WO2004020663A2 - Genetic markers for diagnosing predisposition to heredity or expression of the imperforate anus phenotype in domestic animals, breeding animals and working animals - Google Patents

Genetic markers for diagnosing predisposition to heredity or expression of the imperforate anus phenotype in domestic animals, breeding animals and working animals Download PDF

Info

Publication number
WO2004020663A2
WO2004020663A2 PCT/EP2003/008786 EP0308786W WO2004020663A2 WO 2004020663 A2 WO2004020663 A2 WO 2004020663A2 EP 0308786 W EP0308786 W EP 0308786W WO 2004020663 A2 WO2004020663 A2 WO 2004020663A2
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
animals
mammals
microsatellite
genome
Prior art date
Application number
PCT/EP2003/008786
Other languages
German (de)
French (fr)
Other versions
WO2004020663A3 (en
Inventor
Hans-Rudolf Fries
Georg Thaller
Sabine Wiedemann
Original Assignee
Förderverein Biotechnologieforschung Der Deutschen Schweineproduktion E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Förderverein Biotechnologieforschung Der Deutschen Schweineproduktion E.V. filed Critical Förderverein Biotechnologieforschung Der Deutschen Schweineproduktion E.V.
Priority to EP03790882A priority Critical patent/EP1529119A2/en
Priority to AU2003260386A priority patent/AU2003260386A1/en
Publication of WO2004020663A2 publication Critical patent/WO2004020663A2/en
Publication of WO2004020663A3 publication Critical patent/WO2004020663A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the invention relates to the use of a first nucleic acid for determining the predisposition to the expression or inheritance of the phenotype "afterlessness" in a mammal, the first nucleic acid having a length of at least 8 nucleotides and being identical or essentially identical to a second nucleic acid which occurs on chromosome 1 of the pig or in a homologous position in the genome of other mammals, specifically in the area of a microsatellite selected from the group consisting of SW2185, SW1621, SW1902, S0155, and S0320; or on chromosome 3 of the pig or in a homologous position in Genome of other mammals, in the area of microsatellite S0002; or on chromosome 9 of the pig or in a homologous position in the genome of other mammals, in the area of a microsatellite selected from the group consisting of SW2401 and S0081; or on chromosome 12 of the pig or in a homologous
  • the invention further relates to methods for determining the predisposition to the expression or inheritance of the characteristic "afterlessness" in mammals, preferably in domestic, breeding or farm animals, whereby the mammals, their fertilized or unfertilized egg cells, or their sperm on the presence, nature
  • the invention relates to a kit, at least containing a pair of primers for the amplification of one of the above second nucleic acids, one primer each binding to the + strand and another primer to the - strand of the nucleic acid, or a hybridization probe with a length of at least 8 nucleotides that binds to one of the above-mentioned second nucleic acids, or a specific antibody or an antibody fragment that binds to the second nucleic acid disclosed above.
  • hereditary defects in newborn piglets cause considerable financial losses, both through direct animal loss and the associated veterinary treatment costs. It also consists of Due to the Animal Welfare Act ⁇ 11 b paragraphs 1 and 2 there is a need to avoid the spread of such defects within animal breeding and to save pain, suffering and agony for affected animals.
  • the hereditary defect "Atresia ani” means the congenital lack of anus opening.
  • the clinical picture "Atresia recti" can also be found. In this form of the disease, the rectum is missing or ends blindly in the pelvic cavity.
  • a molecular genetic marker can be defined as a section of the genetic material that has or has a specific property. It is a marked locus that is inherited from generation to generation (Nagel 1996; O ⁇ rien et al. 1999). The fact that it is relatively easy to identify the molecular genetic markers and that they are available in large numbers are advantages over other marker systems such as biochemical or immunological markers.
  • RFLPs restriction fragment length polymorphisms
  • microsatellites Jarne and Lagoda 1996; Montaldo and Herrera-Meza 1998.
  • Most RFLPs are diallelic and, according to Hui Liu (1998), have low PIC (Polymorphism Information Content) values compared to microsatellites.
  • PIC Polymorphism Information Content
  • microsatellites Around 65,000 to 100,000 microsatellites loci are evenly distributed in the pig genome (Ellegren 1993; Schlötterer 1997; Dounavi 2000). The identification of microsatellites is carried out by various laboratories; the current number of identified microsatellites is 1286 (as of March 5, 2001). A small number of ETL traits in pigs and other mammals can be predicted using genetic markers. To date, however, there is no possibility of demonstrating a predisposition to inheritance or the expression of the phenotype "afterlessness".
  • Genotyping or genome screening procedures determine whether the presence of certain polymorphic sections of DNA or specific alleles of a gene correlates with the inheritance or expression of a phenotype (association). It can be assumed that the polymorphic DNA associated with the trait is located in the vicinity of the gene responsible for the phenotype and is therefore, with a certain probability, inherited together with it. Become two or more High-frequency polymorphic markers are inherited together, so they define a quasi-stable genetic "haplotype". The association of a specific haplotype with a phenotype (eg that of "afterlessness”) can be used as a diagnostic or prognostic marker that enables statements to be made about the likelihood of occurrence or about hitting a phenotype.
  • the present invention is therefore based on the object of providing methods and methods by means of which animals can be identified which are predisposed to the expression of the phenotype "anuslessness" or inherit such a predisposition Characterized claims solved embodiments.
  • the invention thus relates to the use of a first nucleic acid for determining the predisposition to the expression or inheritance of the phenotype "afterlessness" in a mammal, the first nucleic acid having a length of at least 8 nucleotides and being identical or essentially identical to a second nucleic acid which occurs on chromosome 1 of the pig or in a homologous position in the genome of other mammals, specifically in the area of a microsatellite selected from the group consisting of SW2185, SW1621, SW1902, S0155, and S0320; or on chromosome 3 of the pig or in a homologous position in Genome of other mammals, in the area of microsatellite S0002; or on chromosome 9 of the pig or in a homologous position in the genome of other mammals, in the area of a microsatellite selected from the group consisting of SW2401 and S0081; or on chromosome 12 of the pig or in a homolog
  • the second nucleic acid disclosed above is preferably genomic DNA or cDNA, but can also be an RNA transcript of this DNA.
  • Genomic DNA and cDNA are mostly double-stranded, but the use according to the invention also includes single-stranded DNA molecules.
  • the first nucleic acid is preferably an oligonucleotide, but in certain embodiments can also be a polynucleotide. It is preferably DNA, but can also be RNA or a DNA or RNA derivative such as PNA.
  • the first nucleic acid mentioned usually has a length of at least 8 nucleotides, preferably at least 15 nucleotides, more preferably at least 18 nucleotides, even more preferably at least 21 nucleotides, most preferably at least 25 nucleotides.
  • the first nucleic acid can also be up to 50 nucleotides, more preferably up to 100 nucleotides, even more preferably up to 1000 nucleotides and most preferably up to 5000 nucleotides long or longer.
  • the first or second nucleic acid comprises whole genes or even groups of genes. In these cases, the first or second nucleic acid has a length of up to 1000 nucleotides, preferably up to 5000 nucleotides, for example up to 25000 nucleotides, such as up to 150,000 nucleotides.
  • Hybridization probes are those nucleic acids that are used in a hybridization and bind to homologous nucleic acids.
  • the hybridization probe is preferably a radioactively labeled nucleic acid or it contains modified nucleotides.
  • the invention also includes such modifications of the nucleic acids, hybridization probes and primers claimed in the present case which hybridize with the second nucleic acids, preferably under stringent conditions.
  • higher or higher stringency hybridization conditions are understood to mean, for example, 0.2-0.5 ⁇ SSC (0.03 M NaCl, 0.003M sodium citrate, pH 7) at 65 ° C.
  • the hybridization temperature is below 65 ° C., for example above 55 ° C., preferably above 50 ° C.
  • Stringent hybridization temperatures are dependent on the size or length of the nucleic acid and its nucleotide composition and are to be determined by a person skilled in the art by hand-testing.
  • the solution used for hybridization contains a detergent such as SDS in a concentration of 0.1% to 0.5% and a collection of non-specific nucleic acids to saturate non-specific binding sites.
  • the basic principles of hybridization and the requirements for a hybridization probe are well known to the person skilled in the art. For example, see Maniatis, et al. Molecular Cloning: A laboratory manual, Cold Spring Harbor Press, New York, 1982 or Harnes and Higgins, Nucleic acid hybridization: a practical approach, IRL Press, Oxford 1985.
  • predisposition refers to the presence of a hereditary disposition, which can possibly result in an inheritance of the hereditary disposition and / or the expression of a characteristic.
  • atresia ani is understood by the person skilled in the art to mean the innate lack of anus opening. In addition to this simple manifestation of anuslessness the clinical picture "Atresia recti” can also be found. In this form of the disease the rectum is missing or ends blindly in the pelvic cavity. Both diseases are characterized by a short survival time of the male animals after birth, in female piglets is in some cases caused by a fistula Vagina allows the eradication and thus extends the lifespan.
  • microsatellite SW2185 is located at position SSC1 67.6 cM
  • SW1621 is located at position SSC1 79.6 cM
  • SW1902 is located at position SSC1 83.4 cM
  • S0155 is located at position SSC1 93.9 cM
  • S0320 is located at position SSC1 112.5 cM located
  • S0002 located at position SSC3 102.2 cM
  • S0081 located at position SSC9 77.0 cM is
  • microsatellite SW2185 on chromosome 1 of the pig denotes a position on chromosome 1 which is specific for a population and comprises DNA sections 5cM upstream and / or downstream of the indicated position, preferably up to 10cM upstream and / or downstream, more preferably up to 20cM upstream and / or downstream and most preferably up to 30cM upstream and / or downstream of the indicated position on the chromosome.
  • the microsatellites If the microsatellite is terminal, ie located at the end of the chromosome, in particular less than 30cM from End removed, the upstream or downstream area can also be shorter than 5 cm.
  • the comparative genome maps between different species are based on the mapping of one or more loci in the genome of the species in question.
  • “Homologous position” denotes nucleic acid segments in the genome of other mammals that have a sequence identity with the second nucleic acid disclosed above, at least preferably 40%, over the entire sequence length or in specific genes located here or at one or more loci or parts thereof with a length of at least 100 nucleotides.
  • sequence identity is preferably determined by the FASTA, BLAST (Basic Local Alignment Search Tool) or Bestfit algorithms of the GCG sequence analysis program (Wisconsin Sequence Analysis Package , Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Madison, Wl 53711).
  • Bestfit the parameters are preferably set so that the percentage of identity is calculated over the entire length of the reference sequence and homology gaps ( "gaps" ) of up to 5% of the total number of nucleotides are allowed.
  • the so-called optional parameters are preferably left at their preset values.
  • the term “essentially identical” means that, for example, 7 nucleotides are identical in a region of 8 nucleotides.
  • the invention also includes those embodiments in which 4, 5 or 6 of the 8 nucleotides are identical to the corresponding sequence of the second nucleic acid.
  • the first nucleic acid can be identical or essentially identical to the + strand or the - strand.
  • a first nucleic acid also includes the fact that more than one (first) nucleic acid can be used in the use according to the invention. These can be, for example, two, three or four nucleic acids.
  • second nucleic acid mean both the + strand and the - strand. If two first nucleic acids are identical or essentially identical to the second nucleic acid, the first nucleic acid can be identical or essentially identical to the + strand, while the other first nucleic acid can be identical or essentially identical to the - strand. In this case, it is preferred that the “alignment” of the first nucleic acid is in opposite directions, which enables PCR to be carried out.
  • nucleic acids are made available for the first time, which allow a targeted molecular-biological diagnosis of the predisposition to the expression of the phenotype "afterlessness".
  • the invention disclosed here enables the time of the selection to be shifted significantly forward, so that it no longer depends on the phenotypic expression of the feature
  • the introduction of molecular biological markers can bring about a significant increase in the efficiency of the selection process, which includes the determination of the genotype of the test subject / mammal at one or more loci in a region of the above-mentioned second nucleic acids, preferably in two regions, more preferably three, even more preferably four, more preferably five, most preferably in six areas and the assessment of an individual as suitable for breeding or not suitable including information about the coupling phase e.g. between the genotyped marker locus and the genes responsible for the defect.
  • the genotypes of suitable and unsuitable mammals may differ Distinguish the number of copies of a repetitive nucleotide sequence within the microsatellite locus under consideration.
  • This different nature of the nucleic acid can be represented in a PCR reaction using suitable primers and is reflected in different PCR product sizes and / or different restriction fragment lengths.
  • the tests are usually performed on tissue samples from mammals, on egg cells, or on samples of body fluids such as sperm, urine, blood, tear fluid and other secretions. These can be taken from the animal before diagnosis.
  • anal atresia also known as atresia ani
  • the deep form of anal atresia is one of them
  • the most common form of disease in pigs where the rectum ends blindly at the intact anal membrane, which forms a septum between the endodermal and ectodermal section of the anal canal.
  • the anus pit is usually completely created.
  • atresia recti is a thicker layer of connective tissue between the blind rectum and the surface of the body.
  • Rectal fistulas In severe cases, the rectum can also be completely absent and end blind in the pelvic cavity (Russe, 1991). Rectal fistulas often occur in connection with both anal atresias. These fistulas can affect the rectum with the vagina Bladder or the ureter ve bind (Lambrecht, 1987). In some cases there are also ano-cutaneous fistulas, that is, a connection of the rectum to the surface of the skin, which then lies in the place of the non-existing anus. In animals with the high form of anal atresia (atresia recti), a recto-urethral or recto-vaginal fistula is formed in many cases (Lambrecht, 1989).
  • the different forms and characteristics of the anal atresia in piglets correspond to the different forms in humans.
  • the prevalence of such diseases in humans is 0.048% (4.8 diseases per 10000 children born alive) (Stoll, 1997).
  • the spectrum of the different forms ranges from ectopic anus to atresia ani and recti with urogential fistula to complex deformations of the cloaca.
  • the classification and definition of the disease is handled very differently in the literature.
  • such diseases are not divided into special disease categories, so that the term anal atresia is a collective term for causally different malformations with very differentiated development in the embryonic phase. For example, sewers are sometimes regarded as a different cause.
  • Atresia ani and Atresia recti have been described in numerous other species. These include cattle (Dreyfuss, 1989) and American buffalo (Bison Bison) (Marler, 1977). There are also case studies in sheep (Dennis, 1972), cats and dogs (McAfee, 1976). It can therefore be assumed that anal atresia occurs in most domestic and farm animal species, albeit with very different frequencies.
  • anal atresia is often seen in connection with syndromes.
  • anal atresia often occurs together with Hirschsprung's disease (congenital enlargement of the large intestine) or in connection with VACTERL syndrome.
  • Menlister-Hall and Sacral Agenesis malformations of the urogenital tract and defects of the anorectal system are often found in newborn children.
  • This cloacal membrane migrates dorsally towards the rectum in the course of the normal embryonic development of the rectum, caused by the growth of the sexual bump. This shift is an important part of the division of the cloaca into the urogenital system and rectum by the urogenital septum. In animals with anal atresia, a displacement of the sewage membrane together with the adjacent mesenchymal components could not be observed. In animals with high forms of anal atresia (atresia recti), the cloaca membrane in the dorsal area is also greatly shortened.
  • the aim of statistical methods is to demonstrate the co-segregation of a marker allele with the characteristic in a family.
  • the methods used for this which are used to map disease-correlated genes, can be divided into two categories: (1) Parametric methods for coupling analysis, which are based on a genetic model. These methods presuppose the exact knowledge of the inheritance as well as the parameters that provide information about the occurrence of the disease in the population. This includes the frequency of the disease allele and the penetrance. (2) Nonparametric methods for coupling analysis. Their methods do not assume a specific inheritance model and are therefore often referred to as model-free procedures. Parametric coupling analysis is the classic method for coupling analysis.
  • this method is based on the observation and determination of recombinant and non-recombinant offspring within a family, to estimate the recombination rate ⁇ between marker and phenotype.
  • the recombination rate results from the quotient of the number of observed recombinants divided by the number of possible meiosis.
  • the statistical test then checks whether the recombination frequency is significantly less than 0.5 (Eiston, 1998, Ott, 1999).
  • a preferred embodiment of the invention relates to the use of combinations of at least two, three, four, five or six of the above-mentioned nucleic acids for determining the predisposition to the expression or inheritance of the phenotype "afterlessness". This preferred embodiment is particularly suitable, the reliability of the detection to increase.
  • the invention further encompasses preferred embodiments, the second nucleic acid disclosed above being a microsatellite or a sequence flanking it.
  • the microsatellite is SW2185, SW1621, SW1902, S0155, S0320, S0002, SW2401, S0081, SW957 and S0229.
  • the flanking sequence lies outside of the repetitive sequences typical of the microsatellite and preferably comprises a range of 1 kB upstream or downstream of the repetitive sequences.
  • primers or hybridization probes for determining the predisposition to the expression or inheritance of the phenotype “afterlessness.
  • the primers or hybridization probes come from the range of microsatellites SW2185, SW1621, SW1902, S0155, S0320, S0002, SW2401, S0081, SW957 or S0229 and are identified by the SEQ ID given below
  • the invention relates to the use of at least one primer or at least one
  • Hybridization probe which comprises or consists of a nucleotide sequence which is selected from the group consisting of SW2185 (SEQ ID NO: 9 and 10), SW1621 (SEQ ID NO: 5 and 6), SW1902 (SEQ ID NO: 7 and 8), S0155 (SEQ ID NO: 1 and 2), S0320 (SEQ ID NO: 3 and 4), S0002 (SEQ ID NO: 11 and 12), SW2401 (SEQ ID NO: 17 and 18), S0081 (SEQ ID NO: 13 and 14), SW957 (SEQ ID NO: 21 and 22) and S0229 (SEQ ID NO: 19 and 20).
  • a further preferred embodiment of the invention relates to the use of two primers, the primers being oriented in opposite directions with respect to the complementary DNA region and thus, for example, enabling PCR amplification.
  • the second nucleic acid is a specific gene or a part of a gene.
  • genes selected from the group consisting of SHH Sonic hedgehog, IHH Indian hedgehog, DHH Desert hedgehog, PTCH1 Patched homolog 1, PTCH2 Patched homolog 2, PRKAR 1 Protein kinase cAMP-dependent regulatory type I, HIP Hedgehog-interacting protein, GLI 1 GLI -Kruppel family member GLI 1, GLI 2 GLI- Kruppel family member GLI 2, GLI 3 GLI-Kruppel family member GLI 3, SMOH Smoothened, CKTSF1B1 Cysteine Knot Superfamily 1, FGF4 Fibroblast growth factor 4, FGF10 Fibroblast growth factor 10, FGF8 Fibroblast growth factor 8, RARA retinoid acid receptor alpha, SOX9 / SRY (Sex determining region Y) -box 9, BMP2 bone morpho genetic protein 2, BMP4 Bone morphogenetic protein 4, NOG Noggin, FMN Formin, ALDH1A1 Aldehyde dehydrogenase 1 family member A1, ALDH1
  • Genes or parts of genes in the sense of the invention can comprise the coding as well as the non-coding sections of the DNA, ie introns, exons and regulatory areas such as promoters or other control elements of gene expression.
  • such genes can also be surrounded by flanking sequences, which preferably comprise a region of 1 kB upstream or downstream of the genes.
  • the invention relates to the use of a first nucleic acid for determining the predisposition for the expression or inheritance of the phenotype "afterlessness" in a mammal, the first nucleic acid having a length of at least 8 nucleotides and being identical or essentially identical to one second nucleic acid, which occurs on chromosome 1 of the pig or in a homologous position in the genome of other mammals, namely in the range of microsatellites SW1621 and SW1902, the common presence on the same chromosome of an individual from allele 1 (146bp, according to Rohrer et al.
  • microsatellite SW1621 and allele 2 150 bp, according to Rohrer et al., 1996) of the microsatellite SW1902 defines a haplotype that correlates with a predisposition to the expression or inheritance of the phanotype "afterlessness".
  • the invention relates to the use of the disclosed first or second nucleic acids for the selection of domestic, breeding or farm animals with the missing feature "afterlessness".
  • the domestic, breeding or Farm animals cattle, dog, cat, rabbit, buffalo, camel, alpaca, mink, pig, goat, sheep, horse, donkey, rat or mouse.
  • a genomic screen is used on multiple mammals in a population.
  • the term "several mammals” includes at least two animals one Population, preferably at least 5 animals, more preferably at least 8 animals, even more preferably at least 10 animals, more preferably at least 50 animals, even more preferably at least 250 animals, most preferably 1500 animals.
  • nucleic acid of at least 8 nucleotides in length preferably up to 50 nucleotides, more preferably 350 nucleotides, even more preferably 1000 nucleotides, most preferably up to 5000 nucleotides or longer is inherited together with the feature "afterlessness"
  • a common inheritance of nucleic acids with the phenotypic expression of the characteristic "afterlessness” implies a genetic coupling of the nucleic acid to the characteristic.
  • markers are the microsatellites SW2185, SW1621, SW1902, S0155, and S0320 on chromosome 1 of the pig or of microsatellites in a homologous manner Position in the genome of other mammals; or microsatellite S0002 on chromosome 3 of the pig or microsatellites in a homologous position in the genome of other mammals; or the microsatellites SW2401 and S0081 on chromosome 9 of the pig or of microsatellites in a homologous position in the genome of other mammals; or the Microsatellites SW957 and S0229 on chromosome 12 of the pig or of microsatellites in a homologous position in the genome of other mammals
  • other nucleic acid sequences can also be used as markers, provided that they are identical or essentially identical to that in the sense of the invention second nucleic acid disclosed in the invention or in one of the above-mentioned nucleic acid
  • the person skilled in the art can readily use or develop detection methods for determining the predisposition for the expression of the phenotype "afterlessness".
  • the invention also discloses methods for determining the predisposition for the expression of the phenotype "afterlessness" in domestic and breeding -, or farm animals, whereby the animals, their fertilized or unfertilized egg cells, their sperm, tissue samples or samples of body fluids are checked for the presence, Expression or nature of one of the above-mentioned second nucleic acids is tested.
  • test methods are preferably in vitro test methods. Different "forms or textures" of nucleic acids can be caused, for example, by insertions, duplications, deletions, substitutions or translocations.
  • Inserts or deletions result in a changed nucleic acid length.
  • Duplications are a phenomenon usually observed in the generation of microsatellites.
  • This length polymorphism can, for example are represented in a PCR reaction and is reflected when using suitable flanking primers, for example in the case of insertion in a longer PCR product.
  • the different "expression or nature” can also be, for example, a closely related gene variant, which in extreme cases is only distinguished from the related gene sequence by a single nucleotide exchange.
  • Such different “forms or qualities” of the nucleic acid can optionally be represented with the aid of RFLP analyzes (restriction fragment length polymorphisms (RFLPs) or by nucleic acid sequencing.
  • RFLPs restriction fragment length polymorphisms
  • the domestic, breeding or farm animals are cattle, dog, cat, rabbit, buffalo, camel, alpaca, mink, pig, goat, sheep, horse, donkey, rat or mouse.
  • the methods according to the invention also relate to other mammals, in particular humans.
  • a PCR amplification is carried out with complementary primers with a length of at least 8 nucleotides, one primer binding to the + strand and another primer in opposite orientation to the - strand of the second nucleic acid, or it will hybridization is carried out, wherein a hybridization probe with a length of at least 8 nucleotides binds to the second nucleic acid, or sequencing of the second nucleic acid is carried out, or detection is carried out with a specific antibody or antibody fragment or antibody derivative or an aptamer, wherein the antibody or the antibody fragment or the antibody derivative or the aptamer is specifically directed against the second nucleic acid.
  • the reaction mixture also contains an excess of deoxynucleoside triphosphates and a DNA polymerase, for example Taq polymerase.
  • a DNA polymerase for example Taq polymerase.
  • the primers bind to the nucleic acid and the DNA polymerase extends the primers based on the nucleotide sequence specified in the nucleic acid.
  • the annealing temperature of a primer is influenced by its adenine + tymine and cytosine + guanine content. 2 ° C are calculated for each adenine and tymin, while 4 ° C is calculated for each cytosine and guanine.
  • the quality of a PCR reaction is directly influenced by the primer concentration, the changing amount of dNTP in the PCR mix and the quality of the Taq DNA polymerase.
  • a typical reaction mixture of 12.5 ⁇ l is composed, for example, as follows: 0.20 ⁇ M primer, 200 ⁇ M dNTPs, 0.50 U Taq polymerase, 1.25 ⁇ l 10 x buffer, 1.50 ⁇ l DNA (50ng / ⁇ l) and made up to 12.5 ⁇ l with H 2 O.
  • the reaction conditions listed in the method part of this application are preferably selected.
  • Primers are those nucleic acids that are at least 8 nucleotides in length and bind to one of the second nucleic acids disclosed above.
  • Preferred primers have a length of at least 80 nucleotides, preferably at least 70 nucleotides, more preferably at least 50 nucleotides, even more preferably at least 30 nucleotides and most preferably 20, 17, 15, 13, 12 or 8 nucleotides.
  • the nucleotide sequences of the primers can be put together as desired from the second nucleic acid sequences disclosed above, provided that they have at least 8 consecutive nucleotides exhibit.
  • primers with the target sequence within the second nucleic acid can also lead to base mismatches, provided that hybridization occurs under the chosen reaction conditions, which can lead to an elongation reaction.
  • a primer should have 7 identical nucleotides within 8 neighboring nucleotides.
  • the invention also includes those embodiments in which 4, 5 or 6 of the 8 nucleotides are identical to the corresponding sequence of the second nucleic acid.
  • the basic principles of the PCR methodology must be observed, the process steps and reaction conditions of which are state of the art. In detail, however, the method steps may nevertheless require adjustment by a person skilled in the art.
  • PCR methods are described, for example, in Newton, PCR, BIOS Scientific Publishers Limited, 1994, and subsequent editions.
  • RT-PCR reverse polymerase chain reaction
  • other amplification methods have also been developed in recent years, which also represent preferred embodiments of the invention.
  • amplification methods are, for example, the “Ligase Chain Reaction” (LCR, EPA 320308), “Cydic Probe Reaction” (CPR,), “Strand Displacement Amplification” (SDA, Walker et al., Nucleic Acids Res. 1992 (7): 1691 -6.) Or “Transciption-based amplification systems” (TAS, Kwoh et al Proc. Nat. Acad Sei. USA 86: 1173 (1989), Gingeras et al., PCT Application WO 88/10315).
  • hybridization probe is understood to mean a nucleic acid with a length of at least 8 nucleotides, preferably up to 50 nucleotides, more preferably up to 100 nucleotides , still more preferably 200, 300, 400, 500, 600, 700, 800 or 1000 nucleotides and most preferably up to 5000 nucleotides attached to one of the second nucleic acids disclosed above binds.
  • the first nucleic acid is preferably provided with a detectable label, such as a radioactive or fluorescent label. Examples of hybridization methods are dot blot, northern blot, reverse northern blot, in situ hybridization or southern blot (Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor and all subsequent editions).
  • Another preferred detection method for determining the predisposition to the expression of the phenotype "afterlessness" is the sequencing of one of the second nucleic acids disclosed above. Sequencing methods are known from the prior art and require no further explanation for the person skilled in the art. For example, here Sambrook et al.
  • the primers are understood according to the invention to be nucleic acids which are preferably at least 70 nucleotides, more preferably at least 50 Nucleotides, more preferably at least 30 nucleotides and most preferably 20, 17, 15, 13, 12 or 8 nucleotides
  • the properties shown for the PCR primers apply accordingly to sequencing primers.
  • primers or hybridization probes which are derived from the second nucleic acids mentioned above, are suitable for special detection methods, for example PCR methods, sequencing or hybridization methods, and which are not, or less are suitable.
  • the primers or hybridization probes for use in the invention can also be present, for example, in larger DNA or RNA sequences, for example flanked by restriction sites.
  • nucleic acids, hybridization probes and primers can also be constructed from base derivatives. A number of modifications change the chemistry of the phosphodiester backbone of the DNA or RNA, the sugar or heterocyclic bases.
  • the useful modofications include phosphorothioates; Phosphorodithioates, in which both oxygen atoms not involved in hydrogen bonding by sulfur, Phosphoramides, alkyl phosphotriesters and / or boranophosphates are replaced.
  • Achiral phosphate derivatives include S'-O'- ⁇ '-S phosphorothioates, 3'-S-5'-0-phosphorothioates, 3'-CH2-5'-0-phosphonates and 3'-NH-5'- 0 phosphoroamidates.
  • the entire backbone of the phosphodiester can be replaced by peptide bonds.
  • Sugar modifications are used to change stability or affinity.
  • the A anomer of deoxyribose can be used with the base inverted with respect to the natural B anomer.
  • the 2'-OH group of the ribose can be changed to the corresponding 2'-0-methyl or 2'-0-allyl sugar, whereby a gain in stability is achieved without impairing the binding affinity.
  • Some other useful substitutions include deoxyuridine instead of deoxythymidine; 5-methyl-2'-deoxycytidine and 5-bromo-2'-deoxycytidine instead of deoxycytidine.
  • 5-Propyyl-2'-deoxyuridine and 5-propyyl-2'-deoxycytidine can replace deoxythymidine and deoxycytidine and thus increase affinity and biological activity.
  • the nucleic acids can have a label for detection.
  • radioactive labeling for example with 35 S, 32 P or 3 H fluorescent labeling, biotin labeling, digoxigenin labeling,
  • Suitable markers include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2 ', 7'-dimethoxy-4', 5'-dichloro-6-carboxyfluorescein ( JOE), 6-Carboxy-X-Rhodamine (ROX), 6-Carboxy-2 ', 4', 7 ', 4,7-Hexachlorofluorescein (HEX), 5-Carboxyfluorescein (5-FAM) or NNN'.N' -Tetramethyl-ö-carboxyrhodamine (TAMRA).
  • fluorochromes e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM),
  • the label can also be part of a multi-stage system, the nucleic acid being conjugated with biotin, or with a hapten or a similar substance that has a high-affinity binding partner, for example avidin, specific antibodies, etc., in which case the binding partner with a detectable compound is conjugated.
  • the label can be conjugated with a primer and / or the nucleotides in the pool of the amplification reaction can be provided with a suitable label so that the label is inserted into the new resulting amplification product is installed.
  • double strands that have arisen in a hybridization reaction can also be detected by DNA double strand specific antibodies. Said antibodies are characterized in that they only bind to double-stranded DNA, but not to single-stranded DNA.
  • Another preferred detection method is the detection of the first or second nucleic acid with a specific antibody or antibody fragment or antibody derivative or an aptamer.
  • This method generates specific antibodies that recognize the first or second nucleic acids.
  • Fragments of antibodies are e.g. Fv, Fab or F (ab) 2 fragments, derivatives include scFvs.
  • Aptamers are nucleic acids that bind specifically to a target molecule due to their three-dimensional structure. Methods for generating specific antibodies are known from the prior art.
  • the specificity of binding to the genomic nucleic acid can e.g. by competition experiments with radioactively labeled desired target nucleic acid and unwanted, e.g. randomly selected nucleic acid can be tested.
  • Common detection methods in which the antibodies are used are e.g. ELISA or RIPA but also immunofluorescence and other detection methods.
  • the antibodies specifically bind the first or second nucleic acids.
  • Antibody binding can e.g. be made visible by labeling the primary antibodies or is detected with the aid of antibody-binding second antibodies, which in turn are then labeled.
  • the antibodies can e.g. be modified with fluorescent substances, by radioactive labeling or an enzymatic labeling.
  • Immunological detection methods using specific antibodies, as well as the generation of antibodies and fragments or derivatives thereof are, as already mentioned, known from the prior art. Examples include Harlow et al., 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press and all subsequent editions.
  • a genome screen is carried out on several mammals in a population.
  • the term "Several mammals" comprises at least two animals of a population, preferably up to 5 animals, more preferably 8 animals, more preferably 10 animals, more preferably 50 animals, still more preferably 250 animals, most preferably 1500 animals.
  • the genome screen is used to examine whether a nucleic acid of at least 8 nucleotides in length, preferably up to 50 nucleotides, more preferably 350 nucleotides, still more preferably 1000 nucleotides, most preferably up to 5000 nucleotides or longer, is inherited together with the feature "afterlessness".
  • Preferred markers are the microsatellites SW2185, SW1621, SW1902, S0155 , and S0320 on pig chromosome 1 or the microsatellites in a homologous position in the genome of other mammals; or microsatellite S0002 on pig chromosome 3 or a microsatellite in a homologous position in the genome of other mammals; or the mic rosatellites SW2401 and S0081 on chromosome 9 of the pig or the microsatellites in a homologous position in the genome of other mammals; or the microsatellites SW957 and S0229 on chromosome 12 of the pig or the microsatellites in a homologous position in the genome of other mammals.
  • nucleic acid sequences can also be used as markers, provided that they are identical or essentially identical in the sense of the invention to the second nucleic acid disclosed in the invention or are in one of the above-mentioned nucleic acid regions.
  • sequences flanking the microsatellites for example as target sequences for the PCR primers, can also be included in the analysis.
  • the invention further relates to a kit containing at least one pair of primers for the amplification of the second nucleic acid, one primer each binding to the + strand and another primer to the - strand of this nucleic acid; or a hybridization probe with a length of at least 8 nucleotides that binds to the second nucleic acid; or an antibody or an antibody fragment or an antibody derivative or an aptamer that specifically binds the first or second nucleic acid.
  • primers are understood to be those nucleic acids which comprise at least 70 nucleotides, more preferably at least 50 nucleotides, even more preferably at least 30 nucleotides and most preferably 25, 22, 20, 17, 15, 13, 12 or 8 nucleotides.
  • the nucleotide sequences of the primers can be combined as desired from the second nucleic acid sequences disclosed above, provided that they have at least 8 consecutive nucleotides.
  • a primer should have at least 7 nucleotides identical to the target sequence within 8 neighboring nucleotides.
  • the invention also includes those embodiments in which 4, 5 or 6 of the 8 nucleotides are identical to the corresponding sequence of the second nucleic acid.
  • Kits based on hybridization methods contain a hybridization probe.
  • the hybridization probe can be up to 50 nucleotides long, more preferably up to 100 nucleotides, even more preferably up to 1000 nucleotides, and most preferably up to 5000 nucleotides or longer.
  • the hybridization probe is preferably a radioactively labeled nucleic acid or it contains modified nucleotides.
  • Kits for the detection of nucleic acids on ELISA, RIA, RIPA or similar basis contain a specific antibody or an antibody fragment or an antibody derivative or an aptamer. Antibodies or antibody fragments or antibody derivatives or aptamers are specifically directed against the first or second nucleic acid. Common detection methods in which the kits are used are, for example, ELISA or RIPA, but also immunofluorescence and others Detection methods. Immunological detection methods and methods for generating specific antibodies are known from the prior art.
  • the components of the kit can be packaged in containers such as vials, optionally also in buffers and / or solutions. Optionally, one or more of the components can be packaged in the same container. Additionally or alternatively, one or more components can be absorbed on a solid support, such as on nitrocellulose filters, nylon membranes, or on the well of a microtiter plate.
  • Figure 1 Information content (info) of the nonparametric multipoint coupling analysis when increasing the marker density to SSC1.
  • Figure 2 Course of the NPL a ⁇ S pt statistics when increasing the marker density to SSC 1.
  • Figure 3 Information content of the nonparametric single point coupling analysis when increasing the marker density to SSC 1.
  • Figure 5 Information content of the multipoint NPL statistics on SSC1 in coupling analyzes with different numbers of families and different marker density.
  • Figure 7 Information content of the Singlepoint NPL statistics on SSC1 in coupling analyzes with different numbers of families and different marker density.
  • Figure 8 Frequency distribution of the haplotypes, derived from the markers SW 1621 and SW 1902 on SSC1.
  • the haplotypes of the piglets are marked in blue and the haplotypes of the boars in yellow.
  • the genealogical examination was carried out with ten microsatellite markers distributed over the genome, which also represented the first set of markers for genome-wide typing. At the time of typing, there was no information about the number of alleles and the allele frequencies existing in the populations for these markers. According to Garber (1983), the probability PE ⁇ for the detection of an incorrect parentage was determined for each marker. This calculation takes into account that only a typed parent, usually the boar or in some cases the mother animal, is available for the pedigree control in the animal material. The allele frequencies required for this were estimated from the genotypes of the typed boars and piglets, since no typing information was available from the dams.
  • the 20 microsatellite markers used are characterized in more detail in Table 1. The number of alleles, the chromosome (SSC), the heterozygosity, the polymorphism information content (PIC) and the probability PE ⁇ for the detection of an incorrect parentage are listed for each marker.
  • Table 1 Characterization of the 20 microsatellite markers for parentage control.
  • Table 2 Characteristics of anuslessness and the sex of the typed piglets.
  • Atresia ani and Atresia recti piglets were classified in one disease category and the two forms of anuslessness were considered the same defect.
  • the animal material without Atresia recti animals was evaluated. The number of families with 2 HG was reduced by 2, 4 families with 3 HG lost 1 HG, so that 17 families with 2 HG and 1 family with 3 HG were available for the evaluation. The other family material remained unchanged.
  • Table 3 shows the breeds of all 72 afterless piglets that were in the typing set. The most common is also with 51.4% the cross with DL as the mother breed and Pl as the father breed.
  • Table 3 Breed and crossbreeds of the afterless animals.
  • the supplementary family material consisted of 31 animals, including 23 free piglets, 7 boars and 1 mother sow.
  • Table 4 shows the sex and the nature of the defect in these piglets.
  • Table 5 also gives an overview of the breeds of boars and sows of the 23 afterless animals.
  • Table 4 Characteristics of anuslessness and sex of the piglets.
  • Table 5 Breed of boars and sows with ateless animals (supplementary family material).
  • Marker card The distribution of the microsatellite markers over the genome was aimed at a marker spacing of 20 cM. The criteria for compiling the primer set was the achievement of high quality PCR Amplificates and a minimum number of three amplifying alleles. The information came from a Pietrain x Mangalitza resource population. For the genome-wide typing for defect gene mapping, 130 microsatellites, including the markers from the parentage control, were selected from this set and assembled into multiplex groups of 10-12 markers. The distances on the genetic map of the pig genome and the order of the markers were taken from the database of the US Meat Animal Research Center (Rohrer et al., 1996).
  • the distances between the marker loci on this map were estimated on the basis of recombination rates averaged over both sexes. With a few exceptions, the distance between the markers used was 20-25 cM.
  • a total of eight markers were typed on the sex chromosome (SSC X). Within the pseudo-autosomal region of the sex chromosomes (SSC XY), two markers were used for typing, but PCR amplificates could only be obtained for the SW949 marker. As part of the parametric and nonparametric evaluation, only a coupling analysis between the microsatellite marker SW949 and the supposed disease locus could be carried out.
  • the allele frequencies from the entire typed family material were estimated. Since marker genotypes were only determined for one parent, mostly the father animal, it was not possible to estimate the allele frequencies directly in the parent generation.
  • the transferred maternal alleles were derived from the genotypes of the piglets and boars and the allele frequencies in the maternal population were calculated. Typing the microsatellite markers
  • the first step in the preparation was to wash the sperm cells with 1 x PBS to completely remove the seminal plasma.
  • 500 ⁇ l of native pork sperm were mixed with 1 ml of 1 ⁇ PBS (pH 7.4, 140 mM NaCl, 2.7 mM KCI, 6.5 mM Na 2 HP0 4 , 1.5 mM KH 2 PO 4 ) in a 2 ml Eppendorf tube. Centrifugation was carried out for 3 minutes and at a low speed (3,000 rpm) to prevent the sperm cells from sticking together. The supernatant was then poured off. This washing step was repeated at least twice until the supernatant was no longer viscous.
  • the sperm cell pellet was completely resuspended with 1 ml of 1 ⁇ PBS after centrifugation. After the washing step, the sperm pellet was suspended in 1 ml of lysis buffer (pH 7.4, 1% SDS, 20 mM Tris, 4 mM Na 2 EDTA, 100 mM NaCl) and 150 ⁇ l ProteinaseK (20 mg / ml in bidist. H 2 O) and 50 ⁇ l DTT (1, 4-dithiothreitol, pH 5.2, 1M in 0.01 M NaAcetat) added. Incubation took place overnight at 55 ° C. After the incubation, the solution should be clear and transparent.
  • lysis buffer pH 7.4, 1% SDS, 20 mM Tris, 4 mM Na 2 EDTA, 100 mM NaCl
  • ProteinaseK 20 mg / ml in bidist. H 2 O
  • DTT 1, 4-dithiothreitol, pH 5.2, 1
  • the mixture was incubated again with 150 ⁇ l ProteinaseK (20 mg / ml).
  • the solution was then transferred to a Vacutainer SST 9.5 ml tube (368510, Becton Dickinson). This was followed by extraction with 1000 ⁇ l phenol (pH 7.9; buffered with Tris) and a mixture of chloroform and isoamyl alcohol in a ratio of 24: 1.
  • the DNA precipitation was carried out in a 15 ml Sarstedt tube with 0.8 volume percent isopropanol.
  • the DNA was air-dried and taken up in 150 ⁇ l TE (pH 8.0, 10 mM Tris-HCl, 1 mM EDTA). The DNA yield varied between 10-22 ⁇ g depending on the quality of the sperm.
  • the piglet's muscle tissue which contains a lot of RNA, was treated with 400 ⁇ g RNase (pH 7.4, 20 mg / ml in 10mM NaAcetat (pH 5.2)) for 30 min before the phenol / chloroform extraction. incubated at 37 ° C. The solution was then transferred together with 200 ⁇ l TE (pH 8.0, 10 mM Tris-HCl, 1 mM EDTA) into a Vacutainer SST 9.5 ml tube (368510, Becton Dickinson). Following air drying, the DNA was taken up in 200 ⁇ l TE (pH 8.0, 10 mM Tris-HCl, 1 mM EDTA). The DNA yield varied between 30-60 ⁇ g.
  • the DNeasy kit from Qiagen (cat. No. 29308) was used for DNA extraction from ear tissue.
  • the fluorometer Hoefer DyNA Quant 200, Amersham Pharmacia Biotech
  • 200 ng of Calf thymus DNA 100 ⁇ g / ml in bidist. H 2 O
  • 2 ⁇ l DNA in 2 ml TNE measuring solution pH 7.4, 10 mM Tris, 1 mM EDTA Na 2 • 2H 2 O, 0.2 mM NaCl, 0.1 ⁇ g / ml Hoechst H 33258 (bisbenzimide)
  • 2 ml DNA in 2 ml TNE measuring solution pH 7.4, 10 mM Tris, 1 mM EDTA Na 2 • 2H 2 O, 0.2 mM NaCl, 0.1 ⁇ g / ml Hoechst H 33258 (bisbenzimide)
  • Measurements were made at an excitation wavelength of 350 nm and an emission wavelength of 456 nm.
  • the measured DNA concentration for the TNE measuring solution described above was proportional to the bound Hoechst H 33258 amount in the DNA double strand.
  • the samples were adjusted to a concentration of 25 ng / ⁇ l with TE (pH 8.0) and applied to a 0.8% agarose gel (ethidium bromide) as a control.
  • PCR reactions For the PCR reactions, 200 ⁇ l DNA (25 ng / ⁇ l) were placed in 96-well microtiter plates and covered with 2 drops of mineral oil to protect against evaporation. Mixing the standard master mix (50 mM KCI, 10 mM Tris-HCl (pH 8.3), 200 ⁇ M per dNTP, 1.5 mM MgCI 2l 5 pmol per primer and 0.5 units Perkin- Bucket of AmpliTaq polymerase) for the PCR reactions with a total volume of 20 ⁇ l was carried out in two Eppendorf tubes (1.5 ml) for 52 batches each. A Biomek 2000 (Laboratory Automation Workstation, Beckmann) was used for pipetting the PCR.
  • standard master mix 50 mM KCI, 10 mM Tris-HCl (pH 8.3), 200 ⁇ M per dNTP, 1.5 mM MgCI 2l 5 pmol per primer and 0.5 units Perkin- Bucket of AmpliTaq
  • 6-FAM-labeled PCR products were generally diluted 1:30, TET-labeled PCR products 1:20 and HEX-labeled products 1:10.
  • the standard dilution factor was corrected from the intensity of the PCR bands on the agarose gel.
  • multiplex approaches with up to 12 different markers per animal were created and with bidest.
  • H 2 0 set to the desired concentration.
  • Polyacrylamide gel electrophoresis For the polyacrylamide gel electrophoresis, a 5% acrylamide gel mixture (21 g urea, 8.4 ml acrylamide solution 30%, 6.0 ml 10 x TBE, 10.0 ml bidist. H 2 O) was prepared, filtered and with the help of a membrane vacuum pump for 20 min. degassed. 20 ⁇ l of TEMED (tetramethylethylenediamine, Ameresco, 0761) and 300 ⁇ l of APS (ammonium persulfate, ameresco, 0486) were then mixed in, the gel mixture was poured between glass plates and polymerized in a horizontal position for 1 hour.
  • TEMED tetramethylethylenediamine
  • APS ammonium persulfate, ameresco, 0486
  • the runtime was between 2 and 3 hours, depending on the fragment length of the microsatellites.
  • 1 ⁇ TBE 90 mM trisborate (pH 8.3), 2 mM Na 2 EDTA
  • the fragment lengths were analyzed with.
  • the first evaluation of the typed genotypes showed 134 conflicts between offspring and parents at a total of 43 different markers.
  • the majority of the offspring-parent couples found inconsistencies in one or two marker loci.
  • the microsatellite markers were amplified again so that the mix-ups of the PCR samples could also be excluded.
  • Table 6 Estimated allele frequency r for a non-amplifying allele in the microsatellite markers with genotype conflicts between parents and offspring.
  • the first step of the statistical analysis consisted of the genome-wide nonparametric and parametric coupling analysis of the family material.
  • the marker density in interesting chromosome regions was increased in a second step of the evaluations and the supplementary family material was also genotyped.
  • the family material was examined at 130 markers and evaluated with the Allegro 1.0 program.
  • NPL statistics were calculated for the nonparametric evaluation of the data material. It was used for both test statistics a coupling analysis between the individual markers and the disease locus (single point coupling analysis) was carried out. These test statistics are called NPLpairs spt and NPLaii S p t . A coupling analysis between the markers and the disease locus (multipoint coupling analysis) was also carried out for both NPL statistics, which are referred to as NPL pa irs mpt and NPL a n mpt .
  • the result overviews show the NPL values, the error probabilities of the NPL value (p values) and the information content (info) of the family material calculated by Allegro 1.0 at the respective marker position.
  • p values the error probabilities of the NPL value
  • info the information content of the family material calculated by Allegro 1.0 at the respective marker position.
  • the informativity was 0.45 and 0.47, respectively.
  • the results of the coupling analysis between the individual markers and the disease locus are shown below.
  • the NPL a n S pt and the NPL a ⁇ S p t statistics were calculated for each marker of the genome-wide typing. The results of this evaluation are shown in Table 8. The highest values of the NPL statistics were found on the SSC1.
  • the genetic model of the disease ie the mode of inheritance, the disease parallel frequency and the penetrance of the disease in the population must be specified.
  • the parameters in question were therefore chosen as they are possible or likely to be assumed based on the available data.
  • a monogenic recessive inheritance with a very low penetrance of 1% was assumed.
  • the assumed parallel disease frequency was varied between 0.10 and 0.30 in the statistical evaluation.
  • LOD score calculations based on a monogenic recessive inheritance, with almost complete penetrance of 90%, with disease parallel frequencies of 0.10 and 0.30 are given.
  • LOD scores between several markers and the disease locus multipoint LOD scores
  • m p t the LOD score between several markers and the disease locus
  • coupling analyzes between individual markers and the disease locus were carried out, which are called the LOD score late .
  • Table 9 shows the results of the genome-wide parametric evaluation.
  • the chromosome (SSC), the marker or the position between two markers that has reached the highest LOD scorem Pt under the specified parameters (penetrance, parallel disease frequency) are indicated.
  • the chromosomes for which a positive LOD score mp t could be determined are highlighted in gray.
  • the significance limit of the parametric coupling analysis, which is at an LOD score mp t of 3 was not reached at any marker position of the genome with the exception of SSC 1.
  • an LOD score mpt of 2.38 with a frequency of the disease allele of 0.3 was calculated for SSC 1.
  • a higher LOD score mpt of 2.72 is achieved with a frequency of the disease allele of 0.1.
  • the LOD score mpt is 3.02 and 2.88.
  • Positive LOD-Score mp t values resulted on SSC 3 with incomplete penetrance (1%). They were 1.41 and 1.21.
  • a positive LOD score mpt of 0.41 was only achieved for the disease parallel frequency of 0.3.
  • the LOD score mpt with a value of -0.75 was in the negative range.
  • SSC 12 showed a LOD score of 0.3 with a disease parallel frequency of 0.3 and a penetrance of 1% 1.07 determined.
  • SSC 9 and SSC 13 chromosomes the LOD score sp t values for the same parameters were 0.55, 0.53 and 0.57
  • Table 9 The maximum LOD scores mp of the genome-wide coupling analysis.
  • Table 10 shows the results of the Singlepoint LOD score analysis.
  • the evaluation was carried out under the same comparative parameters, with regard to the parallel disease frequency and penetrance, as the multipoint coupling analysis.
  • the chromosomes that have reached a positive LOD score are highlighted in gray in the table.
  • the highest LOD score values were also on SSC 1.
  • a higher LOD score of 2.40 is achieved with the same penetrance and with a frequency of the disease allele of 0.1.
  • the maximum LOD score is between 2.00 and 1.28.
  • Table 10 The maximum LOD scores late values of the genome-wide coupling analysis.
  • results of the multipoint coupling analysis 8 additional microsatellite markers were genotyped on the SSC 1.
  • the course of the NPL a n t mp statistics on SSC 1 to 14 markers black graph
  • the course engineering of the original NPL a n m pt statistic is faced with 6 markers.
  • the maximum NPL value in the evaluation with 14 markers is somewhat lower than in the first analysis. In contrast, the information content at the NPL maximum was increased significantly from 0.47 to 0.74.
  • Information content (info) of the multipoint coupling analysis The additionally typed markers not only increased the information content at the position of the NPL maximum, but also in the proximal area of SSC 1 (see FIG. 1). Compared to the first genome-wide analysis, the information content in the interesting chromosome range (70-90 cM) is now between 0.74 and 0.88. The information content in the distal area of the chromosome is 0.40. The typing of further microsatellite markers in this region could thus lead to a decisive improvement in the information content.
  • the information content at the individual marker positions of the single point coupling analysis is shown in FIG. 3. It can be seen that increasing the marker density, especially in the proximal area of the SSC 1, significantly increased the information content.
  • the supplementary family material was also included in the typing.
  • Table H Comparison of the NPL a n mpt statistics on SSC1 in the coupling analysis with different family material and variable marker density.
  • Table 12 Comparison of the NPL a ⁇ late statistics on SSC1 in the coupling analysis with different family material and variable marker density.
  • a TDT was carried out to check for coupling and association between the individual marker alleles and the disease locus. Specifically, these were SSC 1, SSC 3, SSC 8, SSC 9, SSC 12, SSC 13 and SSC 15. The significance limit depends on the number of microsatellite markers on which a TDT was carried out. It is separate for each chromosome, along with the results. Results of the TDT on SSC1
  • a TDT test was carried out on 14 markers for chromosome SSC 1. The results are shown in Table 13.
  • the order of the markers in the table reflects the arrangement on the chromosome.
  • the marker SW2185 which had shown the NPL a ⁇ maximum of 2.05 in the confirmation study with 14 markers, only achieved a significant error probability of 0.015 for the T mH e t test statistics.
  • Table 13 Results of the TDT test statistics T m and T m Het on 14 microsatellite markers from SSC1 (significance limit for multiple tests ⁇ m
  • t 0.003).
  • a TDT test with the transmitted and non-transmitted coupling phases or haplotypes was also carried out on the markers SW1621 and SW1902.
  • Allegro 1.0 was used to derive the most likely coupling phases of the markers based on the available family structure and marker information. This possibility was used to determine the haplotypes of the affected HG and the typed Elteri for the markers on SSC 1.
  • the frequencies of the haplotypes for the markers SW1621 and SW1902 are shown in FIG. These two marker positions showed significant results both in the nonparametric coupling analysis and in the test for coupling and association with the TDT.
  • the first position of the haplotype indicates the marker allele on the marker SW1621, the second position shows the allele on the microsatellite marker SW1902.
  • the alleles are numbered consecutively from 1 to 3 on marker SW1621 and from 1 to 8 on marker SW1902.
  • a total of 14 different haplotypes could be derived from the affected piglets and 11 from the boars.
  • the result of the TDT showed with an error probability of p equal to 1 x 10 "4 (level of significance 0.05) that this haplotype was preferentially transmitted to the diseased animals.
  • the results of the TDT on the six markers of the SSC 12 are shown in Table 17.
  • the marker SW957 showed significant test values for the TDT with an error probability of 0.013 and 0.003.
  • Table 17 Results of the TDT test statistics T m and T m Het on 7 microsatellite markers from SSC12 (significance limit for multiple tests ⁇ m
  • t 0.007).
  • Example 6 Additional study data for the TDT on association with the occurrence of anuslessness for the markers SW1621 and SW1902
  • Table 20 shows the results of the TDT test statistics for association for the individual markers and for the corresponding haplotypes (allele combinations).
  • Example 7 Additional study data for the TDT for the markers SW1621 and SW1902 on healthy test animals. From a further work with another question, test material was available at the chair for animal breeding from healthy piglets, which came from boars, which also had afterless piglets. The basic consideration of the test carried out was that these boars pass on the allele associated with the lack of anus to healthy offspring less frequently. Due to the existing circumstances, the low incidence in the population and the low penetrance, it would be expected that no difference can be determined whether these boars transmit the associated or the alternative allele to the healthy offspring. The corresponding results are summarized in Table 21. The TDT test statistics in Table 21 are not significant and differ significantly from those in Table 20.
  • Table 21 Test statistics and error probabilities (p) for the association of marker alleles or haplotypes of markers SW1621 and SW1902 in healthy test animals
  • Example 8 Additional study data for allele frequency estimation for the markers SW1621 and SW1902 on afterless animals. As part of the extensive data and material collection in the field, a number of individual afterless piglets were recorded, of which the parentage was unknown and which was neither found in coupling studies by families nor in Association studies of parent-offspring pairs could be included. These animals can be considered as an independent sample and are suitable for a more precise estimate of the frequencies of associated marker alleles or haplotypes in atless piglets. Furthermore, the associations found so far can be checked from frequency differences between affected and healthy piglets. The estimates of the allele frequencies for both markers are shown in Table 22. It turns out that the associated allele is by far the most common in afterless animals.
  • Table 22 Estimates of allele frequencies for markers SW1621 and SW1902 for afterless piglets
  • Table 23 Estimates of the allele frequencies for markers SW1621 and SW1902 in pure breed animals of the breeds Pietrain and Manual Landrasse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to the use of a first nucleic acid for determining predisposition to expression or heredity of the imperforate anus phenotype in a mammal, said first nucleic acid having a length of at least 8 nucleotides and being identical or essentially identical to a second nucleic acid on chromosome 1 of the pig or in a homologous position in the genome of other mammals, that is in the region of a microsatellite selected from the group consisting of SW2185, SW 1621, SW 1902, S0155, and S0320; or on chromosome 3 of the pig or in a homologous position in the genome of other mammals, that is in the region of the microsatellite S0002; or on chromosome 9 of the pig or in a homologous position in the genome of other mammals, that is in the region of a microsatellite selected from the group consisting of SW2401 and S0081; or on chromosome 12 of the pig or in a homologous position in the genome of other mammals, that is in the region of a microsatellite selected from the group consisting of SW957 and S0229. The invention also relates to methods for determining predisposition to expression or heredity of the imperforate anus characteristic in mammals, preferably in domestic animals, breeding animals and working animals, whereby the mammals, the fertilised ovules or non-fertilised ovules thereof, or the sperm thereof are tested for the presence, structure or expression of the second abovementioned nucleic acids. Disclosed is also a kit containing at least one pair of primers for amplifying one of the second abovementioned nucleic acids, respectively one primer binding to the + strand of the nucleic acid and another primer binding to the strand of the nucleic acid, or a hybridisation probe having a length of at least 8 nucleotides which binds to one of the second abovementioned nucleic acids, or a specific antibody or an antibody fragment which binds to the second abovementioned nucleic acid.

Description

Genetische Marker für die Diagnose der Prädisposition zur Vererbung oder Ausprägung des Phänotyps „Afterlosigkeit" bei Haus-, Zucht- und NutztierenGenetic markers for the diagnosis of the predisposition to inheritance or expression of the phenotype "afterlessness" in domestic, breeding and farm animals
Die Erfindung betrifft die Verwendung einer ersten Nukleinsaure zur Bestimmung der Prädisposition zur Ausprägung oder Vererbung des Phanotypus „Afterlosigkeit" in einem Säuger, wobei die erste Nukleinsaure eine Länge von mindestens 8 Nukleotiden aufweist und identisch oder im wesentlichen identisch ist mit einer zweiten Nukleinsaure, die vorkommt auf Chromosoms 1 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich eines Mikrosatelliten ausgewählt aus der Gruppe bestehend aus SW2185, SW1621 , SW1902, S0155, und S0320; oder auf Chromosoms 3 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich des Mikrosatelliten S0002; oder auf Chromosoms 9 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich eines Mikrosatelliten ausgewählt aus der Gruppe bestehend aus SW2401 und S0081 ; oder auf Chromosom 12 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich eines Mikrosatelliten ausgewählt aus der Gruppe bestehend aus SW957 und S0229. Die Erfindung betrifft ferner Verfahren zur Bestimmung der Prädisposition zur Ausprägung oder Vererbung des Merkmals „Afterlosigkeit" in Säugern, vorzugsweise in Haus-, Zucht- oder Nutztieren, wobei man die Säuger, deren befruchtete oder unbefruchtete Eizellen, oder deren Sperma auf die Anwesenheit, Beschaffenheit oder Ausprägung der oben genannten zweiten Nukleinsaure testet. Schließlich betrifft die Erfindung ein Kit, mindestens enthaltend ein Primerpaar zur Amplifikation einer der oben genannten zweiten Nukleinsaure, wobei jeweils ein Primer an den + Strang und ein weiterer Primer an den - Strang der Nukleinsaure bindet, oder eine Hybridisierungssonde mit einer Länge von mindestens 8 Nukleotiden die an eine der oben genannten zweiten Nukleinsäuren bindet, oder einen spezifischen Antikörper oder ein Antikörperfragment, das an die zweite vorstehend offenbarte Nukleinsaure bindet.The invention relates to the use of a first nucleic acid for determining the predisposition to the expression or inheritance of the phenotype "afterlessness" in a mammal, the first nucleic acid having a length of at least 8 nucleotides and being identical or essentially identical to a second nucleic acid which occurs on chromosome 1 of the pig or in a homologous position in the genome of other mammals, specifically in the area of a microsatellite selected from the group consisting of SW2185, SW1621, SW1902, S0155, and S0320; or on chromosome 3 of the pig or in a homologous position in Genome of other mammals, in the area of microsatellite S0002; or on chromosome 9 of the pig or in a homologous position in the genome of other mammals, in the area of a microsatellite selected from the group consisting of SW2401 and S0081; or on chromosome 12 of the pig or in a homologous position in the genome of other mammals, in the area of a microsatellite selected from the group consisting of SW957 and S0229. The invention further relates to methods for determining the predisposition to the expression or inheritance of the characteristic "afterlessness" in mammals, preferably in domestic, breeding or farm animals, whereby the mammals, their fertilized or unfertilized egg cells, or their sperm on the presence, nature Finally, the invention relates to a kit, at least containing a pair of primers for the amplification of one of the above second nucleic acids, one primer each binding to the + strand and another primer to the - strand of the nucleic acid, or a hybridization probe with a length of at least 8 nucleotides that binds to one of the above-mentioned second nucleic acids, or a specific antibody or an antibody fragment that binds to the second nucleic acid disclosed above.
In der Schweineproduktion verursachen Erbdefekte bei neugeborenen Ferkeln erhebliche finanzielle Einbußen, sowohl durch den direkten Tierverlust als auch durch damit verbundenen tierärztliche Behandlungskosten. Zudem besteht aus Gründen des Tierschutzgesetztes §11 b Absatz 1 und 2 ein Bedarf, die Verbreitung derartiger Defekte innerhalb der Tierzucht zu vermeiden und betroffenen Tieren Schmerz, Leid und Qual zu ersparen. Unter dem Erbdefekt "Atresia ani" versteht man das angeborene Fehlen der Afteröffnung. Neben dieser einfachen Ausprägung der Afterlosigkeit ist auch das Krankheitsbild "Atresia recti" zu finden. Bei dieser Krankheitsform fehlt das Rektum oder endet blind in der Beckenhöhle. Beide Erkrankungen sind gekennzeichnet durch eine kurze Überlebenszeit der männlichen Tiere nach der Geburt, bei weiblichen Ferkeln wird in einigen Fällen durch eine Fistel zur Vagina das Abkoten ermöglicht und damit die Lebenszeit verlängert. Die Erblichkeit der Afterlosigkeit wurde bereits mehrfach nachgewiesen, der genaue Erbgang des Defekts ist bisher nicht bekannt. In mehreren Untersuchungen ergaben sich Hinweise, dass Einzelgene eine Rolle spielen könnten.In pig production, hereditary defects in newborn piglets cause considerable financial losses, both through direct animal loss and the associated veterinary treatment costs. It also consists of Due to the Animal Welfare Act §11 b paragraphs 1 and 2 there is a need to avoid the spread of such defects within animal breeding and to save pain, suffering and agony for affected animals. The hereditary defect "Atresia ani" means the congenital lack of anus opening. In addition to this simple form of anuslessness, the clinical picture "Atresia recti" can also be found. In this form of the disease, the rectum is missing or ends blindly in the pelvic cavity. Both diseases are characterized by a short survival time of the male animals after birth, in female piglets in some cases a fistula to the vagina enables the decoction and thus extends the lifespan. The heredity of the anuslessness has been proven several times, the exact inheritance of the defect is not yet known. Several studies have indicated that individual genes could play a role.
Die Entwicklung molekulargenetischer Methoden, besonders die Entdeckung der Mikrosatelliten als polymorphe Marker, hat es ermöglicht, die molekulargenetischen Grundlagen vieler wirtschaftlich wichtiger Merkmale und Erbdefekte zu identifizieren. Die Zahl der genetisch kartierten Loci beim Schwein beträgt zur Zeit (Rothschild, 2001) ungefähr 2000 Marker und Gene. Dies ermöglicht eine genomweite Suche nach Genomregionen, die Einfluss auf das betrachtete Merkmal ausüben. Diese Regionen werden als Economic Trait Loci (ETL) bezeichnet. Viele ETL-Untersuchungen wurden und werden im Hinblick auf Merkmale wie Reproduktionsleistung, Mast- und Schlachtleistung, Fleischqualität, Krankheitsresistenz, Immunantwort und andere Merkmale durchgeführt.The development of molecular genetic methods, especially the discovery of microsatellites as polymorphic markers, has made it possible to identify the molecular genetic basis of many economically important traits and hereditary defects. The number of genetically mapped loci in pigs is currently (Rothschild, 2001) about 2000 markers and genes. This enables a genome-wide search for genome regions that influence the feature under consideration. These regions are called Economic Trait Loci (ETL). Many ETL studies have been and are being carried out with regard to characteristics such as reproductive performance, fattening and slaughter performance, meat quality, disease resistance, immune response and other characteristics.
In den letzten zehn Jahren hat sich die Genkartierung beim Schwein rasch entwickelt. Dies war hauptsächlich die Leistung von drei Forschergruppen, nämlich in Europa das PiGMaP-Programm (Archibald et al. 1991 ; Archibald et al. 1995; Yerle et al. 1997) und das nordische Konsortium (Ellegren et al. 1994; Marklund et al. 1996) und in den USA das Meat Animal Research Center des US Department of Agriculture (USDA) (Rohrer et al. 1994). Genetische Karten werden durch Kopplungsanalysen erstellt (Morton 1955; Xu 1997; Penalver 1999). Dafür sind zwei Voraussetzungen erforderlich, nämlich eine Tierpopulation mit bekannter Abstammung (Familienstruktur) und zahlreiche polymorphe Loci (Archibald and Haley 1998). Als polymorphe Loci kommen molekulargenetische Marker in Frage (Jarne and Lagoda 1996; Hui Liu 1998; Luikart and England 1999). Ein molekulargenetischer Marker kann definiert werden als ein Abschnitt des Erbmaterials, der eine bestimmte Eigenschaft hat oder hervorruft. Es handelt sich dabei um einen gekennzeichneten Locus, der von Generation zu Generation vererbt wird (Nagel 1996; OΕrien et al. 1999). Dass man die molekulargenetischen Marker relativ einfach identifizieren kann und dass sie zahlreich zur Verfügung stehen, sind Vorteile gegenüber anderen Markersystemen wie biochemischen oder immunologischen Markern. Die Genomanalyse beim Hausschwein wird hauptsächlich von zwei molekularen Markertypen dominiert. Diese Markertypen sind Restriktionsfragment-Längenpolymorphismen (RFLPs) und Mikrosatelliten (Jarne and Lagoda 1996; Montaldo and Herrera-Meza 1998). Die meisten RFLPs sind diallelisch und haben nach Hui Liu (1998) im Vergleich mit Mikrosatelliten niedrige PIC-Werte (Polymorphism Information Content). Darüber hinaus ist die Darstellung von RFLPs zeit- und kostenaufwendig (Botstein et al. 1980; Winter et al,1992; Yue 1999). Mikrosatelliten dagegen sind zahlreich vorhanden und haben hohe PIC- Werte. Etwa 65.000 bis 100.000 Mikrosatellitenloci sind im Schweinegenom gleichmäßig verteilt (Ellegren 1993; Schlötterer 1997; Dounavi 2000). Die Identifizierung von Mikrosatelliten wird von verschiedenen Labors durchgeführt, die aktuelle Zahl von identifizierten Mikrosatelliten beträgt 1286 (Stand 05.03.2001). Eine geringe Anzahl von ETL-Merkmalen von Schweinen und anderen Säugern können mit Hilfe von genetischen Markern vorhergesagt werden. Es gibt bis heute allerdings keine Möglichkeit eine Prädisposition zur Vererbung oder Ausprägung des Phänotyps „Afterlosigkeit" nachzuweisen.In the past ten years, gene mapping in pigs has developed rapidly. This was mainly the achievement of three research groups, namely the PiGMaP program in Europe (Archibald et al. 1991; Archibald et al. 1995; Yerle et al. 1997) and the Nordic consortium (Ellegren et al. 1994; Marklund et al. 1996) and in the USA the Meat Animal Research Center of the US Department of Agriculture (USDA) (Rohrer et al. 1994). Genetic maps are created by coupling analyzes (Morton 1955; Xu 1997; Penalver 1999). Two prerequisites are required for this, namely an animal population with a known one Pedigree (family structure) and numerous polymorphic loci (Archibald and Haley 1998). Molecular genetic markers can be used as polymorphic loci (Jarne and Lagoda 1996; Hui Liu 1998; Luikart and England 1999). A molecular genetic marker can be defined as a section of the genetic material that has or has a specific property. It is a marked locus that is inherited from generation to generation (Nagel 1996; OΕrien et al. 1999). The fact that it is relatively easy to identify the molecular genetic markers and that they are available in large numbers are advantages over other marker systems such as biochemical or immunological markers. Genome analysis in domestic pigs is mainly dominated by two molecular marker types. These types of markers are restriction fragment length polymorphisms (RFLPs) and microsatellites (Jarne and Lagoda 1996; Montaldo and Herrera-Meza 1998). Most RFLPs are diallelic and, according to Hui Liu (1998), have low PIC (Polymorphism Information Content) values compared to microsatellites. In addition, the presentation of RFLPs is time-consuming and costly (Botstein et al. 1980; Winter et al, 1992; Yue 1999). Microsatellites, on the other hand, are numerous and have high PIC values. Around 65,000 to 100,000 microsatellite loci are evenly distributed in the pig genome (Ellegren 1993; Schlötterer 1997; Dounavi 2000). The identification of microsatellites is carried out by various laboratories; the current number of identified microsatellites is 1286 (as of March 5, 2001). A small number of ETL traits in pigs and other mammals can be predicted using genetic markers. To date, however, there is no possibility of demonstrating a predisposition to inheritance or the expression of the phenotype "afterlessness".
Bei Genotypisierungen oder Genomscreening Verfahren wird festgestellt, ob das Vorhandensein bestimmter polymorpher Abschnitte der DNA oder spezifischer Allele eines Gens mit der Vererbung oder Ausprägung eines Phänotyps korreliert (Assoziation). Hierbei kann man davon ausgehen, dass mit dem Merkmal assoziierte polymorphe DNA in Nachbarschaft des für den Phänotyp verantwortlichen Gens gelegen ist und dadurch, mit einer gewissen Wahrscheinlichkeit, gemeinsam mit diesem vererbt wird. Werden zwei oder mehrere polymorphe Marker mit hoher Frequenz gemeinsam vererbt, so definieren sie ein quasi-stabilen genetischen „Haplotyp". Die Assoziation eines spezifischen Haplotyps mit einem Phänotyp (z.B. den der „Afterlosigkeit") kann als diagnostischer oder prognostischer Marker Verwendung finden, der es ermöglicht Aussagen über die Wahrscheinlichkeit des Auftretens oder über die Vererbung eines Phänotyps zu treffen. Hierbei gilt zu bedenken, dass solche prognostischen oder diagnostischen Nachweisverfahren unabhängig sind von der Identifizierung des Phänotyp- verursachenden Gens. Dies ist bedeutend, da die Etablierung der molekularen Grundlagen eines Phänotyps oft sehr schwierig und arbeitsaufwendig ist, insbesondere im Zusammenhang mit multifaktoriell-bedingten Phänotypen.Genotyping or genome screening procedures determine whether the presence of certain polymorphic sections of DNA or specific alleles of a gene correlates with the inheritance or expression of a phenotype (association). It can be assumed that the polymorphic DNA associated with the trait is located in the vicinity of the gene responsible for the phenotype and is therefore, with a certain probability, inherited together with it. Become two or more High-frequency polymorphic markers are inherited together, so they define a quasi-stable genetic "haplotype". The association of a specific haplotype with a phenotype (eg that of "afterlessness") can be used as a diagnostic or prognostic marker that enables statements to be made about the likelihood of occurrence or about hitting a phenotype. It should be borne in mind here that such prognostic or diagnostic detection methods are independent of the identification of the gene causing the phenotype. This is important because establishing the molecular basis of a phenotype is often very difficult and time-consuming, especially in connection with multifactorial phenotypes.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, Methoden und Verfahren zur Verfügung zu stellen, durch die Tiere identifiziert werden können, die zur Ausprägung des Phänotyps „Afterlosigkeit" prädisponiert sind oder eine solche Prädisposition vererben. Diese Aufgabe wird erfindungsgemäß durch die Bereitstellung der in den Patentansprüchen charakterisierten Ausführungsformen gelöst.The present invention is therefore based on the object of providing methods and methods by means of which animals can be identified which are predisposed to the expression of the phenotype "anuslessness" or inherit such a predisposition Characterized claims solved embodiments.
Somit betrifft die Erfindung Verwendung einer ersten Nukleinsaure zur Bestimmung der Prädisposition zur Ausprägung oder Vererbung des Phanotypus „Afterlosigkeit" in einem Säuger, wobei die erste Nukleinsaure eine Länge von mindestens 8 Nukleotiden aufweist und identisch oder im wesentlichen identisch ist mit einer zweiten Nukleinsaure, die vorkommt auf Chromosoms 1 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich eines Mikrosatelliten ausgewählt aus der Gruppe bestehend aus SW2185, SW1621 , SW1902, S0155, und S0320; oder auf Chromosoms 3 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich des Mikrosatelliten S0002; oder auf Chromosoms 9 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich eines Mikrosatelliten ausgewählt aus der Gruppe bestehend aus SW2401 und S0081 ; oder auf Chromosom 12 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich eines Mikrosatelliten ausgewählt aus der Gruppe bestehend aus SW957 und S0229. Die oben offenbarte zweite Nukleinsaure ist vorzugsweise genomische DNA oder cDNA, kann aber auch ein RNA Transkript dieser DNA sein. Genomische DNA und cDNA sind meist doppelsträngig, die erfindungsgemäße Verwendung umfasst aber auch einzelsträngige DNA Moleküle. Die erste Nukleinsaure ist bevorzugt ein Oligonukleotid, kann aber in bestimmten Ausführungen auch ein Polynukleotid sein. Sie ist bevorzugt DNA, kann aber auch RNA oder ein DNA- oder RNA-Derivat wie z.B. PNA sein. Als Primer in PCR- oder Sequenzierreaktionen hat die genannte erste Nukleinsaure üblicherweise eine Länge von mindestens 8 Nukleotiden, bevorzugt mindestens 15 Nukleotiden, stärker bevorzugt mindestens 18 Nukleotiden, noch stärker bevorzugt mindestens 21 Nukleotiden, am stärksten bevorzugt mindestens 25 Nukleotiden. Bei einer Verwendung als Hybridisierungssonde z.B. im Southern Blot kann die erste Nukleinsaure aber auch bis zu 50 Nukleotide, stärker bevorzugt bis zu 100 Nukleotide, noch stärker bevorzugt bis zu 1000 Nukleotide und am meisten bevorzugt bis zu 5000 Nukleotide lang oder länger sein. In manchen Fällen umfasst die erste oder zweite Nukleinsaure ganze Gene oder sogar Gruppen von Genen. In diesen Fällen hat die erste oder zweite Nukleinsaure eine Länge von bis zu 1000 Nukleotiden, vorzugsweise bis zu 5000 Nukleotide, beispielsweise bis zu 25000 Nukleotide, wie bis zu 150000 Nukleotide.The invention thus relates to the use of a first nucleic acid for determining the predisposition to the expression or inheritance of the phenotype "afterlessness" in a mammal, the first nucleic acid having a length of at least 8 nucleotides and being identical or essentially identical to a second nucleic acid which occurs on chromosome 1 of the pig or in a homologous position in the genome of other mammals, specifically in the area of a microsatellite selected from the group consisting of SW2185, SW1621, SW1902, S0155, and S0320; or on chromosome 3 of the pig or in a homologous position in Genome of other mammals, in the area of microsatellite S0002; or on chromosome 9 of the pig or in a homologous position in the genome of other mammals, in the area of a microsatellite selected from the group consisting of SW2401 and S0081; or on chromosome 12 of the pig or in a homologous position in the genome of other mammals r, in the area of a microsatellite selected from the group consisting of SW957 and S0229. The second nucleic acid disclosed above is preferably genomic DNA or cDNA, but can also be an RNA transcript of this DNA. Genomic DNA and cDNA are mostly double-stranded, but the use according to the invention also includes single-stranded DNA molecules. The first nucleic acid is preferably an oligonucleotide, but in certain embodiments can also be a polynucleotide. It is preferably DNA, but can also be RNA or a DNA or RNA derivative such as PNA. As a primer in PCR or sequencing reactions, the first nucleic acid mentioned usually has a length of at least 8 nucleotides, preferably at least 15 nucleotides, more preferably at least 18 nucleotides, even more preferably at least 21 nucleotides, most preferably at least 25 nucleotides. When used as a hybridization probe, for example in a Southern blot, the first nucleic acid can also be up to 50 nucleotides, more preferably up to 100 nucleotides, even more preferably up to 1000 nucleotides and most preferably up to 5000 nucleotides long or longer. In some cases, the first or second nucleic acid comprises whole genes or even groups of genes. In these cases, the first or second nucleic acid has a length of up to 1000 nucleotides, preferably up to 5000 nucleotides, for example up to 25000 nucleotides, such as up to 150,000 nucleotides.
Als Hybridisierungssonde sind solche Nukleinsäuren zu verstehen, die in einer Hybridisierung verwendet werden und hierbei an homologe Nukleinsäuren binden. Vorzugsweise ist die Hybridisierungssonde eine radioaktiv-markierte Nukleinsaure oder sie enthält modifizierte Nukleotide. Die Erfindung umfasst auch solche Abwandlungen der vorliegend beanspruchten Nukleinsäuren, Hybridisierungssonden und Primer, die mit den zweiten Nukleinsäuren, bevorzugt unter stringenten Bedingungen, hybridisieren. Unter höher- oder hochstringenten Hybridisierungsbedingungen werden im Sinne dieser Erfindung beispielsweise 0.2- 0.5 x SSC (0.03 M NaCI, 0.003M Natriumeitrat, pH 7) bei 65°C verstanden. Bei kürzeren Fragmenten, beispielsweise Nukleinsäuremoleküle aus bis zu 20 Nukleotiden, liegt die Hybridisierungstemperatur unter 65°C, beispielsweise bei über 55°C, bevorzugt über 50°C. Stringente Hybridisierungstemperaturen sind abhängig von der Größe bzw. Länge der Nukleinsaure und ihrer Nukleotidzusammensetzung und sind vom Fachmann durch Handversuche zu ermitteln. Üblicherweise enthält die zur Hybridisierung verwendete Lösung ein Detergenz wie z.B. SDS in einer Konzentration von 0.1 % bis 0.5% und eine Sammlung unspezifischer Nukleinsäuren zur Absättigung unspezifischer Bindungsstellen. Die Grundprinzipien der Hybridisierung und die Anforderungen an eine Hybridisierungssonde sind dem Fachmann hinreichend bekannt. Beispielsweise sei hier auf Maniatis, et al. Molecular Cloning: A laboratory manual, Cold Spring Harbor Press, New York, 1982 oder Harnes und Higgins, Nucleic acid hybridisation: a practical approach, IRL Press, Oxford 1985 verwiesen.Hybridization probes are those nucleic acids that are used in a hybridization and bind to homologous nucleic acids. The hybridization probe is preferably a radioactively labeled nucleic acid or it contains modified nucleotides. The invention also includes such modifications of the nucleic acids, hybridization probes and primers claimed in the present case which hybridize with the second nucleic acids, preferably under stringent conditions. For the purposes of this invention, higher or higher stringency hybridization conditions are understood to mean, for example, 0.2-0.5 × SSC (0.03 M NaCl, 0.003M sodium citrate, pH 7) at 65 ° C. In the case of shorter fragments, for example nucleic acid molecules of up to 20 nucleotides, the hybridization temperature is below 65 ° C., for example above 55 ° C., preferably above 50 ° C. Stringent hybridization temperatures are dependent on the size or length of the nucleic acid and its nucleotide composition and are to be determined by a person skilled in the art by hand-testing. Usually, the solution used for hybridization contains a detergent such as SDS in a concentration of 0.1% to 0.5% and a collection of non-specific nucleic acids to saturate non-specific binding sites. The basic principles of hybridization and the requirements for a hybridization probe are well known to the person skilled in the art. For example, see Maniatis, et al. Molecular Cloning: A laboratory manual, Cold Spring Harbor Press, New York, 1982 or Harnes and Higgins, Nucleic acid hybridization: a practical approach, IRL Press, Oxford 1985.
Als „Prädisposition" bezeichnet man das Vorhandensein einer Erbanlage, die gegebenenfalls in einer Vererbung der Erbanlage und/oder einer Ausprägung eines Merkmals resultieren kann. Unter dem Merkmal "Atresia ani" versteht der Fachmann das angeborene Fehlen der Afteröffnung. Neben dieser einfachen Ausprägung der Afterlosigkeit ist auch das Krankheitsbild "Atresia recti" zu finden. Bei dieser Krankheitsform fehlt das Rektum oder endet blind in der Beckenhöhle. Beide Erkrankungen sind gekennzeichnet durch eine kurze Überlebenszeit der männlichen Tiere nach der Geburt, bei weiblichen Ferkeln wird in einigen Fällen durch eine Fistel zur Vagina das Abkoten ermöglicht und damit die Lebenszeit verlängert.The term "predisposition" refers to the presence of a hereditary disposition, which can possibly result in an inheritance of the hereditary disposition and / or the expression of a characteristic. The term "atresia ani" is understood by the person skilled in the art to mean the innate lack of anus opening. In addition to this simple manifestation of anuslessness the clinical picture "Atresia recti" can also be found. In this form of the disease the rectum is missing or ends blindly in the pelvic cavity. Both diseases are characterized by a short survival time of the male animals after birth, in female piglets is in some cases caused by a fistula Vagina allows the eradication and thus extends the lifespan.
Bezogen auf die Kopplungskarte des US Meat and Animal Center (Rohrer et al., 1996 Genome Research 6: 371-391 , eine ständig aktualisierte Version findet sich auch unter http://www.genome.iastate.edu/maps/index.html), die anhand über die Geschlechter gemittelten Rekombinationsraten erstellt wurde, ist Mikrosatellit SW2185 an Position SSC1 67.6 cM gelegen, SW1621 an Position SSC1 79.6 cM gelegen, SW1902 an Position SSC1 83.4 cM gelegen, S0155 an Position SSC1 93.9 cM gelegen, S0320 an Position SSC1 112.5 cM gelegen, S0002 an Position SSC3 102.2 cM gelegen, SW2401 an Position SSC9 57.1 cM gelegen, S0081 an Position SSC9 77.0 cM gelegen. SW957 an Position SSC12 33.4 cM gelegen und S0229 an Position SSC12 19.4 cM gelegen. Da genetische Kartierungspositionen populationsabhängig sind, ist diese Positionsangabe Schwankungen unterworfen, die den Fachmann jedoch in Kenntnis der erfindungsgemäßen Lehre ohne weiteres zur Umsetzung derselben befähigen. Der Bereich „Mikrosatellit SW2185 auf Chromosom 1 des Schweins" bezeichnet eine für eine Population spezifische Position auf Chromosom 1 und umfasst DNA-Abschnitte 5cM stromaufwärts und/oder stromabwärts der angegebenen Position, vorzugsweise bis zu 10cM stromaufwärts und/oder stromabwärts, stärker bevorzugt bis zu 20cM stromaufwärts und/oder stromabwärts und am meisten bevorzugt bis zu 30cM stromaufwärts und/oder stromabwärts der angegebenen Position auf dem Chromosom. Entsprechendes gilt für die weiteren genannten Mikrosatelliten. Ist der Mikrosatellit endständig, d.h. am Ende des Chromosom gelegen, insbesondere weniger als 30cM vom Ende entfernt, so kann der stromaufwärts oder stromabwärts gelegene Bereich auch kürzer als 5cM sein.Based on the coupling map of the US Meat and Animal Center (Rohrer et al., 1996 Genome Research 6: 371-391, a constantly updated version can also be found at http://www.genome.iastate.edu/maps/index.html ), which was created on the basis of gender-averaged recombination rates, microsatellite SW2185 is located at position SSC1 67.6 cM, SW1621 is located at position SSC1 79.6 cM, SW1902 is located at position SSC1 83.4 cM, S0155 is located at position SSC1 93.9 cM, S0320 is located at position SSC1 112.5 cM located, S0002 located at position SSC3 102.2 cM, SW2401 located at position SSC9 57.1 cM, S0081 located at position SSC9 77.0 cM. SW957 located at position SSC12 33.4 cM and S0229 located at position SSC12 19.4 cM. Since genetic mapping positions are dependent on the population, this position specification is subject to fluctuations, which, however, is readily known to the person skilled in the art knowing the teaching according to the invention empower to implement them. The region "microsatellite SW2185 on chromosome 1 of the pig" denotes a position on chromosome 1 which is specific for a population and comprises DNA sections 5cM upstream and / or downstream of the indicated position, preferably up to 10cM upstream and / or downstream, more preferably up to 20cM upstream and / or downstream and most preferably up to 30cM upstream and / or downstream of the indicated position on the chromosome. The same applies to the other microsatellites mentioned. If the microsatellite is terminal, ie located at the end of the chromosome, in particular less than 30cM from End removed, the upstream or downstream area can also be shorter than 5 cm.
Die vergleichenden Genomkarten zwischen verschiedenen Spezies beruhen auf der Kartierung eines oder mehrer Loci im Genom der betreffenden Spezies. „Homologe Position" bezeichnet Nukleinsäureabschnitte im Genom anderer Säuger, die über die gesamte Sequenzlänge oder in spezifischen hierin gelegenen Genen oder an einem oder mehreren Loci oder Teilen davon mit mindestens 100 Nukleotiden Länge eine Sequenzidentität mit der oben offenbarten zweiten Nukleinsaure, von mindestens bevorzugt 40%, stärker bevorzugt mindestens 50%, noch stärker bevorzugt mindestens 75% und insbesondere bevorzugt mindestens 95% Sequenzidentität. Die Sequenzidentität wird vorzugsweise durch die FASTA, BLAST (Basic Local Alignment Search Tool) oder Bestfit Algorithmen des GCG- Sequenzanalyseprogramms bestimmt (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Madison, Wl 53711). Bei der Verwendung von Bestfit werden die Parameter vorzugsweise so eingestellt, dass der prozentuale Anteil der Identität über die gesamte Länge der Referenzsequenz berechnet wird und Homologielücken („gaps") von bis zu 5% der Gesamtzahl der Nukleotide erlaubt sind. Bei der Verwendung von Bestfit werden die sogenannten optionalen Parameter vorzugsweise bei ihren voreingestellten Werten belassen.The comparative genome maps between different species are based on the mapping of one or more loci in the genome of the species in question. “Homologous position” denotes nucleic acid segments in the genome of other mammals that have a sequence identity with the second nucleic acid disclosed above, at least preferably 40%, over the entire sequence length or in specific genes located here or at one or more loci or parts thereof with a length of at least 100 nucleotides. , more preferably at least 50%, even more preferably at least 75% and particularly preferably at least 95% sequence identity The sequence identity is preferably determined by the FASTA, BLAST (Basic Local Alignment Search Tool) or Bestfit algorithms of the GCG sequence analysis program (Wisconsin Sequence Analysis Package , Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Madison, Wl 53711). When using Bestfit, the parameters are preferably set so that the percentage of identity is calculated over the entire length of the reference sequence and homology gaps ( "gaps" ) of up to 5% of the total number of nucleotides are allowed. When using Bestfit, the so-called optional parameters are preferably left at their preset values.
Der Begriff „im wesentlichen identisch" bedeutet im Sinne dieser Erfindung, dass beispielsweise in einem Bereich von 8 Nukleotiden 7 Nukleotide identisch sind.For the purposes of this invention, the term “essentially identical” means that, for example, 7 nucleotides are identical in a region of 8 nucleotides.
Allerdings schließt die Erfindung auch solche Ausführungsformen ein, bei denen 4, 5 oder 6 der 8 Nukleotide mit der entsprechenden Sequenz der zweiten Nukleinsaure identisch sind. Dabei kann die erste Nukleinsaure mit dem + Strang oder dem - Strang identisch oder im wesentlichen identisch sein.However, the invention also includes those embodiments in which 4, 5 or 6 of the 8 nucleotides are identical to the corresponding sequence of the second nucleic acid. The first nucleic acid can be identical or essentially identical to the + strand or the - strand.
Der Begriff „einer ersten Nukleinsaure" schließt im Sinne der Erfindung auch ein, dass mehr als eine (erste) Nukleinsaure in der erfindungsgemäßen Verwendung eingesetzt werden kann. Dies können zum Beispiel zwei, drei oder vier Nukleinsäuren sein. Ferner kann der Begriff „zweite Nukleinsaure" sowohl den + Strang wie auch den -Strang bedeuten. Sofern zwei erste Nukleinsäuren mit der zweiten Nukleinsaure identisch oder im wesentlichen identisch sind, kann die eine erste Nukleinsaure mit dem + Strang identisch oder im wesentlichen identisch sein während die andere ersten Nukleinsaure mit dem - Strang identisch oder im wesentlichen identisch sein kann. In diesem Fall ist bevorzugt, dass die „Ausrichtung" der ersten Nukleinsaure gegenläufig ist, was die Durchführung einer PCR ermöglicht.For the purposes of the invention, the term “a first nucleic acid” also includes the fact that more than one (first) nucleic acid can be used in the use according to the invention. These can be, for example, two, three or four nucleic acids. Furthermore, the term “second nucleic acid "mean both the + strand and the - strand. If two first nucleic acids are identical or essentially identical to the second nucleic acid, the first nucleic acid can be identical or essentially identical to the + strand, while the other first nucleic acid can be identical or essentially identical to the - strand. In this case, it is preferred that the “alignment” of the first nucleic acid is in opposite directions, which enables PCR to be carried out.
Anomalien des Afters können, je nach Population, einen deutlich negativen Einfluss auf das betriebsökonomische Ergebnis in der Tierzucht haben, da sie in der Regel zum Ausschluss einer Zuchtsau führen. Mit der Erfindung werden erstmals Nukleinsäuren bereitgestellt, die eine gezielte molekularbiologische Diagnosestellung der Prädisposition zur Ausprägung des Phänotyps „Afterlosigkeit" erlauben. Durch die hier offenbarte Erfindung kann der Zeitpunkt der Selektion deutlich nach vorne verlagert werden, so dass nicht mehr auf die phänotypische Ausprägung des Merkmals gewartet werden muss. Zusätzlich kann die Einführung von molekularbiologischen Markern eine deutliche Effizienzsteigung des Selektionsprozesses bewirken. Dabei beinhaltet dieser Selektionsprozess die Bestimmung des Genotypen des Probanden/Säugers an einem oder mehreren Loci in einem Bereich der oben genannten zweiten Nukleinsäuren, bevorzugt in zwei Bereichen, mehr bevorzugt drei, noch mehr bevorzugt vier, stärker bevorzugt fünf, am stärksten bevorzugt in sechs Bereichen und die Bewertung eines Individuums als zur Zucht geeignet oder nicht geeignet unter Einbeziehung von Informationen über die Kopplungsphase zwischen dem genotypisierten Markerlocus und den für die Defektausprägung verantwortlichen Genen. Beispielsweise können sich die Genotypen von geeigneten und ungeeigneten Säugern durch eine unterschiedliche Kopienanzahl einer repetitiven Nukleotidsequenz innerhalb des betrachteten Mikrosatellitenlocus unterscheiden. Diese unterschiedliche Beschaffenheit der Nukleinsaure kann mit Hilfe von geeigneten Primern in einer PCR Reaktion dargestellt werden und schlägt sich in unterschiedlichen PCR-Produktgrößen und/oder unterschiedlichen Restriktionsfragmentlängen nieder. Die Tests werden üblicherweise an Gewebeproben des Säugers, an Eizellen, oder an Proben von Körperflüssigkeiten wie Sperma, Urin, Blut, Tränenflüssigkeit und weiteren Sekreten durchgeführt. Diese können dem Tier vor der Diagnose entnommen werden.Depending on the population, anomalies of the anus can have a significantly negative impact on the economic result in animal breeding, since they usually lead to the exclusion of a breeding sow. With the invention, nucleic acids are made available for the first time, which allow a targeted molecular-biological diagnosis of the predisposition to the expression of the phenotype "afterlessness". The invention disclosed here enables the time of the selection to be shifted significantly forward, so that it no longer depends on the phenotypic expression of the feature In addition, the introduction of molecular biological markers can bring about a significant increase in the efficiency of the selection process, which includes the determination of the genotype of the test subject / mammal at one or more loci in a region of the above-mentioned second nucleic acids, preferably in two regions, more preferably three, even more preferably four, more preferably five, most preferably in six areas and the assessment of an individual as suitable for breeding or not suitable including information about the coupling phase e.g. between the genotyped marker locus and the genes responsible for the defect. For example, the genotypes of suitable and unsuitable mammals may differ Distinguish the number of copies of a repetitive nucleotide sequence within the microsatellite locus under consideration. This different nature of the nucleic acid can be represented in a PCR reaction using suitable primers and is reflected in different PCR product sizes and / or different restriction fragment lengths. The tests are usually performed on tissue samples from mammals, on egg cells, or on samples of body fluids such as sperm, urine, blood, tear fluid and other secretions. These can be taken from the animal before diagnosis.
Selbstverständlich kann eine molekularbiologische Charakterisierung der Prädisposition zur Vererbung oder Ausprägung des Phänotyps „Afterlosigkeit" auch für den Menschen von besonderem Interesse sein. So ist vorstellbar, dass die Identifizierung einer Prädisposition zur Vererbung oder Ausprägung des Phänotyps „Afterlosigkeit" zu neuen therapeutischen Ansätzen gegen diesen Defekt führt.Of course, a molecular-biological characterization of the predisposition to inheritance or expression of the phenotype "afterlessness" can also be of particular interest to humans. It is conceivable that the identification of a predisposition to inheritance or expression of the phenotype "afterlessness" would lead to new therapeutic approaches against this defect leads.
Unter der nicht genauen Bezeichnung „Afterlosigkeit" werden beim Schwein verschiedene Mißbildungen des Intestinaltraktes zusammengefasst, die in ihrer Form und Ausprägung den Analatresien beim Menschen entsprechen (van der Putte, 1986). Die tiefe Form der Analatresie, auch als Atresia ani bezeichnet, gehört dabei zur häufigsten Krankheitsausprägung beim Schwein. Dabei endet des Rektum blind an der intakten Analmembran, die ein Septum zwischen dem entodermalen und ektodermalen Abschnitt des Analkanals bildet. Die Anusgrube ist dabei meist vollständig angelegt. Bei der hohen Form der Analatresie, Atresia recti ist eine dickere Bindegewebsschicht zwischen dem blinden Rektum und der Körperoberfläche ausgebildet. In schweren Fällen kann der Enddarm auch vollständig fehlen und blind in der Beckenhöhle enden (Russe, 1991). In Zusammenhang mit beiden Analatresien treten oftmals Rektalfisteln auf. Diese Fisteln können das Rektum mit der Vagina, der Harnblase oder dem Harnleiter verbinden (Lambrecht, 1987). In einigen Fällen treten auch ano-kutan Fisteln, d.h eine Verbindung des Rektums zur Oberfläche der Haut auf, die dann an der Stelle des nicht vorhandenen Afters liegen. Bei Tieren mit der hohen Form der Anal Atresie (Atresia recti), ist in vielen Fällen eine rekto-urethrale bzw. rekto-vaginale Fistel ausgebildet (Lambrecht, 1989). Unter den Ferkeln mit der tiefen Form der Anal Atresie (Atresie ani) lassen sich bei weiblichen Tieren sehr häufig eine ano- vestibuläre und bei den männlichen Tieren mit Ausnahme von wenigen Ferkeln ano- kutane Fisteln nachweisen. Nach Erstellung von histologischen Präparaten zeigt sich, dass die innere Fistelmündung im Rektumblindsack in vielen Fällen die wesentlichen Merkmale eines normalen Anus trägt (Lambrecht, 1989). Es ist sowohl ein innerer (Sphincter intemus) wie auch ein äußerer Schließmuskel (Sphincter externus) zu finden und auch das Ephithel der Fistelmündung ist häufig identisch mit dem einer Analöffnung (Lambrecht, 1987). Die Angaben in der Literatur über die Prävalenz von Analatresien beim Schwein sind sehr unterschiedlich und variieren zwischen 0,1- 1 % innerhalb der Population wobei deutliche Unterschiede zwischen den einzelnen Rassen beobachtet werden. Normalerweise verenden die betroffenen Ferkel innerhalb von ein bis drei Tagen. In einigen Fällen können die Tiere zwischen einer und drei Wochen alt werden. Häufigste Todesursache ist dabei Intoxikation aufgrund von Obstipation. Charakteristisch ist dabei der stark aufgetriebene Bauch. Manchmal führt die starke Schoppung des Darminhalts aber auch zur Darmruptur. Im weitern Verlauf verursachen die freigesetzten Futterpartikel eine Entzündung der Bauchhöhle (Peritonitis) mit letalen Folgen. Weibliche Tiere mit rekto-vaginalen Fisteln können hingegen längere Zeit überlebensfähig sein, da diese in der Lage sind durch die Scheide abzukoten.Under the inaccurate term "anuslessness", various malformations of the intestinal tract are summarized in pigs, which correspond in shape and form to anal atresia in humans (van der Putte, 1986). The deep form of anal atresia, also known as atresia ani, is one of them The most common form of disease in pigs, where the rectum ends blindly at the intact anal membrane, which forms a septum between the endodermal and ectodermal section of the anal canal. The anus pit is usually completely created. In the high form of anal atresia, atresia recti is a thicker layer of connective tissue between the blind rectum and the surface of the body. In severe cases, the rectum can also be completely absent and end blind in the pelvic cavity (Russe, 1991). Rectal fistulas often occur in connection with both anal atresias. These fistulas can affect the rectum with the vagina Bladder or the ureter ve bind (Lambrecht, 1987). In some cases there are also ano-cutaneous fistulas, that is, a connection of the rectum to the surface of the skin, which then lies in the place of the non-existing anus. In animals with the high form of anal atresia (atresia recti), a recto-urethral or recto-vaginal fistula is formed in many cases (Lambrecht, 1989). Among the piglets with the deep shape of the anal atresia (atresia ani), an Evidence of vestibular and anocutaneous fistulas in the male animals with the exception of a few piglets. After the preparation of histological specimens, it can be seen that the inner fistula opening in the rectum blind sac bears the essential features of a normal anus in many cases (Lambrecht, 1989). Both an internal (sphincter intemus) and an external sphincter (sphincter externus) can be found and the ephithelium of the fistula mouth is often identical to that of an anal opening (Lambrecht, 1987). The data in the literature on the prevalence of anal atresia in pigs are very different and vary between 0.1-1% within the population, with clear differences between the individual breeds being observed. The affected piglets usually die within one to three days. In some cases, the animals can be between one and three weeks old. The most common cause of death is intoxication due to constipation. The strongly distended belly is characteristic. Sometimes, however, the strong scaling of the intestinal contents also leads to an intestinal rupture. In the further course, the released feed particles cause inflammation of the abdominal cavity (peritonitis) with lethal consequences. Female animals with recto-vaginal fistulas, on the other hand, may be able to survive for a long time, as they are able to vomit through the vagina.
In der unterschiedlichen Form und Ausprägung entsprechen die Analatresien beim Ferkel den verschiedenen Formen beim Menschen. Die Prevalenz derartiger Erkrankungen beim Menschen liegt bei 0.048 % (4.8 Erkankung auf 10000 lebend geborene Kinder) (Stoll, 1997). Das Spektrum der verschiedenen Formen reicht dabei von Ektopen Anus über Atresia ani und recti mit urogentialer Fistel bis hin zu komplexen Deformationen der Kloake. Dabei ist anzumerken, dass die Krankheitsklassifizierung und Definition in der Literatur sehr unterschiedlich gehandhabt wird. In vielen Fällen werden derartige Erkrankungen nicht in spezielle Krankheitskategorien unterteilt, so dass der Begriff Analatresien einen Sammelbegriff für ursächlich verschiedenen Mißbildungen mit sehr diffenzierter Entwichklung in der Embryonalphse darstellt. So werden z.B. Kloaken verschiedentlich als ursächlich andersartiger Defekt angesehen. Schwierig ist eine genaue Differenzierung dieser Erkrankungen auch deshalb, weil der embryologische und pathologische Hintergrund dieser Krankheiten bislang nur unzureichend bekannt ist. Neben dem humanen Bereich sind Atresia ani und Atresia recti in zahlreichen anderen Spezies beschrieben worden. Dazu zählen das Rind (Dreyfuss, 1989) und der Amerikanische Büffel (Bison Bison) (Marler, 1977). Ebenfalls liegen Fallstudien beim Schaf (Dennis, 1972), bei der Katze und beim Hund (McAfee, 1976) vor. Es ist also davon auszugehen, dass in den meisten Haus- und Nutztierspezies Analatresien vorkommen, wenn auch mit sehr unterschiedlicher Häufigkeit.The different forms and characteristics of the anal atresia in piglets correspond to the different forms in humans. The prevalence of such diseases in humans is 0.048% (4.8 diseases per 10000 children born alive) (Stoll, 1997). The spectrum of the different forms ranges from ectopic anus to atresia ani and recti with urogential fistula to complex deformations of the cloaca. It should be noted that the classification and definition of the disease is handled very differently in the literature. In many cases, such diseases are not divided into special disease categories, so that the term anal atresia is a collective term for causally different malformations with very differentiated development in the embryonic phase. For example, sewers are sometimes regarded as a different cause. An exact differentiation of these diseases is also difficult because the embryological and pathological background of these diseases has so far only been is insufficiently known. In addition to the human field, Atresia ani and Atresia recti have been described in numerous other species. These include cattle (Dreyfuss, 1989) and American buffalo (Bison Bison) (Marler, 1977). There are also case studies in sheep (Dennis, 1972), cats and dogs (McAfee, 1976). It can therefore be assumed that anal atresia occurs in most domestic and farm animal species, albeit with very different frequencies.
Beim Menschen sind Analatresien oftmals in Zusammenhang mit Syndromen zu beobachten. So treten Analatresien oftmals zusammen mit Hirschsprung Erkankung (angeborenen Erweiterung des Dickdarms) oder in Zusammenhang mit dem VACTERL Syndrom auf. In Kombination mit Pallister-Hall und Sacral Agenesis finden sich bei neugeborenen Kinder oftmals Missbildungen des Urogenital-Trakts sowie Defekte des anorektalen Systems.In humans, anal atresia is often seen in connection with syndromes. For example, anal atresia often occurs together with Hirschsprung's disease (congenital enlargement of the large intestine) or in connection with VACTERL syndrome. In combination with Pallister-Hall and Sacral Agenesis, malformations of the urogenital tract and defects of the anorectal system are often found in newborn children.
Die Ätologie von anorektalen Defekten ist nicht vollständig geklärt, die bisherigen Vorstellungen vom Zustandekommen der Defekte basieren meist auf morphologischen und histologischen Untersuchungen an einer kleinen Anzahl von humanen und porcinen Embryos (Kluth, 1995, Kluth 1997, van der Putte, 1986, Nievelstein, 1998). Ein sehr wichtiges Tiermodell für die Entstehung von anorektalen Defekten stellen die Untersuchungen von van der Putte's, 1986 an porcinen Embryonen dar. Er hat 41 Embryonen und Föten in der Zeit zwischen von 24 und 120 Tag der Gravität untersucht. Seiner Meinung nach ist die Entstehung von Analatresien bedingt durch einen Defekt der dorsalen Kloakenmembran. Diese Kloakenmembran wandert im Laufe der normalen embryonalen Entwicklung des Enddarms, verursacht durch das Wachtum des Geschlechtshöckers, dorsal in Richtung des Schwanzdarmes. Diese Verlagerung ist wichtiger Bestandteil für die Teilung der Kloake in urogenital System und Rectum durch das Urogenitale Septum. Bei Tieren mit Analatresien konnte eine Verlagerung der Kloakenmembran zusammen mit den angrenzenden mesenchymalen Komponenten nicht beobachtet werden. Bei Tieren mit hohen Formen von Analatresien (Atresia recti) zeigt sich die Kloakenmembran im dorsalen Bereich zudem stark verkürzt. Die Folge dieser zu kurzen Kloakenmembran ist eine Fehlmündung des Anus, der eine "ektope" Position einnimmt und in den Urogentialtrakt mündet. Nach den Untersuchungen van der Putte's sind die verschiedenen Formen der Krankheitsausprägung (Atresia ani und Atresia recti) also als ursächlich gleicher Defekt zu betrachten. Die unterschiedlichen Ausprägungen von Analatresien werden seiner Meinung nach bedingt durch den Grad der Deformation der Kloakenmebran in der Embryonalen Entwicklung.The aetology of anorectal defects has not been fully clarified, the previous ideas about the occurrence of the defects are mostly based on morphological and histological studies on a small number of human and porcine embryos (Kluth, 1995, Kluth 1997, van der Putte, 1986, Nievelstein, 1998 ). A very important animal model for the development of anorectal defects are the studies of van der Putte's, 1986 on porcine embryos. He examined 41 embryos and fetuses between 24 and 120 days of gravity. In his opinion, the development of anal atresia is due to a defect in the dorsal cloaca membrane. This cloacal membrane migrates dorsally towards the rectum in the course of the normal embryonic development of the rectum, caused by the growth of the sexual bump. This shift is an important part of the division of the cloaca into the urogenital system and rectum by the urogenital septum. In animals with anal atresia, a displacement of the sewage membrane together with the adjacent mesenchymal components could not be observed. In animals with high forms of anal atresia (atresia recti), the cloaca membrane in the dorsal area is also greatly shortened. The result of this too short a cloaca membrane is an anus misalignment, which is an "ectopic" Takes position and opens into the urogenital tract. According to Van der Putte's investigations, the different forms of the disease (Atresia ani and Atresia recti) can be regarded as the same cause. In his opinion, the different forms of anal atresia are caused by the degree of deformation of the cloaca membrane in the embryonic development.
Die Ergebnisse der von Thaller (1992) durchgeführten Segregationsanlyse für das Merkmal Afterlosigkeit ergab deutliche Hinweise auf den Einfluß eines Einzelgenes. Die Gesamthäufigkeit der Afterlosigkeit in der Schweinepopulation wurde dabei auf 0.10 % geschätzt, wobei sich zwischen den Rassen der betroffenen Tiere deutliche Unterschiede in der Häufigkeit gezeigt haben. Es hatte sich zudem auch in dieser Studie gezeigt, dass anormale Wurfgeschwister nur sehr selten zu finden waren.The results of the segregation analysis carried out by Thaller (1992) for the trait of nocturnal gave clear indications of the influence of a single gene. The overall frequency of anuslessness in the pig population was estimated at 0.10%, with clear differences in frequency between the breeds of the animals concerned. This study also showed that abnormal littermates were very rare to find.
Das Ziel von statistischen Methoden ist der Nachweis von Kosegregation eines Markerallels mit dem Merkmal in einer Familie. Dabei lassen sich die dafür verwendeten Verfahren, die zur Kartierung von Krankheiten korrelierten Genen eingesetzt werden, in zwei Kategorien gliedern: (1) Parametrische Verfahren zur Kopplungsanalyse, die auf einem genetischen Model basieren. Diese Verfahren unterstellen die genaue Kenntnis des vorliegenden Erbgangs, sowie der Parameter, die über das Auftreten der Krankheit in der Population Auskunft geben. Dazu zählt die Frequenz des Krankheitsallels sowie die Penetranz. (2) Nichtparametrische Verfahren zur Kopplungsanalyse. Deren Methoden unterstellen kein spezifisches Vererbungsmodell und werden daher auch oft als modellfreie Verfahren bezeichnet. Die parametrische Kopplungsanalyse stellt das klassische Verfahren zur Kopplungsanalyse dar. In der ursprünglichen Form basiert dieses Verfahren auf der Beobachtung und Bestimmung von rekombinanten und nicht-rekombinanten Nachkommen innerhalb einer Familie, zur Schätzung der Rekombinationsrate θ zwischen Marker und Phänotyp. Die Rekombinationsrate ergibt sich dabei aus dem Quotient der Anzahl beobachteter Rekombinanten dividiert durch die Zahl der möglichen Meiosen. Der statistische Test prüft im folgenden ob die Rekombinationsfrequenz signifikant kleiner ist als 0.5 (Eiston, 1998, Ott, 1999 ). Neben der Schwierigkeit, den Vererbungsmodus von komplexen Erkrankungen zu spezifizieren, war es in der Humangenetik oftmals problematisch, DNA von großen Familien mit mehreren lebenden erkrankten Individuen zu sammeln. Eine Alternative zur klassischen parametrischen LODscore Kopplungsanalyse ist daher der von (Suarez, 1978) entwickelte ASP (affected sib-pairs) Ansatz. Diese Methode basiert auf der Annahme, dass erkrankte Geschwister sowohl am Krankheitslocus als auch an den unmittelbar benachbarten Markern die gleichen Allele vom gemeinsamen Vorfahren geerbt haben. Da diese Allele bezüglich der Abstammung identisch sind, bezeichnet man sie als "identical by descent" (IBD). Der statistische Test auf Kopplung zwischen Krankheitslocus und Marker prüft, ob signifikante Abweichungen von der erwarteten IBD Verteilung bestehen. Bei einem Vollgeschwisterpaar würde man beispielsweise erwarten, dass sie mit einer Wahrscheinlichkeit po= 1/4 kein gemeinsames Allel, mit pι= 1/2 ein Allel und mit p2= 1/4 zwei Allele teilen. Für eine Familie mit einem Halbgeschwisterpaar sind p0 und p-ι= 1/2 und die Wahrscheinlichkeit p2 = 0. Das bedeutet, dass unter der Nullhypothese: keine Kopplung zwischen Krankheitslocus und Markerlocus der Erwartungswert für das Teilen von Allelen unter Geschwistern gleich 0.5 und bei Kopplung größer als 0.5 ist. Zur Anwendung kommt dabei ein χ 2-Test (Lander, 1994). Der Vorteil der ASP Methode ist, dass sie nicht parametrisch ist und keine Annahmen bezüglich des spezifischen Vererbungsmodus der Krankheit benötigt. Die ASP Methode ist robuster als die klassische LODscore Kopplungsanalyse. Entsprechend sind selbst bei Anwesenheit von unvollständiger Penetranz, Phänokopien, genetischer Heterogenität und komplexen Erbgängen immer noch IBD Allele zwischen den erkrankten Geschwistern nachweisbar. Wenn die Kenntnis des Vererbungsmodus einer Krankheit als gesichert vorausgesetzt werden kann, besitzt dagegen die LODscore Kopplungsanalyse im Vergleich zur nichtparametrischen "allelesharing" Methode eine deutlich höhere Aussagekraft (Lander, 1994).The aim of statistical methods is to demonstrate the co-segregation of a marker allele with the characteristic in a family. The methods used for this, which are used to map disease-correlated genes, can be divided into two categories: (1) Parametric methods for coupling analysis, which are based on a genetic model. These methods presuppose the exact knowledge of the inheritance as well as the parameters that provide information about the occurrence of the disease in the population. This includes the frequency of the disease allele and the penetrance. (2) Nonparametric methods for coupling analysis. Their methods do not assume a specific inheritance model and are therefore often referred to as model-free procedures. Parametric coupling analysis is the classic method for coupling analysis. In its original form, this method is based on the observation and determination of recombinant and non-recombinant offspring within a family, to estimate the recombination rate θ between marker and phenotype. The recombination rate results from the quotient of the number of observed recombinants divided by the number of possible meiosis. The statistical test then checks whether the recombination frequency is significantly less than 0.5 (Eiston, 1998, Ott, 1999). In addition to the difficulty of specifying the mode of inheritance of complex diseases, it has often been problematic in human genetics to collect DNA from large families with several living diseased individuals. An alternative to the classic parametric LODscore coupling analysis is therefore the ASP (affected sib-pairs) approach developed by (Suarez, 1978). This method is based on the assumption that sick siblings have inherited the same alleles from their common ancestors both at the disease locus and at the immediately adjacent markers. Since these alleles are identical in terms of parentage, they are referred to as "identical by descent" (IBD). The statistical test for coupling between the disease locus and the marker checks whether there are significant deviations from the expected IBD distribution. With a full-sibling pair, one would expect, for example, that they share a common allele with a probability of po = 1/4, an allele with pι = 1/2 and two alleles with p 2 = 1/4. For a family with a half-sibling pair, p 0 and p-ι = 1/2 and the probability p 2 = 0. This means that under the null hypothesis: no coupling between disease locus and marker locus, the expected value for the sharing of alleles among siblings is 0.5 and when coupling is greater than 0.5. A χ 2 test is used (Lander, 1994). The advantage of the ASP method is that it is not parametric and does not require any assumptions about the specific mode of inheritance of the disease. The ASP method is more robust than the classic LODscore coupling analysis. Accordingly, even in the presence of incomplete penetrance, phenocopies, genetic heterogeneity and complex inheritance, IBD alleles can still be detected between the affected siblings. On the other hand, if knowledge of the mode of inheritance of a disease can be assumed to be certain, the LODscore coupling analysis is significantly more meaningful than the nonparametric "allelesharing" method (Lander, 1994).
Für die Anwendung von nichtparametrischen und parametrischen Verfahren für dieFor the application of nonparametric and parametric methods for the
Problemstellungen in der Humangenetik wurden mehrere Softwareprogramme entwickelt. Dazu zählt das Programm Genehunter (Kruglyak, Daly et al. 1996). Zur genomweiten Kopplungsanalyse dieser Patentanmeldung zugrunde liegenden Studie wurde das Programm Allegro 1.0 (Gudbjartsson, Jonasson et al. 2000) verwendet, welches ein Nachfolgeprogramm von Genehunter 2.0 ist. Es bietet die Möglichkeit, komplexe Stammbaumstrukturen unter Einbeziehung der gesamten Markerinformation sowohl mit nichtparametrischen, als auch mit parametrischen Methoden auszuwerten. Zur nichtparametrischen Auswertungsmethodik zählen dabei verschiedene "non parametric linkage,r (NPL) Statistiken, die sowohl zwischen einzelnen Markern und dem Krankheitslocus, als auch unter Einbeziehung mehrerer Marker berechnet werden können. Bestandteil der parametrischen Auswertung ist die Berechung einer klassischen LODscore-Teststatistik. Voraussetzung ist dazu jedoch die genaue Kenntnis des Vererbungsmodus sowie der speziellen Parameter, wie Penetranz der Krankheit, der Phänokopienrate und der Frequenz des Defektallels in der Population. Bei komplexen Krankheiten ist eine genaue Charakterisierung dieser Parameter aber oftmals nicht eindeutig bestimmbar und damit problematisch.Several software programs have been developed to address problems in human genetics. This includes the Genehunter program (Kruglyak, Daly et al. 1996). For genome-wide coupling analysis on which this patent application is based Study, the Allegro 1.0 program (Gudbjartsson, Jonasson et al. 2000) was used, which is a successor to Genehunter 2.0. It offers the possibility of evaluating complex family tree structures, including the entire marker information, using both nonparametric and parametric methods. The nonparametric evaluation methodology includes various "non parametric linkage , r (NPL) statistics, which can be calculated between individual markers and the disease locus as well as with the inclusion of several markers. Part of the parametric evaluation is the calculation of a classic LODscore test statistic However, the precise knowledge of the mode of inheritance as well as the special parameters such as penetrance of the disease, the phenocopy rate and the frequency of the defect allele in the population is necessary. In the case of complex diseases, an exact characterization of these parameters is often not clearly determinable and therefore problematic.
Eine bevorzugte Ausführungsform der Erfindung betrifft die Verwendung von Kombinationen von mindestens zwei, drei, vier, fünf oder sechs der oben genannten Nukleinsäuren zur Bestimmung der Prädisposition zur Ausprägung oder Vererbung des Phänotyps „Afterlosigkeit". Diese bevorzugte Ausführungsform ist besonders geeignet, die Zuverlässigkeit des Nachweises zu erhöhen.A preferred embodiment of the invention relates to the use of combinations of at least two, three, four, five or six of the above-mentioned nucleic acids for determining the predisposition to the expression or inheritance of the phenotype "afterlessness". This preferred embodiment is particularly suitable, the reliability of the detection to increase.
Von der Erfindung umfasst werden weiterhin bevorzugte Ausführungsformen, wobei die oben offenbarte zweite Nukleinsaure ein Mikrosatellit ist oder eine dazu flankierende Sequenz. In besonders bevorzugten Ausführungsformen ist der Mikrosatellit SW2185, SW1621, SW1902, S0155, S0320, S0002, SW2401 , S0081 , SW957 und S0229. Die flankierende Sequenz liegt außerhalb der für den Mikrosatelliten typischen repetitiven Sequenzen und umfasst vorzugsweise einen Bereich von 1kB stromaufwärts bzw. stromabwärts der repetitiven Sequenzen.The invention further encompasses preferred embodiments, the second nucleic acid disclosed above being a microsatellite or a sequence flanking it. In particularly preferred embodiments, the microsatellite is SW2185, SW1621, SW1902, S0155, S0320, S0002, SW2401, S0081, SW957 and S0229. The flanking sequence lies outside of the repetitive sequences typical of the microsatellite and preferably comprises a range of 1 kB upstream or downstream of the repetitive sequences.
Noch eine weitere bevorzugte Ausführungsform der Erfindung betrifft die Verwendung von Primern oder Hybridisierungssonden zur Bestimmung der Prädisposition zur Ausprägung oder Vererbung des Phänotyps „Afterlosigkeit. Hierbei stammen die Primer oder Hybridisierungssonden aus dem Bereich der Mikrosatelliten SW2185, SW1621 , SW1902, S0155, S0320, S0002, SW2401 , S0081 , SW957 oder S0229 und sind durch die nachfolgend angegebenen SEQ IDYet another preferred embodiment of the invention relates to the use of primers or hybridization probes for determining the predisposition to the expression or inheritance of the phenotype “afterlessness. The primers or hybridization probes come from the range of microsatellites SW2185, SW1621, SW1902, S0155, S0320, S0002, SW2401, S0081, SW957 or S0229 and are identified by the SEQ ID given below
Nummern näher definiert. Eine besonders bevorzugte Ausführungsform derNumbers defined. A particularly preferred embodiment of the
Erfindung betrifft die Verwendung mindestens eines Primers oder mindestens einerThe invention relates to the use of at least one primer or at least one
""Hybridisierungssonde, die eine Nukleotidsequenz umfasst oder daraus besteht, die ausgewählt ist aus der Gruppe bestehend aus SW2185 (SEQ ID NO:9 and 10), SW1621 (SEQ ID NO:5 and 6), SW1902 (SEQ ID NO:7 and 8), S0155 (SEQ ID NO:1 and 2), S0320 (SEQ ID NO:3 and 4), S0002 (SEQ ID NO:11 and 12), SW2401 (SEQ ID NO:17 and 18), S0081 (SEQ ID NO:13 and 14), SW957 (SEQ ID NO:21 and 22) und S0229 (SEQ ID NO:19 and 20). Eine weitere bevorzugte Ausführungsform der Erfindung betrifft die Verwendung von zwei Primern, wobei die Primer in bezug auf die koplementäre DNA-Region gegenläufig orientiert sind und so, z.B., eine PCR-Amplifizierung ermöglichen."" Hybridization probe which comprises or consists of a nucleotide sequence which is selected from the group consisting of SW2185 (SEQ ID NO: 9 and 10), SW1621 (SEQ ID NO: 5 and 6), SW1902 (SEQ ID NO: 7 and 8), S0155 (SEQ ID NO: 1 and 2), S0320 (SEQ ID NO: 3 and 4), S0002 (SEQ ID NO: 11 and 12), SW2401 (SEQ ID NO: 17 and 18), S0081 (SEQ ID NO: 13 and 14), SW957 (SEQ ID NO: 21 and 22) and S0229 (SEQ ID NO: 19 and 20). A further preferred embodiment of the invention relates to the use of two primers, the primers being oriented in opposite directions with respect to the complementary DNA region and thus, for example, enabling PCR amplification.
Einzelne oder mehrere in der Nachbarschaft der oben aufgeführten Mikrosatelliten gelegenen Gene sind wahrscheinlich von entscheidender Bedeutung für die Ausprägung des Phänotyps „Afterlosigkeit". Dementsprechend ist in einer weiteren bevorzugten Ausführungsform der Erfindung die zweite Nukleinsaure ein spezifisches Gen oder ein Teil eines Gens. Hierbei sind bevorzugt die Gene ausgewählt aus der Gruppe bestehend aus SHH Sonic hedgehog, IHH Indian hedgehog, DHH Desert hedgehog, PTCH1 Patched homolog 1 , PTCH2 Patched homolog 2, PRKAR 1 Protein kinase cAMP-dependent regulatory type I, HIP Hedgehog-interacting protein, GLI 1 GLI-Kruppel family member GLI 1, GLI 2 GLI- Kruppel family member GLI 2, GLI 3 GLI-Kruppel family member GLI 3, SMOH Smoothened, CKTSF1B1 Cysteine Knot Superfamily 1 , FGF4 Fibroblast growth factor 4, FGF10 Fibroblast growth factor 10, FGF8 Fibroblast growth factor 8, RARA Retinoid Acid Rezeptor Alpha, SOX9/SRY (Sex determining region Y)-box 9, BMP2 Bone morphogenetic protein 2, BMP4 Bone morphogenetic protein 4, NOG Noggin, FMN Formin, ALDH1A1 Aldehyde dehydrogenase 1 family member A1 , ALDH1A2 Aldehyde dehydrogenase 1 family member A2, ALDH1A3 Aldehyde dehydrogenase 1 family member A3, CYP19A1 Cytochrome P450, family 19, subfamily A, polypeptidel, PML Promyelocytic leukemia, HOXA11 Homeobox A11 (Homeobox A düster), HOXA13 Homeobox A13 (Homeobox A düster), HOXB1 Homeobox B1 (Homeobox üster B), HOXB8 Homeobox B8 (Homeobox düster B), HOXB9 Homeobox B9 (Homeobox düster B), HOXB5 Homeobox B5 (Homeobox cluster B), HOXD13 Homeobox D13 (Homeobox D cluster) anzuführen, sowie alle weiteren in den oben offenbarten Nukleinsäuren gelegenen, hier aber nicht einzeln aufgeführten Gene. Gene oder Teile von Genen im Sinne der Erfindung können die kodierenden wie auch die nicht-kodierenden Abschnitte der DNA umfassen, also Introns, Exons und regulatorische Bereiche wie z.B. Promotoren oder andere Steuerungselemente der Genexpression. Darüber hinaus können erfindungsgemäß auch derartige Gene von flankierenden Sequenzen umgeben werden, die vorzugsweise einen Bereich von 1kB stromaufwärts bzw. stromabwärts von den Genen umfassen.One or more genes located in the vicinity of the microsatellites listed above are probably of crucial importance for the expression of the phenotype "afterlessness". Accordingly, in a further preferred embodiment of the invention the second nucleic acid is a specific gene or a part of a gene. Preferred here the genes selected from the group consisting of SHH Sonic hedgehog, IHH Indian hedgehog, DHH Desert hedgehog, PTCH1 Patched homolog 1, PTCH2 Patched homolog 2, PRKAR 1 Protein kinase cAMP-dependent regulatory type I, HIP Hedgehog-interacting protein, GLI 1 GLI -Kruppel family member GLI 1, GLI 2 GLI- Kruppel family member GLI 2, GLI 3 GLI-Kruppel family member GLI 3, SMOH Smoothened, CKTSF1B1 Cysteine Knot Superfamily 1, FGF4 Fibroblast growth factor 4, FGF10 Fibroblast growth factor 10, FGF8 Fibroblast growth factor 8, RARA retinoid acid receptor alpha, SOX9 / SRY (Sex determining region Y) -box 9, BMP2 bone morpho genetic protein 2, BMP4 Bone morphogenetic protein 4, NOG Noggin, FMN Formin, ALDH1A1 Aldehyde dehydrogenase 1 family member A1, ALDH1A2 Aldehyde dehydrogenase 1 family member A2, ALDH1A3 Aldehyde dehydrogenase 1 family member A3, CYP19A1 Cytochrome P4y A, family 19, subfamily polypeptidel, PML Promyelocytic leukemia, HOXA11 Homeobox A11 (Homeobox A dark), HOXA13 Homeobox A13 (Homeobox A dark), HOXB1 Homeobox B1 (Homeobox dark B), HOXB8 Homeobox B8 (Homeobox dark B), HOXB9 Homeobox B9 (Homeobox dark B), HOXB5 Homeobox B5 (Homeobox cluster B), HOXD13 Homeobox D13 (Homeobox D cluster) and all other genes in the nucleic acids disclosed above but not listed here. Genes or parts of genes in the sense of the invention can comprise the coding as well as the non-coding sections of the DNA, ie introns, exons and regulatory areas such as promoters or other control elements of gene expression. In addition, according to the invention, such genes can also be surrounded by flanking sequences, which preferably comprise a region of 1 kB upstream or downstream of the genes.
In einer weiteren bevorzugten Ausführungsform betrifft die Erfindung die Verwendung einer ersten Nukleinsaure zur Bestimmung der Prädisposition zur Ausprägung oder Vererbung des Phanotypus „Afterlosigkeit" in einem Säuger, wobei die erste Nukleinsaure eine Länge von mindestens 8 Nukleotiden aufweist und identisch oder im wesentlichen identisch ist mit einer zweiten Nukleinsaure, die vorkommt auf Chromosoms 1 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich der Mikrosatelliten SW1621 und SW1902, wobei die gemeinsame Anwesenheit auf demselben Chromosom eines Individuums von Allel 1 (146bp, nach Rohrer et al., 1996) des Mikrosatelliten SW1621 und Allel 2 (150bp, nach Rohrer et al., 1996) des Mikrosatelliten SW1902 einen Haplotyp definiert, der mit einer Prädisposition zur Ausprägung oder Vererbung des Phanotypus „Afterlosigkeit" korreliert.In a further preferred embodiment, the invention relates to the use of a first nucleic acid for determining the predisposition for the expression or inheritance of the phenotype "afterlessness" in a mammal, the first nucleic acid having a length of at least 8 nucleotides and being identical or essentially identical to one second nucleic acid, which occurs on chromosome 1 of the pig or in a homologous position in the genome of other mammals, namely in the range of microsatellites SW1621 and SW1902, the common presence on the same chromosome of an individual from allele 1 (146bp, according to Rohrer et al. , 1996) of the microsatellite SW1621 and allele 2 (150 bp, according to Rohrer et al., 1996) of the microsatellite SW1902 defines a haplotype that correlates with a predisposition to the expression or inheritance of the phanotype "afterlessness".
In einer anderen bevorzugten Ausführungsform betrifft die Erfindung die Verwendung der offenbarten ersten oder zweiten Nukleinsäuren zur Selektion von Haus-, Zucht- oder Nutztieren mit fehlendem Merkmal „Afterlosigkeit". In einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Verwendung sind die Haus-, Zucht-, oder Nutztiere Rind, Hund, Katze, Kaninchen, Büffel, Kamel, Alpaka, Nerz, Schwein, Ziege, Schaf, Pferd, Esel, Ratte oder Maus.In another preferred embodiment, the invention relates to the use of the disclosed first or second nucleic acids for the selection of domestic, breeding or farm animals with the missing feature "afterlessness". In a particularly preferred embodiment of the use according to the invention, the domestic, breeding or Farm animals cattle, dog, cat, rabbit, buffalo, camel, alpaca, mink, pig, goat, sheep, horse, donkey, rat or mouse.
In einer anderen bevorzugten Ausführungsform der erfindungsgemäßenIn another preferred embodiment of the invention
Verwendung wird ein Genomscreen an mehreren Säugern einer Population durchgeführt. Der Begriff „mehreren Säuger" umfasst mindestens zwei Tiere einer Population, bevorzugt mindestens 5 Tiere, mehr bevorzugt mindestens 8 Tiere, noch mehr bevorzugt mindestens 10 Tiere, stärker bevorzugt mindestens 50 Tiere, noch stärker bevorzugt mindestens 250 Tier, am stärksten bevorzugt 1500 Tiere. Bei dem Genomscreen wird untersucht, ob eine Nukleinsaure von mindestens 8 Nukleotiden Länge, bevorzugt bis zu 50 Nukleotide, mehr bevorzugt 350 Nukleotide, noch mehr bevorzugt 1000 Nukleotide, am meisten bevorzugt bis zu 5000 Nukleotide oder länger gemeinsam mit dem Merkmal „Afterlosigkeit" vererbt wird. Insbesondere wird hierbei geklärt, beispielsweise mit Hilfe von Nukleinsäure- Amplifikationsverfahren oder Hybridisierungsverfahren, welches Markerallel gemeinsam mit dem Merkmal „Afterlosigkeit" vererbt wird. Eine gemeinsame Vererbung von Nukleinsäuren mit der phänotypischen Ausprägung des Merkmals „Afterlosigkeit" impliziert eine genetische Kopplung der Nukleinsaure an das Merkmal. Bevorzugte Marker sind die Mikrosatelliten SW2185, SW1621 , SW1902, S0155, und S0320 auf Chromosom 1 des Schweins oder von Mikrosatelliten in einer homologen Position im Genom anderer Säuger; oder Mikrosatellit S0002 auf Chromosom 3 des Schweins oder Mikrosatelliten in einer homologen Position im Genom anderer Säuger; oder die Mikrosatelliten SW2401 und S0081 auf Chromosom 9 des Schweins oder von Mikrosatelliten in einer homologen Position im Genom anderer Säuger; oder die Mikrosatelliten SW957 und S0229 auf Chromosom 12 des Schweins oder von Mikrosatelliten in einer homologen Position im Genom anderer Säuger. Neben den genannten Mikrosatelliten können auch andere Nukleinsäuresequenzen als Marker verwendet werden, sofern sie im Sinne der Erfindung identisch oder im wesentlichen identisch sind mit der zweiten, in der Erfindung offenbarten Nukleinsaure oder in einem der oben genannten Nukleinsäurebereiche liegen.A genomic screen is used on multiple mammals in a population. The term "several mammals" includes at least two animals one Population, preferably at least 5 animals, more preferably at least 8 animals, even more preferably at least 10 animals, more preferably at least 50 animals, even more preferably at least 250 animals, most preferably 1500 animals. In the genome screen, it is examined whether a nucleic acid of at least 8 nucleotides in length, preferably up to 50 nucleotides, more preferably 350 nucleotides, even more preferably 1000 nucleotides, most preferably up to 5000 nucleotides or longer is inherited together with the feature "afterlessness" In particular, this clarifies, for example with the aid of nucleic acid amplification methods or hybridization methods, which marker allele is inherited together with the characteristic "afterlessness". A common inheritance of nucleic acids with the phenotypic expression of the characteristic "afterlessness" implies a genetic coupling of the nucleic acid to the characteristic. Preferred markers are the microsatellites SW2185, SW1621, SW1902, S0155, and S0320 on chromosome 1 of the pig or of microsatellites in a homologous manner Position in the genome of other mammals; or microsatellite S0002 on chromosome 3 of the pig or microsatellites in a homologous position in the genome of other mammals; or the microsatellites SW2401 and S0081 on chromosome 9 of the pig or of microsatellites in a homologous position in the genome of other mammals; or the Microsatellites SW957 and S0229 on chromosome 12 of the pig or of microsatellites in a homologous position in the genome of other mammals In addition to the microsatellites mentioned, other nucleic acid sequences can also be used as markers, provided that they are identical or essentially identical to that in the sense of the invention second nucleic acid disclosed in the invention or in one of the above-mentioned nucleic acid regions.
Ausgehend von den in der Erfindung offenbarten Nukleinsäureabschnitten kann der Fachmann Nachweisverfahren zur Bestimmung der Prädisposition zur Ausprägung des Phänotyps „Afterlosigkeit" ohne weiteres anwenden oder entwickeln. Die Erfindung offenbart auch Verfahren zur Bestimmung der Prädisposition zur Ausprägung des Phänotyps „Afterlosigkeit" in Haus-, Zucht-, oder Nutztieren, wobei man die Tiere, deren befruchtete oder unbefruchtete Eizellen, deren Sperma, Gewebeproben oder Proben von Körperflüssigkeiten auf die Anwesenheit, Ausprägung oder Beschaffenheit einer der oben genannten zweiten Nukleinsaure testet. Diese Testverfahren sind bevorzugt in vitro Testverfahren. Unterschiedliche „Ausprägungen oder Beschaffenheiten" von Nukleinsäuren können z.B. aufgrund von Insertionen, Duplikationen, Deletionen, Substitutionen oder Translokationen hervorgerufen werden. Insertionen oder Deletionen resultieren beispielsweise in einer geänderten Nukleinsäurelänge. Duplikationen sind ein üblicherweise bei der Generierung von Mikrosatelliten beobachtetes Phänomen. Dieser Längenpolymorphismus kann z.B. in einer PCR Reaktion dargestellt werden und schlägt sich bei Verwendung von geeigneten flankierenden Primern z.B. im Falle der Insertion in einem längeren PCR-Produkt nieder. Die unterschiedliche „Ausprägung oder Beschaffenheit" kann weiterhin auch z.B. eine nah verwandte Genvariante sein, die sich im Extremfall lediglich durch einen einzelnen Nukleotidaustausch von der verwandten Gensequenz unterscheidet. Derartige unterschiedliche „Ausprägungen oder Beschaffenheiten" der Nukleinsaure können gegebenenfalls mit Hilfe von RFLP-Analysen (Restriktionsfragment- Längenpolymorphismen (RFLPs) oder durch Nukleinsäuresequenzierung dargestellt werden.Starting from the nucleic acid segments disclosed in the invention, the person skilled in the art can readily use or develop detection methods for determining the predisposition for the expression of the phenotype "afterlessness". The invention also discloses methods for determining the predisposition for the expression of the phenotype "afterlessness" in domestic and breeding -, or farm animals, whereby the animals, their fertilized or unfertilized egg cells, their sperm, tissue samples or samples of body fluids are checked for the presence, Expression or nature of one of the above-mentioned second nucleic acids is tested. These test methods are preferably in vitro test methods. Different "forms or textures" of nucleic acids can be caused, for example, by insertions, duplications, deletions, substitutions or translocations. Inserts or deletions, for example, result in a changed nucleic acid length. Duplications are a phenomenon usually observed in the generation of microsatellites. This length polymorphism can, for example are represented in a PCR reaction and is reflected when using suitable flanking primers, for example in the case of insertion in a longer PCR product. The different "expression or nature" can also be, for example, a closely related gene variant, which in extreme cases is only distinguished from the related gene sequence by a single nucleotide exchange. Such different “forms or qualities” of the nucleic acid can optionally be represented with the aid of RFLP analyzes (restriction fragment length polymorphisms (RFLPs) or by nucleic acid sequencing.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens sind die Haus-, Zucht-, oder Nutztiere Rind, Hund, Katze, Kaninchen, Büffel, Kamele, Alpaka, Nerz, Schwein, Ziege, Schaf, Pferd, Esel, Ratte oder Maus. Neben den hier explizit aufgeführten Haus-, Zucht-, oder Nutztieren betreffen die erfindungsgemäßen Verfahren aber auch andere Säugetiere, insbesondere den Menschen.In a preferred embodiment of the method according to the invention, the domestic, breeding or farm animals are cattle, dog, cat, rabbit, buffalo, camel, alpaca, mink, pig, goat, sheep, horse, donkey, rat or mouse. In addition to the domestic, breeding or farm animals explicitly listed here, the methods according to the invention also relate to other mammals, in particular humans.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine PCR Amplifikation mit komplementären Primern mit einer Länge von mindestens 8 Nukleotiden durchgeführt, wobei ein Primer an den + Strang und ein weiterer Primer in entgegengesetzter Orientierung an den - Strang der zweiten Nukleinsaure bindet, oder es wird eine Hybridisierung durchgeführt, wobei eine Hybridisierungssonde mit einer Länge von mindestens 8 Nukleotiden an die zweite Nukleinsaure bindet, oder es wird eine Sequenzierung der zweiten Nukleinsaure durchführt, oder es wird eine Detektion mit eine spezifischen Antikörper oder Antikörperfragment oder Antikörperderivat oder einem Aptamer durchführt, wobei der Antikörper oder das Antikörperfragment oder das Antikörperderivat oder das Aptamer spezifisch gegen die zweite Nukleinsaure gerichtet ist.In a further preferred embodiment of the method according to the invention, a PCR amplification is carried out with complementary primers with a length of at least 8 nucleotides, one primer binding to the + strand and another primer in opposite orientation to the - strand of the second nucleic acid, or it will hybridization is carried out, wherein a hybridization probe with a length of at least 8 nucleotides binds to the second nucleic acid, or sequencing of the second nucleic acid is carried out, or detection is carried out with a specific antibody or antibody fragment or antibody derivative or an aptamer, wherein the antibody or the antibody fragment or the antibody derivative or the aptamer is specifically directed against the second nucleic acid.
In der PCR Reaktion bindet ein Primer an den + Strang und ein weiterer Primer in entgegengesetzter Orientierung an den - Strang der oben offenbarten zweiten Nukleinsaure. Im Reaktionsgemisch sind neben der oben genannten Nukleinsaure und einem Überschuss an Primern weiterhin vorhanden ein Überschuss an Desoxynukleosidtriphosphaten sowie eine DNA Polymerase, z.B. Taq Polymerase. Bei geeigneten Puffer- und Reaktionsbedingungen binden die Primer an die Nukleinsaure und die DNA Polymerase verlängert die Primer anhand der in der Nukleinsaure vorgegebenen Nukleotidsequenz. Durch Anheben und Absenken der Reaktionstemperatur lösen sich die Polymerisationsprodukte von der Nukleinsaure, so dass andere Nukleinsäuren, meist die im Überschuss vorhandenen Primer, an die Nukleinsaure binden können. Eine zyklische Wiederholung dieser Temperaturbedingungen resultiert konsequenterweise in einer Amplifikation der Nukleinsäuresequenz. Die Annealingtemperatur eines Primers wird von seinem Adenin + Tymin sowie Cytosin + Guanin Gehalt beeinflusst. Für jedes Adenin und Tymin werden 2 °C gerechnet, während für jedes Cytosin und Guanin 4 °C berechnet wird. Die Qualität einer PCR-Reaktion wird von der Primer-Konzentration, der wechselnden dNTP-Menge im PCR-Mix und der Qualität der Taq-DNA- Polymerase direkt beeinflusst. Ein typisches Reaktionsgemisch von 12.5μl ist z.B. wie folgt zusammengesetzt: 0.20μM Primer, 200μM dNTPs, 0.50 U Taq- Polymerase, 1.25μl 10 x Buffer, 1.50 μl DNA (50ng/μl) und mit H2O auf 12.5 μl aufgefüllt. Bevorzugt werden die im Methodenteil dieser Anmeldung aufgeführten Reaktionsbedingungen gewählt.In the PCR reaction, one primer binds to the + strand and another primer in the opposite orientation to the - strand of the second nucleic acid disclosed above. In addition to the above-mentioned nucleic acid and an excess of primers, the reaction mixture also contains an excess of deoxynucleoside triphosphates and a DNA polymerase, for example Taq polymerase. With suitable buffer and reaction conditions, the primers bind to the nucleic acid and the DNA polymerase extends the primers based on the nucleotide sequence specified in the nucleic acid. By raising and lowering the reaction temperature, the polymerization products detach from the nucleic acid, so that other nucleic acids, usually the excess primers, can bind to the nucleic acid. A cyclical repetition of these temperature conditions consequently results in an amplification of the nucleic acid sequence. The annealing temperature of a primer is influenced by its adenine + tymine and cytosine + guanine content. 2 ° C are calculated for each adenine and tymin, while 4 ° C is calculated for each cytosine and guanine. The quality of a PCR reaction is directly influenced by the primer concentration, the changing amount of dNTP in the PCR mix and the quality of the Taq DNA polymerase. A typical reaction mixture of 12.5μl is composed, for example, as follows: 0.20μM primer, 200μM dNTPs, 0.50 U Taq polymerase, 1.25μl 10 x buffer, 1.50 μl DNA (50ng / μl) and made up to 12.5 μl with H 2 O. The reaction conditions listed in the method part of this application are preferably selected.
Als Primer werden solche Nukleinsäuren verstanden, die mindestens eine Länge von 8 Nukleotiden aufweisen und an eine der oben offenbarten zweite Nukleinsäuren binden. Bevorzugte Primer haben eine Länge von mindestens 80 Nukleotiden, bevorzugt mindestens 70 Nukleotiden, stärker bevorzugt mindestens 50 Nukleotiden, noch stärker bevorzugt mindestens 30 Nukleotiden und am meisten bevorzugt 20, 17, 15, 13, 12 oder 8 Nukleotiden. Die Nukleotidsequenzen der Primer können beliebig aus den oben offenbarten zweiten Nukleinsäuresequenzen zusammengestellt werden, soweit sie zumindest 8 aufeinanderfolgende Nukleotide aufweisen. Alternativ dazu kann es (bei Identität) bei der Hybridisierung der Primer mit der Zielsequenz innerhalb der zweiten Nukleinsaure auch zu Basenfehlpaarungen kommen, sofern unter den gewählten Reaktionsbedingungen eine Hybridisierung zustande kommt, die zu einer Elongationsreaktion führen kann. Ein Primer sollte innerhalb von 8 benachbarten Nukleotiden 7 identische Nukleotide aufweisen. Allerdings schließt die Erfindung auch solche Ausführungsformen ein, bei denen 4, 5 oder 6 der 8 Nukleotide mit der entsprechenden Sequenz der zweiten Nukleinsaure identisch sind. Selbstverständlich sind die Grundprinzipien der PCR-Methodik einzuhalten, deren Verfahrensschritte und Reaktionsbedingungen Stand der Technik sind. Im Einzelnen können die Verfahrensschritte aber dennoch einer Anpassung durch den Fachmann bedürfen. Nur beispielsweise sei hier auf dem Fachmann bekannte Laborbücher verwiesen, die diese Methodik beschreiben, beispielsweise auf Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor und alle nachfolgenden Auflagen. PCR-Verfahren sind z.B. beschrieben in Newton, PCR, BIOS Scientific Publishers Limited, 1994, und nachfolgende Auflagen. Neben der PCR-Amplifikation ist aber auch die Reverse Polymerase Kettenreaktion (RT-PCR) ein bevorzugtes Nachweisverfahren. Neben den genannten Amplifikationsmethoden sind in den vergangenen Jahren weitere Amplifikationsverfahren entwickelt worden, die ebenfalls bevorzugte Ausführungsformen der Erfindung darstellen. Weitere Amplifikationsverfahren sind beispielsweise die „Ligase Chain Reaction" (LCR, EPA 320308), „Cydic Probe Reaction" (CPR, ), „Strand Displacement Amplification" (SDA, Walker et al., Nukleic Acids Res. 1992 (7):1691-6.) oder „Transciption-based amplification Systems" (TAS, Kwoh et al Proc. Nat. Acad Sei. USA 86:1173 (1989), Gingeras et al., PCT Application WO 88/10315).Primers are those nucleic acids that are at least 8 nucleotides in length and bind to one of the second nucleic acids disclosed above. Preferred primers have a length of at least 80 nucleotides, preferably at least 70 nucleotides, more preferably at least 50 nucleotides, even more preferably at least 30 nucleotides and most preferably 20, 17, 15, 13, 12 or 8 nucleotides. The nucleotide sequences of the primers can be put together as desired from the second nucleic acid sequences disclosed above, provided that they have at least 8 consecutive nucleotides exhibit. As an alternative to this, (if identical) hybridization of the primers with the target sequence within the second nucleic acid can also lead to base mismatches, provided that hybridization occurs under the chosen reaction conditions, which can lead to an elongation reaction. A primer should have 7 identical nucleotides within 8 neighboring nucleotides. However, the invention also includes those embodiments in which 4, 5 or 6 of the 8 nucleotides are identical to the corresponding sequence of the second nucleic acid. Of course, the basic principles of the PCR methodology must be observed, the process steps and reaction conditions of which are state of the art. In detail, however, the method steps may nevertheless require adjustment by a person skilled in the art. For example, reference is made here to laboratory books known to the person skilled in the art that describe this methodology, for example to Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor and all subsequent editions. PCR methods are described, for example, in Newton, PCR, BIOS Scientific Publishers Limited, 1994, and subsequent editions. In addition to PCR amplification, the reverse polymerase chain reaction (RT-PCR) is also a preferred detection method. In addition to the aforementioned amplification methods, other amplification methods have also been developed in recent years, which also represent preferred embodiments of the invention. Further amplification methods are, for example, the "Ligase Chain Reaction" (LCR, EPA 320308), "Cydic Probe Reaction" (CPR,), "Strand Displacement Amplification" (SDA, Walker et al., Nucleic Acids Res. 1992 (7): 1691 -6.) Or "Transciption-based amplification systems" (TAS, Kwoh et al Proc. Nat. Acad Sei. USA 86: 1173 (1989), Gingeras et al., PCT Application WO 88/10315).
Ein anderes bevorzugtes Nachweisverfahren zur Bestimmung der Prädisposition zur Ausprägung des Phänotyps „Afterlosigkeit" ist die Hybridisierung mit einer Hybridisierungssonde. Hierbei versteht man unter der Hybridisierungssonde eine Nukleinsaure mit einer Länge von mindestens 8 Nukleotiden, bevorzugt bis zu 50 Nukleotiden, stärker bevorzugt bis zu 100 Nukleotiden, noch stärker bevorzugt 200, 300, 400, 500, 600, 700, 800 oder 1000 Nukleotiden und am meisten bevorzugt bis zu 5000 Nukleotiden, die an eine der oben offenbarten zweiten Nukleinsäuren bindet. Vorzugsweise ist die erste Nukleinsaure mit einer detektierbaren Markierung, wie einer radioaktiven oder fluoreszierenden Markierung versehen. Beispiele für Hybridisierungsverfahren sind Dot Blot, Northern Blot, Reverse Northern Blot, in situ Hybridisierung oder Southern Blot (Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor und alle nachfolgenden Auflagen).Another preferred detection method for determining the predisposition to the expression of the phenotype "afterlessness" is hybridization with a hybridization probe. Here, the hybridization probe is understood to mean a nucleic acid with a length of at least 8 nucleotides, preferably up to 50 nucleotides, more preferably up to 100 nucleotides , still more preferably 200, 300, 400, 500, 600, 700, 800 or 1000 nucleotides and most preferably up to 5000 nucleotides attached to one of the second nucleic acids disclosed above binds. The first nucleic acid is preferably provided with a detectable label, such as a radioactive or fluorescent label. Examples of hybridization methods are dot blot, northern blot, reverse northern blot, in situ hybridization or southern blot (Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor and all subsequent editions).
Ein anderes bevorzugtes Nachweisverfahren zur Bestimmung der Prädisposition zur Ausprägung des Phänotyps „Afterlosigkeit" ist die Sequenzierung einer der oben offenbarten zweiten Nukleinsaure. Sequenzierverfahren sind aus dem Stand der Technik bekannt und bedürfen für den Fachmann keiner weiteren Erläuterung. Beispielsweise sei hier auf Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor (und alle nachfolgenden Auflagen verwiesen), worin die Verfahren nach Sanger und Maxam/Gilbert dargestellt sind. Als Primer werden erfindungsgemäß solche Nukleinsäuren verstanden die bevorzugt mindestens 70 Nukleotide, stärker bevorzugt mindestens 50 Nukleotide, noch stärker bevorzugt mindestens 30 Nukleotide und am meisten bevorzugt 20, 17, 15, 13, 12 oder 8 Nukleotide umfassen. Für Sequenzierprimer gelten die für die PCR-Primer dargestellten Eigenschaften entsprechend.Another preferred detection method for determining the predisposition to the expression of the phenotype "afterlessness" is the sequencing of one of the second nucleic acids disclosed above. Sequencing methods are known from the prior art and require no further explanation for the person skilled in the art. For example, here Sambrook et al. , 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor (and all subsequent editions referenced), in which the methods according to Sanger and Maxam / Gilbert are shown The primers are understood according to the invention to be nucleic acids which are preferably at least 70 nucleotides, more preferably at least 50 Nucleotides, more preferably at least 30 nucleotides and most preferably 20, 17, 15, 13, 12 or 8 nucleotides The properties shown for the PCR primers apply accordingly to sequencing primers.
Ausgehend von den vorstehend offenbarten Nukleinsäuren kann der Fachmann ohne unzumutbaren Aufwand durch Austesten feststellen, welche Primer oder Hybridisierungssonden, die aus den oben genannte zweiten Nukleinsäuren abgeleitet sind, zu speziellen Nachweisverfahren, beispielsweise PCR-Verfahren, Sequenzierung oder Hypridisierungsverfahren geeignet und welche nicht, oder weniger geeignet sind. Die Primer oder Hybridisierungssonden zum Einsatz in der Erfindung können auch beispielsweise in größeren DNA- oder RNA-Sequenzen vorliegen, z.B. flankiert von Restriktionsschnittstellen, darüber hinaus können Nukleinsäuren, Hybridisierungssonden und Primer auch aus Basenderivaten aufgebaut sein. Eine Reihe von Modifikationen ändern die Chemie des Phosphodiester-Rückrats der DNA bzw. der RNA, der Zucker oder heterocyklischen Basen. Unter den nützlichen Modofikationen befinden sich unter anderem Phosphorthioate; Phosphordithioate, bei denen beide, nicht an der Wasserstoffbrückenbindung beteiligten Sauerstoff-Atome durch Schwefel, Phosphoramide, Alkylphosphotriester und/oder Boranophosphate ersetzt sind. Achirale Phosphat-Derivate umfassen S'-O'-δ'-S-Phosphorthioate, 3'-S-5'-0- Phosphorthioate, 3'-CH2-5'-0-Phosphonate and 3'-NH-5'-0-Phosphoroamidate. Bei Peptid-Nukleinsäuren kann das gesamte Phosphodiester-Rückrat durch peptidische Bindungen ersetzt sein. Zucker-Modifikationen werden verwendet, um die Stabilität oder Affinität zu verändern. Das A-Anomer von Desoxyribose kann verwendet werden, wobei die Base in Bezug auf das natürliche B-Anomer invertiert ist. Die 2'- OH Gruppe der Ribose kann zum entsprechenden 2'-0-Methyl oder 2'-0-Allyl Zucker verändert werden, wodurch ein Stabilitätsgewinn erzielt wird, ohne Beeinträchtigung der Bindungsaffinität. Einige weitere nützliche Substitutionen umfassen Desoxyuridin anstatt von Desoxythymidin; 5-methyl-2'-Desoxycytidin und 5-Bromo-2'-Desoxycytidin anstatt von Desoxycytidin. 5-Propyyl-2'-Desoxyuridin und 5-Propyyl-2'-Desoxycytidin können Desoxythymidin und Desoxycytidin ersetzen und somit die Affinität und biologische Aktivität steigern.On the basis of the nucleic acids disclosed above, the person skilled in the art can determine, without undue effort, which primers or hybridization probes, which are derived from the second nucleic acids mentioned above, are suitable for special detection methods, for example PCR methods, sequencing or hybridization methods, and which are not, or less are suitable. The primers or hybridization probes for use in the invention can also be present, for example, in larger DNA or RNA sequences, for example flanked by restriction sites. In addition, nucleic acids, hybridization probes and primers can also be constructed from base derivatives. A number of modifications change the chemistry of the phosphodiester backbone of the DNA or RNA, the sugar or heterocyclic bases. The useful modofications include phosphorothioates; Phosphorodithioates, in which both oxygen atoms not involved in hydrogen bonding by sulfur, Phosphoramides, alkyl phosphotriesters and / or boranophosphates are replaced. Achiral phosphate derivatives include S'-O'-δ'-S phosphorothioates, 3'-S-5'-0-phosphorothioates, 3'-CH2-5'-0-phosphonates and 3'-NH-5'- 0 phosphoroamidates. In the case of peptide nucleic acids, the entire backbone of the phosphodiester can be replaced by peptide bonds. Sugar modifications are used to change stability or affinity. The A anomer of deoxyribose can be used with the base inverted with respect to the natural B anomer. The 2'-OH group of the ribose can be changed to the corresponding 2'-0-methyl or 2'-0-allyl sugar, whereby a gain in stability is achieved without impairing the binding affinity. Some other useful substitutions include deoxyuridine instead of deoxythymidine; 5-methyl-2'-deoxycytidine and 5-bromo-2'-deoxycytidine instead of deoxycytidine. 5-Propyyl-2'-deoxyuridine and 5-propyyl-2'-deoxycytidine can replace deoxythymidine and deoxycytidine and thus increase affinity and biological activity.
Zur Detektion können die Nukleinsäuren eine Markierung aufweisen. Beispiele hierfür sind eine radioaktive Markierung z.B. mit 35S, 32P oder 3H Fluoreszenzmarkierung, Biotinmarkierung, Digoxigeninmarkierung,The nucleic acids can have a label for detection. Examples of this are radioactive labeling, for example with 35 S, 32 P or 3 H fluorescent labeling, biotin labeling, digoxigenin labeling,
Peroxidasemarkierung oder Markierung mit einer alkalischen Phosphatase. Die in der Hybridisations- oder Amplifikationsreaktion verwendeten Nukleinsäuren können weiterhin mit verschiedenen geeigneten Markern versehen sein. Geeignete Marker umfassen Fluorochrome, z.B. Fluorescein Isothiocyanat (FITC), Rhodamin, Texas Red, Phycoerythrin, Allophycocyanin, 6-Carboxyfluorescein (6-FAM), 2',7'- Dimethoxy-4',5'-Dichloro-6-Carboxyfluorescein (JOE), 6-Carboxy-X-Rhodamine (ROX), 6-Carboxy-2',4',7',4,7-Hexachlorofluorescein (HEX), 5-Carboxyfluorescein (5-FAM) oder N.N.N'.N'-Tetramethyl-ö-Carboxyrhodamine (TAMRA). Die Markierung kann weiterhin Teil eines mehrstufigen Systems sein, wobei die Nukleinsaure mit Biotin konjugiert ist, oder mit einem Hapten oder einem ähnlichen Stoff der einen hochaffinen Bindungspartner hat, z.B. Avidin, spezifische Antikörper etc., wobei in diesem Fall der Bindungspartner mit einer detektierbaren Verbindung konjugiert ist. Im Fall der Amplifikationsreaktion kann die Markierung mit einem Primer konjugiert und/oder die Nukleotide im Pool der Amplifikationsreaktion mit einer geeigneten Markierung versehen sein, so dass die Markierung in das neu entstehende Amplifikationsprodukt eingebaut wird. Alternativ können Doppelstränge, die in einer Hybridisierungsreaktion neu entstanden sind, aber auch durch DNA-Doppelstrang spezifische Antikörper nachgewiesen werden. Besagte Antikörper sind dadurch charakterisiert, dass sie lediglich an doppelsträngige DNA binden, nicht aber an einzelsträngige DNA.Peroxidase labeling or labeling with an alkaline phosphatase. The nucleic acids used in the hybridization or amplification reaction can furthermore be provided with various suitable markers. Suitable markers include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2 ', 7'-dimethoxy-4', 5'-dichloro-6-carboxyfluorescein ( JOE), 6-Carboxy-X-Rhodamine (ROX), 6-Carboxy-2 ', 4', 7 ', 4,7-Hexachlorofluorescein (HEX), 5-Carboxyfluorescein (5-FAM) or NNN'.N' -Tetramethyl-ö-carboxyrhodamine (TAMRA). The label can also be part of a multi-stage system, the nucleic acid being conjugated with biotin, or with a hapten or a similar substance that has a high-affinity binding partner, for example avidin, specific antibodies, etc., in which case the binding partner with a detectable compound is conjugated. In the case of the amplification reaction, the label can be conjugated with a primer and / or the nucleotides in the pool of the amplification reaction can be provided with a suitable label so that the label is inserted into the new resulting amplification product is installed. Alternatively, double strands that have arisen in a hybridization reaction can also be detected by DNA double strand specific antibodies. Said antibodies are characterized in that they only bind to double-stranded DNA, but not to single-stranded DNA.
Ein anderes bevorzugtes Nachweisverfahren ist die Detektion der ersten oder zweiten Nukleinsaure mit einem spezifischen Antikörper oder Antiköperfragment oder Antikörperderivat oder einem Aptamer. Bei diesem Verfahren werden spezifische Antiköper generiert, die die ersten oder zweiten Nukleinsäuren erkennen. Fragmente von Antikörpern sind z.B. Fv, Fab- oder F(ab)2 - Fragmente, Derivate schließen scFvs ein. Aptamere sind Nukleinsäuren, die aufgrund ihrer dreidimensionalen Struktur spezifisch an ein Zielmolekül binden. Verfahren zur Generierung spezifischer Antikörper sind aus dem Stand der Technik bekannt. Die Spezifität der Bindung an die genomische Nukleinsaure kann z.B. durch Kompetitionsexperimente mit radioaktiv markierter gewünschter Zielnukleinsäure und nicht gewünschter, z.B. zufällig ausgewählter Nukleinsaure getestet werden. Übliche Nachweisverfahren, in denen die Antikörper Verwendung finden, sind z.B. ELISA oder RIPA aber auch Immunfluoreszenz und andere Nachweisverfahren. Die Antikörper binden hierbei spezifisch die ersten oder zweiten Nukleinsäuren. Die Antikörper-Bindung kann z.B. durch Markierung der primären Antikörper sichtbar gemacht werden oder wird mit Hilfe von Antiköper-bindenden zweiten Antikörper detektiert, die dann ihrerseits markiert sind. Die Antikörper können z.B. mit fluoreszierenden Substanzen, durch radioaktive Markierung oder eine enzymatische Markierung modifiziert sein. Immunologische Nachweisverfahren unter Verwendung von spezifischen Antikörpern, wie auch die Generierung von Antikörpern und Fragmenten oder Derivaten davon sind, wie bereits erwähnt, aus dem Stand der Technik bekannt. Beispielsweise sei hier genannt Harlow et al., 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press und alle nachfolgenden Auflagen.Another preferred detection method is the detection of the first or second nucleic acid with a specific antibody or antibody fragment or antibody derivative or an aptamer. This method generates specific antibodies that recognize the first or second nucleic acids. Fragments of antibodies are e.g. Fv, Fab or F (ab) 2 fragments, derivatives include scFvs. Aptamers are nucleic acids that bind specifically to a target molecule due to their three-dimensional structure. Methods for generating specific antibodies are known from the prior art. The specificity of binding to the genomic nucleic acid can e.g. by competition experiments with radioactively labeled desired target nucleic acid and unwanted, e.g. randomly selected nucleic acid can be tested. Common detection methods in which the antibodies are used are e.g. ELISA or RIPA but also immunofluorescence and other detection methods. The antibodies specifically bind the first or second nucleic acids. Antibody binding can e.g. be made visible by labeling the primary antibodies or is detected with the aid of antibody-binding second antibodies, which in turn are then labeled. The antibodies can e.g. be modified with fluorescent substances, by radioactive labeling or an enzymatic labeling. Immunological detection methods using specific antibodies, as well as the generation of antibodies and fragments or derivatives thereof are, as already mentioned, known from the prior art. Examples include Harlow et al., 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press and all subsequent editions.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein Genomscreen an mehreren Säugern einer Population durchgeführt. Der Begriff „mehrere Säuger" umfasst mindestens zwei Tiere einer Population, bevorzugt bis zu 5 Tiere, mehr bevorzugt 8 Tiere, noch mehr bevorzugt 10 Tiere, stärker bevorzugt 50 Tiere, noch stärker bevorzugt 250 Tier, am stärksten bevorzugt 1500 Tiere. Bei dem Genomscreen wird untersucht, ob eine Nukleinsaure von mindestens 8 Nukleotiden Länge, bevorzugt bis zu 50 Nukleotide, mehr bevorzugt 350 Nukleotide, noch mehr bevorzugt 1000 Nukleotide, am meisten bevorzugt bis zu 5000 Nukleotide oder länger gemeinsam mit dem Merkmal „Afterlosigkeit" vererbt wird. Insbesondere wird hierbei geklärt, beispielsweise mit Hilfe von Nukleinsäure- Amplifikationsverfahren oder Hybridisierungsverfahren, welches Markerallel gemeinsam mit dem Merkmal „Afterlosigkeit" vererbt wird. Eine gemeinsame Vererbung von Nukleinsäuren mit der phänotypischen Ausprägung der „Afterlosigkeit" impliziert eine genetische Kopplung der Nukleinsaure an das das Merkmal steuernde Gen und kennzeichnet darüber hinaus welches Markerallel sich auf demselben Chromosom befindet wie das an der phänotypischen Ausprägung der „Afterlosigkeit" beteiligte Allel am Defektgen, d.h. in welcher Kopplungsphase sich Markerallel und Defektallel befinden. Bevorzugte Marker sind die Mikrosatelliten SW2185, SW1621 , SW1902, S0155, und S0320 auf Chromosom 1 des Schweins oder die Mikrosatelliten in einer homologen Position im Genom anderer Säuger; oder Mikrosatellit S0002 auf Chromosom 3 des Schweins oder ein Mikrosatellit in einer homologen Position im Genom anderer Säuger; oder die Mikrosatelliten SW2401 und S0081 auf Chromosom 9 des Schweins oder die Mikrosatelliten in einer homologen Position im Genom anderer Säuger; oder die Mikrosatelliten SW957 und S0229 auf Chromosom 12 des Schweins oder die Mikrosatelliten in einer homologen Position im Genom anderer Säuger. Neben den genannten Mikrosatelliten können auch andere Nukleinsäuresequenzen als Marker verwendet werden, sofern sie im Sinne der Erfindung identisch oder im wesentlichen identisch sind mit der zweiten, in der Erfindung offenbarten Nukleinsaure oder in einem der oben genannten Nukleinsäurebereiche liegen. Wie bereits vorstehend erwähnt, können auch die Mikrosatelliten flankierenden Sequenzen, beispielsweise als Targetsequenzen für die PCR-Primer, in die Analyse mit einbezogen werden. Die Erfindung betrifft weiterhin ein Kit, mindestens enthaltend ein Primerpaar zur Amplifikation der zweiten Nukleinsaure, wobei jeweils ein Primer an den + Strang und ein weiterer Primer an den - Strang dieser Nukleinsaure bindet; oder eine Hybridisierungssonde mit einer Länge von mindestens 8 Nukleotiden die an die zweite Nukleinsaure bindet; oder einen Antikörper oder ein Antikörperfragment oder ein Antikörperderivat oder ein Aptamer, das die erste oder zweite Nukleinsaure spezifisch bindet.In a preferred embodiment of the method according to the invention, a genome screen is carried out on several mammals in a population. The term "Several mammals" comprises at least two animals of a population, preferably up to 5 animals, more preferably 8 animals, more preferably 10 animals, more preferably 50 animals, still more preferably 250 animals, most preferably 1500 animals. The genome screen is used to examine whether a nucleic acid of at least 8 nucleotides in length, preferably up to 50 nucleotides, more preferably 350 nucleotides, still more preferably 1000 nucleotides, most preferably up to 5000 nucleotides or longer, is inherited together with the feature "afterlessness". In particular, it is clarified here, for example with the aid of nucleic acid amplification methods or hybridization methods, which marker allele is inherited together with the characteristic "afterlessness". A common inheritance of nucleic acids with the phenotypic expression of "afterlessness" implies a genetic coupling of the nucleic acid to the characteristic controlling gene and also indicates which marker allele is located on the same chromosome as the allele involved in the phenotypic expression of the "afterlessness" of the defect gene, ie in which coupling phase there are marker allele and defect allele. Preferred markers are the microsatellites SW2185, SW1621, SW1902, S0155 , and S0320 on pig chromosome 1 or the microsatellites in a homologous position in the genome of other mammals; or microsatellite S0002 on pig chromosome 3 or a microsatellite in a homologous position in the genome of other mammals; or the mic rosatellites SW2401 and S0081 on chromosome 9 of the pig or the microsatellites in a homologous position in the genome of other mammals; or the microsatellites SW957 and S0229 on chromosome 12 of the pig or the microsatellites in a homologous position in the genome of other mammals. In addition to the microsatellites mentioned, other nucleic acid sequences can also be used as markers, provided that they are identical or essentially identical in the sense of the invention to the second nucleic acid disclosed in the invention or are in one of the above-mentioned nucleic acid regions. As already mentioned above, the sequences flanking the microsatellites, for example as target sequences for the PCR primers, can also be included in the analysis. The invention further relates to a kit containing at least one pair of primers for the amplification of the second nucleic acid, one primer each binding to the + strand and another primer to the - strand of this nucleic acid; or a hybridization probe with a length of at least 8 nucleotides that binds to the second nucleic acid; or an antibody or an antibody fragment or an antibody derivative or an aptamer that specifically binds the first or second nucleic acid.
PCR basierende Kits enthalten ein Primerpaar zur Amplifikation einer der oben genannten zweiten Nukleinsaure. Als Primer werden erfindungsgemäß solche Nukleinsäuren verstanden, die mindestens 70 Nukleotide, stärker bevorzugt mindestens 50 Nukleotide, noch stärker bevorzugt mindestens 30 Nukleotide und am meisten bevorzugt 25, 22, 20, 17, 15, 13, 12 oder 8 Nukleotide umfassen. Die Nukleotidsequenzen der Primer können beliebig aus den oben offenbarten zweiten Nukleinsäuresequenzen zusammengestellt werden, soweit sie zumindest 8 aufeinanderfolgende Nukleotide aufweisen. Ein Primer sollte innerhalb von 8 benachbarten Nukleotiden mindestens 7 mit der Zielsequenz identische Nukleotide aufweisen. Allerdings schließt die Erfindung auch solche Ausführungsformen ein, bei denen 4, 5 oder 6 der 8 Nukleotide mit der entsprechenden Sequenz der zweiten Nukleinsaure identisch sind.PCR-based kits contain a pair of primers for the amplification of one of the above-mentioned second nucleic acids. According to the invention, primers are understood to be those nucleic acids which comprise at least 70 nucleotides, more preferably at least 50 nucleotides, even more preferably at least 30 nucleotides and most preferably 25, 22, 20, 17, 15, 13, 12 or 8 nucleotides. The nucleotide sequences of the primers can be combined as desired from the second nucleic acid sequences disclosed above, provided that they have at least 8 consecutive nucleotides. A primer should have at least 7 nucleotides identical to the target sequence within 8 neighboring nucleotides. However, the invention also includes those embodiments in which 4, 5 or 6 of the 8 nucleotides are identical to the corresponding sequence of the second nucleic acid.
Auf Hybridisierungverfahren basierende Kits enthalten eine Hybridisierungssonde. Die Hybridisierungssonde kann bis zu 50 Nukleotide lang sein, stärker bevorzugt bis zu 100 Nukleotide, noch stärker bevorzugt bis zu 1000 Nukleotide und am meisten bevorzugt bis zu 5000 Nukleotide oder länger sein. Vorzugsweise ist die Hybridisierungssonde eine radioaktiv-markierte Nukleinsaure oder sie enthält modifizierte Nukleotide.Kits based on hybridization methods contain a hybridization probe. The hybridization probe can be up to 50 nucleotides long, more preferably up to 100 nucleotides, even more preferably up to 1000 nucleotides, and most preferably up to 5000 nucleotides or longer. The hybridization probe is preferably a radioactively labeled nucleic acid or it contains modified nucleotides.
Kits zum Nachweis von Nukleinsäuren auf ELISA, RIA, RIPA oder ähnlicher Basis enthalten einen spezifischen Antikörper oder ein Antikörperfragment oder ein Antikörperderivat oder ein Aptamer. Antikörper oder Antikörperfragment oder Antikörperderivat oder Aptamer sind spezifisch gegen die erste oder zweite Nukleinsaure gerichtet. Übliche Nachweisverfahren in denen die Kits Verwendung finden sind z.B. ELISA oder RIPA aber auch Immunfluoreszenz und andere Nachweisverfahren. Immunologische Nachweisverfahren und Verfahren zur Generierung von spezifischen Antikörpern sind aus dem Stand der Technik bekannt. Die Komponenten des Kits können in Behältern verpackt sein wie z.B. Fläschchen, optional auch in Puffern und/oder Lösungen. Gegebenenfalls können einer oder mehrere der Komponenten in demselben Behälter verpackt sein. Zusätzlich oder alternativ können eine oder mehrere Komponenten an einen festen Träger absorbiert sein, wie z.B. an Nitrozellulosefilter, Nylonmembranen, oder an die Vertiefung einer Mikrotiterplatte.Kits for the detection of nucleic acids on ELISA, RIA, RIPA or similar basis contain a specific antibody or an antibody fragment or an antibody derivative or an aptamer. Antibodies or antibody fragments or antibody derivatives or aptamers are specifically directed against the first or second nucleic acid. Common detection methods in which the kits are used are, for example, ELISA or RIPA, but also immunofluorescence and others Detection methods. Immunological detection methods and methods for generating specific antibodies are known from the prior art. The components of the kit can be packaged in containers such as vials, optionally also in buffers and / or solutions. Optionally, one or more of the components can be packaged in the same container. Additionally or alternatively, one or more components can be absorbed on a solid support, such as on nitrocellulose filters, nylon membranes, or on the well of a microtiter plate.
In der Beschreibung sind eine Reihe von Dokumenten zitiert. Der Offenbarungsgehalt dieser Dokumente inklusive von Gebrauchsanweisungen von Herstellern ist hiermit per Referenz inkorporiert. A number of documents are cited in the description. The disclosure content of these documents, including instructions for use from manufacturers, is hereby incorporated by reference.
Die Figuren zeigen:The figures show:
Figur 1 : Informationsgehalt (Info) der nichtparametrischen Multipoint- Kopplungsanalyse bei Erhöhung der Markerdichte auf SSC1.Figure 1: Information content (info) of the nonparametric multipoint coupling analysis when increasing the marker density to SSC1.
Figur 2: Verlauf der NPLaιι Spt Statistik bei Erhöhung der Markerdichte auf SSC 1.Figure 2: Course of the NPL a ιι S pt statistics when increasing the marker density to SSC 1.
Figur 3: Informationsgehalt der nichtparametrischen Singlepoint-Kopplungsanalyse bei Erhöhung der Markerdichte auf SSC 1.Figure 3: Information content of the nonparametric single point coupling analysis when increasing the marker density to SSC 1.
Figur 4: Verlauf der NPLmpt -Statistik auf SSC1 bei Kopplungsanalysen mit unterschiedlicher Anzahl an Familien und unterschiedlicher Markerdichte.Figure 4: Course of the NPL mpt statistics on SSC1 in coupling analyzes with different numbers of families and different marker density.
Figur 5: Informationsgehalt der Multipoint NPL-Statistik auf SSC1 bei Kopplungsanalysen mit unterschiedlicher Anzahl an Familien und unterschiedlicher Markerdichte.Figure 5: Information content of the multipoint NPL statistics on SSC1 in coupling analyzes with different numbers of families and different marker density.
Figur 6: Verlauf der NPLgpj-Statistik auf SSC1 bei Kopplungsanalysen mit unterschiedlicher Anzahl an Familien und unterschiedlicher Markerdichte.Figure 6: Course of the NPLgpj statistics on SSC1 in coupling analyzes with different numbers of families and different marker density.
Figur 7: Informationsgehalt der Singlepoint NPL-Statistik auf SSC1 bei Kopplungsanalysen mit unterschiedlicher Anzahl an Familien und unterschiedlicher Markerdichte..Figure 7: Information content of the Singlepoint NPL statistics on SSC1 in coupling analyzes with different numbers of families and different marker density.
Figur 8: Häufigkeitsverteilung der Haplotypen, abgeleitet an den Markern SW 1621 und SW 1902 auf SSC1. Blau markiert sind die Haplotypen der Ferkel und gelb markiert die Haplotypen der Eber. Figure 8: Frequency distribution of the haplotypes, derived from the markers SW 1621 and SW 1902 on SSC1. The haplotypes of the piglets are marked in blue and the haplotypes of the boars in yellow.
Die nachfolgenden Beispiele erläutern die Erfindung.The following examples illustrate the invention.
Material und Methodenmaterial and methods
Abstammungskontrolle:Descent Control:
Die Abstammungsuntersuchung erfolgte mit zehn über das Genom verteilten Mikrosatellitenmarkern, die zugleich das erste Markerset der genomweiten Typisierung darstellten. Zum Zeitpunkt der Typisierung war für diese Marker keine Information über die Anzahl der Allele und die in der Populationen bestehenden Allelfrequenzen vorhanden. Für jeden Marker wurde nach Garber (1983) die Wahrscheinlichkeit PEΠ für die Detektion einer Fehlabstammung ermittelt. Diese Berechnung berücksichtigt, dass im Tiermaterial nur ein typisierter Elter, meist der Eber oder in einzelnen Fällen das Muttertier, für die Abstammungskontrolle zur Verfügung stehen. Die dazu benötigten Allelfrequenzen wurden aus den Genotypen der typsierten Eber und des Ferkel geschätzt, da von den Muttertieren keine Typisierungsinformation zur Verfügung stand. In Tabelle 1 sind die 20 verwendeten Mikrosatellitenmarker näher charakterisiert. Aufgeführt sind für jeden Marker die Anzahl der Allele, das Chromosom (SSC), die Heterozygotie, der Polymorphism Information Content (PIC) und die Wahrscheinlichkeit PEΠ für die Detektion einer Fehlabstammung.The genealogical examination was carried out with ten microsatellite markers distributed over the genome, which also represented the first set of markers for genome-wide typing. At the time of typing, there was no information about the number of alleles and the allele frequencies existing in the populations for these markers. According to Garber (1983), the probability PE Π for the detection of an incorrect parentage was determined for each marker. This calculation takes into account that only a typed parent, usually the boar or in some cases the mother animal, is available for the pedigree control in the animal material. The allele frequencies required for this were estimated from the genotypes of the typed boars and piglets, since no typing information was available from the dams. The 20 microsatellite markers used are characterized in more detail in Table 1. The number of alleles, the chromosome (SSC), the heterozygosity, the polymorphism information content (PIC) and the probability PE Π for the detection of an incorrect parentage are listed for each marker.
Tabelle 1 : Charakterisierung der 20 Mikrosatellitenmarker für die Abstammungskontrolle.Table 1: Characterization of the 20 microsatellite markers for parentage control.
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000030_0001
Figure imgf000031_0001
Struktur des Tiermaterials für die qenomweite Typisierung:Structure of animal material for qenome-wide typing:
Nach der Abstammungskontrolle bestand das Tiermaterial aus folgenden 27 Haibund Vollgeschwisterfamilien:After the pedigree control, the animal material consisted of the following 27 shark and full-sibling families:
15 Familien mit 2 Halbgeschwistern (HG) 5 Familien mit 3 HG15 families with 2 half siblings (HG) 5 families with 3 HG
2 Familien mit 2 Vollgeschwistern (VG)2 families with 2 full siblings (VG)
3 Familien mit 2 VG und 1 zusätzlichem HG 1 Familie mit 2 VG und 2 zusätzlichen HG3 families with 2 VG and 1 additional HG 1 family with 2 VG and 2 additional HG
1 Familie mit Verwandschaft der Eber (Väter der afterlosen Tiere sind selbst HG) Für die genomweite Typisierung standen somit insgesamt 106 Tiere zur Verfügung. Diese teilen sich in 72 afterlose Ferkel, 31 Eber und 3 Muttersauen auf. In Tabelle 2 sind das Geschlecht und die Ausprägung des Defekts bei den typisierten Ferkeln dargestellt.1 family with relatives of the boar (fathers of the afterless animals are themselves HG) There were a total of 106 animals available for genome-wide typing. These are divided into 72 afterless piglets, 31 boars and 3 sows. Table 2 shows the sex and the severity of the defect in the typed piglets.
Tabelle 2: Ausprägung der Afterlosigkeit und das Geschlecht der typisierten Ferkel.Table 2: Characteristics of anuslessness and the sex of the typed piglets.
Figure imgf000031_0002
Figure imgf000031_0002
Für die Kopplungsanalyse wurden Atresia ani- und Atresia recti-Ferkel in eine Krankheitskategorie eingestuft und die beiden Ausprägungen der Afterlosigkeit als ursächlich gleicher Defekt betrachtet. In einem weiteren Schritt wurde das Tiermaterial ohne Atresia recti Tiere ausgewertet. Dabei reduzierten sich die Anzahl der Familien mit 2 HG um 2, 4 Familien mit 3 HG büßten 1 HG ein, so dass für die Auswertung 17 Familien mit 2 HG und 1 Familie mit 3 HG zur Verfügung standen. Das weitere Familienmaterial blieb unverändert. In Tabelle 3 sind die Rassen aller 72 afterlosen Ferkel dargestellt, die sich im Typisierungsset befanden. Am häufigsten ist auch hier mit 51.4% die Kreuzung mit DL als Mutterrasse und Pl als Vaterrasse zu finden.For the coupling analysis, Atresia ani and Atresia recti piglets were classified in one disease category and the two forms of anuslessness were considered the same defect. In a further step, the animal material without Atresia recti animals was evaluated. The number of families with 2 HG was reduced by 2, 4 families with 3 HG lost 1 HG, so that 17 families with 2 HG and 1 family with 3 HG were available for the evaluation. The other family material remained unchanged. Table 3 shows the breeds of all 72 afterless piglets that were in the typing set. The most common is also with 51.4% the cross with DL as the mother breed and Pl as the father breed.
Tabelle 3: Rasse und Rassenkreuzungen der afterlosen Tiere.Table 3: Breed and crossbreeds of the afterless animals.
Figure imgf000032_0001
Figure imgf000032_0001
DL = Deutsche Landrasse, DE = Deutsches Edelschwein, Pl = Pietrain, PIC = PIC Hybrideber, CAM= Camborough 26 (PIC Hybridsau), BHZP= Bundeshybridzucht ProgrammDL = Deutsche Landrasse, DE = Deutsches Edelschwein, Pl = Pietrain, PIC = PIC Hybrideberber, CAM = Camborough 26 (PIC Hybridsau), BHZP = Federal Hybrid Breeding Program
Struktur des ergänzenden Tiermaterials:Structure of the supplementary animal material:
Im Verlauf der genomweiten Typisierung konnte das Probenmaterial um weitere HG und VG Familien mit afterlosen Ferkeln ergänzt werden. Diese Familien wurden gezielt in spezifischen Chromosomenregionen typisiert und zur Bestätigung der Ergebnisse eingesetzt. Dieses zusätzliche Probenmaterial bestand aus 4 einzelnen afterlosen Ferkeln, die bereits existierende HG Familien ergänzten und aus 8 weiteren neuen Familien. Diese setzen sich folgendermaßen zusammen:In the course of the genome-wide typing, the sample material was supplemented by further HG and VG families with atlos piglets. These families were targeted in specific chromosome regions and used to confirm the results. This additional sample material consisted of 4 individual afterless piglets that complemented existing HG families and 8 further new families. These are made up as follows:
4 Familien mit 2 HG 3 Familien mit 3 HG 1 Familie mit 2 VG4 families with 2 HG 3 families with 3 HG 1 family with 2 VG
Insgesamt bestand das ergänzende Familienmaterial somit aus 31 Tieren, davon 23 afterlose Ferkel, 7 Eber und 1 Muttersau. In Tabelle 4 ist das Geschlecht und die Ausprägung des Defekts bei diesen Ferkeln dargestellt. Tabelle 5 gibt zudem eine Übersicht über die Rassen der Eber und Muttersauen der 23 afterlosen Tiere. Tabelle 4: Ausprägung der Afterlosigkeit und Geschlecht der Ferkel.In total, the supplementary family material consisted of 31 animals, including 23 free piglets, 7 boars and 1 mother sow. Table 4 shows the sex and the nature of the defect in these piglets. Table 5 also gives an overview of the breeds of boars and sows of the 23 afterless animals. Table 4: Characteristics of anuslessness and sex of the piglets.
Figure imgf000033_0001
Figure imgf000033_0001
Tabelle 5: Rasse der Eber und Muttersauen mit afterlosen Tiere (ergänzendes Famiiienmaterial).Table 5: Breed of boars and sows with ateless animals (supplementary family material).
Figure imgf000033_0002
Figure imgf000033_0002
Struktur des Familienmaterials für die Kopplungsanalyse auf dem Geschlechtschromosom SSC X und in der pseudoautosomalen Region SSC XYStructure of family material for coupling analysis on the sex chromosome SSC X and in the pseudoautosomal region SSC XY
Für die Kopplungsanalyse auf dem X-Chromosom, das als SSC X bezeichnet wird, wurden erkrankte Vollgeschwister zusammen mit den jeweiligen Müttern typisiert. Dazu wurden sowohl VG-Familien aus dem Tiermaterial der genomweiten Typisierung, als auch VG- Familien aus dem ergänzenden Familienmaterial verwendet. Insgesamt waren dies 9 Familien mit je zwei VG. Unter den 18 Ferkeln war ein gemischtes VG Paar, mit einem weiblichen und einem männlichen Ferkel, ein weibliches VG Paar und 7 männliche VG Paare zu finden. Die Kopplungsanalyse in der pseudoautosomalen Region (SSC XY) erfolgte dagegen anhand des Familienmaterials.For the coupling analysis on the X chromosome, which is referred to as SSC X, diseased full siblings were typed together with the respective mothers. For this purpose, VG families from the animal material of the genome-wide typing as well as VG families from the supplementary family material were used. In total there were 9 families with two VG each. Among the 18 piglets there was a mixed VG pair, with one female and one male piglet, one female VG pair and 7 male VG pairs. The coupling analysis in the pseudoautosomal region (SSC XY), however, was based on the family material.
Auswahl der TypisierungsmarkerSelection of the typing markers
Markerkarte: Bei der Verteilung der Mikrosatellitenmarker über das Genom wurde ein Markerabstand von 20 cM angestrebt. Kriterien für die Zusammenstellung des Primersets war dabei das Erreichen von qualitativ gut auswertbaren PCR Amplifikaten, sowie eine Mindestanzahl von drei amplifizierenden Allelen. Die Information dazu stammte aus einer Pietrain x Mangalitza Ressourcenpopulation. Für die genomweite Typisierung zur Defektgenkartierung wurden 130 Mikrosatelliten, einschließlich der Marker aus der Abstammungskontrolle, aus diesem Set ausgewählt und zu Multiplexgruppen von 10-12 Markern zusammengestellt. Die Abstände auf der genetischen Karte des Schweinegenoms und die Reihenfolge der Marker wurden der Datenbank des U.S. Meat Animal Research Center (Rohrer et al., 1996) entnommen. Bei dieser Karte sind die Abstände zwischen den Markerloci anhand von über beide Geschlechter gemittelten Rekombinationsraten geschätzt worden. Bis auf wenige Ausnahmen betrug der Abstand zwischen den verwendeten Markern 20-25 cM. Auf dem Geschlechtschromosom (SSC X) wurden insgesamt acht Marker typisiert. Innerhalb der pseudo-autosomalen Region der Geschlechtschromosomen (SSC XY) wurden zwei Marker zur Typisierung verwendet, es konnten jedoch nur für den Marker SW949 PCR-Amplifikate erhalten werden. Im Rahmen der parametrischen und nichtparametrischen Auswertung konnte deshalb nur eine Kopplungsanalyse zwischen dem Mikrosatellitenmarker SW949 und dem vermeintlichen Krankheitslocus durchgeführt werden.Marker card: The distribution of the microsatellite markers over the genome was aimed at a marker spacing of 20 cM. The criteria for compiling the primer set was the achievement of high quality PCR Amplificates and a minimum number of three amplifying alleles. The information came from a Pietrain x Mangalitza resource population. For the genome-wide typing for defect gene mapping, 130 microsatellites, including the markers from the parentage control, were selected from this set and assembled into multiplex groups of 10-12 markers. The distances on the genetic map of the pig genome and the order of the markers were taken from the database of the US Meat Animal Research Center (Rohrer et al., 1996). The distances between the marker loci on this map were estimated on the basis of recombination rates averaged over both sexes. With a few exceptions, the distance between the markers used was 20-25 cM. A total of eight markers were typed on the sex chromosome (SSC X). Within the pseudo-autosomal region of the sex chromosomes (SSC XY), two markers were used for typing, but PCR amplificates could only be obtained for the SW949 marker. As part of the parametric and nonparametric evaluation, only a coupling analysis between the microsatellite marker SW949 and the supposed disease locus could be carried out.
Allelfrequenzschätzung:Allelfrequenzschätzung:
Für die Berechnung der Wahrscheinlichkeit Pen (Detektion einer Fehlabstammung) sowie für die Berechnung des Informationsgehalts der Marker wurden die Allelfrequenzen aus dem gesamten typisierten Familienmaterial (Elter und Ferkel) geschätzt. Da nur für einen Elter, meist das Vatertier, Markergenotypen ermittelt wurden, war es nicht möglich die Allelfrequenzen direkt in der parentalen Generation zu schätzen. Für die parametrische und nichtparametrische Kopplungsanalyse wurden die übertragenen mütterlichen Allele anhand der Genotypen der Ferkel und Eber abgeleitet und daraus die Allelfrequenzen in der mütterlichen Population berechnet. Typisierung der MikrosatellitenmarkerFor the calculation of the probability P en (detection of an incorrect parentage) as well as for the calculation of the information content of the markers, the allele frequencies from the entire typed family material (parents and piglets) were estimated. Since marker genotypes were only determined for one parent, mostly the father animal, it was not possible to estimate the allele frequencies directly in the parent generation. For the parametric and nonparametric coupling analysis, the transferred maternal alleles were derived from the genotypes of the piglets and boars and the allele frequencies in the maternal population were calculated. Typing the microsatellite markers
Isolierung von genomischer DNA aus nativem Schweinesperma:Isolation of genomic DNA from native pig sperm:
Erster Schritt der Präparation war das Waschen der Spermazellen mit 1 x PBS zum vollständigen Entfernen des Seminalplasmas. Dazu wurden 500 μl natives Schweinesperma in einem 2ml Eppendorfgefäß mit 1ml 1 x PBS (pH 7.4, 140 mM NaCI, 2.7 mM KCI, 6.5 mM Na2HP04, 1.5 mM KH2PO4) versetzt. Zentrifugiert wurde 3 min und mit geringer Drehzahl (3.000 rpm), um ein starkes Verkleben der Spermazellen zu verhindern. Anschließend wurde der Überstand abgegossen. Dieser Waschschritt wurde mindestens 2 x wiederholt bis der Überstand nicht mehr viskos war. Das Pellet aus Spermazellen wurde jeweils nach dem Zentrifugieren vollständig mitl ml 1 x PBS resuspendiert. Nach dem Waschschritt wurde das Spermapellet in 1ml Lysispuffer (pH 7.4, 1 % SDS, 20 mM Tris, 4 mM Na2EDTA, 100 mM NaCI) suspendiert und 150 μl ProteinaseK (20 mg/ml in bidest. H2O) und 50 μl DTT (1 ,4-Dithiothreitol, pH 5.2, 1M in 0.01 M NaAcetat) zugegeben. Die Inkubation erfolgte über Nacht bei 55°C. Nach der Inkubation sollte die Lösung klar und durchsichtig sein. War dies nicht der Fall, so wurde mit 150 μl ProteinaseK (20 mg/ml) nochmals inkubiert. Anschließend wurde die Lösung in ein Vacutainer SST 9.5 ml Röhrchen (368510, Becton Dickinson) überführt. Es folgte eine Extraktion mit je 1000 μl Phenol (pH 7.9; gepuffert mit Tris) und einem Gemisch aus Chloroform, Isoamylalkohol im Verhältnis 24 : 1. Die DNA-Fällung wurde in einem 15 ml Sarstedt-Röhrchen mit 0.8 Volumenprozent Isopropanol durchgeführt. Nach zweimaligem Waschen mit 70 % ETOH und anschließender Zentrifugation für 10 min bei 10000 rpm wurde die DNA luftgetrocknet und in 150μl TE (pH 8.0, 10 mM Tris-HCI, 1 mM EDTA) aufgenommen. Die DNA-Ausbeute variierte je nach Spermaqualität zwischen 10-22 μg.The first step in the preparation was to wash the sperm cells with 1 x PBS to completely remove the seminal plasma. For this purpose, 500 μl of native pork sperm were mixed with 1 ml of 1 × PBS (pH 7.4, 140 mM NaCl, 2.7 mM KCI, 6.5 mM Na 2 HP0 4 , 1.5 mM KH 2 PO 4 ) in a 2 ml Eppendorf tube. Centrifugation was carried out for 3 minutes and at a low speed (3,000 rpm) to prevent the sperm cells from sticking together. The supernatant was then poured off. This washing step was repeated at least twice until the supernatant was no longer viscous. The sperm cell pellet was completely resuspended with 1 ml of 1 × PBS after centrifugation. After the washing step, the sperm pellet was suspended in 1 ml of lysis buffer (pH 7.4, 1% SDS, 20 mM Tris, 4 mM Na 2 EDTA, 100 mM NaCl) and 150 μl ProteinaseK (20 mg / ml in bidist. H 2 O) and 50 μl DTT (1, 4-dithiothreitol, pH 5.2, 1M in 0.01 M NaAcetat) added. Incubation took place overnight at 55 ° C. After the incubation, the solution should be clear and transparent. If this was not the case, the mixture was incubated again with 150 μl ProteinaseK (20 mg / ml). The solution was then transferred to a Vacutainer SST 9.5 ml tube (368510, Becton Dickinson). This was followed by extraction with 1000 μl phenol (pH 7.9; buffered with Tris) and a mixture of chloroform and isoamyl alcohol in a ratio of 24: 1. The DNA precipitation was carried out in a 15 ml Sarstedt tube with 0.8 volume percent isopropanol. After washing twice with 70% ETOH and then centrifuging for 10 min at 10,000 rpm, the DNA was air-dried and taken up in 150 μl TE (pH 8.0, 10 mM Tris-HCl, 1 mM EDTA). The DNA yield varied between 10-22 μg depending on the quality of the sperm.
Isolierung von genomischer DNA aus Muskelgewebe:Isolation of genomic DNA from muscle tissue:
Zur Präparation von DNA aus Muskelgewebe wurde 30 - 40 mg gefrorenes Gewebe mit einem Skalpel in kleine Stücke geschnitten und in einem 2 ml Eppendorfgefäß mit 1 ml Lysispuffer ( pH 8.0, 1% SDS, 50 mM Tris, 100 mM EDTA, 100 mM NaCI) versetzt. Nach der Zugabe von 100 μl ProteinaseK (20 mg/ml in bidest. H2O) wurde die Probe auf dem Vortex gemischt und über Nacht bei 55°C inkubiert. Das stark RNA haltige Muskelgewebe der Ferkel wurde vor der Phenol/Chloroform Extraktion mit 400 μg RNase (pH 7.4, 20mg/ml in 10mM NaAcetat (pH 5.2 )) 30 min. bei 37 °C inkubiert. Anschließend wurde die Lösung zusammen mit 200 μl TE (pH 8.0, 10 mM Tris-HCI, 1 mM EDTA) in ein Vacutainer SST 9.5 ml Röhrchen (368510, Becton Dickinson) überführt. Im Anschluß an die Lufttrocknung wurde die DNA in 200 μl TE (pH 8.0, 10 mM Tris-HCI, 1 mM EDTA) aufgenommen. Die DNA-Ausbeute variierte zwischen 30-60 μg.To prepare DNA from muscle tissue, 30 - 40 mg frozen tissue was cut into small pieces with a scalpel and in a 2 ml Eppendorf tube with 1 ml lysis buffer (pH 8.0, 1% SDS, 50 mM Tris, 100 mM EDTA, 100 mM NaCI) added. After the addition of 100 μl ProteinaseK (20 mg / ml in bidist. H 2 O) the sample mixed on the vortex and incubated overnight at 55 ° C. The piglet's muscle tissue, which contains a lot of RNA, was treated with 400 μg RNase (pH 7.4, 20 mg / ml in 10mM NaAcetat (pH 5.2)) for 30 min before the phenol / chloroform extraction. incubated at 37 ° C. The solution was then transferred together with 200 μl TE (pH 8.0, 10 mM Tris-HCl, 1 mM EDTA) into a Vacutainer SST 9.5 ml tube (368510, Becton Dickinson). Following air drying, the DNA was taken up in 200 μl TE (pH 8.0, 10 mM Tris-HCl, 1 mM EDTA). The DNA yield varied between 30-60 μg.
Isolierung von genomischer DNA aus Ohrgewebe:Isolation of genomic DNA from ear tissue:
Für die DNA Extraktion aus Ohrgewebe wurde der DNeasy Kit von Qiagen ( Kat.-Nr. 29308) verwendet. Es wurde dabei nach dem "Animal Tissue" Protokoll vorgegangen.The DNeasy kit from Qiagen (cat. No. 29308) was used for DNA extraction from ear tissue. The "Animal Tissue" protocol was followed.
DNA Quantifizierung mittels Fluoreszenz Emission:DNA quantification using fluorescence emission:
Vor Beginn der Messung wurde das Fluorometer (Hoefer DyNA Quant 200, Amersham Pharmacia Biotech) kalibriert. Dazu wurden 200 ng Calf Thymus DNA (100 μg/ml in bidest. H2O) als Referenz DNA verwendet. Zur Quantifizierung wurden je 2 μl DNA in 2 ml TNE Meßlösung (pH 7.4, 10 mM Tris, 1 mM EDTA Na2 2H2O, 0.2 mM NaCI, 0.1 μg/ml Hoechst H 33258 (Bisbenzimide)) in einer Küvette gemischt. Gemessen wurde bei einer Exzitationswellenlänge von 350 nm und einer Emissionswellenlänge von 456 nm. Im Konzentrationsbereich von 10 - 500 ng /μl DNA, war für die oben beschriebene TNE-Meßlösung, die gemessene DNA Konzentration proportional zur gebundenen Hoechst H 33258 Menge im DNA Doppelstrang. Nach der DNA Messung wurden die Proben auf eine Konzentration von 25 ng/μl mit TE (pH 8.0) eingestellt und zur Kontrolle auf ein 0.8 % Agarosegel (Ethidiumbromid) aufgetragen.Before starting the measurement, the fluorometer (Hoefer DyNA Quant 200, Amersham Pharmacia Biotech) was calibrated. For this purpose, 200 ng of Calf thymus DNA (100 μg / ml in bidist. H 2 O) were used as reference DNA. For quantification, 2 μl DNA in 2 ml TNE measuring solution (pH 7.4, 10 mM Tris, 1 mM EDTA Na 2 2H 2 O, 0.2 mM NaCl, 0.1 μg / ml Hoechst H 33258 (bisbenzimide)) were mixed in a cuvette. Measurements were made at an excitation wavelength of 350 nm and an emission wavelength of 456 nm. In the concentration range of 10 - 500 ng / μl DNA, the measured DNA concentration for the TNE measuring solution described above was proportional to the bound Hoechst H 33258 amount in the DNA double strand. After the DNA measurement, the samples were adjusted to a concentration of 25 ng / μl with TE (pH 8.0) and applied to a 0.8% agarose gel (ethidium bromide) as a control.
Polymerasekettenreaktion (PCR):Polymerase chain reaction (PCR):
Für die PCR-Reaktionen wurden je 200 μl DNA (25 ng/μl) in 96-Loch Mikrotiterplatten vorgelegt und zum Schutz vor Verdunstung mit 2 Tropfen Mineralöl überschichtet. Das Mischen des Standardmastermix (50 mM KCI, 10 mM Tris-HCI (pH 8.3), 200 μM je dNTP, 1.5 mM MgCI2l 5 pmol je Primer und 0.5 Units Perkin- Eimer AmpliTaq Polymerase) für die PCR-Reaktionen mit 20 μl Gesamtvolumen erfolgte in zwei Eppendorftubes (1.5 ml) für je 52 Ansätze. Für das Pipettieren der PCR wurde ein Biomek 2000 (Laboratory Automation Workstation, Beckmann) verwendet. Von der Robotic Station wurden je 18 μl Mastermix in 96-Loch Mikrotiterplatten vorgelegt und anschließend mit 2 μl DNA aus der DNA-Platte gemischt. Zur Durchführung der PCR-Zyklen wurden zwei T -Gradienten, ein T1 Thermocycler, zwei UNO-Thermoblocks der Firma Biometra Whatman und zwei PTC-100 Maschinen der Firma MJ-Research verwendet. Die Standard PCR- Bedingungen, waren : 4 min Denaturierung bei 94°C, gefolgt von 30 Zyklen mit 30 sec bei 94°C, 45 sec bei primerspezifischer Annealingtempertur, 1 min 30 sec Extension bei 72°C und abschließender Kühlung auf 4°C. Zur Kontrolle wurden stichprobenartig PCR-Amplifikate auf ein 2 % Agarosegel aufgetragen. Anhand der Fluorochrommarkierung ergab sich der Verdünnungsfaktor für die Genotypisierung: 6-FAM markierte PCR-Produkte wurden generell 1:30, TET markierte PCR- Produkte 1 :20 und HEX markierte Produkte 1:10 verdünnt. Eine Korrektur des Standard Verdünnungsfaktors ergab sich aus der Intensität der PCR-Banden auf dem Agarosegel. Je nach Fragmentlänge und Fluorochrommarkierung wurden so Multiplex Ansätze mit bis zu 12 verschiedenen Markern je Tier erstellt und mit bidest. H20 auf die gewünschte Konzentration eingestellt.For the PCR reactions, 200 μl DNA (25 ng / μl) were placed in 96-well microtiter plates and covered with 2 drops of mineral oil to protect against evaporation. Mixing the standard master mix (50 mM KCI, 10 mM Tris-HCl (pH 8.3), 200 μM per dNTP, 1.5 mM MgCI 2l 5 pmol per primer and 0.5 units Perkin- Bucket of AmpliTaq polymerase) for the PCR reactions with a total volume of 20 μl was carried out in two Eppendorf tubes (1.5 ml) for 52 batches each. A Biomek 2000 (Laboratory Automation Workstation, Beckmann) was used for pipetting the PCR. From the robotic station, 18 μl of master mix were placed in 96-well microtiter plates and then mixed with 2 μl of DNA from the DNA plate. Two T gradients, a T1 thermal cycler, two UNO thermoblocks from Biometra Whatman and two PTC-100 machines from MJ Research were used to carry out the PCR cycles. The standard PCR conditions were: 4 min denaturation at 94 ° C, followed by 30 cycles with 30 sec at 94 ° C, 45 sec at primer-specific annealing temperature, 1 min 30 sec extension at 72 ° C and final cooling to 4 ° C , As a control, PCR amplificates were randomly applied to a 2% agarose gel. The fluorochrome marking resulted in the dilution factor for the genotyping: 6-FAM-labeled PCR products were generally diluted 1:30, TET-labeled PCR products 1:20 and HEX-labeled products 1:10. The standard dilution factor was corrected from the intensity of the PCR bands on the agarose gel. Depending on the fragment length and fluorochrome marking, multiplex approaches with up to 12 different markers per animal were created and with bidest. H 2 0 set to the desired concentration.
Polyacrylamidgelelektrophorese: Für die Polyacrylamidgelelektrophorese wurde eine 5 %ige Acrylamidgelmischung (21 g Harnstoff, 8.4 ml Acrylamidlösung 30 %, 6.0 ml 10 x TBE, 10.0 ml bidest. H2O) hergestellt, filtriert und mit Hilfe einer Membran -Vakuumpumpe 20 min. entgast. Anschließend wurden 20 μl TEMED (Tetramethylethylendiamin, Ameresco, 0761) und 300 μl APS (Ammonium Persulfat, ameresco, 0486) zugemischt, die Gelmischung zwischen Glasplatten gegossen und 1 Stunde in waagrechter Lage polymerisiert. Aus der Multiplex PCR-Mischung wurden jeweils 1.8 μl entnommen und mit 2.0 μl ABI-Dye (pH 8.0, 25 mM EDTA : Formamid = 1 : 5, versetzt mit einer Pipettenspitze Dextran Blue (Fluka, 31393)) und 0.3 μl internem Längenstandard TAMRA 500 (ABI Prism, Längenstandard) in einer Mikrotiterplatte gemischt. Vor dem Gelauftrag in einem ABI Prism ® 377 DNA Sequenzer (Perkin Eimer) wurden die Proben für 3 min in einer PCR-Maschine bei 94°C denaturiert und anschließend auf 4°C gekühlt. 2.0 μl der denaturierten Proben wurden auf das Acrylamidgel aufgetragen. Bei einer Betriebstemperatur von 51 °C und einer angelegten Spannung von 2500 V betrug die Laufzeit, je nach Fragmentlänge der Mikrosatelliten, zwischen 2 und 3 Stunden. Als Laufpuffer für die Elektrophorese wurde 1 x TBE (90 mM Trisborat (pH 8.3), 2 mM Na2EDTA) verwendet. Analysiert wurden die Fragmentlängen mit. den Computerprogrammen ABI Prism 377 Collection und der GeneScan 3.1 von Perkin Eimer. Die Festlegung und Bestimmung der Markerallele "allele calling" wurde mit dem Programm Genotyper 2.5 durchgeführt.Polyacrylamide gel electrophoresis: For the polyacrylamide gel electrophoresis, a 5% acrylamide gel mixture (21 g urea, 8.4 ml acrylamide solution 30%, 6.0 ml 10 x TBE, 10.0 ml bidist. H 2 O) was prepared, filtered and with the help of a membrane vacuum pump for 20 min. degassed. 20 μl of TEMED (tetramethylethylenediamine, Ameresco, 0761) and 300 μl of APS (ammonium persulfate, ameresco, 0486) were then mixed in, the gel mixture was poured between glass plates and polymerized in a horizontal position for 1 hour. In each case 1.8 μl were taken from the multiplex PCR mixture and with 2.0 μl ABI-Dye (pH 8.0, 25 mM EDTA: formamide = 1: 5, mixed with a pipette tip Dextran Blue (Fluka, 31393)) and 0.3 μl internal length standard TAMRA 500 (ABI Prism, length standard) mixed in a microtiter plate. Before applying the gel in an ABI Prism ® 377 DNA sequencer (Perkin Elmer), the samples were denatured for 3 min in a PCR machine at 94 ° C. and then Chilled to 4 ° C. 2.0 μl of the denatured samples were applied to the acrylamide gel. At an operating temperature of 51 ° C and an applied voltage of 2500 V, the runtime was between 2 and 3 hours, depending on the fragment length of the microsatellites. 1 × TBE (90 mM trisborate (pH 8.3), 2 mM Na 2 EDTA) was used as the running buffer for the electrophoresis. The fragment lengths were analyzed with. the computer programs ABI Prism 377 Collection and the GeneScan 3.1 from Perkin Elmer. The definition and determination of the marker allele "allele calling" was carried out with the Genotyper 2.5 program.
Beispiel 1: Ergebnisse der Überprüfung auf konsistente GenotypenExample 1: Results of checking for consistent genotypes
Bei der ersten Auswertung der typisierten Genotypen zeigten sich 134 Konflikte zwischen Nachkomme und Elter an insgesamt 43 unterschiedlichen Markern. Bei der Mehrzahl der Nachkomme-Elter Paare fanden sich Unstimmigkeiten an einem oder zwei Markerloci. Eine Familie mit drei Halbgeschwistern, die acht, neun und elf Markerkonflikte zeigte, wurde aus der weiteren Typisierung und statistischen Auswertung genommen, obwohl die Abstammungsüberprüfung keinen Anlaß zur Beanstandung gegeben hatte. Bei allen anderen Konflikten wurden nach einer Überprüfung der Genotypen auf Übertragungfehler, die Mikrosatellitenmarker nochmals amplifiziert, um auch die Verwechslungen der PCR-Proben ausschließen zu können.The first evaluation of the typed genotypes showed 134 conflicts between offspring and parents at a total of 43 different markers. The majority of the offspring-parent couples found inconsistencies in one or two marker loci. A family with three half-siblings, who showed eight, nine and eleven marker conflicts, was removed from the further typing and statistical evaluation, although the parentage check had not given cause for complaint. In all other conflicts, after checking the genotypes for transmission errors, the microsatellite markers were amplified again so that the mix-ups of the PCR samples could also be excluded.
Nach dieser Wiederholung reduzierte sich die Gesamtzahl der Elter-NK Konflikte auf 52, die an 12 unterschiedlichen Markern auftraten. Es konnten keine Nachkomme-Elter Paare mit mehr als vier Markerkonflikten beobachtet werden. In den meisten Fällen hatte sich gezeigt, dass Allele von heterozygoten Tieren mit unterschiedlicher Intensität der PCR Amplifikate zu einer falschen Detektion der Allele geführt hatten. Eine zweite Wiederholung reduzierte die vorliegenden Konflikte erneut. Die daraus resultierenden 28 Unstimmigkeiten an sechs verschiedenen Markern konnten auch durch eine nochmalige Typisierung nicht geklärt werden. Mit Hilfe einer Simulationsstudie konnte gezeigt werden, dass diese Inkonsistenzen nicht auf fehlerhafter Abstammung beruhen. Man würde im ungünstigsten Fall mindestens 8 Konflikte pro Tier-Elter Paar erwarten, wenn man die Genotypen der Nachkommen zufällig den Genotypen eines beliebigen Elters zuordnet. Es ist von daher sehr unwahrscheinlich, dass bei 130 typisierten Markern Konflikte an einem, zwei oder drei Markern auftreten, die auf Fehlabstammung zurückzuführen sind. An den sechs Mikrosatellitenmarkern die trotz wiederholter Typisierung Unstimmigkeiten auftraten wurde auf die Existenz von nicht amplifizierenden Allelen (Nullallelen ) getestet. In Tabelle 6 sind die ermittelten Allelfrequenzen r für das mögliche Nullallel zusammen mit dem Standardfehler von r dargestellt. Bei zwei Markern, SW797 und SW1881 zeigte ein t-Test signifikante Hinweise auf die Existenz von Nullallelen.After this repetition, the total number of parent-NK conflicts decreased to 52, which occurred at 12 different markers. No offspring-parent pairs with more than four marker conflicts could be observed. In most cases, it had been shown that alleles from heterozygous animals with different intensities of the PCR amplificates had led to incorrect detection of the alleles. A second repetition reduced the existing conflicts again. The resulting 28 discrepancies at six different markers could not be resolved by typing again. A simulation study showed that these inconsistencies are not due to incorrect parentage. You would in In the worst case, expect at least 8 conflicts per animal-parent pair if you randomly assign the genotypes of the offspring to the genotypes of any parent. It is therefore very unlikely that with 130 typed markers there will be conflicts at one, two or three markers due to incorrect parentage. The existence of non-amplifying alleles (zero alleles) was tested on the six microsatellite markers which appeared to have discrepancies despite repeated typing. Table 6 shows the allele frequencies r determined for the possible zero allele together with the standard error of r. For two markers, SW797 and SW1881, a t-test showed significant evidence for the existence of null alleles.
Tabelle 6: Geschätzte Allelfrequenz r für ein nicht amplifizierendes Allel bei den Mikrosatellitenmarkern mit Genotypkonflikten zwischen Elter und Nachkomme.Table 6: Estimated allele frequency r for a non-amplifying allele in the microsatellite markers with genotype conflicts between parents and offspring.
Figure imgf000039_0001
Figure imgf000039_0001
Beispiel 2: Genomweite KopplungsanalyseExample 2: Genome-wide coupling analysis
Der erste Schritt der statistischen Auswertung bestand aus der genomweiten nichtparametrischen und parametrischen Kopplungsanalyse des Familienmaterials. Als unabhängigen Bestätigungsstudie wurde in einem zweiten Schritt der Auswertungen die Markerdichte in interessanten Chromosomenregionen erhöht und zudem das ergänzende Familienmaterial genotypisiert. Für die genomweite Kopplungsanalyse wurde das Familienmaterial an 130 Markern untersucht und mit dem Programm Allegro 1.0 ausgewertet.The first step of the statistical analysis consisted of the genome-wide nonparametric and parametric coupling analysis of the family material. As an independent confirmation study, the marker density in interesting chromosome regions was increased in a second step of the evaluations and the supplementary family material was also genotyped. For the genome-wide coupling analysis, the family material was examined at 130 markers and evaluated with the Allegro 1.0 program.
Ergebnisse der genomweiten nichtparametrischen Kopplungsanalvse:Results of the genome-wide nonparametric coupling analysis:
Für die nichtparametrische Auswertung des Datenmaterials wurden die NPL- Statistiken, NPLpajrs und NPLaιι, berechnet. Dabei wurde für beide Teststatistiken eine Kopplungsanalyse zwischen den einzelnen Markern und dem Krankheitslocus (Singlepoint-Kopplungsanalyse) durchgeführt. Diese Teststatistiken werden als NPLpairs spt und NPLaii Spt bezeichnet. Ebenso wurde für beide NPL-Statistiken eine Kopplungsanalyse zwischen den Markern und dem Krankheitslocus (Multipoint- Kopplungsanalyse) durchgeführt, welche als NPLpairs mpt und NPLan mpt bezeichnet werden. Angeführt sind in den Ergebnis Übersichten die NPL-Werte, die Irrtumswahrscheinlichkeiten des NPL-Wertes (p-Werte) und der von Allegro 1.0 berechnete Informationsgehalts (Info) des Familienmaterials an der jeweiligen Markerposition. Innerhalb der pseudoautosomalen Region auf den Geschlechtschromosomen (SSC XY) konnte nur für einen Mikrosatellitenmarker SW949 eine Kopplungsanalyse mit dem vermeintlichen Krankheitslocus durchgeführt werden.The NPL statistics, NPL pa j rs and NPL a ιι, were calculated for the nonparametric evaluation of the data material. It was used for both test statistics a coupling analysis between the individual markers and the disease locus (single point coupling analysis) was carried out. These test statistics are called NPLpairs spt and NPLaii S p t . A coupling analysis between the markers and the disease locus (multipoint coupling analysis) was also carried out for both NPL statistics, which are referred to as NPL pa irs mpt and NPL a n mpt . The result overviews show the NPL values, the error probabilities of the NPL value (p values) and the information content (info) of the family material calculated by Allegro 1.0 at the respective marker position. Within the pseudoautosomal region on the sex chromosomes (SSC XY), a coupling analysis with the supposed disease locus could only be carried out for a microsatellite marker SW949.
Nichtparametrische Kopplungsanalyse zwischen mehreren Markern und dem Krankheitslocus (Multipoint Kopplungsanalyse):Nonparametric coupling analysis between multiple markers and the disease locus (multipoint coupling analysis):
Die Ergebnisse der genomweiten Kopplungsanalyse sind in Tabelle 7 dargestellt. Aufgeführt sind dabei, die höchsten NPLpajrs mpt und NPLan mpt Werte für jedes Chromosom (SSC), sowie der p-Wert und der Informationsgehalt an der Position des maximalen NPL-Wertes. Den höchsten Wert erreichte die NPL-Statistik auf SSC1 am Marker SW1621. Dort lag der NPUπ mpt bei 2.57 (p=0.006) bzw. der NPL^rs mpt bei 2.59 (p= 0.006). Die Informativität war mit 0.47 bzw. 0.46 an Position des NPL Maximums nur im mittleren Bereich (Figur 4). Auf dem SSC 12 zeigten sich am Marker S0229 ebenfalls hohe NPL Werte. Der NPLan mpt und der NPLpairs mpt lagen bei 1.94 (p=0.028) bzw. 1.90 (p=0.030). Zudem ergab sich an dieser Markerposition ein hoher Informationsgehalt von 0.88 innerhalb der untersuchten Familien. An der Position des Markers S0002 auf SSC 3 konnte für den NPLaιι mpt ein Wert von 1.90 (p=0.031) und für den NPLpairs mpt ein Wert von 1.86 (p=0.030) gefunden werden. Die Informativität lag dabei bei 0.45 bzw. 0.47. NPL-Statistiken mit einer Irrtumswahrscheinlichkeit kleiner als 0.1 konnten auf SSC 13 [NPLan mpt 1.57 (p=0.060); NPLpairs mPt 1 -66 (p=0.050)] und auf SSC 8 [NPLaι, mpt 1.37 (p=0.087); NPLpairs mpt 1 -31 (p=0.096)] gefunden werden. Das SSC 9 lag mit einem NPLan mpt von 1.13 (p=0.130) und einem NPLpairS mPt Von 1.11 (p=0.135) nur knapp über dem p- Wert von O.1. Tabelle 7: Signifikante NPLan und NPLpairs Werte der einzelnen Chromosomen im Rahmen der nichtparametrischen Kopplungsanalyse (Multipoint Kopplungsanalyse).The results of the genome-wide coupling analysis are shown in Table 7. The highest NPL pa j rs mp t and NPL a n mpt values for each chromosome (SSC) are listed, as well as the p-value and the information content at the position of the maximum NPL value. The highest value was achieved by the NPL statistics on SSC1 on marker SW1621. There the NPUπ mpt was 2.57 (p = 0.006) and the NPL ^ r s mp t was 2.59 (p = 0.006). At 0.47 and 0.46, respectively, the informativity at the position of the NPL maximum was only in the middle area (FIG. 4). On the SSC 12 the marker S0229 also showed high NPL values. The NPL a n mp t and the NPL pa irs mpt were 1.94 (p = 0.028) and 1.90 (p = 0.030), respectively. In addition, there was a high information content of 0.88 within the examined families at this marker position. At the position of marker S0002 on SSC 3, a value of 1.90 (p = 0.031) was found for the NPL a ιι m pt and 1.86 (p = 0.030) for the NPL pairs mpt . The informativity was 0.45 and 0.47, respectively. NPL statistics with an error probability of less than 0.1 could be found on SSC 13 [NPL a n mpt 1.57 (p = 0.060); NPLp ai rs m P t 1 -66 (p = 0.050)] and on SSC 8 [NPL a ι, m pt 1.37 (p = 0.087); NPLpairs m pt 1 -31 (p = 0.096)] can be found. With an NPL a n mpt of 1.13 (p = 0.130) and an NPL pa i rS m Pt of 1.11, the SSC 9 was only slightly above the p value of O.1. Table 7: Significant NPL a n and NPL pairs values of the individual chromosomes in the context of the nonparametric coupling analysis (multipoint coupling analysis).
Figure imgf000041_0001
Figure imgf000041_0001
Nichtparametrische Kopplungsanalyse zwischen den einzelnen Markern und dem Krankheitslocus (Singlepoint Kopplungsanalyse):Nonparametric coupling analysis between the individual markers and the disease locus (singlepoint coupling analysis):
Im folgenden werden die Ergebnisse der Kopplungsanalyse zwischen den einzelnen Markern und dem Krankheitslocus dargestellt. Dabei wurde für jeden Marker der genomweiten Typisierung die NPLan Spt und die NPLaιι Spt Statistik berechnet. Die Ergebnisse dieser Auswertung sind in Tabelle 8 wiedergegeben. Die höchsten Werte der NPL-Statistiken waren auf dem SSC1 zu finden. Der NPLaιι Spt am Marker SW1621 betrug dabei 2.14 (p=0.019) und der NPLpairs mpt 2.13 (p=0.018). Der Informationsgehalt an dieser Markerposition lag mit 0.38 im unteren Bereich. Auf SSC 12 (S0229) wurde ein NPLaπ spt von 1.61 (p=0.056) und ein NPLpairs spt von 1.57 (p=0.060) gefunden. Dort betrug der Informationsgehalt 0.80 bzw. 0.79. Die NPL-Werte auf SSC 8 lagen bei der NPLaιι spt Statistik bei 1.49 (p=0.069) und bei NPLpairs spt von 1.54 (p=0.063). Auf dem SSC 3 betrug der NPLaιι Spt 1 -33 (p=0.095) und der NPLpairs Spt 1-36 (p=0.089). Bei allen weiteren Chromosomen waren die Irrtumswahrscheinlichkeiten der NPL Statistik größer als 0.1. Auf SSC 9 betrug der NPLaii spt 0.75 (p=0.226) und der NPLpairs spt 0.75 (p=0.226). Und für das SSC13 lagen die Werte des NPLan spt bei 0.85 (p=0.197) und für den NPLpairs spt bei 0.90 (p=0.184).The results of the coupling analysis between the individual markers and the disease locus are shown below. The NPL a n S pt and the NPL a ιι S p t statistics were calculated for each marker of the genome-wide typing. The results of this evaluation are shown in Table 8. The highest values of the NPL statistics were found on the SSC1. The NPL a ιι S p t on marker SW1621 was 2.14 (p = 0.019) and the NPL pa irs mpt 2.13 (p = 0.018). The information content at this marker position was in the lower range at 0.38. On SSC 12 (S0229) an NPL aπ spt of 1.61 (p = 0.056) and an NPLpairs spt of 1.57 (p = 0.060) were found. The information content there was 0.80 and 0.79, respectively. The NPL values on SSC 8 were 1.49 (p = 0.069) for the NPL a ιι sp t statistics and 1.54 for the NPLpairs (p = 0.063). On the SSC 3 the NPL a ιι S pt 1 -33 (p = 0.095) and the NPL pai rs S pt 1-36 (p = 0.089). The error probabilities of the NPL statistics were greater than 0.1 for all other chromosomes. On SSC 9, the NPLaii spt was 0.75 (p = 0.226) and the NPL pa irs spt 0.75 (p = 0.226). And for the SSC13 the values of the NPL a n spt were 0.85 (p = 0.197) and for the NPL pair s sp t it was 0.90 (p = 0.184).
Tabelle 8: Die höchsten NPLan und NPLpaιrs Werte der einzelnen Chromosomen imTable 8: The highest NPL a n and NPL paιrs values of the individual chromosomes in the
Rahmen der nichtparametrischen Kopplungsanalyse (Singlepoint Kopplungsanalyse).Framework of the nonparametric coupling analysis (single point coupling analysis).
Figure imgf000042_0001
Figure imgf000042_0001
'Maximum der NPLpaιrs -Statistik auf SSC 5 am Marker SW1463'Maximum NPL paιrs statistics on SSC 5 at marker SW1463
Parametrische Kopplunqsanalvse bei variablem genetischem ModellParametric coupling analysis with a variable genetic model
Für die parametrische Kopplungsanalyse ist das genetische Modell der Erkrankung, d.h. der Vererbungsmodus, die Krankheitsallelfrequenz und die Penetranz der Erkrankung in der Population näher zu spezifizieren. Dies ist aber im Falle von Analatresien nicht exakt möglich, da keine zuverlässigen Angaben über den Vererbungsmodus, die Prävalenz und die Penetranz dieses Defektes vorliegen. Für die parametrische Kopplungsanalyse wurden daher die fraglichen Parameter so gewählt, wie sie aufgrund des vorliegenden Datenmaterials möglich oder wahrscheinlich anzunehmen sind. So wurde ein monogen rezessiver Erbgang mit einer sehr niedrigen Penetranz von 1% angenommen. Die angenommene Krankheitsallelfrequenz wurde zwischen 0.10 und 0.30 in der statistischen Auswertung variiert. Als Vergleich dazu werden LOD-Score Berechnungen auf Basis eines monogen rezessiven Erbgangs, mit nahezu vollständiger Penetranz von 90%, bei Krankheitsallelfrequenzen von 0.10 bzw. 0.30 angeführt. Berechnet wurden im Rahmen der parametrischen Auswertung LOD-Scores zwischen mehreren Markern und dem Krankheitslocus (Multipoint LOD-Scores), die als LOD- Score mpt bezeichnet werden. Zudem wurden Kopplungsanalysen zwischen einzelnen Markern und dem Krankheitslocus (Singlepoint LOD-Scores) durchgeführt, welche die Bezeichnung LOD-Scorespt tragen.For the parametric coupling analysis, the genetic model of the disease, ie the mode of inheritance, the disease parallel frequency and the penetrance of the disease in the population must be specified. However, this is not exactly possible in the case of anal atresia because there is no reliable information about the mode of inheritance, the prevalence and the penetrance of this defect. For the parametric coupling analysis, the parameters in question were therefore chosen as they are possible or likely to be assumed based on the available data. A monogenic recessive inheritance with a very low penetrance of 1% was assumed. The assumed parallel disease frequency was varied between 0.10 and 0.30 in the statistical evaluation. As a comparison, LOD score calculations based on a monogenic recessive inheritance, with almost complete penetrance of 90%, with disease parallel frequencies of 0.10 and 0.30 are given. As part of the parametric evaluation, LOD scores between several markers and the disease locus (multipoint LOD scores) were calculated, which are referred to as the LOD score m p t . In addition, coupling analyzes between individual markers and the disease locus (single point LOD scores) were carried out, which are called the LOD score late .
Genomweite Multipoint LOD-Score KopplungsanalvseGenome-wide multipoint LOD-Score coupling analysis
In Tabelle 9 sind die Ergebnisse der genomweiten parametrischen Auswertung dargestellt. Angegeben sind dabei das Chromosom (SSC), der Marker bzw. die Position zwischen zwei Markern, die unter den vorgegebenen Parametern (Penetranz, Krankheitsallelfrequenz) den höchsten LOD-ScoremPt erreicht hat. Grau unterlegt sind dabei die Chromosomen, für die ein positiver LOD-Scorempt ermittelt werden konnte. Die Signifikanzgrenze der parametrischen Kopplungsanalyse, die bei einem LOD-Scorempt von 3 liegt, wurde mit Ausnahme des SSC 1 an keiner Markerposition des Genoms erreicht. Für das SSC 1 wurden bei unvollständiger Penetranz (1%) ein LOD-Scorempt von 2.38 bei einer Frequenz des Krankheitsallels von 0.3 berechnet. Ein höherer LOD-Scorempt von 2.72 wird bei einer Frequenz des Krankheitsallels von 0.1 erreicht. Bei einer Penetranz von 90% liegen die LOD- Scorempt bei 3.02 und 2.88. Positive LOD-Scorempt Werte ergaben sich auf SSC 3 bei unvollständiger Penetranz (1%). Sie lagen bei 1.41 und 1.21. Bei einer Penetranz von 90% wurden nur für die Krankheitsallelfrequenz von 0.3 ein positver LOD-Scorempt von 0.41 erreicht. Bei einer Frequenz von 0.1 lag der LOD-Scorempt mit einem Wert von -0.75 im negativen Bereich. Auf SSC 12 wurde bei einer Krankheitsallelfrequenz von 0.3 und einer Penetranz von 1 %, ein LOD-Scorespt von 1.07 ermittelt. Für die Chromosomen SSC 8, SSC 9 und SSC 13 lagen die LOD- Scorespt Werte bei gleichen Parametern bei 0.55, 0.53 und 0.57Table 9 shows the results of the genome-wide parametric evaluation. The chromosome (SSC), the marker or the position between two markers that has reached the highest LOD scorem Pt under the specified parameters (penetrance, parallel disease frequency) are indicated. The chromosomes for which a positive LOD score mp t could be determined are highlighted in gray. The significance limit of the parametric coupling analysis, which is at an LOD score mp t of 3, was not reached at any marker position of the genome with the exception of SSC 1. With incomplete penetrance (1%), an LOD score mpt of 2.38 with a frequency of the disease allele of 0.3 was calculated for SSC 1. A higher LOD score mpt of 2.72 is achieved with a frequency of the disease allele of 0.1. With a penetrance of 90%, the LOD score mpt is 3.02 and 2.88. Positive LOD-Score mp t values resulted on SSC 3 with incomplete penetrance (1%). They were 1.41 and 1.21. With a penetrance of 90%, a positive LOD score mpt of 0.41 was only achieved for the disease parallel frequency of 0.3. At a frequency of 0.1, the LOD score mpt with a value of -0.75 was in the negative range. SSC 12 showed a LOD score of 0.3 with a disease parallel frequency of 0.3 and a penetrance of 1% 1.07 determined. For the SSC 8, SSC 9 and SSC 13 chromosomes, the LOD score sp t values for the same parameters were 0.55, 0.53 and 0.57
Tabelle 9: Die maximalen LOD-Scoresmp der genomweiten Kopplungsanalyse.Table 9: The maximum LOD scores mp of the genome-wide coupling analysis.
Figure imgf000044_0001
Figure imgf000044_0001
LOD-Score 0.3; 0.90: Kranklieitsallelfrequenz 0.3/ Penetranz 0.90 LOD-Score 0.1; 0.90: Krankheitsallelfrequenz 0.1/ Penetranz 0.90 LOD-Score 0.3; 0.01: Krankheitsallelf equenz 0.3/ Penetranz 0.01 LOD-Score 0.1; 0.01: Krankheitsallelf equenz 0.1/ Penetranz 0.01LOD score 0.3; 0.90: parallel patient frequency 0.3 / penetrance 0.90 LOD score 0.1; 0.90: parallel disease frequency 0.1 / penetrance 0.90 LOD score 0.3; 0.01: Disease allelence 0.3 / penetrance 0.01 LOD score 0.1; 0.01: Disease allence 0.1 / penetrance 0.01
1 2 Maximum LOD-Score 0.1; 0.90 und Maximum LOD-Score 0.1; 0.01 auf SSC 5 zwischen SW413 und SWR4531 2 Maximum LOD score 0.1; 0.90 and maximum LOD score 0.1; 0.01 on SSC 5 between SW413 and SWR453
Maximum LOD-Score 0.1; 0.01 auf SSC 8 zwischen S0069 und SO 144Maximum LOD score 0.1; 0.01 on SSC 8 between S0069 and SO 144
Maximum LOD-Score 0.1; 0.01 auf SSC 13 zwischen SW398 und S0289Maximum LOD score 0.1; 0.01 on SSC 13 between SW398 and S0289
Maximum LOD-Score 0.1; 0.01 auf SSC 15 zwischen SW964 und SWR1533Maximum LOD score 0.1; 0.01 on SSC 15 between SW964 and SWR1533
Maximum LOD-Score 0.3; 0.01 auf SSC X am Marker SW1943Maximum LOD score 0.3; 0.01 on SSC X on marker SW1943
Genomweite Singlepoint LOD-Score KopplungsanalvseGenome-wide single point LOD score coupling analysis
In Tabelle 10 sind die Ergebnisse der Singlepoint LOD-Score Analyse dargestellt. Die Auswertung wurde unter den selben vergleichenden Parametern, bezüglich der Krankheitsallelfrequenz und der Penetranz durchgeführt, wie die Multipoint Kopplungsanalyse. Auch hier sind die Chromosomen die einen positven LOD- Scorespt erreicht haben, in der Tabelle grau unterlegt. Die höchsten LOD-Score Werte lagen bei dieser Analyse ebenfalls auf dem SSC 1. Dabei wurde bei unvollständiger Penetranz von 1% und einer Frequenz des Krankheitsallels von 0.3 ein LOD-Scorespt von 2.05 am Mikrosatellitenmarker SW1621 berechnet. Ein höherer LOD-Scorespt von 2.40 wird bei gleicher Penetranz und bei einer Frequenz des Krankheitsallels von 0.1 erreicht. Bei einer Penetranz von 90% liegen die maximalen LOD-Scorespt bei 2.00 und 1.28. Auf SSC 12 und SSC 3 wurden für eine Pentranz von 1 % und einer Krankheitsallelfrequenz von 0.3 LOD-Scorespt Werte von 1.13 und 1.04 erzielt. Bei einer Frequenz des Krankheitsallels von 0.1 ergeben sich LOD-Scoresspt von 0.25 und 0.47. Positive LOD-scorespt bei einer Pentranz von 1% und einer Frequenz von 0.3 zeigen sich auch auf SSC 11 und SSC 13 mit Werten von 0.91 und 0.71. Ebenso wie SSC 8, SSC 2 und SSC 10 mit LOD-Scoresspt von 0.57, 0.42 und 0.40.Table 10 shows the results of the Singlepoint LOD score analysis. The evaluation was carried out under the same comparative parameters, with regard to the parallel disease frequency and penetrance, as the multipoint coupling analysis. Here too, the chromosomes that have reached a positive LOD score are highlighted in gray in the table. In this analysis, the highest LOD score values were also on SSC 1. In the case of incomplete penetrance of 1% and a frequency of the disease allele of 0.3 a LOD score 2.05 late on microsatellite markers SW1621 calculated. A higher LOD score of 2.40 is achieved with the same penetrance and with a frequency of the disease allele of 0.1. With a penetrance of 90%, the maximum LOD score is between 2.00 and 1.28. On SSC 12 and SSC 3 values of 1.13 and 1.04 were achieved for a pentrance of 1% and a disease parallel frequency of 0.3 LOD-Score sp t. With a frequency of the disease allele of 0.1, the LOD score p t is 0.25 and 0.47. Positive LOD scores late with a pentrance of 1% and a frequency of 0.3 are also evident on SSC 11 and SSC 13 with values of 0.91 and 0.71. As well as SSC 8, SSC 2 and SSC 10 with LOD scores late of 0.57, 0.42 and 0.40.
Tabelle 10: Die maximalen LOD-Scoresspt Werte der genomweiten Kopplungsanalyse.Table 10: The maximum LOD scores late values of the genome-wide coupling analysis.
Figure imgf000045_0001
Figure imgf000045_0001
Maximum LOD-Score 0.3; 0.01 auf SSC 6 S0099Maximum LOD score 0.3; 0.01 to SSC 6 S0099
2 Maximum LOD-Score 0.1 ; 0.01 auf SSC 8 S0144 2 maximum LOD score 0.1; 0.01 to SSC 8 S0144
3 Maximum LOD-Score 0.1 ; 0.90 auf SSC 10 SW920 3 maximum LOD score 0.1; 0.90 on SSC 10 SW920
4 Maximum LOD-Score 0.1 ; 0.90 auf SSC 14 SWC27 LOD-Score 0.3; 0.90: Krankheitsallelfrequenz 0.3/ Penetranz 0.90 LOD-Score 0.1 ; 0.90: Krankheitsallelfrequenz 0.1/ Penetranz 0.90 LOD-Score 0.3; 0.01 : Krankheitsallelfrequenz 0.3/ Penetranz 0.01 LOD-Score 0.1; 0.01: Krankheitsallelfrequenz 0.1/ Penetranz 0.01 Beispiel 3: Kopplungsanalyse bei Erhöhung der Markerdichte auf SSC1 4 maximum LOD score 0.1; 0.90 on SSC 14 SWC27 LOD score 0.3; 0.90: parallel disease frequency 0.3 / penetrance 0.90 LOD score 0.1; 0.90: parallel disease frequency 0.1 / penetrance 0.90 LOD score 0.3; 0.01: Parallel disease frequency 0.3 / penetrance 0.01 LOD score 0.1; 0.01: Parallel disease frequency 0.1 / penetrance 0.01 Example 3: Coupling analysis when increasing the marker density to SSC1
Nach der genomweiten Kopplungsanalyse zeigte sich auf SSC 1 am Marker SW1621 ein deutliches Allelsharing von IBD-Allelen zwischen den erkrankten Geschwistern, das statistisch signifikant war. Es ergab sich im Rahmen der nichtparametrische Auswertung im distalen Bereich des Chromosoms ein NPLaιι mpt von 2.57 ( p = 0.006) und für die parametrische Kopplungsanalyse LOD-Scorβmpt Werte zwischen 2.38 und 2.72. Um den Informationsgehalt (Info) an den einzelnen Markerpositionen zu verbessern, wurde auf SSC 1 die Markerdichte erhöht.After the genome-wide coupling analysis, a clear allele sharing of IBD alleles between the affected siblings was found on SSC 1 at marker SW1621, which was statistically significant. The non-parametric evaluation in the distal area of the chromosome resulted in an NPL a ιι mpt of 2.57 (p = 0.006) and for the parametric coupling analysis LOD-Scorβmpt values between 2.38 and 2.72. In order to improve the information content (info) at the individual marker positions, the marker density was increased on SSC 1.
Nichtparametrische KopplungsanalvseNonparametric coupling analysis
Ergebnisse der Multipoint-Kopplungsanalyse: Zur Bestätigung der Ergebnisse wurden 8 zusätzliche Mikrosatellitenmarker auf dem SSC 1 genotypisiert. Somit konnte die nichtparametrische Kopplungsanalyse an 14 Marker durchgeführt werden. Dabei ergab sich am Marker SW1621 ein NPLaii mPt von 2.39 ( p = 0.009), bei einem Informationsgehalt von 0.74. Der Verlauf der NPLan mpt Statistik auf SSC 1 an 14 Markern (schwarzer Graph), ist dem Verlauf der ursprüglichen NPLan mpt Statistik mit 6 Markern gegenübergestellt. Der maximale NPL-Wert liegt bei der Auswertung mit 14 Markern etwas niedriger als in der ersten Analyse. Hingegen konnte der Informationsgehalt am NPL-Maximum von 0.47 auf 0.74 deutlich erhöht werden.Results of the multipoint coupling analysis: To confirm the results, 8 additional microsatellite markers were genotyped on the SSC 1. The nonparametric coupling analysis could thus be carried out on 14 markers. This resulted in an NPLaii m P t of 2.39 (p = 0.009) on the marker SW1621, with an information content of 0.74. The course of the NPL a n t mp statistics on SSC 1 to 14 markers (black graph), the course engineering of the original NPL a n m pt statistic is faced with 6 markers. The maximum NPL value in the evaluation with 14 markers is somewhat lower than in the first analysis. In contrast, the information content at the NPL maximum was increased significantly from 0.47 to 0.74.
Informationsgehalt (Info) der Multipoint Kopplungsanalyse: Durch die zusätzlich typisierten Marker konnte der Informationsgehalt nicht nur an der Position des NPL-Maximums erhöht werden, sondern auch im proximalen Bereich von SSC 1 (siehe Figur 1). Gegenüber der ersten genomweiten Analyse liegt der Informationsgehalt im interessanten Chromosomenbereich (70-90 cM) nun zwischen 0.74 und 0.88. Im distalen Bereich des Chromosoms beträgt der Informationsgehalt 0.40. Die Typisierung von weiteren Mikrosatellitenmarkern in dieser Region könnte somit nochmals zu einer entscheidenden Verbesserung des Informationsgehalts führen. Ergebnisse der Singlepoint-Kopplungsanalyse:Information content (info) of the multipoint coupling analysis: The additionally typed markers not only increased the information content at the position of the NPL maximum, but also in the proximal area of SSC 1 (see FIG. 1). Compared to the first genome-wide analysis, the information content in the interesting chromosome range (70-90 cM) is now between 0.74 and 0.88. The information content in the distal area of the chromosome is 0.40. The typing of further microsatellite markers in this region could thus lead to a decisive improvement in the information content. Singlepoint coupling analysis results:
Für die NPLaιι Spt Statistik ergab sich bei der Einbeziehung von 8 weiteren Markern ein maximaler Wert von 1.95 (p=0.028) am Marker SW1621. Der Informationsgehalt betrug an diesem Punkt 0.35. Der NPLaιι Spt liegt damit nach der Erhöhung der Markerdichte auf SSC1 niedriger als in der ersten Auswertung [NPLaιι spt = 2.14 (p = 0.018)]. Der Verlauf der NPLaιι Spt Statistik an allen 14 genotypisierten Markern auf SSC 1 (schwarzer Graph) ist im Vergleich zur ersten Kopplungsanalyse mit 6 Markern (blauer Graph) in Figur 2 dargestellt. Dabei zeigt sich, neben dem Marker SW1621, auch am Mikrosatellitenmarker S0155 ein hoher NPLaιι s t -Wert von 1.83 (p = 0.036).For the NPL a ιι S p t statistics, the inclusion of 8 additional markers resulted in a maximum value of 1.95 (p = 0.028) on the marker SW1621. The information content at this point was 0.35. The NPL a ιι S pt is therefore lower after increasing the marker density on SSC1 than in the first evaluation [NPL a ιι sp t = 2.14 (p = 0.018)]. The course of the NPL a ιι Sp t statistics on all 14 genotyped markers on SSC 1 (black graph) is shown in FIG. 2 in comparison to the first coupling analysis with 6 markers (blue graph). In this case, a high NPL a ιι s t value of 1.83 (p = 0.036) shows in addition to the markers SW1621, even at the S0155 microsatellite marker.
Informationsgehalt (Info) der Singlepoint Kopplungsanalyse:Information content (info) of the Singlepoint coupling analysis:
Der Informationsgehalt an den einzelnen Markerpositionen der Singlepoint Kopplungsanalyse ist in Figur 3 wiedergegeben. Dabei wird ersichtlich, dass die Erhöhung der Markerdichte vor allem im proximalen Bereich des SSC 1 den Informationsgehalt deutlich steigern konnte. Der höchste Informationsgehalt wurde an den Mikrosatellitenmarkern S0316 und S0155 erreicht und betrug von 0.61. An der Position des Markers SW1621 ergab sich jedoch nur ein Wert von 0.35. Damit lag der Informationsgehalt an diesem Punkt auf ähnlichem Niveau wie in der ersten Kopplungsanalyse auf SSC1 mit 6 Markern (Info = 0.38).The information content at the individual marker positions of the single point coupling analysis is shown in FIG. 3. It can be seen that increasing the marker density, especially in the proximal area of the SSC 1, significantly increased the information content. The highest information content was achieved on the microsatellite markers S0316 and S0155 and was 0.61. At the position of the marker SW1621, however, there was only a value of 0.35. At this point, the information content was on a similar level to that in the first coupling analysis on SSC1 with 6 markers (Info = 0.38).
Beispiel 4: Kopplungsanalyse auf SSC1 bei Erweiterung des FamilienmaterialsExample 4: Coupling analysis on SSC1 when expanding the family material
Nichtparametrische KopplungsanalvseNonparametric coupling analysis
Mehrpunktkopplungsanalyse:Multipoint linkage analysis:
Zur Bestätigung der ersten genomweiten Kopplungsanalyse auf SSC 1 wurde auch das ergänzende Familienmaterial in die Typisierung einbezogen. Bei getrennter Auswertung dieser zusätzlichen 8 Familien ohne die einzelnen Ferkel die die bestehenden HG ergänzen ergab sich ein NPL-Wertmpt von 2.61 ( p = 0.007) am Marker SW2185. Dieser liegt ca.15 cM proximal vom Marker SW1621. Im nächsten Schritt wurden die 27 Familien, gemeinsam mit den 8 neuen Familien, an allen 14 Markern ausgewertet. Dabei ergaben sich zwei NPL Maximas, eines lag am Marker SW2185 wie bei der separaten Auswertung der 8 Zusatzfamilien mit einem NPLaιi mpt von 2.05 ( p = 0.022). Ein weiteres Maximum lag am Marker SW1621 mit einem NPLaii mpt von 2.00 ( p = 0.025) (siehe Figur 1). Auch der Marker SWR982 zeigte mit einem NPLaιι pt von 2.00 ( p = 0.025) eine NPL Statistik die auf einem sehr hohen Niveau lag. Eine Zusammenfassende Übersicht über die verschiedenen Kopplungsanalysen auf SSC 1 an unterschiedlichem Familienmaterial und mit unterschiedlicher Markerdichte ist in Tabelle 11 wiedergegeben.To confirm the first genome-wide coupling analysis on SSC 1, the supplementary family material was also included in the typing. When these additional 8 families without the individual piglets supplementing the existing HG were evaluated separately, the NPL value mpt was 2.61 (p = 0.007) on the marker SW2185. This is approx. 15 cM proximal to the marker SW1621. In the next Step by step, the 27 families, along with the 8 new families, were evaluated at all 14 markers. This resulted in two NPL Maximas, one due to marker SW2185 as in the separate evaluation of the 8 additional families with an NPL a ιi mpt of 2.05 (p = 0.022). Another maximum was at marker SW1621 with an NPL a ii mp t of 2.00 (p = 0.025) (see Figure 1). The marker SWR982 also showed an NPL statistics with an NPL a ιι pt of 2.00 (p = 0.025) which was at a very high level. A summary of the different coupling analyzes on SSC 1 on different family material and with different marker density is given in Table 11.
Tabelle H: Vergleich der NPLan mpt Statistiken auf SSC1 bei der Kopplungsanalyse mit unterschiedlichem Familienmaterial und variabler Markerdichte.Table H: Comparison of the NPL a n mpt statistics on SSC1 in the coupling analysis with different family material and variable marker density.
Figure imgf000048_0001
Informativität der Multipoint Kopplungsanalyse:
Figure imgf000048_0001
Informativity of multipoint coupling analysis:
Bei der getrennten Auswertung der 8 Zusatzfamilien wurde ein hoher Informationsgehalt von 0.91 am Maximum des NPL-Wertes (SW2185) erreicht (Figur 5).When the 8 additional families were evaluated separately, a high information content of 0.91 at the maximum of the NPL value (SW2185) was achieved (FIG. 5).
Singlepoint Analyse:Single point analysis:
Die separate Auswertung der 8 ergänzenden Familien an 14 Markern ergab für die Singlepoint Kopplungsanalyse am Marker SW2185 einen maximalen NPLaιι Spt von 1.68 (p = 0.044) . Die Informativität an dieser Markerposition betrug dabei 0.62. Am Marker SW1621 lag der NPLaιι Spt bei -0.15 (p = 0.586) und die Informativität mit 0.45 im mittleren Bereich. Bei der gemeinsamen Auswertung des Familienmaterials wurde am Marker SW2185 ein NPLaιι spt von 0.71 (p = 0.240) und am Marker SW1621 ein NPLaιι spt von 1.40 (p = 0.083) erreicht. Die Informativität an den beiden Markerpositionen war mit 0.36 bzw. 0.35 im unteren Bereich. Der maximale Wert der NPLaιι spt Statistik wurde jedoch am Marker S0155 erreicht. Er lag bei 1.44 (p = 0.077) bei einer mittleren Informativität von 0.52. Eine vergleichende Darstellung der NPL Statistiken dieser beiden Kopplungsanalysen mit der ersten Kopplungsanalyse (27 Familien/6 Marker) auf SSC1 ist in Figur 6 dargestellt. Zur besseren Übersicht sind in Tabelle 12 die wichtigsten Ergebnisse der verschiedenen Singlepoint Kopplungsanalysen auf SSC1 zusammengefaßt. Die maximalen Werte der NPL-Statistik sind in der Tabelle grau hinterlegt.The separate evaluation of the 8 complementary families on 14 markers resulted in a maximum NPL a ιι S pt of 1.68 (p = 0.044) for the single point coupling analysis on the marker SW2185. The informativity at this marker position was 0.62. On marker SW1621, the NPL a ιι S pt was -0.15 (p = 0.586) and the informativity was 0.45 in the middle range. When evaluating the family material together, an NPL a ιι sp t of 0.71 (p = 0.240) was achieved on the marker SW2185 and an NPL a ιι sp t of 1.40 (p = 0.083) on the SW1621 marker. The informativity at the two marker positions was 0.36 and 0.35 in the lower area. However, the maximum value of the NPL a ιι spt statistics was reached at marker S0155. It was 1.44 (p = 0.077) with an average informativity of 0.52. A comparative representation of the NPL statistics of these two coupling analyzes with the first coupling analysis (27 families / 6 markers) on SSC1 is shown in FIG. 6. For a better overview, the most important results of the various single point coupling analyzes on SSC1 are summarized in Table 12. The maximum values of the NPL statistics are highlighted in gray in the table.
Tabelle 12: Vergleich der NPLaπ spt Statistiken auf SSC1 bei der Kopplungsanalyse mit unterschiedlichem Familienmaterial und variabler Markerdichte.Table 12: Comparison of the NPL a π late statistics on SSC1 in the coupling analysis with different family material and variable marker density.
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000049_0001
Figure imgf000050_0001
Informativität der Singlepoint Kopplungsanalyse:Informativity of the Singlepoint coupling analysis:
Der Verlauf der Informativität über die einzelnen Marker bei der Singlepoint Kopplungsanalyse ist in Figur 7 dargestellt. Im Vergleich zu initalen Kopplungsanalyse auf SSC1 bei der am Marker SW1621 eine Informativität von 0.38 erreicht wurde, lag der lnfospt Wert bei der Auswertung der 8 zusätzlichen Familien bei 0.45 und bei der Auswertung des gesamt Materials bei 0.35. An der Position des Marker SW2185 zeigte sich in der Auswertung der 8 ergänzenden Familien eine Informativität von 0.62 und bei der Gesamtauswertung ein Wert von 0.36.The course of the informativity about the individual markers in the single point coupling analysis is shown in FIG. Compared to the initial coupling analysis on SSC1, which achieved an informativity of 0.38 on marker SW1621, the information spt value was 0.45 when evaluating the 8 additional families and 0.35 when evaluating the entire material. The position of the marker SW2185 showed an informativity of 0.62 in the evaluation of the 8 supplementary families and a value of 0.36 in the overall evaluation.
Beispiel 5: Ergebnisse des TDT (Transmission-Disequilibrium Test)Example 5: Results of the TDT (Transmission-Disequilibrium Test)
Für die Chromosomen die mögliche Kandidatengene tragen oder die bei der nichtparametrischen Kopplungsanalyse ein signifikantes Ergebnis in der NPL Statistik gezeigt hatten, wurde ein TDT zur Prüfung auf Kopplung und Assoziation zwischen den einzelnen Markerallelen und dem Krankheitslocus durchgeführt. Im einzelnen waren dies das SSC 1, SSC 3, SSC 8, SSC 9, SSC 12, SSC 13 und SSC 15. Die Signifikanzgrenze ist dabei abhängig von der Anzahl der Mikrosatellitenmarker an denen ein TDT durchgeführt wurde. Sie ist für jedes Chromosom getrennt, zusammen mit den Ergebnissen aufgeführt. Ergebnisse des TDT auf SSC1For the chromosomes which carry possible candidate genes or which had shown a significant result in the NPL statistics in the nonparametric coupling analysis, a TDT was carried out to check for coupling and association between the individual marker alleles and the disease locus. Specifically, these were SSC 1, SSC 3, SSC 8, SSC 9, SSC 12, SSC 13 and SSC 15. The significance limit depends on the number of microsatellite markers on which a TDT was carried out. It is separate for each chromosome, along with the results. Results of the TDT on SSC1
Für das Chromosom SSC 1 wurde an 14 Markern ein TDT-Test durchgeführt. Die Ergebnisse sind in Tabelle 13 dargestellt. Angegeben sind dabei der Marker, die χ2 -Testgrößen für die beiden Teststatistiken Tm und TmHet> die Anzahl Freiheitsgrade und die Irrtumswahrscheinlichkeit. Die Reihenfolge der Marker in der Tabelle spiegelt die Anordnung auf dem Chromosom wieder. Der Marker SW2185 der in der Bestätigungsstudie mit 14 Markern das NPLaιι Maximum von 2.05 gezeigt hatte, erreicht beim TDT nur für die TmHet Teststatistik eine signifikante Irrtumswahrscheinlichkeit von 0.015. Für den Marker SW1621 und den 6.0 cM distal gelegenen SW1902 konnten jedoch hoch signifikante χ2 -Werte für die Teststatistiken Tm und TmHet ermittelt werden. Die Irrtumswahrscheinlichkeit betrug dabei für Tm 2 x 10"6 (SW1621) und 0.002 (SW1902) und für TmHet 7 x 10" 7(SW1621) und 2 x 10"4(SW1902). An der Position des Markers SW1621 befand sich auch das Maximum der NPLan-Statistik von 2.57 (p=0.006) in der ersten Kopplungsanalyse mit 6 Markern. In der Bestätigungsstudie mit 14 Markern und vergrößertem Familienmaterial und lag der NPLaιι mpt hingegen nur mehr bei 2.00 (p=0.025). An der Position des Marker SW1902 betrug der NPLaιι-Wert in der Bestätigungsstudie (14 Marker) 1.56 (p=0.064). Auch die Marker S0155 und S0320 zeigten signifikante Irrtumswahrscheinlichkeiten für beide TDT-Teststatistiken. Diese lagen bei 0.016 bzw. 0.028 für Tm und bei 0.006 bzw. 0.002 für TmHet.A TDT test was carried out on 14 markers for chromosome SSC 1. The results are shown in Table 13. The marker, the χ 2 test variables for the two test statistics T m and T m Het >, the number of degrees of freedom and the probability of error are given. The order of the markers in the table reflects the arrangement on the chromosome. The marker SW2185, which had shown the NPL a ιι maximum of 2.05 in the confirmation study with 14 markers, only achieved a significant error probability of 0.015 for the T mH e t test statistics. For the marker SW1621 and the 6.0 cM distal SW1902, however, highly significant χ 2 values could be determined for the test statistics T m and TmHet. The probability of error at this time was for T m 2 x 10 "6 (SW1621) and 0.002 (SW1902) and T m Het 7 x 10" x 10 "4 (SW1902). At 7 (SW1621) and 2, the position of the marker SW1621 was the maximum of the NPL a n statistics of 2.57 (p = 0.006) in the first coupling analysis with 6 markers, whereas in the confirmation study with 14 markers and enlarged family material the NPL a ιι mp t was only 2.00 (p = At the position of marker SW1902, the NPL a ιι value in the confirmation study (14 markers) was 1.56 (p = 0.064). Markers S0155 and S0320 also showed significant error probabilities for both TDT test statistics. These were 0.016 and 0.016, respectively 0.028 for T m and at 0.006 or 0.002 for TmHet.
Tabelle 13: Ergebnisse des TDT Teststatistik Tm und Tm Het an 14 Mikrosatellitenmarkern von SSC1 (Signifikanzgrenze bei multiplem Testen α m|t= 0.003).Table 13: Results of the TDT test statistics T m and T m Het on 14 microsatellite markers from SSC1 (significance limit for multiple tests α m | t = 0.003).
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000051_0001
Figure imgf000052_0001
An den Markern SW1621 und SW1902 wurde zudem ein TDT Test mit den übertragene und nicht-übertragene Kopplungsphasen bzw. Haplotypen durchgeführt. Mit Hilfe von Allegro 1.0 wurden anhand der verfügbaren Familienstruktur und der Markerinformation die wahrscheinlichsten Koppiungsphasen der Marker abgeleitet. Diese Möglichkeit wurde genutzt um für die Marker auf SSC 1 die Haplotypen der erkrankten HG und des typisierten Eltersi zu ermitteln. In Figur 8 sind die Häufigkeiten der Haplotypen für die Marker SW1621 und SW1902 dargestellt. Diese beiden Markerpositionen zeigten sowohl bei der nichtparametrischen Kopplungsanalyse als auch beim Test auf Kopplung und Assoziation mit dem TDT signifikante Ergebnisse. Die erste Position des Haplotyps gibt das Markerallel am Marker SW1621 an, die zweite Position zeigt das Allel am Mikrosatellitenmarker SW1902 an. Die Allele sind von 1 bis 3 am Marker SW1621 und von 1 bis 8 am Marker SW1902 fortlaufend nummeriert. Insgesamt konnten bei den betroffenen Ferkeln 14 und bei den Ebern 11 verschiedene Haplotypen abgeleitet werden. Der Haplotyp 1-2 TDT, i.e. Allel 1 (SW1621)=146bp-Allel 2 (SW1902)=150bp war sowohl bei den erkrankten Ferkeln mit 60.4 %, als auch bei den Ebern mit 50.7 % der häufigste Haplotyp (siehe Figur 8). Das Ergebnis des TDT zeigte mit einer Irrtumswahrscheinlichkeit von p gleich 1 x 10"4 (Signifikanzniveau 0.05), dass dieser Haplotyp bevorzugt an die erkrankten Tiere übertragen wurde.A TDT test with the transmitted and non-transmitted coupling phases or haplotypes was also carried out on the markers SW1621 and SW1902. Allegro 1.0 was used to derive the most likely coupling phases of the markers based on the available family structure and marker information. This possibility was used to determine the haplotypes of the affected HG and the typed Elteri for the markers on SSC 1. The frequencies of the haplotypes for the markers SW1621 and SW1902 are shown in FIG. These two marker positions showed significant results both in the nonparametric coupling analysis and in the test for coupling and association with the TDT. The first position of the haplotype indicates the marker allele on the marker SW1621, the second position shows the allele on the microsatellite marker SW1902. The alleles are numbered consecutively from 1 to 3 on marker SW1621 and from 1 to 8 on marker SW1902. A total of 14 different haplotypes could be derived from the affected piglets and 11 from the boars. The haplotype 1-2 TDT, ie allele 1 (SW1621) = 146bp-allele 2 (SW1902) = 150bp was the most common haplotype (60.4%) both in the sick piglets and in the boars with 50.7% (see Figure 8). The result of the TDT showed with an error probability of p equal to 1 x 10 "4 (level of significance 0.05) that this haplotype was preferentially transmitted to the diseased animals.
Ergebnisse des TDT auf SSC3Results of the TDT on SSC3
Die Ergebnisse des TDT auf SSC3 sind in Tabelle 14 dargestellt. An der Stelle des NPLaii mpt Maximums von 1.90 (p=0.031) am Marker S0002, lag die Irrtumswahrscheinlichkeit der Tm Teststatistik bei 0.349 und der p-Wert von TmHet bei 0.225. Der TDT ist somit an diesem Marker nicht signifikant. Etwas niedrigere Irrtumswahrscheinlichkeiten wurde am Marker SW902 mit 0.206 und 0.185 erreicht, die aber auch hier über der Signifikanzgrenze von 0.05 lagen. Tabelle 14: Ergebnisse des TDT Teststatistik Tm und Tm Het an 7 Mikrosatellitenmarkern von SSC 3.The results of the TDT on SSC3 are shown in Table 14. At the location of the NPLaii mpt maximum of 1.90 (p = 0.031) on marker S0002, the error probability of the T m test statistic was 0.349 and the p-value of T m Het was 0.225. The TDT is therefore not significant on this marker. Somewhat lower error probabilities were achieved on the SW902 marker with 0.206 and 0.185, which, however, were also above the significance limit of 0.05. Table 14: Results of the TDT test statistics T m and T m Het on 7 microsatellite markers from SSC 3.
Figure imgf000053_0001
Figure imgf000053_0001
(Signifikanzgrenze bei multiplem Testen α m|t= 0.007)(Significance limit for multiple testing α m | t = 0.007)
Ergebnisse des TDT auf SSC 8Results of the TDT on SSC 8
Der TDT zeigte auf SSC 8 am Marker S0069 mit 0.043 und 0.024 ein signifikantes Ergebniss der Tm und TmHet Teststatistik (siehe Tabelle 15). Innerhalb der nichtparametrischen Auswertung betrug der NPLaιimpt an dieser Position 1.37 (p= 0.087) bei einer mittleren Informativität von 0.48. Nach Korrektur auf multiples Testen zeigten sich die Allele des Markers S0069 jedoch nicht mehr signifikant. Für alle weiteren Marker auf SSC 8 konnte kein signifikantes Ergebniss des TDT ermittelt werden.The TDT showed on SSC 8 on marker S0069 with 0.043 and 0.024 a significant result of the T m and T m H e t test statistics (see Table 15). Within the nonparametric evaluation, the NPL a ιimpt at this position was 1.37 (p = 0.087) with an average informativity of 0.48. After correction for multiple testing, the alleles of marker S0069 were no longer significant. No significant result of the TDT could be determined for all other markers on SSC 8.
Tabelle 15: Ergebnisse des TDT Teststatistik Tm und Tm Het an 7 Mikrosatellitenmarkern von SSC 8 (Signifikanzgrenze bei multiplem Testen mιt= 0.007).Table 15: Results of the TDT test statistics Tm and Tm Het on 7 microsatellite markers from SSC 8 (limit of significance for multiple tests m ι t = 0.007).
Figure imgf000053_0002
Figure imgf000053_0002
Ergebnisse des TDT auf SSC9Results of the TDT on SSC9
Die Ergebnisse des TDT auf SSC9 sind in Tabelle 16 dargestellt. Dabei wurde am Marker S0081 ein signifikantes Ergebnis bei beiden Teststatistiken erreicht. Die Irrtumswahrscheinlichkeiten betrugen dabei 0.023 für die Tm und 0.001 für die TmHet Testgröße. An der Position des Markers S0081 wurde bei der nichtparametrischen Auswertung nur ein NPLaιimpt von 0.67 (p=0.251) erreicht. Das Maximum der NPL Statistik lag an der Position des Markers SW2401 der mit einem NPLaiimpt von 1.13 (p=0.130) etwa 19.9 cM vor dem Marker S0081 liegt.The results of the TDT on SSC9 are shown in Table 16. A significant result was achieved with both test statistics on marker S0081. The Error probabilities were 0.023 for the Tm and 0.001 for the T mH et test size. At the position of marker S0081, an NPL a ιimp t of 0.67 (p = 0.251) was achieved in the nonparametric evaluation. The maximum of the NPL statistics was at the position of marker SW2401, which with an NPLaiimpt of 1.13 (p = 0.130) is about 19.9 cM ahead of marker S0081.
Figure imgf000054_0001
Figure imgf000054_0001
Ergebnisse des TDT auf SSC12Results of the TDT on SSC12
Die Ergebnisse des TDT an den sechs Markern des SSC 12 sind in Tabelle 17 wiedergegeben. Am Marker SW957 zeigten sich signifikante Testwerte für den TDT mit einer Irrtumswahrscheinlichkeit von 0.013 und 0.003. Der maximale NPLaiimpt der nicht-pararmetrischen Auswertung lag aber auch hier nicht am Marker SW957 sondern 14.1 cM proximal von dieser Position am Marker S0229 mit einem Wert von 1.94 (p=0.028) und einer Informativität von 0.89. Der NPLaiimpt betrug am Marker SW957 hingegen nur 1.78 (p=0.040) bei eine Informativität von 0.68.The results of the TDT on the six markers of the SSC 12 are shown in Table 17. The marker SW957 showed significant test values for the TDT with an error probability of 0.013 and 0.003. However, the maximum NPLaiimp t of the non-pararmetric evaluation was not at marker SW957 but 14.1 cM proximal from this position at marker S0229 with a value of 1.94 (p = 0.028) and an informativity of 0.89. The NPLaiimpt on the marker SW957 was only 1.78 (p = 0.040) with an informativity of 0.68.
Tabelle 17: Ergebnisse des TDT Teststatistik Tm und Tm Het an 7 Mikrosatellitenmarkern von SSC12 (Signifikanzgrenze bei multiplem Testen α m|t= 0.007).Table 17: Results of the TDT test statistics T m and T m Het on 7 microsatellite markers from SSC12 (significance limit for multiple tests α m | t = 0.007).
Figure imgf000054_0002
Ergebnisse des TDT auf SSC13
Figure imgf000054_0002
Results of the TDT on SSC13
Die Ergebnisse des TDT auf SSC13 sind in Tabelle 18 dargestellt. Dabei zeigte sich kein signifikantes Ergebnis an den 6 Mikrosatellitenmarkern des Chromosoms. Der Marker S0068 mit dem Maximalen NPLan mpt von 1.57 (p=0.061) konnte dabei ebenfalls kein signifikantes Ergebnis erzielen.The results of the TDT on SSC13 are shown in Table 18. No significant result was found on the 6 microsatellite markers of the chromosome. The marker S0068 with the maximum NPL a n m pt of 1:57 (p = 0.061) could likewise not obtain a significant result.
Tabelle 18: Ergebnisse des TDT Teststatistik Tm und Tm Het an 6 MikrosatellitenmarkernTable 18: Results of the TDT test statistics T m and T m Het on 6 microsatellite markers
Figure imgf000055_0001
Figure imgf000055_0001
Ergebnis des TDT auf SSC 15Result of the TDT on SSC 15
Die Ergebnisse des TDT für Chromosoms 15 sind in Tabelle 19 aufgeführt. Obwohl die Ergebnisse der nichtparametrischen Kopplungsanalyse in dieser Untersuchung keinen Hinweis auf eine Kopplung der Markern mit dem Krankheitslocus zeigten (max. NPLaii mpt = 0.05 SWHIΘ) wurde ein TDT im Hinblick auf die von Hori, 2001 gefundene Kopplung zwischen dem Marker SW2072 und Atesia ani durchgeführt. Am Marker SW2072 konnte kein signifikantes Testergebnis (p=0.933) für den TDT erzielt werden. Der Marker S0148 der etwa 22.1 cM distal des Markers SW2072 liegt zeigte jedoch ein signifikante Testergebniss mit einer Irrtumswahrscheinlichkeit von 0.011 bzw. 0.025 für die Tm und die TmHet Statistik. Am Marker S0355 der 3.1 cM distal von SW2072 liegt, zeigte die TmHet Statistik ein Ergebnis 9.21 mit einer Irrtumswahrscheinlichkeit von p=0.056. Nach der Korrektur des Signifikanzniveaus auf muliples Testen 0.007 zeigt jedoch keiner der Marker ein signifikantes Ergebnis Tabelle 19: Ergebnisse des TDT Teststatistik Tm und TmHet an 7 Mikrosatellitenmarkern von SSC15 (Signifikanzgrenze bei multiplem Testen α mιt= 0.007).The results of the TDT for chromosome 15 are shown in Table 19. Although the results of the nonparametric coupling analysis in this study showed no evidence of a coupling of the markers with the disease locus (max.NPLaii mpt = 0.05 SWHI Θ ), a TDT was carried out with regard to the coupling between the marker SW2072 and Atesia ani found by Hori, 2001 carried out. No significant test result (p = 0.933) for the TDT could be achieved on marker SW2072. However, marker S0148, which is approximately 22.1 cM distal to marker SW2072, showed a significant test result with an error probability of 0.011 and 0.025 for the T m and T m Het statistics. At marker S0355, which is 3.1 cM distal from SW2072, the TmHet statistics showed a result 9.21 with an error probability of p = 0.056. However, after the significance level was corrected for multiple testing 0.007, none of the markers showed a significant result Table 19: Results of the TDT test statistics T m and T m Het on 7 microsatellite markers from SSC15 (significance limit for multiple tests α m ι t = 0.007).
Figure imgf000056_0001
Figure imgf000056_0001
Beispiel 6: Zusätzliche Studiendaten zum TDT auf Assoziation mit dem Auftreten der Afterlosigkeit für die Marker SW1621 und SW1902Example 6: Additional study data for the TDT on association with the occurrence of anuslessness for the markers SW1621 and SW1902
In Tabelle 20 sind die Ergebnisse der TDT-Teststatistiken auf Assoziation für die einzelnen Marker und für die entsprechenden Haplotypen (Allelkombinationen) dargestellt.Table 20 shows the results of the TDT test statistics for association for the individual markers and for the corresponding haplotypes (allele combinations).
Die separate Analyse des neu hinzugekommenen Datenmaterials, bestehend aus 22 Eltern-Nachkommen-Paaren ermöglicht keine unabhängige Bestätigung der bisher festgestellten Zusammenhänge. Der wesentliche Grund dafür liegt darin, dass sich nur wenige Eltern-Nachkommen-Paare als informativ erwiesen. Allerdings zeigen die informativen Paare das erwartete Vererbungsmuster, d.h., die mit dem Auftreten der Afterlosigkeit assoziierten Allele und Haplotypen werden auch im Teilmaterial häufiger vom Elter an die Nachkommen weitergegeben als dies zu erwarten wäre, wenn keine Beziehung bestehen würde. (Tabelle 20: Teststatistiken und Irrtumswahrscheinlichkeiten (p) für die Assoziation der ! Markerallele bzw. Haplotypen der Marker SW1621 und SW1902 mit demThe separate analysis of the newly added data material, consisting of 22 parent-offspring pairs, does not allow independent confirmation of the relationships found so far. The main reason for this is that only a few parent-offspring pairs proved to be informative. However, the informative pairs show the expected pattern of inheritance, ie the alleles and haplotypes associated with the occurrence of atrophy are passed on more often from the parent to the offspring in the partial material than would be expected if there were no relationship. (Table 20: Test statistics and error probabilities (p) for the association of! Marker alleles or haplotypes of markers SW1621 and SW1902 with the
| Auftreten der Afterlosigkeit| Occurrence of anuslessness
Daten TestSW1621 SW1902 Haplotypen verfahren TDT P TDT P TDT pData TestSW1621 SW1902 Haplotype procedure TDT P TDT P TDT p
Daten aus Tm 32.10 1.07x10"' 19.58 0.001 32.49 0.001 Tabelle 13 Tmhet 34.27 2.68xl0"8 23.39 2.81xl0"4 37.32 1.99xl0"4 sowie 4 mütterliche HG-FamilienData from Tm 32.10 1.07x10 " '19.58 0.001 32.49 0.001 Table 13 Tmhet 34.27 2.68xl0 " 8 23.39 2.81xl0 "4 37.32 1.99xl0 " 4 and 4 maternal HG families
Zusätzliches Tm 2.04 0.153 4.04 0.133 5.62 0.060 Datenmaterial Tmhet 1.80 0.180 3.47 0.177 3.75 0.154 (22 Eltern- NK-Paare)Additional Tm 2.04 0.153 4.04 0.133 5.62 0.060 Data material Tmhet 1.80 0.180 3.47 0.177 3.75 0.154 (22 parents-NK pairs)
' Gesamt Tm 33.24 6.06xl0~s 20.50 0.001 35.74 3.57xl0-4 Tmhet 36.67 1.09xl0-8 24.21 1.98xl0"4 39.68 8.12xl0"5 'Total Tm 33.24 6.06xl0 ~ s 20.50 0.001 35.74 3.57xl0- 4 Tmhet 36.67 1.09xl0 -8 24.21 1.98xl0 "4 39.68 8.12xl0 " 5
Beispiel 7: Zusätzliche Studiendaten zum TDT für die Marker SW1621 und SW1902 an gesunden Prüftieren Aus einer weiteren Arbeit mit einer anderen Fragestellung lag am Lehrstuhl für Tierzucht Untersuchungsmaterial von gesunden Ferkeln vor, die von Ebern abstammten, die zugleich afterlose Ferkel hatten. Die grundsätzliche Überlegung des durchgeführten Tests bestand darin, dass diese Eber das mit der Afterlosigkeit assoziierte Allel weniger häufig an gesunde Nachkommen weitergeben. Aufgrund der vorliegenden Gegebenheiten, der niederen Inzidenz in der Population und der geringen Penetranz, wäre zu erwarten, dass sich kein Unterschied feststellen lässt, ob von diesen Ebern das assoziierte oder das alternative Allel an den gesunden Nachkommen übertragen wird. Die entsprechenden Ergebnisse sind in Tabelle 21 zusammengestellt. Die TDT-Teststatistiken in Tabelle 21 sind nicht signifikant und unterscheiden sich deutlich von denen in Tabelle 20. Der Befund, dass die TDT Werte nahe an der Signifikanzgrenze liegen, wurde weitergehend analysiert und konnte auf die ungünstige Verteilung der Allelhäufigkeiten in den Ausgangsrassen (siehe unten) zurückgeführt werden. Tabelle 21: Teststatistiken und Irrtumswahrscheinlichkeiten (p) für die Assoziation der Markerallele bzw. Haplotypen der Marker SW1621 und SW1902 an gesunden PrüftierenExample 7: Additional study data for the TDT for the markers SW1621 and SW1902 on healthy test animals. From a further work with another question, test material was available at the chair for animal breeding from healthy piglets, which came from boars, which also had afterless piglets. The basic consideration of the test carried out was that these boars pass on the allele associated with the lack of anus to healthy offspring less frequently. Due to the existing circumstances, the low incidence in the population and the low penetrance, it would be expected that no difference can be determined whether these boars transmit the associated or the alternative allele to the healthy offspring. The corresponding results are summarized in Table 21. The TDT test statistics in Table 21 are not significant and differ significantly from those in Table 20. The finding that the TDT values are close to the significance limit was analyzed further and was able to determine the unfavorable distribution of allele frequencies in the original breeds (see below ) to be led back. Table 21: Test statistics and error probabilities (p) for the association of marker alleles or haplotypes of markers SW1621 and SW1902 in healthy test animals
Daten TestSW1621 SW1902 verfahren TDT p TDT pData TestSW1621 SW1902 process TDT p TDT p
Prüftiere Tm 5.35 0.069 10.49 0.063 Tmhet 4.80 0.091 10.67 0.058Test animals Tm 5.35 0.069 10.49 0.063 Tmhet 4.80 0.091 10.67 0.058
Beispiel 8: Zusätzliche Studiendaten zur Allelfrequenzschätzung für die Marker SW1621 und SW1902 an afterlosen Tieren Im Rahmen der umfassenden Daten- und Materialerhebung im Feld wurden eine Reihe von einzelnen afterlosen Ferkel erfasst, von denen die Abstammung unbekannt war und die weder in Kopplungsstudien von Familien noch in Assoziationsstudien von Eltern-Nachkommen-Paaren einbezogen werden konnten. Diese Tiere können als unabhängige Stichprobe betrachtet werden und eignen sich für eine genauere Schätzung der Häufigkeiten assoziierter Markerallele bzw. Haplotypen in afterlosen Ferkeln. Im weiteren können aus Frequenzunterschieden zwischen betroffenen und gesunden Ferkeln die bisher festgestellten Assoziationen geprüft werden. Die Schätzwerte der Allelfrequenzen für beide Marker sind in Tabelle 22 dargestellt. Es zeigt sich, dass das jeweils assoziierte Allel bei afterlosen Tieren mit Abstand am häufigsten auftritt.Example 8: Additional study data for allele frequency estimation for the markers SW1621 and SW1902 on afterless animals. As part of the extensive data and material collection in the field, a number of individual afterless piglets were recorded, of which the parentage was unknown and which was neither found in coupling studies by families nor in Association studies of parent-offspring pairs could be included. These animals can be considered as an independent sample and are suitable for a more precise estimate of the frequencies of associated marker alleles or haplotypes in atless piglets. Furthermore, the associations found so far can be checked from frequency differences between affected and healthy piglets. The estimates of the allele frequencies for both markers are shown in Table 22. It turns out that the associated allele is by far the most common in afterless animals.
Tabelle 22:Schätzwerte der Allelfrequenzen für die Marker SW1621 und SW1902 für afterlose FerkelTable 22: Estimates of allele frequencies for markers SW1621 and SW1902 for afterless piglets
Marker afterlose FerkelMarker afterless piglets
Alle!All!
SW1621SW1621
146* 0.87146 * 0.87
148 0.06148 0.06
150 0.07150 0.07
SW1902SW1902
142 0142 0
144 0.02144 0.02
146 0.05146 0.05
150* 0.73150 * 0.73
152 0.14152 0.14
154 0.06 mit der Afterlosigkeit assoziierte Allele Beispiel 9: Zusätzliche Studiendaten zur Allelfrequenzschätzung für die Marker SW1621 und SW1902 an gesunden Tieren der Rassen Pietrain und Deutsche Landrasse154 0.06 Alleles associated with anuslessness Example 9: Additional study data for allele frequency estimation for markers SW1621 and SW1902 on healthy animals of the Pietrain and Deutsche Landrasse breeds
Um einen Überblick über das Auftreten der an den Markern SW 1621 und SW1902 assoziierten Allele in den wichtigsten bayerischen Schweinerassen zu erhalten, wurden Stichproben von 125 Pietrain-Ebern und 123 Ebern der Deutschen Landrasse untersucht. Tabelle 23 zeigt die Schätzwerte für die Frequenzen der entsprechenden Allele. Die mit der Afterlosigkeit assoziierten Allele liegen mit einer relativ hohen Häufigkeit in den beiden Rassen vor.In order to obtain an overview of the occurrence of the alleles associated with the markers SW 1621 and SW1902 in the most important Bavarian pig breeds, samples of 125 Pietrain boars and 123 boars of the German Landrace were examined. Table 23 shows the estimates for the frequencies of the corresponding alleles. The alleles associated with anuslessness are present with a relatively high frequency in the two races.
Tabelle 23: Schätzwerte der Allelfrequenzen für die Marker SW1621 und SW1902 in Reinzuchttieren der Rassen Pietrain und Deutsche LandrasseTable 23: Estimates of the allele frequencies for markers SW1621 and SW1902 in pure breed animals of the breeds Pietrain and Deutsche Landrasse
Marker RasseMarker breed
Allel Pietrain Deutsche LandrasseAllele Pietrain German Landrace
SW1621SW1621
146* 0.61 0.78146 * 0.61 0.78
148 0.35 0.03148 0.35 0.03
150 0.04 0.19150 0.04 0.19
SW1902SW1902
142 0 0142 0 0
144 0 0.12144 0 0.12
146 0.20 0.02146 0.20 0.02
150* 0.60 0.59150 * 0.60 0.59
152 0.20 0.20152 0.20 0.20
154 0 0.06 mit der Afteriosigkeit assoziierte Allele 154 0 0.06 Alleles associated with afteriosity

Claims

Patentansprüche claims
1. Verwendung einer ersten Nukleinsaure zur Bestimmung der Prädisposition zur Ausprägung oder Vererbung des Phanotypus „Afterlosigkeit" in einem Säuger, wobei die erste Nukleinsaure eine Länge von mindestens 8 Nukleotiden aufweist und identisch oder im wesentlichen identisch ist mit einer zweiten Nukleinsaure, die vorkommt,1. Use of a first nucleic acid to determine the predisposition for the expression or inheritance of the phenotype "afterlessness" in a mammal, the first nucleic acid having a length of at least 8 nucleotides and being identical or substantially identical to a second nucleic acid which occurs,
(a) auf Chromosoms 1 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich eines Mikrosatelliten ausgewählt aus der Gruppe bestehend aus SW2185, SW1621 , SW1902, S0155, und S0320;(a) on chromosome 1 of the pig or in a homologous position in the genome of other mammals, in the region of a microsatellite selected from the group consisting of SW2185, SW1621, SW1902, S0155, and S0320;
(b) auf Chromosoms 3 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich des Mikrosatelliten S0002;(b) on chromosome 3 of the pig or in a homologous position in the genome of other mammals, in the region of the microsatellite S0002;
(c) auf Chromosoms 9 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich eines Mikrosatelliten ausgewählt aus der Gruppe bestehend aus SW2401 und S0081 ; oder(c) on chromosome 9 of the pig or in a homologous position in the genome of other mammals, in the region of a microsatellite selected from the group consisting of SW2401 and S0081; or
(d) auf Chromosom 12 des Schweins oder in einer homologen Position im Genom anderer Säuger, und zwar im Bereich eines Mikrosatelliten ausgewählt aus der Gruppe bestehend aus SW957 und S0229.(d) on chromosome 12 of the pig or in a homologous position in the genome of other mammals, in the region of a microsatellite selected from the group consisting of SW957 and S0229.
2. Verwendung einer Kombinationen von mindestens zwei oder mehr der in Anspruch 1 genannten Nukleinsäuren zur Bestimmung der Ausprägung oder Vererbung des Phanotypus „Afterlosigkeit".2. Use of a combination of at least two or more of the nucleic acids mentioned in claim 1 for determining the expression or inheritance of the phanotype "afterlessness".
3. Verwendung nach einem der Ansprüche 1 bis 2, wobei die zweite Nukleinsaure ein Mikrosatellit oder eine den Mikrosatelliten flankierende Sequenz ist.3. Use according to one of claims 1 to 2, wherein the second nucleic acid is a microsatellite or a sequence flanking the microsatellite.
4. Verwendung nach einem der Ansprüche 1 bis 3, wobei die Mikrosatelliten SW1621 und SW1902 gemeinsam nachgewiesen werden und einen4. Use according to one of claims 1 to 3, wherein the microsatellites SW1621 and SW1902 are detected together and one
Haplotypen charakterisieren, der mit einer Prädisposition zur Ausprägung oder Vererbung des Phänotyps „Afterlosigkeit" assoziiert ist. . Characterize haplotypes that are associated with a predisposition to the expression or inheritance of the phenotype "afterlessness".
5. Verwendung nach Anspruch 4, wobei der Haplotyp durch die gemeinsame Vererbung von:5. Use according to claim 4, wherein the haplotype by the common inheritance of:
(a) Allel 1 (146bp) des Mikrosatelliten SW1621 ; und(a) Allele 1 (146bp) of the SW1621 microsatellite; and
(b) Allel 2 (150bp) des Mikrosatellit SW1902 definiert ist.(b) Allele 2 (150 bp) of the microsatellite SW1902 is defined.
6. Verwendung nach einem der Ansprüche 1 bis 5, wobei die zweite Nukleinsaure abgeleitet ist von einem Gen aus der Gruppe bestehend aus SHH Sonic hedgehog, IHH Indian hedgehog, DHH Desert hedgehog, PTCH1 Patched homolog 1 , PTCH2 Patched homolog 2, PRKAR 1 Protein kinase cAMP-dependent regulatory type I, HIP Hedgehog-interacting protein, GLI 1 GLI-Kruppel family member GLI 1 , GLI 2 GLI-Kruppel family member GLI 2,6. Use according to one of claims 1 to 5, wherein the second nucleic acid is derived from a gene from the group consisting of SHH Sonic hedgehog, IHH Indian hedgehog, DHH Desert hedgehog, PTCH1 Patched homolog 1, PTCH2 Patched homolog 2, PRKAR 1 protein kinase cAMP-dependent regulatory type I, HIP Hedgehog-interacting protein, GLI 1 GLI-Kruppel family member GLI 1, GLI 2 GLI-Kruppel family member GLI 2,
GLI 3 GLI-Kruppel family member GLI 3, SMOH Smoothened, CKTSF1B1 Cysteine Knot Superfamily 1, FGF4 Fibroblast growth factor 4, FGF10 Fibroblast growth factor 10, FGF8 Fibroblast growth factor 8, RARA Retinoid Acid Rezeptor Alpha, SOX9/SRY (Sex determining region Y)-box 9, BMP2 Bone morphogenetic protein 2, BMP4 Bone morphogenetic protein 4, NOGGLI 3 GLI-Kruppel family member GLI 3, SMOH Smoothened, CKTSF1B1 Cysteine Knot Superfamily 1, FGF4 Fibroblast growth factor 4, FGF10 Fibroblast growth factor 10, FGF8 Fibroblast growth factor 8, RARA Retinoid Acid Receptor Alpha, SOX9 / SRY (Sex determining Y) -box 9, BMP2 bone morphogenetic protein 2, BMP4 bone morphogenetic protein 4, NOG
Noggin, FMN Formin, ALDH1A1 Aldehyde dehydrogenase 1 family member A1 , ALDH1A2 Aldehyde dehydrogenase 1 family member A2, ALDH1A3 Aldehyde dehydrogenase 1 family member A3, CYP19A1 Cytochrome P450, family 19, subfamily A, polypeptidel, PML Promyelocytic leukemia, HOXA11 Homeobox A11 (Homeobox A cluster), HOXA13 Homeobox A13 (HomeoboxNoggin, FMN Formin, ALDH1A1 Aldehyde dehydrogenase 1 family member A1, ALDH1A2 Aldehyde dehydrogenase 1 family member A2, ALDH1A3 Aldehyde dehydrogenase 1 family member A3, CYP19A1 Cytochrome P450, family 19, subfamily A, polypeptidel, PML Homeyoboxox11 AoxobloxXA11 homeukobloxA11 A cluster), HOXA13 Homeobox A13 (Homeobox
A cluster), HOXB1 Homeobox B1 (Homeobox cluster B), HOXB8 Homeobox B8 (Homeobox cluster B), HOXB9 Homeobox B9 (Homeobox cluster B), HOXB5 Homeobox B5 (Homeobox cluster B), HOXD13 Homeobox D13 (Homeobox D cluster).A cluster), HOXB1 Homeobox B1 (Homeobox cluster B), HOXB8 Homeobox B8 (Homeobox cluster B), HOXB9 Homeobox B9 (Homeobox cluster B), HOXB5 Homeobox B5 (Homeobox cluster B), HOXD13 Homeobox D13 (Homeobox D cluster).
7. Verwendung einer in einem der Ansprüche 1 bis 6 genannten zweiten Nukleinsaure zur Selektion von Haus-, Zucht-, oder Nutztieren ohne Phanotypus „Afterlosigkeit". 7. Use of a second nucleic acid mentioned in one of claims 1 to 6 for the selection of domestic, breeding or farm animals without the phanotype "afterlessness".
8. Verwendung nach Anspruch 7, wobei die Haus-, Zucht-, oder Nutztiere Tiere sind aus der Gruppe bestehend aus Rind, Hund, Katze, Kaninchen, Büffel, Kamele, Alpaka, Nerz, Schwein, Ziege, Schaf, Pferd, Esel, Ratte und Maus.8. Use according to claim 7, wherein the domestic, breeding or farm animals are from the group consisting of cattle, dog, cat, rabbit, buffalo, camel, alpaca, mink, pig, goat, sheep, horse, donkey, Rat and mouse.
9. Verwendung nach Anspruch 8, wobei ein Genomscreen an mehreren Säugern einer Population durchgeführt wird.9. Use according to claim 8, wherein a genome screen is carried out on several mammals of a population.
10. In vitro Verfahren zur Bestimmung der Prädisposition zur Ausprägung oder Vererbung des Phanotypus „Afterlosigkeit" in Säugern, vorzugsweise in Haus-, Zucht-, oder Nutztieren, wobei man die Tiere, deren befruchtete oder unbefruchtete Eizellen, oder deren Sperma auf die Anwesenheit,10. In vitro methods for determining the predisposition to the expression or inheritance of the phanotype "afterlessness" in mammals, preferably in domestic, breeding or farm animals, the animals, their fertilized or unfertilized egg cells, or their sperm for the presence,
Beschaffenheit oder Ausprägung einer in einem der Ansprüche 1 bis 6 genannten zweiten Nukleinsaure testet.Tests the nature or expression of a second nucleic acid mentioned in one of claims 1 to 6.
11. Verfahren nach Anspruch 10, wobei die Haus-, Zucht-, oder Nutztiere Tiere sind aus der Gruppe bestehend aus Rind, Hund, Katze, Kaninchen, Büffel,11. The method according to claim 10, wherein the domestic, breeding or farm animals are from the group consisting of cattle, dog, cat, rabbit, buffalo,
Kamele, Alpaka, Nerz, Schwein, Ziege, Schaf, Pferd, Esel, Ratte und Maus.Camels, alpaca, mink, pig, goat, sheep, horse, donkey, rat and mouse.
12. Verfahren nach Anspruch 10 oder 11 , wobei man12. The method according to claim 10 or 11, wherein one
(a) eine PCR Amplifikation mit komplementären Primern mit einer Länge von mindestens 8 Nukleotiden durchführt, wobei ein Primer an den +(a) performing a PCR amplification with complementary primers with a length of at least 8 nucleotides, with one primer attached to the +
Strang und ein weiterer Primer in entgegengesetzter Orientierung den - Strang der in einem der Ansprüchen 1 bis 6 genannte zweiten Nukleinsaure bindet; oderStrand and another primer in opposite orientation the strand which binds the second nucleic acid mentioned in one of claims 1 to 6; or
(b) eine Hybridisierung durchführt, wobei eine Hybridisierungssonde mit einer Länge von mindestens 8 Nukleotiden an die in einem der(b) performing a hybridization, wherein a hybridization probe with a length of at least 8 nucleotides is attached to that in one of the
Ansprüchen 1 bis 6 genannte zweite Nukleinsaure bindet; oderClaims 1 to 6 mentioned second nucleic acid binds; or
(c) eine Sequenzierung der in einem der Ansprüchen 1 bis 4 genannte zweiten Nukleinsaure durchführt; oder(c) sequencing the second nucleic acid mentioned in one of claims 1 to 4; or
(d) eine Detektion mit einem spezifischen Antikörper oder Antikörperfragment oder Antikörperderivat oder Aptamer durchführt, wobei der Antikörper oder das Antiköperfragment oder das Antikörperderivat oder der Aptamer spezifisch gegen eine in einem der Ansprüchen 1 bis 6 genannte erste oder zweite Nukleinsaure gerichtet ist.(d) performs a detection with a specific antibody or antibody fragment or antibody derivative or aptamer, the antibody or antibody fragment or antibody derivative or aptamer specifically against one in one of the Claims 1 to 6 mentioned first or second nucleic acid is directed.
13. Verfahren nach Anspruch 12, wobei ein Genomscreen an mehreren Säugern einer Population durchgeführt wird.13. The method of claim 12, wherein a genomic screen is performed on multiple mammals in a population.
14. Kit mindestens enthaltend14. Kit at least
(a) ein Primerpaar zur Amplifikation der in den Ansprüchen 1 bis 6 genannten zweiten Nukleinsaure, wobei jeweils ein Primer an den + Strang und ein weiterer Primer an den - Strang dieser Nukleinsaure bindet; oder(a) a pair of primers for the amplification of the second nucleic acid mentioned in claims 1 to 6, wherein one primer binds to the + strand and another primer to the - strand of this nucleic acid; or
(b) eine Hybridisierungssonde mit einer Länge von mindestens 8 Nukleotiden die an die in einem der Ansprüchen 1 bis 6 genannte zweite Nukleinsaure bindet; oder(b) a hybridization probe with a length of at least 8 nucleotides which binds to the second nucleic acid mentioned in one of claims 1 to 6; or
(c) einen spezifischen Antikörper oder ein Antikörperfragment oder ein Antikörperderivat oder ein Aptamer das an die in einem der(c) a specific antibody or an antibody fragment or an antibody derivative or an aptamer which is linked to that in one of the
Ansprüchen 1 bis 6 genannte erste oder zweite Nukleinsaure bindet; in einem oder mehreren Behältern. Claims 1 to 6 said first or second nucleic acid binds; in one or more containers.
PCT/EP2003/008786 2002-08-09 2003-08-07 Genetic markers for diagnosing predisposition to heredity or expression of the imperforate anus phenotype in domestic animals, breeding animals and working animals WO2004020663A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03790882A EP1529119A2 (en) 2002-08-09 2003-08-07 Genetic markers for diagnosing predisposition to heredity or expression of the imperforate anus phenotype in domestic animals, breeding animals and working animals
AU2003260386A AU2003260386A1 (en) 2002-08-09 2003-08-07 Genetic markers for diagnosing predisposition to heredity or expression of the imperforate anus phenotype in domestic animals, breeding animals and working animals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02017954.5 2002-08-09
EP02017954 2002-08-09

Publications (2)

Publication Number Publication Date
WO2004020663A2 true WO2004020663A2 (en) 2004-03-11
WO2004020663A3 WO2004020663A3 (en) 2004-08-19

Family

ID=31970261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008786 WO2004020663A2 (en) 2002-08-09 2003-08-07 Genetic markers for diagnosing predisposition to heredity or expression of the imperforate anus phenotype in domestic animals, breeding animals and working animals

Country Status (3)

Country Link
EP (1) EP1529119A2 (en)
AU (1) AU2003260386A1 (en)
WO (1) WO2004020663A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719532A (en) * 2012-05-16 2012-10-10 新疆维吾尔自治区畜牧科学院中国-澳大利亚绵羊育种研究中心 Method for detecting early stage growth of Poll Dorset by microsatellite marker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039538A1 (en) * 1995-06-06 1996-12-12 Dekalb Swine Breeders Evaluating scrotal hernia in swine
WO2001077374A2 (en) * 2000-04-08 2001-10-18 Biopsytek Analytik Gmbh Method for identifying and isolating genome fragments with linkage disequilibrium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039538A1 (en) * 1995-06-06 1996-12-12 Dekalb Swine Breeders Evaluating scrotal hernia in swine
WO2001077374A2 (en) * 2000-04-08 2001-10-18 Biopsytek Analytik Gmbh Method for identifying and isolating genome fragments with linkage disequilibrium

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
ALEXANDER L J ET AL: "CLONING AND CHARACTERIZATION OF 414 POLYMORPHIC PORCINE MICROSATELLITES" ANIMAL GENETICS, BLACKWELL SCIENTIFIC PUBLICATIONS, LONDON, GB, Bd. 27, Nr. 3, 1996, Seiten 137-148, XP001032578 ISSN: 0268-9146 *
ALEXANDER L J ET AL: "Physical assignments of 68 porcine cosmid and lambda clones containing polymorphic microsatellites" MAMMALIAN GENOME, Bd. 7, Nr. 5, 1996, Seiten 368-372, XP002270235 ISSN: 0938-8990 *
BEUZEN N D ET AL: "Molecular markers and their use in animal breeding." VETERINARY JOURNAL (LONDON, ENGLAND: 1997) ENGLAND JUL 2000, Bd. 160, Nr. 1, Juli 2000 (2000-07), Seiten 42-52, XP008027296 ISSN: 1090-0233 *
DEAR D V ANDERSON ET AL: "Isolation of dinucleotide repeats from a pig chromosome 1-specific DNA library" MAMMALIAN GENOME, Bd. 5, Nr. 10, 1994, Seiten 649-651, XP008027561 ISSN: 0938-8990 *
ELLEGREN HANS ET AL: "A physically anchored linkage map of pig chromosome 1 uncovers sex- and position-specific recombination rates" GENOMICS, Bd. 24, Nr. 2, 1994, Seiten 342-350, XP002270236 ISSN: 0888-7543 *
FIRST N L: "NEW ANIMAL BREEDING TECHNIQUES AND THEIR APPLICATIONS" JOURNAL OF REPRODUCTION AND FERTILITY. SUPPLEMENT, JOURNALS OF REPRODUCTIVE AND FERTILITY LTD.,, GB, Bd. 41, Nr. SUPPL, 1990, Seiten 3-14, XP000941129 ISSN: 0449-3087 *
HORI T ET AL: "Mapping loci causing susceptibility to anal atresia in pigs, using a resource pedigree." JOURNAL OF PEDIATRIC SURGERY. UNITED STATES SEP 2001, Bd. 36, Nr. 9, September 2001 (2001-09), Seiten 1370-1374, XP008026807 ISSN: 0022-3468 *
KANG SEONGMAN ET AL: "GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome" NATURE GENETICS, Bd. 15, Nr. 3, 1997, Seiten 266-268, XP008027536 ISSN: 1061-4036 *
KOHLHASE JUERGEN ET AL: "Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome" NATURE GENETICS, Bd. 18, Nr. 1, Januar 1998 (1998-01), Seiten 81-83, XP008027535 ISSN: 1061-4036 *
MO RONG ET AL: "Anorectal malformations caused by defects in sonic hedgehog signaling" AMERICAN JOURNAL OF PATHOLOGY, Bd. 159, Nr. 2, August 2001 (2001-08), Seiten 765-774, XP002269520 ISSN: 0002-9440 *
ROBIC A ET AL: "Isolation of 28 new porcine microsatellites revealing polymorphism" MAMMALIAN GENOME, Bd. 5, Nr. 9, 1994, Seiten 580-583, XP008027626 ISSN: 0938-8990 *
ROHRER G A ET AL: "A comprehensive map of the porcine genome" PCR METHODS AND APPLICATIONS, COLD SPRING HARBOR, NY, US, Bd. 6, Nr. 5, Mai 1996 (1996-05), Seiten 371-391, XP002193166 ISSN: 1054-9803 *
ROHRER G A ET AL: "A MICROSATELLITE LINKAGE MAP OF THE PORCINE GENOME" GENETICS, GENETICS SOCIETY OF AMERICA, AUSTIN, TX, US, Bd. 136, Nr. 1, 1994, Seiten 231-245, XP000601919 ISSN: 0016-6731 *
STIGLER J ET AL: "SEGREGATION ANALYSIS OF HEREDITARY DEFECTS IN PIGS" ZUECHTUNGSKUNDE, Bd. 63, Nr. 4, 1991, Seiten 294-305, XP008026805 ISSN: 0044-5401 *
THALLER G ET AL: "Investigation of the inheritance of birth defects in swine by complex segregation analysis" JOURNAL OF ANIMAL BREEDING AND GENETICS, Bd. 113, Nr. 2, 1996, Seiten 77-92, XP008026806 ISSN: 0931-2668 *

Also Published As

Publication number Publication date
AU2003260386A1 (en) 2004-03-19
EP1529119A2 (en) 2005-05-11
WO2004020663A3 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
DE69733958T2 (en) PROCESS FOR POSITIONING CLONES BY MEANS OF MOLECULAR CAUSE
Imsland et al. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses
DE60218182T2 (en) METHODS TO DETECT DNA FROM DIFFERENT INDIVIDUALS
DE69434314T2 (en) POLYMORPHISM OF MONONUCLEOTIDES AND THEIR USE IN GENANALYSIS
AU581582B2 (en) Dna probes to fingerprint genomes at hypervariable or minisatellite regions
DE102005008583B4 (en) A method of typing an individual by short tandem repeat (STR) loci of the genomic DNA
DE69833856T2 (en) METHOD FOR DETERMINING NUCLEIC ACID SEQUENCES IN URIN
DE60123448T2 (en) Method for non-invasive diagnosis of transplantations and transfusions
DE69632252T2 (en) METHOD FOR DETECTING CLONAL POPULATIONS OF TRANSFORMED CELLS IN A GENOMICALLY HETEROGENIC CELLULAR SAMPLE
DE102015216782B3 (en) Use of microRNAs circulating in the blood serum or blood plasma for identifying patients who are subject to biopsy and as markers for the differential diagnosis of individual non-ischemic cardiomyopathies or cardiac memory disorders
US20120015842A1 (en) Enumeration Of Nucleic Acids
WO2009018962A1 (en) Use of polynucleotides for detecting gene activities for distinguishing between local and systemic infection
KR19990022827A (en) DNA markers expressing the pigs'
Lowe et al. Aneuploid epididymal sperm detected in chromosomally normal and Robertsonian translocation-bearing mice using a new three-chromosome FISH method
Barrey et al. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions
WO2005090598A1 (en) Diagnosis of uniparental disomy with the aid of single nucleotide polymorphisms
DE19548680A1 (en) Method for the quantitative detection of specific nucleic acid sequences
WO2004020663A2 (en) Genetic markers for diagnosing predisposition to heredity or expression of the imperforate anus phenotype in domestic animals, breeding animals and working animals
WO2007068305A1 (en) Process for determining the genotype from a biological sample containing nucleic acids of different individuals
EP1630236A2 (en) Genetic regions associated with scrotal or inguinal hernia
EP1537246B1 (en) Method for the amplification of genetic information employing primers binding at multiple sites in the genome
DE60127901T2 (en) TCF-1 nucleotide sequence variation
Pauciullo et al. Development of a sequential multicolor-FISH approach with 13 chromosome-specific painting probes for the rapid identification of river buffalo (Bubalus bubalis, 2n= 50) chromosomes
DE112009001722T5 (en) Method for diagnosing dyslexia
EP3004384B1 (en) Method for identifying biological material and use of kit therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003790882

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003790882

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP