WO2004019389A1 - Mark position detection device, mark position detection method, superimposing measurement device, and superimposing measurement method - Google Patents
Mark position detection device, mark position detection method, superimposing measurement device, and superimposing measurement method Download PDFInfo
- Publication number
- WO2004019389A1 WO2004019389A1 PCT/JP2003/010582 JP0310582W WO2004019389A1 WO 2004019389 A1 WO2004019389 A1 WO 2004019389A1 JP 0310582 W JP0310582 W JP 0310582W WO 2004019389 A1 WO2004019389 A1 WO 2004019389A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mark
- waveform
- edge signal
- edge
- calculating
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7092—Signal processing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70633—Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7073—Alignment marks and their environment
- G03F9/7084—Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels
Definitions
- Mark position detecting device Description Mark position detecting device, mark position detecting method, overlay measuring device, and overlay measuring method
- the present invention relates to a mark position detecting device for detecting the position of a test mark on a substrate, a mark position detecting method, an overlay measuring device, and an overlay measuring method.
- the present invention relates to a mark position detection device suitable for position detection and the like. Background art
- an exposure process of printing a circuit pattern formed on a mask (reticle) on a resist film, and a developing process of dissolving an exposed portion or an unexposed portion of the resist film are included.
- the circuit pattern (resist pattern) is transferred to the resist film, and the resist pattern is used as a mask to perform etching or vapor deposition (processing step), thereby forming a predetermined pattern immediately adjacent to the resist film.
- the circuit pattern is transferred to the material film (pattern forming step).
- circuit patterns of various material films are laminated on a substrate (semiconductor wafer or liquid crystal substrate), and the circuit of a semiconductor element or a liquid crystal display element is formed. Is formed.
- the alignment between the mask and the substrate This is an alignment between the circuit pattern and the circuit pattern formed on the substrate in the previous pattern forming step, and is performed using an alignment mark indicating a reference position of each circuit pattern.
- Inspection of the superposition state of the resist pattern on the substrate is performed by superimposing the resist pattern on the circuit pattern (hereinafter referred to as “base pattern”) formed in the previous pattern formation step.
- base pattern the circuit pattern formed in the previous pattern formation step.
- This is an alignment detection, which is performed using an overlay mark indicating a reference position of each of the base pattern and the resist pattern.
- the test marks are positioned within the field of view of the apparatus, and are detected using an image sensor such as a CCD camera. An image of the inspection mark is taken, and the detection is performed based on an edge signal among the obtained image signals.
- the image signal represents a distribution relating to a luminance value for each pixel on the imaging surface of the imaging element.
- the edge signal is a sudden change in the luminance value of the image signal.
- a well-known algorithm called a correlation method is used.
- the correlation method since the correlation operation is performed using the entire edge signal waveform, it is hardly affected by signal noise, and the position of the test mark can be calculated with good reproducibility.
- the correlation method is an algorithm on the assumption that the waveform of the edge signal is symmetric. For this reason, when the symmetry of the waveform of the edge signal is reduced, an error increases when calculating the position of the test mark. That is, the position of the test mark cannot be accurately detected.
- the symmetry of the waveform of the edge signal may be reduced even when the shape of the edge pair of the test mark is symmetrical. Disclosure of the invention
- An object of the present invention is to provide a mark position detecting device, a mark position detecting method, a mark position detecting method, an overlay measuring device, which can accurately detect the position of a test mark even if the waveform of an edge signal relating to an edge pair of the test mark is asymmetric. And to provide an overlay measurement method.
- the mark position detecting device of the present invention includes one or more edge pairs formed on a substrate.
- Illuminating means for illuminating the test mark; imaging means for capturing an image based on light from the test mark and outputting an image signal composed of a plurality of sample points; and a sudden change in the luminance value of the image signal
- a detecting means for detecting a center position of the test mark based on the edge signal, wherein the detecting means comprises: A correction unit that corrects the asymmetry of the edge signal by removing one or more of the sample points included in the edge signal; a waveform based on the edge signal corrected by the correction unit; Calculating means for calculating the center position by calculating a maximum correlation value in a correlation function with a waveform obtained by folding back.
- the waveform of the edge signal after the asymmetry has been corrected by the correcting means (that is, a symmetrical waveform) is used, so that the position of the test mark can be detected with high accuracy.
- Another mark position detection device of the present invention includes: an illumination unit that illuminates a test mark including one or more edge pairs formed on a substrate; and an image based on light from the test mark.
- the mark position detection device uses a calculation waveform (ie, a symmetrical waveform) having the largest correlation function maximum correlation value among a plurality of different calculation waveforms, the position of the test mark is accurately detected. be able to.
- a calculation waveform ie, a symmetrical waveform
- the detection unit may be configured to perform the correction before the correction.
- Comparing means for comparing the maximum correlation value calculated by the first calculating means with a predetermined threshold value using the calculation waveform based on the edge signal, wherein the correcting means As a result, when the maximum correlation value based on the uncorrected edge signal is smaller than the threshold value, the edge signal is corrected.
- a mark position detection method includes: an illumination step of illuminating a test mark including one or more edge pairs formed on a substrate; and capturing an image based on light from the test mark.
- a detection step for detecting the center position of the edge signal wherein the detecting step corrects the asymmetry of the edge signal by removing one or more of the sample points included in the edge signal. Calculating a maximum correlation value in a correlation function between a correction step, a waveform based on the edge signal after the correction in the correction step, and a waveform obtained by folding the waveform. And calculating the center position.
- the waveform of the edge signal after the asymmetry has been corrected in the correction step (that is, a symmetrical waveform) is used, so that the position of the mark to be detected can be detected accurately.
- Another mark position detection method of the present invention includes: an illumination step of illuminating a test mark including one or more edge pairs formed on a substrate; capturing an image based on light from the test mark; An imaging step of outputting an image signal composed of sample points of the following; an extraction step of extracting a rapidly changing portion of a luminance value from the image signal as an edge signal relating to the edge pair; A detection step of detecting a center position of a detection mark, wherein the detection step corrects the edge signal by removing one or more sample points included in the edge signal.
- a first calculation step of calculating a value, most magnitude among the plurality of the maximum correlation value calculated by the first calculation step with each of a plurality of different said operational waveform And a second calculating step of calculating the center position based on the one maximum correlation value selected in the selecting step.
- the operation waveform having the largest correlation function maximum correlation value that is, a symmetrical waveform
- the position of the target mark is accurately detected. be able to.
- the maximum correlation value calculated in the first calculating step using the calculation waveform based on the uncorrected edge signal is determined in advance.
- An overlay measurement apparatus is an overlay measurement apparatus for inspecting an overlay state of a plurality of patterns formed on a substrate, wherein a center position of a test mark indicating a reference position of each of the plurality of patterns is determined.
- a mark position detecting device for detecting each of the mark positions; and a measuring means for measuring an amount of misalignment of the plurality of patterns based on a difference between the respective center positions detected by the mark position detecting device. Things.
- An overlay measurement method is directed to an overlay measurement method for detecting an overlay state of a plurality of patterns formed on a substrate by using the above mark position detection method. Detecting a center position of a test mark indicating a reference position of each of the patterns, and superimposing the plurality of patterns based on a difference between the respective center positions detected in the detection step. The method further includes a measuring step of measuring a shift amount.
- FIG. 1 is a diagram showing the overall configuration of the overlay measurement device 10.
- FIG. 2 is a plan view (a) of the overlay mark 30 formed on the wafer 11 and diagrams (b :) to (d) illustrating images in the observation area.
- FIG. 3 is a diagram showing an example of a representative waveform (a) and a waveform (b) of an edge signal in a standard overlay mark 30.
- FIG. 4 is a diagram showing an example of a representative waveform (a) and a waveform (b) of an edge signal in a standard overlay mark 30.
- FIG. 5 is a diagram showing an example of a representative waveform (a) and a waveform (b) of an edge signal in the superimposition mark 30 in the proximity state.
- FIG. 6 is a diagram showing an example of the representative waveform (a) and the waveform (b) of the edge signal in the superimposition mark 30 in the proximity state.
- FIG. 7 is a flowchart showing a procedure of position detection in the overlay measurement device 10.
- FIG. 8 is a diagram illustrating a waveform example of an edge signal after the symmetry is improved.
- FIG. 9 is a diagram for explaining an improvement in symmetry and an improvement in detection accuracy.
- FIG. 10 is a diagram showing an overlay mark (a) having a large size difference between the frame mark and the box mark and a small overlay mark (b).
- the overlay measurement apparatus 10 includes a detection stage 12 that supports the wafer 11 and an illumination optical system (13 to 13) that emits illumination light L1 toward the wafer 11 side. 1
- an imaging optical system (16, 17) for forming an image of the wafer 11 for forming an image of the wafer 11
- a CCD image sensor 18 for forming an image of the wafer 11
- the wafer 11 (base Plate).
- the wafer 11 On the wafer 11, a plurality of circuit patterns (all not shown) are laminated on the surface.
- the uppermost circuit pattern is the resist pattern transferred to the resist film.
- the wafer 11 is in the process of forming another circuit pattern on the underlying pattern formed in the previous pattern forming process (exposure to the resist film, etching of the material film, and etching of the material film). Before).
- FIG. 2 (a) is a plan view of the overlay mark 30.
- the overlay mark 30 is composed of an outer frame mark 31 and an inner box mark 32, and one of the frame mark 31 and the box mark 32 is a base mark and the other is a resist mark.
- the base mark and the resist mark are formed simultaneously with the base pattern and the resist pattern, respectively, and indicate the reference positions of the base pattern and the resist pattern.
- the frame mark 31 includes two edge pairs E 1 and, 2 in the X direction.
- One edge pair ⁇ 1 is composed of a left edge E 1 (L) and a right edge ⁇ 1 (R), and the other edge pair E 2 is a left edge E 2 (L) and a right edge.
- E 2 (R) That is, the frame mark 31 has two edges E 1 (L) and E 2 (L) on the left side and two edges E 1 (R) and E 2 (R) on the right side. The same applies to the Y direction of the frame mark 31.
- the box mark 32 includes one edge pair E 3 in the X direction.
- the edge pair E 3 is composed of a left edge E 3 (L) and a right edge E 3 (R). That is, the box mark 32 has one edge E 3 (L) on the left side and one edge E 3 (R) on the right side.
- the frame mark 31 and the box mark 32 respectively correspond to the “test mark” in the claims.
- a material film to be processed is formed between the resist mark and the resist pattern, and the base mark and the base pattern.
- the inspection stage 12 of the overlay measurement device 10 holds the wafer 11 in a horizontal state and can be moved to an arbitrary position in a horizontal plane.
- the observation area including the overlay mark 30 (FIG. 2 (a)) of the wafer 11 is positioned within the field of view of the imaging optical system (16, 17).
- the normal direction of the inspection stage 12 is the Z direction, and the mounting surface of the wafer 11 is the XY surface.
- the illumination optical system (13 to 15) is composed of a light source 13, an illumination lens 14, and a prism 15, and the prism 15 is on the optical axis O2 of the imaging optical system (16, 17). Placed in The optical axis ⁇ 2 of the imaging optical system (16, 17) is parallel to the Z direction. The reflection / transmission surface 15 a of the prism 15 is inclined at approximately 45 ° with respect to the optical axis O 2. The optical axis O l of the illumination optical system (1 3-1 5) is perpendicular to the optical axis O 2 of the imaging optical system (16, 17).
- the imaging optical system (16, 17) is an optical microscope section composed of an objective lens 16 and an imaging lens 17, and the objective lens 16 is connected between the detection stage 12 and the prism 15 Placed between.
- the imaging lens 17 is an optical element that functions as a second objective lens, and is disposed on the opposite side of the prism 15 from the objective lens 16.
- the light emitted from the light source 13 is guided to the prism 15 via the illumination lens 14, and After being reflected by the reflection transmitting surface 15a (illumination light L1), it is guided to the objective lens 16 side. After passing through the objective lens 16 (illumination light L 2), the light enters the wafer 11 on the inspection stage 12. At this time, the observation area of the wafer 11 is almost vertically illuminated by the illumination light L2.
- reflected light L3 is generated according to the uneven structure (overlap mark 30) there.
- the reflected light L 3 is guided to the imaging lens 17 via the objective lens 16 and the prism 15, and the imaging surface of the CCD imaging device 18 is operated by the action of the objective lens 16 and the imaging lens 17.
- Image on top Is done.
- an enlarged image (reflection image) based on the reflected light L3 is formed on the imaging surface of the CCD imaging device 18.
- the CCD image sensor 18 is an area sensor in which a plurality of pixels are two-dimensionally arranged, captures a reflection image on an imaging surface, and outputs an image signal to the image processing device 19.
- the image signal is composed of a plurality of sample points, and represents a distribution (luminance distribution) relating to the luminance value of each pixel on the imaging surface of the CCD imaging device 18.
- the above-mentioned illumination optical system (13 to 15) and the objective lens 16 correspond to the “illuminating means” in the claims.
- the imaging optical system (16, 17) and the CCD imaging device 18 correspond to the "imaging means” in the claims.
- the image processing device 19 corresponds to “extraction means” and “detection means” in the claims.
- the image processing device 19 captures, as an image, a reflection image of the observation area (including the overlay mark 30) of the wafer 11 based on the image signal from the CCD image sensor 18.
- the image of the observation region of the wafer 11 includes three edge images F 1 (L), F 2 (L), F 3 (L) appears, and three edge images F 1 (R), F 2 (R), and F 3 (R) appear on the right side.
- the inner two edge images F 3 (L) and F 3 (R) correspond to the edges E 3 (L) and E 3 (R) of the concavo-convex structure of the box mark 32 shown in FIG. The corresponding image.
- the remaining four edge images F 1 (L), F 2 (L), F 1 (R), and F 2 (R) are the edges E 1 (L), E 2 ( L), E1 (R), and E2 (R).
- the image processing apparatus 19 outputs the box image of the six edge images F 1 (L), F 2 (L),... (FIG. 2 (b)) appearing in the image of the observation area of the wafer 11.
- the edge images F 3 (L) and F 3 (R) related to the mark 3 2 the center position C 2 of the box mark 32 in the X direction is detected, and the edge image F 1 (L) related to the frame mark 31 is detected.
- F 2 (L), F 1 (R), and F 2 (R) the center position C 1 of the frame mark 31 in the X direction is detected.
- the image processing device 19 Prior to detecting the center positions C 1 and C 2, the image processing device 19 integrates the image signals captured from the CCD image sensor 18 (projection processing). That is, the image signals are integrated along the direction (Y direction) perpendicular to the detection direction (X direction) of the center positions C1 and C2. This is a process for reducing signal noise.
- the waveform of the integrated image signal generated by the projection process is called a “representative waveform”.
- the horizontal axis in FIGS. 3 to 6 represents the position of each sample point (pixel) of the representative waveform, and the vertical axis represents the luminance value.
- the vicinity of the poton where the luminance value of the representative waveform is minimal is the edge images F1 (L), F2 (L), F3 (L), F1 (R ), F 2 (R) and F 3 (R).
