WO2004017477A1 - Laser largement accordable sur cristal photonique - Google Patents

Laser largement accordable sur cristal photonique Download PDF

Info

Publication number
WO2004017477A1
WO2004017477A1 PCT/FR2003/002274 FR0302274W WO2004017477A1 WO 2004017477 A1 WO2004017477 A1 WO 2004017477A1 FR 0302274 W FR0302274 W FR 0302274W WO 2004017477 A1 WO2004017477 A1 WO 2004017477A1
Authority
WO
WIPO (PCT)
Prior art keywords
holes
section
laser
photonic crystal
guide
Prior art date
Application number
PCT/FR2003/002274
Other languages
English (en)
Inventor
Guang-Hua Duan
François Brillouet
Frédéric Pommereau
Lionel Legouezigou
Sarah Hubert
Original Assignee
Alcatel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel filed Critical Alcatel
Priority to AU2003285674A priority Critical patent/AU2003285674A1/en
Publication of WO2004017477A1 publication Critical patent/WO2004017477A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1237Lateral grating, i.e. grating only adjacent ridge or mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • the present invention relates to the field of tunable laser structures.
  • Laser diodes are commonly used as tunable sources for optical data transmission applications. In such a context, it is important to achieve great tunability, that is to say a wide range of wavelength of emission of the laser, without fear of the mode jumps which harm the quality of the transmission. optical.
  • DB laser distributed reflector laser
  • FIG. 1 Such a “standard” tunable laser is illustrated in FIG. 1.
  • the active section 1 has a vertical structure conventionally consisting of an active amplifier layer CA disposed between two sheath layers A, 5 of opposite dopings.
  • This active layer CA is usually composed of a succession of quantum wells separated by layers forming potential barriers.
  • Upper 6 and lower 7 electrodes allow current injection a through these layers so as to produce an optical amplification effect.
  • the Bragg 2 section is a reflective section having a maximum of reflectivity for at least one value of reflection wavelength. One of its ends is therefore coupled to the active section 1. It has a vertical structure consisting of a homogeneous guiding layer CG (called “massive” or “buik” in English) disposed between two sheath layers 4, 5.
  • a network 8 is located in one of the sheath layers at neighborhood of the guiding layer and forms along the guide a periodic alternation of materials of different indices.
  • This network 8 is designed to constitute a selective wavelength reflector having at least one main peak of reflectivity, that is to say a maximum reflection wavelength.
  • the external face 9 of the active section 1 constitutes a non-selective wavelength reflector and forms with the Bragg section 2 a resonant Fabry-Perot cavity containing the active section 1.
  • the laser power created in the cavity is extracted essentially by this external face 9 which is then called “front face”. It is made semi-reflective by means of an appropriate anti-reflection layer. Typically its reflectivity is of the order of 1.5 to 5% so as to allow both laser oscillation and emission outside the component of the laser wave created.
  • the end of the Bragg section which is not coupled to the active section constitutes a second external face 10 of the component, called “rear face", and to avoid the formation of parasitic modes, this is made strongly anti reflective.
  • the laser power created in the cavity can be extracted essentially by the end of the Bragg section which is not coupled to the active section. This end then becomes a front face or is coupled to other sections integrated into the component, such as photodetector, amplifier, modulator.
  • the external face 9 of the active section 1 becomes a rear face which can be highly reflective, typically with a reflectivity greater than 90%.
  • the guiding layer CG of the Bragg section must be composed of a transparent material on fout the range of operating wavelengths and have an effective index n b which can vary depending on an order.
  • the material is for example an active medium chosen so that its index depends on the density of carriers it contains.
  • the guiding layer CG is then placed between the two sheath layers 4, 5 of opposite dopings and the Bragg section comprises an upper electrode 1 1 cooperating with the aforementioned lower electrode 7 to allow injection of an electric control current l b in the guide layer CG.
  • the phase section 3 extends the Bragg section in the direction of the active section 1, with an identical vertical structure but where the Bragg network is absent. It also includes an upper electrode 12 cooperating with the lower electrode 7 of the component to allow an injection of electric current i p into the guide layer CG.
  • the optical length of the cavity is modified, which shifts the comb of wavelengths of the Fabry-Pérot modes without influencing the Bragg wavelength ⁇ B.
  • a tunable laser of the type described above will be determined by three parameters: the current I injected into the active section 1, the current I b injected into the Bragg section 2 and the injected current l p in phase section 3, or in the absence of a phase section, the temperature.
  • a laser emission of fixed power and of wavelength selectable from a standardized grid is imposed.
  • the values of the three parameters l a , l b , l p must also be chosen so that the laser exhibits single-mode operation.
  • a parameter representative of this operation is called the "secondary mode rejection rate" or abbreviated to "SMSR" (from the English “Side Mode Suppression Ratio”).
  • the SMSR is defined as the ratio of the power of the main oscillating mode to that of the secondary oscillating mode of higher power (close to the main mode). To ensure a desired quality of transmission, a minimum value is imposed on this ratio generally expressed in decibels, for example 35 dB.
  • each selectable wavelength ⁇ ⁇ 2 , ..., ⁇ q is between two values of consecutive Bragg wavelengths.
  • the selection of a given mode can be obtained by fixing the Bragg wavelength between two values ⁇ B1 , ⁇ B2 corresponding respectively to mode jumps, which correspond on the curve to particular values, for example l bl and l b2 , of the Bragg current l b .
  • a DBR laser as illustrated in FIG. 1 makes it possible to achieve tunability on the order of 15nm.
  • Such a laser illustrated in FIG. 3, is known by the name of SG-DBR (from the English Sample Grating-Distributed Bragg Reflector) and has the same structure as a DBR laser as previously described but has two sections of Bragg 2 and 2 'coupled at each end of active section 1.
  • SG-DBR from the English Sample Grating-Distributed Bragg Reflector
  • each Bragg section 2 and 2 ′ will produce a comb of reflection peaks, each peak corresponding to a selectable emission wavelength (FIGS. 4a and 4b).
  • one of the peaks of the first section of Bragg 2 will coincide with a peak of the second section of Bragg 2 ', and a laser oscillation will occur for the Fabry-Perot mode whose wavelength is the closest to the coincidence peak ( Figure 4c).
  • a current command from one of the Bragg sections 2, 2 ′ displaces one of the combs and varies the emission wavelength of the laser by the Vemier effect.
  • an SG-DBR laser as illustrated in FIG. 3, achieves a tunability of the order of 40nm.
  • An SG-DBR laser offers an interesting tunability range but limited by the shape of the envelope of the reflection peaks which is typically a sine cardinal. This shape of the envelope of the reflection peaks has the consequence that the power emitted by the tunable laser is not constant depending on the emission mode selected.
  • FIG. 5 schematically illustrates a DBR laser, as previously described, integrated with an electro-absorption modulator, commonly called ITLM (from the English “Integrated Tunable Laser Modulator).
  • ITLM electro-absorption modulator
  • WDM wavelength multiplexing
  • An ITLM component further comprises amplifier 1 and tuner 2 sections of the laser, a modulation section 21.
  • the modulation section 21 has a vertical structure conventionally made up of an active absorbent layer CA ′, for example composed of quantum wells or of a solid material.
  • the wavelength corresponding to the photoluminescence peak of this layer CA ′ is approximately 50 nm lower than the emission wavelength of the laser.
  • the modulation section 21 also includes an upper electrode cooperating with the lower electrode to allow the application of a control voltage on the absorbent layer CA ′ in order to vary the absorption coefficient of the optical signal and to produce a modulation d 'amplitude.
  • the output power of a conventional ITLM component is however limited by a strong reflection of the tuning section 2.
  • the tuning section is relatively long (typically greater than 250 ⁇ m) in order to allow good frequency selectivity and guarantee a good SMSR as defined above.
  • the output power of a conventional ITLM component is not constant depending on the emission mode of the selected laser.
  • the objective of the present invention is to provide a laser structure having an increased tunability range with a small power variation over the entire tunability range.
  • the invention proposes to replace the Bragg gratings of the tuning sections of the laser by reflectors made up of particular photonic crystals.
  • the invention also has the advantage of a simplified manufacturing process since it requires only a single epitaxy step. More particularly, the present invention relates to a semiconductor laser structure comprising a light guide core disposed between a lower confinement layer and an upper confinement layer comprising an engraved guide tape loading the heart to form a guide.
