JP2008158406A - Fiber with optical transmission structure - Google Patents

Fiber with optical transmission structure Download PDF

Info

Publication number
JP2008158406A
JP2008158406A JP2006349384A JP2006349384A JP2008158406A JP 2008158406 A JP2008158406 A JP 2008158406A JP 2006349384 A JP2006349384 A JP 2006349384A JP 2006349384 A JP2006349384 A JP 2006349384A JP 2008158406 A JP2008158406 A JP 2008158406A
Authority
JP
Japan
Prior art keywords
refractive index
fiber
optical transmission
low refractive
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349384A
Other languages
Japanese (ja)
Inventor
Mitsue Kamiyama
三枝 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2006349384A priority Critical patent/JP2008158406A/en
Publication of JP2008158406A publication Critical patent/JP2008158406A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber with optical transmission structure that can be manufactured at low cost, that has very little transfer loss, since low-refractive index polymers are surrounded by high-refractive index polymers while these are arranged accurately, and that has superior reliability and general practicality. <P>SOLUTION: The fiber with optical transmission structure is formed, by dispersing a low refractive index dispersion phase comprising low refractive index fiber-forming polymers in a high-refractive index continuous phase comprising high-refractive index fiber-forming polymers, wherein the diameter of the low-refractive index dispersion phase is 10 μm or smaller, refractive index difference between the high and low refractive index fiber-forming polymers is 0.001 or larger, the number of the low refractive index dispersion phases is 100 or larger, and an optical transmission section is provided in the center of the fiber cross section, the optical transmission section which is a part of the high-refractive index continuous phase. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光ファイバなどとして使用される光伝送繊維に関するものであり、繊維断面内の分散相の配置精度が極めて高いために低伝送損失を有し、しかも低コストで製造できる光伝送繊維に関するものである。   The present invention relates to an optical transmission fiber used as an optical fiber and the like, and relates to an optical transmission fiber that has a low transmission loss and can be manufactured at a low cost because the disposition phase of the dispersed phase in the fiber cross section is extremely high. Is.

光ファイバは、光伝送媒体として優れた特性を有しており、従来無機ガラス系ファイバが使用されている。またこれら無機ガラス系ファイバは、加工性が悪く、曲げ応力が弱いばかりでなく、高価であることから、プラスチックを基材とする光ファイバが開発され、実用化されている。   An optical fiber has excellent characteristics as an optical transmission medium, and conventionally an inorganic glass fiber is used. In addition, these inorganic glass-based fibers are not only poor in workability, weak in bending stress but also expensive, so that optical fibers based on plastics have been developed and put to practical use.

従来光ファイバは、高屈折率コア(芯)材料を、これより低屈折率のクラッド(鞘)材料で包囲した屈折率段階型(SI型)光ファイバーが多く提案されている。特許文献1には、伝送損失の少ないコア層とクラッド層のいずれにも含フッ素樹脂を用いた提案もされている。また、繊維断面中心から円周方向に向かう半径方向で材料分布させることにより屈折率を減衰させた屈折率分布型(GI型)の光ファイバも知られている(たとえば、特許文献2,6,7、非特許文献1など)。さらに特許文献3には、クラッド樹脂中にクラッド樹脂よりも屈折率が高い樹脂からなる直径50〜200μmの芯(コア)が7本以上埋め込まれた多芯(マルチコア)プラスチック光ファイバが提案されている。   Conventionally, many refractive index stepped (SI type) optical fibers have been proposed in which a high refractive index core material is surrounded by a lower refractive index cladding material. Patent Document 1 also proposes using a fluorine-containing resin for both the core layer and the clad layer with low transmission loss. A refractive index distribution type (GI type) optical fiber is also known in which the refractive index is attenuated by distributing the material in the radial direction from the center of the fiber to the circumferential direction (for example, Patent Documents 2, 6, and 6). 7, Non-Patent Document 1, etc.). Further, Patent Document 3 proposes a multi-core plastic optical fiber in which seven or more cores having a diameter of 50 to 200 μm made of a resin having a refractive index higher than that of the clad resin are embedded in the clad resin. Yes.

近年、空孔を含む構造の光ファイバーが知られている。この空孔が長軸方向に並列に周期的を配列させることにより、フォトニック結晶構造を構成した繊維が提案されている。
フォトニック結晶ファイバの導波原理に注目すると、二つに分類できる。一つは、コア−クラッド構造を有し、クラッドに空孔を存在させることでクラッドの実効屈折率をコア部屈折率よりも低下させ、全反射により光を導波する全反射型光ファイバである。もう一つは、フォトニックバンドギャップによって光を閉じ込めるフォトニックバンドギャップ型であり、構造に厳密な周期性とホールサイズの均一性が要求される。
In recent years, optical fibers having a structure including holes are known. A fiber having a photonic crystal structure has been proposed by arranging the holes periodically in parallel in the major axis direction.
Focusing on the waveguide principle of photonic crystal fibers, there are two categories. One is a total reflection type optical fiber that has a core-cladding structure and makes the effective refractive index of the clad lower than the refractive index of the core by making holes present in the clad, and guides light by total reflection. is there. The other is a photonic band gap type in which light is confined by a photonic band gap, and the structure requires strict periodicity and uniformity of hole size.

このようなフォトニック結晶ファイバに関して、以下の方法が提案されている。特許文献4には、SiOにGeOがドープされた材料を用いて、繊維軸方向に中実状に形成されたコア部と、該コア部の周囲を覆うように上記繊維軸方向に多数の細孔が細密状に配列された多孔部とを備えたフォトニッククリスタルファイバの製造方法を提案している。筒状のサポート管の孔内に、上記多孔部の細孔となる孔を有する筒状の多孔部用キャピラリと、該多孔部用キャピラリよりも小さい外径を有しかつ上記コア部となる棒状のコア部用ロッドとをそれぞれ配置してプリフォームを作成するプリフォーム作成工程と、上記プリフォームを加熱・延伸してファイバ状に線引きする工程からなるものが提案されている。 The following methods have been proposed for such a photonic crystal fiber. In Patent Document 4, using a material in which SiO 2 is doped with GeO 2, a core part formed in a solid shape in the fiber axis direction and a large number in the fiber axis direction so as to cover the periphery of the core part are disclosed. A method of manufacturing a photonic crystal fiber having a porous portion in which fine pores are arranged in a fine shape is proposed. A cylindrical porous portion capillary having a hole that becomes the pore of the porous portion in the hole of the cylindrical support tube, and a rod shape having an outer diameter smaller than that of the porous portion capillary and serving as the core portion There have been proposed ones comprising a preform creating step in which the core part rods are respectively arranged to create a preform, and a step in which the preform is heated and stretched and drawn into a fiber shape.

また、特許文献5には、屈折率の異なるフッ素系重合体を用いて海島型フォトニックファイバを提案している。あらかじめ分割したストランド状である低屈折率の有機化合物の重合体(島材)を高屈折率の有機化合物の重合体(海材)で作成した管内に配置して、共紡糸することによって海島構造を形成する方法や、溶融状態で押出ダイスを用いて低屈折率重合体を分流・細分化し、その周辺に高屈折率重合体を合流供給し、それらを共通のノズルから押出してプリフォームを作成し、さらに延伸によりフォトニック結晶ファイバを製造する方法が提案されている。   Patent Document 5 proposes a sea-island type photonic fiber using fluorine-based polymers having different refractive indexes. The island-island structure is obtained by placing a polymer of low-refractive-index organic compounds (island materials) in the form of strands divided in advance into a pipe made of a polymer of high-refractive-index organic compounds (sea materials) and co-spinning. A low refractive index polymer is divided and subdivided using an extrusion die in a molten state, and a high refractive index polymer is merged and fed to the periphery, and extruded from a common nozzle to create a preform. Further, a method for manufacturing a photonic crystal fiber by stretching has been proposed.

しかしながら、特許文献4、5ともアセンブリー方式でフォトニック結晶ファイバを作成する方法では、細いキャピラリの取り扱いやクリーン度の維持が困難であり、細密充填状態に束ねられた多数のキャピラリの形態を保持したまま融着一体化させる加工およびアセンブリーしたプリフォームを均一に線引きする品質安定性に問題がある。また、両者ともに、低屈折率相および空孔相の孔径を小さくすることが製造方法や材料加工など点において難しく、フォトニック結晶構造を精度よく成形するのが困難であり、ひいては低損失性等の性能の低下を招いている。   However, in both Patent Documents 4 and 5, it is difficult to handle thin capillaries and maintain cleanliness in the method of creating an assembly-type photonic crystal fiber, and many capillaries that are bundled in a tightly packed state are retained. There is a problem in the stability of quality in which the process of fusing and integrating as it is and drawing the assembled preform uniformly. In both cases, it is difficult to reduce the pore diameters of the low refractive index phase and the pore phase in terms of manufacturing method and material processing, and it is difficult to form a photonic crystal structure with high accuracy, which leads to low loss. This has led to a decrease in performance.

特開平2−244007号公報JP-A-2-244007 特開平5−173026号公報Japanese Patent Laid-Open No. 5-173026 特開平9−33737号公報JP 9-33737 A 特開2002−326831号公報JP 2002-326831 A 特開2004−93639号公報JP 2004-93639 A WO94/04949号パンフレットWO94 / 04949 pamphlet WO94/15005号パンフレットWO94 / 1505 pamphlet 「化学と工業」第45巻7号、1992年、P1261−1264“Chemistry and Industry” Vol. 45, No. 7, 1992, P1261-1264

本発明は、低コストで製造でき、低屈折率高分子を高屈折率高分子が取囲みこれらが精度よく配置されているため伝送損失が極めて少なく、信頼性、汎用実用性に優れた光伝送構造繊維を提供することを目的とする。   The present invention can be manufactured at a low cost, and a low refractive index polymer is surrounded by a high refractive index polymer and these are arranged with high precision, so there is very little transmission loss, and optical transmission with excellent reliability and general utility. An object is to provide a structural fiber.

本発明は、上記目的を達成するため、高屈折率繊維形成性高分子からなる高屈折率連続相中に、低屈折率繊維形成性高分子からなる低屈折分散相が分散され、該低屈折率分散相の直径が10μm以下であり、高屈折率繊維形成性高分子と低屈折率繊維形成性高分子との屈折率差が0.001以上であり、該低屈折率分散相の個数が100個以上、かつ繊維横断面の中央部には光伝送部が設けられており該光伝送部は該高屈折率連続相の一部であることを特徴とする光伝送構造繊維を提供する。   In order to achieve the above object, the present invention achieves the low refractive index by dispersing a low refractive dispersion phase composed of a low refractive index fiber-forming polymer in a high refractive index continuous phase composed of a high refractive index fiber forming polymer. The diameter of the refractive index dispersed phase is 10 μm or less, the refractive index difference between the high refractive index fiber forming polymer and the low refractive index fiber forming polymer is 0.001 or more, and the number of the low refractive index dispersed phases is There is provided an optical transmission structural fiber characterized in that there are 100 or more optical transmission sections provided at the center of the cross section of the fiber, and the optical transmission sections are part of the high refractive index continuous phase.

本発明によれば、低コストで製造でき、低屈折率高分子を高屈折率高分子が取囲みこれらが精度よく配置されているため伝送損失が極めて少なく、信頼性、汎用実用性に優れた光伝送構造繊維を提供することができる。   According to the present invention, the low refractive index polymer can be manufactured at low cost, and the high refractive index polymer is surrounded by the high refractive index polymer so that the transmission loss is extremely low, and the reliability and general practicality are excellent. An optical transmission structural fiber can be provided.

本発明の光伝送構造繊維は、高屈折率繊維形成性高分子(以下、単に高屈折率高分子と称することがある)の高屈折率連続相中に、低屈折率繊維形成性高分子(以下、単に低屈折率高分子と称することがある)の低屈折率分散相が分散されている光伝送構造繊維である。   The optical transmission structure fiber of the present invention includes a low refractive index fiber-forming polymer (in a high refractive index continuous phase of a high refractive index fiber forming polymer (hereinafter sometimes simply referred to as a high refractive index polymer). Hereinafter, it is an optical transmission structure fiber in which a low refractive index dispersed phase (which may be simply referred to as a low refractive index polymer) is dispersed.

本発明においては、上記光伝送構造繊維が、次に述べる低屈折率分散相の直径、高屈折率繊維形成性高分子と低屈折率繊維形成性高分子との屈折率差、低屈折率分散相の個数を同時に満足し、しかも繊維横断面の中央部には光伝送部が設けられており該光伝送部は該高屈折率連続相の一部である構造を有していることが肝要であり、これにより、低コストで、しかも低屈折率高分子を高屈折率高分子が取囲みこれらが精度よく配置されているため伝送損失が極めて少なく、信頼性、汎用実用性に優れた光伝送構造繊維を提供することができる。   In the present invention, the optical transmission structure fiber has the following diameter of the low refractive index dispersion phase, the refractive index difference between the high refractive index fiber forming polymer and the low refractive index fiber forming polymer, and the low refractive index dispersion. It is important that the number of phases is satisfied at the same time, and that an optical transmission part is provided at the center of the cross section of the fiber, and the optical transmission part has a structure that is a part of the high refractive index continuous phase. As a result, low-cost, high-refractive-index polymers are surrounded by high-refractive-index polymers, and these are arranged accurately, so that there is very little transmission loss, and light with excellent reliability and general practicality. Transmission structural fibers can be provided.

すなわち、低屈折率連続相の直径は10μm以下とする必要がある。これよりも低屈折率連続相の直径が大きい場合には、繊維製造工程中に、温度斑やそれに起因する張力斑などにより、大きさや配向度などの斑が繊維断面方向・繊維軸方向に発生し、これが伝送損失の原因となる。なお、低屈折率連続相の直径は、好ましくは1μm以下、より好ましくは50nm〜1μmである。   That is, the diameter of the low refractive index continuous phase needs to be 10 μm or less. When the diameter of the low-refractive index continuous phase is larger than this, spots such as size and degree of orientation are generated in the fiber cross-section direction and fiber axis direction due to temperature spots and tension spots caused by it during the fiber manufacturing process. This causes transmission loss. The diameter of the low refractive index continuous phase is preferably 1 μm or less, more preferably 50 nm to 1 μm.

また、高屈折率繊維形成性高分子と低屈折率繊維形成性高分子との屈折率差は0.001以上とする必要がある。上記屈折率差がこれより小さい場合には、伝送損失の原因となる。   Further, the difference in refractive index between the high refractive index fiber forming polymer and the low refractive index fiber forming polymer needs to be 0.001 or more. If the refractive index difference is smaller than this, transmission loss may be caused.

低屈折率分散相の個数は100個以上とする必要がある。低屈折率分散相の個数が100未満では、全反射伝送・フォトニックバンドギャップ伝送においても、実質的に光伝送部である中央(コア)部位と非光伝送部である低屈折率分散相の配在する部位との屈折率差が不十分であり、伝送損失の原因となる。よって、光伝送部と非光伝送部との境界を確実なものとするためには、低屈折率分散相の個数は100個以上、好ましくは300個以上、さらに好ましくは300〜2000個とする必要がある。   The number of low refractive index dispersed phases needs to be 100 or more. When the number of low refractive index dispersed phases is less than 100, even in total reflection transmission / photonic band gap transmission, the central (core) portion which is an optical transmission portion and the low refractive index dispersion phase which is a non-optical transmission portion substantially. The difference in refractive index from the site of distribution is insufficient, causing transmission loss. Therefore, in order to ensure the boundary between the optical transmission unit and the non-optical transmission unit, the number of low refractive index dispersed phases is 100 or more, preferably 300 or more, more preferably 300 to 2000. There is a need.

さらに、繊維横断面の中央部に光伝送部が、該光伝送部は該高屈折率連続相の一部として設けられていることは、全反射伝送体においても、欠陥導入によるフォトニックバンドギャップ伝送原理からなる伝送体とするためも必要である。   Furthermore, the optical transmission part is provided at the center of the cross section of the fiber, and the optical transmission part is provided as a part of the high refractive index continuous phase. It is also necessary to make a transmission body consisting of the transmission principle.

フォトニックバンドギャップ伝送体においては、0.1μから1μ直径程度の微小相を周期的に配列した構造における欠陥部においてその周期の2倍の波長の光を無損失で伝播する性質をもつ。すなわち、低屈折率分散相間の距離Λおよび高屈折率連続相の屈折率nと低屈折率連続相の屈折率n、低屈折率分散相の体積比率φ、入射角度(周期方向の垂線からの角度)θとしたとき、伝播波長λが下記関係式を満たしていることが必要である。
λ=2Λnsinθ(1+ψ/sinθ)−1/2
(ここで、ψ=3φ(m−1)/(m+2)、m=n/nである。)
なお、入射角度θ及び伝播波長λは光源や用途によって変更して使用することができる。
The photonic bandgap transmitter has the property of propagating light having a wavelength twice as long as a lossless portion in a defect portion in a structure in which minute phases having a diameter of about 0.1 μ to 1 μ are periodically arranged. That is, the refractive index n i of the refractive index n s and a low refractive index continuous phase distance Λ and a high refractive index the continuous phase between the low refractive index dispersion phase, the volume ratio of the low refractive index dispersion phase phi, perpendicular angle of incidence (the periodic direction Angle) from θ), the propagation wavelength λ must satisfy the following relational expression.
λ = 2Λn s sin θ (1 + ψ / sin 2 θ) −1/2
(Here, ψ = 3φ (m 2 -1 ) / (m 2 +2), it is m = n i / n s. )
The incident angle θ and the propagation wavelength λ can be changed according to the light source and application.

本発明において、高屈折率高分子としては、ポリカーボネート、アイソタクチックポリスチレン、シンジオタクチックポリスチレンなどを、低屈折率高分子としては、ポリメチルメタクリレートに代表されるアクリル系重合体、ポリメチルペンテン(ポリ4―メチルペンテン−1)などを好ましく使用できる。   In the present invention, polycarbonate, isotactic polystyrene, syndiotactic polystyrene or the like is used as the high refractive index polymer, and an acrylic polymer represented by polymethyl methacrylate, polymethylpentene ( Poly 4-methylpentene-1) and the like can be preferably used.

以上に説明した本発明の光伝送構造繊維は、例えば以下の方法により容易に製造することができる。すなわち、まず低屈折率高分子と高屈折率高分子とを、前者が分散相(島成分)、後者が連続相(海成分)となるように溶融紡糸する。溶融紡糸に用いられる紡糸口金としては、島成分を形成するための中空ピン群や微細孔群を有するものなど任意のものを用いることができる。例えば、中空ピンや微細孔より押出された島成分とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島型断面形成がなされるいかなる紡糸口金でもよい。ただし、繊維横断面の中央には、海成分からなる高屈折率連続相の一部をなすコア部を形成するために、中空ピンや微細孔による島形成が存在しない仕様とする。好ましく用いられる紡糸口金例を図1および図2に示すが、必ずしもこれらに限定されるものではない。なお、図1は、中空ピンを海成分樹脂貯め部分に吐出してそれを合流圧縮する方式であり、図2は中空ピンのかわりに微細孔方式で島を形成する方法である。   The optical transmission structure fiber of the present invention described above can be easily manufactured, for example, by the following method. That is, first, a low refractive index polymer and a high refractive index polymer are melt-spun so that the former is a dispersed phase (island component) and the latter is a continuous phase (sea component). As the spinneret used for melt spinning, any one such as a hollow pin group for forming an island component or a group having a fine hole group can be used. For example, any spinneret that forms an island-like cross-section by joining an island component extruded from a hollow pin or fine hole and an ocean component flow that is designed to fill the gap between them, and compressing this But you can. However, in order to form a core part forming a part of a high refractive index continuous phase composed of a sea component at the center of the fiber cross section, the specification is such that there is no island formation by hollow pins or fine holes. Examples of spinnerets that are preferably used are shown in FIGS. 1 and 2, but are not necessarily limited thereto. FIG. 1 shows a method in which hollow pins are discharged into a sea component resin reservoir portion and merged and compressed. FIG. 2 shows a method in which islands are formed by a fine hole method instead of hollow pins.

上記の紡糸口金から溶融吐出された繊維は、冷却風によって固化され、好ましくは1000〜3500m/minで巻き取られる。延伸性(固体塑性変形)の乏しい高分子を用いた場合は、溶融紡糸のみで巻き取ってそのまま製品としてもよい。また、延伸が必要な場合は、得られた未延伸繊維を一旦巻き取り別途延伸を行ってもよいし、あるいは未延伸繊維を一旦巻き取ることなくローラーに引き取り、引き続いて延伸を行い巻き取ってもよい。   The fiber melted and discharged from the above spinneret is solidified by cooling air and is preferably wound at 1000 to 3500 m / min. When a polymer having poor stretchability (solid plastic deformation) is used, the polymer may be wound up by only melt spinning and used as it is. If stretching is required, the obtained unstretched fiber may be temporarily wound up and separately stretched, or the unstretched fiber may be wound on a roller without being wound once, and then stretched and wound. Also good.

以下、実施例をあげて本発明をさらに具体的に説明する。なお、各評価項目は下記の方法で測定した。
(1)分散相(島)間距離、分散相(島)径のサイズ
透過型電子顕微鏡TEMで、倍率30000倍で繊維断面写真を撮影し測定した。
(2)屈折率
アタゴアッベ屈折計1型を使用し、ナトリウムDを用いて23℃の恒温で測定した。
Hereinafter, the present invention will be described more specifically with reference to examples. Each evaluation item was measured by the following method.
(1) Distance between dispersed phases (islands), size of dispersed phase (islands) Diameter was measured by taking a fiber cross-sectional photograph at a magnification of 30000 with a transmission electron microscope TEM.
(2) Refractive index Atago Abbe refractometer type 1 was used and measured using sodium D at a constant temperature of 23 ° C.

[実施例1]
高屈折率高分子にポリカーボネート(PC)、低屈折率高分子にポリメチルメタクリレート(PMMA)を用いて、それぞれ溶融温度290℃、250℃にてエクストルーダーで溶融状態とし、280℃に設定した低屈折率分散相の個数(島数)が500となる海島構造を形成する口金に導入した。吐出された海島断面繊維は、2000m/minの巻き取り速度で巻き取った。
[Example 1]
Polycarbonate (PC) is used as the high refractive index polymer and polymethyl methacrylate (PMMA) is used as the low refractive index polymer, and the melt is set to 280 ° C. using an extruder at a melting temperature of 290 ° C. and 250 ° C., respectively. It was introduced into a die forming a sea-island structure in which the number of refractive index dispersed phases (number of islands) was 500. The discharged sea-island cross-section fiber was wound at a winding speed of 2000 m / min.

得られた繊維のPMMAの分散相(島)の直径は1μmであり、その低屈折率分散相(島)間距離Λは2.5μm、光伝送部(コア部)の直径は5μ、繊維直径は400μm、高屈折率連続相の屈折率は1.48、低屈折率分散相の屈折率は1.38、である。得られた光伝送構造繊維(光ファイバ)に、NA0.25、波長1300nmのレーザー光を入射し、500mの伝送試験を実施した。伝送損失は25dB/km、帯域は4GHz・kmであった。   The diameter of the dispersed phase (island) of PMMA of the obtained fiber is 1 μm, the distance Λ between the low refractive index dispersed phases (islands) is 2.5 μm, the diameter of the optical transmission part (core part) is 5 μm, and the fiber diameter. Is 400 μm, the refractive index of the high refractive index continuous phase is 1.48, and the refractive index of the low refractive index dispersed phase is 1.38. A laser beam having an NA of 0.25 and a wavelength of 1300 nm was incident on the obtained optical transmission structure fiber (optical fiber), and a transmission test of 500 m was performed. The transmission loss was 25 dB / km, and the band was 4 GHz · km.

[実施例2]
高屈折率高分子にPC、低屈折率高分子にPMMAを用いて、それぞれ溶融温度290℃、250℃にてエクスとルーダーで溶融状態とし、280℃に設定した低屈折率分散相の個数(島数)が1000となる海島構造を形成する口金に導入した。吐出された海島断面繊維は、2000m/minで巻き取った。
[Example 2]
The number of low-refractive-index dispersed phases set to 280 ° C. using PC as the high-refractive index polymer and PMMA as the low-refractive index polymer, with the melt and the melting temperature set at 290 ° C. and 250 ° C. respectively. The number of islands was introduced into a base forming a sea-island structure with 1000. The discharged sea-island cross-section fiber was wound up at 2000 m / min.

得られた繊維のPMMAの低屈折率分散相(島)の直径は700nmであり、その低屈折率分散相(島)間距離は1.5μm、光伝送部(コア部)の直径は3μm、繊維直径は480μ、高屈折率連続相の屈折率は1.48、低屈折率分散相の屈折率は1.38である。得られた光伝送構造繊維(光ファイバ)に、NA0.25、波長1300nmのレーザー光を入射し、500mの伝送試験を実施した。伝送損失は17dB/km、帯域は4GHz・kmであった。また同ファイバをR10で180°の角度で曲げた時の損失は0.2dBであった。   The diameter of the low refractive index dispersed phase (island) of the obtained fiber PMMA is 700 nm, the distance between the low refractive index dispersed phases (islands) is 1.5 μm, the diameter of the optical transmission part (core part) is 3 μm, The fiber diameter is 480 μm, the refractive index of the high refractive index continuous phase is 1.48, and the refractive index of the low refractive index dispersed phase is 1.38. A laser beam having an NA of 0.25 and a wavelength of 1300 nm was incident on the obtained optical transmission structure fiber (optical fiber), and a transmission test of 500 m was performed. The transmission loss was 17 dB / km, and the band was 4 GHz · km. The loss when the fiber was bent at an angle of 180 ° with R10 was 0.2 dB.

[実施例3]
高屈折率高分子にPMMA、低屈折率高分子にポリ4−メチルペンンテン−1を用いて、それぞれ溶融温度250℃、270℃にてエクストルーダーで溶融状態とし、260℃に設定した低屈折率分散相の個数(島数)が500となる海島構造を形成する口金に導入した。吐出された海島断面繊維は、2000m/minの巻き取り速度で巻き取った。
[Example 3]
A low refractive index set to 260 ° C. using PMMA as the high refractive index polymer and poly-4-methylpentene-1 as the low refractive index polymer, and melted with an extruder at a melting temperature of 250 ° C. and 270 ° C., respectively. It was introduced into a die forming a sea-island structure in which the number of rate-dispersed phases (number of islands) was 500. The discharged sea-island cross-section fiber was wound at a winding speed of 2000 m / min.

得られた繊維のPMMAの低屈折率分散相(島)の直径は1μmであり、その低屈折率分散相(島)間距離Λは2.5μm、光伝送部(コア部)の直径は6μm、繊維直径は400μm、高屈折率連続相の屈折率は1.38、低屈折率分散相の屈折率は1.36、である。得られた光伝送構造繊維(光ファイバ)に、NA0.25、波長1300nmのレーザー光を入射し、500mの伝送試験を実施した。伝送損失は31dB/km、帯域は4GHz・kmであった。   The diameter of the low refractive index dispersed phase (island) of the obtained fiber PMMA is 1 μm, the distance Λ between the low refractive index dispersed phases (islands) is 2.5 μm, and the diameter of the optical transmission part (core part) is 6 μm. The fiber diameter is 400 μm, the refractive index of the high refractive index continuous phase is 1.38, and the refractive index of the low refractive index dispersed phase is 1.36. A laser beam having an NA of 0.25 and a wavelength of 1300 nm was incident on the obtained optical transmission structure fiber (optical fiber), and a transmission test of 500 m was performed. The transmission loss was 31 dB / km, and the band was 4 GHz · km.

[比較例1]
高屈折率高分子にPC、低屈折率高分子にがPMMAを用いて、それぞれ溶融温度290℃、250℃にてエクストルーダーで溶融状態とし、280℃に設定した低屈折率分散相の個数(島数)が25となる海島構造を形成する口金に導入した。吐出された海島断面繊維は、2000m/minの巻き取り速度で巻き取った。
[Comparative Example 1]
The number of low-refractive index dispersed phases set to 280 ° C. using a high-refractive-index polymer PC and a low-refractive-index polymer PMMA using a melt temperature of 290 ° C. and 250 ° C., respectively. It was introduced into a base forming a sea-island structure with 25 islands). The discharged sea-island cross-section fiber was wound at a winding speed of 2000 m / min.

得られた繊維のPMMAの低屈折率分散相(島)の直径は15μmであり、その低屈折率分散相(島)間距離Λは40μm、光伝送部(コア部)の直径は60μm、繊維直径は320μm、高屈折率連続相の屈折率は1.48、低屈折率分散相の屈折率は1.38である。得られた光ファイバに、NA0.25、波長1300nmのレーザー光を入射し、500mの伝送試験を実施した。伝送損失は100dB/km、帯域は4GHz・kmであった。   The diameter of the low refractive index dispersed phase (island) of the obtained fiber PMMA is 15 μm, the distance Λ between the low refractive index dispersed phases (islands) is 40 μm, the diameter of the optical transmission part (core part) is 60 μm, the fiber The diameter is 320 μm, the refractive index of the high refractive index continuous phase is 1.48, and the refractive index of the low refractive index dispersed phase is 1.38. A laser beam having an NA of 0.25 and a wavelength of 1300 nm was incident on the obtained optical fiber, and a 500 m transmission test was performed. The transmission loss was 100 dB / km, and the band was 4 GHz · km.

[実施例4]
高屈折率高分子にPC、低屈折率高分子にPMMAを用いて、それぞれ溶融温度290℃、250℃にてエクストルーダーで溶融状態とし、280℃に設定された低屈折率分散相の個数(島数)が1000となる海島構造で横断面中央部には低屈折率分散相(島)を形成しない、すなわち中央部に光伝送部(コア部)が形成される構造の口金に導入した。吐出された海島断面繊維は、2000m/minの巻き取り速度で巻き取った。
[Example 4]
The number of low-refractive index dispersed phases set to 280 ° C. using a high refractive index polymer and PMMA as a low refractive index polymer and melted with an extruder at melting temperatures of 290 ° C. and 250 ° C., respectively. It was introduced into a base having a structure in which a low-refractive index dispersion phase (island) is not formed in the central part of the cross section, that is, an optical transmission part (core part) is formed in the central part. The discharged sea-island cross-section fiber was wound at a winding speed of 2000 m / min.

得られた繊維のPMMAの低屈折率分散相(島)の直径は100nm、その低屈折率分散相(島)間距離Λは300nm、光伝送部(コア部)の直径は800nmであり、繊維外径は95μm、高屈折率連続相の屈折率は1.48、低屈折率分散相の屈折率は1.38である。得られた光ファイバにNA0.25、赤外線以上の光をカットした250〜1000nmの光を入射ししたところ、650nmの光が伝送され、500mの伝送試験を実施した。伝送損失は40dB/km、帯域は4GHz・kmであった。   The diameter of the low refractive index dispersed phase (island) of the obtained fiber PMMA is 100 nm, the distance Λ between the low refractive index dispersed phases (islands) is 300 nm, and the diameter of the optical transmission part (core part) is 800 nm. The outer diameter is 95 μm, the refractive index of the high refractive index continuous phase is 1.48, and the refractive index of the low refractive index dispersed phase is 1.38. When light of 250 to 1000 nm obtained by cutting light of NA 0.25 and infrared rays was incident on the obtained optical fiber, light of 650 nm was transmitted and a transmission test of 500 m was performed. The transmission loss was 40 dB / km and the band was 4 GHz · km.

本発明の光伝送構造繊維は、低コストで製造でき、伝送損失が極めて少なく、信頼性、汎用実用性に優れており、産業上の利用価値が極めて高いものである。   The optical transmission structure fiber of the present invention can be manufactured at low cost, has very little transmission loss, is excellent in reliability and general utility, and has extremely high industrial utility value.

本発明の光伝送構造繊維を紡糸するために用いる紡糸口金の概略図。1 is a schematic view of a spinneret used for spinning an optical transmission structure fiber of the present invention. 本発明の光伝送構造繊維を紡糸するために用いる他の紡糸口金の概略図。Schematic of another spinneret used for spinning the optical transmission structure fiber of the present invention. 本発明の光伝送構造繊維の横断面の一例を示す概略図。Schematic which shows an example of the cross section of the optical transmission structure fiber of this invention.

符号の説明Explanation of symbols

1:分配前分散相(島成分)高分子溜め部分
2:分散相(島成分)分配用導入孔
3:連続相(海成分)導入孔
4:分配前連続相(海成分)高分子溜め部分
5:個別連続相/分散相(海/島)構造形成部
6:連続相/分散相(海/島)全体合流絞り部
7:分散相(島成分)
8:連続相(海成分)
9:光伝送部(コア部)
10:光伝送部(コア部)直径
11:繊維直径
12:分散相(島)直径
13:分散相(島)間距離
1: Dispersed phase (island component) polymer reservoir portion 2 before distribution: Dispersed phase (island component) distribution introduction hole 3: Continuous phase (sea component) introduction hole 4: Continuous phase (sea component) polymer reservoir portion before distribution 5: Individual continuous phase / dispersed phase (sea / island) structure forming part 6: Continuous phase / dispersed phase (sea / island) whole converging part 7: Dispersed phase (island component)
8: Continuous phase (sea component)
9: Optical transmission part (core part)
10: Optical transmission part (core part) Diameter 11: Fiber diameter 12: Dispersed phase (island) Diameter 13: Distance between dispersed phases (islands)

Claims (4)

高屈折率繊維形成性高分子からなる高屈折率連続相中に、低屈折率繊維形成性高分子からなる低屈折分散相が分散され、該低屈折率分散相の直径が10μm以下であり、高屈折率繊維形成性高分子と低屈折率繊維形成性高分子との屈折率差が0.001以上であり、該低屈折率分散相の個数が100個以上、かつ繊維横断面の中央部には光伝送部が設けられており該光伝送部は該高屈折率連続相の一部であることを特徴とする光伝送構造繊維。   In a high refractive index continuous phase composed of a high refractive index fiber-forming polymer, a low refractive dispersion phase composed of a low refractive index fiber forming polymer is dispersed, and the diameter of the low refractive index dispersed phase is 10 μm or less, The refractive index difference between the high refractive index fiber forming polymer and the low refractive index fiber forming polymer is 0.001 or more, the number of the low refractive index dispersed phases is 100 or more, and the center part of the fiber cross section Is provided with an optical transmission part, and the optical transmission part is a part of the high refractive index continuous phase. 低屈折率分散相の直径が1μm以下である請求項1に記載の光伝送構造繊維。   The optical transmission structure fiber according to claim 1, wherein the diameter of the low refractive index dispersed phase is 1 μm or less. 低屈折率分散相の個数が300個以上である請求項1に記載の光伝送構造繊維。   The optical transmission structure fiber according to claim 1, wherein the number of low refractive index dispersed phases is 300 or more. 低屈折率分散相間の距離Λおよび高屈折率連続相の屈折率nsと低屈折率連続相の屈折率ni、低屈折率分散相の体積比率φ、入射角度(周期方向の垂線からの角度)θとしたとき、伝播波長λが下記関係式を満たしている請求項1に記載の光伝送構造繊維。
λ=2Λnsinθ(1+ψ/sinθ)−1/2
(ここで、ψ=3φ(m−1)/(m+2)、m=n/nである。)
The distance Λ between the low refractive index dispersed phases, the refractive index ns of the high refractive index continuous phase and the refractive index ni of the low refractive index continuous phase, the volume ratio φ of the low refractive index dispersed phase, and the incident angle (angle from the normal in the period direction). The optical transmission structure fiber according to claim 1, wherein the propagation wavelength λ satisfies the following relational expression, where θ is:
λ = 2Λn s sin θ (1 + ψ / sin 2 θ) −1/2
(Here, ψ = 3φ (m 2 -1 ) / (m 2 +2), it is m = n i / n s. )
JP2006349384A 2006-12-26 2006-12-26 Fiber with optical transmission structure Pending JP2008158406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349384A JP2008158406A (en) 2006-12-26 2006-12-26 Fiber with optical transmission structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349384A JP2008158406A (en) 2006-12-26 2006-12-26 Fiber with optical transmission structure

Publications (1)

Publication Number Publication Date
JP2008158406A true JP2008158406A (en) 2008-07-10

Family

ID=39659344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349384A Pending JP2008158406A (en) 2006-12-26 2006-12-26 Fiber with optical transmission structure

Country Status (1)

Country Link
JP (1) JP2008158406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045046A1 (en) * 2017-08-31 2019-03-07 旭化成株式会社 Plastic optical fiber, plastic optical fiber cable, plastic optical fiber cable with attached connectors, optical communication system, and plastic optical fiber sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469605A (en) * 1990-07-11 1992-03-04 Mitsubishi Rayon Co Ltd Multifilament type optical fiber made of plastic
JP2000035521A (en) * 1998-05-07 2000-02-02 Nippon Telegr & Teleph Corp <Ntt> Optical fiber
JP2001174661A (en) * 1999-12-16 2001-06-29 Mitsubishi Rayon Co Ltd Plastic multifilament type optical fiber, method for manufacturing the same and optical fiber cable
JP2004093639A (en) * 2002-08-29 2004-03-25 Asahi Glass Co Ltd Optical fiber having sea-island structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469605A (en) * 1990-07-11 1992-03-04 Mitsubishi Rayon Co Ltd Multifilament type optical fiber made of plastic
JP2000035521A (en) * 1998-05-07 2000-02-02 Nippon Telegr & Teleph Corp <Ntt> Optical fiber
JP2001174661A (en) * 1999-12-16 2001-06-29 Mitsubishi Rayon Co Ltd Plastic multifilament type optical fiber, method for manufacturing the same and optical fiber cable
JP2004093639A (en) * 2002-08-29 2004-03-25 Asahi Glass Co Ltd Optical fiber having sea-island structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045046A1 (en) * 2017-08-31 2019-03-07 旭化成株式会社 Plastic optical fiber, plastic optical fiber cable, plastic optical fiber cable with attached connectors, optical communication system, and plastic optical fiber sensor
JPWO2019045046A1 (en) * 2017-08-31 2020-07-16 旭化成株式会社 Plastic optical fiber, plastic optical fiber cable, plastic optical fiber cable with connector, optical communication system, and plastic optical fiber sensor
US11054548B2 (en) 2017-08-31 2021-07-06 Asahi Kasei Kabushiki Kaisha Plastic optical fiber, plastic optical fiber cable, connector-attached plastic optical fiber cable, optical communication system, and plastic optical fiber sensor
JP7035064B2 (en) 2017-08-31 2022-03-14 旭化成株式会社 Plastic fiber optics, plastic fiber optic cables, plastic fiber optic cables with connectors, optical fiber optics, and plastic fiber optic sensors

Similar Documents

Publication Publication Date Title
van Eijkelenborg et al. Recent progress in microstructured polymer optical fibre fabrication and characterisation
Zhang et al. Casting preforms for microstructured polymer optical fibre fabrication
US20050238307A1 (en) Nonlinear optical fibre method of its production and use thereof
KR100485998B1 (en) Method for Fabricating Optical Fiber Preform Using Extrusion Die
US7359603B2 (en) Constructing preforms from capillaries and canes
US20090052853A1 (en) Holey fiber and method of manufacturing the same
US20050018986A1 (en) Ring structures in optical fibres
JP2004522201A (en) Plastic photonic crystal fiber for terahertz wave transmission and method of manufacturing the same
US20090180746A1 (en) Holey fiber
CN104185805A (en) Device for converting the transverse spatial profile of intensity of a light beam, preferably using a microstructured optical fibre
CN113189697A (en) Chalcogenide high-birefringence decagonal photonic crystal fiber
CN101694536B (en) Method for manufacturing photonic crystal optical fiber coupler
JP2008158406A (en) Fiber with optical transmission structure
KR20040102782A (en) Preform of photonic crystal fiber and photonic crystal fiber using the same
WO2004053550A1 (en) Improvements relating to photonic crystal fibres
JP3871053B2 (en) Dispersion flat fiber
US20030136154A1 (en) Method for manufacturing optical fiber using ultrasonic drill
Oliveira Novel Techniques and Devices for Optical Communications and Sensing Technologies
Large et al. Microstructured polymer optical fibers: progress and promise
JP3848597B2 (en) Manufacturing method of plastic holey fiber
van Eijkelenborg et al. MICROSTRUCTURED POLYMER OPTICAL FIBRES-the exploration of a new class of fibres
JP3953647B2 (en) Image fiber
JP4082319B2 (en) Manufacturing method of plastic holey fiber
Bjarklev et al. Fabrication of photonic crystal fibres
Rahman et al. 3D printed hollow-core polymer optical fiber with six-pointed star cladding for the light guidance in the near-IR regime

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004