WO2004020279A1 - Hélice, sistema de propulsión con hélice y nave con sistema de propulsión - Google Patents

Hélice, sistema de propulsión con hélice y nave con sistema de propulsión Download PDF

Info

Publication number
WO2004020279A1
WO2004020279A1 PCT/ES2003/000436 ES0300436W WO2004020279A1 WO 2004020279 A1 WO2004020279 A1 WO 2004020279A1 ES 0300436 W ES0300436 W ES 0300436W WO 2004020279 A1 WO2004020279 A1 WO 2004020279A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
blade
blades
rotation
ship
Prior art date
Application number
PCT/ES2003/000436
Other languages
English (en)
French (fr)
Inventor
Juan José ROMERO VAZQUEZ
Original Assignee
Romero Vazquez Juan Jose
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Romero Vazquez Juan Jose filed Critical Romero Vazquez Juan Jose
Priority to AU2003262576A priority Critical patent/AU2003262576A1/en
Priority to EP03790966A priority patent/EP1541460A1/en
Priority to PCT/ES2003/000441 priority patent/WO2004020280A1/es
Priority to US10/526,036 priority patent/US20050175458A1/en
Priority to EP03790970A priority patent/EP1541461A1/en
Priority to AU2003262580A priority patent/AU2003262580A1/en
Publication of WO2004020279A1 publication Critical patent/WO2004020279A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/16Propellers having a shrouding ring attached to blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/26Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • B64C11/26Fabricated blades

Definitions

  • the invention relates to propellers, such as naval propellers, aerial propellers and fan propellers for turbojet engines
  • Traditional ship propellers comprise a base or "hub” from which the propeller blades extend.
  • the blades comprise a blade body that has two ends, namely a “blade root” or “blade foot”, which is where the blade is attached to the base of the propeller, and an opposite end is called “ shovel tip "; the tip of the blade corresponds to the point of separation between an entry edge (or leading edge) of the blade, and an exit edge (or leakage edge) of the blade; the terms input and output refer to the movement of the fluid in which the propeller is operating, with respect to the propeller.
  • a propeller is configured to rotate around an axis of rotation, driven by a motor shaft attached to the ship's engine and that transmits the movement of the motor to the propeller.
  • the propeller is configured so that when turning in a "normal” direction of rotation, it drives the ship in a first direction “forward” or “upstream”, corresponding to the forward direction of the ship, at the same time which drives fluid in a second direction opposite to said first direction (in this document, the "direction" of the direction is also included in the term “direction”);
  • the second address is also called the "downstream” address. Both the first direction and the second direction are substantially parallel to the axis of rotation of the propeller.
  • each blade body has two main surfaces, a concave that corresponds to the blade's intrados, and another convex that corresponds to the extrados.
  • the propeller must rotate in the direction of the intrados, the blade, that is, so that the intrados "propel" the water.
  • This direction of rotation corresponds to the "forward" march of the ship; if the propeller is turned in the opposite direction, the ship goes “backwards” (with a worse performance of the propeller, since it is the extrados and not the intrados that "drives” the water: in the reverse gear, when turning the propeller in the opposite direction, the intrados which is concave and extradós goes into loss as the boundary layer is detached, causing turbulence - which worsens the performance).
  • the blades In conventional or classic propellers, the blades extend, in their extension from the blade foot to the blade tip, in an orthogonal or perpendicular (or almost perpendicular) direction to the axis of rotation of the propeller. This is the configuration that was originally established with the intention that the flow of water driven by the propeller would be displaced "downstream" in a direction substantially parallel to the axis of rotation of the propeller and substantially opposite to the forward direction of travel. the ship.
  • classic propellers we call these types of propellers "classic propellers.”
  • the blades can have a certain inclination "downstream", so that the blades extend, from the foot to the tip of the shovel, in a direction that, in a plane which includes the axis of rotation, forms an obtuse angle with the "first direction” discussed above, that is, with the direction corresponding to the forward direction of the ship.
  • Said obtuse angle may be between 95 degrees and 110 degrees, corresponding to an inclination of the blades of about 5-20 degrees "backward” from the conventional position perpendicular to the axis of rotation of the propeller.
  • This "inclination” can be 30 degrees in some high-performance vessels, and is known as “inclination” ("rake") or “angle of fall backwards”. This "backward” or “downstream” inclination is intended to reduce vibrations in the propulsion mechanism (in the drive shaft, etc.).
  • rake angle of fall
  • propellers are known in which the angle can be between 85 and 110 degrees (ie, whose blades they have an angle of fall between 5 degrees upstream and 20 degrees downstream, with respect to a plane perpendicular to the axis of rotation that passes through the center of the hub), depending on the operating conditions of each engine and vessel.
  • the blades are usually perpendicular to the axis of rotation of the propeller, or slightly inclined “backwards" (- 'downstream'), to reduce vibrations.
  • the blades are usually perpendicular to the axis of rotation of the propeller and, in some cases, with the ends inclined in the opposite direction to the rotation, -to delay the appearance of shock waves.
  • the blades are mainly subjected to two forces, an aerodynamics parallel to the rotor axis, which corresponds to the lift due to the blade, and another dynamic due to the rotation, which is the centrifugal force.
  • an aerodynamics parallel to the rotor axis which corresponds to the lift due to the blade
  • another dynamic due to the rotation which is the centrifugal force.
  • the conicity angle In an articulated rotor, assuming the rigid blade, it will take the equilibrium position of the previous forces, forming a certain angle with the plane perpendicular to the axis of the rotor, called the conicity angle. Normally, this value is less than 8 degrees, the most frequent value being 4 degrees.
  • the blade assembly to the rotor hub is carried out with a theoretical angle of taper, in order to reduce the bending moment at the foot of the blade, about 4 degrees, "upstream".
  • JP-A-58-126288 describes and illustrates a naval propeller with a rectification ring and with the main blades tilted "backwards", is say downstream;
  • the main blades have a small blade or blade at its end, inclined upstream, whose main function is to raise the flow generated by the convergent ring 15, increasing, according to the document, the propulsion force.
  • WO-A-91/07313 describes a naval propeller with blades that have at their ends two small plates or fins, one on each side, forming an angle of 90 degrees with a plane perpendicular to the axis of rotation of the propeller, in order to decrease the vortex at the tip of the blade.
  • US-A-5176501 describes a propeller consisting of a square or rhombus of blades, rotated by (or rotating) a tree that passes through the diagonal of the square or rhombus.
  • US-A-1438012 describes a propeller of two opposite spiral-shaped blades.
  • US-A-283592 describes a naval propeller in which the most peripheral part (closest to the tip) of each blade is inclined in the direction of rotation of the blades, in order to reduce the centrifugal action.
  • US-A-5890875 describes a propeller with blades established from the bending of a sheet, so that the sheet forms "loops.”
  • US-A-4664593 describes a fan with the peripheral end of the blades bent in the direction of rotation of the fan, in order to reduce noise.
  • a problem related to conventional propellers that is, with the Classic propellers with blades perpendicular to the axis of rotation of the propeller or propellers with the blades slightly tilted "back"(-'water down ") in order to reduce vibrations, is that conventional propellers have a relatively low performance due to the losses due to the blade-tip vortex, the cross flow at the trailing edge of the blades and the slippage
  • This problem seems to be especially serious in naval propellers, where the yield is often 60%, which it means that a large part of the power contributed by the engine is lost, at least in part due to the factors mentioned.
  • the aim of the invention is to provide a propeller and a propulsion system of ships by means of a propeller with reduced vortex losses at the tip of the blade and by cross flow at the trailing edge, and with less slip.
  • a first aspect of the invention relates to a propeller, comprising: a base (also often called “the hub” of the propeller); a plurality of blades, each blade having a first end that is attached to the base (this end is usually known as the root or blade foot) and a second free end that defines a blade tip that separates an entry edge (also known as the "leading edge") of the blade of a trailing edge (also known as the “trailing edge”) of the blade; the propeller being configured to rotate about an axis of rotation, driven by a motor shaft of a ship, in order to propel said ship in a first direction parallel to the axis of rotation and corresponding to the direction of forward movement of the ship , driving a fluid in a second general direction opposite to said first direction; the blades extending in a third direction from the first end towards the blade tip, said third direction being the direction in which the blade section extends in the plane that includes the axis of rotation and the blade tip.
  • the blades are inclined forward” or “upstream” (with respect to the axis of rotation), that is, they are not perpendicular to the axis of rotation or “inclined downstream", as is the case with conventional propellers commented above.
  • the inclined configuration of the blades establishes a surface or sweeping area of the propeller that corresponds to a body which can be substantially conical or trunk-conical and whose diameter decreases in the second direction ("backwards" or "downstream").
  • second general direction refers to the "general” direction of the flow that "leaves” the propeller. Said second direction is, in a general way, “backwards” or “downstream”, although logically there are turbulence, etc., that make some "individual" parts of the fluid can follow other paths.
  • 45 °.
  • the propeller can have only two blades; for example, two-blade propellers are frequently used in outboard engines and airplanes.
  • the propeller can also have at least three blades; These types of propellers are often preferable on displacement boats and the like.
  • the propeller comprises at least three blades, preferably evenly distributed around the base of the propeller.
  • the blades can have an elongated configuration in the direction from the first end (blade foot) to the second end (blade tip).
  • Each blade may have an entry edge, located upstream of an exit edge, extending both the leading edge and the trailing edge substantially in said third direction, substantially from the first end to the second end.
  • the blade tip separates the leading edge from the trailing edge.
  • a second aspect of the invention relates to a propulsion system comprising at least one propeller according to the invention and a drive shaft attached to the propeller so that the drive shaft can rotate the propeller about its axis of rotation.
  • the shaft can rotate driven by the ship's engine that incorporates the propulsion system.
  • the propulsion system may comprise a nozzle concentrically located around the axis of rotation of the propeller and wrapping the propeller laterally, said nozzle having an anterior end of fluid inlet and a rear end of fluid outlet.
  • the use of the nozzle can be especially advantageous in marine applications.
  • Each blade can be attached to the drive shaft or to an element configured as an axial extension of the drive shaft, by means of a tie rod or by a plurality of tie rods, which serve to prevent the blades from deforming or moving due to the forces that act on them during use.
  • each tie rod is arranged perpendicularly (or sustainially perpendicularly) - with respect to the rotation of the shaft.
  • each tie rod is in the flag position for cruise ship speed (in this way, the tie bars do not have a tractor effect at cruise speed).
  • the straps are shaped like a shovel they must be of symmetrical profile (with the intrados and convex extrados) for minimum aerodynamic resistance.
  • the propulsion system can be part of a fan for a turbojet, each blade being attached to a propeller base that is part of the engine shaft constituted by a turbojet rotor, each blade being attached to said rotor also by at least one tie rod. subjection.
  • the propeller may be surrounded, radially, by a conduit-fairing.
  • a third aspect of the invention relates to a ship that includes a propulsion system according to the invention.
  • the drive shaft of the propulsion system is attached to the machine of the ship which is the one that imparts the turning movement to the driving shaft.
  • the ship can be a watercraft, an underwater ship or an aircraft.
  • the least expensive option for the shape of the blades is that the blades in their entirety from the root to the tips, that is, along their entire length, have a substantially uniform upstream inclination.
  • the jet or fluid vein generated by the propeller does not follow in divergent directions (and directions) downstream from the scanning area of the propeller, that is, it does not follow in directions perpendicular to the conical scanning surface of the propeller (however, these directions perpendicular to the conical scanning surface are the actual directions of thrust of the blades on the fluid).
  • both the fluid inlet flow in the propeller and the fluid outflow follow a direction substantially parallel to the axis of rotation of the propeller (so as not to complicate the explanation, it is said in this document that the direction is substantially parallel to the axis of rotation, although in reality the vein of fluid has a certain convergence in the downstream direction, as in the case of the classic-helix). In this way, there is a deflection of the fluid with respect to the "logical sight” directions that the fluid should follow and that would be perpendicular to the conical scanning area (resulting in a divergent jet displacing a huge amount of fluid mass ).
  • the deflection is caused not by the nearby soil or water, but by the fluid at rest or movement around the propeller, outside the limits of the wake or control volume, which behaves as a solid barrier
  • the angle of attack induced on the blades which decreases the induced resistance and increases the lift and therefore the traction and propeller performance.
  • This decrease in the angle of attack induced causes lower losses by vortex at the tip of the blade and by cross flow at the trailing edge.
  • the pressure on the intrados of the blades increases due to deflection; This phenomenon has an important additional positive contribution, which is to reduce marginal losses at the tip of the blade and cross flow at the trailing edge.
  • the traction of the propeller is increased according to the sine of the angle of inclination of the upstream blades or the sine of the deflection angle, which have the same value.
  • This increase can be called “buoyancy.” If the mentioned angle is 45 degrees, the "buoyancy coefficient" would be 1, 7 for the equation that establishes the thrust or traction force, so that by this concept the traction is increased by 70% - this is it owes the slightest slip - and apart from this, as explained above, the induced resistance decreases, thereby decreasing the torque absorbed by the propeller thus increasing the yield further. It must be taken into account that for an angle of attack of 15 degrees, the induced resistance is approximately three times that of the parasite.
  • the invention increases the power developed (the traction indicated above multiplied by the speed of the ship).
  • the spent power is equal to developed power plus the kinetic energy that in the time unit is lost in the wake (kinetic energy equal to a half of the density by the flow rate and by the square of the exit velocity of the jet less the input).
  • the theoretical yield is the ratio of the power developed between the power spent; Although the developed power increases due to the lower slippage, the performance is always lower than the unit, since there is always a certain kinetic energy that is lost in the wake.
  • the propeller of the invention is maintained for any speed of the ship with respect to the classic propeller (ie, with respect to the propeller with the blades perpendicular to the axis of rotation of the propeller).
  • the propeller can preferably be housed inside a nozzle concentric to said propeller and that envelops the propeller, in its axial extension, from the free ends or tips of the shovels, upstream, up to twice its normal distance to the end of the roots or feet of said blades, downstream;
  • This nozzle preferably has the anterior part of the wall close to the free ends (the tips) of the blades, that is, its radial distance from the blades is very small.
  • Said nozzle can be fixed, that is, attached to the hull of the ship, or to the antiventilation plate or to the tail in the case of outboard engines.
  • the length indicated for the nozzle may be the minimum recommended.
  • the component of the centrifugal force that tends to flex the blades is compensated by the reaction of the jet on the intrados of the blades, as the water density is very high, and by the structural resistance of the propeller (the naval propellers are usually very robust).
  • each blade can be attached, on the side of the extrados, to an extension of the motor shaft, by means of one or more tie rods (the motor shaft can pass through the propeller hub and be attached to it) ; such extension of the motor shaft would be upstream; the diameter of said extension of the motor shaft, as well as the material, can be the same as those of the motor shaft.
  • each blade can be attached, by the extrados side, to the motor shaft, by means of one or more tie rods.
  • the motor shaft may be longer than usual for the classic propeller, resulting in a greater distance between the motor and the propeller.
  • each holding brace bears a flag-shaped flag for cruising speed (that is, the holding strap is not would have a tractor function, it would only serve to withstand the centrifugal force of the propeller blades).
  • tie rods are perpendicular to the extension of the drive shaft, whether they are shaped like a shovel or not.
  • each blade can be attached, on the extrados side, to the turbojet rotor, by one or several tie rods.
  • Said rotor can constitute the drive shaft and can also serve directly as a propeller base.
  • the tie rods can be connected by their root to different discs of the turbojet rotor, and said rotor can have multiple sets of blades with their corresponding braces along its length, the roots of the different sets of blades being fixed to respective turbojet rotor discs.
  • Both the blades and the straps can be surrounded by a fixed fairing duct.
  • each tie rod is shaped like a shovel, in flag position for cruising speed.
  • the tie rods are preferably fixed.
  • the roots of the blades and the struts can be attached to the turbojet rotor discs by the braked bolt system.
  • the roots are introduced into a housing or channel on the periphery of a rotor disc and are radially secured by means of an axially retained bolt.
  • the optimization conditions of this propeller are the following: the normal diameter, the geometric pitch, the normal projection of the surface of the blades, that is, the projection on a plane perpendicular to the axis of rotation and the revolutions by minute, they have the same quantitative value as in the corresponding classic propeller for the same engine, the same reduction to the output shaft .
  • each blade is equal to the length of the conventional blade divided by sin
  • the surface of each blade is equal to the surface of the classic blade divided by sin ⁇ , relative to the corresponding conventional blade for the same engine, the same reduction to the output shaft and performance of the ship with an increase in resistance corresponding to the increase in thrust.
  • the normal projection that is, the projection of the surface of the blades on a plane perpendicular to the axis of rotation of the propeller
  • its length is greater for itself normal diameter and therefore its surface is also;
  • the normal diameter is the same, as the direction of flow is substantially parallel to the axis of rotation of the propeller, the strength factor increases since the path of a fluid molecule over the intrados and the extrados of the blades is greater; for 45 degrees the route increases approximately 41%.
  • the strength factor is the relationship between the surface of the blades and the swept area.
  • a shovel is divided into the root or foot of the shovel, the body and the tip of the blade - sometimes this last sector of the blade is called the blade end.
  • the blade tip is the extreme point that separates the leading edge (or “leading edge”) of the leading edge (or “trailing edge”) of each blade, according to the relative movement of the fluid on the blades.
  • the deflection of the jet would not occur due to an agent external to the system in motion - air or surrounding water - but by convergence of the jet itself with an increase in speed, which would mean greater losses in the wake by the increase in kinetic energy; the "buoyancy coefficient" would be less than unity; In the case of the classic propeller, its value is unity.
  • Figure 1A is a schematic representation of a propeller seen from the side, suitable for, for example, submarines (whose main function is to navigate submerged), with blades inclined at an angle of 45 degrees upstream, with respect to a plane perpendicular to the axis of turn.
  • Figure 1 B is a schematic representation analogous to Figure 1A, but depicting the section or section of one of the blades, in the plane that includes the axis of rotation and the blade tip.
  • Figure 1 C is a schematic representation of the propeller illustrated in Figure 1A, but viewed from the front from downstream
  • Figure 2 is a sectional representation of one of the blades of Figure 1A.
  • Figure 3 is a schematic representation of a propeller with two blades on which are illustrated vectors representing centrifugal force and pressure, as well as its components.
  • Figure 4 is a schematic representation of blades with rectangular plan operating in two different positions, the first (the one on the left) and the classic one (perpendicular to the axis of rotation) and the second (the one on the right) inclined at an angle 45 degrees upstream; in both positions the trajectory of a fluid molecule on the surface of the blades is represented.
  • Figure 5 is a schematic representation of a propeller mounted on an outboard motor, viewed from the side and with a nozzle.
  • Figure 6 is a schematic representation of the structure illustrated in Figure 5, but viewed from the front from downstream.
  • Figure 7 is a schematic representation of an aerial propeller with two blades ⁇ and cube-forming a single side piezo view; with its braces.
  • Figure 8 is a schematic representation of the propeller with its sliding wake and speed distribution, in two sections. at a certain distance from her; the angle of inclination of the blades and the angle of deflection of the flow passing through the propeller are indicated.
  • Figure 9 is a schematic representation of a fan for dual-flow turbojet engines, seen from the side, representing only two of the multiple blades, with their corresponding tie rods.
  • Figures 1A-C, 5, 7 and 9 reflect different propellers according to the invention, comprising: a base 2, 15 (in figure 9, said base forms an integral part of the rotor 21 of a turboreactor); a plurality of elongated blades 1, 14, each blade having a first end 1A, 14A that is attached to the base and a second free end defining a blade tip 1 B, 14B that separates an entry edge (or "edge of attack ") 1C, 14C of the blade of a trailing edge (or" trailing edge ”) 1 D, 14D of the blade.
  • Each propeller is configured to rotate on an axis of rotation 100, driven by a motor shaft of a ship, in order to drive said ship in a first direction D1 parallel to the axis of rotation 100 and corresponding to the forward direction of travel of the ship, driving a fluid in a second general D2 direction opposite to said first direction.
  • the blades extend in a third direction D3 from the first end 1A, 14A towards the blade tip 1B, 14B. As schematically illustrated in Figure 1B, said third direction corresponds to the direction in which the cut or section 1 E of the blade extends in the plane that includes the axis of rotation 100 and the blade tip 1 B.
  • said third direction D3 forms, in a plane that includes the axis of rotation 100, an acute angle ⁇ with said first direction D1,
  • 45 degrees.
  • the blades are inclined "upstream” with an angle of (90 ° - ⁇ ), in this case, with 45 degrees, if we compare them with the "classic" blades perpendicular to the axis of rotation.
  • the blades 1 are attached to a hub or base 2 mounted on the drive shaft (not illustrated in Figures 1A-1C) by means of a fixing bolt 7; the upper blade in the figure shows the extrados 4 and the lower blade the intrados 5; the support 6 of the base of the propeller comes close to the plane of gravity of the blades, thereby increasing the dynamic balance.
  • the support bearing of the propeller shaft is inside the support 6, integrated in the hull 8 of the ship, as seen in the figure.
  • the bearing can only be radial or radial and axial if there is no other axial inside.
  • figures 1A-1C only two opposite blades are represented, so as not to complicate the drawing. Normally, it is preferable that the propeller has at least three blades.
  • arrows D4 and D2 indicate the direction of the jet or water vein that moves the propeller, before and after passing through the propeller, respectively.
  • arrow 200 indicates the direction of rotation of the propeller.
  • Figure 2 shows the intrados 5 of concave surface and the extrados 4 of convex surface; the figure is oriented in the plane according to figure 1A, so that at the top left in figure 2 is the leading edge (or leading) 1C and bottom right is the trailing edge (or leakage ) 1 D of the shovel 1.
  • Figure 3 shows the vector representation of the centrifugal force F and its two components, one perpendicular to the blade F2 that causes the bending stresses and the other in the same direction as the blade F1 that causes stretching stresses, with the same module, since the inclination of the blades is 45 degrees.
  • the representation of the pressure vector P of the propeller, its effective component P1 and the other component P2 is also observed; the force P is referred to the static pressure on the conical scanning area of the blades.
  • Figure 4 shows the trajectory of a fluid molecule on the surface of rectangular-bladed blades, both in the case of a non-inclined V blade (that is, a blade of a classic propeller according to the aforementioned) (this case corresponds to the path from A to B), ' as in the case of a blade 1 "of a propeller according to the invention, inclined 45 degrees (this case corresponds to the path from A1 to B1).
  • the path (A1-B1) is exactly the diagonal of a square with the path (AB) of the molecule in the first case, therefore, the strength factor increases.
  • Figures 5 and 6 show an outboard mounted propeller with nozzle cylindrical 9 and with antiventilation plate 11; the cylindrical nozzle 9 is attached to the plate -antiventilation-1-1 by means of bolts 12 which- cross the antiventilation plate and 10 welded to the nozzle are placed in pythons.
  • the anti-silage plate 11 is integrated in a tail 13 of an outboard motor.
  • the arrows D2 indicate the direction of the water that has passed through the propeller and in figure 6 the arrow 200 indicates the direction of rotation of the propeller.
  • the other numerical references correspond to elements analogous to those already mentioned in relation to Figure 1A)
  • Figure 7 shows an aerial propeller with the aerial blades 14 (with their respective inlet edges 14C and outlet edges 14D), the upper blade presenting the extrados 4 and the lower one the intrados 5; the hub or base 15 of the propeller, the drive shaft 16, a connection plate 17 of the shaft, an extension 18 of the drive shaft running through the hub 15, tie rods 19 (which can be solid steel cylinders of high tensile strength), and bolts with nuts 20 that connect the hub or base 15 of the propeller to the plate 17 of the drive shaft.
  • the arrow 300 indicates the direction of rotation (corresponding to forward movement); the other four arrows D2 and D4 indicate the direction and direction of the air jet passing through the propeller, after and before passing through the propeller, respectively.
  • the tie rods 19 can have the "external" ends in the shape of a cone trunk, with a larger base located at the ends and a smaller base with the same diameter as the braces, these truncated conical ends being housed in respective truncated conical housings made in the shovels Naturally, to reduce the aerodynamic resistance of the tapered ends, they can be machined to integrate their surface into the intrados of the blades.
  • the tie rods may be attached to the extension 18 of the drive shaft by braked pins (not illustrated in the figure).
  • each strand can be shaped like a propeller blade with a symmetrical profile, with the rope having the same value along the entire length of the strap and equal to the diameter of the lower base of the trunk of peripheral cone, so that the brace can be entered through the shovel and with said shovel-shaped braces fixed in flag position for cruising speed, that is, without a tractor function.
  • FIG 8 a schematic representation of the aerial blades 14 of the previous figure, as well as the motor shaft 16; the angle of inclination C (complementary to the angle ⁇ ) of the blades upstream with respect to the plane perpendicular or normal to the motor shaft and passing through the center of the hub or base of the propeller is also observed.
  • the angle of deflection is formed by a line parallel to the axis of rotation and by the direction that the fluid jet would follow from the sweeping area, if the said "external fluid effect" was not given (that is, following perpendicular directions to the conical scanning area):
  • the fluid is forced to spill substantially parallel to the axis of rotation, in the so-called “second direction D2". "Deflection" as such is not observed since the fluid carries the same direction before and after the scanning area, but in fact it exists.
  • the angle of deflection D is not exactly the one illustrated in Figure 8 but rather is slightly larger than the angle of inclination C of the blades, because there is a certain convergence of the fluid, as can be seen on the boundary surface E of the wake.
  • angles C and D are approximately identical and that the direction of the fluid jet after (downstream) of the propeller is substantially parallel to the axis of rotation.
  • Figure 9 shows the aerial blades 14 with their tie rods 19 mounted on the rotor 21 of the turbojet (only two of the multiple blades carried by the mechanism are shown, for simplicity and clarity of the drawing).
  • the conduit-shield 22 surrounds the blades, with the mission of reducing the speed of the air that reaches the fan, being divergent with respect to the direction of the current.
  • the axial compressor 23 is also schematically represented. Both the roots of the blades 14 and the roots of the tie rods 19 should be anchored in the rotor discs by the braked bolt system, which is one of the systems used Currently for this type of mechanism.
  • the tie rods 19 are especially suitable in aerial applications. However, in propellers of small normal diameter, low revolutions and up to 15 degrees of inclination (that is, with ⁇ > 75 °), it is likely that braces are not necessary. Turbojet fans correspond to a particular application of aerial propellers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

La invención se refiere a una hélice que comprende una base (2, 15) y una pluralidad de palas (1, 14) que se extienden de dicha base de forma inclinada aguas arriba, es decir, en la dirección correspondiente a la dirección de marcha (D1) hacia delante de la nave. Las palas se extienden en una dirección que forma un ángulo agudo α con la dirección de marcha hacia delante, 10°≤α≤ 80°. La invención también se refiere a un sistema de propulsión que incluye la hélice así como a una nave que incluye el sistema de propulsión.

Description

HÉLICE, SISTEMA DE PROPULSIÓN CON HÉLICE Y NAVE CON SISTEMA DE PROPULSIÓN
CAMPO DE LA INVENCIÓN La invención está relacionada con hélices, tales como las hélices navales, hélices aéreas y hélices de ventiladores para turborreactores
ANTECEDENTES DE LA INVENCIÓN Las hélices de naves tradicionales comprenden una base o "cubo" desde el cual se extienden las palas de la hélice. Las palas comprenden un cuerpo de pala que presenta dos extremos, a saber, una "raíz de pala" o "pié de pala", que es donde la pala está unida a la base de la hélice, y un extremo opuesto que se denomina "punta de pala"; la punta de la pala corresponde al punto de separación entre un borde de entrada (o borde de ataque) de la pala, y un borde de salida (o borde de fuga) de la pala; los términos entrada y salida se refieren al movimiento del fluido en el que está operando la hélice, con respecto a la hélice.
Normalmente, una hélice está configurada para girar alrededor de un eje de giro, impulsada por un árbol motor unido al motor de la nave y que transmite el movimiento del motor a la hélice. La hélice está configurada de manera que al girar en un sentido de giro "normal", impulsa la nave en una primera dirección "hacia delante" o "aguas arriba", correspondiente a la marcha en sentido hacia delante de la nave, a la vez que impulsa fluido en una segunda dirección opuesta a dicha primera dirección (en este documento, en el término "dirección" se incluye también el "sentido" de la dirección); la segunda dirección también se llama la dirección "aguas abajo". Tanto la primera dirección como la segunda dirección son sustancialmente paralelas al eje de giro de la hélice.
Las palas suelen tener una sección transversal alargada y curva, y se puede decir que cada cuerpo de pala presenta dos superficies principales, una cóncava que corresponde al intradós de la pala, y otra convexa que corresponde al extradós. Para que la pala presente un buen rendimiento, la hélice debe girar en el sentido del intradós, de la pala, es decir, de manera que el intradós "impulse" el agua. Este sentido del giro es el que corresponde a la marcha "hacia delante" de la nave; si la hélice es girada en el sentido contrario, la nave da "marcha atrás" (con un peor rendimiento de la hélice, ya que es el extradós y no el intradós el que "impulsa" el agua: en la marcha atrás, al girar la hélice en sentido contrario, el intradós que es cóncavo y hace de extradós entra en pérdida ya que se desprende la capa límite, originando turbulencias-lo cual empeora el rendimiento).
En las hélices convencionales o clásicas, las palas se extienden, en su extensión desde el pié de pala hasta la punta de pala, en una dirección ortogonal o perpendicular (o casi perpendicular) al eje de giro de la hélice. Esta es la configuración que originalmente se estableció con la intención de que el caudal de agua impulsado por la hélice fuese desplazado "aguas abajo" en una dirección sustancialmente paralela al eje de giro de la hélice y sustancialmente opuesta a la dirección de marcha hacia delante de la nave. A continuación, llamamos "hélices clásicas" a este tipo de hélices.
Existen algunas variantes de la comentada configuración tradicional o "clásica" de las hélices. Por ejemplo, en las embarcaciones de recreo que se usan actualmente, las palas pueden tener una cierta inclinación "aguas abajo", de manera que las palas se extienden, desde el pié hasta la punta de pala, en una dirección que, en un plano que incluye el eje de giro, forma un ángulo obtuso con la "primera dirección" comentada más arriba, es decir, con la dirección correspondiente a la dirección de marcha hacia delante de la nave. Dicho ángulo obtuso puede ser de entre 95 grados y 110 grados, correspondiente a una inclinación de las palas de unos 5-20 grados "hacia atrás" desde la posición convencional perpendicular al eje de giro de la hélice. Esta "inclinación" puede llegar a ser de 30 grados en algunas embarcaciones de altas prestaciones, y se conoce como "inclinación" ("rake") o "ángulo de caída hacia atrás". Esta inclinación "hacia atrás" o "aguas abajo" tiene como propósito el de reducir las vibraciones en el mecanismo de propulsión (en el árbol motor, etc.).
Por otra parte, se han desarrollado hélices navales en las que dicho ángulo de caída ("rake") no siempre es obtuso, concretamente, se conocen hélices en las que el ángulo puede ser de entre 85 y 110 grados (es decir, cuyas palas tienen un ángulo de caída de entre 5 grados aguas arriba y 20 grados aguas abajo, respecto a un plano perpendicular al eje de giro que pasa por el centro del cubo), en función de las condiciones de funcionamiento de cada motor y embarcación. Parece ser que la caída de 5 grados aguas arriba se ha efectuado para aumentar el equilibrio dinámico de la hélice en vacío (cuando sale del agua), en determinadas condiciones de navegación y giros.En el resto de hélices navales, en buques y en submarinos, las palas suelen ser perpendiculares al eje de giro de la hélice, o ligeramente inclinadas "hacia atrás" (- 'aguas abajo"), para reducir las vibraciones. En hélices aéreas, las palas suelen ser perpendiculares al eje de giro de la hélice y, en algunos casos, con los extremos inclinados en sentido contrario a la rotación,-para retrasar la aparición de ondas de choque.
En los rotores principales de helicópteros, las palas están sometidas principalmente a dos fuerzas, una aerodinámica paralela al eje del rotor, que corresponde a la sustentación debida a la pala, y otra dinámica debida al giro, que es la fuerza centrífuga. En un rotor articulado, suponiendo la pala rígida, ésta tomará la posición de equilibrio de las fuerzas anteriores, formando un cierto ángulo con el plano perpendicular al eje del rotor, llamado ángulo de conicidad. Normalmente, este valor es inferior a 8 grados, siendo el valor más frecuente el de 4 grados. En algunos tipos de rotores el ensamble de pala al cubo del rotor se efectúa con un ángulo teórico de conicidad, con objeto de disminuir el momento flector en pie de pala, de unos 4 grados, "aguas arriba".
Otras variantes de las hélices convencionales comentadas arriba se describen e ilustran en los siguientes documentos de patentes: JP-A-58-126288 describe e ilustra a una hélice naval con un anillo de rectificación y con las palas principales inclinadas "hacia atrás", es decir, aguas abajo; las palas principales presentan una pala pequeña o lámina en su extremo, inclinada aguas arriba, cuya función principal es la de elevar el flujo generado por el anillo convergente 15, aumentando, según el documento, la fuerza de propulsión. WO-A-91/07313 describe una hélice naval con palas que presentan en sus extremos dos pequeñas placas o aletas, una a cada lado, formando un ángulo de 90 grados con un plano perpendicular al eje de giro de la hélice, con el fin de disminuir el vórtice en punta de pala.
US-A-5176501 describe una hélice compuesta por un cuadrado o rombo de láminas, girado por (o que gira) un árbol que pasa por la diagonal del cuadrado o rombo.
US-A-1438012 describe una hélice de dos palas opuestas en forma de espiral. US-A-283592 describe una hélice naval en la que la parte más periférica (más cerca de la punta) de cada pala está inclinada en el sentido de rotación de las palas, con el fin de reducir la acción centrífuga.
US-A-5890875 describe una hélice con palas establecidas a partir del doblado de una lámina, de manera que la lámina forme "lazos".
US-A-4664593 describe un ventilador con el extremo periférico de las palas doblado en el sentido de rotación del ventilador, con el fin de disminuir el ruido. Un problema relacionado con las hélices convencionales, es decir, con las hélices clásicas con las palas perpendiculares al eje de giro de la hélice o las hélices con las palas ligeramente inclinadas "hacia atrás" (-'aguas abajo") con el fin de reducir las vibraciones, es que las hélices convencionales presentan un rendimiento relativamente bajo, debido a las pérdidas por vórtice en punta de pala, al flujo cruzado en el borde de salida de las palas y al resbalamiento. Este problema parece ser especialmente grave en hélices navales, donde el rendimiento muchas veces es de un 60%, lo cual significa que una gran parte de la potencia aportada por el motor se pierde, al menos en parte debido a los factores comentados. El objetivo de la invención es el de proporcionar una hélice y un sistema de propulsión de naves mediante hélice con pérdidas reducidas por vórtice en punta de pala y por flujo cruzado en el borde de salida, y con menor resbalamiento.
DESCRIPCIÓN DE LA INVENCIÓN Un primer aspecto de la invención se refiere a una hélice, que comprende: una base (también muchas veces llamada "el cubo" de la hélice); una pluralidad de palas, teniendo cada pala un primer extremo que está unido a la base (este extremo se suele conocer como la raíz o pié de pala) y un segundo extremo libre que define una punta de pala que separa un borde de entrada (también conocido como "borde de ataque") de la pala de un borde de salida (también conocido como "borde de fuga") de la pala; estando la hélice configurada para girar alrededor de un eje de giro, impulsada por un árbol motor de una nave, con el fin de impulsar dicha nave en una primera dirección paralela al eje de giro y correspondiente a la dirección de marcha hacia delante de la nave, impulsando un fluido en una segunda dirección general opuesta a dicha primera dirección; extendiéndose las palas en una tercera dirección desde el primer extremo hacia la punta de pala, siendo dicha tercera dirección la dirección en la que se extiende la sección de la pala en el plano que incluye el eje de giro y la punta de pala. De acuerdo con la invención, dicha tercera dirección forma, en un plano que incluye el eje de giro, un ángulo agudo con dicha primera dirección, 10°<α<80°.
Es decir, las palas "están inclinadas hacia delante" o "aguas arriba" (con respecto al eje de giro), es decir, no son perpendiculares al eje de giro o "inclinadas aguas abajo", como es el caso con las hélices convencionales comentadas más arriba.
De esta manera, de acuerdo con la invención, la configuración inclinada de las palas establece una superficie o área de barrido de la hélice que corresponde a un cuerpo que puede ser sustancialmente cónico o tronco-cónico y cuyo diámetro disminuye en la segunda dirección ("hacia atrás" o "aguas abajo").
La expresión "segunda dirección general" se refiere a la dirección "general" del caudal que "sale" de la hélice. Dicha segunda dirección es, de forma general, "hacia atrás" o "aguas abajo", aunque lógicamente haya turbulencias, etc., que hagan que algunas partes "individuales" del fluido puedan seguir otras trayectorias.
Preferiblemente, 20°< <70°, más preferiblemente, 30°<α<60°, aún más preferiblemente, 40°< <50°. En una realización preferida, α=45°.
La hélice puede tener sólo dos palas; por ejemplo, en motores fueraborda y en aviones se usan con frecuencia hélices de dos palas.
Sin embargo, la hélice puede también tener, al menos, tres palas; este tipo de hélices son muchas veces preferibles en barcos de desplazamiento y similares.
Preferiblemente, la hélice comprende, al menos, tres palas, preferiblemente distribuidas de forma equidistante alrededor de la base de la hélice. Las palas pueden tener una configuración alargada en la dirección desde el primer extremo (pié de pala) hasta el segundo extremo (punta de pala).
Cada pala puede presentar un borde de entrada, situado aguas arriba de un borde de salida, extendiéndose tanto el borde anterior como el borde posterior sustancialmente en dicha tercera dirección, sustancialmente desde el primer extremo hasta el segundo extremo. La punta de pala separa el borde de entrada del borde de salida.
Un segundo aspecto de la invención se refiere a un sistema de propulsión que comprende al menos una hélice de acuerdo con la invención y un árbol motor unido a la hélice de manera que el árbol motor pueda hacer girar la hélice alrededor de su eje de giro. El árbol puede girar impulsado por el motor de la nave que incorpora el sistema de propulsión.
El sistema de propulsión puede comprender una tobera situada de forma concéntrica alrededor del eje de giro de la hélice y envolviendo la hélice lateralmente, presentando dicha tobera un extremo anterior de entrada de fluido y un extremo posterior de salida de fluido. El uso de la tobera puede ser especialmente ventajosa en aplicaciones marinas.
Cada pala puede estar unida al árbol motor o a un elemento configurado como una prolongación axial del árbol motor, mediante un tirante de sujeción o mediante una pluralidad de tirantes de sujeción, que sirven para evitar que las palas se deformen o se desplacen debido a las fuerzas que actúan sobre ellas durante su uso. Preferiblemente, cada tirante de sujeción está dispuesto de forma perpendicular (o sustaneialmente perpendicular)-con respecto-aheje de giro de-laiiélice.
Preferiblemente, cada tirante de sujeción tiene forma de pala en posición de bandera para velocidad de crucero de la nave (de esta forma, los tirantes de sujeción no tienen efecto tractor a velocidad de crucero). Cuando los tirantes tienen forma de pala deben ser de perfil simétrico (con el intradós y el extradós convexos) para mínima resistencia aerodinámica.
El sistema de propulsión puede formar parte de un ventilador para un turborreactor, estando cada pala unida a una base de hélice que forma parte del árbol motor constituido por un rotor del turborreactor, estando cada pala unida a dicho rotor también mediante al menos un tirante de sujeción. La hélice puede estar rodeada, en sentido radial, por un conducto-carena.
Un tercer aspecto de la invención se refiere a una nave que incluye un sistema de propulsión de acuerdo con la invención. El árbol motor del sistema de propulsión está unido a la máquina de la nave que es la que imparte el movimiento de giro al árbol motor. La nave puede ser una nave acuática, una nave submarina o una aeronave.
La opción menos costosa para la forma de las palas es que las palas en su totalidad desde la raíz hasta las puntas, es decir, a lo largo de toda su longitud , presenten una inclinación sensiblemente uniforme aguas arriba.
Para explicar con la mayor sencillez lo que ocurre, se va a analizar lo que sucede en una hélice con palas rectas, con α=45 grados (es decir, las palas están inclinadas 45 grados "hacia delante" o "aguas arriba"), funcionando en el agua a una profundidad considerable o en la atmósfera con un bajo número de revoluciones por minuto, sin ningún otro elemento adicional, sólo el cubo o base y las palas.
Con esta disposición inclinada de las palas, se ha comprobado que en cualquier fluido, el chorro o vena de fluido generada por la hélice no sigue en direcciones (y sentidos) divergentes aguas abajo a partir del área de barrido de la hélice, es decir, no sigue en direcciones perpendiculares a la superficie de barrido cónica de la hélice (no obstante, estas direcciones perpendiculares a la superficie de barrido cónica, son las direcciones reales de empuje de las palas sobre el fluido). De forma "a primera vista no lógica", tanto el caudal de entrada de fluido en la hélice como el caudal de salida de fluido siguen una dirección sustancialmente paralela al eje de giro de la hélice (para no complicar la explicación, se dice en este documento que la dirección es sustancialmente paralela al eje de giro, aunque en realidad la vena de fluido tiene cierta convergencia en el sentido aguas abajo, igual que en el caso de la -hélice-clásica). De-esta manera, se produce una deflexión del fluido respecto a las direcciones "a primera vista lógicas" que el fluido debiera seguir y que serían perpendiculares al área de barrido cónica (dando lugar a un chorro divergente desplazando una enorme cantidad de masa de fluido). Lo que ocurre en realidad es un fenómeno físico que puede llamarse "efecto fluido estático" o "efecto fluido externo" y con consecuencias similares en algunos aspectos (no en todos) al conocido "efecto suelo" en rotores de helicópteros, alas de avión o vehículos de colchón de aire, producido por la deflexión del fluido en el suelo. En el caso de la presente invención, la deflexión del fluido se produce en la misma área de barrido (y no en la tierra o el agua que siempre están a cierta distancia del área de barrido de las palas). Efectivamente, el derrame de la vena impulsada por la hélice es sustancialmente paralela al eje de la hélice, pues es por donde toda la masa de fluido impulsada por la hélice alrededor de su eje de giro encuentra menos resistencia para progresar su movimiento. Es, por lo tanto, la enorme resistencia que ofrece el fluido situado en las direcciones periféricas perpendiculares al área de barrido cónica, su inercia o momento lineal, el que obliga al caudal que sale de la hélice a seguir en la dirección sustancialmente paralela al eje de giro de la hélice. Hay por lo tanto una deflexión del chorro o caudal y, como se sabe, cuando un chorro sufre deflexión por un elemento exterior se incrementa la fuerza de reacción de la tobera, ala o rotor que genera el chorro, tanto más cuanto mayor es el ángulo de deflexión y mayor la proximidad de las palas al lugar donde se produce la deflexión. En el caso de la invención, la deflexión viene provocada no por el suelo o agua próximos, sino por el fluido en reposo o movimiento alrededor de la hélice, fuera de los límites de la estela o del volumen de control, que se comporta como una barrera sólida. Como es bien sabido, cuando la deflexión es provocada externamente, por un elemento externo al sistema en movimiento, se produce una disminución del ángulo de ataque inducido sobre las palas, con lo cual disminuye la resistencia inducida y aumenta la sustentación y por lo tanto la tracción y el rendimiento de la hélice. Esta disminución del ángulo de ataque inducido origina menores pérdidas por vórtice en punta de pala y por flujo cruzado en el borde de salida. La presión sobre el intradós de las palas aumenta por motivo de la deflexión; este fenómeno tiene una importante aportación positiva adicional que es disminuir las pérdidas marginales en punta de pala y de flujo cruzado en el borde de salida. La deflexión citada, aunque es real, es difícil de observar directamente, ya que a primera vista parece ser que el caudal, después de "pasar por" las palas, simplemente sigue en la misma dirección en la que venía antes de llegar a la hélice. Sin embargo, teóricamente se puede comprender dicha- eflexión, la cual-corresponde-al ángulo de-inclinación-de las palas "aguas arriba" respecto a un plano normal al eje de giro. Como se sabe, un cambio de dirección equivale a una aceleración del fluido, aceleración que hay que sumar a la aparente en dirección normal, es decir paralela al eje de giro. Por lo tanto, la tracción de la hélice se ve incrementada de acuerdo con el seno del ángulo de inclinación de las palas aguas arriba o el seno del ángulo de deflexión, que tienen el mismo valor. A este incremento se le puede llamar "flotabilidad". Si el ángulo mencionado es de 45 grados, el "coeficiente de flotabilidad" sería de 1 ,7 para la ecuación que establece la fuerza de empuje o tracción, con lo cual por este concepto la tracción se ve incrementada un 70% -a esto se debe el menor resbalamiento- y aparte de esto, como se ha explicado anteriormente, disminuye la resistencia inducida, con lo cual disminuye el par absorbido por la hélice aumentando de esta forma aún más el rendimiento. Hay que tener en cuenta que para un ángulo de ataque de 15 grados, la resistencia inducida es aproximadamente el triple que la parásita. También hay que tener en cuenta que en este caso, al contrario del efecto suelo, la deflexión se produce en la misma área de barrido de las palas, con lo cual el incremento de empuje por proximidad de la deflexión del chorro a las palas es máximo. La "flotabilidad" referida es con referencia a un sistema dinámico, es decir, mientras está funcionando con régimen permanente, ¡nteractuando la hélice y el fluido que la rodea.
En la ecuación que define el empuje o tracción de una hélice clásica (fuerza igual a densidad por caudal y por velocidad de salida menos velocidad de entrada del chorro: F=pQ(vs-ve)), en la hélice de la presente invención y para obtener dicha fuerza habría que multiplicar también por la unidad más el seno del ángulo de inclinación aguas arriba de las palas, con lo cual para un ángulo de 45 grados habría que multiplicar por 1 ,7, para un ángulo de 30 grados por 1 ,5, etc.; estas cifras corresponderían al "coeficiente de flotabilidad".
Por lo tanto, la invención aumenta la potencia desarrollada (la tracción indicada anteriormente multiplicada por la velocidad de la nave). Por otra parte, la potencia gastada es igual a potencia desarrollada más la energía cinética que en la unidad de tiempo se pierde en la estela (energía cinética igual a un medio de la densidad por el caudal y por el cuadrado de la velocidad de salida del chorro menos la de entrada). El rendimiento teórico es el cociente de la potencia desarrollada entre la potencia gastada; aunque la potencia desarrollada aumenta por el menor resbalamiento, el rendimiento es siempre inferior a la unidad, puesto que siempre hay cierta energía cinética que se pierde en la estela. (Queda resuelta de esta -forma la=aparente paradoja de un-rendimiento superior a la unidad -lo cual es imposible-, debido al extraordinario incremento de empuje; la teoría de la cantidad de movimiento empleada no proporciona una explicación exacta sobre el comportamiento de la hélice, pero entendemos que sirve como aproximación y, sobre todo, para explicar, de forma general, el por qué funciona).
El incremento de tracción o empuje que ofrece la hélice de la invención se mantiene para cualquier velocidad de la nave respecto a la hélice clásica (es decir, con respecto a la hélice con las palas perpendiculares al eje de giro de la hélice). En algunas aplicaciones navales con hélices muy próximas a la superficie, para evitar vibraciones excesivas, la hélice puede preferiblemente estar alojada dentro de una tobera concéntrica a dicha hélice y que envuelve la hélice, en su extensión axial, desde los extremos libres o puntas de las palas, aguas arriba, hasta el doble de su distancia normal al extremo de las raíces o pies de dichas palas, aguas abajo; esta tobera tiene preferiblemente la parte anterior de la pared próxima a los extremos libres (las puntas) de las palas, es decir, su distancia radial con respecto a las palas es muy pequeña. Dicha tobera puede ser fija, es decir, unida al casco de la nave, o a la placa antiventilación o a la cola en el caso de motores fueraborda. La longitud indicada para la tobera puede ser la mínima recomendable. En las hélices navales, la componente de la fuerza centrífuga que tiende a flexionar las palas queda compensada por la reacción del chorro sobre el intradós de las palas, al ser la densidad del agua muy alta, y por la resistencia estructural de la hélice (las hélices navales suelen ser muy robustas).
En cambio, en hélices aéreas la componente de la fuerza centrífuga no se compensa por ninguno de estos dos factores, debido a la escasa densidad del aire (800 veces inferior a la densidad del agua). Por lo tanto es conveniente (o necesario) adoptar medidas adicionales, especialmente a la vista del mayor número de revoluciones por minuto y teniendo en cuenta la menor resistencia estructural a la flexión (aunque es posible que pudieran darse casos de hélices aéreas de pequeño diámetro normal y poca inclinación aguas arriba en los que, a bajas velocidades de rotación, se pudiera prescindir de elementos de refuerzo adicionales).
En aplicaciones aéreas como hélice tractora, cada pala puede estar unida, por el lado del extradós, a una prolongación del árbol motor, mediante uno o varios tirantes de sujeción (el árbol motor puede atravesar el cubo de la hélice y estar unido a él); dicha prolongación del árbol motor sería en el sentido aguas arriba; el diámetro de dicha prolongación del árbol motor, así como el material, pueden ser los mismos que los del árbol motor.
En aplicaciones aéreas como hélice propulsora, en las que el motor va delante o aguas arriba con respecto a la hélice, cada pala puede estar unida, por el lado del extradós, al árbol motor, mediante uno o varios tirantes de sujeción. El árbol motor puede ser más largo de lo habitual para la hélice clásica, dando lugar a una mayor distancia entre el motor y la hélice.
En el caso de la hélice tractora, para obtener mayor rendimiento y disminuir la resistencia aerodinámica de los tirantes de sujeción, conviene que cada tirante de sujeción tenga forma de pala en posición de bandera para velocidad de crucero (es decir, el tirante de sujeción no tendría función tractora, sólo serviría para soportar la fuerza centrífuga de las palas de la hélice).
Para evitar o reducir vibraciones ocasionadas por una prolongación excesiva del árbol motor respecto a los cojinetes de bancada, conviene que los tirantes de sujeción sean perpendiculares a la prolongación del árbol motor, tanto si tienen forma de pala como si no la tienen.
En ventiladores para turborreactores, cada pala puede estar unida, por el lado del extradós, al rotor del turborreactor, mediante uno o varios tirantes de sujeción. Dicho rotor puede constituir el árbol motor y puede servir también directamente de base de hélice. Los tirantes de sujeción pueden estar unidos por su raíz a distintos discos del rotor del turborreactor, y dicho rotor puede disponer de múltiples juegos de palas con sus correspondientes tirantes a lo largo de su longitud, estando las raíces de los diferentes juegos de palas fijadas a respectivos discos del rotor del turborreactor. Tanto las palas como los tirantes pueden estar rodeados por un conducto carenado fijo.
En los ventiladores o "fan" puede ser conveniente que cada tirante de sujeción tenga forma de pala, en posición de bandera para velocidad de crucero. Los tirantes de sujeción son preferiblemente fijos.
Las raíces de las palas y de los tirantes pueden estar unidas a los discos del rotor del turborreactor por el sistema de bulón frenado. De acuerdo con el sistema de bulón frenado, las raíces se introducen en un alojamiento o canal en la periferia de un disco del rotor y se sujetan radialmente mediante un bulón con retención axial.
Las condiciones de optimización de esta hélice son las siguientes: el diámetro normal, el paso geométrico, la proyección normal de la superficie de las palas, es decir, la proyección sobre un plano perpendicular al eje de giro y las revoluciones por minuto, tienen el mismo valor cuantitativo que en la hélice clásica correspondiente para-el mismo motor, la-misma-reducción al árbol de-salida. y prestaciones de la nave con un incremento de resistencia correspondiente al incremento de empuje (entendiéndose por hélice clásica la que tiene las palas perpendiculares al eje de giro); la longitud de cada pala es igual a la longitud de la pala convencional dividida por sin , y la superficie de cada pala es igual a la superficie de la pala clásica dividida por sinα, respecto a la pala convencional correspondiente para el mismo motor, la misma reducción al árbol de salida y prestaciones de la nave con un incremento de resistencia correspondiente al incremento de empuje. Entre los conceptos de diámetro normal y longitud de pala, así como entre proyección normal de la superficie de las palas y superficie de pala, hay correspondencia pero no significan lo mismo. Aunque la proyección normal, es decir, la proyección de la superficie de las palas sobre un plano perpendicular al eje de giro de la hélice, es la misma que en el caso de poner una hélice clásica al mismo motor, debido a la inclinación aguas arriba su longitud es mayor para él mismo diámetro normal y por lo tanto su superficie también lo es; aunque el diámetro normal es el mismo, como la dirección del flujo es sensiblemente paralelo al eje de giro de la hélice, aumenta el factor de solidez puesto que el recorrido de una molécula de fluido sobre el intradós y el extradós de las palas es mayor; para 45 grados el recorrido se incrementa aproximadamente un 41%. Como se sabe, el factor de solidez es la relación entre la superficie de las palas y el área de barrido.
En la literatura técnica una pala se divide en raíz o pié de pala, cuerpo y punta de pala -algunas veces a este último sector de pala se le denomina extremo de pala-. La punta de pala es el punto extremo que separa el borde de entrada (o "borde de ataque") del borde de salida (o "borde de fuga") de cada pala, de acuerdo con el movimiento relativo del fluido sobre las palas.
Si las palas estuvieran inclinadas aguas abajo no se produciría la deflexión del chorro por causa de un agente externo al sistema en movimiento -aire o agua que lo rodea-, sino por convergencia del propio chorro con un incremento de velocidad, lo que significaría mayores pérdidas en la estela por el incremento de energía cinética; el "coeficiente de flotabilidad" sería inferior a la unidad; en el caso de la hélice clásica, su valor es la unidad.
Las ventajas de la invención son, por lo tanto, un aumento considerable de la tracción y del rendimiento de la hélice naval, aérea o ventilador de turborreactor, para la misma potencia empleada, es decir gastada, con la consiguiente disminución del consumo específico de combustible. En la carrera de despegue de los aviones, tenemos -para 45 grados de inclinación "aguas arriba" de las palas, un 70% más de empuje para la misma potencia gastada, lo cual es importante, dado que es cuando más se necesita el empuje. En cuanto a la arrancada en lanchas o buques, el incremento de tracción es menor, debido a la pérdida de carga en la tobera. (Esto sin tener en cuenta la disminución de resistencia inducida, que hace que aumente el rendimiento e indirectamente el empuje en la potencia desarrollada.)
BREVE DESCRIPCIÓN DE LOS DIBUJOS A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con unas realizaciones de dicha invención que se presentan como ejemplos ilustrativos y no limitativos de ésta.
La figura 1A es una representación esquemática de una hélice vista de lado, adecuada para, por ejemplo, submarinos (cuya función principal sea navegar sumergidos), con palas inclinadas en un ángulo de 45 grados aguas arriba, respecto a un plano perpendicular al eje de giro.
La figura 1 B es una representación esquemática análoga a la figura 1A, pero representando la sección o corte de una de las palas, en el plano que incluye el eje de giro y la punta de pala.
La figura 1 C es una representación esquemática de la hélice ilustrada en la figura 1A, pero vista de frente desde aguas abajo
La figura 2 es una representación en corte de una de las palas de la figura 1A. La figura 3 es una representación esquemática de una hélice con dos palas sobre la cual se ¡lustran vectores que representan la fuerza centrífuga y la presión, así como sus componentes.
La figura 4 es una representación esquemática de palas con planta rectangular funcionando en dos posiciones distintas, la primera (la de la izquierda) como en la clásica (perpendicular al eje de giro) y la segunda (la de la derecha) inclinada con un ángulo de 45 grados aguas arriba; en ambas posiciones se representa la trayectoria de una molécula de fluido sobre la superficie de las palas.
La figura 5 es una representación esquemática de una hélice montada en un motor fueraborda, vista de lado y con tobera.
La figura 6 es una representación esquemática de la estructura ilustrada en la figura 5, pero vista de frente desde aguas abajo. La figura 7 es una representación esquemática de una hélice aérea con dos palas^y cubo-formando una sola piezarvista de lado; con sus tirantes-de-sujeción.
La figura 8 es una representación esquemática de la hélice con su estela de deslizamiento y la distribución de velocidades, en dos secciones. a una cierta distancia de ella; se indican el ángulo de inclinación de las palas y el ángulo de deflexión del flujo que pasa por la hélice.
La figura 9 es una representación esquemática de un ventilador para turborreactores de doble flujo, visto de lado, representándose sólo dos de las múltiples palas, con sus correspondientes tirantes de sujeción.
DESCRIPCIÓN DE REALIZACIONES PREFERIDAS DE LA INVENCIÓN Las figuras 1A-C, 5, 7 y 9 reflejan diferentes hélices de acuerdo con la invención, que comprenden: una base 2, 15 (en la figura 9, dicha base forma parte integral del rotor 21 de un turboreactor); una pluralidad de palas 1 , 14 alargadas, teniendo cada pala un primer extremo 1A, 14A que está unido a la base y un segundo extremo libre que define una punta de pala 1 B, 14B que separa un borde de entrada (o "borde de ataque") 1C, 14C de la pala de un borde de salida (o "borde de fuga") 1 D, 14D de la pala. Cada hélice está configurada para girar sobre un eje de giro 100, impulsada por un árbol motor de una nave, con el fin de impulsar dicha nave en una primera dirección D1 paralela al eje de giro 100 y correspondiente a la dirección de marcha hacia delante de la nave, impulsando un fluido en una segunda dirección D2 general opuesta a dicha primera dirección. Las palas se extienden en una tercera dirección D3 desde el primer extremo 1A, 14A hacia la punta de pala 1B, 14B. Tal y como se ilustra de forma esquemática en la figura 1B, dicha tercera dirección corresponde a la dirección en la que se extiende el corte o sección 1 E de la pala en el plano que incluye el eje de giro 100 y la punta de pala 1 B.
De acuerdo con la invención, dicha tercera dirección D3 forma, en un plano que incluye el eje de giro 100, un ángulo agudo α con dicha primera dirección D1 ,
10°<α<80°. Concretamente, en las figuras, α=45 grados. Dicho de otro modo, las palas están inclinadas "aguas arriba" con un ángulo de (90°-α), en este caso, con 45 grados, si las comparamos con las palas "clásicas" perpendiculares al eje de giro.
En las figuras 1A-1C se observa una hélice adecuada para, por ejemplo, un submarino, cuyas palas 1 están inclinadas aguas arriba 45 grados, como indica la línea de referencia 3 y la tercera dirección D3 que forma un ángulo α=45 grados con una'primera dirección'Dt que corresponde a la dirección de marcha hacia delante de la nave. Las palas 1 están unidas a un cubo o base 2 montada en el árbol motor (no ilustrado en las figuras 1A-1C) mediante un perno de fijación 7; la pala superior en la figura presenta el extradós 4 y la pala inferior el intradós 5; el soporte 6 de la base de la hélice llega cerca del plano de gravedad de las palas, con lo cual se aumenta el equilibrio dinámico. El cojinete de apoyo del árbol de la hélice está dentro del soporte 6, integrado en el casco 8 de la nave, tal y como se ve en la figura. El cojinete puede ser sólo radial o radial y axial si no existe otro axial en el interior. En las figuras 1A-1C sólo se representan dos palas opuestas, para no complicar el dibujo. Normalmente, es preferible que la hélice tenga, al menos, tres palas. En las figuras 1A y 1B, las flechas D4 y D2 indican el sentido del chorro o vena de agua que mueve la hélice, antes y después de pasar por la hélice, respectivamente. En la figura 1C, la flecha 200 indica el sentido de giro de la hélice. En la figura 2 se observa el intradós 5 de superficie cóncava y el extradós 4 de superficie convexa; la figura está orientada en el plano de acuerdo con la figura 1A, por lo que arriba a la izquierda en la figura 2 queda el borde de entrada (o de ataque) 1C y abajo a la derecha queda el borde de salida (o de fuga) 1 D de la pala 1.
En la figura 3 se observa la representación vectorial de la fuerza centrífuga F y sus dos componentes, una perpendicular a la pala F2 que origina las tensiones de flexión y la otra en la misma dirección que la pala F1 que origina tensiones de estiramiento, con el mismo módulo, puesto que la inclinación de las palas es de 45 grados. También se observa la representación del vector de presión P de la hélice, su componente efectiva P1 y la otra componente P2; la fuerza P está referida a la presión estática sobre el área cónica de barrido de las palas.
En la figura 4 se observa la trayectoria de una molécula de fluido sobre la superficie de palas de planta rectangular, tanto en el caso de una pala V no inclinada (es decir, una pala de una hélice clásica de acuerdo con lo anteriormente comentado) (este caso corresponde a la trayectoria desde A hasta B),' como en el caso de una pala 1" de una hélice de acuerdo con la invención, inclinada 45 grados (este caso corresponde a la trayectoria desde A1 a B1). Tal y como se puede comprobar, en el segundo caso el recorrido (A1-B1) es exactamente la diagonal de un cuadrado que tiene como lado el recorrido (A-B) de la molécula en el primer caso. Por lo tanto, el factor de solidez aumenta. En las figuras 5 y 6 se observa una hélice montada en fueraborda con tobera cilindrica 9 y con placa antiventilación 11 ; la tobera cilindrica 9 se une a la placa -antiventilación-1-1 por- medio de pernos 12 que- atraviesan la placa antiventilación y se alojan en pitones 10 soldados a la tobera. La placa antiventilación 11 está integrada en una cola 13 de un motor fueraborda. En la figura 5 las flechas D2 indican el sentido del agua que ha pasado por la hélice y en la figura 6 la flecha 200 indica el sentido de rotación de la hélice. (Las demás referencias numéricas corresponden a elementos análogos a los que ya se han comentado en relación con la figura 1A)
En la figura 7 se observa una hélice aérea con las palas 14 aéreas (con sus respectivos bordes de entrada 14C y bordes de salida 14D), presentando la pala de arriba el extradós 4 y la de abajo el intradós 5; también se observa el cubo o base 15 de la hélice, el árbol motor 16, una pletina de conexión 17 del árbol, una prolongación 18 del árbol motor que atraviesa el cubo 15, tirantes de sujeción 19 (que pueden ser cilindros de acero macizo de alta resistencia a la tracción), y pernos con tuercas 20 que unen el cubo o base 15 de la hélice a la pletina 17 del árbol motor. En el árbol motor 16, la flecha 300 indica el sentido de giro (correspondiente a marcha hacia delante); las otras cuatro flechas D2 y D4 indican la dirección y el sentido del chorro de aire que pasa por la hélice, después y antes de pasar por la hélice, respectivamente. Los tirantes de sujeción 19 pueden tener los extremos "externos" en forma de tronco de cono, con una base mayor situada en los extremos y una base menor con el mismo diámetro que los tirantes, estando estos extremos troncocónicos alojados en respectivos alojamientos troncocónicos practicados en las palas. Naturalmente, para disminuir la resistencia aerodinámica de los extremos cónicos, éstos se pueden mecanizar para integrar su superficie en el intradós de las palas. Los tirantes de sujeción pueden estar unidos a la prolongación 18 del árbol motor mediante pasadores frenados (no ¡lustrados en la figura). Si se desea disminuir la resistencia aerodinámica y el ruido, cada tirante puede tener forma de pala de hélice con perfil simétrico, con la cuerda con el mismo valor a lo largo de toda la longitud del tirante e igual al diámetro de la base menor del tronco de cono periférico, para que se pueda entrar el tirante a través de la pala y con dichos tirantes en forma de pala fijados en posición de bandera para velocidad de crucero, es decir, sin función tractora.
En la figura 8, se observa una representación esquemática de las palas aéreas 14 de la figura anterior, así como del árbol motor 16; también se observa el ángulo de inclinación C (complementario al ángulo α) de las palas aguas arriba respecto al plano perpendicular o normal al árbol motor y que pasa por el centro del cubo o base de la hélice. También se representa el ángulo de deflexión D entre una línea perpendicular a la pala y otra línea paralela al eje de giro de la hélice, en un mismo plano. Se observa que -tanto -e ángulo de-inclinación β de-las-palas-aguas arriba como el ángulo de deflexión D del fluido, son siempre iguales (y complementarios al ángulo α); en este caso concreto son de 45 grados. El ángulo de deflexión está formado por una línea paralela al eje de giro y por la dirección que seguiría el chorro de fluido a partir del área de barrido, si no se diera el referido "efecto fluido externo" (es decir, siguiendo unas direcciones perpendiculares al área cónica de barrido): Sin embargo, en realidad y de acuerdo con lo que se ha comentado más arriba, el fluido es obligado a un derrame sustancialmente paralelo al eje de giro, en la llamada "segunda dirección D2". La "deflexión" como tal no se observa puesto que el fluido lleva la misma dirección antes y después del área de barrido, pero de hecho existe. En realidad, el ángulo de deflexión D no es exactamente el que se ilustra en la figura 8 sino que es un poco mayor que el ángulo de inclinación C de las palas, debido a que existe cierta convergencia del fluido, tal y como se puede observar en la superficie límite E de la estela. No obstante, para simplificar la explicación y cálculos, se puede optar por considerar que los ángulos C y D son aproximadamente idénticos y que la dirección del chorro de fluido después (aguas abajo) de la hélice es sustancialmente paralela al eje de giro.
En la figura 9 se observan las palas aéreas 14 con sus tirantes de sujeción 19 montadas en el rotor 21 del turborreactor (sólo se representan dos de las múltiples palas que lleva el mecanismo, para mayor simplicidad y claridad del dibujo). El conducto-carena 22 rodea las palas, con la misión de reducir la velocidad del aire que llega al ventilador, al ser divergente respecto al sentido de la corriente. También se representa esquemáticamente el compresor axial 23. Tanto las raíces de las palas 14 como las raíces de los tirantes de sujeción 19 conviene que estén ancladas en los discos del rotor por el sistema de bulón frenado, que es uno de los sistemas que se usan en la actualidad para este tipo de mecanismos.
Los tirantes de sujeción 19 son especialmente convenientes en aplicaciones aéreas. Sin embargo, en hélices de pequeño diámetro normal, bajas revoluciones y hasta 15 grados de inclinación (es decir, con α>75°), es probable que no hagan falta tirantes. Los ventiladores para turborreactores corresponden a una aplicación particular de las hélices aéreas.
Los materiales, tamaño, forma y disposición de los elementos serán susceptibles de variación, siempre y cuando ello no suponga una alteración del concepto básico de la invención. A lo largo de la presente descripción y reivindicaciones la palabra "comprende" y- variaciones -de -la— misma,- como -comprendiendo"— no pretenden~excluir otros componentes.

Claims

REIVINDICACIONES
1.-- Una hélice, que comprende: una base (2, 15); una pluralidad de palas (1 , 14), teniendo cada pala un primer extremo (1A, 14A) que está unido a la base y un segundo extremo libre que define una punta de pala (1 B, 14B) que separa un borde de entrada (1C, 14C) de la pala de un borde de salida (1 D, 14D) de la pala; estando la hélice configurada para girar alrededor de un eje de giro (100), impulsada por un árbol motor de una nave, con el fin de impulsar dicha nave en una primera dirección (D1) paralela al eje de giro (100) y correspondiente a la dirección de marcha hacia delante de la nave, impulsando un fluido en una segunda dirección (D2) general opuesta a dicha primera dirección (D1); extendiéndose las palas (1 , 14) en una tercera dirección (D3) desde el primer extremo (1A, 14A) hacia la punta de pala (1 B, 14B), siendo dicha tercera dirección (D3) una dirección en la que se extiende una sección (1 E) de la pala en un plano que incluye el eje de giro (100) y la punta de pala; caracterizada porque dicha tercera dirección (D3) forma, en un plano que incluye el eje de giro (100), un ángulo agudo a con dicha primera dirección (D1 ), 10°<α<80°.
2.- Una hélice de acuerdo con la reivindicación 1 , caracterizada porque 20°<α<70°.
3.- Una hélice de acuerdo con la reivindicación 2, caracterizada porque 30°<α<60°.
4.- Una hélice de acuerdo con la reivindicación 3, caracterizada porque 40°<α<50°.
5.- Una hélice de acuerdo con la reivindicación 4, caracterizada porque α=45°.
6.- Una hélice de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizada porque tiene dos palas (1 , 14).
7.- Una hélice de acuerdo con cualquiera de las reivindicaciones 1-5, caracterizada porque comprende, al menos, tres palas (1 , 14).
8.- Una hélice de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizada porque las palas tienen una configuración alargada en la dirección desde el-primer- extremo (1A, 14A)-hasta ei-segundo extremo."
9.- Una hélice de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizada porque cada pala presenta un borde de entrada (1C, 14C), situado aguas arriba de un borde de salida (1 D, 14D), extendiéndose tanto el borde de entrada como el borde de salida sustancialmente en dicha tercera dirección (D3), sustancialmente desde el primer extremo hasta el segundo extremo.
10.- Un sistema de propulsión, caracterizado porque comprende al menos una hélice de acuerdo con cualquiera de las reivindicaciones 1-9 y un árbol motor (16) unido a la hélice de manera que el árbol motor (16) pueda hacer girar la hélice alrededor de su eje de giro (100).
11.- Un sistema de propulsión según la reivindicación 10, caracterizado porque adicionalmente comprende una tobera (9) situada de forma concéntrica alrededor del eje de giro (100) de la hélice y envolviendo la hélice lateralmente, presentando dicha tobera un extremo anterior de entrada de fluido y un extremo posterior de salida de fluido.
12.- Un sistema de propulsión según cualquiera de las reivindicaciones 10 y 11 , caracterizado porque cada pala (14) está unida al árbol motor o a un elemento configurado como una prolongación axial del árbol motor (18, 21), mediante al menos un tirante de sujeción (19).
13.- Un sistema de propulsión según la reivindicación 12, caracterizado porque cada pala está unida al árbol motor o a un elemento configurado como una prolongación axial del árbol motor (18, 21 ), mediante al menos dos tirantes de sujeción (19).
14.- Un sistema de propulsión según cualquiera de las reivindicaciones 12-13, caracterizado porque cada tirante de sujeción (19) está dispuesto de forma perpendicular con respecto al eje de giro (100) de la hélice.
15.- Un sistema de propulsión según cualquiera de las reivindicaciones 12-14, caracterizado porque cada tirante de sujeción tiene perfil simétrico y forma de pala en posición de bandera para velocidad de crucero de la nave.
16.- Un sistema de propulsión según cualquiera de las reivindicaciones 12-15, caracterizado porque forma parte de un ventilador para un turborreactor, estando cada pala (14) unida a una base de hélice que forma parte del árbol motor constituido por un rotor (21) del turboreactor, estando cada pala (14) unida a dicho rotor (21) también mediante al menos un tirante de sujeción (19).
17.- Un sistema de propulsión según la reivindicación 16, caracterizado porque la hélice está rodeada, en sentido radial, por un conducto-carena (22).
18.- Una nave, caracterizada porque incluye un sistema de propulsión de acuerdo con cualquiera de las reivindicaciones 10-17.
19.- Una nave según la reivindicación 18, caracterizada porque es una nave acuática.
20.- Una nave según la reivindicación 18, caracterizada porque es una nave submarina.
21.- Una nave según la reivindicación 18, caracterizada porque es una aeronave.
PCT/ES2003/000436 2002-08-30 2003-08-25 Hélice, sistema de propulsión con hélice y nave con sistema de propulsión WO2004020279A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2003262576A AU2003262576A1 (en) 2002-08-30 2003-08-25 Propeller, propeller propulsion system and vessel comprising propulsion system
EP03790966A EP1541460A1 (en) 2002-08-30 2003-08-25 Propeller, propeller propulsion system and vessel comprising propulsion system
PCT/ES2003/000441 WO2004020280A1 (es) 2002-08-30 2003-08-29 Hélice, sistema de propulsión con hélice y nave con sistema de propulsión
US10/526,036 US20050175458A1 (en) 2002-08-30 2003-08-29 Propeller, propeller propulsion system and vessel comprising propulsion system
EP03790970A EP1541461A1 (en) 2002-08-30 2003-08-29 Propeller, propeller propulsion system and vessel comprising propulsion system
AU2003262580A AU2003262580A1 (en) 2002-08-30 2003-08-29 Propeller, propeller propulsion system and vessel comprising propulsion system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES200202000A ES2249072B1 (es) 2002-08-30 2002-08-30 Helice con las palas inclinadas.
ESP200202000 2002-08-30
PCT/ES2003/000415 WO2004020278A1 (es) 2002-08-30 2003-08-08 Hélice, sistema de propulsión con hélice y nave con sistema de propulsión
ESPCT/ES03/00415 2003-08-08

Publications (1)

Publication Number Publication Date
WO2004020279A1 true WO2004020279A1 (es) 2004-03-11

Family

ID=31970630

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/ES2003/000415 WO2004020278A1 (es) 2002-08-30 2003-08-08 Hélice, sistema de propulsión con hélice y nave con sistema de propulsión
PCT/ES2003/000436 WO2004020279A1 (es) 2002-08-30 2003-08-25 Hélice, sistema de propulsión con hélice y nave con sistema de propulsión
PCT/ES2003/000441 WO2004020280A1 (es) 2002-08-30 2003-08-29 Hélice, sistema de propulsión con hélice y nave con sistema de propulsión

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000415 WO2004020278A1 (es) 2002-08-30 2003-08-08 Hélice, sistema de propulsión con hélice y nave con sistema de propulsión

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000441 WO2004020280A1 (es) 2002-08-30 2003-08-29 Hélice, sistema de propulsión con hélice y nave con sistema de propulsión

Country Status (4)

Country Link
EP (2) EP1541460A1 (es)
AU (3) AU2003260512A1 (es)
ES (1) ES2249072B1 (es)
WO (3) WO2004020278A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0311889D0 (en) * 2003-05-22 2003-06-25 Watts Alan E Propeller
CN112587951B (zh) * 2020-12-02 2022-10-21 安徽恒星世纪空调制冷设备有限公司 一种有机溶剂低温回收装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191021320A (en) * 1909-09-13 1911-06-29 Georg Pinkert A New or Improved Propeller.
GB2156298A (en) * 1984-03-07 1985-10-09 Panaghiotis J Diamantopoulos Improvements in propellers
US6106232A (en) * 1998-02-26 2000-08-22 Wagner; Thomas V. Propeller structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1378655A (en) * 1921-05-17 Propeller
GB152233A (es) * 1900-01-01
GB144448A (en) * 1919-05-08 1920-06-17 Thornycroft John I & Co Ltd Improvements in or relating to screw propellers
US1773340A (en) * 1929-07-06 1930-08-19 Joseph D Bell Aircraft construction
GB372766A (en) * 1931-02-04 1932-05-04 Carlos Horacio Amaro Salgueiro Improvements in and relating to screw propellers and the like
US2426742A (en) * 1943-11-20 1947-09-02 Felix W Pawlowski Screw propeller
GB1576818A (en) * 1977-11-28 1980-10-15 Bowman J Scot jubilee jet propeller
US6302652B1 (en) * 1998-12-24 2001-10-16 General Dynamics Government Systems Corporation Elliptical propeller and windmill blade assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191021320A (en) * 1909-09-13 1911-06-29 Georg Pinkert A New or Improved Propeller.
GB2156298A (en) * 1984-03-07 1985-10-09 Panaghiotis J Diamantopoulos Improvements in propellers
US6106232A (en) * 1998-02-26 2000-08-22 Wagner; Thomas V. Propeller structure

Also Published As

Publication number Publication date
ES2249072A1 (es) 2006-03-16
EP1541460A1 (en) 2005-06-15
AU2003262576A1 (en) 2004-03-19
EP1541461A1 (en) 2005-06-15
WO2004020278A1 (es) 2004-03-11
WO2004020280A1 (es) 2004-03-11
ES2249072B1 (es) 2007-06-01
AU2003262580A1 (en) 2004-03-19
AU2003260512A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
ES2502475T3 (es) Dispositivo para la reducción de la demanda de potencia de propulsión de una embarcación
ES2292138T3 (es) Conjunto de propulsion para navio, que comprende una barquilla destinada a instalarse bajo la carena del navio.
ES2546427T3 (es) Disposición de hélice, en particular para vehículos acuáticos
JP5524496B2 (ja) 船舶の推進装置とそれを備えた船舶
ES2516648T3 (es) Un arreglo de propulsión y gobierno para un buque
ES2552008T3 (es) Estructura de popa de buque
ES2349744T3 (es) Una unidad de propulsión y gobierno para una embarcación de superficie.
US20100310357A1 (en) Ring wing-type actinic fluid drive
KR101425369B1 (ko) 핀 구조물을 갖는 덕트형 선체 부가물
EP0975516A1 (en) Improved fluid displacing blade
US20170291700A1 (en) Impeller-based vehicle propulsion system
FI59762C (fi) Med hopfaellbara propellerblad foersedd propeller saerskilt foer segelbaot med stationaer motor
JP6376679B2 (ja) 船尾用ダクト、船尾用ダクトの設計方法、及び船尾用ダクトを装備した船舶
EP2902312A1 (en) Marine propellers
JP2015116850A5 (es)
KR101780910B1 (ko) 덕트 장치
WO2011102103A1 (ja) ダクト付きスラスタ及びそれを備えた船舶
ES2356628T3 (es) Dispositivo en un sistema de propulsión.
WO2004020279A1 (es) Hélice, sistema de propulsión con hélice y nave con sistema de propulsión
US20050175458A1 (en) Propeller, propeller propulsion system and vessel comprising propulsion system
US5573373A (en) Propellar having optimum efficiency in forward and rewarded navigation
EP3424811A1 (en) Horizontal axis rotor and boat equipped with said rotor
GB2419861A (en) Shrouded vane marine propeller
KR20120068250A (ko) 선박용 덕트 구조체
ES2317799B1 (es) Sistema de propulsion con helice y tobera fija respecto a la helice.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003790966

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003790966

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2003790966

Country of ref document: EP