  • the guide core comprising an amplifying section delimited by two reflectors forming a resonant cavity allowing the selection of a laser mode whose wavelength is tunable, characterized in that at least one reflector consists of a section of photonic crystal composed of pairs of arrays of holes arranged on either side of the guide tape, each array of holes in the photonic crystal section having holes arranged in a trapezoid, the large base of the trapezium being further from the ribbon of guidance that ⁇ 's small base.
  • the reflector consisting of a photonic crystal section is composed of sampled pairs of networks of holes arranged on either side of the guide tape. According to one characteristic, the sampling of the pairs of networks of holes is constant.
  • the two reflectors consist of a photonic crystal section composed of sampled pairs of networks of holes, the sampling of the pairs of hole networks of each section of photonic crystal being different.
  • the pitch of the networks of holes is constant or variable.
  • the structure according to the invention further comprises a modulation section, the reflector arranged between the amplifier and modulation sections consisting of a photonic crystal section composed of at least one pair of arrays of holes disposed of on either side of the guide tape.
  • FIG. 1, already described is a diagram of a tunable DBR laser known from the prior art
  • FIG. 2, already described is a curve illustrating the variations in the emission wavelength of the laser in FIG. 1 as a function of the current injected into the Bragg section
  • FIG. 3, already described is a diagram of a tunable SG-DBR laser known from the prior art
  • Figures 4a to 4c, already described illustrate the operating principle of the emission of a laser of Figure 3
  • FIG. 5, already described is a diagram of an integrated laser-modulator
  • FIG. 6 is a diagram of a single-mode photonic crystal laser known from the prior art
  • Figure 7 is a diagram of a tunable laser according to the invention
  • Figures 8a to 8c illustrate different embodiments of the photonic crystal sections of the laser of Figure 7
  • - Figure 9 is a diagram of a tunable laser integrated into a modulator according to the invention
  • Figures 10a to 10c illustrate the operating principle of the emission of a laser according to the invention.
  • a tunable laser is produced.
  • the laser tunability is obtained in a conventional manner by selecting a Fabry-Perot mode in a laser cavity defined by an active section surrounded by two reflectors, at least one of which is selective in wavelength.
  • at least one reflector consists of specific photonic crystals.
  • the concept of photonic crystal, or photonic band gap optical component (BIP) has appeared recently.
  • the first component of this type was produced by Eli Yablonovitch in 1991.
  • such a component consists of a solid dielectric material, for example a III-V semiconductor, including a distribution of patterns, called "holes", regularly spaced.
  • the holes are generally air but can be composed of another dielectric material, distinct from the solid material, with a refractive index lower than that of the solid material.
  • the patterns, or holes In a three-dimensional phofonic component, the patterns, or holes, generally have the shape of beads, and in a two-dimensional photonic component, the patterns generally have the shape of cylinders.
  • the regular arrangement of the holes in the solid material makes it possible to assimilate such a component to a crystal, called photonic crystal.
  • a periodic structure results in the creation of one or more prohibited photonic bands framed by permitted energy bands, in a similar manner to the electronic structure of a semiconductor crystal.
  • the position of the forbidden photonic strip is determined by the spacing between the holes, i.e. the pitch, and the width of this photonic strip is closely linked to the filling rate of the holes in the solid material (known as "air filing" in English terminology), that is to say depends on the diameter of said holes.
  • air filing in English terminology
  • FIG. 6 A ribbon optical guide structure, known by the term “ridge waveguide” in English is produced.
  • Such a structure comprises an optical core 13 for guiding the light composed of an amplifying material and disposed between two sheath layers 14, 15.
  • a ribbon 16 is produced in the upper sheath layer 14 to load the core 13 and form a optical guide.
  • the structure described in this publication comprises a double laser cavity delimited on the one hand by a rear mirror 17 of high reflectivity consisting of a network of holes forming a photonic crystal and on the other hand by a cleaved facet 9 and by an internal mirror 18 consisting of a section of photonic crystals composed of a pair of arrays of holes arranged laterally on either side of the guide strip 16.
  • the laser structure thus defined emits a single mode due to the coupling of the two laser cavities previously defined.
  • a tunable laser structure comprising at least one wavelength selective reflector and at least one reflector consisting of a section of photonic crystals, said photonic section possibly constituting said wavelength selective reflector.
  • the laser structure according to the invention is a semiconductor component comprising an optical core 13 for guiding the light guide disposed between two sheath layers 14, 15 of opposite doping.
  • the optical core 13 has an amplifying section, called active 1, coupled to at least one passive section comprising a selective wavelength reflector, called tuning 2.
  • the optical core is composed of an amplifier material CA on the section active 1 and of a homogeneous material CG on the tuning section (s) 2.
  • a ribbon 16 is further etched on the upper sheath layer 14 to load the core 13 and form an optical guide, known as classic English term of "waveguide ridge".
  • Upper electrodes are arranged above each section and cooperate with a lower electrode in accordance with what has been described with reference to the prior art.
  • At least one reflector consists of a photonic crystal section composed of at least one pair of arrays of holes 19.
  • the holes of each array 19 extend through the upper sheath layer 14 and the guiding layer 13 as far as the lower sheath layer 15.
  • the networks of holes 19 of each pair are disposed respectively on either side of the guide tape 1 ⁇ .
  • each array of holes 19 in the photonic crystal section has an arrangement of the trapezoid holes, the large base of the trapezium being further from the guide tape 16 than the small base .
  • the trapezoid arrangement can be a triangle.
  • the reflector of the tuning section which consists of a photonic crystal section.
  • the pairs of networks of holes 19 are then sampled.
  • This arrangement which implies that the reflector has several reflection peaks allows an increased tunability range.
  • the sampling is not identical on the two sections.
  • the laser structure according to the invention can comprise two sections of agreements 2, 2 '.
  • Each tuning section 2, 2 ′ composed of sampled photonic crystals creates a comb of reflection peaks, according to the same principle as the Bragg sections of the lasers previously described.
  • each network of holes 19 will create a modulation of periodic local index and the sampling of said networks of holes 19 in pairs on either side of the guide tape 16 will generate a modulation on a scale of the order of a few hundred microns.
  • the envelope of the emission comb of the tuning sections according to the invention is much flatter due, due to an appropriate arrangement of the holes in each network 19, in trapezium as previously defined. .
  • Such an arrangement of the holes makes it possible to obtain a comb of almost uniform reflection peaks.
  • the tunability range is increased and the power variations according to the emission wavelengths are reduced.
  • FIG. 9 illustrates an application of the invention to ITLM components, in the source domain integrating a tunable laser and an electroabsorption modulator.
  • the laser structure according to the invention then further comprises a modulation section 21.
  • the reflector arranged between the amplifier 1 and modulation 21 sections advantageously consists of a photonic crystal section composed of at least one pair of arrays of holes 19 arranged on either side of the guide tape 16.
  • This section of photonic crystal forms an optical cavity with the tuning section 2, which can be consisting of a conventional Bragg grating 8 or of a photonic crystal section composed of pairs of grids of holes as previously defined.
  • the tuning section 2 must be long enough (typically greater than 250 ⁇ m) to allow good modal selectivity, while the networks of holes only extend over a very short length (from a few microns to a few tens of microns).
  • the arrangement of the network of trapezoidal holes makes it possible in particular to guarantee a low reflection coefficient (of the order of a few percent) which varies little with the wavelength selected. It is thus possible to obtain an ITLM component with high transmission power over a wide frequency tunable area. In principle, in this application, the networks of holes do not have to be sampled.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Structure laser à semi-conducteur comprenant un cœur de guidage (13) de la lumière disposé entre une couche de confinement inférieure (15) et une couche de confinement supérieure (14) comportant un ruban gravé (16) chargeant le cœur pour former un guide optique, le cœur de guidage comprenant une section amplificatrice (1) délimitée par deux réflecteurs formant une cavité résonnante permettant la sélection d'un mode laser dont la longueur d'onde est accordable, caractérisée en ce qu'au moins un réflecteur est constitué d'une section de cristal photonique (2) composée d'au moins une paire de réseaux de trous (19) disposés de part et d'autre du ruban de guidage (16), chaque réseau de trous (19) de la section de cristal photonique présentant des trous disposés en trapèze, la grande base du trapèze étant plus éloignée du ruban de guidage que la petite base.

Description

LASER LARGEMENT ACCORDABLE SUR CRISTAL PHOTONIQUE
La présente invention concerne le domaine des structures laser accordables.
On utilise couramment des diodes lasers comme sources accordables dans le cadre d'applications à la transmission optique de données. Dans un tel contexte, il est important de parvenir à une grande accordabilité, c'est-à-dire une grande gamme de longueur d'onde d'émission du laser, sans craindre les sauts de mode qui nuisent à la qualité de la transmission optique.
Il existe plusieurs types de lasers accordables connus, dont les lasers dits à réflecteurs distribués, communément appelés laser DB (de l'anglais, Distributed Bragg Reflector). Un tel laser accordable « standard » est illustré sur la figure 1 .
Il s'agit d'un composant semi-conducteur monolithique typiquement composé d'une section amplificatrice 1 , dite "active", couplée à une section d'accord dite "de Bragg" 2. Optionnellement, une section dite "de phase" 3 peut être disposée entre les sections active 1 et de Bragg 2. La section active 1 présente une structure verticale classiquement constituée d'une couche active amplificatrice CA disposée entre deux couches de gaine A, 5 de dopages opposés. Cette couche active CA est habituellement composée d'une succession de puits quantiques séparés par des couches formant barrières de potentiel. Des électrodes supérieure 6 et inférieure 7 permettent une injection de courant la au travers de ces couches de façon à produire un effet d'amplification optique.
La section de Bragg 2 est une section réfléchissante présentant un maximum de réflectivité pour au moins une valeur de longueur d'onde de réflexion. Une de ses extrémités est donc couplée à la section active 1 . Elle présente une structure verticale constituée d'une couche guidante CG homogène (dite "massive" ou "buik" en anglais) disposée entre deux couches de gaine 4, 5. En outre, un réseau 8 est situé dans une des couches de gaine au voisinage de la couche guidante et forme le long du guide une alternance périodique de matériaux d'indices différents. Ce réseau 8 est conçu pour constituer un réflecteur sélectif en longueur d'onde présentant au moins un pic principal de réflectivité, c'est-à-dire une longueur d'onde de réflexion maximale. Cette longueur d'onde, dite "de Bragg" λB, est déterminée par le pas du réseau Λ et l'indice effectif nb de la couche guidante CG, selon la formule classique λB = 2Λ.nb. La face externe 9 de la section active 1 constitue un réflecteur non sélectif en longueur d'onde et forme avec la section de Bragg 2 une cavité résonante de Fabry- Pérot contenant la section active 1.
Selon un premier type de laser, la puissance laser créée dans la cavité est extraite essentiellement par cette face externe 9 qui est dite alors "face avant". Elle est rendue semi-réfléchissante au moyen d'une couche anti-reflet appropriée. Typiquement sa réflectivité est de l'ordre de 1 ,5 à 5% de façon à permettre à la fois l'oscillation laser et une émission à l'extérieur du composant de l'onde laser créée. L'extrémité de la section de Bragg qui n'est pas couplée à la section active constitue une seconde face externe 10 du composant, dite "face arrière", et pour éviter la formation de modes parasites, celle-ci est rendue fortement anti-réfléchissante.
Selon un autre type de laser, la puissance laser créée dans la cavité peut être extraite essentiellement par l'extrémité de la section de Bragg qui n'est pas couplée à la section active. Cette extrémité devient alors une face avant ou est couplée à d'autres sections intégrées au composant, telles que photodétecteur, amplificateur, modulateur. Dans ce cas, la face externe 9 de la section active 1 devient une face arrière qui peut être fortement réfléchissante, typiquement avec une réflectivité supérieure à 90 %.
Dans tous les cas, l'oscillation laser est possible pour un ensemble de modes résonants longitudinaux (modes Fabry-Pérot) dont les longueurs d'onde sont imposées par la longueur optique de la cavité. Une oscillation se produira selon l'un de ces modes en cas d'accord suffisant entre sa longueur d'onde et la longueur d'onde de Bragg λB.
Pour réaliser une source accordable en longueur d'onde, il suffit de pouvoir modifier la longueur d'onde de Bragg λB. Pour cela, la couche guidante CG de la section de Bragg doit être composée d'un matériau transparent sur foute la gamme de longueurs d'onde de fonctionnement et présenter un indice effectif nb pouvant varier en fonction d'une commande. Le matériau est par exemple un milieu actif choisi pour que son indice dépende de la densité de porteurs qu'il contient. La couche guidante CG est alors disposée entre les deux couches de gaine 4, 5 de dopages opposés et la section de Bragg comporte une électrode supérieure 1 1 coopérant avec l'électrode inférieure 7 précitée pour permettre une injection d'un courant électrique de commande lb dans la couche guidante CG. Ainsi, en réglant le courant Ib, on peut ajuster la longueur d'onde de Bragg λB à une valeur proche d'une longueur d'onde sélectionnée parmi celle des modes Fabry-Pérot de la cavité et par conséquent faire osciller le laser avec cette longueur d'onde choisie. Un ajustement plus fin de la longueur d'onde d'oscillation peut par ailleurs être réalisée par un réglage de la température du composant. En agissant sur la température, on peut ajuster les indices des couches guidantes de la cavité et donc sa longueur optique, ce qui a pour effet de décaler le peigne de longueurs d'onde des modes Fabry-Pérot. Une autre solution, telle qu'illustrée sur la figure 1 , permettant d'ajuster plus facilement la longueur d'onde d'oscillation consiste à prévoir une section de phase 3 indépendante. Selon l'exemple représenté, la section de phase 3 prolonge la section de Bragg en direction de la section active 1 , avec une structure verticale identique mais où le réseau de Bragg est absent. Elle comporte aussi une électrode supérieure 12 coopérant avec l'électrode inférieure 7 du composant pour permettre une injection de courant électrique ip dans la couche guidante CG. Ainsi, en agissant sur le courant électrique lp injecté, on modifie la longueur optique de la cavité, ce qui décale le peigne de longueurs d'onde des modes Fabry-Pérot sans influencer la longueur d'onde de Bragg λB. Le fonctionnement d'un laser accordable d'un type décrit ci-dessus sera donc déterminé par trois paramètres : le courant la injecté dans la section active 1 , le courant lb injecté dans la section de Bragg 2 et le courant lp injecté dans la section de phase 3, ou à défaut de section de phase, la température.
En pratique, on impose une émission laser de puissance fixée et de longueur d'onde sélectionnable parmi une grille normalisée. Pour chaque longueur d'onde sélectîonnable, les valeurs des trois paramètres la, lb, lp doivent en outre être choisies de sorte que le laser présente un fonctionnement monomode. Un paramètre représentatif de ce fonctionnement est appelé le "taux de réjection des modes secondaires" ou en abrégé "SMSR" (de l'anglais "Side Mode Suppression Ratio"). Le SMSR est défini comme le rapport de la puissance du mode oscillant principal à celle du mode oscillant secondaire de plus forte puissance (voisin du mode principal). Pour assurer une qualité voulue de transmission, on impose une valeur minimale à ce rapport généralement exprimé en décibels, par exemple 35 dB. La figure 2 montre une courbe représentative des variations de la longueur d'onde λ du mode oscillant principal de la cavité en fonction du courant lb (exprimé en mA) injecté dans la section de Bragg. La longueur d'onde de Bragg λB étant une fonction décroissante de ce courant lb, on vérifie que la longueur d'onde λ décroît lorsque lb croît. Par ailleurs, les sauts de modes se manifestent par des discontinuités de la courbe. Chaque longueur d'onde sélectionnable λ λ2, ...,λq, est comprise entre deux valeurs de longueurs d'onde de Bragg consécutives. Par exemple, la sélection d'un mode donné peut être obtenue en fixant la longueur d'onde de Bragg entre deux valeurs λB1, λB2 correspondant respectivement à des sauts de mode, lesquels correspondent sur la courbe à des valeurs particulières, par exemple lbl et lb2, du courant de Bragg lb.
Ainsi, en faisant varier le courant de commande lb de la section de Bragg, il est possible de sélectionner la longueur d'onde d'émission du laser et par conséquent d'accorder le laser. Classiquement, un laser DBR tel qu'illustré sur la figure 1 , permet d'atteindre une accordabilité de l'ordre de 15nm.
Pour augmenter la plage d'accordabilité, on peut envisager de disposer la section active entre deux sections de Bragg comportant chacune un réseau sélectif en longueur d'onde. Un tel laser, illustré sur la figure 3, est connu sous le nom de SG- DBR (de l'anglais Sample Grating-Distributed Bragg Reflector) et présente la même structure qu'un laser DBR tel que précédemment décrit mais comporte deux sections de Bragg 2 et 2' couplées à chaque extrémité de la section active 1 .
Comme illustré sur la figure 4, chaque section de Bragg 2 et 2' va produire un peigne de pics de réflexion, chaque pic correspondant à une longueur d'onde d'émission sélectionnable (figures 4a et 4b). Dans le cas d'un laser SG-DBR, un des pics de la première section de Bragg 2 va coïncider avec un pic de la deuxième section de Bragg 2', et une oscillation laser se produira pour le mode de Fabry-Pérot dont la longueur d'onde est la plus proche du pic de coïncidence (figure 4c). Une commande en courant d'une des sections de Bragg 2, 2' déplace un des peignes et fait varier la longueur d'onde d'émission du laser par effet Vemier. Classiquement, un laser SG-DBR, tel qu'illustré sur la figure 3, permet d'atteindre une accordabilité de l'ordre de 40nm.
Un laser SG-DBR offre une plage d'accordabilité intéressante mais limitée par la forme de l'enveloppe des pics de réflexion qui est typiquement un sinus cardinal. Cette forme de l'enveloppe des pics de réflexion a comme conséquence que la puissance émise par le laser accordable n'est pas constante selon le mode d'émission sélectionné.
La figure 5 illustre schématiquement un laser DBR, tel que précédemment décrit, intégré avec un modulateur à électro-absorbtion, communément appelé ITLM (de l'anglais « Integrated Tunable Laser Modulator). Un tel composant trouve principalement des applications au multiplexage en longueur d'onde (WDM).
Un composant ITLM comprend, en outre des sections amplificatrice 1 et d'accord 2 du laser, une section de modulation 21 . La section de modulation 21 présente une structure verticale classiquement constituée d'une couche active absorbante CA', par exemple composée de puits quantiques ou d'un matériau massif. La longueur d'onde correspondant au pic de photoluminescence de cette couche CA' est environ 50nm plus bas que la longueur d'onde d'émission du laser. La section de modulation 21 comporte également une électrode supérieure coopérant avec l'électrode inférieure pour permettre l'application d'une tension de commande sur la couche absorbante CA' afin de faire varier le coefficient d'absorption du signal optique et produire une modulation d'amplitude.
La puissance de sortie d'un composant ITLM classique est cependant limitée par une forte réflexion de la section d'accord 2. En effet, la section d'accord est relativement longue (typiquement supérieure à 250μm) afin de permettre une bonne sélectivité fréquentielle et garantir un bon SMSR tel que défini précédemment. Cela entraîne cependant un coefficient de réflexion en puissance dans la section d'accord relativement fort, de l'ordre de 0.3dB.
En outre, la puissance de sortie d'un composant ITLM classique n'est pas constante en fonction du mode d'émission du laser sélectionné.
L'objectif de la présente invention est de proposer une structure laser présentant une plage d'accordabilité accrue avec une variation de puissance faible sur toute la plage d'accordabilité. A cet effet, l'invention propose de remplacer les réseaux de Bragg des sections d'accord du laser par des réflecteurs constitués de cristaux photoniques particuliers. L'invention présente aussi l'avantage d'un procédé de fabrication simplifié car il ne nécessite qu'une seule étape d'épitaxie. Plus particulièrement, la présente invention se rapporte à une structure laser à semi-conducteur comprenant un cœur de guidage de la lumière disposé entre une couche de confinement inférieure et une couche de confinement supérieure comportant un ruban de guidage gravé chargeant le cœur pour former un guide optique, le cœur de guidage comprenant une section amplificatrice délimitée par deux réflecteurs formant une cavité résonnante permettant la sélection d'un mode laser dont la longueur d'onde est accordable, caractérisée en ce qu'au moins un réflecteur est constitué d'une section de cristal photonique composée de paires de réseaux de trous disposés de part et d'autre du ruban de guidage, chaque réseau de trous de la section de cristal photonique présentant des trous disposés en trapèze, la grande base du trapèze étant plus éloignée du ruban de guidage que \a petite base.
Selon une caractéristique, le réflecteur constitué d'une section de cristal photonique est composée de paires échantillonnées de réseaux de trous disposés de part et d'autre du ruban de guidage. Selon une caractéristique, l'échantillonnage des paires de réseaux de trous est constant.
Selon un mode de réalisation, les deux réflecteurs sont constitués d'une section de cristal photonique composée de paires échantillonnées de réseaux de trous, l'échantillonnage des paires de réseaux de trous de chaque section de cristal photonique étant différent.
Selon les modes de réalisation, le pas des réseaux de trous est constant ou variable.
Selon une application, la structure selon l'invention comprend en outre une section de modulation, le réflecteur disposé entre les sections amplificatrice et de modulation étant constitué d'une section de cristal photonique composée d'au moins une paire de réseaux de trous disposés de part et d'autre du ruban de guidage.
Les particularités et avantages de la présenfe invention apparaîtront plus clairement à la lecture de la description qui suit, donnée à titre d'exemple illustratif et non limitatif, et faite en référence aux figures annexées dans lesquelles : la figure 1 , déjà décrite, est un schéma d'un laser accordable DBR connu de l'art antérieur ; la figure 2, déjà décrite, est une courbe illustrant les variations de la longueur d'onde d'émission du laser de la figure 1 en fonction du courant injecté dans la section de Bragg ; la figure 3, déjà décrite, est un schéma d'un laser accordable SG-DBR connu de l'art antérieur ; les figures 4a à 4c, déjà décrites, illustrent le principe de fonctionnement de l'émission d'un laser de la figure 3 ; la figure 5, déjà décrite, est un schéma d'un laser-modulateur intégré
ITLM connu de l'art antérieur ; - la figure 6 est un schéma d'un laser monomode à cristaux photoniques connu de l'art antérieur ; la figure 7 est un schéma d'un laser accordable selon l'invention ; les figures 8a à 8c illustrent différents modes de réalisation des sections de cristal photonique du laser de la figure 7 ; - la figure 9 est un schéma d'un laser accordable intégré à un modulateur selon l'invention; les figures 10a à 10c illustrent le principe de fonctionnement de l'émission d'un laser selon l'invention .
Selon l'invention, un laser accordable est réalisé. L'accordabilité du laser est obtenue de manière classique en sélectionnant un mode de Fabry-Pérot dans une cavité laser définie par une section active encadrée par deux réflecteurs dont au moins un est sélectif en longueur d'onde. Selon l'invention, au moins un réflecteur est constitué de cristaux photoniques particuliers . La notion de cristal photonique, ou composant optique à bande interdite photonique (BIP), est apparue récemment. Le premier composant de ce type fut réalisé par Eli Yablonovitch en 1991 . Typiquement, un tel composant est constitué d'un matériau massif diélectrique, par exemple un semi-conducteur lll-V, incluant une distribution de motifs, dits « trous », régulièrement espacés. Les trous sont généralement de l'air mais peuvent être composés d'un autre matériau diélectrique, distinct du matériau massif, d'indice de réfraction inférieur à celui du matériau massif. Dans un composant phofonique à trois dimensions, les motifs, ou trous, présentent généralement la forme de billes, et dans un composant photonique à deux dimensions, les motifs présentent généralement la forme de cylindres.
La disposition régulière des trous dans le matériau massif permet d'assimiler un tel composant à un cristal, baptisé cristal photonique. Une telle structure périodique entraîne la création d'une ou de plusieurs bandes photoniques interdites encadrées par des bandes d'énergie permises, de façon analogue à la structure électronique d'un cristal semi-conducteur.
Dans un composant photonique, la position de la bande photonique interdite est déterminée par l'espacement entre les trous, c'est-à-dire le pas, et la largeur de cette bande photonique est étroitement liée au taux de remplissage des trous dans le matériau massif (connu comme « air filing » en terminologie anglaise), c'est-à-dire dépend du diamètre desdits trous. Ainsi, il est possible de réaliser un composant optique photonique qui soit totalement réflecteur dans une bande spectrale donnée. Les composants photoniques font l'objet de nombreuses applications et expérimentations pour la transmission, l'émission ou la détection de signaux optiques. En particulier, ils constituent des filtres quasiment parfaits.
Ainsi, il a été envisagé de réaliser une structure laser utilisant des cristaux photoniques comme réflecteur d'une cavité de Fabry-Pérot. La publication « Single mode opération of 2D photonic crystal based short coupled cavities lasers », Applied
Physics Letters, Vol 79, N°25, PP 4091 -4093, 2001 , décrit une structure laser dont la cavité est délimitée par des miroirs « photoniques ». Une telle structure est illustrée sur la figure 6. Une structure de guide optique en ruban, connue sous le terme de « ridge waveguide » en anglais est réalisée. Une telle structure comporte un cœur optique 13 de guidage de la lumière composé d'un matériau amplificateur et disposé entre deux couches de gaine 14, 15. Un ruban 16 est réalisé dans la couche de gaine supérieure 14 pour charger le cœur 13 et former un guide optique. La structure décrite dans cette publication comporte une double cavité laser délimitée d'une part par un miroir arrière 17 de forte réflectivité constitué d'un réseau de trous formant un cristal photonique et d'autre part par une facette clivée 9 et par un miroir interne 18 constitué d'une section de cristaux photoniques composée d'une paire de réseaux de trous disposés latéralement de part et d'autre du ruban de guidage 16. La structure laser ainsi définie émet un unique mode dû au couplage des deux cavités laser précédemment définies.
Selon l'invention, une structure laser accordable est réalisée comportant au moins un réflecteur sélectif en longueur d'onde et au moins un réflecteur constitué d'une section de cristaux photoniques, ladite section photonique pouvant constituer ledit réflecteur sélectif en longueur d'onde. Une telle structure est illustrée schématiquement sur la figure 7. La structure laser selon l'invention est un composant semi-conducteur comportant un cœur optique 13 de guidage de guidage de la lumière disposé entre deux couches de gaine 14, 15 de dopage opposé. Le cœur optique 13 présente une section amplificatrice, dite active 1 , couplée à au moins une section passive comportant un réflecteur sélectif en longueur d'onde, dite d'accord 2. Le cœur optique est composé d'un matériau amplificateur CA sur la section active 1 et d'un matériau homogène CG sur la ou les section(s) d'accord 2. Un ruban 16 est en outre gravé sur la couche de gaine supérieure 14 pour charger le cœur 13 et former un guide optique, connu sous le terme anglo-saxon classique de « ridge waveguide ». Des électrodes supérieures sont disposées au-dessus de chaque section et coopèrent avec une électrode inférieure conformément à ce qui a été décrit en référence à l'art antérieur.
Au moins un réflecteur est constitué d'une section de cristal photonique composée d'au moins une paire de réseaux de trous 19. Les trous de chaque réseau 19 s'étendent à travers la couche de gaine supérieure 14 et la couche guidante 13 jusque dans la couche de gaine inférieure 15. Les réseaux de trous 19 de chaque paire sont disposés respectivement de part et d'autre du ruban de guidage 1 ό.
Selon l'invention et comme illustré sur les figures 8a à 8c, chaque réseau de trous 19 de la section de cristal photonique présente un arrangement des trous en trapèze, la grande base du trapèze étant plus éloignée du ruban de guidage 16 que la petite base. Selon une variante, l'arrangement en trapèze peut être un triangle.
Plusieurs configurations sont envisageables pour l'arrangement des réseaux de trous 19 et dépendent de la maille choisie (triangulaire, carré, ou autre), du pas et de l'ordre de diffraction du réseau. Le pas de chaque réseau peut être constant ou variable selon les applications.
Selon une caractéristique avantageuse, c'est le réflecteur de la section d'accord qui est constitué d'une section de cristal photonique. Les paires de réseaux de trous 19 sont alors échantillonnées. Cette disposition qui implique que le réflecteur présente plusieurs pics de réflexion autorise une plage d'accordabilité accrue. En outre, dans le cas où deux sections d'accord 2, 2' seraient réalisées de part et d'autre de la section active 1 , l'échantillonnage n'est pas identique sur les deux sections. Avantageusement, la structure laser selon l'invention peut comporter deux sections d'accords 2, 2'. Chaque section d'accord 2, 2' composée de cristaux photoniques échantillonnés crée un peigne de pics de réflexion, selon le même principe que les sections de Bragg des lasers précédemment décrits. En effet, chaque réseau de trous 19 va créer une modulation d'indice locale périodique et l'échantillonnage desdits réseaux de trous 19 par paires de part et d'autre du ruban de guidage 16 va engendrer une modulation à une échelle de l'ordre de quelques centaines de microns.
Comme illustré sur les figures 10, l'enveloppe du peigne d'émission des sections d'accord selon l'invention est beaucoup plus plate due, du fait d'un arrangement approprié des trous dans chaque réseau 19, en trapèze tel que précédemment défini. Un tel arrangement des trous permet d'obtenir un peigne de pics de réflexion quasi uniforme. De ce fait, la plage d'accordabilité est accrue et les variations de puissance selon les longueurs d'onde d'émission sont réduites.
La figure 9 illustre une application de l'invention aux composants ITLM, dans le domaine de source intégrant un laser accordable et un modulateur à électroabsorption.
La structure laser selon l'invention, telle que précédemment décrite, comprend alors en outre une section de modulation 21 . Le réflecteur disposé entre les sections amplificatrice 1 et de modulation 21 est avantageusement constitué d'une section de cristal photonique composée d'au moins une paire de réseaux de trous 19 disposés de part et d'autre du ruban de guidage 16. Cette section de cristal photonique forme une cavité optique avec la section d'accord 2, qui peut être constituée d'un réseau de Bragg classique 8 ou d'une section de cristal photonique composée de paires de réseaux de trous telle que précédemment définis.
La section d'accord 2 doit être suffisamment longue (typiquement supérieure à 250μm) pour permettre une bonne sélectivité modale, alors que les réseaux de trous ne s'étendent que sur une très faible longueur (de quelques microns à quelques dizaines de microns). L'arrangement du réseau de trous en trapèze permet notamment de garantir un coefficient de réflexion faible (de l'ordre de quelque pourcents) qui varie peu avec la longueur d'onde sélectionnée. Il est ainsi possible d'obtenir un composant ITLM de forte puissance d'émission sur une large zone d'accordabilité fréquentielle. En principe, dans cette application, les réseaux de trous n'ont pas à être échantillonnés.

Claims

REVENDICATIONS
1. Structure laser à semi-conducteur comprenant un cœur de guidage (13) de la lumière disposé entre une couche de confinement inférieure (15) et une couche de confinement supérieure (14) comportant un ruban de guidage gravé (16) chargeant le cœur pour former un guide optique, le cœur de guidage comprenant une section amplificatrice (1 ) délimitée par deux réflecteurs formant une cavité résonnante permettant la sélection d'un mode laser dont la longueur d'onde est accordable, caractérisée en ce qu'au moins un réflecteur est constitué d'une section de cristal photonique composée d'au moins une paire de réseaux de trous (1 9) disposés de part et d'autre du ruban de guidage
(16), chaque réseau de trous (19) de la section de cristal photonique présentant des trous disposés en trapèze, la grande base du trapèze étant plus éloignée du ruban de guidage que la petite base.
2. Structure laser selon la revendication 1 , caractérisée en ce que le réflecteur constitué d'une section de cristal photonique (2) est composée de paires échantillonnées de réseaux de trous (19) disposés de part et d'autre du ruban de guidage (16).
3. Structure laser selon la revendication 2, caractérisée en ce que l'échantillonnage des paires de réseaux de trous (19) est constant.
4. Structure laser selon la revendication 2, caractérisée en ce que les deux réflecteurs sont constitués d'une section de cristal photonique (2, 2') composée de paires échantillonnées de réseaux de trous (1 ), l'échantillonnage des paires de réseaux de trous (19) de chaque section de cristal photonique (2, 2') étant différent.
5. Structure laser selon l'une des revendications 1 à 4, caractérisée en ce que le pas des réseaux de trous (19) est constant.
6. Structure laser selon l'une des revendications 1 à 4, caractérisée en ce que le pas des réseaux de trous (19) est variable.
7. Structure laser selon la revendication 1 , caractérisée en ce que ladite structure comprend en outre une section de modulation (21 ), le réflecteur disposé entre les sections amplificatrice (1 ) et de modulation (21 ) étant constitué d'une section de cristal photonique composée d'au moins une paire de réseaux de trous (19) disposés de part et d'autre du ruban de guidage (16).
PCT/FR2003/002274 2002-08-08 2003-07-18 Laser largement accordable sur cristal photonique WO2004017477A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003285674A AU2003285674A1 (en) 2002-08-08 2003-07-18 Widely tunable laser on photonic crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/10083 2002-08-08
FR0210083A FR2843494B1 (fr) 2002-08-08 2002-08-08 Laser largement accordable sur cristal photonique

Publications (1)

Publication Number Publication Date
WO2004017477A1 true WO2004017477A1 (fr) 2004-02-26

Family

ID=30471007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002274 WO2004017477A1 (fr) 2002-08-08 2003-07-18 Laser largement accordable sur cristal photonique

Country Status (3)

Country Link
AU (1) AU2003285674A1 (fr)
FR (1) FR2843494B1 (fr)
WO (1) WO2004017477A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100399656C (zh) * 2005-05-31 2008-07-02 中国科学院半导体研究所 光子晶体波导分布反馈激光器及制作方法
US10205299B2 (en) 2014-10-20 2019-02-12 University Court Of The University Of St Andrews External cavity laser comprising a photonic crystal resonator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018919A1 (fr) * 1999-09-03 2001-03-15 The Regents Of The University Of California Source laser accordable à modulateur optique intégré
CA2314406A1 (fr) * 2000-07-24 2002-01-24 Sajeev John Materiaux a bandes interdites photoniques accordables de facon electro-optique
JP2002098917A (ja) * 2000-09-26 2002-04-05 Hamamatsu Photonics Kk 波長可変光源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018919A1 (fr) * 1999-09-03 2001-03-15 The Regents Of The University Of California Source laser accordable à modulateur optique intégré
CA2314406A1 (fr) * 2000-07-24 2002-01-24 Sajeev John Materiaux a bandes interdites photoniques accordables de facon electro-optique
JP2002098917A (ja) * 2000-09-26 2002-04-05 Hamamatsu Photonics Kk 波長可変光源

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAPP T D ET AL: "SINGLE-MODE OEPRATION OF COUPLED-CAVITY LASERS BASED ON TWO-DIMENSIONAL PHOTONIC CYRSTALS", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 79, no. 25, 17 December 2001 (2001-12-17), pages 4091 - 4093, XP001091934, ISSN: 0003-6951 *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 08 5 August 2002 (2002-08-05) *
RENNON S ET AL: "COMPLEX COUPLED DISTRIBUTED-FEEDBACK AND BRAGG-REFLECTOR LASERS FOR MONILITHIC DEVICE INTEGRATION BASED ON FOCUSED-ION-BEAM TECHNOLOGY", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, IEEE SERVICE CENTER, US, vol. 7, no. 2, March 2001 (2001-03-01), pages 306 - 311, XP001108223, ISSN: 1077-260X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100399656C (zh) * 2005-05-31 2008-07-02 中国科学院半导体研究所 光子晶体波导分布反馈激光器及制作方法
US10205299B2 (en) 2014-10-20 2019-02-12 University Court Of The University Of St Andrews External cavity laser comprising a photonic crystal resonator

Also Published As

Publication number Publication date
AU2003285674A1 (en) 2004-03-03
FR2843494B1 (fr) 2004-10-22
FR2843494A1 (fr) 2004-02-13

Similar Documents

Publication Publication Date Title
EP0627798B1 (fr) Composant intégré monolithique laser-modulateur à structure multi-puits quantiques
EP0667660B1 (fr) Laser à réflecteurs de Bragg distribués, accordable en longueur d'onde, à réseaux de diffraction virtuels actives sélectivement
EP0370443B1 (fr) Laser à semi-conducteur accordable
FR2737942A1 (fr) Composant d'emission laser accordable en longueur d'onde par variation d'absorption
EP0821451A1 (fr) Microlaser solide, à pompage optique par laser semi-conducteur à cavité verticale
FR2728399A1 (fr) Composant laser a reflecteur de bragg en materiau organique et procede pour sa realisation
CA1311820C (fr) Source laser a semi-conducteur modulee a frequence elevee
EP2811593B1 (fr) Dispositif d'émission laser accordable
EP0762576B1 (fr) Composant opto-électronique intégré
FR2737353A1 (fr) Laser a reflecteur de bragg distribue et a reseau echantillonne, tres largement accordable par variation de phase, et procede d'utilisation de ce laser
EP1235318A1 (fr) Laser accordable de façon rapide et large
EP0786843B1 (fr) Composant d'émission laser multilongueur d'onde
FR2900509A1 (fr) Dispositif d'emission laser a reflecteurs distribues
FR2845833A1 (fr) Amplificateur optique a semiconducteurs a stabilisation de gain laterale et distribuee
WO2004017477A1 (fr) Laser largement accordable sur cristal photonique
WO2002013335A2 (fr) Laser accordable en semi-conducteur a emission par la tranche
FR2770938A1 (fr) Amplificateur optique semi-conducteur et source laser integree l'incorporant
FR2715251A1 (fr) Structure semiconductrice à réseau de diffraction virtuel.
EP1327289A2 (fr) Source laser monomode accordable en longueur d'onde-------------
EP1306941A1 (fr) Cavité optique résonante sur une plage continue de fréquence
WO2000022704A1 (fr) Procede de controle d'un laser semiconducteur unipolaire
FR2906412A1 (fr) Laser accordable a reseau de bragg distribue comportant une section de bragg en materiau massif contraint
EP3869641B1 (fr) Dispositif d'émission laser à effet vernier accordable
EP1363366B1 (fr) Procédé de stabilisation pour source laser à réflecteur distribué
FR2825524A1 (fr) Laser amplificateur a cavite verticale

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP