WO2004020693A1 - Cleaning method for substrate-processing device and the device - Google Patents

Cleaning method for substrate-processing device and the device Download PDF

Info

Publication number
WO2004020693A1
WO2004020693A1 PCT/JP2003/010507 JP0310507W WO2004020693A1 WO 2004020693 A1 WO2004020693 A1 WO 2004020693A1 JP 0310507 W JP0310507 W JP 0310507W WO 2004020693 A1 WO2004020693 A1 WO 2004020693A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
light
chamber
gas
intensity
Prior art date
Application number
PCT/JP2003/010507
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Oshima
Hiroshi Kannan
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to AU2003257621A priority Critical patent/AU2003257621A1/en
Publication of WO2004020693A1 publication Critical patent/WO2004020693A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like

Definitions

  • the present invention relates to a cleaning method of a substrate processing apparatus for removing a substance attached to a processing container or the like of the substrate processing apparatus, and a substrate processing apparatus capable of performing the cleaning.
  • a film forming apparatus for forming a thin film on a semiconductor wafer hereinafter simply referred to as a “wafer”
  • a film forming apparatus for chemically forming a thin film has been known.
  • a thin film is formed on a wafer by heating the wafer and supplying a processing gas into the chamber to cause a chemical reaction.
  • the reaction products adhere to the inner wall of the chamber after the thin film is formed on the wafer, the susceptor disposed in the chamber, and the like. If a thin film is formed on a wafer while the reaction product is attached to the inner wall of the chamber or the like, the reaction product may peel off from the inner wall or the like of the chamber and contaminate the wafer. For this reason, the inside of the chamber is periodically cleaned to remove reaction products adhering to the inner wall of the chamber and the like.
  • cleaning of a film forming apparatus is mainly performed by either a heating cleaning method in which a chamber or the like is heated to a high temperature or a plasma cleaning method in which plasma is generated in a chamber.
  • the heating cleaning has a problem that the chamber and the like must be heated to a high temperature.
  • plasma cleaning There is a problem that the chamber and the like are easily damaged because plasma is generated in the chamber. Disclosure of the invention
  • the present invention provides a method of cleaning a substrate processing apparatus capable of removing a substance to be cleaned at a low temperature and reducing damage to a processing container, and a method of cleaning such a substrate processing apparatus. It is an object of the present invention to provide a substrate processing apparatus which can obtain the same.
  • the cleaning method for a substrate processing apparatus includes a cleaning gas supply step of supplying a cleaning gas into a processing container in a state where a cleaning substance is present in a processing container of the substrate processing apparatus. And a light irradiation step of irradiating the processing vessel with light for exciting the cleaning gas.
  • the cleaning gas supply step and the light irradiation step may be performed at the same time, or the cleaning gas supply step may be performed before the light irradiation step.
  • the cleaning material is not particularly limited, for example, T i, W, and a metal such as A 1, a metal nitride such as T i N, S i O 2 such non-metal oxides, T Metal oxides such as a 2 O 5 , metal silicides such as WS i, and the like.
  • ADVANTAGE OF THE INVENTION According to the cleaning method of the substrate processing apparatus of this invention, the to-be-cleaned substance can be removed at low temperature, and the damage of a processing container can be reduced.
  • the clean Lung gas may include at least one of a chlorine-containing gas and a fluorine-containing gas.
  • a chlorine-containing gas for example, C 1 2 and the like.
  • C 1 2 When moistened with C 1 2 to click leaning gas, if example embodiment, T i, W, and a metal such as A 1, can be removed metal nitride such as T i N and the like.
  • the fluorine-containing gas include SF 6 and NF 3 .
  • SF 6 is included in the cleaning gas
  • a metal such as T i, and W, metal nitrides, such as T i N, nonmetal oxides such as S 1 O 2, T a 2 0 good UNA metal oxide 5, WS i
  • metal silicides Such as metal silicides.
  • a metal such as T i, and W, yo UNA metal nitride T i N, yo UNA nonmetal oxides S i O 2
  • Metal oxides such as Ta 2 O 5 and metal silicides such as WS i can be removed.
  • the light is preferably ultraviolet light or infrared light. If the cleaning gas moistened with C 1 2, C 1 2 is excited at a wavelength of approximately 3 3 2 nm. When SF 6 is included in the cleaning gas, SF 6 is excited at a wavelength of about 947 nm. When NF 3 is included in the clean gas, NF 3 is excited at a wavelength of about 120 to 150 nm. By using ultraviolet light or infrared light as the light, the cleaning gas can be surely excited.
  • the cleaning method of the substrate processing apparatus includes a light intensity measuring step of measuring the intensity of light transmitted through the light transmitting window of the processing container, and an end point detection of detecting an end point of the cleaning based on the measured light intensity. Preferably, the method further comprises a step. By further providing the light intensity measuring step and the end point detecting step, it is possible to suppress the consumption of the cleaning gas due to insufficient or excessive cleaning. .
  • the cleaning method of the substrate processing apparatus includes a light intensity measuring step of measuring the intensity of light reflected by an inner wall of the processing container or a member disposed in the processing container; and a method of measuring the intensity of the measured light.
  • the method may further include an end point detection step of detecting an end point of the cleaning based on the result.
  • the member provided in the processing container may be any member as long as it is a member existing in the processing container.
  • a substrate processing apparatus includes: a processing container that stores a substrate; a processing gas supply system that supplies a processing gas for performing processing to the substrate into the processing container; and a cleaning substance to be cleaned in the processing container. It is characterized by comprising a cleaning gas supply system for supplying a cleaning gas for removal, and a light source for generating light for exciting the cleaning gas supplied into the processing container.
  • a cleaning gas supply system for supplying a cleaning gas for removal
  • a light source for generating light for exciting the cleaning gas supplied into the processing container.
  • FIG. 1 is a schematic configuration diagram of a film forming apparatus according to the first embodiment.
  • FIG. 2 is a flowchart showing a flow of film formation performed by the film formation apparatus according to the first embodiment.
  • FIG. 3 is a flowchart showing the flow of cleaning performed in the film forming apparatus according to the first embodiment.
  • FIGS. 4A and 4B are schematic process diagrams of cleaning according to the first embodiment.
  • FIG. 5 is a schematic configuration diagram of a film forming apparatus according to the second embodiment.
  • FIG. 6 is a flowchart showing a cleaning flow performed in the film forming apparatus according to the second embodiment.
  • FIG. 7 is a schematic process diagram of a cleaning device according to the second embodiment.
  • FIG. 1 is a schematic configuration diagram of a film forming apparatus according to the present embodiment.
  • a film forming apparatus 1 includes a chamber 2 formed of, for example, aluminum / stainless steel.
  • the chamber 2 may be subjected to a surface treatment such as an alumite treatment.
  • An opening 2A is formed in a side portion of the chamber 2, and a semiconductor wafer (hereinafter, simply referred to as a "wafer") W is loaded into the chamber 2 near the opening 2A or when a wafer W is loaded.
  • a goo valve 3 that opens and closes when unloading from the chamber 2 is installed.
  • a substantially disk-shaped susceptor 4 on which the wafer W is placed is disposed.
  • the susceptor 4 is made of, for example, ceramic box, such as A 1 N and A 1 2 0 3.
  • a heater 5 for heating the susceptor 4 to a predetermined temperature is provided inside the susceptor 4. By heating the susceptor 4 to a predetermined temperature with the heater 5, the wafer W placed on the susceptor 4 is heated to a predetermined temperature.
  • holes 4A for raising and lowering the wafer W are formed in a vertical direction.
  • wafer elevating pins 6 that can be inserted into the hole 4A are provided.
  • the wafer lifting pins 6 are fixed to the wafer lifting pin support 7 so that the wafer lifting pins 6 stand upright.
  • An air cylinder 8 is fixed to the wafer elevating pin support 7.
  • the rod 8A of the air cylinder 8 is contracted by the driving of the air cylinder 8, the wafer elevating pins 6 are lowered and the wafer W is placed on the susceptor 4.
  • the rod 8 A is extended by driving the air cylinder 8, so that the wafer elevating pins 6 are raised, and the wafer W is separated from the susceptor 4.
  • an elastic bellows 9 that covers the rod 8A is provided inside the chamber 2, an elastic bellows 9 that covers the rod 8A is provided. By covering rod 8A with bellows 9, the airtightness of chamber 2 ⁇ ⁇ ⁇ ⁇ is maintained.
  • T i C 1 4 T i 'C 1 4 supply system 2 0 supplied into the chamber is connected.
  • T i C 1 4 supply system 2 0 has a T i C 1 4 sources 2 1 containing a T i C l 4.
  • the T i C 1 4 supply pipe 2 2, a mass flow controller (MF C) 2 4 to adjust the flow rate of the valve 2 3 and T i C 1 4 is interposed.
  • MF C mass flow controller
  • NH 3 supply system 3 0 comprises a NH 3 source 3 1 containing the NH 3.
  • the NH 3 supply pipe 32 includes a valve 33 and a mass flow controller 34 for adjusting the flow rate of NH 3 . When the valve 33 is opened while the mass flow controller 34 is adjusted, NH 3 is supplied into the chamber 2 from the NH 3 supply source 31 at a predetermined flow rate.
  • a controller 35 for controlling the valves 23, 33 is electrically connected to the valves 23, 33 so that the valves 23, 33 are opened alternately. By controlling such valves 23 and 33 with the controller 35, the wafer A TiN film having excellent step coverage is formed on W.
  • the T i C 1 4 supply pipe 2 2, C 1 2 supply system 4 0 supplies the C 1 2 for removing T i N attached to Chiyanba 2 inner wall are connected.
  • C 1 2 supply system 4 0 has a C 1 2 source 4 1 containing the C 1 2.
  • the C 1 2 source 4 1, C 1 2 supply pipe 4 2, one end of which is connected to the T i C 1 4 supply pipe 2 2 is connected.
  • the C 1 2 supply pipe 4 2 a mass flow configuration preparative roller 4 4 to adjust the flow rate of the valve 4 3 and C 1 2 is that intervene.
  • Ri by the fact wither valve 4 3 is opened, C 1 2 is supplied into the chamber 2 from the C 1 2 source 4 1 at a predetermined flow rate.
  • An exhaust system 50 for exhausting the inside of the chamber 2 is connected to the bottom of the chamber 2.
  • the exhaust system 50 is provided with an auto-chassis controller (APC) 51 for controlling the pressure in the chamber 2.
  • APC auto-chassis controller
  • the pressure in the chamber 2 is controlled to a predetermined pressure by adjusting the conductance by the automatic press controller 51.
  • a pressure reducing pump (not shown) is connected to the auto pressure controller 51 via an exhaust pipe 52.
  • the inside of the chamber 2 is evacuated by operating a pressure reducing pump (not shown).
  • An opening is formed in the upper part of the chamber 2.
  • An ultraviolet transmitting window 61 made of a material that transmits ultraviolet light, such as quartz, is fitted into the opening.
  • a seal member 62 is provided between the chamber 2 and the ultraviolet transmission window 61. By providing the seal member 62, airtightness in the chamber 2 is maintained.
  • a mercury lamp 63 for generating ultraviolet light is provided above the ultraviolet light transmitting window 61.
  • ultraviolet rays are generated from the mercury lamp 63 and ultraviolet rays are introduced into the chamber 2 through the ultraviolet transmitting window 61. Is done.
  • a reflecting plate 64 On the back side of the mercury lamp 63, there is provided a reflecting plate 64 that reflects the ultraviolet rays emitted from the mercury lamp 63 and guides the ultraviolet rays to the ultraviolet ray transmitting window 61.
  • an optical sensor 65 that mainly measures the intensity of light transmitted through the ultraviolet transmitting window 61 is provided.
  • the amount of TiN attached to the ultraviolet transmission window 61 increases, so that the intensity of light measured by the optical sensor 65 decreases. That is, when the TiN attached to the ultraviolet transmitting window 61 decreases due to the cleaning, the light reflected by the Tin decreases, and the intensity of the light measured by the optical sensor 65 increases. From this, by measuring the intensity of the light transmitted through the ultraviolet transmission window 61, the degree of Tally Jung can be known.
  • the optical sensor 65 and the mercury lamp 63 detect the end point of the clearing based on the measurement result of the optical sensor 65, and control the bulb 43 and the mercury lamp 63 based on the detection result.
  • Controller 66 is electrically connected.
  • the controller 66 includes a memory 66A and a CPU 66B.
  • the memory 66A stores light intensity information measured in a state where the Tin is not attached to the ultraviolet ray transmitting window 61.
  • the CPU 66B calculates the memory 66A from the light intensity information stored in the memory 66A and the light intensity information measured by the light sensor 65 during the cleaning.
  • the ratio of the light intensity measured during the clearing to the light intensity stored in the memory is calculated, and the calculated result is a predetermined numerical value N or more, for example, 0.9 or more. Is determined.
  • the predetermined numerical value N satisfies 0 ⁇ N ⁇ 1. If the calculation result is determined to be less than the predetermined numerical value N, a control signal is transmitted from the CPU 66B to the optical sensor 65 so that the light intensity measurement by the optical sensor 65 is performed again. On the other hand, if it is determined that the calculation result is equal to or greater than the predetermined numerical value N, it is determined that the cleaning end point has been detected, and A control signal is sent from the CPU 66B to the power supply (not shown) for turning on the bulb 43 and the mercury lamp 63, so that the bulb 43 is closed and the lighting of the mercury lamp 63 is stopped.
  • FIG. 2 is a flowchart showing a flow of film formation performed by the film formation apparatus 1 according to the present embodiment.
  • a vacuum pump (not shown) is operated to evacuate the chamber 2. Also, an electric current is applied to the heater 5 to heat the susceptor 4 (step 101).
  • the gate valve 3 is opened, and the transfer arm (not shown) holding the wafer W extends, and the inside of the chamber 2 is extended.
  • the wafer W is carried in (step 102).
  • the transfer arm is retracted, and the wafer W is placed on the wafer elevating pins 6.
  • the wafer elevating pins 6 are lowered by the driving of the air cylinder 8, and the wafer W is mounted on the susceptor 4 (step 103).
  • valve 2 3 is opened, T i C 1 4 is It is supplied into the chamber 2 at a flow rate of about 30 sccm (step 104).
  • T i C 1 4 the supplied contacts the wafer W, T i C 1 4 is adsorbed on the wafer W surface.
  • valve 2 3 is closed, the supply of T i C 1 4 is stopped, T i C 1 4 remaining in the chamber 2 is discharged from the chamber 2 (Step 1 0 5). At the time of discharge, the chamber 2 The pressure is maintained at about 1. 3 3 X 1 0- 2 P a.
  • valve 33 is opened, and NH 3 is supplied into the chamber 2 at a flow rate of about 100 sccm (step 106).
  • NH 3 comes into contact with T i C 1 4 adsorbed on the wafer W, by the reaction with T i C 1 4 and NH 3, T i N film is formed on the wafer W.
  • the valve 33 is closed, the supply of NH 3 is stopped, and NH 3 and the like remaining in the chamber 2 are discharged from the chamber 2 (step 107).
  • the pressure in the chamber 2 is about 1 3 3 X 1 0 - is maintained at 2 P a..
  • step 104 to step 107 After a lapse of a predetermined time, the process from step 104 to step 107 is regarded as one cycle, and it is determined by the central controller (not shown) whether or not the process has been performed for about 200 cycles (step 10). 8). If it is determined that the processing has not been performed for about 200 cycles, the steps from step 104 to step 107 are performed again.
  • the wafer elevating pins 6 are raised by driving the air cylinder 8, and the wafer W is separated from the susceptor 4 (Step 109).
  • a TiN film of about 100 nm is formed on the wafer W.
  • the transfer arm (not shown) extends, and the transfer arm holds the wafer W. Finally, the transfer arm is retracted, and the wafer W is unloaded from the chamber 2 (step 110).
  • FIG. 3 is a flow chart showing the flow of cleaning performed in the film forming apparatus 1 according to the present embodiment
  • FIGS. 4A and 4B are diagrams of the cleaning according to the present embodiment. It is a schematic process diagram.
  • a vacuum pump (not shown) is activated to evacuate the chamber 2 Done.
  • An electric current is applied to the heaters 5 and 10 to heat the chamber 2 and the susceptor 4 (step 201A).
  • valve 43 is opened, and as shown in FIG. Uni C 1 2 it shown is supplied into the Chan server 2 at a flow rate of about 5 0 0 sccm.
  • the mercury lamp 63 is turned on, and ultraviolet rays are emitted from the mercury lamp 63 (step 202A).
  • mercury lamp 6 3 is turned with C 1 2 is supplied into the chamber 2, click re-learning in the chamber 2 is performed, T i N attached to the chamber or the like are removed.
  • step 203A the intensity of light transmitted through the ultraviolet transmitting window 61 is measured by the optical sensor 65 as shown in FIG. 4B (step 203A).
  • the information on the light intensity measured by the light sensor 65 is sent to the CPU 66B, and the CPU 66B performs cleaning on the light intensity stored in the memory 66A.
  • the ratio of the light intensity measured during the operation is calculated, and it is determined whether the calculation result is equal to or greater than a predetermined value N (Step 204A).
  • C The calculation result is smaller than the predetermined value N. If it is determined, a control signal is sent from the CPU 66B to the optical sensor 65, and the light intensity is measured again. If the calculation result is determined to be equal to or greater than the predetermined value N, a control signal from the CPU 66 B turns on the bulb 43 and the mercury lamp 63. Power supply, the valve 43 is closed and the mercury lamp 63 is turned off (step 205A). Thus, the cleaning in the chamber 2 is completed.
  • the cleaning corresponding to the adhesion state of the TiN is performed. Can be. As a result, it is possible to suppress the consumption of the cleaning gas due to insufficient cleaning or excessive cleaning. In addition, since excessive cleaning can be suppressed, throughput can be improved.
  • FIG. 5 is a schematic configuration diagram of a film forming apparatus according to the present embodiment. As shown in FIG. 5, a lamp 71 is provided above the ultraviolet ray transmitting window 61. The lamp 71 is arranged at an angle such that generated light is mainly reflected by the susceptor 4.
  • a reflector 7 2 that reflects the light emitted from the lamp 71 and guides the reflected light to the susceptor 4 are arranged.
  • An optical sensor 65 that mainly measures the intensity of light reflected by the susceptor 4 is embedded in the ultraviolet transmission window 61.
  • the reflectance of TiN is higher than that of the ceramic.
  • susceptor 4 is formed from ceramics. Therefore, when the TiN attached to the susceptor 4 decreases due to the cleaning, the light intensity measured by the optical sensor 65 decreases. From this, by measuring the intensity of the light reflected by the susceptor 4, the degree of the clearing can be known.
  • the memory 66 A of the controller 66 of the present embodiment stores the intensity information of the light reflected by the susceptor 4, which is measured in a state where the TiN does not adhere to the susceptor 4.
  • the CPU 66B stores the light intensity information stored in the memory 66A based on the light intensity information stored in the memory 66A and the light intensity information measured during the cleaning. The ratio of the light intensity measured during cleaning to the light intensity is calculated, and it is determined whether or not the calculation result is a predetermined numerical value N or less, for example, 1.1 or less. .
  • the predetermined numerical value N satisfies 1 ⁇ N.
  • a control signal for performing the light intensity measurement by the optical sensor 65 again is transmitted from the CPU 66 B to the optical sensor 65.
  • the valve 43 is closed, and the lighting of the mercury lamp 63 is stopped.
  • a control signal is sent from the CPU 66 B to a power source (not shown) for turning on the bulb 43 and the mercury lamp 63.
  • FIG. 6 is a flow chart showing the flow of clean Jung performed in the film forming apparatus 1 according to the present embodiment
  • FIG. 7 relates to the present embodiment
  • FIG. 3 is a schematic process diagram of a cleaning process.
  • a vacuum pump (not shown) is operated to evacuate the chamber 2. Further, the chamber 2 and the susceptor 4 are heated (Step 201B).
  • C 1 2 is a flow rate of about 5 0 0 sccm It is supplied into the chamber 2. Also, the mercury lamp 63 is turned on, and the mercury lamp 63 emits ultraviolet rays. (Step 202B). Thereafter, while the cleaning is being performed, the lamp 71 is turned on as shown in FIG. 7 and the intensity of the light reflected by the susceptor 4 is measured by the optical sensor 65 (step 203). B).
  • the light intensity information measured by the light sensor 65 is sent to the CPU 66B, and the CPU 66B performs a clean jungle for the light intensity stored in the memory 66A.
  • the ratio of the light intensity measured during the operation is calculated, and it is determined whether or not the calculation result is a predetermined numerical value N or less (step 204B). If it is determined that the calculation result exceeds the predetermined numerical value N, a control signal is sent from the CPU 66 B to the optical sensor 65, and the light intensity is measured again. If it is determined that the calculation result is equal to or smaller than the predetermined numerical value N, a control signal is sent from the CPU 66 B to a power source (not shown) for turning on the bulb 43 and the mercury lamp 63, and the valve 43 is turned on. When the lamp is closed, the lighting of the mercury lamp 63 is stopped (step 205B). As a result, the clearing in the chamber 2 is terminated.
  • the present invention is not limited to the description in the above embodiment, and the structure, the material, the arrangement of each member, and the like can be appropriately changed without departing from the gist of the present invention.
  • it measures the intensity of light emitted from the mercury lamp 6 3 for exciting the C l 2
  • Unaryo of facilities embodiment may measure the intensity of light emitted from another lamp.
  • the intensity of the light emitted from the lamp 71 Ru another lamp der may be measured.
  • the intensity of light reflected by the susceptor 4 is measured, the intensity of light reflected by the inner wall of the chamber 2 or another member provided inside the chamber 2 may be measured.
  • the intensity of light is measured by the optical sensor 65, but the intensity of each wavelength of light may be measured by a spectroscope.
  • the mercury lamp 63 is not turned on during the film formation, but the mercury lamp 63 may be turned on during the film formation.
  • T i C 1 4 and NH 3 As a gas for forming, the use of the T i C 1 4 and NH 3, it is also possible to use other gases.
  • T i [N (CH 3) 2] 4 (T DM AT) and NH 3 or T i [N (C 2 H 5) 2] 4 (TDEAT) and NH 3 is on the wafer W
  • T a F 5 and NH 3 T a C 1 5 and NH 3, T a B r 5 and NH 3, or in the case of using a T a I 5 and NH 3 is, T a N on the wafer W A film is formed.
  • Ta (OC 2 H 5 ) 5 and O 2 Ta (OC 2 H 5 ) 5 and H 2 O, or Ta (OC 2 H 5 ) 5 and H 2 O 2
  • Ta 2 O 5 film is formed on the wafer W.
  • supply T i C 1 4 and NH 3 are alternately it may supply these gases simultaneously. The same applies to the other gases described above.
  • T i C 1 4 or the like is evacuated from Chiyanba inside 2, also supply a purge gas such as N 2 into the chamber 2 during the exhaust It is possible.
  • the wafer W is used, it may be a glass substrate.
  • the film forming apparatus is described.
  • the present invention is not limited to the film forming apparatus but can be applied to an etching apparatus.
  • the etching gas may be supplied alternately or simultaneously.
  • the cleaning method and the substrate processing apparatus for a substrate processing apparatus according to the present invention can be used in the semiconductor manufacturing industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A cleaning method for a substrate-processing device has a cleaning gas supply step for supplying cleaning gas in a processing container of the substrate-processing device with substances to be cleaned existing in the container and has a light radiation step for radiating light to inside the container to excite the cleaning gas.