- FIG. 3 (a) and FIG. 4 (a) show a standard superposition mark 30 having a large size difference between the frame mark 31 and the box mark 32 as shown in FIG. 10 (a).
- Fig. 3 (a) shows an example of a representative waveform.
- Fig. 4 (a) shows the center positions C1, C2 when the deviation between the center positions C1, C2 of the frame mark 31 and the box mark 32 is small. This relates to the case where the deviation is large.
- FIGS. 5A and 6A are both examples of representative waveforms at the superposition mark 30 having a small size difference between the frame mark 31 and the potas mark 32 as shown in FIG. 10B.
- Fig. 5 (a) shows the case where the deviation between the center positions C1 and C2 of the frame mark 31 and the box mark 3 2 is small
- Fig. 6 (a) shows the case where the deviation between the center positions C1 and C2 is large.
- FIG. 6A the edge images F 2 (L) and F 2 (R) due to the frame mark 31 and the edge images F 3 (L) and F 3 due to the box mark 32 are shown. (R) and the force S are separated to some extent on the left side of the figure, but are very close on the right side of the figure.
- the left boundary portion 4 1 (L) corresponding to between the frame mark 3 1 and the box mark 3 2 has a constant luminance value A
- the right boundary portion 41 (R ) Is a value B whose brightness value is smaller than a constant value A.
- the balance between left and right (symmetry) is broken. This is due to the proximity of the frame mark 3 1 and the box mark 3 2.
- the range 34 in FIG. 2 (c) is a range including two edge images F 3 (L) and F 3 (R) related to the box mark 32 appearing in the image of the observation region. Set when detecting the center position C2 of mark 32. Then, a representative waveform (not shown) is generated by integrating the image signals within this range 34, and the obtained representative waveform is used for detecting the center position C 2.
- the range 35 in FIG. 2D is a range including four edge images F 1 (L), F 2 (L), F 1 (R), and F 2 (R) related to the frame mark 31. This is set when the center position C 1 of the frame mark 31 is detected. Then, a representative waveform (not shown) is generated by integrating the image signals within this range 35, and the obtained representative waveform is used for detecting the center position C1.
- an observation area including the overlay mark 30 (FIG. 2 (a)) of the wafer 11 is positioned in the field of view of the overlay measurement device 10.
- CCD imaging On the imaging surface of the element 18, a reflection image of the overlay mark 30 is formed. Therefore, the image processing device 19 can capture the reflection image of the superposition mark 30 as an image (see FIG. 2 (c)) based on the image signal from the CCD image sensor 18.
- the image processing device 19 sets a range including two edge images F 3 (L) and F 3 (R) related to the box mark 32. Then, a representative waveform (not shown, see (a) in FIGS. 3 to 6) is generated by integrating the image signals in the Y direction within this range 34 (step S1 in FIG. 7). Setting range 34 can be done manually or automatically. '
- the image processing device 19 extracts a portion where the luminance value changes abruptly from the image signal as an edge signal based on the representative waveform generated in step S1 (step S2).
- the edge signal is a signal related to the edge pair E 3 of the box mark 32 (FIG. 2 (a)).
- the extraction of the edge signal is automatically performed according to, for example, the following procedures (1) to (6).
- the brightness value of the sample point S2 has a constant value A in FIGS. 3 to 5 (a), but has a value B which is smaller than the value A in FIG.
- the waveform 42 of the extracted edge signal has a shape as shown in (b) of FIGS.
- the luminance value at the left end and the right end of the waveform 42 both have the same value A. Therefore, the waveforms 42 in FIGS. 3 to 5B are symmetrical.
- the waveforms 42 in FIGS. 3 to 5B are symmetrical.
- the waveform in Fig. 6 (b) the waveform
- the luminance values at the left end and the right end of 4 2 have different values ⁇ and ⁇ due to the proximity of the frame mark 3 1 and the box mark 3 2. For this reason, the waveform 42 in FIG. 6 (b) is bilaterally asymmetric.
- the box mark 3 The center position C 2 of 2 is detected. This procedure is equally accurate whether the edge signal waveform 42 is symmetrical as shown in (b) of Figs. 3 to 5 or asymmetrical as shown in (b) of Fig. 6. It can perform position detection.
- step S3 the image processing device 19 determines a waveform for calculation.
- the waveform 42 of the edge signal extracted in step S2 is used as the calculation waveform.
- the image processing device 19 sets a temporary center position of the waveform 42 (step S4).
- the image processing device 19 folds the waveform 42 at the temporary center position, and calculates a correlation function between the obtained folded waveform and the original waveform 42 (step S5).
- a correlation function is calculated using a well-known algorithm called a correlation method while relatively offsetting the folded waveform and the original waveform 42.
- the correlation function indicates the relationship between the offset amount between the folded waveform and the original waveform 42 and the correlation value at that time.
- the correlation value takes a value from “0 to 1”.
- the image processing apparatus 19 obtains the maximum correlation value in the correlation function calculated in step S5, and selects the offset amount ⁇ corresponding to the maximum correlation value (step S6). Because this is the first time (Yes in step S7),
- step S6 Performs the processing of 8. That is, a magnitude comparison between the maximum correlation value obtained in step S6 and a predetermined threshold value (for example, 0.95) is performed.
- the maximum correlation value is an index indicating the left-right symmetry of the calculation waveform.
- step S8 is No
- the threshold value for example, 0.95
- step S10 a data table indicating the relationship between the candidate for the center position C2 calculated in step S9 and the maximum correlation value obtained in step S6 is created (step S10). If the image processing device 19 repeatedly executes the above-described calculation of the candidate for the center position C2 (No in step S11), the image processing device 19 performs the processing in the next step S12,
- step S12 one or more sample points are removed from the edge signal extracted in step S2 (the left-right asymmetrical waveform 42 in FIG. 6B), and the edge signal is corrected.
- the position and number of sample points to be removed are arbitrary. For example, it is conceivable to remove one sample point located at the left end or right end of the edge signal (asymmetrical waveform 42 in Fig. 6 (b)).
- the image processing apparatus 19 returns to the processing in step S3 and executes the second processing (S3 to S1'1). This time (second time), in the process of step S3, the waveform of the edge signal after the correction in step S12 becomes the waveform for calculation.
- steps S4 to S6 are executed using the waveform for calculation (the waveform of the edge signal after correction), and the maximum correlation value in the correlation function is obtained, and the offset amount ⁇ corresponding to the maximum correlation value is selected. I do. Because this is the second time, If the step S7 is No), the process proceeds to the step S9 without executing the processing of the step S8, and a new candidate of the center position C2 of the box mark 32 is calculated. Then, the relationship between the new candidate and the maximum correlation value obtained in step S6 is added to the data table (step S10).
- step S 12 edge signal correction processing
- the removal position and the removal number of the sample point are determined. If it is changed, candidates for the center position C 2 based on a plurality of different calculation waveforms can be calculated one after another.
- the sample point to be removed may be specified by the operator or automatically set by the apparatus.
- step S11 force SYes After finishing the calculation of the candidate for the center position C2 (step S11 force SYes), the image processing device 19 proceeds to the next step S13. At this time, a data table indicating the relationship between the plurality of candidates for the center position C2 and the maximum correlation value has been completed in the image processing device 19.
- the image processing device 19 selects one of the plurality of candidates for the center position C2 with reference to the data table (step S13). That is, a candidate corresponding to one having the largest value among the plurality of maximum correlation values (the maximum value of the maximum correlation values) is searched for, and this candidate is selected as the "center position C2". This is because the greater the maximum correlation value, the higher the left-right symmetry of the operation waveform and the more accurate the detection result. For example, if the waveform of the edge signal (the edge signal before correction) extracted in step S2 has a left-right asymmetry like the waveform 42 shown in FIG. 6B, the “center position” is determined in step S13. The candidate selected as C 2 "is a case where the waveform 43 shown in FIG. 8 is used as the calculation waveform.
- This waveform 43 is obtained by removing the four sample points on the left end and one sample point on the right end of the sample points of the waveform 42 (Fig. 6 (b)), as can be seen from Fig. 8. Symmetrical waveform.
- the maximum correlation value in this waveform 43 is “0.97” as shown in FIG. 9, which is improved by “0.3 2” compared to the maximum correlation value “0.65” in the waveform 42 of the edge signal before correction. You can see that.
- the difference between the center position C2 calculated using the corrected left-right symmetrical waveform 43 and the candidate of the center position C2 calculated using the left-right asymmetrical waveform 42 before the correction represents the improvement in detection accuracy.
- the measurement error of the center position of the inner mark could be reduced by about 19 nm.
- the center position C 1 of the frame mark 31 can be detected with high accuracy. For example, if the waveform of the edge signal (the edge signal before correction) extracted in step S2 has left-right asymmetry like the waveforms 44 and 45 shown in FIG.
- the candidate selected as the center position C2 " is a case where the waveforms 46 and 47 shown in FIG.
- waveform 46 is obtained by removing the four sample points on the right end from the sample points of waveform 44 (Fig. 6 (b)), and waveform 47 is the waveform 45 (Fig. 6 (b)).
- waveform 47 is the waveform 45 (Fig. 6 (b)).
- One of the sample points on the left side is removed.
- the waveforms 46 and 47 are left-right symmetrical waveforms as can be seen from FIG.
- the maximum correlation value of these waveforms 46 and 47 is “0.98” as shown in FIG. 9.
- “0.16” It can be seen that only improved.
- the difference between the center position C 1 calculated using the left-right symmetric waveforms 46 and 47 after correction and the candidate of the center position C 1 calculated using the left-right asymmetric waveforms 44 and 45 before correction indicates the improvement in detection accuracy. In other words, removing the sample points reduced the measurement error by about 13 nm.
- the image processing apparatus 19 performs an overlay inspection of the wafer 11 (inspection of an overlay state of the resist pattern with respect to the underlying pattern). That is, Based on the difference between the center positions C 1 and C 2 of the memory mark 31 and the box mark 32, an overlay displacement amount R (FIG. 2 (a)) is calculated.
- the overlay displacement amount R is expressed as a two-dimensional vector of the surface of the wafer 11.
- the overlay deviation amount R can also be detected with high accuracy.
- the removal of the sample points improved the overlay displacement R by about 32 nm. In other words, the measurement error was reduced by about 32 nm.
- the correlation calculation (calculation of the correlation function between the calculation waveform and the folded waveform) is performed using the entire calculation waveform determined in step S3, it is hardly affected by signal noise.
- the center positions C 1 and C 2 of the frame mark 31 and the box mark 32 can be calculated with good reproducibility.
- the overlay deviation R can be calculated with good reproducibility.
- the number of removed sample points in the edge signal correction processing (S12) be minimized.
- the reason for this is that the greater the number of sample points removed, the narrower the range of the operation waveform (the smaller the number of sample points), and the more likely it is to be affected by signal noise.
- step S8 the magnitude of the maximum correlation value is compared with a predetermined threshold (for example, 0.95), and only when the maximum correlation value is smaller, although the sample points have been removed, the sample points may be removed in all cases, regardless of the maximum correlation value obtained in the first correlation operation. This corresponds to omitting the processing of steps S7, S8 and S14 in the flowchart of FIG.
- a predetermined threshold for example 0.95
- the image processing device 19 in the overlay measurement device 10 removes the sample points of the edge signal and detects the center positions C 1 and C 2. The same effect can be obtained even when an external computer connected to 10 is used.
- the overlay measurement apparatus 10 has been described as an example, but the present invention is not limited to this.
- alignment between the mask and the wafer 11 is performed before the exposure step in which the circuit pattern formed on the mask is printed on the resist film. It can also be applied to equipment (alignment system of exposure equipment). In this case, the position of the alignment mark formed on the wafer 11 can be accurately detected.
- the present invention is also applicable to a device that detects an optical displacement between a single test mark and a reference position of a camera. Industrial potential
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
When detecting a mark position on a substrate, it is possible to accurately detect the mark position even if a waveform of an edge signal associated with the edge pair of the mark is asymmetric. In an image processing device (19), one or more sample points contained in the edge signal are removed so as to correct the edge signal asymmetry. According to the edge signal after correction, a waveform for calculating correlation is decided, this waveform is folded, and the maximum correlation value in the correlation function with respect to the folded waveform is calculated, thereby calculating the center position of the mark.
Description
明細書 マーク位置検出装置、 マーク位置検出方法、 重ね合わせ測定装置、 および、 重 ね合わせ測定方法 技術分野 Description Mark position detecting device, mark position detecting method, overlay measuring device, and overlay measuring method
本発明は、 基板上の被検マークの位置を検出するマーク位置検出装置、 マーク 位置検出方法、重ね合わせ測定装置、および、重ね合わせ測定方法に関し、特に、 半導体素子などの製造工程における高精度な位置検出に好適なマーク位置検出装 置などに関する。 背景技術 The present invention relates to a mark position detecting device for detecting the position of a test mark on a substrate, a mark position detecting method, an overlay measuring device, and an overlay measuring method. The present invention relates to a mark position detection device suitable for position detection and the like. Background art
周知のように、 半導体素子や液晶表示素子の製造工程では、 マスク(レチクル) に形成された回路パターンをレジスト膜に焼き付ける露光工程と、 レジスト膜の 露光部分または未露光部分を溶解する現像工程とを経て、 レジスト膜に回路パタ ーン (レジス トパターン) が転写され、 このレジス トパターンをマスクとしてェ ツチングゃ蒸着などを行うことにより(加工工程)、 レジスト膜の直下に隣接して いる所定の材料膜に回路パターンが転写される (パターン形成工程) 。 As is well known, in a manufacturing process of a semiconductor device or a liquid crystal display device, an exposure process of printing a circuit pattern formed on a mask (reticle) on a resist film, and a developing process of dissolving an exposed portion or an unexposed portion of the resist film are included. After that, the circuit pattern (resist pattern) is transferred to the resist film, and the resist pattern is used as a mask to perform etching or vapor deposition (processing step), thereby forming a predetermined pattern immediately adjacent to the resist film. The circuit pattern is transferred to the material film (pattern forming step).
次いで、 上記所定の材料膜に形成された回路パターンの上に別の回路パターン を形成するためには、 同様のパターン形成工程が繰り返される。 このように、 パ ターン形成工程を何回も繰り返し実行することにより、 様々な材料膜の回路パタ ーンが基板 (半導体ウェハや液晶基板) の上に積層され、 半導体素子や液晶表示 素子の回路が形成される。 Next, in order to form another circuit pattern on the circuit pattern formed on the predetermined material film, a similar pattern forming step is repeated. By repeating the pattern formation process many times in this way, circuit patterns of various material films are laminated on a substrate (semiconductor wafer or liquid crystal substrate), and the circuit of a semiconductor element or a liquid crystal display element is formed. Is formed.
ところで、 上記の製造工程では、 様々な材料膜の回路パターンを精度よく重ね 合わせるため、 各々のパターン形成工程のうち露光工程の前に、 マスクと基板と のァライメントを行い、 さらに、 現像工程の後でかつ加工工程の前に、 基板上の レジストパターンの重ね合わせ状態の検査を行い、 製品の歩留まり向上を図って いる。 By the way, in the above manufacturing process, in order to accurately overlap circuit patterns of various material films, alignment between a mask and a substrate is performed before an exposure process in each pattern forming process, and further, after a developing process. At the same time, prior to the fabrication process, we inspect the superposition of the resist patterns on the substrate to improve product yield.
ちなみに、 マスクと基板とのァライメント (露光工程の前) は、 マスク上の回
路パターンと、 1つ前のパターン形成工程で基板上に形成された回路パターンと のァライメントであり、 各々の回路パターンの基準位置を示すァライメントマ一 クを用いて行われる。 Incidentally, the alignment between the mask and the substrate (before the exposure process) This is an alignment between the circuit pattern and the circuit pattern formed on the substrate in the previous pattern forming step, and is performed using an alignment mark indicating a reference position of each circuit pattern.
• また、基板上のレジストパターンの重ね合わせ状態の検査(加工工程の前)は、 1つ前のパターン形成工程で形成された回路パターン (以下 「下地パターン」 と いう) に対するレジス トパターンの重ね合わせ検查であり、 下地パターンとレジ ストパターンの各々の基準位置を示す重ね合わせマークを用いて行われる。 そして、 これらのァライメントマークや重ね合わせマーク (総じて 「被検マー ク」 という) の位置検出は、 この被検マークを装置の視野領域内に位置決めし、 C C Dカメラなどの撮像素子を用いて被検マークの像を撮像し、 得られた画像信 号のうちエッジ信号に基づいて行われる。 なお、 画像信号は、 撮像素子の撮像面 における各画素ごとの輝度値に関する分布を表している。 エッジ信号は、 画像信 号のうち輝度値の急変部分である。 • Inspection of the superposition state of the resist pattern on the substrate (before the processing step) is performed by superimposing the resist pattern on the circuit pattern (hereinafter referred to as “base pattern”) formed in the previous pattern formation step. This is an alignment detection, which is performed using an overlay mark indicating a reference position of each of the base pattern and the resist pattern. To detect the position of these alignment marks and overlay marks (generally referred to as “test marks”), the test marks are positioned within the field of view of the apparatus, and are detected using an image sensor such as a CCD camera. An image of the inspection mark is taken, and the detection is performed based on an edge signal among the obtained image signals. Note that the image signal represents a distribution relating to a luminance value for each pixel on the imaging surface of the imaging element. The edge signal is a sudden change in the luminance value of the image signal.
また、 このエッジ信号から被検マークの位置を算出するに当たっては、 周知の 相関法というアルゴリズムが用いられる。 相関法では、 エッジ信号の波形の全体 を使って相関演算を行うため、 信号ノイズの影響を受け難く、 被検マークの位置 を再現性よく算出できる。 In calculating the position of the test mark from the edge signal, a well-known algorithm called a correlation method is used. In the correlation method, since the correlation operation is performed using the entire edge signal waveform, it is hardly affected by signal noise, and the position of the test mark can be calculated with good reproducibility.
しかしながら、 相関法は、 エッジ信号の波形が左右対称であることを前提とし たアルゴリズムである。このため、エッジ信号の波形の対称性が低下していると、 被検マークの位置を算出する際に誤差が増大してしまう。 つまり、 被検マークの 位置を精度良く検出できない。 なお、 エッジ信号の波形の対称性が低下する事態 は、 被検マークのエッジ対の形状が左右対称な場合でも起こり うる。 発明の開示 However, the correlation method is an algorithm on the assumption that the waveform of the edge signal is symmetric. For this reason, when the symmetry of the waveform of the edge signal is reduced, an error increases when calculating the position of the test mark. That is, the position of the test mark cannot be accurately detected. The symmetry of the waveform of the edge signal may be reduced even when the shape of the edge pair of the test mark is symmetrical. Disclosure of the invention
本発明の目的は、 被検マークのエッジ対に関わるエッジ信号の波形が非対称で あっても精度良く被検マークの位置を検出できるマーク位置検出装置、 マーク位 置検出方法、 重ね合わせ測定装置、 および、 重ね合わせ測定方法を提供すること にめる。 An object of the present invention is to provide a mark position detecting device, a mark position detecting method, a mark position detecting method, an overlay measuring device, which can accurately detect the position of a test mark even if the waveform of an edge signal relating to an edge pair of the test mark is asymmetric. And to provide an overlay measurement method.
本発明のマーク位置検出装置は、 基板上に形成された 1つ以上のエッジ対を含
む被検マークを照明する照明手段と、 前記被検マークからの光に基づく像を撮像 し、 複数のサンプル点からなる画像信号を出力する撮像手段と、 前記画像信号の うち輝度値の急変部分を前記エッジ対に関わるエッジ信号として抽出する抽出手 段と、 前記エッジ信号に基づいて、 前記被検マークの中心位置を検出する検出手 段とを備えたものであり、 前記検出手段が、 前記エッジ信号に含まれるサンプル 点のうち 1つ以上を除去することにより、 前記ェッジ信号の非対称性を補正する 捕正手段と、 前記補正手段による補正後のエッジ信号に基づいた波形と、 該波形 を折り返して得られる波形との相関関数における最大相関値を算出することによ り、 前記中心位置を算出する算出手段とを有するものである。 The mark position detecting device of the present invention includes one or more edge pairs formed on a substrate. Illuminating means for illuminating the test mark; imaging means for capturing an image based on light from the test mark and outputting an image signal composed of a plurality of sample points; and a sudden change in the luminance value of the image signal And a detecting means for detecting a center position of the test mark based on the edge signal, wherein the detecting means comprises: A correction unit that corrects the asymmetry of the edge signal by removing one or more of the sample points included in the edge signal; a waveform based on the edge signal corrected by the correction unit; Calculating means for calculating the center position by calculating a maximum correlation value in a correlation function with a waveform obtained by folding back.
このマーク位置検出装置では、 補正手段によって非対称性が補正された後のェ ッジ信号の波形 (つまり対称な波形) を用いるため、 被検マークの位置を精度良 く検出することができる。 In this mark position detecting device, the waveform of the edge signal after the asymmetry has been corrected by the correcting means (that is, a symmetrical waveform) is used, so that the position of the test mark can be detected with high accuracy.
本発明の他のマーク位置検出装置は、 基板上に形成された 1つ以上のエッジ対 を含む被検マークを照明する照明手段と、 前記被検マークからの光に基づく像を 撮像し、 複数のサンプル点からなる画像信号を出力する撮像手段と、 前記画像信 号のうち輝度値の急変部分を前記エッジ対に関わるエッジ信号として抽出する抽 出手段と、 前記エッジ信号に基づいて、 前記被検マークの中心位置を検出する検 出手段とを備えたものであり、 前記検出手段が、 前記エッジ信号に含まれるサン プル点のうち 1つ以上を除去することにより、 前記エッジ信号を補正する補正手 段と、 前記補正手段による補正前のエッジ信号または補正後のエッジ信号に基づ いた演算用波形と該演算用波形を折り返して得られる波形との相関関数における 最大相関値を算出する第 1の算出手段と、 複数の異なる前記演算用波形の各々を 用いて前記第 1の算出手段が算出した複数の前記最大相関値のうち最も大きい 1 つを選択する選択手段と、前記選択手段が選択した 1つの最大相関値に基づいて、 前記中心位置を算出する第 2の算出手段とを有するものである。 Another mark position detection device of the present invention includes: an illumination unit that illuminates a test mark including one or more edge pairs formed on a substrate; and an image based on light from the test mark. Imaging means for outputting an image signal composed of the following sample points: extracting means for extracting a sudden change in luminance value from the image signal as an edge signal relating to the edge pair; and extracting the image signal based on the edge signal. Detection means for detecting the center position of the detection mark, wherein the detection means corrects the edge signal by removing one or more of the sample points included in the edge signal. The maximum correlation in the correlation function between the correction means, a waveform for calculation based on the edge signal before correction or the edge signal after correction by the correction means, and a waveform obtained by folding the waveform for calculation. First calculating means for calculating the maximum correlation value, and selecting means for selecting the largest one of the plurality of maximum correlation values calculated by the first calculating means using each of a plurality of different calculation waveforms. Second calculating means for calculating the center position based on one maximum correlation value selected by the selecting means.
このマーク位置検出装置では、 複数の異なる演算用波形のうち、 相関関数の最 大相関値が最も大きい演算用波形 (つまり対称な波形) を用いるため、 被検マー クの位置を精度良く検出することができる。 Since the mark position detection device uses a calculation waveform (ie, a symmetrical waveform) having the largest correlation function maximum correlation value among a plurality of different calculation waveforms, the position of the test mark is accurately detected. be able to.
好ましくは、 本発明のマーク位置検出装置は、 前記検出手段が、 前記補正前の
エッジ信号に基づく前記演算用波形を用いて前記第 1の算出手段が算出した前記 最大相関値と予め定めた閾値とを比較する比較手段をさらに有し、 前記補正手段 力 前記比較手段による比較の結果、 前記補正前のエッジ信号に基づく前記最大 相関値の方が前記閾値よりも小さいときに、 前記エッジ信号に対する補正を行う ものである。 Preferably, in the mark position detection device according to the present invention, the detection unit may be configured to perform the correction before the correction. Comparing means for comparing the maximum correlation value calculated by the first calculating means with a predetermined threshold value using the calculation waveform based on the edge signal, wherein the correcting means As a result, when the maximum correlation value based on the uncorrected edge signal is smaller than the threshold value, the edge signal is corrected.
本発明のマーク位置検出方法は、 基板上に形成された 1つ以上のエッジ対を含 む被検マークを照明する照明工程と、 前記被検マークからの光に基づく像を撮像 し、 複数のサンプル点からなる画像信号を出力する撮像工程と、 前記画像信号の うち輝度値の急変部分を前記エッジ対に関わるエッジ信号として抽出する抽出ェ 程と、 前記エッジ信号に基づいて、 前記被検マークの中心位置を検出する検出ェ 程とを備えたものであり、 前記検出工程が、 前記エッジ信号に含まれるサンプル 点のうち 1つ以上を除去することにより、 前記エッジ信号の非対称性を補正する 補正工程と、 前記補正工程における補正後のエッジ信号に基づいた波形と、 該波 形を折り返して得られる波形との相関関数における最大相関値を算出することに より、 前記中心位置を算出する算出工程とを有するものである。 A mark position detection method according to the present invention includes: an illumination step of illuminating a test mark including one or more edge pairs formed on a substrate; and capturing an image based on light from the test mark. An imaging step of outputting an image signal composed of sample points; an extraction step of extracting a rapidly changing portion of a luminance value from the image signal as an edge signal relating to the edge pair; and the test mark based on the edge signal. A detection step for detecting the center position of the edge signal, wherein the detecting step corrects the asymmetry of the edge signal by removing one or more of the sample points included in the edge signal. Calculating a maximum correlation value in a correlation function between a correction step, a waveform based on the edge signal after the correction in the correction step, and a waveform obtained by folding the waveform. And calculating the center position.
このマーク位置検出方法では、 補正工程において非対称性が補正された後のェ ッジ信号の波形 (つまり対称な波形) を用いるため、 被検マークの位置を精度良 く検出することができる。 In this mark position detection method, the waveform of the edge signal after the asymmetry has been corrected in the correction step (that is, a symmetrical waveform) is used, so that the position of the mark to be detected can be detected accurately.
本発明の他のマーク位置検出方法は、 基板上に形成された 1つ以上のエッジ対 を含む被検マークを照明する照明工程と、 前記被検マークからの光に基づく像を 撮像し、 複数のサンプル点からなる画像信号を出力する撮像工程と、 前記画像信 号のうち輝度値の急変部分を前記エッジ対に関わるエッジ信号として抽出する抽 出工程と、 前記エッジ信号に基づいて、 前記被検マークの中心位置を検出する検 出工程とを備えたものであり、 前記検出工程が、 前記エッジ信号に含まれるサン プル点のうち 1つ以上を除去することにより、 前記エッジ信号を補正する補正ェ 程と、 前記補正工程における補正前のエッジ信号または補正後のェッジ信号に基 づいた演算用波形と該演算用波形を折り返して得られる波形との相関関数におけ る最大相関値を算出する第 1の算出工程と、 複数の異なる前記演算用波形の各々 を用いて前記第 1の算出工程で算出された複数の前記最大相関値のうち最も大き
い 1つを選択する選択工程と、 前記選択工程で選択した 1つの最大相関値に基づ いて、 前記中心位置を算出する第 2の算出工程とを有するものである。 Another mark position detection method of the present invention includes: an illumination step of illuminating a test mark including one or more edge pairs formed on a substrate; capturing an image based on light from the test mark; An imaging step of outputting an image signal composed of sample points of the following; an extraction step of extracting a rapidly changing portion of a luminance value from the image signal as an edge signal relating to the edge pair; A detection step of detecting a center position of a detection mark, wherein the detection step corrects the edge signal by removing one or more sample points included in the edge signal. The maximum phase in a correlation function between a correction process, a waveform for calculation based on the edge signal before correction or the edge signal after correction in the correction process, and a waveform obtained by folding the waveform for calculation. A first calculation step of calculating a value, most magnitude among the plurality of the maximum correlation value calculated by the first calculation step with each of a plurality of different said operational waveform And a second calculating step of calculating the center position based on the one maximum correlation value selected in the selecting step.
このマーク位置検出方法では、 複数の異なる演算用波形のうち、 相関関数の最 大相関値が最も大きい演算用波形 (つまり対称な波形) を用いるため、 被検マー クの位置を精度良く検出することができる。 In this mark position detection method, among a plurality of different operation waveforms, the operation waveform having the largest correlation function maximum correlation value (that is, a symmetrical waveform) is used, so that the position of the target mark is accurately detected. be able to.
好ましくは、 本発明のマーク位置検出方法は、 前記検出工程が、 前記補正前の エッジ信号に基づく前記演算用波形を用いて前記第 1の算出工程で算出された前 記最大相関値と予め定めた閾値とを比較する比較工程をさらに有し、 前記補正ェ 程では、 前記比較工程における比較の結果、 前記補正前のエッジ信号に基づく前 記最大相関値の方が前記閾値よりも小さいときに、 前記エッジ信号に対する補正 を行うものである。 Preferably, in the mark position detecting method according to the present invention, in the detecting step, the maximum correlation value calculated in the first calculating step using the calculation waveform based on the uncorrected edge signal is determined in advance. A comparison step of comparing the maximum correlation value based on the edge signal before the correction with the maximum correlation value smaller than the threshold value as a result of the comparison in the comparison step. , Correction for the edge signal.
本発明の重ね合わせ測定装置は、 基板上に形成された複数のパターンの重ね合 わせ状態を検査する重ね合わせ測定装置において、 前記複数のパターンの各々の 基準位置を示す被検マークの中心位置を各々検出する上記のマーク位置検出装置 と、 前記マーク位置検出装置が検出した前記各々の中心位置の差に基づいて、 前 記複数のパターンどうしの重ね合わせずれ量を測定する測定手段とを備えたもの である。 An overlay measurement apparatus according to the present invention is an overlay measurement apparatus for inspecting an overlay state of a plurality of patterns formed on a substrate, wherein a center position of a test mark indicating a reference position of each of the plurality of patterns is determined. A mark position detecting device for detecting each of the mark positions; and a measuring means for measuring an amount of misalignment of the plurality of patterns based on a difference between the respective center positions detected by the mark position detecting device. Things.
この重ね合わせ測定装置では、 各々の被検マークの位置を精度良く検出できる ため、 複数のパターンどうしの重ね合わせずれ量の測定結果として高精度なもの を得ることができる。 In this overlay measurement device, since the position of each test mark can be detected with high accuracy, a highly accurate measurement result of the overlay deviation amount between a plurality of patterns can be obtained.
本発明の重ね合わせ測定方法は、 上記のマーク位置検出方法を用い、 基板上に 形成された複数のパターンの重ね合わせ状態を検查する重ね合わせ測定方法にお いて、 前記検出工程は、 前記複数のパターンの各々の基準位置を示す被検マーク の中心位置を各々検出する工程であり、 前記検出工程で検出された前記各々の中 心位置の差に基づいて、 前記複数のパターンどうしの重ね合わせずれ量を測定す る測定工程をさらに備えたものである。 An overlay measurement method according to the present invention is directed to an overlay measurement method for detecting an overlay state of a plurality of patterns formed on a substrate by using the above mark position detection method. Detecting a center position of a test mark indicating a reference position of each of the patterns, and superimposing the plurality of patterns based on a difference between the respective center positions detected in the detection step. The method further includes a measuring step of measuring a shift amount.
この重ね合わせ測定方法では、 各々の被検マークの位置を精度良く検出できる ため、 複数のパターンどうしの重ね合わせずれ量の測定結果として高精度なもの を得ることができる。
図面の簡単な説明 In this overlay measurement method, since the position of each test mark can be accurately detected, a highly accurate measurement result of the overlay displacement amount between a plurality of patterns can be obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 重ね合わせ測定装置 1 0の全体構成を示す図である。 FIG. 1 is a diagram showing the overall configuration of the overlay measurement device 10.
図 2は、 ウェハ 1 1に形成された重ね合わせマーク 3 0の平面図(a )、 観察領 域の画像を説明する図(b:)〜(d )である。 FIG. 2 is a plan view (a) of the overlay mark 30 formed on the wafer 11 and diagrams (b :) to (d) illustrating images in the observation area.
図 3は、 標準的な重ね合わせマーク 3 0における代表波形(a )およびエッジ信 号の波形(b )の例を示す図である。 FIG. 3 is a diagram showing an example of a representative waveform (a) and a waveform (b) of an edge signal in a standard overlay mark 30.
図 4は、 標準的な重ね合わせマーク 3 0における代表波形(a )およびエッジ信 号の波形(b )の例を示す図である。 FIG. 4 is a diagram showing an example of a representative waveform (a) and a waveform (b) of an edge signal in a standard overlay mark 30.
図 5は、 近接状態の重ね合わせマーク 3 0における代表波形(a )およびエッジ 信号の波形(b )の例を示す図である。 FIG. 5 is a diagram showing an example of a representative waveform (a) and a waveform (b) of an edge signal in the superimposition mark 30 in the proximity state.
図 6は、 近接状態の重ね合わせマーク 3 0における代表波形(a )およびエッジ 信号の波形(b )の例を示す図である。 FIG. 6 is a diagram showing an example of the representative waveform (a) and the waveform (b) of the edge signal in the superimposition mark 30 in the proximity state.
図 7は、 重ね合わせ測定装置 1 0における位置検出の手順を示すフローチヤ一 トである。 FIG. 7 is a flowchart showing a procedure of position detection in the overlay measurement device 10.
図 8は、 対称性を向上させた後のエッジ信号の波形例を示す図である。 FIG. 8 is a diagram illustrating a waveform example of an edge signal after the symmetry is improved.
図 9は、 対称性の向上および検出精度の向上を説明する図である。 FIG. 9 is a diagram for explaining an improvement in symmetry and an improvement in detection accuracy.
図 1 0は、 フレームマークとボックスマークのサイズ差が大きい重ね合わせマ 一-ク(a )と小さい重ね合わせマーク(b )を示す図である。 発明を実施するための最良の形態 ° 以下、 図面を用いて本発明の実施形態を詳細に説明する。 ° ここでは、 本実施形態のマーク位置検出装置について、 図 1に示す重ね合わせ 測定装置 1 0を例に説明する。 FIG. 10 is a diagram showing an overlay mark (a) having a large size difference between the frame mark and the box mark and a small overlay mark (b). BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. ° Here, the mark position detection device of the present embodiment will be described using the overlay measurement device 10 shown in FIG. 1 as an example.
重ね合わせ測定装置 1 0は、 図 1に示すように、 ウェハ 1 1を支持する検查ス テージ 1 2と、ウェハ 1 1側に向けて照明光 L 1を射出する照明光学系(1 3〜 1 As shown in FIG. 1, the overlay measurement apparatus 10 includes a detection stage 12 that supports the wafer 11 and an illumination optical system (13 to 13) that emits illumination light L1 toward the wafer 11 side. 1
5 )と、 ウェハ 1 1の像を形成する結像光学系(1 6 , 1 7 )と、 C C D撮像素子 1 8 と、 画像処理装置 1 9とで構成されている。 5), an imaging optical system (16, 17) for forming an image of the wafer 11, a CCD image sensor 18, and an image processing device 19.
この重ね合わせ測定装置 1 0について具体的に説明する前に、 ウェハ 1 1 (基
板) の説明を行う。 Before specifically describing the overlay measurement apparatus 10, the wafer 11 (base Plate).
ウェハ 1 1には、 複数の回路パターン (何れも不図示) が表面上に積層されて いる。 最上層の回路パターンは、 レジス ト膜に転写されたレジス トパターンであ る。 つまり、 ウェハ 1 1は、 1つ前のパターン形成工程で形成された下地パター ンの上に別の回路パターンを形成する工程の途中 (レジスト膜に対する露光■現 像後で且つ材料膜に対するエツチング加工前) の状態にある。 On the wafer 11, a plurality of circuit patterns (all not shown) are laminated on the surface. The uppermost circuit pattern is the resist pattern transferred to the resist film. In other words, the wafer 11 is in the process of forming another circuit pattern on the underlying pattern formed in the previous pattern forming process (exposure to the resist film, etching of the material film, and etching of the material film). Before).
そして、 ウェハ 1 1の下地パターンに対するレジス トパターンの重ね合わせ状 態が重ね合わせ測定装置 1 0によって検査される。 このため、 ウェハ 1 1の表面 には、 重ね合わせ状態の検査に用いられる重ね合わせマーク 3 0 (図 2 ( a )) が 形成されている。 図 2 ( a )は重ね合わせマーク 3 0の平面図である。 Then, the superposition state of the resist pattern with respect to the base pattern of the wafer 11 is inspected by the superposition measuring device 10. For this reason, on the surface of the wafer 11, an overlay mark 30 (FIG. 2 (a)) used for the inspection of the overlay state is formed. FIG. 2A is a plan view of the overlay mark 30.
重ね合わせマーク 3 0は、 外側のフレームマーク 3 1と内側のボックスマーク 3 2と力 らなり、フレームマーク 3 1 ,ボックスマーク 3 2のうち一方が下地マー ク、 他方がレジストマークである。 下地マーク,レジストマークは、 各々、 下地パ ターン,レジストパターンと同時に形成され、 下地パターン,レジス トパターンの 基準位置を示す。 The overlay mark 30 is composed of an outer frame mark 31 and an inner box mark 32, and one of the frame mark 31 and the box mark 32 is a base mark and the other is a resist mark. The base mark and the resist mark are formed simultaneously with the base pattern and the resist pattern, respectively, and indicate the reference positions of the base pattern and the resist pattern.
また、 フレームマーク 3 1は、 X方向に関して、 2つのエッジ対 E 1 , Ε 2を含 んでいる。 一方のエッジ対 Ε 1は、 左側のエッジ E 1 (L)と右側のエッジ Ε 1 (R) とで構成され、他方のェッジ対 E 2は、左側のェッジ E 2 (L)と右側のエツジ E 2 (R)とで構成されている。 つまり、 フレームマーク 3 1は、 左側に 2本のエッジ E 1 (L), E 2 (L)、 右側に 2本のエッジ E 1 (R), E 2 (R)を持つ。 フレームマーク 3 1 の Y方向に関しても同様である。 The frame mark 31 includes two edge pairs E 1 and, 2 in the X direction. One edge pair Ε 1 is composed of a left edge E 1 (L) and a right edge Ε 1 (R), and the other edge pair E 2 is a left edge E 2 (L) and a right edge. E 2 (R). That is, the frame mark 31 has two edges E 1 (L) and E 2 (L) on the left side and two edges E 1 (R) and E 2 (R) on the right side. The same applies to the Y direction of the frame mark 31.
ボックスマーク 3 2は、 X方向に関して、 1つのエッジ対 E 3を含んでいる。 このエツジ対 E 3は、 左側のェッジ E 3 (L)と右側のェッジ E 3 (R)とで構成され ている。 つまり、 ボックスマーク 3 2は、 左側に 1本のエッジ E 3 (L)、 右側に 1 本のエッジ E 3 (R)を持つ。 ボックスマーク 3 2の Y方向に関しても同様である。 フレームマーク 3 1 ,ボックスマーク 3 2は、 各々、 請求項の 「被検マーク」 に対 応する。 The box mark 32 includes one edge pair E 3 in the X direction. The edge pair E 3 is composed of a left edge E 3 (L) and a right edge E 3 (R). That is, the box mark 32 has one edge E 3 (L) on the left side and one edge E 3 (R) on the right side. The same applies to the Y direction of the box mark 32. The frame mark 31 and the box mark 32 respectively correspond to the “test mark” in the claims.
なお、 図示省略したが、 レジス トスマークおよびレジス トパターンと、 下地マ ークおよぴ下地パターンとの間には、 加工対象となる材料膜が形成されている。
この材料膜は、 重ね合わせ測定装置 1 0による重ね合わせ状態の検査後、 レジス トマークが下地マークに対して正確に重ね合わされ、 レジストパターンが下地パ ターンに対して正確に重ね合わされている場合に、 レジストパターンを介して実 際に加工される。 Although not shown, a material film to be processed is formed between the resist mark and the resist pattern, and the base mark and the base pattern. When the registration mark is accurately superimposed on the underlying mark after the inspection of the overlay state by the overlay measuring device 10 and the resist pattern is accurately overlaid on the underlying pattern, It is actually processed through the resist pattern.
さて次に、 重ね合わせ測定装置 1 0 (図 1) の具体的な構成説明を行う。 Next, the specific configuration of the overlay measurement apparatus 10 (FIG. 1) will be described.
重ね合わせ測定装置 1 0の検査ステージ 1 2は、 ウェハ 1 1を水平状態に保持 すると共に、 水平面内で任意の位置に移動可能である。 検査ステージ 1 2を移動 させることにより、 ウェハ 1 1の重ね合わせマーク 30 (図 2(a)) を含む観察 領域が結像光学系(1 6,1 7)の視野内に位置決めされる。 検査ステージ 1 2の法 線方向を Z方向、 ウェハ 1 1の载置面を XY面とする。 The inspection stage 12 of the overlay measurement device 10 holds the wafer 11 in a horizontal state and can be moved to an arbitrary position in a horizontal plane. By moving the inspection stage 12, the observation area including the overlay mark 30 (FIG. 2 (a)) of the wafer 11 is positioned within the field of view of the imaging optical system (16, 17). The normal direction of the inspection stage 12 is the Z direction, and the mounting surface of the wafer 11 is the XY surface.
照明光学系(1 3〜 1 5)は、 光源 1 3と照明レンズ 14とプリズム 1 5とで構 成され、 プリズム 1 5が結像光学系(1 6, 1 7)の光軸 O 2上に配置される。 結像 光学系(1 6,1 7)の光軸◦ 2は Z方向に平行である。 プリズム 1 5の反射透過面 1 5 aは、 光軸 O 2に対して略 45° 傾けられている。 照明光学系(1 3-1 5) の光軸 O lは、 結像光学系(1 6, 1 7)の光軸 O 2に垂直である。 The illumination optical system (13 to 15) is composed of a light source 13, an illumination lens 14, and a prism 15, and the prism 15 is on the optical axis O2 of the imaging optical system (16, 17). Placed in The optical axis ◦2 of the imaging optical system (16, 17) is parallel to the Z direction. The reflection / transmission surface 15 a of the prism 15 is inclined at approximately 45 ° with respect to the optical axis O 2. The optical axis O l of the illumination optical system (1 3-1 5) is perpendicular to the optical axis O 2 of the imaging optical system (16, 17).
結像光学系(1 6,1 7)は、 対物レンズ 1 6と結像レンズ 1 7とで構成された光 学顕微鏡部であり、 対物レンズ 16が検查ステージ 1 2とプリズム 1 5との間に 配置される。結像レンズ 1 7は、第 2対物レンズとして機能する光学素子であり、 プリズム 1 5を挟んで対物レンズ 1 6とは反対側に配置される。 The imaging optical system (16, 17) is an optical microscope section composed of an objective lens 16 and an imaging lens 17, and the objective lens 16 is connected between the detection stage 12 and the prism 15 Placed between. The imaging lens 17 is an optical element that functions as a second objective lens, and is disposed on the opposite side of the prism 15 from the objective lens 16.
上記の照明光学系(1 3〜1 5)および結像光学系(1 6,1 7)において、 光源 1 3から射出された光は、 照明レンズ 14を介してプリズム 1 5に導かれ、 その反 射透過面 1 5 aで反射した後 (照明光 L 1) 、 対物レンズ 1 6側に導かれる。 そ して、 対物レンズ 16を通過した後 (照明光 L 2) 、 検査ステージ 1 2上のゥェ ハ 1 1に入射する。 このとき、 ウェハ 1 1の観察領域は、 照明光 L 2により略垂 直に照明される。 In the illumination optical system (13 to 15) and the imaging optical system (16, 17), the light emitted from the light source 13 is guided to the prism 15 via the illumination lens 14, and After being reflected by the reflection transmitting surface 15a (illumination light L1), it is guided to the objective lens 16 side. After passing through the objective lens 16 (illumination light L 2), the light enters the wafer 11 on the inspection stage 12. At this time, the observation area of the wafer 11 is almost vertically illuminated by the illumination light L2.
そして、 照明光 L 2が照射されたウェハ 1 1の観察領域からは、 そこでの凹凸 構造 (重ね合わせマーク 30) に応じて反射光 L 3が発生する。 この反射光 L 3 は、 対物レンズ 1 6とプリズム 1 5とを介して結像レンズ 1 7に導かれ、 対物レ ンズ 1 6と結像レンズ 1 7の作用によって CCD撮像素子 1 8の撮像面上に結像
される。 このとき、 CCD撮像素子 1 8の撮像面上には、 反射光 L 3に基づく拡 大像 (反射像) が形成される。 Then, from the observation area of the wafer 11 irradiated with the illumination light L2, reflected light L3 is generated according to the uneven structure (overlap mark 30) there. The reflected light L 3 is guided to the imaging lens 17 via the objective lens 16 and the prism 15, and the imaging surface of the CCD imaging device 18 is operated by the action of the objective lens 16 and the imaging lens 17. Image on top Is done. At this time, an enlarged image (reflection image) based on the reflected light L3 is formed on the imaging surface of the CCD imaging device 18.
C C D撮像素子 1 8は、 複数の画素が 2次元配列されたェリァセンサであり、 撮像面上の反射像を撮像し、 画像信号を画像処理装置 1 9に出力する。 画像信号 は、 複数のサンプル点からなり、 CCD撮像素子 1 8の撮像面における各画素ご との輝度値に関する分布 (輝度分布) を表している。 The CCD image sensor 18 is an area sensor in which a plurality of pixels are two-dimensionally arranged, captures a reflection image on an imaging surface, and outputs an image signal to the image processing device 19. The image signal is composed of a plurality of sample points, and represents a distribution (luminance distribution) relating to the luminance value of each pixel on the imaging surface of the CCD imaging device 18.
なお、 上記の照明光学系(1 3〜 1 5)および対物レンズ 1 6は、 請求項の 「照 明手段」 に対応する。 結像光学系(1 6,1 7 )および CCD撮像素子 1 8は、 請求 項の 「撮像手段」 に対応する。 画像処理装置 1 9は、 請求項の 「抽出手段」 , 「検 出手段」 に対応する。 The above-mentioned illumination optical system (13 to 15) and the objective lens 16 correspond to the “illuminating means” in the claims. The imaging optical system (16, 17) and the CCD imaging device 18 correspond to the "imaging means" in the claims. The image processing device 19 corresponds to “extraction means” and “detection means” in the claims.
画像処理装置 1 9は、 CCD撮像素子 1 8からの画像信号に基づいて、 ウェハ 1 1の観察領域(重ね合わせマーク 30を含む)の反射像を画像として取り込む。 ここで、 ウェハ 1 1の観察領域の画像には、 図 2(b)に示すように、 X方向に関 して、左側に 3本のエツジ像 F 1 (L), F 2 (L), F 3 (L)が現れ、右側に 3本のエッジ 像 F 1 (R),F 2(R),F 3(R)が現れている。 The image processing device 19 captures, as an image, a reflection image of the observation area (including the overlay mark 30) of the wafer 11 based on the image signal from the CCD image sensor 18. Here, as shown in FIG. 2 (b), the image of the observation region of the wafer 11 includes three edge images F 1 (L), F 2 (L), F 3 (L) appears, and three edge images F 1 (R), F 2 (R), and F 3 (R) appear on the right side.
このうち、 内側の 2本のエッジ像 F 3(L),F 3(R)は、 図 2(a)に示すボックス マーク 32の凹凸構造のエッジ E 3(L),E 3 (R)に対応する像である。 残りの 4本 のエッジ像 F 1 (L), F 2 (L), F 1 (R), F 2(R)は、 フレームマーク 3 1の凹凸構造の エッジ E 1(L),E 2(L),E 1(R),E 2 (R)に対応する像である。 Of these, the inner two edge images F 3 (L) and F 3 (R) correspond to the edges E 3 (L) and E 3 (R) of the concavo-convex structure of the box mark 32 shown in FIG. The corresponding image. The remaining four edge images F 1 (L), F 2 (L), F 1 (R), and F 2 (R) are the edges E 1 (L), E 2 ( L), E1 (R), and E2 (R).
このため、 画像処理装置 1 9は、 ウェハ 1 1の観察領域の画像に現れた 6本の エッジ像 F 1 (L), F 2 (L),…(図 2(b))のうち、ボックスマーク 3 2に関わるエッジ 像 F 3 (L), F 3 (R)に基づいて、 ボックスマーク 32の X方向の中心位置 C 2を検 出し、 フレームマーク 3 1に関わるエッジ像 F 1 (L), F 2 (L), F 1 (R), F 2(R)に基 づいて、 フレームマーク 3 1の X方向の中心位置 C 1を検出する。 For this reason, the image processing apparatus 19 outputs the box image of the six edge images F 1 (L), F 2 (L),... (FIG. 2 (b)) appearing in the image of the observation area of the wafer 11. Based on the edge images F 3 (L) and F 3 (R) related to the mark 3 2, the center position C 2 of the box mark 32 in the X direction is detected, and the edge image F 1 (L) related to the frame mark 31 is detected. , F 2 (L), F 1 (R), and F 2 (R), the center position C 1 of the frame mark 31 in the X direction is detected.
X方向の中心位置 C 1,C 2を検出する手順については、 後で詳細に説明する。 なお、 ウェハ 1 1の観察領域の画像には、 Y方向に関して、 フレームマーク 3 1, ボックスマーク 32のエッジ像が同様に現れる。 フレームマーク 3 1,ボックスマ ーク 3 2 Y方向の中心位置も、 X方向と同じ手順で検出可能である。 このため、 以下では、 「X方向」 に関する説明のみを行い、 「Y方向」 に関する説明を省略
する。 The procedure for detecting the center positions C1, C2 in the X direction will be described later in detail. In the image of the observation area of the wafer 11, the edge images of the frame mark 31 and the box mark 32 appear in the Y direction in the same manner. Frame mark 31, box mark 3 2 The center position in the Y direction can also be detected in the same procedure as in the X direction. Therefore, in the following, only the description about “X direction” is given, and the description about “Y direction” is omitted. I do.
ここで、 中心位置 C 1,C 2を検出する際の前処理について説明しておく。 中心 位置 C 1,C 2の検出に先立ち、 画像処理装置 1 9は、 C CD撮像素子 1 8から取 り込んだ画像信号を積算する (プロジェクシヨン処理) 。 つまり、 中心位置 C 1, C 2の検出方向 (X方向) とは垂直な方向 (Y方向) に沿って、 画像信号を積算 していく。 これは、 信号ノイズを低減させるための処理である。 プロジェクショ ン処理によって生成される積算後の画像信号の波形を 「代表波形」 という。 Here, the pre-processing for detecting the center positions C 1 and C 2 will be described. Prior to detecting the center positions C 1 and C 2, the image processing device 19 integrates the image signals captured from the CCD image sensor 18 (projection processing). That is, the image signals are integrated along the direction (Y direction) perpendicular to the detection direction (X direction) of the center positions C1 and C2. This is a process for reducing signal noise. The waveform of the integrated image signal generated by the projection process is called a “representative waveform”.
例えば、 図 2(b)に点線で示すように、 観察領域の画像内に現れた全てのエツ ジ像 F 1 (L), F 2 (L), F 3 (L), F 1 (R), F 2 (R), F 3 (R)を含むような範囲 3 3を設 定し、 この範囲 33内で画像信号を Y方向に積算した場合、 得られる画像信号の 代表波形は、 図 3〜図 6の(a)に示すような形状となる。 For example, as shown by the dotted line in Fig. 2 (b), all edge images F 1 (L), F 2 (L), F 3 (L), F 1 (R) appearing in the image of the observation area , F 2 (R), and F 3 (R) are set, and when the image signal is integrated in the Y direction within this range 33, the representative waveform of the obtained image signal is To (a) of FIG.
図 3〜図 6の横軸は、 代表波形の各々のサンプル点 (画素) の位置を表し、 縦 軸は輝度値を表している。 図 3〜図 6の(a)において、 代表波形の輝度値が極小 となるポトム付近は、 各々、 エツジ像 F 1 (L), F 2 (L), F 3 (L), F 1 (R), F 2 (R), F 3 (R)に対応する。 The horizontal axis in FIGS. 3 to 6 represents the position of each sample point (pixel) of the representative waveform, and the vertical axis represents the luminance value. In Fig. 3 to Fig. 6 (a), the vicinity of the poton where the luminance value of the representative waveform is minimal is the edge images F1 (L), F2 (L), F3 (L), F1 (R ), F 2 (R) and F 3 (R).
また、 図 3,図 4の(a)は、 共に、 図 1 0(a)に示すようなフレームマーク 3 1 とボックスマーク 3 2とのサイズ差が大きい標準的な重ね合わせマーク 30にお ける代表波形の例であり、 図 3(a)は、 フレームマーク 3 1,ボックスマーク 32 の中心位置 C 1,C 2のずれが小さい場合、 図 4(a)は、 中心位置 C 1,C 2のずれ が大きい場合に関する。 3 (a) and FIG. 4 (a) show a standard superposition mark 30 having a large size difference between the frame mark 31 and the box mark 32 as shown in FIG. 10 (a). Fig. 3 (a) shows an example of a representative waveform. Fig. 4 (a) shows the center positions C1, C2 when the deviation between the center positions C1, C2 of the frame mark 31 and the box mark 32 is small. This relates to the case where the deviation is large.
図 5,図 6の(a)は、 共に、 図 1 0(b)に示すようなフレームマーク 3 1とポッ タスマーク 3 2とのサイズ差が小さい重ね合わせマーク 30における代表波形の 例であり、 図 5 (a)は、 フレームマーク 3 1,ボックスマーク 3 2の中心位置 C 1, C 2のずれが小さい場合、 図 6(a)は、 中心位置 C 1,C 2のずれが大きい場合に 関する。 FIGS. 5A and 6A are both examples of representative waveforms at the superposition mark 30 having a small size difference between the frame mark 31 and the potas mark 32 as shown in FIG. 10B. Fig. 5 (a) shows the case where the deviation between the center positions C1 and C2 of the frame mark 31 and the box mark 3 2 is small, and Fig. 6 (a) shows the case where the deviation between the center positions C1 and C2 is large. Related.
図 3〜図 6の(a)を比較すると分かるように、図 3〜図 5の(a)では、 フレーム マーク 3 1に起因するエッジ像 F 2 (L), F 2(R)と、 ボックスマーク 32に起因す るエツジ像 F 3 (L), F 3 (R)とが十分離れているため、 代表波形のうちフレームマ ーク 3 1,ボックスマーク 32の間に対応する境界部分 40(L),(R)の輝度値は、一
定の値 Aに保たれている。 As can be seen by comparing FIG. 3A to FIG. 6A, in FIG. 3A to FIG. 5A, the edge images F 2 (L) and F 2 (R) caused by the frame mark 31 and the box Since the edge images F 3 (L) and F 3 (R) caused by the mark 32 are sufficiently separated from each other, the boundary portion 40 (corresponding between the frame mark 31 and the box mark 32 in the representative waveform). The luminance values of (L) and (R) It is kept at the fixed value A.
これに対し、 図 6の(a)では、 フレームマーク 3 1に起因するエッジ像 F 2(L), F 2(R)と、 ボックスマーク 32に起因するエッジ像 F 3 (L), F 3(R)と力 S、 図中左 側においてある程度離れているものの、 図中右側において非常に近接している。 On the other hand, in FIG. 6A, the edge images F 2 (L) and F 2 (R) due to the frame mark 31 and the edge images F 3 (L) and F 3 due to the box mark 32 are shown. (R) and the force S are separated to some extent on the left side of the figure, but are very close on the right side of the figure.
したがって、代表波形のうちフレームマーク 3 1,ボックスマーク 3 2の間に対 応する左側の境界部分 4 1(L)は、輝度値が一定の値 Aに保たれ、右側の境界部分 41(R)は、輝度値が一定の値 Aより小さい値 Bとなっている。 つまり、 左右のバ ランス (対称性) が崩れている。 これは、 フレームマーク 3 1,ボックスマーク 3 2どうしの近接の影響である。 Therefore, in the representative waveform, the left boundary portion 4 1 (L) corresponding to between the frame mark 3 1 and the box mark 3 2 has a constant luminance value A, and the right boundary portion 41 (R ) Is a value B whose brightness value is smaller than a constant value A. In other words, the balance between left and right (symmetry) is broken. This is due to the proximity of the frame mark 3 1 and the box mark 3 2.
なお、 実際の位置検出はフレームマーク 31とボックスマーク 32とで別々に 行われるため、 上記のような代表波形 (図 3〜図 6の(a)参照) を生成するため のプロジェクション処理は、 図 2(c),(d)に点線で示す範囲 34,35を各々設定 して実施される。 Since the actual position detection is performed separately for the frame mark 31 and the box mark 32, the projection processing for generating the representative waveform as described above (see (a) in FIGS. 3 to 6) is performed as shown in FIG. 2 (c) and (d) are implemented by setting ranges 34 and 35 indicated by dotted lines, respectively.
図 2(c)の範囲 34は、 観察領域の画像内に現れたボックスマーク 3 2に関わ る 2本のエッジ像 F 3(L),F 3(R)を含むような範囲であり、 ボックスマーク 3 2 の中心位置 C 2を検出する際に設定される。 そして、 この範囲 34内での画像信 号の積算により代表波形 (不図示)が生成され、 得られた代表波形が中心位置 C 2 の検出に用いられる。 The range 34 in FIG. 2 (c) is a range including two edge images F 3 (L) and F 3 (R) related to the box mark 32 appearing in the image of the observation region. Set when detecting the center position C2 of mark 32. Then, a representative waveform (not shown) is generated by integrating the image signals within this range 34, and the obtained representative waveform is used for detecting the center position C 2.
図 2(d)の範囲 3 5は、 フレームマーク 3 1に関わる 4本のエッジ像 F 1 (L), F 2 (L), F 1(R),F 2 (R)を含むような範囲であり、フレームマーク 3 1の中心位置 C 1を検出する際に設定される。 そして、 この範囲 35内での画像信号の積算に より代表波形 (不図示)が生成され、 得られた代表波形が中心位置 C 1の検出に用 いられる。 The range 35 in FIG. 2D is a range including four edge images F 1 (L), F 2 (L), F 1 (R), and F 2 (R) related to the frame mark 31. This is set when the center position C 1 of the frame mark 31 is detected. Then, a representative waveform (not shown) is generated by integrating the image signals within this range 35, and the obtained representative waveform is used for detecting the center position C1.
次に、重ね合わせ測定装置 1 0におけるフレームマーク 3 1,ボックスマーク 3 2の中心位置 C 1,C 2の検出手順について、図 7のフローチヤ一トを用いて具体 的に説明する。 ここでは、 ボックスマーク 32の中心位置 C 2の検出を例に説明 する。 Next, a procedure for detecting the center positions C1 and C2 of the frame mark 31 and the box mark 32 in the overlay measurement apparatus 10 will be specifically described with reference to the flowchart of FIG. Here, detection of the center position C2 of the box mark 32 will be described as an example.
この位置検出時、 重ね合わせ測定装置 1 0の視野内には、 ウェハ 1 1の重ね合 わせマーク 30(図 2(a))を含む観察領域が位置決めされる。 そして、 CCD撮像
素子 1 8の撮像面上には、 重ね合わせマーク 30の反射像が形成される。 このた め、 画像処理装置 1 9では、 CCD撮像素子 1 8からの画像信号に基づいて、 重 ね合わせマーク 30の反射像を画像 (図 2(c)参照) として取り込むことができ る。 At the time of this position detection, an observation area including the overlay mark 30 (FIG. 2 (a)) of the wafer 11 is positioned in the field of view of the overlay measurement device 10. And CCD imaging On the imaging surface of the element 18, a reflection image of the overlay mark 30 is formed. Therefore, the image processing device 19 can capture the reflection image of the superposition mark 30 as an image (see FIG. 2 (c)) based on the image signal from the CCD image sensor 18.
次に、 画像処理装置 1 9は、 図 2(c)に点線で示すように、 ボックスマーク 3 2に関わる 2本のエッジ像 F 3 (L), F 3 (R)を含むような範囲 34を設定し、 この 範囲 34内で画像信号を Y方向に積算することにより、 代表波形 (不図示, 図 3 〜図 6の(a)参照) を生成する (図 7のステップ S 1) 。 範囲 34の設定は、 手 動または自動で行われる。 ' Next, as shown by the dotted line in FIG. 2 (c), the image processing device 19 sets a range including two edge images F 3 (L) and F 3 (R) related to the box mark 32. Then, a representative waveform (not shown, see (a) in FIGS. 3 to 6) is generated by integrating the image signals in the Y direction within this range 34 (step S1 in FIG. 7). Setting range 34 can be done manually or automatically. '
そして次に、 画像処理装置 1 9は、 ステップ S 1で生成した代表波形に基づい て、 画像信号のうち輝度値の急変部分をエッジ信号として抽出する (ステップ S 2) 。 エッジ信号とは、 ボックスマーク 3 2のエッジ対 E 3 (図 2(a)) に関わ る信号である。エッジ信号の抽出は、例えば次の(1)〜(6)の手順にしたがって自 動的に行われる。 Then, the image processing device 19 extracts a portion where the luminance value changes abruptly from the image signal as an edge signal based on the representative waveform generated in step S1 (step S2). The edge signal is a signal related to the edge pair E 3 of the box mark 32 (FIG. 2 (a)). The extraction of the edge signal is automatically performed according to, for example, the following procedures (1) to (6).
(1) ボックスマーク 3 2に関わる代表波形の輝度値が極小となる 2つのボトム ポイントを見つける。 (1) Find the two bottom points where the luminance value of the representative waveform related to the box mark 32 is minimum.
(2) 左側のボトムポイントから左方へ輝度値の変化を追跡し、 輝度値が最大と なるサンプル点 S 1 (図 3〜図 6の(a)参照) を見つける。 サンプル点 S 1の輝 度値は、 図 3〜図 6の(a)の何れにおいても、 一定の値 Aとなっている。 (2) Track the change in the luminance value from the bottom point on the left to the left, and find the sample point S1 (see (a) in Figs. 3 to 6) where the luminance value is the maximum. The brightness value of the sample point S1 has a constant value A in any of FIGS.
(3) 左側のボトムポイントから右方へ輝度値の変化を追跡し、 輝度値が最大と なるサンプル点 S 3 (図 3〜図 6の(a)参照) を見つける。 (3) Track the change in the brightness value from the bottom point on the left to the right, and find the sample point S3 (see (a) in Figs. 3 to 6) where the brightness value is the maximum.
(4) 右側のボトムポイントから右方へ輝度値の変化を追跡し、 輝度値が最大と なるサンプル点 S 2 (図 3〜図 6の(a)参照) を見つける。 サンプル点 S 2の輝 度値は、 図 3〜図 5の(a)では一定の値 Aとなるが、 図 6 (a)では、 上記した近接 の影響で値 Aより小さい値 Bとなる。 (4) Track the change in the luminance value from the bottom point on the right to the right, and find the sample point S2 (see (a) in Figs. 3 to 6) where the luminance value is the maximum. The brightness value of the sample point S2 has a constant value A in FIGS. 3 to 5 (a), but has a value B which is smaller than the value A in FIG.
(5) 右側のボトムポイントから左方へ輝度値の変化を追跡し、 輝度値が最大と なるサンプル点 S 3 (図 3〜図 6の(a)参照) を見つける。 本実施形態では、 サ ンプル点 S 3は、 (3) で求めたサンプル点と同一点となっている。 (5) Track the change in the luminance value from the bottom point on the right to the left, and find the sample point S3 (see (a) in Figs. 3 to 6) where the luminance value is the maximum. In the present embodiment, the sample point S3 is the same as the sample point obtained in (3).
(6) サンプル点 S 1からサンプル点 S 2まで (つまり輝度値の急変部分) をェ
ッジ信号として抽出する。 (6) From the sample point S1 to the sample point S2 (that is, the part where the luminance value suddenly changes) Extracted as the edge signal.
その結果、 抽出されたエッジ信号の波形 4 2は、 図 3〜図 6の(b )に示すよう な形状となる。 図 3〜図 6の(b )を比較すると分かるように、 図 3〜図 5の(b ) では、 波形 4 2の左端と右端の輝度値が、 共に同じ値 Aとなる。 このため、 図 3 〜図 5の(b )の波形 4 2は、 左右対称である。 これに対し、 図 6の(b )では、 波形 As a result, the waveform 42 of the extracted edge signal has a shape as shown in (b) of FIGS. As can be seen from a comparison of FIGS. 3 to 6B, in FIGS. 3 to 5B, the luminance value at the left end and the right end of the waveform 42 both have the same value A. Therefore, the waveforms 42 in FIGS. 3 to 5B are symmetrical. In contrast, in Fig. 6 (b), the waveform
4 2の左端と右端の輝度値が、フレームマーク 3 1 ,ボックスマーク 3 2どうしの 近接の影響で、 異なる値 Α, Βとなる。 このため、 図 6の(b )の波形 4 2は、 左右 非対称である。 The luminance values at the left end and the right end of 4 2 have different values Α and で due to the proximity of the frame mark 3 1 and the box mark 3 2. For this reason, the waveform 42 in FIG. 6 (b) is bilaterally asymmetric.
画像処理装置 1 9では、 ステップ S 2で抽出したエッジ信号の波形 4 2 (図 3 〜図 6の(b )参照) に基づいて、 図 7のステップ S 3以降の手順にしたがい、 ボ ックスマーク 3 2の中心位置 C 2を検出する。 この手順は、 エッジ信号の波形 4 2が図 3〜図 5の(b )のように左右対称であっても、図 6 ( b )のように左右非対称 であっても、 同じように精度良く位置検出を行えるものである。 In the image processing device 19, based on the waveform 42 of the edge signal extracted in step S2 (see (b) of FIGS. 3 to 6), the box mark 3 The center position C 2 of 2 is detected. This procedure is equally accurate whether the edge signal waveform 42 is symmetrical as shown in (b) of Figs. 3 to 5 or asymmetrical as shown in (b) of Fig. 6. It can perform position detection.
さて、図 7のステップ S 3以降の手順について説明する。画像処理装置 1 9は、 まず初めに演算用波形を決定する (ステップ S 3 )。今回(1回目) の処理では、 ステップ S 2で抽出したエッジ信号の波形 4 2が演算用波形となる。 そして、 画 像処理装置 1 9は、 波形 4 2の仮中心位置を設定する (ステップ S 4 ) 。 Now, the procedure after step S3 in FIG. 7 will be described. First, the image processing device 19 determines a waveform for calculation (step S3). In the processing of this time (the first time), the waveform 42 of the edge signal extracted in step S2 is used as the calculation waveform. Then, the image processing device 19 sets a temporary center position of the waveform 42 (step S4).
次に、 画像処理装置 1 9は、 波形 4 2を仮中心位置で折り返し、 得られた折り 返し波形と元々の波形 4 2との相関関数を演算する (ステップ S 5 ) 。 つまり、 周知の相関法というアルゴリズムを用いて、 折り返し波形と元々の波形 4 2とを 相対的にオフセットさせながら、 相関関数を演算する。 相関関数とは、 折り返し 波形と元々の波形 4 2とのオフセット量と、 そのときの相関値との関係を表した ものである。 相関値は 「0〜1」 の値をとる。 Next, the image processing device 19 folds the waveform 42 at the temporary center position, and calculates a correlation function between the obtained folded waveform and the original waveform 42 (step S5). In other words, a correlation function is calculated using a well-known algorithm called a correlation method while relatively offsetting the folded waveform and the original waveform 42. The correlation function indicates the relationship between the offset amount between the folded waveform and the original waveform 42 and the correlation value at that time. The correlation value takes a value from “0 to 1”.
そして、 画像処理装置 1 9は、 ステップ S 5で計算した相関関数における最大 相関値を求め、 この最大相関値に対応するオフセット量 Δを選択する (ステップ S 6 ) 。 今回の処理は 1回目であるため (ステップ S 7が Yes) 、 次にステップ Then, the image processing apparatus 19 obtains the maximum correlation value in the correlation function calculated in step S5, and selects the offset amount Δ corresponding to the maximum correlation value (step S6). Because this is the first time (Yes in step S7),
5 8の処理を行う。 つまり、 ステップ S 6で求めた最大相関値と予め定めた閾値 (例えば 0 . 9 5 ) との大小比較を行う。 最大相関値は、 演算用波形の左右の対称 性を示す指標である。
比較の結果、 ステップ S 6で求めた最大相関値が閾値 (例えば 0.9 5) より大 きい場合 (ステップ S 8が No) 、 画像処理装置 1 9は、 元々の波形 42が左右対 称 (図 3〜図 5の(b)参照) であると判断して、 ステップ S 1 4の処理を行う。 つまり、 ステップ S 6で選択したオフセット量 Δと、 ステップ S 4で設定した仮 中心位置とに基づいて、 ボックスマーク 3 2の中心位置 C 2 (=仮中心位置 + Δ /2) を算出する。 5 Perform the processing of 8. That is, a magnitude comparison between the maximum correlation value obtained in step S6 and a predetermined threshold value (for example, 0.95) is performed. The maximum correlation value is an index indicating the left-right symmetry of the calculation waveform. As a result of the comparison, if the maximum correlation value obtained in step S6 is larger than a threshold value (for example, 0.95) (step S8 is No), the image processing apparatus 19 determines that the original waveform 42 is symmetrical (see FIG. 3). (See (b) of FIG. 5), and the process of step S14 is performed. That is, the center position C 2 (= temporary center position + Δ / 2) of the box mark 32 is calculated based on the offset amount Δ selected in step S6 and the temporary center position set in step S4.
一方、 ステップ S 8における比較の結果、 ステップ S 6で求めた最大相関値の 方が閾値 (例えば 0.95) よりも小さい場合 (ステップ S 8が Yes) 、 画像処理 装置 1 9は、 元々の波形 42が左右非対称 (図 6(b)参照) であると判断して、 ステップ S 9の処理を行う。つまり、ステップ S 6で選択したォ,フセット量 Δと、 ステップ S 4で設定した仮中心位置とに基づいて、 ボックスマーク 3 2の中心位 置 C 2の候補 (=仮中心位置 + Δ/2) を算出する。 On the other hand, as a result of the comparison in step S8, if the maximum correlation value obtained in step S6 is smaller than the threshold value (for example, 0.95) (step S8 is Yes), the image processing device 19 outputs the original waveform 42 Is determined to be left-right asymmetric (see FIG. 6 (b)), and the process of step S9 is performed. That is, based on the offset amount Δ selected in step S6 and the provisional center position set in step S4, a candidate for the center position C2 of the box mark 32 (= provisional center position + Δ / 2 ) Is calculated.
そして、 ステップ S 9で算出した中心位置 C 2の候補とステップ S 6で求めた 最大相関値との関係を示すデータテーブルを作成する (ステップ S 10) 。 画像 処理装置 1 9は、 上記のような中心位置 C 2の候補の算出を繰り返して実行する 場合 (ステップ S 1 1が No) 、 次のステップ S 1 2の処理を経てから、 ステップ Then, a data table indicating the relationship between the candidate for the center position C2 calculated in step S9 and the maximum correlation value obtained in step S6 is created (step S10). If the image processing device 19 repeatedly executes the above-described calculation of the candidate for the center position C2 (No in step S11), the image processing device 19 performs the processing in the next step S12,
S 3に戻る。 Return to S3.
ステップ S 1 2では、 ステップ S 2で抽出したエッジ信号 (図 6(b)の左右非 対称な波形 42) から 1つ以上のサンプル点が除去され、 エッジ信号に対する補 正処理が行われる。 このとき、 サンプル点の除去位置や除去数は任意である。 例 えば、 エッジ信号 (図 6(b)の左右非対称な波形 42) の左端や右端に位置する サンプル点を 1つ除去することなどが考えられる。 In step S12, one or more sample points are removed from the edge signal extracted in step S2 (the left-right asymmetrical waveform 42 in FIG. 6B), and the edge signal is corrected. At this time, the position and number of sample points to be removed are arbitrary. For example, it is conceivable to remove one sample point located at the left end or right end of the edge signal (asymmetrical waveform 42 in Fig. 6 (b)).
ステップ S 1 2におけるエッジ信号の補正処理が終わると、 画像処理装置 1 9 は、 ステップ S 3の処理に戻って、 2回目の処理 (S 3〜S 1'1) を実行する。 今回 (2回目) 、 ステップ S 3の処理では、 ステップ S 1 2における補正後のェ ッジ信号の波形が演算用波形となる。 When the edge signal correction processing in step S12 is completed, the image processing apparatus 19 returns to the processing in step S3 and executes the second processing (S3 to S1'1). This time (second time), in the process of step S3, the waveform of the edge signal after the correction in step S12 becomes the waveform for calculation.
そして、 この演算用波形 (補正後のエッジ信号の波形) を用いてステップ S 4 〜S 6を実行し、 相関関数における最大相関値を求めると共に、 この最大相関値 に対応するオフセット量 Δを選択する。 今回の処理は 2回目であるため (ステツ
プ S 7が No) 、 ステップ S 8の処理を実行せずにステップ S 9に進み、 ボックス マーク 3 2の中心位置 C 2の新たな候補を算出する。 そして、 この新たな候補と ステップ S 6で求めた最大相関値との関係をデータテーブルに加える (ステップ S 10) 。 Then, steps S4 to S6 are executed using the waveform for calculation (the waveform of the edge signal after correction), and the maximum correlation value in the correlation function is obtained, and the offset amount Δ corresponding to the maximum correlation value is selected. I do. Because this is the second time, If the step S7 is No), the process proceeds to the step S9 without executing the processing of the step S8, and a new candidate of the center position C2 of the box mark 32 is calculated. Then, the relationship between the new candidate and the maximum correlation value obtained in step S6 is added to the data table (step S10).
このようにして、 ボックスマーク 3 2の中心位置 C 2の候補を繰り返し算出す る際、 ステップ S 1 2の処理 (エッジ信号の補正処理) を行う毎に、 サンプル点 の除去位置や除去数を変更すれば、 複数の異なる演算用波形による中心位置 C 2 の候補を次々に算出することができる。 なお、 除去するサンプル点の指定は、 ォ ペレータによる指定でも、 装置の自動設定でもよい。 In this way, when repeatedly calculating the candidate for the center position C 2 of the box mark 3 2, each time the processing of step S 12 (edge signal correction processing) is performed, the removal position and the removal number of the sample point are determined. If it is changed, candidates for the center position C 2 based on a plurality of different calculation waveforms can be calculated one after another. The sample point to be removed may be specified by the operator or automatically set by the apparatus.
画像処理装置 1 9は、 中心位置 C 2の候補の算出を終了すると (ステップ S 1 1力 S Yes) 、 次のステップ S 1 3に進む。 このとき、 画像処理装置 1 9内には、 複数の中心位置 C 2の候補と最大相関値との関係を示すデータテ一ブルが完成し ている。 After finishing the calculation of the candidate for the center position C2 (step S11 force SYes), the image processing device 19 proceeds to the next step S13. At this time, a data table indicating the relationship between the plurality of candidates for the center position C2 and the maximum correlation value has been completed in the image processing device 19.
このため、 画像処理装置 1 9は、 そのデータテーブルを参照して、 複数の中心 位置 C 2の候補のうち 1つを選択する (ステップ S 1 3) 。 すなわち、 複数の最 大相関値の中で最も値が大きい 1つ (最大相関値の最大値) に対応する候補を探 し、 この候補を "中心位置 C 2" として選択する。 最大相関値が大きいほど、 演 算用波形の左右の対称性が高く、 高精度な検出結果が得られるからである。 例えば、 上記ステップ S 2で抽出されたエッジ信号 (補正前のエッジ信号) の 波形が、 図 6(b)に示す波形 42のような左右非対称性をもつ場合、 ステップ S 1 3で "中心位置 C 2" として選択される候補は、 図 8に示す波形 43を演算用 波形にした場合である。 Therefore, the image processing device 19 selects one of the plurality of candidates for the center position C2 with reference to the data table (step S13). That is, a candidate corresponding to one having the largest value among the plurality of maximum correlation values (the maximum value of the maximum correlation values) is searched for, and this candidate is selected as the "center position C2". This is because the greater the maximum correlation value, the higher the left-right symmetry of the operation waveform and the more accurate the detection result. For example, if the waveform of the edge signal (the edge signal before correction) extracted in step S2 has a left-right asymmetry like the waveform 42 shown in FIG. 6B, the “center position” is determined in step S13. The candidate selected as C 2 "is a case where the waveform 43 shown in FIG. 8 is used as the calculation waveform.
この波形 43は、 波形 42 (図 6(b)) のサンプル点のうち、 左端側の 4つの サンプル点と右端側の 1つのサンプル点とを除去したものであり、 図 8から分か るように左右対称な波形となっている。 この波形 43における最大相関値は、 図 9に示すように 「0.9 7」 であり、 補正前のエッジ信号の波形 42における最大 相関値 「0.6 5」 と比較して、 「0.3 2」 だけ向上したことが分かる。 This waveform 43 is obtained by removing the four sample points on the left end and one sample point on the right end of the sample points of the waveform 42 (Fig. 6 (b)), as can be seen from Fig. 8. Symmetrical waveform. The maximum correlation value in this waveform 43 is “0.97” as shown in FIG. 9, which is improved by “0.3 2” compared to the maximum correlation value “0.65” in the waveform 42 of the edge signal before correction. You can see that.
これは、 ステップ S 2で抽出されたエッジ信号 (補正前のエッジ信号) の波形 42 (図 6(b)) が左右非対称であっても、 サンプル点を除去することで相関演
算に用いる波形の対称性を向上させ、 左右対称な波形 43 (図 8) を用いて精度 良く中心位置 C 2を算出できることを意味する。 This is because even if the waveform 42 (Fig. 6 (b)) of the edge signal (the edge signal before correction) extracted in step S2 is asymmetric, it is possible to remove the sample points and perform the correlation operation. This means that the symmetry of the waveform used in the calculation is improved, and the center position C2 can be calculated with high accuracy using the symmetrical waveform 43 (Fig. 8).
このため、 補正後の左右対称な波形 43を用いて算出した中心位置 C 2と、 補 正前の左右非対称な波形 42を用いて算出した中心位置 C 2の候補とのずれ (図 9では約 1 9 nm) は、 検出精度が向上した分を表している。 つまり、 サンプル 点の除去により、 内マーク中心位置の測定誤差を約 1 9 nm低減することができ た。 Therefore, the difference between the center position C2 calculated using the corrected left-right symmetrical waveform 43 and the candidate of the center position C2 calculated using the left-right asymmetrical waveform 42 before the correction (approximately 19 nm) represents the improvement in detection accuracy. In other words, by removing the sample points, the measurement error of the center position of the inner mark could be reduced by about 19 nm.
また同様にして、 フレームマーク 3 1の中心位置 C 1も精度良く検出すること ができる。 例えば、 上記ステップ S 2で抽出されたエッジ信号 (補正前のエッジ 信号)の波形が、図 6 ( b )に示す波形 44 , 45のような左右非対称性をもつ場合、 ステップ S 1 3で "中心位置 C 2" として選択される候補は、 図 8に示す波形 4 6,47を演算用波形にした場合となる。 Similarly, the center position C 1 of the frame mark 31 can be detected with high accuracy. For example, if the waveform of the edge signal (the edge signal before correction) extracted in step S2 has left-right asymmetry like the waveforms 44 and 45 shown in FIG. The candidate selected as the center position C2 "is a case where the waveforms 46 and 47 shown in FIG.
このうち、 波形 46は、 波形 44 (図 6(b)) のサンプル点のうち、 右端側の 4つのサンプル点を除去したものであり、 波形 47は、 波形 45 (図 6(b)) の サンプル点のうち、左端側の 1つのサンプル点を除去したものである。その結果、 波形 46,47は、 図 8から分かるように左右対称な波形となっている。 この波形 46,47における最大相関値は、 図 9に示すように 「0.98」 であり、 補正前 のエッジ信号の波形 44,45における最大相関値 「0.82」 と比較して、 「0. 16」 だけ向上したことが分かる。 Of these, waveform 46 is obtained by removing the four sample points on the right end from the sample points of waveform 44 (Fig. 6 (b)), and waveform 47 is the waveform 45 (Fig. 6 (b)). One of the sample points on the left side is removed. As a result, the waveforms 46 and 47 are left-right symmetrical waveforms as can be seen from FIG. The maximum correlation value of these waveforms 46 and 47 is “0.98” as shown in FIG. 9. Compared to the maximum correlation value “0.82” of the edge signal waveforms 44 and 45 before correction, “0.16” It can be seen that only improved.
これは、 ステップ S 2で抽出されたエッジ信号 (補正前のエッジ信号) の波形 44,45 (図 6(b)) が左右非対称であっても、 サンプル点を除去することで波 形の対称性を向上させ、 左右対称な波形 46, 47 (図 8) を用いて精度良く中心 位置 C 1を算出できることを意味する。 This is because even if the waveforms 44 and 45 (Fig. 6 (b)) of the edge signal (edge signal before correction) extracted in step S2 are asymmetrical, the sample points are removed to remove the symmetrical waveform. This means that the center position C1 can be calculated accurately using the symmetrical waveforms 46 and 47 (Fig. 8).
このため、補正後の左右対称な波形 46,47を用いて算出した中心位置 C 1と、 補正前の左右非対称な波形 44,45を用いて算出した中心位置 C 1の候補との ずれ (図 9では約 1 3 nm) は、 検出精度が向上した分を表している。 つまり、 サンプル点の除去により、 測定誤差を約 1 3 nm低減することができた。 For this reason, the difference between the center position C 1 calculated using the left-right symmetric waveforms 46 and 47 after correction and the candidate of the center position C 1 calculated using the left-right asymmetric waveforms 44 and 45 before correction (see FIG. In Fig. 9, about 13 nm) indicates the improvement in detection accuracy. In other words, removing the sample points reduced the measurement error by about 13 nm.
続いて、 画像処理装置 1 9は、 ウェハ 1 1の重ね合わせ検査 (下地パターンに 対するレジストパターンの重ね合わせ状態の検査) を実行する。 つまり、 フレー
ムマーク 3 1 ,ボックスマーク 3 2の中心位置 C 1 , C 2の差に基づいて、 重ね合 わせずれ量 R (図 2 ( a )) を算出する。 重ね合わせずれ量 Rは、 ウェハ 1 1の表 面の 2次元べク トルとして表される。 Subsequently, the image processing apparatus 19 performs an overlay inspection of the wafer 11 (inspection of an overlay state of the resist pattern with respect to the underlying pattern). That is, Based on the difference between the center positions C 1 and C 2 of the memory mark 31 and the box mark 32, an overlay displacement amount R (FIG. 2 (a)) is calculated. The overlay displacement amount R is expressed as a two-dimensional vector of the surface of the wafer 11.
本実施形態では、前述したようにフレームマーク 3 1 ,ボックスマーク 3 2の中 心位置 C 1 , C 2が共に精度良く検出されているため、重ね合わせずれ量 Rも精度 良く検出することができる。 図 9の例では、 サンプル点の除去により、 重ね合わ せずれ量 Rが約 3 2 n mだけ向上した。 つまり、 測定誤差を約 3 2 n m低減する ことができた。 In the present embodiment, as described above, since the center positions C 1 and C 2 of the frame mark 31 and the box mark 32 are both detected with high accuracy, the overlay deviation amount R can also be detected with high accuracy. . In the example of Fig. 9, the removal of the sample points improved the overlay displacement R by about 32 nm. In other words, the measurement error was reduced by about 32 nm.
また、 本実施形態では、 ステップ S 3で決定した演算用波形の全体を使って相 関演算 (演算用波形と折り返し波形との相関関数の演算) を行うため、 信号ノィ ズの影響を受け難く、 フレームマーク 3 1,ボックスマーク 3 2の中心位置 C 1 , C 2を再現性よく算出できる。 また、 重ね合わせずれ量 Rを再現性よく算出する こともできる。 In the present embodiment, since the correlation calculation (calculation of the correlation function between the calculation waveform and the folded waveform) is performed using the entire calculation waveform determined in step S3, it is hardly affected by signal noise. The center positions C 1 and C 2 of the frame mark 31 and the box mark 32 can be calculated with good reproducibility. In addition, the overlay deviation R can be calculated with good reproducibility.
なお、 エッジ信号の補正処理 (S 1 2 ) におけるサンプル点の除去数は、 最小 限に抑えることが好ましい。 サンプル点の除去数が多くなると、 それだけ演算用 波形の範囲が狭く (サンプル点の数が少なく) なり、 信号ノイズの影響を受けや すくなるからである。 It is preferable that the number of removed sample points in the edge signal correction processing (S12) be minimized. The reason for this is that the greater the number of sample points removed, the narrower the range of the operation waveform (the smaller the number of sample points), and the more likely it is to be affected by signal noise.
上記した実施形態では、 1回目の相関演算の後にステップ S 8で、 最大相関値 と予め定めた閾値 (例えば 0 . 9 5 ) との大小比較を行い、 最大相関値の方が小さ いときのみサンプル点を除去したが、 1回目の相関演算で求めた最大相関値に拘 わらず、 全ての場合にサンプル点を除去してもよい。 これは、 図 7のフローチヤ 一トにおいてステップ S 7 , S 8 , S 1 4の処理を省略することに相当する。 In the above-described embodiment, after the first correlation calculation, in step S8, the magnitude of the maximum correlation value is compared with a predetermined threshold (for example, 0.95), and only when the maximum correlation value is smaller, Although the sample points have been removed, the sample points may be removed in all cases, regardless of the maximum correlation value obtained in the first correlation operation. This corresponds to omitting the processing of steps S7, S8 and S14 in the flowchart of FIG.
さらに、 上記した実施形態では、 重ね合わせ測定装置 1 0内の画像処理装置 1 9によって、エッジ信号のサンプル点の除去や中心位置 C 1 , C 2の検出などを行 つたが、 重ね合わせ測定装置 1 0に接続された外部のコンピュータを用いた場合 でも、 同様の効果を得ることができる。 Furthermore, in the above-described embodiment, the image processing device 19 in the overlay measurement device 10 removes the sample points of the edge signal and detects the center positions C 1 and C 2. The same effect can be obtained even when an external computer connected to 10 is used.
また、 上記した実施形態では、 重ね合わせ測定装置 1 0を例に説明したが、 本 発明はこれに限定されない。 例えば、 マスクに形成された回路パターンをレジス ト膜に焼き付ける露光工程の前に、 マスクとウェハ 1 1とのァライメントを行う
装置 (露光装置のァライメント系) にも適用できる。 この場合には、 ウェハ 1 1 上に形成されたァライメントマークの位置を精度よく検出することができる。 ま た、 単一の被検マークとカメラの基準位置との光学的位置ずれを検出する装置に も、 本発明は適用できる。 産業上の利用の可能性 Further, in the above embodiment, the overlay measurement apparatus 10 has been described as an example, but the present invention is not limited to this. For example, before the exposure step in which the circuit pattern formed on the mask is printed on the resist film, alignment between the mask and the wafer 11 is performed. It can also be applied to equipment (alignment system of exposure equipment). In this case, the position of the alignment mark formed on the wafer 11 can be accurately detected. The present invention is also applicable to a device that detects an optical displacement between a single test mark and a reference position of a camera. Industrial potential
本発明によれば、 被検マークのエッジ対に関わるエツジ信号の波形が非対称 であっても精度良く被検マークの位置を検出できる。
ADVANTAGE OF THE INVENTION According to this invention, even if the waveform of the edge signal regarding the edge pair of a test mark is asymmetrical, the position of a test mark can be detected accurately.
Claims
( 1 ) 基板上に形成された 1つ以上のェッジ対を含む被検マークを照明する照 明手段と、 (1) illuminating means for illuminating a test mark including one or more edge pairs formed on a substrate;
前記被検マークからの光に基づく像を撮像し、 複数のサンプル点からなる画像 信号を出力する撮像手段と、 Imaging means for capturing an image based on light from the test mark and outputting an image signal composed of a plurality of sample points;
前記画像信号のうち輝度値の急変部分を前記エッジ対に関わるエッジ信号とし て抽出する抽出手段と、 ' 前記エッジ信号に基づいて、 前記被検マークの中心位置を検出する検出手段と を備え、 Extracting means for extracting a rapidly changing portion of the luminance value from the image signal as an edge signal relating to the edge pair, and detecting means for detecting a center position of the test mark based on the edge signal.
前記検出手段は、 The detecting means,
前記ェッジ信号に含まれるサンプル点のうち 1つ以上を除去することにより、 前記ェッジ信号の非対称性を補正する補正手段と、 Correction means for correcting the asymmetry of the edge signal by removing one or more of the sample points included in the edge signal,
前記補正手段による補正後のェッジ信号に基づいた波形と、 該波形を折り返し て得られる波形との相関関数における最大相関値を算出することにより、 前記中 心位置を算出する算出手段とを有する Calculating means for calculating the center position by calculating a maximum correlation value in a correlation function between a waveform based on the wedge signal corrected by the correction means and a waveform obtained by folding the waveform;
ことを特徴とするマーク位置検出装置。 A mark position detecting device characterized by the above-mentioned.
( 2 ) 基板上に形成された 1つ以上のエッジ対を含む被検マークを照明する照 明手段と、 (2) illuminating means for illuminating a test mark including at least one edge pair formed on a substrate;
前記被検マークからの光に基づく像を撮像し、 複数のサンプル点からなる画像 信号を出力する撮像手段と、 Imaging means for capturing an image based on light from the test mark and outputting an image signal composed of a plurality of sample points;
前記画像信号のうち輝度値の急変部分を前記エッジ対に関わるエッジ信号とし て抽出する抽出手段と、 Extracting means for extracting a rapidly changing portion of the luminance value from the image signal as an edge signal related to the edge pair;
前記エッジ信号に基づいて、 前記被検マークの中心位置を検出する検出手段と を備え、 Detecting means for detecting a center position of the test mark based on the edge signal,
前記検出手段は、 The detecting means,
前記エッジ信号に含まれるサンプル点のうち 1つ以上を除去することにより、 前記ェッジ信号を補正する補正手段と、 Correcting means for correcting the edge signal by removing one or more of the sample points included in the edge signal;
前記補正手段による補正前のエッジ信号または補正後のエッジ信号に基づいた
演算用波形と該演算用波形を折り返して得られる波形との相関関数における最大 相関値を算出する第 1の算出手段と、 Based on the edge signal before correction by the correction means or the edge signal after correction. First calculating means for calculating a maximum correlation value in a correlation function between a calculation waveform and a waveform obtained by folding the calculation waveform;
複数の異なる前記演算用波形の各々を用いて前記第 1の算出手段が算出した複 数の前記最大相関値のうち最も大きい 1つを選択する選択手段と、 Selecting means for selecting the largest one of the plurality of maximum correlation values calculated by the first calculating means using each of the plurality of different calculation waveforms;
前記選択手段が選択した 1つの最大相関値に基づいて、 前記中心位置を算出す る第 2の算出手段とを有する Second calculating means for calculating the center position based on one maximum correlation value selected by the selecting means.
ことを特徴とするマーク位置検出装置。 A mark position detecting device characterized by the above-mentioned.
( 3 ) 請求項 2に記載のマーク位置検出装置において、 (3) In the mark position detecting device according to claim 2,
前記検出手段は、 前記補正前のェッジ信号に基づく前記演算用波形を用いて前 記第 1の算出手段が算出した前記最大相関値と予め定めた閾値とを比較する比較 手段をさらに有し、 The detection unit further includes a comparison unit that compares the maximum correlation value calculated by the first calculation unit with a predetermined threshold using the calculation waveform based on the uncorrected edge signal,
前記補正手段は、 前記比較手段による比較の結果、 前記補正前のエッジ信号に 基づく前記最大相関値の方が前記閾値よりも小さいときに、 前記ェッジ信号に対 する補正を行う The correction means corrects the edge signal when the maximum correlation value based on the edge signal before correction is smaller than the threshold value as a result of the comparison by the comparison means.
ことを特徴とするマーク位置検出装置。 A mark position detecting device characterized by the above-mentioned.
( 4 ) 基板上に形成された 1つ以上のエッジ対を含む被検マークを照明する照 明工程と、 (4) an illumination step of illuminating a test mark including at least one edge pair formed on the substrate;
前記被検マークからの光に基づく像を撮像し、 複数のサンプル点からなる画像 信号を出力する撮像工程と、 An imaging step of capturing an image based on light from the test mark and outputting an image signal including a plurality of sample points;
前記画像信号のうち輝度値の急変部分を前記エッジ対に関わるエッジ信号とし て抽出する抽出工程と、 An extracting step of extracting a rapidly changing portion of the luminance value from the image signal as an edge signal related to the edge pair;
前記エッジ信号に基づいて、 前記被検マークの中心位置を検出する検出工程と を備え、 A detection step of detecting a center position of the test mark based on the edge signal,
前記検出工程は、 The detecting step includes:
前記ェッジ信号に含まれるサンプル点のうち 1つ以上を除去することにより、 前記ェッジ信号の非対称性を補正する補正工程と、 Correcting one or more of the sample points included in the edge signal to correct the asymmetry of the edge signal;
前記補正工程における捕正後のェッジ信号に基づいた波形と、 該波形を折り返 して得られる波形との相関関数における最大相関値を算出することにより、 前記 中心位置を算出する算出工程とを有する
ことを特徴とするマーク位置検出方法。 A calculating step of calculating the center position by calculating a maximum correlation value in a correlation function between a waveform based on the edge signal after the correction in the correction step and a waveform obtained by folding the waveform. Have And a mark position detecting method.
( 5 ) 基板上に形成された 1つ以上のエッジ対を含む被検マークを照明する照 明工程と、 (5) an illumination step of illuminating a test mark including one or more edge pairs formed on the substrate;
前記被検マークからの光に基づく像を撮像し、 複数のサンプル点からなる画像 信号を出力する撮像工程と、 An imaging step of capturing an image based on light from the test mark and outputting an image signal including a plurality of sample points;
前記画像信号のうち輝度値の急変部分を前記エッジ対に関わるエッジ信号とし て抽出する抽出工程と、 An extracting step of extracting a rapidly changing portion of the luminance value from the image signal as an edge signal related to the edge pair;
前記エッジ信号に基づいて、 前記被検マークの中心位置を検出する検出工程と を備え、 A detection step of detecting a center position of the test mark based on the edge signal,
前記検出工程は、 The detecting step includes:
前記ェッジ信号に含まれるサンプル点のうち 1つ以上を除去することにより、 前記ェッジ信号を補正する補正工程と、 Correcting the edge signal by removing one or more of the sample points included in the edge signal,
前記補正工程における補正前のェッジ信号または補正後のェッジ信号に基づい た演算用波形と該演算用波形を折り返して得られる波形との相関関数における最 大相関値を算出する第 1の算出工程と、 ' 複数の異なる前記演算用波形の各々を用いて前記第 1の算出工程で算出された 複数の前記最大相関値のうち最も大きい 1つを選択する選択工程と、 A first calculating step of calculating a maximum correlation value in a correlation function between a waveform for calculation based on the wedge signal before correction or the wedge signal after correction in the correction step and a waveform obtained by folding the waveform for calculation. A selecting step of selecting the largest one of the plurality of maximum correlation values calculated in the first calculating step using each of a plurality of different calculation waveforms;
前記選択工程で選択された 1つの最大相関値に基づいて、 前記中心位置を算出 する第 2の算出工程とを有する A second calculating step of calculating the center position based on one maximum correlation value selected in the selecting step.
ことを特徴とするマーク位置検出方法。 And a mark position detecting method.
( 6 ) 請求項 5に記載のマーク位置検出方法において、 (6) In the mark position detecting method according to claim 5,
前記検出工程は、 前記補正前のェッジ信号に基づく前記演算用波形を用いて前 記第 1の算出工程で算出された前記最大相関値と予め定めた閾値とを比較する比 較工程をさらに有し、 The detection step further includes a comparison step of comparing the maximum correlation value calculated in the first calculation step with a predetermined threshold value using the calculation waveform based on the uncorrected edge signal. And
前記補正工程では、 前記比較工程における比較の結果、 前記捕正前のエッジ信 号に基づく前記最大相関値の方が前記閾値よりも小さいときに、 前記ェッジ信号 に対する補正を行う In the correction step, when the maximum correlation value based on the edge signal before correction is smaller than the threshold value as a result of the comparison in the comparison step, the edge signal is corrected.
ことを特徴とするマーク位置検出方法。 And a mark position detecting method.
( 7 ) 基板上に形成された複数のパタ一ンの重ね合わせ状態を検査する重ね合
わせ測定装置において、 (7) Overlay for inspecting the overlaid state of a plurality of patterns formed on the substrate In the measuring device
前記複数のパターンの各々の基準位置を示す被検マークの中心位置を各々検出 する請求項 1または請求項 2または請求項 3に記載のマーク位置検出装置と、 前記マーク位置検出装置が検出した前記各々の中心位置の差に基づいて、 前記 複数のパターンどうしの重ね合わせずれ量を測定する測定手段とを備えた ことを特徴とする重ね合わせ測定装置。 The mark position detecting device according to claim 1, wherein the mark position detecting device detects a center position of a test mark indicating a reference position of each of the plurality of patterns. Measuring means for measuring an amount of misalignment of the plurality of patterns based on a difference between the respective center positions.
( 8 ) 請求項 4または請求項 5または請求項 6に記載のマーク位置検出方法を 用い、 基板上に形成された複数のパターンの重ね合わせ状態を検査する重ね合わ せ測定方法において、 (8) An overlay measurement method for inspecting an overlay state of a plurality of patterns formed on a substrate by using the mark position detection method according to claim 4 or claim 5 or claim 6,
前記検出工程は、 前記複数のパターンの各々の基準位置を示す被検マ一クの中 心位置を各々検出するェ ΐ呈でぁり、 The detecting step includes detecting a center position of a test mark indicating a reference position of each of the plurality of patterns.
前記検出工程で検出された前記各々の中心位置の差に基づいて、 前記複数のパ ターンどうしの重ね合わせずれ量を測定する測定工程をさらに備えた A measuring step of measuring an amount of misalignment between the plurality of patterns based on a difference between the respective center positions detected in the detecting step.
ことを特徴とする重ね合わせ測定方法。
An overlay measurement method, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003264338A AU2003264338A1 (en) | 2002-08-22 | 2003-08-21 | Mark position detection device, mark position detection method, superimposing measurement device, and superimposing measurement method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002242049A JP4178875B2 (en) | 2002-08-22 | 2002-08-22 | Mark position detection device, mark position detection method, overlay measurement device, and overlay measurement method |
JP2002-242049 | 2002-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004019389A1 true WO2004019389A1 (en) | 2004-03-04 |
Family
ID=31944008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/010582 WO2004019389A1 (en) | 2002-08-22 | 2003-08-21 | Mark position detection device, mark position detection method, superimposing measurement device, and superimposing measurement method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4178875B2 (en) |
AU (1) | AU2003264338A1 (en) |
TW (1) | TW200405427A (en) |
WO (1) | WO2004019389A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI762417B (en) * | 2021-09-01 | 2022-04-21 | 環球晶圓股份有限公司 | Method for identifying wafer |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005302970A (en) * | 2004-04-09 | 2005-10-27 | Nikon Corp | Method for creating recipe, position detector, and misregistration detector |
JP2006118931A (en) * | 2004-10-20 | 2006-05-11 | Nikon Corp | Mark position detection apparatus and misregistration detection apparatus |
JP4757701B2 (en) * | 2006-04-25 | 2011-08-24 | Juki株式会社 | Electronic component suction position correction method and apparatus |
JP4770590B2 (en) | 2006-05-26 | 2011-09-14 | ソニー株式会社 | Outline creation apparatus, creation method, and image processing apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0894315A (en) * | 1994-09-28 | 1996-04-12 | Canon Inc | Alignment method, light projection exposure device by the method, and position deviation measuring instrument |
JPH104044A (en) * | 1996-06-13 | 1998-01-06 | Hitachi Ltd | Method for detecting pattern, method for detecting alignment mark and optical apparatus using the methods |
WO2000057126A1 (en) * | 1999-03-24 | 2000-09-28 | Nikon Corporation | Position determining device, position determining method and exposure device, exposure method and alignment determining device, and alignment determining method |
JP2000275010A (en) * | 1999-03-26 | 2000-10-06 | Canon Inc | Method for measuring position and semiconductor exposure system using the method |
-
2002
- 2002-08-22 JP JP2002242049A patent/JP4178875B2/en not_active Expired - Lifetime
-
2003
- 2003-08-21 WO PCT/JP2003/010582 patent/WO2004019389A1/en active Application Filing
- 2003-08-21 AU AU2003264338A patent/AU2003264338A1/en not_active Abandoned
- 2003-08-22 TW TW92123118A patent/TW200405427A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0894315A (en) * | 1994-09-28 | 1996-04-12 | Canon Inc | Alignment method, light projection exposure device by the method, and position deviation measuring instrument |
JPH104044A (en) * | 1996-06-13 | 1998-01-06 | Hitachi Ltd | Method for detecting pattern, method for detecting alignment mark and optical apparatus using the methods |
WO2000057126A1 (en) * | 1999-03-24 | 2000-09-28 | Nikon Corporation | Position determining device, position determining method and exposure device, exposure method and alignment determining device, and alignment determining method |
JP2000275010A (en) * | 1999-03-26 | 2000-10-06 | Canon Inc | Method for measuring position and semiconductor exposure system using the method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI762417B (en) * | 2021-09-01 | 2022-04-21 | 環球晶圓股份有限公司 | Method for identifying wafer |
Also Published As
Publication number | Publication date |
---|---|
JP2004079970A (en) | 2004-03-11 |
AU2003264338A1 (en) | 2004-03-11 |
TW200405427A (en) | 2004-04-01 |
JP4178875B2 (en) | 2008-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3998334B2 (en) | Defect inspection method | |
JP3882588B2 (en) | Mark position detection device | |
JP2004022797A (en) | Device and method for detecting position of mark | |
JP4442130B2 (en) | Overlay measuring apparatus and method | |
JP2002025882A (en) | Device and method for measuring overlap error of pattern | |
WO2004019389A1 (en) | Mark position detection device, mark position detection method, superimposing measurement device, and superimposing measurement method | |
JP3451607B2 (en) | Positioning method and apparatus, and exposure method and apparatus | |
JPH08285539A (en) | Pattern measuring method and device | |
JP4096715B2 (en) | Overlay inspection apparatus and overlay inspection method | |
JP2004158555A (en) | Mark position detecting apparatus, its substrate for adjustment, and adjustment method | |
JP4300802B2 (en) | Mark position detection device, mark position detection method, overlay measurement device, and overlay measurement method | |
JP3994223B2 (en) | Overlay measuring device and overlay measuring method | |
JP4427980B2 (en) | Mark position detection method | |
JP4235756B2 (en) | Misalignment detection method, misalignment detection apparatus, image processing method, image processing apparatus, and inspection apparatus using the same | |
US20070133861A1 (en) | Apparatus and method for inspecting overlay patterns in semiconductor device | |
JPH08181053A (en) | Position detecting method | |
JP3491206B2 (en) | Positioning method and apparatus, and exposure method and apparatus | |
JP4207689B2 (en) | Misalignment measuring device | |
JP4389668B2 (en) | Position detection method and position detection apparatus | |
JP2002124458A (en) | Overlap inspection device and method | |
JPH0992591A (en) | Aligning method | |
JP4599893B2 (en) | Misalignment detection method | |
JP2004356553A (en) | Superposition inspection method and superposition inspection device | |
JP3814982B2 (en) | Overlay accuracy measuring method and measuring machine | |
JP2004200509A (en) | Device for measuring connection and mask for split exposure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |