.
  • the sea base material from the extruder (2) merges with the outer periphery of the island base material.
  • the sea base material was arranged at the center of each of the 100 island base materials.
  • At the end of the crosshead is a nozzle with an elliptical cross section of 3 mm long and 5 mm wide.
  • the island base material was put into the extruder (1) and melted at 220 ° C.
  • a columnar body for marine base material was put into the extruder (2) and melted at 25 CTC.
  • the two converge in the crosshead, and the nozzles have a multi-layer cross section in which two groups of 100 islands are dispersed in a continuous phase in the marine base material so that each group forms a concentric circle.
  • the multi-layered molten resin (o) extruded through the nozzle stretches to an outer diameter of 0.3 X 0.5 mm.
  • the diameter of the dispersed phase (island material) is 3 m each.
  • the present invention such as LAN, multi-family housing, medical equipment, automobile, OA (office automation), home electric appliance, etc., which cannot be achieved by conventional plastic optical transmission media such as polymethyl methacrylate, polystyrene, and polycarbonate.
  • plastic optical transmission media such as polymethyl methacrylate, polystyrene, and polycarbonate.
  • an optical fiber product having low transmission loss, mechanical strength, heat resistance, moisture resistance, chemical resistance, and nonflammability required by the above.
  • visible light 500-700 nm
  • near-infrared light 700-1600 nm

Abstract

A high-transmission band optical transmission medium with low transmission loss. The medium is an optical fiber having an island structure, and is characterized in that a dispersion phase which is a component with a low index of refraction is dispersed in a continuous phase which is a component with a high index of refraction.

Description

海島構造を有する光ファイバ 技術分野 '·  Optical fiber with sea-island structure ''
本発明は、 光ファイバなどとして使用される光伝送体、 詳しくは耐熱性、 難燃 性、 耐薬品性及び耐溶剤性に優れ、 低伝送損失かつ高伝送帯域を有する、 海島構 造を有する光伝送体に関する。 背景技術  The present invention relates to an optical transmission medium used as an optical fiber or the like, more specifically, an optical fiber having a sea-island structure having excellent heat resistance, flame retardancy, chemical resistance and solvent resistance, low transmission loss and a high transmission band. Related to the transmission body. Background art
光ファイバは、 光伝播媒体として優れた特性を有しており、 従来特に広い波長 にわたつて優れた光伝送性を有する無機ガラス系光フアイバが使用されている。 またこれら無機ガラス系光ファイバは、 加工性が悪く、 曲げ応力が弱いばかりで なく、 高価であることから、 プラスチックを基材とする光ファイバ (光ファイバ 素線) が開発され、 実用化されている。  An optical fiber has excellent characteristics as a light propagation medium, and an inorganic glass-based optical fiber having excellent light transmission properties over a particularly wide wavelength is conventionally used. In addition, these inorganic glass-based optical fibers are not only poor in workability, weak in bending stress, but also expensive, so that optical fibers (optical fiber wires) based on plastic have been developed and put into practical use. I have.
従来、 光ファイバは、 高屈折率コア (芯) 材料を、 これより低屈折率のクラッ ド (鞘) 材料で包囲し、 屈折率の異なる材料の組み合わせでコアークラッド構造 を形成した屈折率段階型 (S I型) 光ファイバが一般的である。 このような構造 のプラスチック光ファイバは、 多く提案され、 一部実用化されているが、 光透過 性の良好なポリメチルメタクリレートに代表されるァクリル系重合体、 ポリカー ポネート、 ポリスチレン、 ノルボルネンなどの重合体を基材とする芯 (コア) 層 と、 これらより屈折率が小さく、 かつ実質的に透明な含フッ素重合体等を基材と する鞘 (クラッド) 層とを基本構成単位としている。 また特開平 2— 2 4 4 0 0 7号公報には、 コア層とクラッド層のいずれにも含フッ素樹脂を用いた提案もさ れている。  Conventionally, optical fibers have a graded-index structure in which a core material having a high refractive index is surrounded by a cladding material having a lower refractive index, and a core clad structure is formed using a combination of materials having different refractive indexes. (SI type) Optical fiber is common. Many plastic optical fibers having such a structure have been proposed and some of them have been put to practical use. A core (core) layer having a united body as a base material and a sheath (cladding) layer having a base material made of a substantially transparent fluoropolymer having a lower refractive index than these are used as basic constituent units. Japanese Patent Application Laid-Open No. 2-244007 also proposes using a fluorine-containing resin for both the core layer and the cladding layer.
光ファイバとして、 上記屈折率段階型の光ファイバとともに、 軸心から円周方 向に向かう半径方向で材料分布させることにより屈折率を減衰させた屈折率分布 型 (G I型) の光ファイバも知られている (たとえば 「化学と工業」 第 4 5巻第 7号 126卜 1264 (1992) 、 特開平 5— 1 7 3 0 2 6、 WO 9 4 / 0 4 9 4 9 , W 0 9 4 / 1 5 0 0 5など) 。 また、 特開平 5— 2 4 1 0 3 6号公報には単一もし くは特定モードの光のみを伝送するシングルモード (S M) のプラスチック光フ アイパが提案されている。 さらに、 特開平 9一 3 3 7 3 7号公報には、 クラッド 榭脂中にクラッド樹脂よりも屈折率が高い樹脂からなる直径 5 0〜2 0 0 β πιの 芯 (コア) が 7本以上埋め込まれた多芯 (マルチコア) プラスチック光ファイバ が提案されている。 As the optical fiber, a refractive index distribution type (GI type) optical fiber in which the refractive index is attenuated by distributing the material in the radial direction from the axis to the circumferential direction is known together with the above-mentioned refractive index step type optical fiber. (For example, “Chemistry and Industry,” Vol. 45, No. 7, 126, 1264 (1992), Japanese Unexamined Patent Publication (Kokai) No. 5-173030, WO94 / 044949, W094 / 1.505). In addition, Japanese Patent Application Laid-Open No. 5-241036 discloses a single case. Alternatively, a single mode (SM) plastic optical filter that transmits only a specific mode of light has been proposed. Further, Japanese Patent Application Laid-Open No. 9-33737 describes that at least seven cores having a diameter of 50 to 200 β πι made of a resin having a higher refractive index than the clad resin are contained in the clad resin. Embedded multi-core plastic optical fibers have been proposed.
さらに空孔を含む構造の光ファイバ (ホーリーファイバ) が知られている。 た とえばシリカガラス単一材料中に空気を含ませた光ファィバは、 低屈折率空孔部 の存在により全反射によつて光が導波する全反射型導波型ホーリーファイバとし て知られている。  An optical fiber (holey fiber) having a structure including holes is also known. For example, an optical fiber in which air is contained in a single material of silica glass is known as a total reflection type guided holey fiber in which light is guided by total reflection due to the presence of a low refractive index hole. ing.
近年、 上記空孔が長軸方向に並列延在する空孔が周期的に配列することにより フォトニック結晶構造を構成したフォトニッククリスタルファイバが注目を集め つつある。 フォトニック結晶ファイバの 1つは、 コアークラッド構造を有し、 ク ラッドに空孔を存在させることでクラッドの実効屈折率をコア部の屈折率よりも 低下させ、 全反射により光を導波する全反射型ホーリーファイバである。  In recent years, a photonic crystal fiber in which a photonic crystal structure is formed by periodically arranging holes in which the holes extend in parallel in the major axis direction has been receiving attention. One of the photonic crystal fibers has a core clad structure, and the presence of holes in the cladding lowers the effective refractive index of the cladding than that of the core, and guides light by total internal reflection. It is a total reflection type holey fiber.
またフォ卜ニッククリスタルファイバのうちでも、 特に大きな波長分散を発現 するものとして、 上記フォトニック結晶構造を構成する空孔の周期的配列に対し コア部が欠陥を構成し、 かつ該コア部を導波する光の周波数に対しフォトニック 結晶ファイバがフォトニックバンドギャップ (P B G) を発現する導波原理が注 目されている。  Also, among photonic crystal fibers, a core which constitutes a defect with respect to the periodic arrangement of the holes constituting the photonic crystal structure as described above, and which exhibits particularly large wavelength dispersion, and leads the core to Attention has been paid to the principle of waveguiding, in which a photonic crystal fiber develops a photonic band gap (PBG) for the frequency of wave light.
この P B Gを導波原理とするフアイバでは、 P B Gに属する周波数と伝播定数 を有する光は、 クラッド内で指数的に減衰して大きな振幅を持てないが、 周期性 欠陥であるコアでは大きな振幅を持てるため光はコアに局在する。 この P B Gフ アイバでは、 空孔の周期性を破るものであれば、 コアは中空構造でもよく、 この 点で従来の高屈折率コア構造と大きく異なる。  In a fiber using the PBG as a waveguide principle, light having a frequency and a propagation constant belonging to the PBG exponentially attenuates in the cladding and cannot have a large amplitude, but a core having periodic defects can have a large amplitude. Therefore the light is localized in the core. In this PBG fiber, the core may have a hollow structure as long as it breaks the periodicity of the holes, and this point is significantly different from the conventional high refractive index core structure.
フォトニッククリスタルファイバは、 孔の大きさ、 数、 配置によって、 広帯域 シングルモード動作を達成することが可能である。  Photonic crystal fibers can achieve broadband single-mode operation depending on the size, number, and arrangement of holes.
上記のようなフォトニッククリスタルファイバを含むホーリーファイバとして は、 無機ガラス系の石英ファイバが知られており、 その製造方法としては、 S i 02 を主体としてなる円柱体を準備し、 その円柱体の軸芯部周辺に長軸方向に貫 969 The holey fiber comprising a photonic crystal fiber as described above, are known silica fibers of the inorganic glass system, as its production method, to prepare a cylindrical body made of a S i 0 2 mainly, the cylindrical body Penetrates in the long axis direction around the shaft core 969
3 通する細穴を多数設けることにより中実構造のプリフォームを作製し、 そのプリ フォームを長軸方向に延伸 (線引き) して細孔化し、 光ファイバとする方法 (1 ) がある。 There is a method (1) in which a preform having a solid structure is produced by providing a large number of three small holes, and the preform is stretched (drawn) in the longitudinal direction to form pores, thereby forming an optical fiber.
また多数の S i 02製キヤビラリを最密充填状態に束ね、 隣接するキヤビラリ の外側面同士を融着一体化させることによりプリフォームを作製し、 そのプリフ オームを線引きするフォトニッククリスタルファイバの製造方法 (2 ) も提案さ れている (特開 2 0 0 2— 9 7 0 3 4 ) 。 The bundling a large number of S i 0 2 made Kiyabirari the closest packing state, to prepare a preform by fusing integrated outer surfaces of adjacent Kiyabirari, production of the photonic crystal fiber to delineate the Purifu ohms A method (2) has also been proposed (Japanese Unexamined Patent Publication No. 2002-97034).
この様にプラスチック光ファイバは無機ガラス系光ファイバにはない特徴を有 するが、 従来の屈折率段階型プラスチック光ファイバでは伝送帯域が狭いという 点で実用的なものが得られていない。 上記特開平 9一 3 3 7 3 7号公報にはコア 材とクラッド材の屈折率差を小さくし、 その分低下した曲げ損失をコア径を小さ いものを束ねることで、 入射光量を保ちながら伝送帯域を改善する努力がなされ ているが、 1 0 0 mで 1 GH z以上の高速伝送を実現するには至っていない。 ま た、 屈折率分布型のプラスチック光ファイバでは近赤外光における伝送損失が大 きいという点で、 通信用光ファイバとしては実用的なものが得られていない。 さ らに、 プラスチック光ファイバは、 C一 H結合の振動および変角運動に起因する 波長吸収のため、 特定の波長領域しか使用できず、 すなわち、 可視光 (5 0 0〜 7 0 0 nm) および近赤外光 (7 0 0〜 1 6 0 0 n m) 領域では使用できず、 使 用が限定されている。  Although plastic optical fibers have characteristics that inorganic glass-based optical fibers do not have, practical grade optical fibers cannot be obtained with conventional graded-index plastic optical fibers because of their narrow transmission band. Japanese Unexamined Patent Publication No. Hei 9-133 737 describes that the difference in the refractive index between the core material and the clad material is reduced, and the bending loss reduced by that amount is bundled with a small core diameter while maintaining the incident light amount. Efforts have been made to improve the transmission bandwidth, but it has not been possible to achieve high-speed transmission of 1 GHz or more at 100 m. In addition, a graded-index plastic optical fiber has a large transmission loss in near-infrared light, and a practical optical fiber for communication has not been obtained. Furthermore, plastic optical fibers can only be used in a specific wavelength region due to wavelength absorption caused by vibration and bending motion of the C-H bond, that is, visible light (500-700 nm) It cannot be used in the near-infrared light (700 to 160 nm) region, and its use is limited.
また、 上記フォトニッククリスタルファイバを含むホーリーファイバの製造方 法 (1 ) では、 円柱体に多数の細孔を近接させて設けるので、 隣接する細穴同士 の仕切部分は極めて薄く、 加工中にその仕切部分が割れたりすることもあり、 プ リフォームの作成が極めて困難である。 さらにまた、 上記 (2 ) の製造方法では 、 細いキヤビラリの扱いやクリーン度の維持が困難であり、 最密充填状態に束ね られた多数のキヤビラリの形態を保持したまま融着一体化させる加工が極めて困 難である。 さらにファイバが中空部を多く有するために、 隙間にゴミゃ水が入り やすく、 ファイバ断面積当りの充填度が低いためファイバ強度が弱いという欠点 がある。  In the method (1) for producing holey fibers including the photonic crystal fiber, since a large number of pores are provided close to the cylindrical body, the partition between adjacent small holes is extremely thin, and during processing, the partitioning portion is extremely thin. It is extremely difficult to create a preform because the partition may break. Furthermore, in the manufacturing method of the above (2), it is difficult to handle fine cavities and maintain cleanliness, and a process of fusing and integrating while maintaining the shape of a large number of cavities bundled in a close-packed state. Extremely difficult. Furthermore, since the fiber has many hollow portions, dust and water easily enter the gap, and the fiber strength is weak because the filling degree per fiber cross-sectional area is low.
さらに、 従来のプラスチック光ファイバは、 特定の用途において、 機械強度、 耐熱性、 耐湿性、 耐薬品性および不燃性が必ずしも満足のいくものではなかった 本発明は、 ポリメチルメタクリレートに代表されるアクリル系重合体、 ポリス チレン、 ポリカーボネート等の重合体を主体とするプラスチック光ファイバでは 達し得なかった L AN、 集合住宅、 医療器具、 自動車乃至 OA (オフィスオート メーシヨン) 、 家電機器用途等で要求される機械強度、 耐熱性、 耐湿性、 耐薬品 性、 不燃性を有し、 光ファイバとして使用可能な光伝送体を提供することを目的 とするものである。 また、 本発明は、 アクリル系重合体、 ポリカーボネート、 ノ ルポルネン等の重合体を主体とするプラスチック光フアイバでは達し得なかつた 可視光 (5 0 0〜7 0 0 nm) および近赤外光 (7 0 0〜1 6 0 0 nm) 領域の 利用を可能とし、 空孔を含む光ファイバ (フォトニッククリスタルファイバを含 むホーリーファイバ) にはない機械強度を有し、 必要に応じてコア部をシングル モード伝搬条件とする事で超高速伝送性を付与する事ができる低伝送損失且つ高 伝送帯域型の光ファイバとして使用可能な光伝送体を提供することを目的とする In addition, conventional plastic optical fibers can provide mechanical strength, The heat resistance, moisture resistance, chemical resistance and nonflammability were not always satisfactory. The present invention relates to plastics mainly composed of polymers such as acrylic polymers represented by polymethyl methacrylate, polystyrene, polycarbonate and the like. It has the mechanical strength, heat resistance, moisture resistance, chemical resistance, and nonflammability required for LANs, apartments, medical equipment, automobiles, office automation (OA), home appliances, etc. that could not be achieved with optical fibers. It is another object of the present invention to provide an optical transmission medium that can be used as an optical fiber. Further, the present invention provides a method for producing visible light (500 to 700 nm) and near-infrared light (700 nm) which cannot be achieved by a plastic optical fiber mainly composed of a polymer such as an acrylic polymer, a polycarbonate, and norpolene. (0 to 160 nm) region, has mechanical strength not found in optical fibers containing holes (holey fibers including photonic crystal fibers), and a single core can be used if necessary. It is an object of the present invention to provide an optical transmission body that can be used as an optical fiber with a low transmission loss and a high transmission band that can provide ultra-high-speed transmission by setting a mode propagation condition.
発明の開示 Disclosure of the invention
本発明は、 上記目的を達成するため、 高屈折率の連続相中に、 低屈折率の分散 相が分散された海島構造を有することを特徴とする光伝送体を提供する。  The present invention provides an optical transmitter characterized by having a sea-island structure in which a low refractive index dispersed phase is dispersed in a high refractive index continuous phase in order to achieve the above object.
光伝送体の断面形状において、 低屈折率の分散相は、 光導波路を形成する周期 性を有するように配列されることが好ましい。  In the cross-sectional shape of the optical transmission body, it is preferable that the low-refractive-index dispersed phases are arranged so as to have a periodicity for forming an optical waveguide.
本発明の光伝送体において、 高屈折率の連続相を構成する成分および前記低屈 折率の分散相を構成する成分は、 いずれも有機化合物の重合体であることが好ま しい。  In the optical transmission body of the present invention, it is preferable that each of the component constituting the continuous phase having a high refractive index and the component constituting the dispersed phase having a low refractive index is a polymer of an organic compound.
高屈折率の連続相を構成する成分は、 実質的に C一 H結合を有しない非結晶性 の含フッ素重合体 (a ) からなり、 低屈折率の分散相を構成する成分は、 前記含 フッ素重合体 (a ) との比較において屈折率が 0 . 0 0 1以上低い含フッ素重合 体 (b ) からなることが好ましい。  The component constituting the high-refractive-index continuous phase is composed of a non-crystalline fluoropolymer (a) having substantially no C—H bond, and the component constituting the low-refractive-index dispersed phase is as described above. It is preferable that it is made of a fluoropolymer (b) having a refractive index lower than that of the fluoropolymer (a) by 0.01 or more.
含フッ素重合体 (a ) は、 含フッ素環構造を含むことが好ましい。 含フッ素環構造は、 環員エーテル結合を含んでもよぃ含フッ素脂環構造である ことが好ましい。 The fluorinated polymer (a) preferably contains a fluorinated ring structure. The fluorinated ring structure may contain a ring member ether bond, and is preferably a fluorinated alicyclic structure.
本発明の光伝送体において、 含フッ素環構造を含む含フッ素重合体は、 主鎖に 前記フッ素環構造を有することが好ましい。  In the optical transmission body of the present invention, the fluoropolymer having a fluorinated ring structure preferably has the fluorinated ring structure in the main chain.
本発明の光伝送体において、 含フッ素重合体 (a ) および (b ) のいずれもが 、 実質的に C—H結合を有さず、 かつ、 主鎖にエーテル結合を含んでもよい含フ ッ素脂環構造を有する非結晶性の含フッ素重合体であることが好ましい。  In the optical transmitter of the present invention, both the fluoropolymers (a) and (b) have substantially no C—H bond, and may contain an ether bond in the main chain. It is preferably an amorphous fluoropolymer having an alicyclic structure.
本発明は、 上記の海島構造を有する光伝送体を製造するためのものであって、 高屈折率成分の有機化合物の重合体からなる長尺体中に、 低屈折率成分の有機化 合物重合体が分散され、 前記低屈折率成分の有機化合物の重合体は、 前記長尺体 中をその長手方向に延在しており、 それにより海島構造を有するプリフォームを 提供する。 好ましくは延伸後、 相同な径断面を有する延伸成形体 (光伝送体) が 得られるプリフォームである。  The present invention is for producing an optical transmission body having the above-described sea-island structure, and comprises a long body made of a polymer of an organic compound having a high refractive index component, and an organic compound having a low refractive index component. The polymer is dispersed, and the polymer of the organic compound of the low refractive index component extends in the longitudinal direction in the elongated body, thereby providing a preform having a sea-island structure. Preferably, it is a preform from which a stretched molded article (light transmitting body) having a homogenous diameter cross section is obtained after stretching.
本発明は、 またあらかじめ分割したストランド状の低屈折率成分の有機化合物 の重合体を、 高屈折率成分である有機化合物の重合体で作製した管内に配置して 、 共紡糸することを特徴とする本発明の海島構造を有する光伝送体またはそのプ リフォームの製造方法を提供する。  The present invention is also characterized in that a pre-divided strand-shaped polymer of an organic compound of a low refractive index component is placed in a tube made of a polymer of an organic compound of a high refractive index component, and co-spun. The present invention also provides a method for manufacturing an optical transmitter having a sea-island structure according to the present invention or a preform thereof.
本発明は、 また均一に溶融させた低屈折率成分である有機化合物の重合体を押 出ダイス内で分流させ、 細分化した後にその周辺部に高屈折率成分の有機化合物 の重合体を供給して、 前記低屈折率成分の有機重合体の外周部に前記高屈折率成 分の有機重合体を施し、 さらにそれらを共通のノズルから押出すことを特徴とす る本発明の海島構造を有する光伝送体またはそのプリフォームの製造方法を提供 する。  In the present invention, a polymer of an organic compound, which is a low refractive index component, which is uniformly melted, is separated in an extrusion die, and after being finely divided, a polymer of an organic compound of a high refractive index component is supplied to a peripheral portion thereof. Then, the high-refractive-index component organic polymer is applied to the outer periphery of the low-refractive-index component organic polymer, and extruded from a common nozzle. The present invention provides a method for manufacturing an optical transmitter having the same or a preform thereof.
本発明は、 また上記光伝送体に 1層以上の被覆を施した光ファイバコ一ドを提 供する。  The present invention also provides an optical fiber code obtained by coating the optical transmission body with one or more layers.
本発明は、 また内部に長手方向に伸びる空孔を有し、 抗張力補強部材が埋設さ れた熱可塑性樹脂からなる長尺体と、 長尺体の空孔部に収納された上記光フアイ バコードと、 を含む光ファイバケーブルを提供する。  The present invention also provides a long body made of a thermoplastic resin in which a tensile strength reinforcing member is buried having a hole extending in the longitudinal direction therein, and the optical fiber cord stored in the hole of the long body. And an optical fiber cable comprising:
本発明は、 また上記の光ファイバコードを複数束ねたことを特徴とするバンド ルファイバを提供する。 図面の簡単な説明 The present invention also provides a band comprising a plurality of the above optical fiber cords bundled. Provide fiber optics. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 連続相中に分散相がランダムに分散された海島構造を有する光伝送体の 断面図である。 FIG. 1 is a cross-sectional view of an optical transmitter having a sea-island structure in which a dispersed phase is randomly dispersed in a continuous phase.
図 2は、 連続相全体にわたって分散相が周期的に分散された海島構造を有する光 伝送体の断面図である。 FIG. 2 is a cross-sectional view of an optical transmitter having a sea-island structure in which a dispersed phase is periodically dispersed throughout the continuous phase.
図 3は、 図 2とは別の態様の連続相中に分散相が周期的に分散された海島構造を 有する光伝送体の断面図であり、 分散相は光伝送体の中心軸に対して同心円状に 配列されている。 FIG. 3 is a cross-sectional view of an optical transmitter having a sea-island structure in which a disperse phase is periodically dispersed in a continuous phase in a mode different from that of FIG. 2. They are arranged concentrically.
図 4は、 周期的に配列されたフォ卜ニック結晶構造を有する分散相中に欠陥部分 が存在しており、 フォ卜バンドギャップを導波原理とする光伝送体の断面図であ る。 FIG. 4 is a cross-sectional view of an optical transmitter that uses a photoband gap as a waveguide principle, in which a defect portion exists in a dispersed phase having a photonic crystal structure that is periodically arranged.
図 5は、 実施例 1で製造した本発明による海島構造を有するプラスチック光ファ ィパの断面図である。 FIG. 5 is a cross-sectional view of the plastic optical fiber having the sea-island structure according to the present invention manufactured in the first embodiment.
図 6は、 実施例 2で製造した本発明による海島構造を有するプラスチック光ファ ィバの断面図である。 FIG. 6 is a cross-sectional view of a plastic optical fiber having a sea-island structure according to the present invention manufactured in Example 2.
図 7は、 実施例 4および 5で作製した本発明によるシンダルモードデュープレッ クス海島構造を有するプラスチック光ファイバの断面図である。 FIG. 7 is a cross-sectional view of a plastic optical fiber having a sindal mode duplex sea-island structure according to the present invention manufactured in Examples 4 and 5.
(符号の説明)  (Explanation of code)
1 :光伝送体 (光ファイバ) 、 2 :連続相 (海部) 、 3 :分散相 (島部) 。 発明を実施するための最良の形態  1: optical transmitter (optical fiber), 2: continuous phase (sea part), 3: disperse phase (island part). BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を具体的に説明する。  Hereinafter, the present invention will be described specifically.
本発明において、 光伝送体は、 具体的に光ファイバ、 光導波路、 スィッチ、 口 ッドレンズなどである。  In the present invention, the optical transmitter is specifically an optical fiber, an optical waveguide, a switch, a lens, or the like.
本発明の光伝送体は、 上記のフォトニッククリスタルファイバを含むホーリー ファイバの概念において、 多孔部を設けるかわりに、 連続相中に、 該連続相をな す物質よりも屈折率が低い物質 (分散相) を分散させて海島構造とすることで光 学的にフォトニッククリスタルファイバを含むホーリーファイバと同様の働きを させると同時に、 ファイバ中に空孔部が存在しないことで、 ゴミゃ水分等の混入 を防いで、 かつファイバ強度を高めたものである。 According to the optical fiber of the present invention, in the concept of the holey fiber including the photonic crystal fiber, a substance having a lower refractive index (dispersion) in the continuous phase than the substance forming the continuous phase is used instead of providing the porous portion. Phase) to form a sea-island structure It has the same function as holey fiber including photonic crystal fiber, and also has no voids in the fiber, thereby preventing dust and moisture from entering and improving the fiber strength. is there.
本発明の光伝送体は、 上記海島構造を有していれば、 光の導波原理は、 全反射 型、 屈折率段階型、 P B Gを導波原理とするものなど特に制限されない。  As long as the optical transmission body of the present invention has the above-described sea-island structure, the light guiding principle is not particularly limited, such as a total reflection type, a graded index type, and a PBG guiding principle.
また分散相の数、 形、 配置、 光伝送体の大きさ、 たとえば光ファイバ素線の径 なども特に限定されず、 光伝送体の目的に応じて適宜所望設計することができる したがって、 光の導波原理を全反射型とした場合、 分散相は連続相中にランダ ムに分散されていてよい。 図 1は、 本発明の光伝送体の一例を示した断面図であ る。 図 1において、 光伝送体 1は、 連続相 2中に分散相 3がランダムに分散され た全反射型の光伝送体である。 ただし、 本発明において、 光伝送体の断面形状に おいて、 分散相は光導波路を形成する周期性をもって分散されていることが好ま しい。 すなわち、 本発明の光伝送体において、 分散相は、 フォトニッククリスタ ルファイバを含むホ一リーファイバの多孔部と同様の役割をするものであるから 、 これらの光ファイバの断面形状において多孔部がもつ周期性を有していること が好ましい。  In addition, the number, shape, arrangement, and size of the optical transmission medium, such as the diameter of the optical fiber, are not particularly limited, and the desired design can be appropriately performed according to the purpose of the optical transmission medium. If the guiding principle is of the total reflection type, the dispersed phase may be randomly dispersed in the continuous phase. FIG. 1 is a sectional view showing an example of the optical transmission body of the present invention. In FIG. 1, an optical transmitter 1 is a total reflection type optical transmitter in which a dispersed phase 3 is randomly dispersed in a continuous phase 2. However, in the present invention, in the cross-sectional shape of the optical transmission body, it is preferable that the disperse phase is dispersed with periodicity forming an optical waveguide. That is, in the optical transmission body of the present invention, the disperse phase has the same role as the porous portion of the hollow fiber including the photonic crystal fiber. It preferably has periodicity.
このような光導波路を形成する周期性の具体例を、 図を用いて以下に例示する 図 2および 3は、 光伝送体 1の直径断面において、 分散相 2が連続相 3の全体 にわたつて周期的に配列されてフォトニック結晶構造を形成する光伝送体の径断 面図である。 図 2および 3に示す光伝送体 1では、 全反射型の導波原理により光 を伝播する。 このような全反射型の光伝送体 1の場合、 分散相 3は厳密な意味で 周期的に配列されることは必ずしも必要ではなく、 ある程度ランダムに配列され ていてもよい。  Specific examples of the periodicity for forming such an optical waveguide will be described below with reference to the drawings. FIGS. 2 and 3 show that, in the diameter cross section of the optical transmitter 1, the disperse phase 2 extends over the entire continuous phase 3. FIG. 4 is a radial cross-sectional view of an optical transmission body that is periodically arranged to form a photonic crystal structure. In the optical transmitter 1 shown in FIGS. 2 and 3, light is propagated by the principle of total reflection waveguide. In the case of such a total reflection type optical transmitter 1, it is not always necessary that the dispersed phases 3 are arranged periodically in a strict sense, and they may be arranged to some extent randomly.
また、 分散相は、 上記のように周期的に配列されたフォトニック結晶構造中に 、 該構造をやぶる欠陥部分を有することで、 該欠陥部分を通過する光に対してフ オトニックバンドギャップ (P B G) を発現し、 P B Gを導波原理とするもので あってもよい。 2003/010969 Further, the disperse phase has a defect portion that breaks the photonic crystal structure in the periodically arranged photonic crystal structure as described above, so that a photonic band gap ( (PBG), and PBG may be a waveguide principle. 2003/010969
8 8
P B Gを導波原理とする態様例を図 4に示す。 図 4に示す光伝送体 1は、 分散 相 3が、 ハニカム構造に周期的配列され、 フォトニック結晶構造をなしているが 、 ハニカム構造の中心部分は、 分散相 3ではなく、 連続相 2になっている。 これ によりハニカム構造の中心部分の連続相 2は、 同構造の周期性をやぶる欠陥部分 をなしている。 Fig. 4 shows an example of an embodiment using PBG as the guiding principle. In the optical transmitter 1 shown in FIG. 4, the dispersed phase 3 is periodically arranged in a honeycomb structure to form a photonic crystal structure, but the central portion of the honeycomb structure is not a dispersed phase 3 but a continuous phase 2. Has become. As a result, the continuous phase 2 in the central portion of the honeycomb structure forms a defect that breaks the periodicity of the structure.
本発明の光伝送体において、 高屈折率の連続相を構成する成分および低屈折率 の分散相を構成する成分は、 互いの屈折率の差が好ましくは、 0 . 0 0 1以上で あって、 光伝送体の材料として好適なものであれば特に限定されない。 したがつ て、 例えば互いの屈折率の差が 0 . 0 0 1以上である 2つの無機ガラスであって もよいが、 好ましくは互いの屈折率の差が 0 . 0 0 1以上である 2つの有機化合 物の重合体であり、 このような有機化合物の重合体は、 光伝送体の分野で使用さ れる有機化合物の重合体を広く含まれる。 該有機化合物の重合体としては、 例え ば、 ポリメチルメタクリレー卜に代表されるアクリル系の重合体、 ポリスチレン 、 ポリカーボネート、 ノルポルネン、 有機化合物重合体中の C一 H結合を一部ま たは全て C一 F結合に置換した含フッ素重合体等が挙げられる。 なお、 本発明に おいて、 屈折率はナトリウム D線に対する屈折率をいう。  In the optical transmission body of the present invention, the component constituting the high-refractive-index continuous phase and the component constituting the low-refractive-index dispersed phase preferably have a difference in refractive index between each other of 0.001 or more. The material is not particularly limited as long as it is suitable as a material of the optical transmission body. Therefore, for example, two inorganic glasses each having a difference in refractive index of 0.001 or more may be used, but preferably, the difference in refractive index of each other is 0.001 or more. It is a polymer of two organic compounds, and such a polymer of an organic compound widely includes a polymer of an organic compound used in the field of an optical transmitter. Examples of the polymer of the organic compound include an acrylic polymer represented by polymethyl methacrylate, polystyrene, polycarbonate, norportene, and some or all of the C-H bonds in the organic compound polymer. Fluorine-containing polymers substituted by C-F bonds are exemplified. In the present invention, the refractive index refers to a refractive index with respect to a sodium D line.
なお、 本発明者は、 また上記問題点の認識に基づいて鋭意検討を重ねた結果、 耐熱性、 耐湿性、 耐薬品性、 不燃性を付与し、 かつ近赤外光で光吸収が起こる C — H結合 (すなわち、 炭素一水素結合) をなくすためには、 C— H結合を C一 F 結合 (すなわち、 炭素一フッ素結合) に変換した含フッ素重合体が最適であると の知見を先に得た。  In addition, the present inventor has conducted intensive studies based on recognition of the above problems, and as a result, has been found to provide heat resistance, moisture resistance, chemical resistance, and nonflammability, and to cause light absorption by near-infrared light. — Prior to the finding that a fluoropolymer obtained by converting a C—H bond to a C—F bond (that is, a carbon-fluorine bond) is the best way to eliminate an H bond (ie, a carbon-hydrogen bond). I got it.
したがって、 本発明の光伝送体において、 連続相および分散相は、 実質的に C —H結合を有しない非結晶性の含フッ素重合体からなることが好ましい。  Therefore, in the optical transmission medium of the present invention, the continuous phase and the dispersed phase are preferably made of a non-crystalline fluorine-containing polymer having substantially no C—H bond.
本発明において、 含フッ素重合体は、 実質的に C一 H結合を有さない非結晶性 の含フッ素重合体であれば特に限定されないが、 含フッ素環構造を含むものが好 ましい。 含フッ素環構造としては具体的に、 環員エーテル結合を含んでいてもよ い含フッ素脂環構造 (以下単に含フッ素脂環構造と略称することもある) 、 含フ ッ素イミド環構造、 含フッ素トリアジン環構造または含フッ素芳香族環構造など が挙げられる。 上記含フッ素環構造のうちでも、 環員エーテル結合を含んでいてもよい含フッ 素脂環構造および含フッ素ポリイミド環構造が好ましく、 前者がより好ましい。 また特に、 上記含フッ素環構造を主鎖に有する含フッ素重合体が好ましく、 さ らには該環構造を含む主鎖構成単位が、 実質的に線状構造を形成して溶融成形可 能なものが好ましい。 とりわけ主鎖に含フッ素脂環構造を有する含フッ素重合体 が好ましい。 In the present invention, the fluorinated polymer is not particularly limited as long as it is a non-crystalline fluorinated polymer having substantially no C—H bond, but a fluorinated polymer having a fluorinated ring structure is preferred. Specific examples of the fluorinated ring structure include a fluorinated alicyclic structure which may contain a ring member ether bond (hereinafter, may be simply referred to as a fluorinated alicyclic structure), a fluorinated imide ring structure, And a fluorine-containing triazine ring structure or a fluorine-containing aromatic ring structure. Among the above fluorinated ring structures, a fluorinated alicyclic structure and a fluorinated polyimide ring structure which may contain a ring member ether bond are preferable, and the former is more preferable. In particular, a fluoropolymer having the above-mentioned fluorinated ring structure in the main chain is preferable, and furthermore, the main chain constituent unit containing the ring structure can form a substantially linear structure and can be melt-molded. Are preferred. In particular, a fluorinated polymer having a fluorinated alicyclic structure in the main chain is preferable.
次に、 本発明において、 特に好ましい含フッ素重合体である含フッ素脂環構造 を主鎖に有する含フッ素重合体について具体的に説明する。  Next, in the present invention, a fluorine-containing polymer having a fluorine-containing alicyclic structure in the main chain, which is a particularly preferred fluorine-containing polymer, will be specifically described.
主鎖に含フッ素脂環構造を有する含フッ素重合体は、 主鎖が炭素原子の連鎖か らなり、 かつその主鎖に含フッ素脂環構造を有する含フッ素重合体である。 主鎖に含フッ素脂環構造を有するとは、 脂環を構成する炭素原子の 1以上が主 鎖を構成する炭素連鎖中の炭素原子であり、 かつ脂環を構成する炭素原子の少な くとも一部にフッ素原子またはフッ素含有基が結合している構造を有することを 意味する。  The fluoropolymer having a fluorinated alicyclic structure in the main chain is a fluorinated polymer having a main chain composed of a chain of carbon atoms and having a fluorinated alicyclic structure in the main chain. Having a fluorinated alicyclic structure in the main chain means that at least one of the carbon atoms forming the alicyclic ring is a carbon atom in the carbon chain forming the main chain, and at least one of the carbon atoms forming the alicyclic ring is present. It has a structure in which a fluorine atom or a fluorine-containing group is partially bonded.
本発明に係る含フッ素重合体の好ましい態様である含フッ素脂環構造を有する 主鎖構成単位としては、 たとえば下記のような構造が挙げられる。 Examples of the main chain constituent unit having a fluorinated alicyclic structure, which is a preferred embodiment of the fluorinated polymer according to the present invention, include the following structures.
0 0
Figure imgf000011_0001
上記各式中、 1は 0〜5、 mは 0〜4、 nは 0〜1、 l +m+r^¾l〜6、 o 、 p、 qはそれぞれ独立に 0〜 5、 o + p + qは 1〜6であり、 R R2およ び R3 はそれぞれ独立に、 F、 C 1、 CF3 、 C2 F5 、 C3 F7 または OCF3 であり、 X1 および X2 は独立に F、 C 1または CF3である。 含フッ素脂環構造を有する重合体としては、 具体的に、
Figure imgf000011_0001
In the above formulas, 1 is 0 to 5, m is 0 to 4, n is 0 to 1, l + m + r ^ ¾l to 6, o, p, and q are independently 0 to 5, o + p + q is 1-6, each RR 2 and R 3 are independently, F, a C 1, CF 3, C 2 F 5, C 3 F 7 or OCF 3, X 1 and X 2 are independently to F, a C 1 or CF 3. As the polymer having a fluorinated alicyclic structure, specifically,
①含フッ素脂環構造を有する単量体 (環を構成する炭素原子と環を構成しない炭 素原子間に重合性二重結合を有する単量体、 または環を構成する炭素原子 2個間 に重合性二重結合を有する単量体) を重合して得られる重合体、  (1) A monomer having a fluorinated alicyclic structure (a monomer having a polymerizable double bond between a carbon atom forming a ring and a carbon atom not forming a ring, or between two carbon atoms forming a ring) A monomer having a polymerizable double bond),
② 2個以上の重合性二重結合を有する含フッ素単量体を環化重合して得られる主 鎖に含フッ素脂環構造を有する重合体が好適である。  (2) A polymer having a fluorine-containing alicyclic structure in the main chain obtained by cyclopolymerization of a fluorine-containing monomer having two or more polymerizable double bonds is preferred.
上記含フッ素脂環構造を有する単量体は 1個の重合性二重結合を有する単量体 が好ましく、 上記環化重合しうる含フッ素単量体は 2個の重合性二重結合を有し かつ含フッ素脂環構造を有さない単量体が好ましい。  The monomer having a fluorinated alicyclic structure is preferably a monomer having one polymerizable double bond, and the fluorinated monomer capable of undergoing cyclopolymerization has two polymerizable double bonds. Further, a monomer having no fluorinated alicyclic structure is preferable.
なお、 以下含フッ素脂環構造を有する単量体と環化重合しうる含フッ素単量体 以外の共重合性単量体を 「他のラジカル重合性単量体」 という。  Hereinafter, a copolymerizable monomer other than a fluorine-containing monomer capable of undergoing cyclopolymerization with a monomer having a fluorine-containing alicyclic structure is referred to as “another radically polymerizable monomer”.
含フッ素重合体の主鎖を構成する炭素原子は単量体の重合性二重結合の 2個の 炭素原子から構成される。 したがって、 重合性二重結合を 1個有する含フッ素脂 環構造を有する単量体では、 重合性二重結合を構成する 2個の炭素原子の一方ま たは両方の炭素原子が脂環を構成する原子となる。 脂環を有さない、 かつ 2個の 重合性二重結合を有する含フッ素単量体は、 一方の重合性二重結合の 1個の炭素 原子と他方の重合性二重結合の 1個の炭素原子が結合して環を形成する。 結合し た 2個の炭素原子とそれらの間にある原子 (ただし、 側鎖の原子を除く) によつ て脂環が形成され、 2個の重合性二重結合の間にエーテル性酸素原子が存在する 場合は含フッ素脂肪族エーテル環構造が形成される。  The carbon atoms constituting the main chain of the fluoropolymer are composed of two carbon atoms of the polymerizable double bond of the monomer. Therefore, in a monomer having a fluorine-containing alicyclic structure having one polymerizable double bond, one or both of the two carbon atoms constituting the polymerizable double bond constitute an alicyclic ring. Atom. A fluorine-containing monomer having no alicyclic ring and having two polymerizable double bonds is composed of one carbon atom of one polymerizable double bond and one carbon atom of the other polymerizable double bond. The carbon atoms combine to form a ring. An alicyclic ring is formed by the two bonded carbon atoms and the atoms between them (excluding atoms in the side chain), and an etheric oxygen atom is formed between the two polymerizable double bonds. When a is present, a fluorinated aliphatic ether ring structure is formed.
含フッ素脂環構造を有する単量体を重合して得られる主鎖に含フッ素脂環構造 を有する重合体は、 ペルフルォロ (2, 2一ジメチルー 1 , 3—ジォキソール) A polymer having a fluorinated alicyclic structure in the main chain obtained by polymerizing a monomer having a fluorinated alicyclic structure is perfluoro (2,2-dimethyl-1,3-dioxole)
(P D Dと略称する) 、 ペルフルォロ (2—メチルー 1, 3—ジォキソ一ル) 、 ペルフルォロ (2—ェチルー 2プロピル— 1, 3—ジォキソール) 、 ペルフルォ 口 (2, 2—ジメチルー 4メチルー 1, 3—ジォキソール) などのジォキソール 環員炭素にフッ素、 トリフルォロメチル基ペン夕フルォロェチル基、 ヘプ夕フル ォロプロピル基などのフッ素置換アルキル基を有するペルフルォロジォキソール 類、 ペルフルォロ (4ーメチルー 2—メチレン一 1, 3ージォキソラン) (MM Dと略称する) 、 ペルフルォロ (2—メチルー 1 , 4一ジォキシン) などの含フ ッ素脂環構造を有する単量体を重合することにより得られる。 (Abbreviated as PDD), perfluoro (2-methyl-1,3-dioxol), perfluoro (2-ethyl-2-propyl-1,3-dioxole), perfluoro mouth (2,2-dimethyl-4-methyl-1,3-) Peroxodioxoles having a fluorine-substituted alkyl group such as fluorine, trifluoromethyl group, penfluorofluorethyl group, or hepfluorofluoro group at ring carbon of peroxodioxole such as dioxol), perfluoro (4-methyl-2-methylene) Including 1,3 dioxolane (abbreviated as MMD) and perfluoro (2-methyl-1,4-dioxin) It is obtained by polymerizing a monomer having a nitrogen alicyclic structure.
またこの単量体と C一 H結合を含まない他のラジカル重合性単量体とを共重合 させることにより得られた主鎖に含フッ素脂環構造を有する重合体も用いられる 。 他のラジカル重合性単量体の重合単位の割合が多くなると含フッ素重合体の光 の透過性が低下する場合があるので、 含フッ素重合体としては、 含フッ素脂環構 造を有する単量体の単独重合体やその単量体の重合単位の割合が 7 0モル%以上 の共重合体が好ましい。  Further, a polymer having a fluorinated alicyclic structure in the main chain obtained by copolymerizing this monomer with another radical polymerizable monomer containing no C—H bond may also be used. When the ratio of the polymerized unit of the other radical polymerizable monomer is increased, the light transmittance of the fluoropolymer may decrease.Therefore, the fluoropolymer may be a monomer having a fluoroalicyclic structure. Homopolymers and copolymers in which the ratio of the polymerized units of the monomers is 70 mol% or more are preferred.
C一 H結合を含まない他のラジカル重合性単量体としては、 テトラフルォロェ チレン、 クロ口トリフルォロエチレン、 ペルフルォロ (メチルビニルエーテル) などが挙げられる。  Other radically polymerizable monomers that do not contain a C-H bond include tetrafluoroethylene, black trifluoroethylene, and perfluoro (methyl vinyl ether).
このようなタイプの市販の実質的に C一 H結合を有さない非晶質の含フッ素重 合体としては、 上記ペルフルオロー 2, 2—ジメチルー 1 , 3—ジォキソール重 合体 (商品名テフロン (登録商標) A F:デュポン社製) 、 ペルフルオロー 4— メチルー 1, 3—ジォキソール重合体 (商品名 HY F L ON AD:ァウジモン 卜社製) などがある。  Examples of such commercially available amorphous fluorine-containing polymers having substantially no C—H bond include the above-mentioned perfluoro-2,2-dimethyl-1,3-dioxole polymer (trade name: Teflon (registered trademark) ) AF: manufactured by DuPont), perfluoro-4-methyl-1,3-dioxole polymer (trade name: HYFLON AD: manufactured by Audimont).
また、 2個以上の重合性二重結合を有する含フッ素単量体を環化重合して得ら れる、 主鎖に含フッ素脂環構造を有する重合体は、 特開昭 6 3— 2 3 8 1 1 1号 公報、 特開昭 6 3 - 2 3 8 1 1 5号公報などにより知られている。 すなわち、 ぺ ルフルォロ (3—ォキサ— 1 , 5 _へキサジェン) 、 ペルフルォロ (3—ォキサ 一 1 , 6 _へブタジエン) (P B V Eと略称) などの単量体を環化重合すること により、 またはこのような単量体とテトラフルォロエチレン、 クロ口トリフルォ 口エチレン、 ペルフルォロ (メチルビニルエーテル) などの C一 H結合を含まな い他のラジカル重合性単量体とを共重合させることにより主鎖に含フッ素脂環構 造を有する重合体が得られる。 上記 P B V Eの環化重合では、 2, 6 _位炭素の 結合により前記式 (I ) で示される 5員環エーテル構造を主鎖に有する重合単位 が形成される。  Further, a polymer having a fluorinated alicyclic structure in the main chain obtained by cyclopolymerization of a fluorinated monomer having two or more polymerizable double bonds is disclosed in JP-A-63-233. This is known from Japanese Patent Application Laid-Open No. 81111/1994 and Japanese Patent Application Laid-Open No. 63-238118 / 1988. That is, a monomer such as perfluoro (3-oxa-1,5_hexadiene) or perfluoro (3-oxa-11,6_hexadiene) (abbreviated as PBVE) is subjected to cyclopolymerization or a monomer thereof. The main chain is obtained by copolymerizing such a monomer with other radically polymerizable monomers that do not contain a C-H bond, such as tetrafluoroethylene, black trifluoroethylene, and perfluoro (methyl vinyl ether). Thus, a polymer having a fluorinated alicyclic structure is obtained. In the above-mentioned cyclopolymerization of PBVE, a polymerization unit having a 5-membered ring ether structure represented by the above formula (I) in the main chain is formed by the bond at the 2,6-position carbon.
また 2個以上の重合性二重結合を有する含フッ素単量体としては、 上記以外に もたとえば P B V Eの飽和炭素に置換基を有する単量体も好ましく、 具体的にべ ルフルォロ (4ーメチルー 3—ォキサ一 1, 6—へブタジエン) (P B V E— 4 Mと略称) 、 ペルフルォロ (4—クロ口— 3—ォキサ一 1, 6—へブタジエン) (P B V E— 4 C Lと略称) 、 ペルフルォロ (5—メトキシー 3—ォキサ一 1 , 6—へブタジエン) (P B V E— 5 MOと略称) 、 ペルフルォロ (5—メチルー 3—ォキサ一 1, 6—へブタジエン) なども好ましい。 他のラジカル重合性単量 体の重合単位の割合が多くなると含フッ素重合体の光の透過性が低下する場合が あるので、 含フッ素重合体としては、 2個以上の重合性二重結合を有する含フッ 素単量体の単独重合体やその単量体の重合単位の割合が 4 0モル%以上の共重合 体が好ましい。 Further, as the fluorine-containing monomer having two or more polymerizable double bonds, other than the above, for example, a monomer having a substituent on a saturated carbon of PBVE is also preferable. Oxa-1,6-butadiene) (PBVE— 4 Perfluoro (abbreviated as 4-black mouth-3-oxa-1, 6-butadiene) (PBVE-4 CL), perfluoro (5-methoxy-3-oxa1-1, 6-butadiene) (PBVE) — 5 MO), perfluoro (5-methyl-3-oxa-1,6-butadiene) and the like are also preferable. When the ratio of the polymerized unit of the other radical polymerizable monomer increases, the light transmittance of the fluoropolymer may decrease.Therefore, as the fluoropolymer, two or more polymerizable double bonds are used. Preferred is a homopolymer of a fluorine-containing monomer having the same or a copolymer having a ratio of polymerized units of the monomer of 40 mol% or more.
このようなタイプの実質的に C—H結合を有さない非晶質の含フッ素重合体の 市販品としては 「サイトップ」 (旭硝子社製) がある。  A commercial product of such a type of amorphous fluoropolymer having substantially no C—H bond is “CYTOP” (manufactured by Asahi Glass Co., Ltd.).
また、 ペルフルォロ (2, 2—ジメチルー 1, 3—ジォキソ一ル) などの含フ ッ素脂環構造を有する単量体とペルフルォロ ( 3—ォキサ一 1 , 5—へキサジェ ン) 、 ペルフルォロ (3—ォキサ—1, 6—へブタジエン) (P B V E) などの 2個以上の重合性二重結合を有する含フッ素単量体とを共重合させることによつ ても主鎖に含フッ素脂環構造を有する含フッ素重合体が得られる。 この場合も組 み合わせによっては光の透過性が低下する場合があるので、 2個以上の重合性二 重結合を有する含フッ素単量体の重合単位の割合が 3 0モル%以上の共重合体が 好ましい。  In addition, monomers having a fluorine-containing alicyclic structure, such as perfluoro (2,2-dimethyl-1,3-dioxol), perfluoro (3-oxa1-1,5-hexagen), perfluoro (3 -Oxa-1,6-butadiene) (PBVE) and other copolymers with a fluorine-containing monomer having two or more polymerizable double bonds also have a fluorine-containing alicyclic structure in the main chain. Is obtained. Also in this case, the light transmittance may be reduced depending on the combination. Therefore, the proportion of the polymerized unit of the fluorine-containing monomer having two or more polymerizable double bonds is preferably 30 mol% or more. Coalescence is preferred.
含フッ素脂環構造を有する重合体は、 主鎖に環構造を有する重合体が好適であ るが、 全重合単位に対して環構造を有する重合単位を 2 0モル%以上、 好ましく は 4 0モル%以上含有するものが透明性、 機械的特性等の面から好ましい。 また、 含フッ素脂環構造を有する重合体はペルフルォロ重合体であることが好 ましい。 すなわち、 炭素原子に結合する水素原子のすべてがフッ素原子に置換さ れた重合体であることが好ましい。  As the polymer having a fluorinated alicyclic structure, a polymer having a ring structure in the main chain is suitable. Those containing at least mol% are preferred in terms of transparency, mechanical properties and the like. Further, the polymer having a fluorinated alicyclic structure is preferably a perfluoropolymer. That is, the polymer is preferably a polymer in which all of the hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
しかし、 ペルフルォロ重合体の一部のフッ素原子は塩素原子、 重水素原子など の水素原子以外の原子に置換されていてもよい。 塩素原子の存在は重合体の屈折 率を高める効果を有することより、 塩素原子を有する重合体は特に含フッ素重合 体として使用できる。  However, some fluorine atoms of the perfluoropolymer may be replaced by atoms other than hydrogen atoms such as chlorine atoms and deuterium atoms. Since the presence of a chlorine atom has the effect of increasing the refractive index of the polymer, the polymer having a chlorine atom can be used particularly as a fluorine-containing polymer.
上記含フッ素重合体は、 光伝送体が耐熱性を奏し、 高温にさらされても軟化し にくくしたがって光の伝送性能が低下することなどのない十分な分子量を有する ことが望ましい。 またこのような特性を発現するための含フッ素重合体の分子量 は、 溶融成形可能な分子量を上限とするが、 30 ペルフルォロ (2—プチルテ トラヒドロフラン) (PBTHF) 中で測定される固有粘度 [7?] で、 通常好ま しくは 0. 1〜: L d 1 /g程度、 より好ましくは 0. 2〜0. 5 d l/g程度で ある。 また該固有粘度に相当する数平均分子量は、 通常 1 X 104 〜5 X 106 程度、 好ましくは 5 X 104 〜1 X 106程度である。 The above-mentioned fluoropolymers have a light transmitting body that exhibits heat resistance and softens even when exposed to high temperatures. It is desirable to have a sufficient molecular weight so as not to be difficult to reduce the light transmission performance. The molecular weight of the fluoropolymer for exhibiting such properties is limited to the molecular weight that can be melt-molded, but the intrinsic viscosity measured in 30 perfluoro (2-butylethyltrahydrofuran) (PBTHF) [ 7?], Usually 0.1 to Ld 1 / g, more preferably 0.2 to 0.5 dl / g. The number average molecular weight corresponding to the intrinsic viscosity is generally about 1 × 10 4 to 5 × 10 6 , preferably about 5 × 10 4 to 1 × 10 6 .
また上記含フッ素重合体を溶融紡糸時、 あるいはプリフォームの延伸加工時の 成形性を確保するため、 含フッ素重合体の 200〜300°Cで溶融した含フッ素 重合体の溶融粘度は、 l X 102 〜l X 105 P a ' s程度であることが好まし い。 In addition, in order to ensure the formability of the above-mentioned fluoropolymer during melt spinning or preform stretching, the melt viscosity of the fluoropolymer melted at 200 to 300 ° C is l x Preferably, it is about 10 2 to l X 10 5 Pa's.
上記した含フッ素脂環構造を有する含フッ素重合体は、 後述する含フッ素イミ ド環構造、 含フッ素トリアジン環構造または含フッ素芳香族環構造を有する含フ ッ素重合体に比べ、 熱延伸または溶融紡糸によりファイバ化加工してもポリマー 分子が配向しにくく、 したがって光の散乱を起しにくいなどの理由から特に好ま しい。 とりわけ含フッ素脂肪族エーテル環構造を有する含フッ素重合体が好まし い。  The fluorinated polymer having a fluorinated alicyclic structure described above is heat-stretched or stretched compared to a fluorinated polymer having a fluorinated imido ring structure, a fluorinated triazine ring structure or a fluorinated aromatic ring structure described below. This is particularly preferable because the polymer molecules are less likely to be oriented even when processed into fibers by melt spinning, and therefore, light scattering is less likely to occur. In particular, a fluorinated polymer having a fluorinated aliphatic ether ring structure is preferred.
上記の主鎖に含フッ素脂環構造を有する含フッ素重合体は、 本発明の好ましい 含フッ素重合体であるが、 前述したように本発明の含フッ素重合体はこれに限定 されるものではない。  The fluorinated polymer having a fluorinated alicyclic structure in the main chain is a preferred fluorinated polymer of the present invention, but as described above, the fluorinated polymer of the present invention is not limited thereto. .
たとえば、 特開平 8— 5848号公報に記載されている、 実質的に C一 H結合 を有さない、 主鎖に含フッ素脂環構造以外の含フッ素環構造を有する非結晶性の 含フッ素重合体を使用することができる。 具体的にはたとえば含フッ素イミド環 構造、 含フッ素トリアジン環構造、 含フッ素芳香族環構造などの含フッ素環構造 を主鎖に有する非結晶性の含フッ素重合体を使用することができる。 これら重合 体の溶融粘度あるいは分子量は、 前記した主鎖に含フッ素脂環構造を有する含フ ッ素重合体のものと同等範囲にあるものが好ましい。  For example, as described in JP-A-8-5848, a non-crystalline fluorine-containing polymer having substantially no C-H bond and having a fluorine-containing ring structure other than a fluorine-containing alicyclic structure in the main chain. Coalescing can be used. Specifically, for example, a non-crystalline fluorine-containing polymer having a fluorine-containing ring structure such as a fluorine-containing imide ring structure, a fluorine-containing triazine ring structure, or a fluorine-containing aromatic ring structure in a main chain can be used. The melt viscosity or molecular weight of these polymers is preferably in the same range as that of the above-mentioned fluorine-containing polymer having a fluorinated alicyclic structure in the main chain.
本発明の好ましい含フッ素重合体である含フッ素イミド環構造を主鎖に有する 含フッ素重合体としては、 具体的には下記の一般式で示される繰り返し単位を有 するものが例示される The fluorine-containing polymer having a fluorine-containing imide ring structure in the main chain, which is a preferred fluorine-containing polymer of the present invention, specifically has a repeating unit represented by the following general formula. Is illustrated
0 0
«  «
C N R1 N - R CNR 1 N-R
\ / \ /  \ / \ /
c c  c c
0 o  0 o
(上記式中、 R 1 は下記から選ばれ、 (In the above formula, R 1 is selected from the following,
Figure imgf000016_0001
Figure imgf000016_0001
R2 は下記から選ばれる。 R 2 is selected from:
Figure imgf000016_0002
ここで、 Rf はフッ素原子、 パーフルォロアルキル基、 パーフルォロアリール 基、 パーフルォロアルコキシ基、 パーフルオロフエノキシ基から選ばれ、 これら は各々同一であっても異なっていてもよい。 Yは下記から選ばれる。 ー0 -, -CO-, — S02―, 一 S -, 一 R*, -, - OR ' , Γ , R' t 0 -r , ^OR' , Of r ,
Figure imgf000016_0002
Here, R f is selected from a fluorine atom, a perfluoroalkyl group, a perfluoroaryl group, a perfluoroalkoxy group, and a perfluorophenoxy group. You may. Y is selected from the following. ー 0-, -CO-, — S0 2 ―, one S-, one R *,-,-OR ', Γ , R' t 0- r , ^ OR ', Of r ,
- SR ' , ^r , ' , S r , iSR" « S , ,-SR ', ^ r ,', S r , iSR "« S,,
Figure imgf000017_0001
ここで、 R' f はパーフルォロアルキレン基、 パーフルォロアリーレン基から 選ばれ、 これらは各々同一であっても異なっていてもよい。 rは 1〜10である 。 Yと 2つの Rf が炭素をはさんで環を形成してもよく、 その場合、 環は飽和環 でも不飽和環でもよい。 )
Figure imgf000017_0001
Here, R ' f is selected from a perfluoroalkylene group and a perfluoroarylene group, which may be the same or different. r is 1-10. Y and two R f may form a ring across carbon, in which case the ring may be a saturated or unsaturated ring. )
さらに本発明では、 含フッ素芳香族環構造を有する含フッ素重合体として、 ポ リスチレン、 ポリ力一ポネート、 ポリエステルなどの側鎖または主鎖に芳香環を 有するポリマーのフッ素置換体が挙げられる。 これらは全フッ素置換されたペル フルォロ体でもよく、 フッ素置換残部を塩素などで置換したものでもよい。 さら にトリフロロメタン置換基などを有していてもよい。  Further, in the present invention, examples of the fluorine-containing polymer having a fluorine-containing aromatic ring structure include fluorine-substituted polymers of polymers having an aromatic ring in the side chain or main chain, such as polystyrene, polyacrylonitrile, and polyester. These may be perfluoro-substituted perfluorinated, or those obtained by substituting the remaining fluorine-substituted with chlorine or the like. Further, it may have a trifluoromethane substituent or the like.
また上記含フッ素重合体中のフッ素原子は、 屈折率を高めるために一部塩素原 子で置換されていてもよい。 さらに屈折率を高めるための物質を本発明の含フッ 素重合体中に含ませてもよいが、 本発明の成形材料全体で実質的に C一 H結合を 含まないことが好ましい。  Further, a fluorine atom in the fluoropolymer may be partially substituted with a chlorine atom in order to increase the refractive index. Although a substance for further increasing the refractive index may be contained in the fluorine-containing polymer of the present invention, it is preferable that the entire molding material of the present invention contains substantially no C—H bond.
上記には、 光伝送体の連続相および分散相を構成する含フッ素重合体について 説明したが、 本発明では、 予め重合した上記重合体を成形材料としてもよく、 上 記含フッ素重合体を形成しうる重合性モノマーを用いて成形時に重合させてもよ い。  In the above, the fluorinated polymer constituting the continuous phase and the dispersed phase of the light transmitting body has been described.In the present invention, the above polymer that has been polymerized in advance may be used as a molding material to form the fluorinated polymer. Polymerization may be performed at the time of molding using a polymerizable monomer that can be used.
また、 本発明の連続相および分散相を構成する好適成分は、 実質的に C一 H結 合を含まない非結晶性の含フッ素重合体であるが、 分散相は、 連続相に対して屈 折率が 0. 001以上低いことが必要であることから、 分散相を構成する含フッ 素重合体は少量の水素原子を有していてもよい。 しかし、 水素原子の存在は伝送 光の吸収の要因となるおそれがあること、 フッ素原子に比較して水素原子の存在 は重合体の屈折率を高めること、 などの理由により、 分散相を構成する含フッ素 重合体も実質的に水素原子を有しない重合体が好ましい。 Further, a preferred component constituting the continuous phase and the dispersed phase of the present invention is a non-crystalline fluoropolymer containing substantially no C—H bond. Since the refractive index needs to be 0.001 or lower, the fluorine-containing polymer constituting the dispersed phase may have a small amount of hydrogen atoms. However, the existence of hydrogen atoms is transmitted The fluoropolymer that constitutes the dispersed phase is also substantially different, because it may cause light absorption, and the presence of hydrogen atoms increases the refractive index of the polymer compared to fluorine atoms. A polymer having no hydrogen atom is preferred.
本発明では、 上記した構成の海島構造を有する光伝送体を、 好ましくは上記し た含フッ素重合体を用いて得ることができれば、 製造方法は特に制限されない。 したがって本発明では、 海島構造を有する光伝送体を直接製造してもよいが、 高屈折率成分の有機化合物の重合体からなる長尺体中に、 低屈折率成分の有機化 合物の重合体が分散されており、 低屈折率成分の有機化合物の重合体は、 長尺体 中をその長手方向に延在する、 海島構造を有するプリフォームを製造して、 これ を延伸成形することで所望の径を有する光伝送体を製造してもよい。 したがって 、 本発明は、 上記のような海島構造を有するプリフォームも提供することができ る。  In the present invention, the production method is not particularly limited as long as the optical transmitter having the above-mentioned structure having a sea-island structure can be preferably obtained by using the above-mentioned fluoropolymer. Therefore, in the present invention, an optical transmission body having a sea-island structure may be directly manufactured, but the length of an organic compound having a high refractive index component is mixed with an organic compound having a low refractive index component. The coalesce is dispersed, and the polymer of the organic compound of the low refractive index component is produced by manufacturing a preform having a sea-island structure extending in the longitudinal direction in a long body and stretching and forming the preform. An optical transmission body having a desired diameter may be manufactured. Therefore, the present invention can also provide a preform having the above-mentioned sea-island structure.
本発明の海島構造を有する光伝送体またはプリフォーム、 より具体的には海島 構造を構成する連続相および分散相のいずれもが有機化合物の重合体からなる光 伝送体またはプリフォームにおいて、 連続相中に分散相を分散させて海島構造を 形成する手法としては、 溶融紡糸や押出成形が利用できる。  The optical transmitter or preform having the sea-island structure of the present invention, more specifically, the optical transmitter or preform in which both the continuous phase and the dispersed phase constituting the sea-island structure are made of a polymer of an organic compound, Melt spinning and extrusion can be used as a technique for forming a sea-island structure by dispersing a dispersed phase therein.
例えば、 あらかじめ分割したス卜ランド状である低屈折率の有機化合物の重合 体 (島材) を高屈折率の有機化合物の重合体 (海材) で作製した管内に配置して 、 共紡糸することによって海島構造を形成することができる。  For example, a pre-divided strand-shaped polymer of low refractive index organic compound (island material) is placed in a tube made of a polymer of high refractive index organic compound (sea material) and co-spun. Thereby, a sea-island structure can be formed.
また、 均一に溶融させた低屈折率の有機化合物の重合体 (島材) を押出ダイス 内で分流させ、 細分化した後にその周辺部に高屈折率の有機化合物の重合体 (海 材) を供給して低屈折率の有機化合物の重合体の外周部に高屈折率の有機化合物 の重合体を施し、 さらにそれらを共通のノズルから押出す事によつて海島構造を 形成することができる。  In addition, a polymer (island material) of a low-refractive-index organic compound that has been uniformly melted is divided in an extrusion die, and after finely segmented, a polymer of a high-refractive-index organic compound (sea material) is placed around the periphery. The high-refractive-index organic compound polymer is supplied to the outer periphery of the low-refractive-index organic compound polymer, and then extruded from a common nozzle to form a sea-island structure.
本発明の手順により、 直接またはプリフォームを延伸成形することで海島構造 を有する光ファイバ素線を得ることができる。 このようにして得られる光フアイ バ素線は、 通常熱可塑性樹脂等の被覆を施して光ファイバコードとして使用され る。 被覆は、 光ファイバ素線の被覆として通常使用される材料、 例えば、 ポリエ チレン、 ポリ塩化ビエル、 ポリメ夕クリル酸メチル (P MMA) 、 エチレン—テ トラフルォロエチレン系共重合体等の熱可塑性樹脂から適宜選択すればよい。 通 常はこのような光ファイバケーブルコードを、 さらに仕切りスぺーサを有し、 光 ファイバケーブルコードを収納するための空孔部を有する長尺体の形状をした別 の被覆に、 複数本、 例えば 2本、 収納して光ファイバケ一ブルとして使用される 。 このような長尺体の形状をした被覆には、 通常は光ファイバの引張り伸びを防 止するための抗張力補強材 (テンションメンバ) が埋設される。 テンションメン バは、 この用途に通常使用される材料、 例えば金属線、 F R P線等の線材、 また はァラミド連続長繊維等の高剛性連続長繊維等から適宜選択すればよい。 また、 光ファイバ素線に被覆を施した光ファイバコードは、 複数本束ねてバンドルファ ィバとして使用してもよい。 このようなバンドルファイバには、 複数本の光ファ ィバコードを環状に束ねたもの以外に、 複数本の光ファイバコードを並列に並べ て構成される多芯テープ心線を含む。 なお、 パンドルファイバでは、 複数本束ね た光ファイバコードを覆うようにさらに別の被覆が形成されている。 また、 この ようなバンドルファイバでは、 通常光ファイバコード間の空隙部分に、 抗張力補 強材ゃ糸、 紐、 紙、 プラスチック等各種緩衝材が配置される。 ここで光ファイノ を得るが、 これに限定されるものではなく、 光導波路や光スィッチ、 ロッドレン ズなどにも適用できる。 According to the procedure of the present invention, an optical fiber having a sea-island structure can be obtained directly or by stretching a preform. The optical fiber thus obtained is usually coated with a thermoplastic resin or the like and used as an optical fiber cord. The coating may be made of materials commonly used for coating optical fiber, such as polyethylene, polyvinyl chloride, polymer methyl acrylate (PMMA), ethylene- What is necessary is just to select suitably from thermoplastic resins, such as a trafluoroethylene-type copolymer. Usually, a plurality of such optical fiber cable cords are provided on another covering in the form of a long body having a partition spacer and a hole for accommodating the optical fiber cable cords, For example, two cables are stored and used as an optical fiber cable. Such a long-shaped covering is usually buried with a tensile strength reinforcing member (tension member) for preventing tensile elongation of the optical fiber. The tension member may be appropriately selected from materials normally used for this purpose, for example, a wire such as a metal wire or an FRP wire, or a high-rigidity continuous filament such as aramid continuous filament. Further, a plurality of optical fiber cords obtained by coating optical fiber strands may be bundled and used as a bundle fiber. Such a bundle fiber includes a multi-core tape core constituted by arranging a plurality of optical fiber cords in parallel, in addition to a bundle of a plurality of optical fiber cords in an annular shape. In the case of the pandul fiber, another coating is formed so as to cover a plurality of bundled optical fiber cords. Further, in such a bundle fiber, various cushioning materials such as a tensile strength reinforcing yarn, a string, a paper, a plastic, and the like are usually arranged in a space between the optical fiber cords. Here, an optical fin is obtained. However, the present invention is not limited to this, and the present invention can be applied to an optical waveguide, an optical switch, a rod lens, and the like.
本発明の光伝送体は、 好ましくは実質的に C— H結合を有しない含フッ素重合 体からなるため、 硫酸、 塩酸等の酸性薬品や水酸化ナトリウム等のアルカリ性薬 品に侵されない。 また、 トルエン、 ベンゼンやアセトン等の有機溶剤にも侵され ないという特徴があり、 下水道配管内や作動油が飛散するような工場内等の劣悪 な環境下でも使用可能である。 また、 連続相中に分散相が分散された海島構造で あるため、 曲げ損失が改善され、 頻繁に折り曲げられる口ポット等の可動部へも 使用できる。  Since the light transmitting body of the present invention is preferably made of a fluoropolymer having substantially no CH bond, it is not affected by acidic chemicals such as sulfuric acid and hydrochloric acid and alkaline chemicals such as sodium hydroxide. In addition, it has the feature that it is not affected by organic solvents such as toluene, benzene and acetone, so it can be used in poor environments such as in sewer pipes or in factories where hydraulic oil is scattered. In addition, because of the sea-island structure in which the dispersed phase is dispersed in the continuous phase, bending loss is improved, and it can be used for movable parts such as mouth pots that are frequently bent.
また、 本発明の海島構造を有する光ファイバは、 海島構造を制御して、 周囲を 分散相で囲まれた連続相の部分 (コア部) における光の伝播をシングルモードと することで、 3〜4 GH z · k mの超広帯域化が可能となり、 波長 6 5 0〜1, 6 0 0 n mで 1 0 0 0 mの伝送損失が 5 0 d B以下とすることができる。 特に主 鎖に脂環構造を有する含フッ素重合体では同様な波長で、 1 0 0 O mの伝送損失 が 20 dB以下とすることができる。 波長 700〜1, 600 nmという比較的 長波長において、 このような低レベルの伝送損失であることは極めて有利である 。 すなわち、 石英光ファイバと同じ波長を使えることにより、 石英光ファイバと の接続が容易であり、 また波長 650 nmよりも短波長を使わざるをえない従来 のプラスチック光ファイバに比べ、 光源の選択範囲が広いという利点がある。 本発明の海島構造を有する光ファイバは、 加入者系の通信線、 工場内 LAN、 病院内 LAN、 学校内 LAN、 下水道配管内 LAN等の公共施設内での LAN、 医療機器、 フロアーケーブル、 電力線監視通信線、 自動車用途、 電車の運転条件 のモニタ画像伝送、 外洋航路の大型船舶内の通信用、 航空機内のデータ伝送、 業 務用ゲーム機を始めとするァミユーズメント関係などの高速、 高帯域を必要とす る映像伝送、 高画質の動画、 立体画像の伝送、 コンピューターないし自動交換機 等の機器内配線、 一般の屋内通信網、 各種センサ分野、 照明、 イルミネーション 分野、 エネルギー伝送などの様々な分野での利用が可能である。 Further, the optical fiber having the sea-island structure of the present invention can control the sea-island structure to have a single mode of light propagation in a continuous phase portion (core portion) surrounded by a disperse phase. An ultra-wide band of 4 GHz · km can be achieved, and the transmission loss at 100 m at wavelengths of 600 to 1,600 nm can be reduced to 50 dB or less. In particular, a fluoropolymer having an alicyclic structure in the main chain has a transmission loss of 100 Om at the same wavelength. Can be set to 20 dB or less. At a relatively long wavelength of 700 to 1,600 nm, such a low level of transmission loss is extremely advantageous. In other words, since the same wavelength as the quartz optical fiber can be used, the connection with the quartz optical fiber is easy, and the light source selection range is smaller than that of the conventional plastic optical fiber, which has to use a wavelength shorter than 650 nm. Has the advantage of being wide. The optical fiber having a sea-island structure of the present invention is used for LANs in public facilities such as subscriber communication lines, LANs in factories, LANs in hospitals, LANs in schools, LANs in sewer pipes, medical equipment, floor cables, and power lines. High-speed, high-bandwidth communication such as surveillance communication lines, automotive applications, monitor image transmission of train operating conditions, communication in large vessels on ocean routes, data transmission in aircraft, and amusement-related applications such as business game machines Necessary video transmission, high-quality video, transmission of stereoscopic images, wiring in equipment such as computers and automatic exchanges, general indoor communication networks, various sensor fields, lighting, illumination fields, energy transmission, and various other fields. Is available.
(実施例) (Example)
次に、 本発明について実施例を用いて更に具体的に説明するが、 これらの実施 例が本発明を限定するものでないことはいうまでもない。  Next, the present invention will be described more specifically with reference to Examples, but it goes without saying that these Examples do not limit the present invention.
実施例 1 Example 1
低屈折率の含フッ素重合体 (a) として、 パーフルォロ ( 3—ォキサ一 1, 6 一へブタジエン) の環化重合体 (屈折率 1. 34) を選択し、 外径が 20mmで 長さが 500mmの円柱状の島母材 (c) を成形した。 一方、 上記パーフルォロ (3_ォキサー1, 6—へブタジエン) の環化重合体に、 CTFE (クロ口トリ フルォロエチレン) オリゴマーを 15質量パーセント添加し、 加熱拡散して高屈 折率成分 (屈折率: 1. 355) の含フッ素重合体を作製し、 外径が 40mm、 内径が 2 lmm、 長さが 550mmの中空管 (海母材: d) 、 および、 外径 20 mmの中実ロッドを成形した。 この中実ロッドだけを溶融紡糸し、 外径が 0. 5 mmのストランド (e) を得た。  As the low-refractive-index fluoropolymer (a), a perfluoro (3-oxa-1,6-butadiene) cyclized polymer (refractive index: 1.34) was selected. The outer diameter was 20 mm and the length was 20 mm. A 500mm cylindrical island base material (c) was formed. On the other hand, 15% by mass of CTFE (clo-mouth trifluoroethylene) oligomer is added to the above perfluoro (3-oxa 1,6-butadiene) cyclized polymer, and heated to diffuse to obtain a high refractive index component (refractive index: 1. Prepare a fluorinated polymer of 355) and connect a hollow tube (sea base material: d) with an outer diameter of 40 mm, an inner diameter of 2 lmm, and a length of 550 mm, and a solid rod with an outer diameter of 20 mm. Molded. Only this solid rod was melt-spun to obtain a strand (e) having an outer diameter of 0.5 mm.
中空管 (海母材: d) の中空部に島母材 (c) を挿入し、 220 に加熱され た加熱炉の中で溶融紡糸し、 外径が 0. 5 mmで、 島部の直径が 0. 25 mmの ストランド (f) を得た。 Insert the island base material (c) into the hollow part of the hollow tube (sea base material: d), melt-spun in a heating furnace heated to 220 mm, and have an outer diameter of 0.5 mm. 0.25 mm diameter Strand (f) was obtained.
さらに上記パーフルォロ (3—ォキサ一 1, 6—へブタジエン) の環化重合体 を用いて、 回転成形で外径が 20 mm、 内径が 10mm、 長さが 500mmの中 空管 (g) を成形した。 中空管 (g) の中空部には、 その中心部に高屈折率の含 フッ素化合物で作製したストランド (e) を配置し、 ストランド (e) を囲むよ うに、 長さ 480mmにカットした低屈折率の含フッ素重合体から作製したスト ランド (f) を同心円状に 200本挿入し、 プリフォーム母材 (h) を作製した プリフォーム母材 (h) を 220°Cに加熱された加熱炉の中で溶融紡糸し、 図 5に示す外径が 0. 5mmで、 高屈折率の含フッ素化合物である連続相 (海材) 2中に、 低屈折率の含フッ素化合物である直径 6 mの分散相 (島材) 3が 20 0本分散された海島構造を有する含フッ素重合体製の光ファイバ 1を得た。 図 5 に示す光ファイバは、 連続相 2を 6つに分割するように、 分散相 3が縦横方向お よび斜め方向に、 各々中心から外側に向かって直線状に配列されており、 直線状 に配列された分散相 3同士の間には、 分散相 3がある程度周期性をもって分散さ れている。 得られた含フッ素重合体製の光ファイバ 1に N A (開口数) 0. 1、 波長 850 nmのレーザー光を入射し、 200mの伝送試験を実施したところ、 伝送損失は 19 dBZkm、 帯域は 4 GHz · kmであった。 また、 同ファイバ を R (曲率) 10で 180° の角度で曲げた時の損失は 0. O l dB以下であつ た。  In addition, the hollow tube (g) having an outer diameter of 20 mm, an inner diameter of 10 mm, and a length of 500 mm is formed by spin molding using the above perfluoro (3-oxa-1,6-butadiene) cyclized polymer. did. In the hollow part of the hollow tube (g), a strand (e) made of a high-refractive-index fluorine-containing compound is arranged at the center, and a low-length 480 mm length cut around the strand (e). 200 strands (f) made of a fluoropolymer having a refractive index were inserted concentrically into 200 strands, and the preform base material (h) prepared as the preform base material (h) was heated to 220 ° C. It is melt-spun in a furnace and has a diameter of 0.5 mm, which is a low-refractive-index fluorine-containing compound, in a continuous phase (sea material) 2 with an outer diameter of 0.5 mm and a high-refractive-index. An optical fiber 1 made of a fluoropolymer having a sea-island structure in which 200 dispersed phases (island materials) 3 of m were dispersed was obtained. In the optical fiber shown in Fig. 5, the dispersed phase 3 is linearly arranged from the center to the outside in the vertical and horizontal directions and diagonally so that the continuous phase 2 is divided into six parts. The dispersed phases 3 are dispersed with some periodicity between the arranged dispersed phases 3. Laser light with a numerical aperture (NA) of 0.1 and a wavelength of 850 nm was incident on the obtained optical fiber 1 made of a fluoropolymer, and a 200 m transmission test was performed. The transmission loss was 19 dBZkm and the bandwidth was 4 dB. GHz · km. When the fiber was bent at an R (curvature) of 10 and at an angle of 180 °, the loss was less than 0.1 dB.
実施例 2 Example 2
低屈折率の含フッ素重合体 (a) として、 パーフルォロ (2, 2—ジメチルー 1, 3ジージォキソール) [PDD] とテトラフルォロエチレン [TFE] との 共重合体 (モルパーセント比 65 : 35) (屈折率: 1. 31) を選択し、 外 径 20mm、 長さが 30 Ommの中実ロッドを作製した。 上記中実ロッド (j ) を加熱紡糸し、 外径 2mmのストランド (k) を得た。  As a low refractive index fluoropolymer (a), a copolymer of perfluoro (2,2-dimethyl-1,3-dioxoxol) [PDD] and tetrafluoroethylene [TFE] (mole percentage ratio 65:35) (Refractive index: 1.31) was selected to produce a solid rod with an outer diameter of 20 mm and a length of 30 Omm. The solid rod (j) was heated and spun to obtain a strand (k) having an outer diameter of 2 mm.
同時に、 内径 4 Ommのパ一フルォロ (アルキルビニルエーテル) ーテトラフ ルォロエチレン系共重合体 (PFA) 製のチューブ内に、 外径 2mm、 長さ 30 Ommのポリカーボネート製の棒状体 30本を直径 2 Ommの同心円をなすよう に均等に配列し (すなわち同心円の中心には棒状体は配置されていない) 、 その 状態でチューブ内に海材用の高屈折率の含フッ素重合体 (a) として、 パーフル ォロ (3—ォキサ一 1, 6—へブタジエン) の環化重合体 (屈折率 1. 34) を 溶融状態で注入し、 海材前駆体 ( 1 ) を得た。 冷却固化後、 海材前駆体 (1) を ジメチルクロライド溶剤中に (1 ) を浸漬させた。 海材前駆体 (1) の構成中、 含フッ素重合体 (a) は全く侵されず、 ポリカーポネイト製の棒状体のみが溶解 した。 At the same time, 30 rods made of polycarbonate with an outer diameter of 2 mm and a length of 30 Omm are concentrically placed in a concentric circle with a diameter of 2 Omm in a tube made of perfluoro (alkyl vinyl ether) -tetrafluoroethylene copolymer (PFA) with an inner diameter of 4 Omm. To make (Ie, no rods are placed at the center of the concentric circles), and in that state, a perfluoro (3- A cyclized polymer of 1,6-butadiene (refractive index: 1.34) was injected in a molten state to obtain a marine precursor (1). After cooling and solidification, the marine material precursor (1) was immersed in a dimethyl chloride solvent. In the construction of the marine material precursor (1), the fluoropolymer (a) was not affected at all, and only the polycarbonate rods were dissolved.
その結果、 外径 40mm、 長さ 3 0 0 mmで、 内径 2 mmの貫通穴 3 0本が直 径 2 0mmの同心円をなすように形成された海材 (m) を得た。  As a result, a sea material (m) having an outer diameter of 40 mm, a length of 300 mm, and 30 through-holes with an inner diameter of 2 mm formed so as to form a concentric circle with a diameter of 20 mm was obtained.
得られた海材 (m) の貫通穴に、 低屈折率の含フッ素化合物製のストランド ( k) を 30 0mmの長さにカットした島材を 1本ずっ揷入した。 海材 (m) と島 材 (k) がずれぬよう底部で一体化した後、 240でで溶融紡糸した。  One island material obtained by cutting a strand (k) made of a fluorine-containing compound having a low refractive index into a length of 300 mm was inserted into the through hole of the obtained sea material (m). The sea material (m) and the island material (k) were integrated at the bottom so as not to slip, and melt-spun at 240.
これにより図 6に示す外径 0. 5 mmで、 高屈折率の含フッ素化合物である連 続相 (海材) 2中に、 低屈折率の含フッ素化合物である分散相 (島材) (径 2 5 lim) 3が、 30本の分散された海島構造を有する含フッ素重合体製の光フアイ バ 1が得られた。 図 6に示す光ファイバ 1は、 連続相 2中に分散相 3が光フアイ バ 1の中心軸に対して同心円状にある程度周期的に配列されている。 得られた光 ファイバに、 NA0. 2 5、 波長 1 30 0 nmのレーザー光を入射し、 5 0 0m の伝送試験を実施したところ、 伝送損失は 1 7 dBZkm、 帯域は 1 GHz · k mであった。 また、 同ファイバを R 1 0で 1 8 0° の角度で曲げた時の損失は 0 . l dBであった。  As a result, the continuous phase (sea material) 2, which is a high-refractive-index fluorine-containing compound having an outer diameter of 0.5 mm as shown in Fig. 6, contains a low-refractive-index fluorine-containing compound, a dispersed phase (island material) ( Optical fiber 1 made of a fluoropolymer having a diameter of 25 lim) 3 and having 30 dispersed sea-island structures was obtained. In the optical fiber 1 shown in FIG. 6, the dispersed phase 3 is periodically and concentrically arranged with respect to the central axis of the optical fiber 1 in the continuous phase 2. A laser beam with a wavelength of 0.25 NA and a wavelength of 130 nm was injected into the obtained optical fiber, and a transmission test was performed at 500 m.The transmission loss was 17 dBZkm and the bandwidth was 1 GHzkm. Was. The loss when the fiber was bent at an angle of 180 ° at R10 was 0.1 dB.
実施例 3 Example 3
含フッ素重合体 (a) として、 パーフルォロ (3—ォキサ_ 1, 6—へプ夕ジ ェン) の環化重合体 (屈折率 1. 34) を選択し、 外径が 2 0mmで長さが 50 0 mmの円柱状体を成形した。 その中にパ一フルォロトリフエ二ルベンゼン (T PB) を 7質量パーセント添加し、 2 50°Cで加熱混合して、 高屈折率 (屈折率 : 1. 3 5 5) の含フッ素化合物を作製し、 外径が 40mm且つ長さが 50 0m mの海母材 (n) を成形した。  As the fluorinated polymer (a), a perfluoro (3-oxa-1,6-heptagene) cyclized polymer (refractive index: 1.34) was selected, and the outer diameter was 20 mm and the length was 20 mm. Formed a columnar body having a size of 500 mm. 7% by weight of perfluorotriphenylbenzene (TPB) was added to the mixture, and the mixture was heated and mixed at 250 ° C to produce a fluorine-containing compound having a high refractive index (refractive index: 1.355). A marine base material (n) having an outer diameter of 40 mm and a length of 500 mm was formed.
また、 上記パーフルォロ ( 3—ォキサ一 1, 6 _へブタジエン) の環化重合体 そのまま用いることで低屈折率 (屈折率: 1. 34) の含フッ素重合体とし、 金 属管内で外径が 20mm、 長さが 550mmの島母材用の円柱状体 (o) を成形 した。 In addition, a cyclized polymer of the above perfluoro (3-oxa-1,6-butadiene) By using it as it is, a fluoropolymer with a low refractive index (refractive index: 1.34) was formed into a cylindrical body (o) for an island base material with an outer diameter of 20 mm and a length of 550 mm in a metal tube. .
耐蝕仕様の 20mmスクリュー式押出機 2台を準備し、 島母材を供給する押出 機 1と、 その外周部の海母材を供給する押出機 2をクロスへッドを介して連結し た。 島母材はクロスヘッド内で 19本の流れに分流され、 さらに各々の島母材外 周部に押出機 2からの海母材が合流するようになっている。 伹し中心部だけは島 母材の供給がない構造とした。 クロスヘッドの先には、 直径 3mmのノズルを設 けた。  Two corrosion-resistant 20 mm screw type extruders were prepared, and an extruder 1 for supplying an island base material and an extruder 2 for supplying a sea base material on the outer periphery thereof were connected via a crosshead. The island base material is divided into 19 streams in the crosshead, and the sea base material from the extruder 2 joins the outer periphery of each island base material.構造 Only the central part has a structure that does not supply island base material. A nozzle with a diameter of 3 mm was installed at the end of the crosshead.
押出機 1に島母材 (o) を投入し、 200°Cで溶融した。 同時に押出機 2に海 母材用円柱状体 (n) を投入し、 220°Cで溶融した。 両者はクロスヘッド内で 合流し、 連続相である海母材中に、 19本の島母材が分散相として分散された複 層断面を有する状態でノズルへと導かれる。 ノズルを介して外部に押し出された 複層溶融樹脂 (P) は、 外径 5mmに延伸して図 3に示すプラスチック光フ アイパを得た。 図 3に示す光ファイバ 1は、 連続相 (海材) 2中に、 径 4 の分散相 3 (島材) が、 光ファイバ 1の中心軸に対して同心円状に周期的に 19 個分散された海島構造を有していた。 得られた光ファイバに NA0. 25、 波長 850 nmのレーザ一光を入射し、 1000 mの伝送試験を実施したところ、 伝 送損失は 25 dBZkm、 帯域は 1. 2 GHz · kmであった。 また、 同フアイ バを R10で 180° の角度で曲げた時の損失は 0. 2 dBであった。  The extruder 1 was charged with the island base material (o) and melted at 200 ° C. At the same time, the columnar body for a base material (n) was charged into the extruder 2 and melted at 220 ° C. Both merge in the crosshead and are guided to the nozzle with a multi-layer cross section in which 19 island base materials are dispersed as a dispersed phase in the continuous phase of the sea base material. The multilayer molten resin (P) extruded to the outside via the nozzle was stretched to an outer diameter of 5 mm to obtain the plastic optical filter shown in Fig. 3. In the optical fiber 1 shown in FIG. 3, 19 dispersed phases 3 (island material) having a diameter of 4 are periodically dispersed concentrically with respect to the central axis of the optical fiber 1 in a continuous phase (sea material) 2. Had a sea-island structure. When a laser beam with a NA of 0.25 and a wavelength of 850 nm was incident on the obtained optical fiber and a transmission test was performed at 1000 m, the transmission loss was 25 dBZkm and the bandwidth was 1.2 GHz · km. When the fiber was bent at R10 at an angle of 180 °, the loss was 0.2 dB.
実施例 4 Example 4
低屈折率の含フッ素重合体 (a) として、 パーフルォロ (2, 2—ジメチルー 1, 3ジージォキソール) [PDD] テトラフルォロエチレン [TFE] の共重 合体 (モルパーセント比 65 : 35) (屈折率: 1. 31) を島母材とし、 高 屈折率含フッ素重合体として、 パーフルォロ ( 3—ォキサ一 1, 6—ヘプ夕ジェ ン) (屈折率: 1. 34) を海母材として選択し、 各々を 260°Cで溶融し、 内 径 20 mmの金属管内で固化させて、 外径が 40 mmで長さが 500 mmの円柱 状体を成形した。  As a low refractive index fluoropolymer (a), a copolymer of perfluoro (2,2-dimethyl-1,3-dioxoxol) [PDD] tetrafluoroethylene [TFE] (mol percentage ratio 65:35) (refractive Index: 1.31) is selected as the island matrix, and high refractive index fluoropolymer is selected, and perfluoro (3-oxa-1,6-heppugen) (refractive index: 1.34) is selected as the sea matrix. Each was melted at 260 ° C. and solidified in a metal tube having an inner diameter of 20 mm to form a columnar body having an outer diameter of 40 mm and a length of 500 mm.
耐食仕様の 15mmプランジャー式押出機 2台を準備し、 島母材を供給する押 出機 (1) と、 その外周部の海母材を供給する押出機 (2) をクロスヘッドを介 して連結した。 島母材はクロスヘッド内で 2本の流れに分流され、 さらにその先 で各々 100本に分流され、 その後で島母材外周部に押出機 (2) からの海母材 が合流するようになっている。 但し、 各々 100本の島母材の中心部には海母材 が配置される構造とした。 クロスヘッドの先には縦 3mm、 横 5mmの楕円断面 を持つたノスリレが設けられていた。 Prepare two 15 mm plunger type extruders with corrosion resistance and press The extruder (1) and the extruder (2) for supplying the marine base material on the outer periphery were connected via a crosshead. The island base material is split into two streams in the crosshead, and further split into 100 streams at each point. Then, the sea base material from the extruder (2) merges with the outer periphery of the island base material. Has become. However, the sea base material was arranged at the center of each of the 100 island base materials. At the end of the crosshead was a buzzard with an elliptical cross section of 3 mm long and 5 mm wide.
押出機 (1) に島母材を投入し、 220°Cで溶融した。 同時に押出機 (2) に 海母材用の円柱状体を投入し、 250°Cで溶融した。  The island base material was put into the extruder (1) and melted at 220 ° C. At the same time, the columnar material for the base material was put into the extruder (2) and melted at 250 ° C.
両者はクロスへッド内で合流し、 連続相である海母材中に、 100本ずつの 2 集団となった島母材が、 各集団ごとに同心円をなすように分散された複層断面で ノズルへ導かれる。 ノズルを介して外部に押し出された複層溶融樹脂 (o) は、 外径 0. 3X0. 5 mmに延伸し、 図 7に示す分散相 (島材) 3の径は各々 3 mで、 1集団当たり分散相 (島材) 3が 100個存在している海島構造を有する シングルモードのデュープレックス (双方向型) プラスチック光フアイバが得ら れた。 図 7に示すように、 得られた光ファイバ 1は断面形状が楕円形状であり、 連続相 (海材) 2中に光ファイバ 1の軸方向に対して各々同心円状に配列する 2 つの分散相 (島材) 3の集団を有していた。 得られた光ファイバに対して、 NA 0. 1、 波長 850 nmのレーザー光を入射し、 200mの伝送試験を実施した ところ、 伝送損失は 25 dBZkm、 帯域は 4. 0 GHz · kmであった。 また 、 同ファイバを用いて 1本のファイバで双方向の伝送を行なう事が出来た。 R1 0で 180 ° の角度で曲げた時の損失は 0. 01 d B以下であった。  Both merge in the crosshead, and a multi-layer cross-section in which two groups of 100 island base materials are dispersed in the sea matrix, which is a continuous phase, so that each group forms a concentric circle Is led to the nozzle. The multi-layered molten resin (o) extruded to the outside through the nozzle is stretched to an outer diameter of 0.3 x 0.5 mm, and the diameter of the dispersed phase (island material) 3 shown in Fig. 7 is 3 m each. A single-mode duplex (bidirectional) plastic optical fiber with a sea-island structure containing 100 dispersed phases (island materials) 3 per group was obtained. As shown in FIG. 7, the obtained optical fiber 1 has an elliptical cross-sectional shape, and includes two dispersed phases arranged concentrically in the continuous phase (sea material) 2 in the axial direction of the optical fiber 1. (Island lumber) There were three groups. A laser beam with a NA of 0.1 and a wavelength of 850 nm was incident on the obtained optical fiber, and a 200 m transmission test was performed.The transmission loss was 25 dBZkm and the bandwidth was 4.0 GHzkm. . In addition, bidirectional transmission could be performed with one fiber using the same fiber. The loss when bent at an angle of 180 ° with R10 was less than 0.01 dB.
実施例 5 Example 5
含フッ素重合体 (a) として、 低屈折率の含フッ素重合体 (屈折率: 1. 32 8) であるパーフルォロ (4ーメチルーブテニルビニルエーテル) を島母材とし 、 高屈折率の含フッ素重合体 (屈折率: 1. 34) であるパーフルォロ (3_ォ キサー 1, 6—へブタジエン) を海母材として選択し、 各々を 250°Cで溶融し 、 内径 2 Ommの金属管内で固化させて、 外径が 3 Ommで長さが 50 Ommの 円柱状体を成形した。  As the fluoropolymer (a), perfluoro (4-methylbutenyl vinyl ether), which is a low-refractive-index fluoropolymer (refractive index: 1.328), is used as an island base material, and a high-refractive-index fluorine-containing polymer is used. Perfluoro (3_oxa 1,6-butadiene), which is a coalescence (refractive index: 1.34), was selected as the marine base material, and each was melted at 250 ° C and solidified in a metal tube with an inner diameter of 2 Omm. Thus, a cylindrical body having an outer diameter of 3 Omm and a length of 50 Omm was formed.
耐食仕様の 15 mmプランジャー式押出機 2台を準備し、 島母材を供給する押 出機 (1) と、 その外周部の海母材を供給する押出機 (2) をクロスヘッドを介 して連結した。 島母材はクロスヘッド内で 2本の流れに分流され、 さらにその先 で各々 100本に分流され、 その後で島母材外周部に押出機 (2) からの海母材 が合流するようになっている。 但し、 各々 100本の島母材の中心部には海母材 が配置される構造とした。 クロスヘッドの先には、 縦 3mm、 横 5mmの楕円断 面を持ったノズルが設けられている。 Prepare two 15 mm plunger type extruders with corrosion-resistant specifications and press The extruder (1) and the extruder (2) for supplying the marine base material on the outer periphery were connected via a crosshead. The island base material is split into two streams in the crosshead, and further split into 100 streams at each point. Then, the sea base material from the extruder (2) merges with the outer periphery of the island base material. Has become. However, the sea base material was arranged at the center of each of the 100 island base materials. At the end of the crosshead is a nozzle with an elliptical cross section of 3 mm long and 5 mm wide.
押出機 (1) に島母材を投入し、 220°Cで溶融した。 同時に押出機 (2) に 海母材用の円柱状体を投入し、 25 CTCで溶融した。  The island base material was put into the extruder (1) and melted at 220 ° C. At the same time, a columnar body for marine base material was put into the extruder (2) and melted at 25 CTC.
両者はクロスへッド内で合流し、 連続相である海母材中に 100本ずつの 2集 団となった島材が各集団ごとに同心円をなすように分散された複層断面でノズル へ導かれる。 ノズルを介して外部に押し出された複層溶融樹脂 (o) は、 外径 0 . 3 X 0. 5mmに延伸し、 図 7に示すように、 分散相 (島材) の径は各々 3 mで、 海島構造を有するシングルモードのデュープレックス (双方向型) プラス チック光ファイバが得られた。 図 7に示す光ファイバ 1は断面形状が楕円形状で あり、 連続相 2中に光ファイバ 1の軸方向に対して各々同心円状に配列する 2つ の分散相 (島材) 3の集団を有していた。 得られた光ファイバに対して、 NA0 . 1、 波長 850 nmのレーザ一光を入射し、 200 mの伝送試験を実施したと ころ、 伝送損失は 25 dB/km、 帯域は 4. 0 GHz · kmであった。 また、 同ファイバを用いて 1本のファイバで双方向の伝送を行なう事が出来た。 R10 で 180° の角度で曲げた時の損失は 0. 01 dB以下であった。 産業上の利用の可能性  The two converge in the crosshead, and the nozzles have a multi-layer cross section in which two groups of 100 islands are dispersed in a continuous phase in the marine base material so that each group forms a concentric circle. Led to. The multi-layered molten resin (o) extruded through the nozzle stretches to an outer diameter of 0.3 X 0.5 mm. As shown in Fig. 7, the diameter of the dispersed phase (island material) is 3 m each. Thus, a single-mode duplex (bidirectional) plastic optical fiber with a sea-island structure was obtained. The optical fiber 1 shown in FIG. 7 has an elliptical cross-sectional shape, and has a group of two dispersed phases (island materials) 3 arranged concentrically with respect to the axial direction of the optical fiber 1 in the continuous phase 2. Was. A 200 m transmission test was performed by injecting a laser beam with a NA of 0.1 and a wavelength of 850 nm into the obtained optical fiber.The transmission loss was 25 dB / km and the bandwidth was 4.0 GHz. km. In addition, bidirectional transmission could be performed with one fiber using the same fiber. The loss when bent at an angle of 180 ° with R10 was less than 0.01 dB. Industrial potential
本発明によれば、 ポリメチルメタクリレート系、 ポリスチレン系、 ポリカーボ ネート系等の従来のプラスチック光伝送体では達し得なかった LAN、 集合住宅 、 医療器具、 自動車、 OA (オフィスオートメーション) 、 家電機器用途等で要 求される低伝送損失、 機械強度、 耐熱性、 耐湿性、 耐薬品性、 不燃性を有する光 ファイバ製品を提供することができる。 また従来の光伝送体では達し得なかった 可視光 ( 500〜 700 nm) と近赤外光 (700〜1600nm) を利用可能 とし、 さらに海島構造を有する光ファイバとすることで、 ファイバを曲げた時の 曲げ損失を低減し、 必要に応じて単一モード伝搬条件とする事で超高速伝送性を 付与する事ができる低伝送損失且つ高伝送帯域型の海島構造を有する光: 製品を提供することができる。 According to the present invention, such as LAN, multi-family housing, medical equipment, automobile, OA (office automation), home electric appliance, etc., which cannot be achieved by conventional plastic optical transmission media such as polymethyl methacrylate, polystyrene, and polycarbonate. Thus, it is possible to provide an optical fiber product having low transmission loss, mechanical strength, heat resistance, moisture resistance, chemical resistance, and nonflammability required by the above. In addition, by making visible light (500-700 nm) and near-infrared light (700-1600 nm), which could not be achieved by conventional optical transmission media, available, and by using an optical fiber with a sea-island structure, the fiber was bent. of time Light with a low transmission loss and high transmission band type islands-in-the-sea structure that can provide ultra-high-speed transmission by reducing bending loss and providing single-mode propagation conditions as needed. it can.

Claims

請求の範囲 The scope of the claims
1 . 高屈折率の連続相中に、 低屈折率の分散相が分散された海島構造を有するこ とを特徴とする光伝送体。  1. An optical transmitter characterized by having a sea-island structure in which a low-refractive-index dispersed phase is dispersed in a high-refractive-index continuous phase.
2 . 光伝送体の断面形状において、 前記低屈折率の分散相は光導波路を形成する 周期性を有するように配列される請求項 1に記載の光伝送体。  2. The optical transmission body according to claim 1, wherein in the cross-sectional shape of the optical transmission body, the low-refractive-index dispersed phase is arranged to have a periodicity forming an optical waveguide.
3 . 前記高屈折率の連続相を構成する成分および前記低屈折率の分散相を構成す る成分は、 いずれも有機化合物の重合体からなる請求項 1または 2に記載の光伝 送体。  3. The optical transmitter according to claim 1, wherein each of the component constituting the high-refractive-index continuous phase and the component constituting the low-refractive-index dispersed phase comprises a polymer of an organic compound.
4 . 前記高屈折率の連続相を構成する成分は、 実質的に C一 H結合を有しない非 結晶性の含フッ素重合体 (a ) からなり、  4. The component constituting the high-refractive-index continuous phase is composed of an amorphous fluoropolymer (a) having substantially no C—H bond,
前記低屈折率の分散相を構成する成分は、 前記含フッ素重合体 (a ) との比較 において屈折率が 0 . 0 0 1以上低い含フッ素重合体 (b ) からなる請求項 3に 記載の光伝送体。  4. The component according to claim 3, wherein the component constituting the low-refractive-index dispersed phase is a fluoropolymer (b) having a refractive index lower than that of the fluoropolymer (a) by 0.0001 or more. 5. Optical transmitter.
5 . 前記含フッ素重合体 (a ) は、 含フッ素環構造を含む請求項 4に記載の光伝 送体  5. The optical transmitter according to claim 4, wherein the fluoropolymer (a) has a fluorinated ring structure.
6 . 前記含フッ素環構造は、 環員エーテル結合を含んでもよい含フッ素脂環構造 である請求項 5に記載の光伝送体。  6. The optical transmitter according to claim 5, wherein the fluorinated ring structure is a fluorinated alicyclic structure which may contain a ring member ether bond.
7 . 前記含フッ素環構造を含む含フッ素重合体は、 主鎖に前記フッ素環構造を有 する請求項 5または 6に記載の光伝送体。  7. The optical transmitter according to claim 5, wherein the fluorinated polymer having a fluorinated ring structure has the fluorinated ring structure in a main chain.
8 . 前記含フッ素重合体 (a ) および (b ) のいずれもが、 実質的に C一 H結合 を有さず、 かつ、 主鎖にエーテル結合を含んでもよい含フッ素脂環構造を有する 非結晶性の含フッ素重合体である請求項 4ないし 7のいずれかに記載の光伝送体  8. Both of the fluoropolymers (a) and (b) have substantially no C—H bond, and have a fluorinated alicyclic structure that may contain an ether bond in the main chain. The optical transmitter according to any one of claims 4 to 7, which is a crystalline fluoropolymer.
9 . 請求項 3ないし 8のいずれかに記載の光伝送体を製造するためのものであつ て、 高屈折率成分の有機化合物の重合体からなる長尺体中に、 低屈折率成分の有 機化合物の重合体が分散されており、 前記低屈折率成分の有機化合物の重合体は 、 前記長尺体中をその長手方向に延在する、 海島構造を有するプリフォーム。9. A method for producing the optical transmitter according to any one of claims 3 to 8, wherein the long body made of a polymer of an organic compound having a high refractive index has a low refractive index component. A preform having a sea-island structure, wherein a polymer of an organic compound is dispersed, and the polymer of the organic compound of the low refractive index component extends in the longitudinal direction in the elongated body.
1 0 . あらかじめ分割したストランド状の低屈折率成分である有機化合物の重合 体を、 高屈折率成分である有機化合物の重合体で作製した管内に配置して、 共紡 糸することを特徴とする請求項 3ないし 9のいずれかに記載の海島構造を有する 光伝送体またはそのプリフォームの製造方法。 10. A pre-divided strand-shaped polymer of an organic compound as a low-refractive-index component is placed in a tube made of a polymer of an organic compound as a high-refractive-index component, and co-spun. The method for producing an optical transmission body having a sea-island structure or a preform thereof according to any one of claims 3 to 9, wherein the optical transmission body is a yarn.
1 1 . 均一に溶融させた低屈折率成分である有機化合物の重合体を押出ダイス内 で分流させ、 細分化した後にその周辺部に高屈折率成分である有機化合物重合体 を供給して、 前記低屈折率成分である有機化合物の重合体の外周部に前記高屈折 率成分である有機化合物の重合体を施し、 さらにそれらを共通のノズルから押出 すことを特徴とする請求項 3ないし 9のいずれかに記載の海島構造を有する光伝 送体またはそのプリフォームの製造方法。  11. The polymer of the organic compound, which is a low-refractive-index component, which has been uniformly melted, is diverted in an extrusion die, and after being finely divided, an organic compound polymer, which is a high-refractive-index component, is supplied to the periphery thereof. 10. The polymer of the organic compound of the high refractive index component is applied to an outer peripheral portion of the polymer of the organic compound of the low refractive index component, and the polymer is extruded from a common nozzle. A method for producing an optical transmitter having a sea-island structure or a preform thereof according to any one of the above.
1 2 . 請求項 1ないし 8のいずれかに記載の光伝送体に 1層以上の被覆を施した 光ファイバコード。  12. An optical fiber cord in which the optical transmission body according to claim 1 is coated with at least one layer.
1 3 . 内部に長手方向に伸びる空孔を有し、 抗張力補強部材が埋設された熱可塑 性樹脂からなる長尺体と、 前記長尺体の空孔部に収納される請求項 1 2に記載の 光ファイバコードと、 を含む光ファイバケーブル。  13. A long body made of a thermoplastic resin having a hole extending in the longitudinal direction therein and having a tensile strength reinforcing member embedded therein, and the long body is housed in the hole of the long body. An optical fiber cable comprising:
1 4 . 請求項 1 2に記載の光ファイバコードを複数束ねたことを特徴とするバン ドルファイバ。  14. A bundle fiber, wherein a plurality of the optical fiber cords according to claim 12 are bundled.
PCT/JP2003/010969 2002-08-29 2003-08-28 Optical fiber with island structure WO2004021054A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003261812A AU2003261812A1 (en) 2002-08-29 2003-08-28 Optical fiber with island structure
US11/066,283 US20050141834A1 (en) 2002-08-29 2005-02-28 Optical fiber having sea and islands structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-251098 2002-08-29
JP2002251098A JP2004093639A (en) 2002-08-29 2002-08-29 Optical fiber having sea-island structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/066,283 Continuation US20050141834A1 (en) 2002-08-29 2005-02-28 Optical fiber having sea and islands structure

Publications (1)

Publication Number Publication Date
WO2004021054A1 true WO2004021054A1 (en) 2004-03-11

Family

ID=31972663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010969 WO2004021054A1 (en) 2002-08-29 2003-08-28 Optical fiber with island structure

Country Status (3)

Country Link
JP (1) JP2004093639A (en)
AU (1) AU2003261812A1 (en)
WO (1) WO2004021054A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362943B2 (en) * 2005-02-28 2008-04-22 3M Innovative Properties Company Polymeric photonic crystals with co-continuous phases
US20060193578A1 (en) * 2005-02-28 2006-08-31 Ouderkirk Andrew J Composite polymeric optical films with co-continuous phases
JP2008158406A (en) * 2006-12-26 2008-07-10 Teijin Fibers Ltd Fiber with optical transmission structure
CN113267845A (en) * 2017-08-31 2021-08-17 旭化成株式会社 Plastic optical fiber, plastic optical fiber cable with connector, optical communication system, and plastic optical fiber sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933737A (en) * 1995-07-18 1997-02-07 Asahi Chem Ind Co Ltd Multiple plastic optical fiber and cable for optical communication
JP2002097034A (en) * 2000-09-21 2002-04-02 Mitsubishi Cable Ind Ltd Method for manufacturing photonic crystal fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933737A (en) * 1995-07-18 1997-02-07 Asahi Chem Ind Co Ltd Multiple plastic optical fiber and cable for optical communication
JP2002097034A (en) * 2000-09-21 2002-04-02 Mitsubishi Cable Ind Ltd Method for manufacturing photonic crystal fiber

Also Published As

Publication number Publication date
JP2004093639A (en) 2004-03-25
AU2003261812A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
KR100768020B1 (en) Plastic optical fiber
JP3719735B2 (en) Optical fiber
CN1142517A (en) Graded-refractive-index optical plastic material and method for its production
JP2002071972A (en) Plastic optical fiber
US20040179798A1 (en) Method and apparatus for manufacturing plastic optical transmission medium
JPH085848A (en) Graded index type optical resin material and its production
US20050141834A1 (en) Optical fiber having sea and islands structure
WO2004019088A1 (en) Porous plastic optical transmission article and method for production thereof
JP3679155B2 (en) Manufacturing method of gradient index optical resin material
WO2004021054A1 (en) Optical fiber with island structure
JP3530630B2 (en) Method of manufacturing refractive index distribution type optical fiber and base material thereof
JP3419960B2 (en) Refractive index distribution type optical resin material
JPH11337781A (en) Coated plastic optical fiber and its manufacture
JP3533263B2 (en) Method for producing a preform for producing a refractive index distribution type optical fiber
JP3719734B2 (en) Plastic optical fiber cord and bundle fiber
JPH1031119A (en) Core/clad type optical resin material
JP3723250B2 (en) Manufacturing method of base material for refractive index distribution type optical fiber manufacturing
JP2009075143A (en) Optical transmission module
JP2020166223A (en) Plastic optical fiber
WO2020203920A1 (en) Plastic optical fiber
JP2003098365A (en) Plastic optical fiber and method for manufacturing the same
JPH08304638A (en) Plastic optical fiber
JP4095122B2 (en) Optical resin material and manufacturing method thereof
US20050056952A1 (en) Method of manufacturing multi-polymer optical fiber cable
JP2006215415A (en) Plastic optical fiber cable

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11066283

Country of ref document: US

122 Ep: pct application non-entry in european phase