Description

明 細 書 基板処理装置のク リ一二ング方法及び基板処理装置 技術分野  Description Cleaning method for substrate processing apparatus and substrate processing apparatus
本発明は、 基板処理装置の処理容器等に付着した物質を取り除く基板 処理装置のク リ一二ング方法及ク リ一二ングが行い得る基板処理装置に 関する。 背景技術  The present invention relates to a cleaning method of a substrate processing apparatus for removing a substance attached to a processing container or the like of the substrate processing apparatus, and a substrate processing apparatus capable of performing the cleaning. Background art
従来から、 半導体ウェハ (以下、 単に 「ウェハ」 という。) 上に薄膜を 形成する成膜装置と しては、 化学的に薄膜を形成する成膜装置が知られ ている。 このよ うな成膜装置では、 ウェハを加熱すると ともに処理ガス をチャンバ内に供給し、 化学反応を起こさせることによ り、 ウェハ上に 薄膜を形成している。  2. Description of the Related Art Conventionally, as a film forming apparatus for forming a thin film on a semiconductor wafer (hereinafter simply referred to as a “wafer”), a film forming apparatus for chemically forming a thin film has been known. In such a film forming apparatus, a thin film is formed on a wafer by heating the wafer and supplying a processing gas into the chamber to cause a chemical reaction.
ところで、 ウェハに薄膜が形成された後のチャンバ内壁及びチャンバ 内に配設されたサセプタ等には、 反応生成物が付着している。 チャンバ 内壁等に反応生成物が付着している状態で、ウェハに薄膜を形成すると、 反応生成物がチャンバ内壁等から剥離し、ウェハを汚染することがある。 このようなことから、 定期的にチャンバ内をク リーニングして、 チャン バ内壁等に付着している反応生成物を取り除いている。  By the way, the reaction products adhere to the inner wall of the chamber after the thin film is formed on the wafer, the susceptor disposed in the chamber, and the like. If a thin film is formed on a wafer while the reaction product is attached to the inner wall of the chamber or the like, the reaction product may peel off from the inner wall or the like of the chamber and contaminate the wafer. For this reason, the inside of the chamber is periodically cleaned to remove reaction products adhering to the inner wall of the chamber and the like.
現在、 成膜装置のク リーニングは、 主に、 チャンバ等を高温に加熱し て行う加熱ク リーニング、 或いはチャンバ内にプラズマを発生させて行 うプラズマク リーユングのいずれかの方法により行われている。  At present, cleaning of a film forming apparatus is mainly performed by either a heating cleaning method in which a chamber or the like is heated to a high temperature or a plasma cleaning method in which plasma is generated in a chamber.
しかしながら、 加熱ク リーニングでは、 チャンバ等を高温に加熱しな ければならないという問題がある。 また、 プラズマク リーニングでは、 チャンバ内にプラズマを発生させるためにチャンバ等が損傷し易いとい う問題がある。 発明の開示 However, the heating cleaning has a problem that the chamber and the like must be heated to a high temperature. In plasma cleaning, There is a problem that the chamber and the like are easily damaged because plasma is generated in the chamber. Disclosure of the invention
本発明は、 被ク リーニング物質を低温で取り除く ことができ、 かつ処 理容器の損傷を低減させることができる基板処理装置のク リ一二ング方 法及びそのよ うなク リ一二ングを行い得る基板処理装置を提供すること を目的とする。  The present invention provides a method of cleaning a substrate processing apparatus capable of removing a substance to be cleaned at a low temperature and reducing damage to a processing container, and a method of cleaning such a substrate processing apparatus. It is an object of the present invention to provide a substrate processing apparatus which can obtain the same.
本発明の基板処理装置のク リ一ユング方法は、 基板処理装置の処理容 器内に被ク リーニング物質が存在している状態で、 処理容器内にク リー ニングガスを供給するク リーニングガス供給工程と、 処理容器内に前記 ク リ一二ングガスを励起させる光を照射する光照射工程とを具備するこ とを特徴と している。 ク リ一二ングガス供給工程と光照射工程とは同時 に、 或いはク リ一二ングガス供給工程が光照射工程より も前に行われて もよい。 また、 被ク リーニング物質は、 特に限定されないが、 例えば、 T i、 W、 及び A 1 のような金属、 T i Nのような金属窒化物、 S i O 2ような非金属酸化物、 T a 2 O 5のよ うな金属酸化物、 W S i のよ うな 金属珪化物等が挙げられる。 本発明の基板処理装置のク リ一二ング方法 によれば、 被ク リーニング物質を低温で取り除く ことができ、 かつ処理 容器の損傷を低減させることができる。 The cleaning method for a substrate processing apparatus according to the present invention includes a cleaning gas supply step of supplying a cleaning gas into a processing container in a state where a cleaning substance is present in a processing container of the substrate processing apparatus. And a light irradiation step of irradiating the processing vessel with light for exciting the cleaning gas. The cleaning gas supply step and the light irradiation step may be performed at the same time, or the cleaning gas supply step may be performed before the light irradiation step. Further, the cleaning material is not particularly limited, for example, T i, W, and a metal such as A 1, a metal nitride such as T i N, S i O 2 such non-metal oxides, T Metal oxides such as a 2 O 5 , metal silicides such as WS i, and the like. ADVANTAGE OF THE INVENTION According to the cleaning method of the substrate processing apparatus of this invention, the to-be-cleaned substance can be removed at low temperature, and the damage of a processing container can be reduced.
上記ク リ一ユングガスは、 塩素含有ガス及びフッ素含有ガスの少なく ともいずれかを含んでいてもよい。 塩素含有ガスと しては、 例えば、 C 1 2等が挙げられる。 ク リーニングガスに C 1 2を含ませた場合には、 例 えば、 T i、 W、 及び A 1 のような金属、 T i Nのような金属窒化物等 を取り除く ことができる。 フッ素含有ガスと しては、 例えば、 S F 6、 N F 3等が挙げられる。 ク リーニングガスに S F 6を含ませた場合には、 例えば、 T i 、 及び Wのような金属、 T i Nのような金属窒化物、 S 1 O 2のような非金属酸化物、 T a 2 0 5のよ うな金属酸化物、 W S i のよ うな金属珪化物等を取り除く ことができる。 また、 ク リーニングガスに N F 3を含ませた場合には、 例えば、 T i 、 及び Wのような金属、 T i Nのよ うな金属窒化物、 S i O 2のよ うな非金属酸化物、 T a 2 O 5のよ うな金属酸化物、 W S i のよ うな金属珪化物等を取り除く ことができる。 ク リ一ユングガスに塩素含有ガス及びフッ素含有ガスの少なく ともいず れかを含ませることにより、 金属等を取り除く ことができる。 The clean Lung gas may include at least one of a chlorine-containing gas and a fluorine-containing gas. Is a chlorine-containing gas, for example, C 1 2 and the like. When moistened with C 1 2 to click leaning gas, if example embodiment, T i, W, and a metal such as A 1, can be removed metal nitride such as T i N and the like. Examples of the fluorine-containing gas include SF 6 and NF 3 . If SF 6 is included in the cleaning gas, For example, a metal such as T i, and W, metal nitrides, such as T i N, nonmetal oxides such as S 1 O 2, T a 2 0 good UNA metal oxide 5, WS i Such as metal silicides. Further, when moistened with NF 3 in click leaning gas, for example, a metal such as T i, and W, yo UNA metal nitride T i N, yo UNA nonmetal oxides S i O 2, Metal oxides such as Ta 2 O 5 and metal silicides such as WS i can be removed. By including at least one of a chlorine-containing gas and a fluorine-containing gas in the cleaning gas, metals and the like can be removed.
上記光は、 紫外線或いは赤外線であることが好ましい。 ク リーニング ガスに C 1 2を含ませた場合、 C 1 2は約 3 3 2 n mの波長で励起する。 ク リーニングガスに S F 6を含ませた場合、 S F 6は約 9 4 7 n mの波長 で励起する。 ク リーエングガスに N F 3を含ませた場合、 N F 3は約 1 2 0〜 1 5 0 n mの波長で励起する。 光と して紫外線或いは赤外線を使用 することにより、 確実にク リーニングガスを励起させることができる。 上記基板処理装置のク リーニング方法は、 処理容器の光透過窓を透過 した光の強度を測定する光強度測定工程と、 測定された光の強度に基づ いてク リーニングの終点を検出する終点検出工程と さらに具備すること が好ましい。 光強度測定工程と終点検出工程とをさらに備えることによ り、 ク リ一ユング不足或いは過度のク リーユングによるク リーニングガ スの消耗を抑制することができる。 . The light is preferably ultraviolet light or infrared light. If the cleaning gas moistened with C 1 2, C 1 2 is excited at a wavelength of approximately 3 3 2 nm. When SF 6 is included in the cleaning gas, SF 6 is excited at a wavelength of about 947 nm. When NF 3 is included in the clean gas, NF 3 is excited at a wavelength of about 120 to 150 nm. By using ultraviolet light or infrared light as the light, the cleaning gas can be surely excited. The cleaning method of the substrate processing apparatus includes a light intensity measuring step of measuring the intensity of light transmitted through the light transmitting window of the processing container, and an end point detection of detecting an end point of the cleaning based on the measured light intensity. Preferably, the method further comprises a step. By further providing the light intensity measuring step and the end point detecting step, it is possible to suppress the consumption of the cleaning gas due to insufficient or excessive cleaning. .
上記基板処理装置のク リ一二ング方法は、 処理容器内壁或いは処理容 器内に配設された部材で反射された光の強度を測定する光強度測定工程 と、 測定された光の強度に基づいてク リ一-ングの終点を検出する終点 検出工程をさらに具備することも可能である。 処理容器内に配設された 部材とは、 処理容器内に存在する部材であれば、 どのよ うなものであつ てもよい。光強度測定工程と終点検出工程とをさらに備えることによ り、 ク リーエング不足或いは過度のク リーユングによるク リーニングガスの 消耗を抑制することができる。 The cleaning method of the substrate processing apparatus includes a light intensity measuring step of measuring the intensity of light reflected by an inner wall of the processing container or a member disposed in the processing container; and a method of measuring the intensity of the measured light. The method may further include an end point detection step of detecting an end point of the cleaning based on the result. The member provided in the processing container may be any member as long as it is a member existing in the processing container. By further comprising a light intensity measurement step and an end point detection step, It is possible to suppress the consumption of the cleaning gas due to insufficient cleaning or excessive cleaning.
本発明の基板処理装置は、 基板を収容する処理容器と、 前記基板に処 理を施すための処理ガスを前記処理容器内に供給する処理ガス供給系と . 処理容器内に被ク リーニング物質を取り除くためのク リーニングガスを 供給するク リ一ユングガス供給系と、 処理容器内に供給されたク リ一二 ングガスを励起させる光を発生させる光源とを具備することを特徴と し ている。 本発明の基板処理装置によれば、 被ク リーニング物質を低温で 取り除く ことができ、 かつ処理容器の損傷を低減させることができる。 上記ク リーニングガスは、 塩素含有ガス及びフッ素含有ガスの少なく ともいずれかを含んでいることが好ましい。 ク リ一ユングガスに塩素含 有ガス及びフッ素含有ガスの少なく ともいずれかを含ませることにより 金属等を取り除く ことができる。 図面の簡単な説明  A substrate processing apparatus according to the present invention includes: a processing container that stores a substrate; a processing gas supply system that supplies a processing gas for performing processing to the substrate into the processing container; and a cleaning substance to be cleaned in the processing container. It is characterized by comprising a cleaning gas supply system for supplying a cleaning gas for removal, and a light source for generating light for exciting the cleaning gas supplied into the processing container. ADVANTAGE OF THE INVENTION According to the substrate processing apparatus of this invention, the to-be-cleaned substance can be removed at low temperature, and the damage of a processing container can be reduced. The cleaning gas preferably contains at least one of a chlorine-containing gas and a fluorine-containing gas. By including at least one of the chlorine-containing gas and the fluorine-containing gas in the cleaning gas, metals and the like can be removed. BRIEF DESCRIPTION OF THE FIGURES
図 1は第 1の実施の形態に係る成膜装置の模式的な構成図である。 図 2は第 1の実施の形態に係る成膜装置で行われる成膜の流れを示し たフローチヤ一トである。  FIG. 1 is a schematic configuration diagram of a film forming apparatus according to the first embodiment. FIG. 2 is a flowchart showing a flow of film formation performed by the film formation apparatus according to the first embodiment.
図 3は第 1の実施の形態に係る成膜装置で行われるク リ一エングの流 れを示したフローチャー トである。  FIG. 3 is a flowchart showing the flow of cleaning performed in the film forming apparatus according to the first embodiment.
図 4 A及び図 4 Bは第 1の実施の形態に係るク リ一ニングの模式的な プロセス図である。  FIGS. 4A and 4B are schematic process diagrams of cleaning according to the first embodiment.
図 5は第 2の実施の形態に係る成膜装置の模式的な構成図である。 図 6は第 2の実施の形態に係る成膜装置で行われるク リ一ニングの流 れを示したフローチャー トである。  FIG. 5 is a schematic configuration diagram of a film forming apparatus according to the second embodiment. FIG. 6 is a flowchart showing a cleaning flow performed in the film forming apparatus according to the second embodiment.
図 7は第 2の実施の形態に係るク リ一ユングの模式的なプロセス図で ある 発明を実施するための最良の形態 FIG. 7 is a schematic process diagram of a cleaning device according to the second embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1 の実施形態)  (First Embodiment)
以下、 本発明の第 1の実施の形態に係る成膜装置について説明する。 図 1は本実施の形態に係る成膜装置の模式的な構成図である。  Hereinafter, a film forming apparatus according to the first embodiment of the present invention will be described. FIG. 1 is a schematic configuration diagram of a film forming apparatus according to the present embodiment.
図 1に示されるように、 成膜装置 1は、 例えばアルミニウムゃステン レス鋼により形成されたチャンバ 2を備えている。 なお、 チャンバ 2は、 アルマイ ト処理等の表面処理が施されていてもよい。 チャンバ 2の側部 には開口 2 Aが形成されており、 開口 2 A付近には、 半導体ウェハ (以 下、 単に 「ウェハ」 という。) Wをチャンバ 2内に搬入する際或いはゥェ ハ Wをチャンバ 2内から搬出する際に開閉するグー トバルブ 3が取り付 けられている。  As shown in FIG. 1, a film forming apparatus 1 includes a chamber 2 formed of, for example, aluminum / stainless steel. The chamber 2 may be subjected to a surface treatment such as an alumite treatment. An opening 2A is formed in a side portion of the chamber 2, and a semiconductor wafer (hereinafter, simply referred to as a "wafer") W is loaded into the chamber 2 near the opening 2A or when a wafer W is loaded. A goo valve 3 that opens and closes when unloading from the chamber 2 is installed.
チャンバ 2内には、 ウェハ Wを載置する略円板状のサセプタ 4が配設 されている。 サセプタ 4は、 例えば A 1 Nや A 1 2 0 3等のセラミ ックス から形成されている。 サセプタ 4内には、 サセプタ 4を所定の温度に加 熱するヒータ 5が配設されている。 ヒータ 5でサセプタ 4を所定の温度 に加熱することによ り、 サセプタ 4に載置されたウェハ Wが所定の温度 に加熱される。 In the chamber 2, a substantially disk-shaped susceptor 4 on which the wafer W is placed is disposed. The susceptor 4 is made of, for example, ceramic box, such as A 1 N and A 1 2 0 3. Inside the susceptor 4, a heater 5 for heating the susceptor 4 to a predetermined temperature is provided. By heating the susceptor 4 to a predetermined temperature with the heater 5, the wafer W placed on the susceptor 4 is heated to a predetermined temperature.
サセプタ 4の 3箇所には、 ウェハ Wを昇降させるための孔 4 Aが上下 方向に形成されている。 孔 4 Aの下方には、 孔 4 Aに挿入可能なウェハ 昇降ピン 6がそれぞれ配設されている。 ウェハ昇降ピン 6は、 ウェハ昇 降ピン 6が立設するようにウェハ昇降ピン支持台 7に固定されている。 ウェハ昇降ピン支持台 7には、 エアシリ ンダ 8が固定されている。 エア シリ ンダ 8の駆動でエアシリ ンダ 8のロ ッ ド 8 Aが縮退することにより . ウェハ昇降ピン 6が下降して、 ウェハ Wがサセプタ 4に載置される。 ま た、 エアシリンダ 8の駆動でロ ッ ド 8 Aが伸長することにより、 ウェハ 昇降ピン 6が上昇して、 ウェハ Wがサセプタ 4から離れる。 チャンバ 2 内部には、 ロッ ド 8 Aを覆う伸縮自在なベロ一ズ 9が配設されている。 ベローズ 9でロ ッ ド 8 Aを覆うことにより、 チャンバ 2內の気密性が保 持される。 J At four places of the susceptor 4, holes 4A for raising and lowering the wafer W are formed in a vertical direction. Below the hole 4A, wafer elevating pins 6 that can be inserted into the hole 4A are provided. The wafer lifting pins 6 are fixed to the wafer lifting pin support 7 so that the wafer lifting pins 6 stand upright. An air cylinder 8 is fixed to the wafer elevating pin support 7. When the rod 8A of the air cylinder 8 is contracted by the driving of the air cylinder 8, the wafer elevating pins 6 are lowered and the wafer W is placed on the susceptor 4. Ma In addition, the rod 8 A is extended by driving the air cylinder 8, so that the wafer elevating pins 6 are raised, and the wafer W is separated from the susceptor 4. Inside the chamber 2, an elastic bellows 9 that covers the rod 8A is provided. By covering rod 8A with bellows 9, the airtightness of chamber 2 チ ャ ン バ is maintained. J
チヤンバ 2の外側には、 チャンバ 2を所定の温度に加熱するヒータ 1 0が巻回されている。 チャンバ 2の側部には、 開口が形成されている。 この開口には、 T i C 1 4をチャンバ内に供給する T i' C 1 4供給系 2 0 が接続されている。 T i C 1 4供給系 2 0は、 T i C l 4を収容した T i C 1 4供給源 2 1を備えている。 T i C 1 4供給源 2 1には、 一端が開口 に挿入された T i C 1 4供給配管 2 2が接続されている。 T i C 1 4供給 配管 2 2には、 バルブ 2 3及び T i C 1 4の流量を調節するマスフロー コン トローラ (MF C) 2 4が介在している。 マスフローコン トローラ 2 4が調節された状態で、 バルブ 2 3が開かれることによ り、 T i C 1 4供給源 2 1から所定の流量で T i C 1 4がチャンバ 2内に供給される。 Outside the chamber 2, a heater 10 for heating the chamber 2 to a predetermined temperature is wound. An opening is formed on the side of the chamber 2. The opening, T i C 1 4 T i 'C 1 4 supply system 2 0 supplied into the chamber is connected. T i C 1 4 supply system 2 0 has a T i C 1 4 sources 2 1 containing a T i C l 4. T The i C 1 4 sources 2 1, one end is T i C 1 4 supply pipe 2 2 inserted into the opening is connected. The T i C 1 4 supply pipe 2 2, a mass flow controller (MF C) 2 4 to adjust the flow rate of the valve 2 3 and T i C 1 4 is interposed. In a state in which the mass flow controller 2 4 is adjusted, Ri by the that the valve 2 3 is opened, T i C 1 4 sources 2 1 T i C 1 4 at a predetermined flow rate from is supplied into the chamber 2 .
T i C 1 4供給配管 2 2には、 チヤンバ 2内に NH3を供給する NH3 供給系 3 0が接続されている。 NH3供給系 3 0は、 NH3を収容した N H3供給源 3 1を備えている。 NH3供給源 3 1には、 一端が T i C 1 4 供給配管 2 2に接続された NH 3供給配管 3 2が接続されている。 NH3 供給配管 3 2には、 バルブ 3 3及び NH3の流量を調節するマスフロー コン ト ローラ 3 4が介在している。 マスフローコン ト ローラ 3 4が調節 された状態で、 バルブ 3 3が開かれることによ り、 NH3供給源 3 1か ら所定の流量で NH 3がチャンバ 2内に供給される。 The T i C 1 4 supply pipe 2 2, NH 3 supply system 3 0 is connected to supply the NH 3 into Chiyanba 2. NH 3 supply system 3 0 comprises a NH 3 source 3 1 containing the NH 3. The NH 3 supply source 3 1, NH 3 supply pipe 3 2 whose one end is connected to the T i C 1 4 supply pipe 2 2 is connected. The NH 3 supply pipe 32 includes a valve 33 and a mass flow controller 34 for adjusting the flow rate of NH 3 . When the valve 33 is opened while the mass flow controller 34 is adjusted, NH 3 is supplied into the chamber 2 from the NH 3 supply source 31 at a predetermined flow rate.
バルブ 2 3、 3 3には、 バルブ 2 3、 3 3が交互に開かれるようにバ ルブ 2 3、 3 3を制御する制御器 3 5が電気的に接続されている。 制御 器 3 5でこのよ うなバルブ 2 3、 3 3の制御を行う ことにより、 ウェハ Wにステップカバレージに優れた T i N膜が形成される。 A controller 35 for controlling the valves 23, 33 is electrically connected to the valves 23, 33 so that the valves 23, 33 are opened alternately. By controlling such valves 23 and 33 with the controller 35, the wafer A TiN film having excellent step coverage is formed on W.
T i C 1 4供給配管 2 2には、 チヤンバ 2内壁等に付着した T i Nを 取り除くための C 1 2を供給する C 1 2供給系 4 0が接続されている。 C 1 2供給系 4 0は、 C 1 2を収容した C 1 2供給源 4 1 を備えている。 C 1 2供給源 4 1には、 一端が T i C 1 4供給配管 2 2に接続された C 1 2 供給配管 4 2が接続されている。 C 1 2供給配管 4 2には、 バルブ 4 3 及び C 1 2の流量を調節するマスフローコン ト ローラ 4 4が介在してい る。 マスフローコントローラ 4 4が調節された状態で、 バルブ 4 3が開 かれることによ り、 C 1 2供給源 4 1から所定の流量で C 1 2がチャンバ 2内に供給される。 The T i C 1 4 supply pipe 2 2, C 1 2 supply system 4 0 supplies the C 1 2 for removing T i N attached to Chiyanba 2 inner wall are connected. C 1 2 supply system 4 0 has a C 1 2 source 4 1 containing the C 1 2. The C 1 2 source 4 1, C 1 2 supply pipe 4 2, one end of which is connected to the T i C 1 4 supply pipe 2 2 is connected. The C 1 2 supply pipe 4 2, a mass flow configuration preparative roller 4 4 to adjust the flow rate of the valve 4 3 and C 1 2 is that intervene. In a state in which the mass flow controller 4 4 is adjusted, Ri by the fact wither valve 4 3 is opened, C 1 2 is supplied into the chamber 2 from the C 1 2 source 4 1 at a predetermined flow rate.
チャンバ 2の底部には、 チャンバ 2内を排気する排気系 5 0が接続さ れている。 排気系 5 0は、 チャンバ 2内の圧力を制御するオー トプレツ シャコン トローラ (A P C ) 5 1 を備えている。 オートプレツシヤコン トローラ 5 1でコンダクタンスを調節することによ り、 チャンバ 2内の 圧力が所定の圧力に制御される。  An exhaust system 50 for exhausting the inside of the chamber 2 is connected to the bottom of the chamber 2. The exhaust system 50 is provided with an auto-chassis controller (APC) 51 for controlling the pressure in the chamber 2. The pressure in the chamber 2 is controlled to a predetermined pressure by adjusting the conductance by the automatic press controller 51.
ォートプレツシャコントローラ 5 1 には、 排気配管 5 2を介して図示 しない減圧ポンプが接続されている。 図示しない減圧ポンプが作動する ことにより、 チャンバ 2内が排気される。  A pressure reducing pump (not shown) is connected to the auto pressure controller 51 via an exhaust pipe 52. The inside of the chamber 2 is evacuated by operating a pressure reducing pump (not shown).
チャンバ 2の上部には、 開口が形成されている。 この開口には、 例え ば石英のような紫外線を透過する材料から形成された紫外線透過窓 6 1 が嵌め込まれている。 チャンバ 2 と紫外線透過窓 6 1 との間には、 シー ル部材 6 2が配設されている。シール部材 6 2が配設されることによ り、 チャンバ 2内の気密性が保持される。  An opening is formed in the upper part of the chamber 2. An ultraviolet transmitting window 61 made of a material that transmits ultraviolet light, such as quartz, is fitted into the opening. A seal member 62 is provided between the chamber 2 and the ultraviolet transmission window 61. By providing the seal member 62, airtightness in the chamber 2 is maintained.
紫外線透過窓 6 1の上方には、 紫外線を発生させる水銀ランプ 6 3が 配設されている。 水銀ランプ 6 3が点灯すると、 水銀ランプ 6 3から紫 外線が発生し、 紫外線が紫外線透過窓 6 1 を介してチャンバ 2内に導入 される。 水銀ランプ 6 3の背面側には、 水銀ランプ 6 3から発せられる 紫外線を反射して、 紫外線を紫外線透過窓 6 1に導く反射板 6 4が配設 されている。 Above the ultraviolet light transmitting window 61, a mercury lamp 63 for generating ultraviolet light is provided. When the mercury lamp 63 is turned on, ultraviolet rays are generated from the mercury lamp 63 and ultraviolet rays are introduced into the chamber 2 through the ultraviolet transmitting window 61. Is done. On the back side of the mercury lamp 63, there is provided a reflecting plate 64 that reflects the ultraviolet rays emitted from the mercury lamp 63 and guides the ultraviolet rays to the ultraviolet ray transmitting window 61.
チャンバ 2の底部には、 主に紫外線透過窓 6 1 を透過する光の強度を 測定する光センサ 6 5が配設されている。 ここで、 紫外線透過窓 6 1に 付着している T i Nが多いほど、 T i Nで反射される光が多く なるので、 光センサ 6 5で測定される光の強度は小さくなる。 即ち、 ク リーニング により紫外線透過窓 6 1に付着している T i Nが減少すると、 T i Nで 反射される光が少なくなるので、 光センサ 6 5で測定される光の強度は 大きくなる。 このことから、 紫外線透過窓 6 1を透過する光の強度を測 定することにより、 タ リ一ユングの度合いを知ることができる。  At the bottom of the chamber 2, an optical sensor 65 that mainly measures the intensity of light transmitted through the ultraviolet transmitting window 61 is provided. Here, as the amount of TiN attached to the ultraviolet transmission window 61 increases, the amount of light reflected by the TiN increases, so that the intensity of light measured by the optical sensor 65 decreases. That is, when the TiN attached to the ultraviolet transmitting window 61 decreases due to the cleaning, the light reflected by the Tin decreases, and the intensity of the light measured by the optical sensor 65 increases. From this, by measuring the intensity of the light transmitted through the ultraviolet transmission window 61, the degree of Tally Jung can be known.
光センサ 6 5及び水銀ランプ 6 3には、 光センサ 6 5の測定結果に基 づいてク リ一ユングの終点を検出し、 検出結果に基づいてバルブ 4 3及 び水銀ランプ 6 3を制御する制御器 6 6が電気的に接続されている。 制 御器 6 6は、 メモリ 6 6 A及び C P U 6 6 Bを備えている。 メモリ 6 6 Aには、 紫外線透過窓 6 1に T i Nが付着していない状態で測定された 光の強度情報が記憶されている。 C P U 6 6 Bでは、 メモリ 6 6 Aに記 憶された光の強度情報とク リ一ユングが行われている間に光センサ 6 5 により測定された光の強度情報とから、 メモリ 6 6 Aに記憶された光の 強度に対するク リ一ユングが行われている間に測定された光の強度の割 合が演算され、 演算結果が所定の数値 N以上、 例えば 0 . 9以上である か否かの判断が行われる。 なお、 所定の数値 Nは 0 < N < 1を満たすも のである。 演算結果が所定の数値 N未満と判断された場合には、 再び光 センサ 6 5による光の強度測定が行われるような制御信号が C P U 6 6 Bから光センサ 6 5に送られる。 一方、 演算結果が所定の数値 N以上で あると判断された場合には、 ク リーニングの終点が検出されたと して、 バルブ 4 3が閉じられるとともに水銀ランプ 6 3の点灯が停止されるよ うな制御信号が C P U 6 6 Bからバルブ 4 3及び水銀ランプ 6 3を点灯 させる図示しない電源に送られる。 The optical sensor 65 and the mercury lamp 63 detect the end point of the clearing based on the measurement result of the optical sensor 65, and control the bulb 43 and the mercury lamp 63 based on the detection result. Controller 66 is electrically connected. The controller 66 includes a memory 66A and a CPU 66B. The memory 66A stores light intensity information measured in a state where the Tin is not attached to the ultraviolet ray transmitting window 61. The CPU 66B calculates the memory 66A from the light intensity information stored in the memory 66A and the light intensity information measured by the light sensor 65 during the cleaning. The ratio of the light intensity measured during the clearing to the light intensity stored in the memory is calculated, and the calculated result is a predetermined numerical value N or more, for example, 0.9 or more. Is determined. Note that the predetermined numerical value N satisfies 0 <N <1. If the calculation result is determined to be less than the predetermined numerical value N, a control signal is transmitted from the CPU 66B to the optical sensor 65 so that the light intensity measurement by the optical sensor 65 is performed again. On the other hand, if it is determined that the calculation result is equal to or greater than the predetermined numerical value N, it is determined that the cleaning end point has been detected, and A control signal is sent from the CPU 66B to the power supply (not shown) for turning on the bulb 43 and the mercury lamp 63, so that the bulb 43 is closed and the lighting of the mercury lamp 63 is stopped.
以下、 成膜装置 1で行われる成膜について図 2に沿って説明する。 な お、 成膜の際には、 水銀ランプ 6 3は点灯しないものとする。 図 2は本 実施の形態に係る成膜装置 1で行われる成膜の流れを示したフローチヤ 一トである。  Hereinafter, the film formation performed by the film forming apparatus 1 will be described with reference to FIG. Note that the mercury lamp 63 is not turned on during film formation. FIG. 2 is a flowchart showing a flow of film formation performed by the film formation apparatus 1 according to the present embodiment.
まず、 図示しない減圧ポンプが作動して、 チャンバ 2内の真空引きが 行われる。 また、 ヒータ 5に電流が流されて、 サセプタ 4が加熱される (ステップ 1 0 1 )。  First, a vacuum pump (not shown) is operated to evacuate the chamber 2. Also, an electric current is applied to the heater 5 to heat the susceptor 4 (step 101).
チャンバ 2内の圧力が所定圧力まで低下し、 かつサセプタ 4が所定温 度まで加熱された後、 ゲー トバルブ 3が開かれ、 ウェハ Wを保持した図 示しない搬送アームが伸長して、 チャンバ 2内にゥェハ Wが搬入される (ステップ 1 0 2 )。  After the pressure in the chamber 2 decreases to a predetermined pressure and the susceptor 4 is heated to a predetermined temperature, the gate valve 3 is opened, and the transfer arm (not shown) holding the wafer W extends, and the inside of the chamber 2 is extended. The wafer W is carried in (step 102).
その後、 搬送アームが縮退して、 ウェハ Wがウェハ昇降ピン 6に載置 される。 ウェハ Wがウェハ昇降ピン 6に載置された後、 エアシリ ンダ 8 の駆動で、 ウェハ昇降ピン 6が下降し、 ウェハ Wがサセプタ 4に載置さ れる (ステップ 1 0 3 )。  Thereafter, the transfer arm is retracted, and the wafer W is placed on the wafer elevating pins 6. After the wafer W is mounted on the wafer elevating pins 6, the wafer elevating pins 6 are lowered by the driving of the air cylinder 8, and the wafer W is mounted on the susceptor 4 (step 103).
ウェハ Wが約 4 0 0 °Cに安定した後、 チャンバ 2内の圧力が約 5 0〜 4 0 0 P a に維持された状態で、 バルブ 2 3が開かれて、 T i C 1 4が 約 3 0 s c c mの流量でチャンバ 2内に供給される(ステップ 1 0 4 )。 供給された T i C 1 4がウェハ Wに接触すると、 ウェハ W表面に T i C 1 4が吸着される。 After the wafer W is stabilized to about 4 0 0 ° C, while the pressure in the chamber 2 is maintained at about 5 0~ 4 0 0 P a, valve 2 3 is opened, T i C 1 4 is It is supplied into the chamber 2 at a flow rate of about 30 sccm (step 104). When T i C 1 4 the supplied contacts the wafer W, T i C 1 4 is adsorbed on the wafer W surface.
所定時間経過後、 バルブ 2 3が閉じられて、 T i C 1 4の供給が停止 されるとともに、 チャンバ 2内に残留している T i C 1 4がチャンバ 2 内から排出される (ステップ 1 0 5 )。 なお、 排出の際、 チャンバ 2内の 圧力は、 約 1 . 3 3 X 1 0— 2 P aに維持される。 After a predetermined time, valve 2 3 is closed, the supply of T i C 1 4 is stopped, T i C 1 4 remaining in the chamber 2 is discharged from the chamber 2 (Step 1 0 5). At the time of discharge, the chamber 2 The pressure is maintained at about 1. 3 3 X 1 0- 2 P a.
所定時間経過後、 バルブ 3 3が開かれて、 N H 3が約 1 0 0 s c c m の流量でチャンバ 2内に供給される (ステップ 1 0 6 )。 供給された N H 3がウェハ Wに吸着された T i C 1 4に接触すると、 T i C 1 4と N H 3 とが反応して、 T i N膜がウェハ W上に形成される。 After a lapse of a predetermined time, the valve 33 is opened, and NH 3 is supplied into the chamber 2 at a flow rate of about 100 sccm (step 106). When supplied NH 3 comes into contact with T i C 1 4 adsorbed on the wafer W, by the reaction with T i C 1 4 and NH 3, T i N film is formed on the wafer W.
所定時間経過後、 バルブ 3 3が閉じられて、 N H 3の供給が停止され ると ともに、 チャンバ 2内に残留している N H 3等がチャンバ 2内から 排出される (ステップ 1 0 7 )。 なお、 排出の際、 チャンバ 2内の圧力は、 約 1 . 3 3 X 1 0 - 2 P aに維持される。 After a lapse of a predetermined time, the valve 33 is closed, the supply of NH 3 is stopped, and NH 3 and the like remaining in the chamber 2 are discharged from the chamber 2 (step 107). At the time of discharge, the pressure in the chamber 2 is about 1 3 3 X 1 0 - is maintained at 2 P a..
所定時間経過後、 ステップ 1 0 4〜ステップ 1 0 7の工程を 1サイク ルと して、 図示しない中央制御器により処理が約 2 0 0サイクル行われ たか否かが判断される (ステップ 1 0 8 )。 処理が約 2 0 0サイクル行わ れていないと判断されると、 ステップ 1 0 4〜ステップ 1 0 7の工程が 再び行われる。  After a lapse of a predetermined time, the process from step 104 to step 107 is regarded as one cycle, and it is determined by the central controller (not shown) whether or not the process has been performed for about 200 cycles (step 10). 8). If it is determined that the processing has not been performed for about 200 cycles, the steps from step 104 to step 107 are performed again.
処理が約 2 0 0サイクル行われたと判断されると、 エアシリ ンダ 8の 駆動で、 ウェハ昇降ピン 6が上昇し、 ウェハ Wがサセプタ 4から離れる (ステップ 1 0 9 )。 なお、 処理が約 2 0 0サイクル行われると、 ウェハ W上には、 約 1 0 n mの T i N膜が形成される。  When it is determined that the process has been performed for about 200 cycles, the wafer elevating pins 6 are raised by driving the air cylinder 8, and the wafer W is separated from the susceptor 4 (Step 109). When the process is performed for about 200 cycles, a TiN film of about 100 nm is formed on the wafer W.
その後、 ゲー トバルブ 3が開かれた後、 図示しない搬送アームが伸長 して、 搬送アームにウェハ Wが保持される。 最後に、 搬送アームが縮退 して、 ウェハ Wがチャンバ 2から搬出される (ステップ 1 1 0 )。  Thereafter, after the gate valve 3 is opened, the transfer arm (not shown) extends, and the transfer arm holds the wafer W. Finally, the transfer arm is retracted, and the wafer W is unloaded from the chamber 2 (step 110).
以下、 成膜装置 1で行われるク リ一二ングについて図 3及び図 4に沿 つて説明する。 図 3は本実施の形態に係る成膜装置 1で行われるク リー エングの流れを示したフローチヤ一 トであり、 図 4 A及び図 4 Bは本実 施の形態に係るク リ一ニングの模式的なプロセス図である。  Hereinafter, cleaning performed in the film forming apparatus 1 will be described with reference to FIGS. FIG. 3 is a flow chart showing the flow of cleaning performed in the film forming apparatus 1 according to the present embodiment, and FIGS. 4A and 4B are diagrams of the cleaning according to the present embodiment. It is a schematic process diagram.
まず、 図示しない減圧ポンプが作動して、 チャンバ 2内の真空引きが 行われる。 また、 ヒータ 5、 1 0に電流が流されて、 チャンバ 2及びサ セプタ 4等が加熱される (ステップ 2 0 1 A)。 First, a vacuum pump (not shown) is activated to evacuate the chamber 2 Done. An electric current is applied to the heaters 5 and 10 to heat the chamber 2 and the susceptor 4 (step 201A).
チャンバ 2内の圧力が 6 5 0 P a以下に維持され、 かつチャンバ 2及 びサセプタ 4等の温度が約 2 0 0 °Cに安定した後、 バルブ 4 3が開かれ て、 図 4 Aに示されるよ うに C 1 2が約 5 0 0 s c c mの流量でチャン バ 2内に供給される。 また、 水銀ランプ 6 3が点灯し、 水銀ランプ 6 3 から紫外線が発せられる (ステップ 2 0 2 A)。 チャンバ 2内に C 1 2が 供給されるとともに水銀ランプ 6 3が点灯することにより、 チャンバ 2 内のク リ一二ングが行われ、チャンバ等に付着した T i Nが除去される。 具体的には、 水銀ランプ 6 3から発せられた紫外線が紫外線透過窓 6 1 を介して C 1 2に照射されると、 C 1 2は約 3 3 2 n mの紫外線を吸収し 励起する。 その結果、 C 1 2と T i Nとが反応し、 T i C 】 4及び N 2が 生成される。 生成された T i C 1 4及び N2は、 気体状態にあるので、 排 気によりチャンバ 2内から速やかに排出される。 なお、 C l 2はク リー ユングが行われている間中、 常に供給されている。 After the pressure in chamber 2 is maintained at 650 Pa or less, and the temperature of chamber 2 and susceptor 4 etc. stabilizes at about 200 ° C, valve 43 is opened, and as shown in FIG. Uni C 1 2 it shown is supplied into the Chan server 2 at a flow rate of about 5 0 0 sccm. Also, the mercury lamp 63 is turned on, and ultraviolet rays are emitted from the mercury lamp 63 (step 202A). By mercury lamp 6 3 is turned with C 1 2 is supplied into the chamber 2, click re-learning in the chamber 2 is performed, T i N attached to the chamber or the like are removed. Specifically, when ultraviolet rays emitted from the mercury lamp 6 3 is irradiated to C 1 2 via the UV radiation transmission window 6 1, C 1 2 excites absorbs ultraviolet approximately 3 3 2 nm. As a result, a reaction of the C 1 2 and T i N, T i C] 4 and N 2 is produced. T i C 1 4 and N 2 that generated is because it is in a gaseous state, are quickly discharged from the chamber 2 by the exhaust gas. Incidentally, C l 2 is in between the click Lee Jung is being performed, is always supplied.
次に、 ク リーニングが行われている状態で、 図 4 Bに示されるよ うに 光センサ 6 5により紫外線透過窓 6 1から透過する光の強度が測定され る (ステップ 2 0 3 A)。  Next, in a state where the cleaning is being performed, the intensity of light transmitted through the ultraviolet transmitting window 61 is measured by the optical sensor 65 as shown in FIG. 4B (step 203A).
光センサ 6 5により測定された光の強度の情報は C PU 6 6 Bに送ら れて、 C P U 6 6 Bでメモリ 6 6 Aに記憶された光の強度に対するク リ 一二ングが行われている間に測定された光の強度の割合が演算され、 演 算結果が所定の数値 N以上であるか否か判断される(ステップ 2 0 4 A)c 演算結果が所定の数値 N未満である判断された場合には、 C P U 6 6 B から制御信号が光センサ 6 5に送られ、 再び光の強度測定が行われる。 演算結果が所定の数値 N以上であると判断された場合には、 C PU 6 6 Bから制御信号がバルブ 4 3及び水銀ランプ 6 3を点灯させる図示し ない電源に送られ、 バルブ 4 3が閉じられるとともに水銀ランプ 6 3の 点灯が停止される (ステップ 2 0 5 A )。 これにより、 チャンバ 2内のク リーエングが終了される。 The information on the light intensity measured by the light sensor 65 is sent to the CPU 66B, and the CPU 66B performs cleaning on the light intensity stored in the memory 66A. The ratio of the light intensity measured during the operation is calculated, and it is determined whether the calculation result is equal to or greater than a predetermined value N (Step 204A). C The calculation result is smaller than the predetermined value N. If it is determined, a control signal is sent from the CPU 66B to the optical sensor 65, and the light intensity is measured again. If the calculation result is determined to be equal to or greater than the predetermined value N, a control signal from the CPU 66 B turns on the bulb 43 and the mercury lamp 63. Power supply, the valve 43 is closed and the mercury lamp 63 is turned off (step 205A). Thus, the cleaning in the chamber 2 is completed.
本実施の形態では、 C 1 2に光を照射しながらチヤンバ 2内のク リ一 ニングを行うので、 T i Nを低温で取り除く ことができ、 かつチャンバ 2及びサセプタ 4等の損傷を低減させることができる。 即ち、 光ェネル ギーを利用してク リ一ユングを行うので、 低温であつても C 1 2と T i Nとを反応させることができる。 それ故、 低温で T i Nを取り除く こと ができる。 また、 プラズマを使用せずにク リーニングを行うので、 チヤ ンバ 2及びサセプタ 4等の損傷を低減させることができる。 In this embodiment, since the click re-learning of Chiyanba within 2 while irradiating light to the C 1 2, it is possible to remove the T i N at a low temperature, and reduces damage such as chamber 2 and the susceptor 4 be able to. That is, since the click Li one Jung using light Eneru ghee can be filed at a low temperature reacting C 1 2 and T i N. Therefore, TiN can be removed at a low temperature. Further, since cleaning is performed without using plasma, damage to the chamber 2, the susceptor 4, and the like can be reduced.
本実施の形態では、 光センサ 6 5で光の強度を測定して、 測定結果に 基づいてク リ一二ングの終点を検出するので、 T i Nの付着状態に応じ たク リーニングを行うことができる。 これにより、 ク リーユング不足或 いは過度のク リ一二ングによるク リ一ユングガスの消耗を抑制すること ができる。 また、 過度のク リーエングを抑制することができるので、 ス ループッ トを向上させることができる。  In the present embodiment, since the light intensity is measured by the optical sensor 65 and the end point of the cleaning is detected based on the measurement result, the cleaning corresponding to the adhesion state of the TiN is performed. Can be. As a result, it is possible to suppress the consumption of the cleaning gas due to insufficient cleaning or excessive cleaning. In addition, since excessive cleaning can be suppressed, throughput can be improved.
(第 2の実施の形態)  (Second embodiment)
以下、 本発明の第 2の実施の形態について説明する。 なお、 以下本実 施の形態以降の実施の形態のうち先行する実施の形態と重複する内容に ついては説明を省略することもある。 本実施の形態では、 サセプタで反 射された光の強度を測定してク リ一二ングの終点を検出する例について 説明する。図 5は本実施の形態に係る成膜装置の模式的な構成図である。 図 5に示されるように、 紫外線透過窓 6 1の上方には、 ランプ 7 1が 配設されている。 ランプ 7 1は、 発生した光が主にサセプタ 4で反射さ れるよ うな角度で配設されている。 ランプ 7 1の背面側には、 ランプ 7 1から発せられる光を反射して、 反射光をサセプタ 4に導く反射板 7 2 が配設されている。 紫外線透過窓 6 1 には、 主にサセプタ 4で反射され た光の強度を測定する光センサ 6 5が埋め込まれている。 ここで、 T i Nとセラミ ックスとの反射率を比較すると、 T i Nの方がセラ ミ ックス より も反射率が大きい。 一方、 サセプタ 4はセラミ ックスから形成され ている。 従って、 ク リーニングによりサセプタ 4に付着している T i N が減少すると、 光センサ 6 5で測定される光の強度は小さくなる。 この ことから、 サセプタ 4で反射される光の強度を測定することによ り、 ク リーエングの度合いを知ることができる。 Hereinafter, a second embodiment of the present invention will be described. In the following description, among the embodiments after this embodiment, the description of the same contents as those of the preceding embodiment may be omitted. In the present embodiment, an example will be described in which the intensity of light reflected by a susceptor is measured to detect the end point of cleaning. FIG. 5 is a schematic configuration diagram of a film forming apparatus according to the present embodiment. As shown in FIG. 5, a lamp 71 is provided above the ultraviolet ray transmitting window 61. The lamp 71 is arranged at an angle such that generated light is mainly reflected by the susceptor 4. On the back side of the lamp 71, a reflector 7 2 that reflects the light emitted from the lamp 71 and guides the reflected light to the susceptor 4 Are arranged. An optical sensor 65 that mainly measures the intensity of light reflected by the susceptor 4 is embedded in the ultraviolet transmission window 61. Here, comparing the reflectance of TiN and the ceramic, the reflectance of TiN is higher than that of the ceramic. On the other hand, susceptor 4 is formed from ceramics. Therefore, when the TiN attached to the susceptor 4 decreases due to the cleaning, the light intensity measured by the optical sensor 65 decreases. From this, by measuring the intensity of the light reflected by the susceptor 4, the degree of the clearing can be known.
本実施の形態の制御器 6 6のメモリ 6 6 Aには、 サセプタ 4に T i N が付着していない状態で測定された、 サセプタ 4で反射された光の強度 情報が記憶されている。 C P U 6 6 Bでは、 メモリ 6 6 Aに記憶された 光の強度情報とク リ一ユングが行われている間に測定された光の強度情 報とから、 メモ リ 6 6 Aに記憶された光の強度に対するク リーニングが 行われている間に測定された光の強度の割合が演算され、 演算結果が所 定の数値 N以下、 例えば 1 . 1以下であるか否かの判断が行われる。 こ こで、 所定の数値 Nは 1 < Nを満たすものである。 演算結果が所定の数 値 Nを超えたと判断された場合には、 再び光センサ 6 5による光の強度 測定が行われるよ うな制御信号が C P U 6 6 Bから光センサ 6 5に送ら れる。 一方、演算結果が所定の数値 N以下であると判断された場合には、 ク リーニングの終点が検出されたと して、 バルブ 4 3が閉じられるとと もに水銀ランプ 6 3の点灯が停止されるような制御信号が C P U 6 6 B からバルブ 4 3及び水銀ランプ 6 3を点灯させる図示しない電源に送ら れる。  The memory 66 A of the controller 66 of the present embodiment stores the intensity information of the light reflected by the susceptor 4, which is measured in a state where the TiN does not adhere to the susceptor 4. The CPU 66B stores the light intensity information stored in the memory 66A based on the light intensity information stored in the memory 66A and the light intensity information measured during the cleaning. The ratio of the light intensity measured during cleaning to the light intensity is calculated, and it is determined whether or not the calculation result is a predetermined numerical value N or less, for example, 1.1 or less. . Here, the predetermined numerical value N satisfies 1 <N. When it is determined that the calculation result has exceeded the predetermined numerical value N, a control signal for performing the light intensity measurement by the optical sensor 65 again is transmitted from the CPU 66 B to the optical sensor 65. On the other hand, if it is determined that the calculation result is equal to or smaller than the predetermined numerical value N, it is determined that the cleaning end point has been detected, the valve 43 is closed, and the lighting of the mercury lamp 63 is stopped. Such a control signal is sent from the CPU 66 B to a power source (not shown) for turning on the bulb 43 and the mercury lamp 63.
以下、 成膜装置 1で行われるク リーニングについて図 6及び図 7に沿 つて説明する。 図 6は本実施の形態に係る成膜装置 1で行われるク リー ユングの流れを示したフローチヤ一トであり、 図 7は本実施の形態に係 るク リ.一ニングの模式的なプロセス図である。 Hereinafter, the cleaning performed in the film forming apparatus 1 will be described with reference to FIGS. FIG. 6 is a flow chart showing the flow of clean Jung performed in the film forming apparatus 1 according to the present embodiment, and FIG. 7 relates to the present embodiment. FIG. 3 is a schematic process diagram of a cleaning process.
まず、 図示しない減圧ポンプが作動して、 チャンバ 2内の真空引きが 行われる。 また、 チャンバ 2及びサセプタ 4等が加熱される (ステップ 2 0 1 B)。  First, a vacuum pump (not shown) is operated to evacuate the chamber 2. Further, the chamber 2 and the susceptor 4 are heated (Step 201B).
チャンバ 2内の圧力が 6 5 0 P a以下に維持され、 かつチャンバ 2及 びサセプタ 4等の温度が約 2 0 0°Cに安定した後、 C 1 2が約 5 0 0 s c c mの流量でチャンバ 2内に供給される。 また、 水銀ランプ 6 3が点 灯し、 水銀ランプ 6 3から紫外線が発せられる。 (ステップ 2 0 2 B)。 その後、 ク リーニングが行われている状態で、 図 7に示されるように ランプ 7 1が点灯するとともに光センサ 6 5によりサセプタ 4で反射さ れた光の強度が測定される (ステップ 2 0 3 B)。 Is maintained below the pressure 6 5 0 P a of the chamber 2, and after the temperature of such chamber 2及beauty susceptor 4 was stabilized to about 2 0 0 ° C, C 1 2 is a flow rate of about 5 0 0 sccm It is supplied into the chamber 2. Also, the mercury lamp 63 is turned on, and the mercury lamp 63 emits ultraviolet rays. (Step 202B). Thereafter, while the cleaning is being performed, the lamp 71 is turned on as shown in FIG. 7 and the intensity of the light reflected by the susceptor 4 is measured by the optical sensor 65 (step 203). B).
光センサ 6 5によ り測定された光の強度情報は C P U 6 6 Bに送られ て、 C PU 6 6 Bでメモリ 6 6 Aに記憶された光の強度に対するク リ一 ユングが行われている間に測定された光の強度の割合が演算され、 演算 結果が所定の数値 N以下であるか否か判断される(ステップ 2 0 4 B)。 演算結果が所定の数値 Nを超えたと判断された場合には、 C P U 6 6 B から制御信号が光センサ 6 5に送られ、 再び光の強度測定が行われる。 演算結果が所定の数値 N以下であると判断された場合には、 C PU 6 6 Bから制御信号がバルブ 4 3及び水銀ランプ 6 3を点灯させる図示し ない電源に送られ、 バルブ 4 3が閉じられると ともに水銀ランプ 6 3の 点灯が停止される (ステップ 2 0 5 B)。 これにより、 チヤンバ 2内のク リーユングが終了される。  The light intensity information measured by the light sensor 65 is sent to the CPU 66B, and the CPU 66B performs a clean jungle for the light intensity stored in the memory 66A. The ratio of the light intensity measured during the operation is calculated, and it is determined whether or not the calculation result is a predetermined numerical value N or less (step 204B). If it is determined that the calculation result exceeds the predetermined numerical value N, a control signal is sent from the CPU 66 B to the optical sensor 65, and the light intensity is measured again. If it is determined that the calculation result is equal to or smaller than the predetermined numerical value N, a control signal is sent from the CPU 66 B to a power source (not shown) for turning on the bulb 43 and the mercury lamp 63, and the valve 43 is turned on. When the lamp is closed, the lighting of the mercury lamp 63 is stopped (step 205B). As a result, the clearing in the chamber 2 is terminated.
なお、 本発明は、 上記実施の形態の記載内容に限定されるものではな く、 構造や材質、 各部材の配置等は、 本発明の要旨を逸脱しない範囲で 適宜変更可能である。 第 1の実施の形態では、 C l 2を励起させるため の水銀ランプ 6 3から発せられた光の強度を測定しているが、 第 2の実 施の形態のよ うな C 1 2を励起させるものとは別のランプから発せられ た光の強度を測定してもよい。 It should be noted that the present invention is not limited to the description in the above embodiment, and the structure, the material, the arrangement of each member, and the like can be appropriately changed without departing from the gist of the present invention. In the first embodiment, it measures the intensity of light emitted from the mercury lamp 6 3 for exciting the C l 2, second real As to excite the C 1 2 Unaryo of facilities embodiment may measure the intensity of light emitted from another lamp.
第 2の実施の形態では、 C 1 2を励起させるものとは別のランプであ るランプ 7 1から発せられた光の強度を測定しているが、 第 1の実施の 形態のよ うな C 1 2を励起させるための水銀ランプ 6 3から発せられた 光の強度を測定してもよい。 また、 サセプタ 4で反射される光の強度を 測定しているが、 チャンバ 2内壁或いはチャンバ 2内部に配設されたそ の他の部材で反射された光の強度を測定してもよい。 In the second embodiment, although as to excite the C 1 2 measures the intensity of the light emitted from the lamp 71 Ru another lamp der, Unaryo the first embodiment C the intensity of the light emitted from the mercury lamp 6 3 for exciting a 2 may be measured. In addition, although the intensity of light reflected by the susceptor 4 is measured, the intensity of light reflected by the inner wall of the chamber 2 or another member provided inside the chamber 2 may be measured.
第 1及び第 2の実施の形態では、 光センサ 6 5によ り光の強度を測定 しているが、 分光器により光の波長毎の強度を測定してもよい。 また、 成膜の際に水銀ランプ 6 3を点灯させていないが、 成膜の際にも、 水銀 ランプ 6 3を点灯させてもよレ、。  In the first and second embodiments, the intensity of light is measured by the optical sensor 65, but the intensity of each wavelength of light may be measured by a spectroscope. Also, the mercury lamp 63 is not turned on during the film formation, but the mercury lamp 63 may be turned on during the film formation.
第 1及び第 2の実施の形態では、 成膜するガスと して、 T i C 1 4と NH3を使用しているが、 その他のガスを使用することも可能である。 例えば、 T i F 4と N H 3、 T i B r 4と N H 3、 T i I 4と NH 3、 T i [N ( C 2 H 5 C H a ) 2] 4 ( T E M A T ) と N H 3、 T i [N ( C H 3) 2] 4 (T DMA T) と N H 3、 T i [N ( C 2 H 5) 2] 4 ( T D E A T) と NH3、 T a F 5と N H 3、 T a C l 5と NH 3、 T a B r 5と N H3、 T a l 5と N H 3、 T a (O C 2 H 5) 5と 02、 T a (O C 2 H5) 5と H 2 0、 或いは T a (O C 2 H 5) 5と H 2 O 2を使用してもよい。 なお、 T i F 4と NH 3、 T i B r 4と NH 3、 T i I 4と N H3、 T i [N (C 2H5 C H 3) 2] 4 (T EMAT) と NH3、 T i [N (C H 3) 2] 4 ( T DM A T) と NH 3、 或いは T i [N (C 2 H 5) 2] 4 ( T D E A T) と NH 3を使用した場合には、 ウェハ W上に T i N膜が形成される。 また、 T a F 5と NH 3、 T a C 1 5と NH3、 T a B r 5と NH3、 或いは T a I 5 と NH 3を使用した場合には、 ウェハ W上に T a N膜が形成される。 さ らに、 T a (O C 2H5) 5と O 2、 T a (O C 2H5) 5と H2O、 或いは T a (O C 2 H 5) 5と H 2 O 2を使用した場合には、 ウェハ W上に T a 2 O5膜が形成される。 In the first and second embodiments, as a gas for forming, the use of the T i C 1 4 and NH 3, it is also possible to use other gases. For example, T i F 4 and NH 3 , T i Br 4 and NH 3 , T i I 4 and NH 3 , T i [N (C 2 H 5 CH a) 2 ] 4 (TEMAT) and NH 3 , T i [N (CH 3 ) 2 ] 4 (T DMA T) and NH 3 , T i [N (C 2 H 5 ) 2 ] 4 (TDEAT) and NH 3 , Ta F 5 and NH 3 , T a C l 5 and NH 3, T a B r 5 and NH 3, T al 5 and NH 3, T a (OC 2 H 5) 5 and 0 2, T a (OC 2 H 5) 5 and H 2 0, or T a (OC 2 H 5 ) 5 and H 2 O 2 may be used. Incidentally, T i F 4 and NH 3, T i B r 4 and NH 3, T i I 4 and NH 3, T i [N ( C 2 H 5 CH 3) 2] 4 (T EMAT) and NH 3, when using T i [N (CH 3) 2] 4 (T DM AT) and NH 3 or T i [N (C 2 H 5) 2] 4 (TDEAT) and NH 3, is on the wafer W Thus, a TiN film is formed. Further, T a F 5 and NH 3, T a C 1 5 and NH 3, T a B r 5 and NH 3, or in the case of using a T a I 5 and NH 3 is, T a N on the wafer W A film is formed. Sa Furthermore, when using Ta (OC 2 H 5 ) 5 and O 2 , Ta (OC 2 H 5 ) 5 and H 2 O, or Ta (OC 2 H 5 ) 5 and H 2 O 2 A Ta 2 O 5 film is formed on the wafer W.
第 1及び第 2の実施の形態では、 T i C l 4と NH3を T i C l 4、 N H 3の順序で供給しているが、 このよ うな順序で供給しなくてもよい。 また、 T i C 1 4と N H 3を交互に供給しているが、 これらのガスを同時 に供給してもよい。 なお、 上記したその他のガスについても同様である。 第 1及び第 2の実施の形態では、 チヤンバ 2内から排気して T i C 1 4等を排出しているが、排気の際に N2のようなパージガスをチャンバ 2 内に供給することも可能である。 また、 ウェハ Wを使用しているが、 ガ ラス基板であつてもよレ、。 In the first and second embodiments, the T i C l 4 and NH 3 but supplied in the order of T i C l 4, NH 3, may not be supplied with this good Una order. Furthermore, although supply T i C 1 4 and NH 3 are alternately it may supply these gases simultaneously. The same applies to the other gases described above. In the first and second embodiments, although to drain T i C 1 4 or the like is evacuated from Chiyanba inside 2, also supply a purge gas such as N 2 into the chamber 2 during the exhaust It is possible. In addition, although the wafer W is used, it may be a glass substrate.
第 1及び第 2の実施の形態では、 成膜装置について説明しているが、 成膜装置に限らず、 エッチング装置にも適用することが可能である。 こ の場合、 エッチングガスを、 交互に供給しても、 或いは同時に供給して もよい。 産業上の利用可能性  In the first and second embodiments, the film forming apparatus is described. However, the present invention is not limited to the film forming apparatus but can be applied to an etching apparatus. In this case, the etching gas may be supplied alternately or simultaneously. Industrial applicability
本発明に係る基板処理装置のク リ一二ング方法及び基板処理装置は、 半導体製造産業において利用することが可能である。  The cleaning method and the substrate processing apparatus for a substrate processing apparatus according to the present invention can be used in the semiconductor manufacturing industry.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板処理装置の処理容器内に被ク リーニング物質が存在している状 態で、 前記処理容器內にク リ一二ングガスを供給するク リ一エングガス 供給工程と、 1. a cleaning gas supply step of supplying a cleaning gas to the processing container in a state where the cleaning substance is present in the processing container of the substrate processing apparatus;
前記処理容器内に前記ク リーニングガスを励起させる光を照射する光 照射工程と、  A light irradiation step of irradiating the processing vessel with light for exciting the cleaning gas;
を具備することを特徴とする基板処理装置のク リ一二ング方法。  A method for cleaning a substrate processing apparatus, comprising:
2 . 前記ク リーニングガスは、 塩素含有ガス及びフッ素含有ガスの少な く ともいずれかを含んでいることを特徴とするク レーム 1記載の基板処 理装置のク リ一二ング方法。  2. The cleaning method for a substrate processing apparatus according to claim 1, wherein the cleaning gas contains at least one of a chlorine-containing gas and a fluorine-containing gas.
3 . 前記光は、 紫外線或いは赤外線であることを特徴とするク レーム 1 記載の基板処理装置のク リーユング方法。  3. The method according to claim 1, wherein the light is ultraviolet light or infrared light.
4 . 前記処理容器の光透過窓を透過した光の強度を測定する光強度測定 工程と、 測定された前記光の強度に基づいてク リーニングの終点を検出 する終点検出工程とさらに具備することを特徴とするクレーム 1記載の 基板処理装置のク リ一ユング方法。  4. The method further comprises: a light intensity measuring step of measuring an intensity of light transmitted through the light transmitting window of the processing container; and an end point detecting step of detecting an end point of cleaning based on the measured intensity of the light. A method for cleaning a substrate processing apparatus according to claim 1, which is characterized in that:
5 . 前記処理容器内壁或いは前記処理容器内に配設された部材で反射さ れた光の強度を測定する光強度測定工程と、 測定された前記光の強度に 基づいてク リ一二ングの終点を検出する終点検出工程をさらに具備する ことを特徴とするク レーム 1記載の基板処理装置のク リ一二ング方法。 5. A light intensity measuring step of measuring the intensity of light reflected by the inner wall of the processing container or a member disposed in the processing container, and a cleaning process based on the measured intensity of the light. The cleaning method of the substrate processing apparatus according to claim 1, further comprising an end point detecting step of detecting an end point.
6 . 基板を収容する処理容器と、 6. A processing container for accommodating the substrate;
前記基板に処理を施すための処理ガスを前記処理容器内に供給する処 理ガス供給系と、  A processing gas supply system for supplying a processing gas for performing processing to the substrate into the processing container;
前記処理容器内に被ク リ一二ング物質を取り除く ためのク リーニング ガスを供給するク リーニングガス供給系と、 前記処理容器内に供給されたク リーニングガスを励起させる光を発生 させる光源と、 A cleaning gas supply system for supplying a cleaning gas for removing a cleaning substance into the processing container; A light source for generating light for exciting the cleaning gas supplied into the processing container;
を具備することを特徴とする基板処理装置。  A substrate processing apparatus comprising:
7 . 前記ク リーニングガスは、 塩素含有ガス及びフッ素含有ガスの少な く ともいずれかを含んでいることを特徴とするクレーム 6記載の基板処 理装置。  7. The substrate processing apparatus according to claim 6, wherein the cleaning gas contains at least one of a chlorine-containing gas and a fluorine-containing gas.
PCT/JP2003/010507 2002-08-30 2003-08-20 Cleaning method for substrate-processing device and the device WO2004020693A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003257621A AU2003257621A1 (en) 2002-08-30 2003-08-20 Cleaning method for substrate-processing device and the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/252269 2002-08-30
JP2002252269A JP2004091828A (en) 2002-08-30 2002-08-30 Method for cleaning substrate treatment apparatus, and substrate treatment apparatus

Publications (1)

Publication Number Publication Date
WO2004020693A1 true WO2004020693A1 (en) 2004-03-11

Family

ID=31972729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010507 WO2004020693A1 (en) 2002-08-30 2003-08-20 Cleaning method for substrate-processing device and the device

Country Status (3)

Country Link
JP (1) JP2004091828A (en)
AU (1) AU2003257621A1 (en)
WO (1) WO2004020693A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190301011A1 (en) * 2018-03-30 2019-10-03 Applied Materials, Inc. Low temperature in-situ cleaning method for epi-chambers
KR102288382B1 (en) * 2019-09-20 2021-08-11 대전대학교 산학협력단 Method for removing of L-FC in plasma etching procedure and system therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204616A (en) * 1987-02-19 1988-08-24 Fujitsu Ltd Method for cleaning reaction chamber
JPH01138716A (en) * 1987-11-25 1989-05-31 Mitsubishi Electric Corp Method of cleaning inside of container to maintain atmosphere for treating semiconductor
JPH0427117A (en) * 1990-05-22 1992-01-30 Fujitsu Ltd Photo assisted vapor phase growth device
JPH09162165A (en) * 1995-12-04 1997-06-20 Fujitsu Ltd Processing system and cleaning method therefor
JPH09306892A (en) * 1996-05-14 1997-11-28 Hitachi Ltd Cleaning method and semiconductor manufacturing apparatus
JP2001102358A (en) * 1999-09-27 2001-04-13 Toshiba Corp Substrate-treatment apparatus and method of cleaning the same
US20010054430A1 (en) * 2000-04-27 2001-12-27 Hiroyuki Katagiri Method of cleaning a film deposition apparatus, method of dry etching a film deposition apparatus, and an article production method including a process based on the cleaning or dry etching method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016011A (en) * 2000-04-27 2002-01-18 Canon Inc Method for cleaning deposition film forming device, dry etching method, and method for manufacturing article including step of executing either of the methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204616A (en) * 1987-02-19 1988-08-24 Fujitsu Ltd Method for cleaning reaction chamber
JPH01138716A (en) * 1987-11-25 1989-05-31 Mitsubishi Electric Corp Method of cleaning inside of container to maintain atmosphere for treating semiconductor
JPH0427117A (en) * 1990-05-22 1992-01-30 Fujitsu Ltd Photo assisted vapor phase growth device
JPH09162165A (en) * 1995-12-04 1997-06-20 Fujitsu Ltd Processing system and cleaning method therefor
JPH09306892A (en) * 1996-05-14 1997-11-28 Hitachi Ltd Cleaning method and semiconductor manufacturing apparatus
JP2001102358A (en) * 1999-09-27 2001-04-13 Toshiba Corp Substrate-treatment apparatus and method of cleaning the same
US20010054430A1 (en) * 2000-04-27 2001-12-27 Hiroyuki Katagiri Method of cleaning a film deposition apparatus, method of dry etching a film deposition apparatus, and an article production method including a process based on the cleaning or dry etching method

Also Published As

Publication number Publication date
JP2004091828A (en) 2004-03-25
AU2003257621A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
KR100940391B1 (en) Film formation apparatus and method of using the same
KR101498134B1 (en) Method for managing UV irradiation for curing semiconductor substrate
US8093072B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
US9150965B2 (en) Processing apparatus
US20120298132A1 (en) Substrate cleaning apparatus, substrate cleaning method, and substrate processing apparatus
JP2006287228A (en) Semiconductor processor capable of self-cleaning
JP2007531269A (en) Method and apparatus for plasma enhanced screening of components of apparatus
JP4227098B2 (en) Substrate processing apparatus cleaning method and substrate processing apparatus
US11295959B2 (en) Method of determining plasma abnormality, method of manufacturing semiconductor device, and substrate processing apparatus
JP2003077843A (en) Manufacturing method, apparatus, and system of semiconductor device, and cleaning method of semiconductor-manufacturing apparatus
WO2004079808A1 (en) Substrate processing system and method for manufacturing semiconductor device
WO2004021425A1 (en) Method of etching and etching apparatus
KR100791153B1 (en) Heat treatment apparatus and cleaning method of the same
US8075698B2 (en) Substrate processing unit, method of detecting end point of cleaning of substrate processing unit, and method of detecting end point of substrate processing
JP4896039B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2007073746A (en) Substrate processing device
KR20220029394A (en) Cleaning method and processing apparatus
WO2004020693A1 (en) Cleaning method for substrate-processing device and the device
US6660101B1 (en) Method and apparatus for cleaning film deposition device
US7546840B2 (en) Method for cleaning reaction container and film deposition system
JP2011176128A (en) Semiconductor manufacturing device and method of manufacturing semiconductor device
WO2000074123A1 (en) Transparent window of process chamber of process apparatus, and method of manufacture thereof
US10256162B2 (en) Substrate processing system, control device, and substrate processing method
WO1998001894A1 (en) Method of manufacturing semiconductor integrated circuit device
JP2002079077A (en) Apparatus and method for treatment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase