WO2004017422A2 - Material for intermediate layer of organic photovoltaic component, production method and use of the latter, in addition to photovoltaic component - Google Patents

Material for intermediate layer of organic photovoltaic component, production method and use of the latter, in addition to photovoltaic component Download PDF

Info

Publication number
WO2004017422A2
WO2004017422A2 PCT/DE2003/002464 DE0302464W WO2004017422A2 WO 2004017422 A2 WO2004017422 A2 WO 2004017422A2 DE 0302464 W DE0302464 W DE 0302464W WO 2004017422 A2 WO2004017422 A2 WO 2004017422A2
Authority
WO
WIPO (PCT)
Prior art keywords
organic
intermediate layer
photovoltaic component
work function
layer
Prior art date
Application number
PCT/DE2003/002464
Other languages
German (de)
French (fr)
Other versions
WO2004017422A3 (en
Inventor
Klaus Meerholz
Christoph Brabec
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2004017422A2 publication Critical patent/WO2004017422A2/en
Publication of WO2004017422A3 publication Critical patent/WO2004017422A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/125Deposition of organic active material using liquid deposition, e.g. spin coating using electrolytic deposition e.g. in-situ electropolymerisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • a photovoltaic component means both a solar cell and a photodetector.
  • the invention relates to a material for an intermediate layer of an organic photovoltaic component with improved efficiency.
  • An electrode for example a transparent conductive oxide such as indium tin oxide “ITO”, is followed by an organic intermediate layer PEDOT / PSS on which the photoactive semiconductor layer, for example a conjugated polymer / fullerene mixture, is located, that is to say a donor-acceptor Mixture that connects to the negative electrode, eg a metal contact such as Ca / Ag or LiF / Al, but the individual layers can differ, in particular the electrodes, the donor (conjugated polymer) and the acceptor (PCBM, a soluble methano - fullerene).
  • the photoactive semiconductor layer for example a conjugated polymer / fullerene mixture
  • PCBM a soluble methano - fullerene
  • the built-in voltage corresponds to the compensation voltage that is applied to a solar cell to the cell under intensive lighting and at low temperatures (ideally 0 K).
  • the open circuit voltage of a fully functional solar cell is usually accepted as a measure of the built-in voltage.
  • the upper limit of the open circuit voltage is given by the electrical potentials of the semiconductor materials used (the HOMO or valence band of Donors (p-type semiconductor) and the LUMO or conduction band of the acceptor (n-type semiconductor). In the event that the electrical contacts of the solar cell do not form an ideal ohmic contact, the built-in potential or the open circuit voltage can also reach values lower than the maximum value defined above.
  • the built-in potential or the open circuit voltage is influenced or even dominated by the work function of the metal contacts.
  • the material of the organic (polymer” the term “polymer” here stands for organic or non-conventional, ie silicon-based semiconductor technology par excellence) intermediate layer, which connects the transparent electrode with the photoactive semiconductor layer, thus has a key position in improving the Efficiency of organic solar cells, especially with regard to the optimization of the electrical losses through the electrode / semiconductor contact.
  • the successful functioning is demonstrated by “zero built in field” and / or “inverted” organic solar cells that can be realized by chemical and / or physical changes in the organic intermediate layer.
  • the object of the invention is therefore to create a material for an intermediate layer of an organic photovoltaic component which can be adapted chemically and / or physically to the electrical properties of the subsequent semiconductor layer.
  • the invention relates to a material for an intermediate layer of an organic photovoltaic component, the work function of which (electrochemical potential or Fermi function) is adapted to the physical properties of the semiconductor layer.
  • the invention also relates to a method for producing a material for an intermediate layer of an organic photovoltaic component and finally the use of a material for an intermediate layer of an organic photovoltaic component is the subject of the invention.
  • the subject is also an organic African photovoltaic component that meets the conditions of an "inverted" solar cell or a "zero-built-in-field” solar cell, object of the invention.
  • the invention addresses improvements for them
  • PEDOT.PSS layer PEDOT.PSS is representative of all other materials known as hole transport layers. What these materials have in common is that their conductivity can be changed by doping (oxidation). The insertion of a PEDOT.PSS (or possibly PANI) layer in the
  • PEDOT.PSS is primarily known from light-emitting diodes as a hole transport layer (HTL).
  • the invention discloses alternative solutions for these PEDOT.PSS layers.
  • the use of known, electrochemically doped layers of conjugated polymers instead of PEDOT: PSS in organic photovoltaic components is the essential innovation of the invention and the function and efficiency of an organic photovoltaic element can be improved thereby.
  • the work function or work function of the organic interlayer is the energy that is required to lift charge carriers out of the straps into the vacuum level.
  • the Fermie energy or of the electrochemical potential are examples of the Fermie energy or of the electrochemical potential.
  • the adaptation of the material of the organic intermediate layer takes place by doping, that is to say that the material either before or after it is applied to the transparent electrode or another lower layer of the organic photovoltaic component by chemical or electrochemical means, that is to say by a chemical process ( Add an oxidizing or reducing agent, e.g. J 2 , Na, FeCl 3 ) or (preferably because better fine adjustment is possible) is doped by an electrochemical, galvanic process, that is to say oxidized or reduced in a controlled manner.
  • doping that is to say that the material either before or after it is applied to the transparent electrode or another lower layer of the organic photovoltaic component by chemical or electrochemical means, that is to say by a chemical process ( Add an oxidizing or reducing agent, e.g. J 2 , Na, FeCl 3 ) or (preferably because better fine adjustment is possible) is doped by an electrochemical, galvanic process, that is to say oxidized or reduced in a controlled manner.
  • an oxidizing or reducing agent
  • controlled or “systematic” means that the electrochemical potential of the organic semiconductor layer can be shifted with an accuracy which realizes a fine adjustment of +/- 10 mV or less, but which can also be arbitrary or statistical, as desired ,
  • a PEDOT polyp, 4-ethylenedioxythiophene
  • PSS stands for polystyrene sulfonate
  • counterions such as hexafluorophosphate, tetraphenylborate, perchlorate and / or tetraalkylammonium salts serve as organic material, for example.
  • PDBT poly (4, 4 ⁇ -dimethoxy-bithiophene) is also used as an organic material.
  • organic material includes fully here all types of organic, organometallic and / or inorganic polymers that are referred to in English, for example, with “plastics". These are all types of substances with the exception of the semiconductors that form the classic diodes (germanium, silicon) and the typical metallic conductors.
  • a limitation in the dogmatic sense to organic material as carbon-containing material is therefore not intended, rather the broad use of, for example, silicones is also contemplated.
  • the term should not be subject to any restriction with regard to the molecular size, in particular to polymeric and / or oligomeric materials, but the use of "small molecules" is also entirely possible.
  • the adaptation or doping of the intermediate layer takes place during the manufacturing process the organic intermediate layer, that is to say the monomers are applied and electrochemically polymerized and simultaneously doped, that is to say reduced or oxidized electrochemically, for example by means of connected and / or immersed electrodes.
  • This ensures a relatively precise fine adjustment of the desired work function.
  • the doping can of course also be carried out just as well on the already fully polymerized or crosslinked organic material.
  • the material is doped with a chemical reducing or oxidizing agent before it is applied, for example from the solution, by addition and / or reaction.
  • chemical reducing or oxidizing agents include iodine, iron (III) chloride, sodium, lithium, potassium ... also all other strongly oxidizing or reducing substances.
  • the doping of the organic material is already from the publication M.Gross, D.C. Müller, H.-G. Nothofer,
  • FIGS 1 to 3 schematically show the layer structure of an organic photovoltaic component again.
  • Figure 1 shows an organic photovoltaic device, which, as is known, a substrate 1, a semi-transparent electrode 2, a semiconductor 4, which also has several layers may comprise, and comprises a negative electrode 5.
  • a layer 3 doped according to the invention is introduced between the semi-transparent p-electrode 2 and the semiconductor 4.
  • layer 3 is positively doped (oxidized).
  • the work function of this layer 3 is determined by the degree of doping and can be adapted to the photovoltaic system.
  • the semiconductor layer can be doped chemically or electrochemically.
  • FIG. 2 shows a photovoltaic organic component which, as in FIG. 1, has a substrate 1, a semitransparent electrode 2, a semiconductor 4 and a negative electrode 5.
  • the doped layer 3 is between the negative electrode 5 and the semiconductor 4 brought in.
  • layer 3 is negatively doped (reduced).
  • the work function of this layer 3 is determined by the degree of doping and can be adapted to the photovoltaic system.
  • the semiconductor layer can be doped chemically or electrochemically.
  • FIG. 3 shows the structure of a further organic photovoltaic component, which comprises a substrate 1, a semi-transparent electrode 2, a semiconductor 4 and a negative electrode 5.
  • Two doped layers 3a and 3b are introduced.
  • the layer 3b is introduced between the negative electrode 5 and the semiconductor 4 and the doped layer 3a is introduced between the positive electrode 2 and the semiconductor 4.
  • layer 3b is negatively doped (reduced), and layer 3a is positively doped (oxidized) in this case.
  • the work function of the layers (3a, 3b) is determined by the degree of doping and can be adapted to the photovoltaic system.
  • the semiconductor layers can be doped chemically or electrochemically. In all cases it is possible to make the positive or the negative electrode semi-transparent.
  • Organic photovoltaic components are a promising new technology for the inexpensive conversion and / or detection of photons, in particular solar energy.
  • the work function or the "built-in voltage” could be systematically adapted.
  • "Zero-built -in-field "and” inverted "organic photovoltaic components could thus be realized for the first time with the same chemical intermediate layer as organic photovoltaic components with optimized electrode / semiconductor contacts.
  • this organic intermediate layer serves as a negative electrode, which means that the organic interlayer is the electron-collecting electrode, which was not previously known for these organic photovoltaic components .. It is noteworthy that the same interlayer as both anode and cathode can also work.

Abstract

The invention relates to a material for an intermediate layer of an organic photovoltaic component with an improved efficiency. The efficiency is increased by the adaptation of the working function.

Description

Beschreibungdescription
Material für eine Zwischenschicht eines organischen photovol- taischen Bauelements, Herstellungsverfahren und Verwendung dazu sowie ein photovoltaisches BauelementMaterial for an intermediate layer of an organic photovoltaic component, production method and use therefor as well as a photovoltaic component
Unter einem photovoltaischen Bauelement versteht man sowohl eine Solarzelle als auch einen Photodetektor.A photovoltaic component means both a solar cell and a photodetector.
Die Erfindung betrifft ein Material für eine Zwischenschicht eines organischen photovoltaischen Bauelements mit verbesserter Effizienz.The invention relates to a material for an intermediate layer of an organic photovoltaic component with improved efficiency.
Bekannt sind organische photovoltaische Bauelemente des fol- genden strukturellen Schichtaufbaus:Organic photovoltaic components of the following structural layer structure are known:
An eine Elektrode, beispielsweise ein transparentes leitendes Oxid wie Indium tin oxide „ITO" schließt eine organische Zwischenschicht PEDOT/PSS an, auf der sich die photoaktive Halb- leiterschicht z.B. eine konjugierte Poly er-Fulleren Mischung, befindet, also eine Donor-Aktzeptor-Mischung, die an die negative Elektrode, z.B. einen Metallkontakt wie Ca/Ag oder LiF/Al, anschließt. Die einzelnen Schichten können jedoch abweichen, insbesondere die Elektroden, der Donor (konj. Polymer) als auch der Akzeptor (PCBM, ein lösliches Methano- fullerene) .An electrode, for example a transparent conductive oxide such as indium tin oxide “ITO”, is followed by an organic intermediate layer PEDOT / PSS on which the photoactive semiconductor layer, for example a conjugated polymer / fullerene mixture, is located, that is to say a donor-acceptor Mixture that connects to the negative electrode, eg a metal contact such as Ca / Ag or LiF / Al, but the individual layers can differ, in particular the electrodes, the donor (conjugated polymer) and the acceptor (PCBM, a soluble methano - fullerene).
Einer der Schlüsselparameter organischer Solarzellen ist die „built-in-voltage" des photovoltaischen Bauelementes. Die built-in-Spannung entspricht der Kompensationsspannung, die an eine Solarzelle angelegt wird, um die Zelle bei intensiver Beleuchtung und bei niedrigen Temperaturen (im Idealfall 0 K) stromfrei zu halten. Als Maß für die Built-in-Spannung wird üblicherweise die Leerlaufspannung einer voll funktionstüch- tigen Solarzelle akzeptiert. Die Obergrenze der LeerlaufSpannung ist gegeben durch die elektrischen Potentiale der verwendeten Halbleitermaterialien (dem HOMO oder Valenzband des Donors (p-Halbleiters) und dem LUMO oder Leitungsband des Akzeptors (n-Halbleiter) . Für den Fall, dass die elektrischen Kontakte der Solarzelle keinen idealen ohmschen Kontakt bilden, kann das Built-in-Potential bzw. die LeerlaufSpannung auch Werte kleiner als den oben definierten Maximalwert erreichen. In diesem Fall wird das Built in Potential bzw. die LeerlaufSpannung durch die Arbeitsfunktion der Metallkontakte beeinflusst oder sogar dominiert. Dem Material der organischen („polymeren" der Begriff „polymer" steht hier für orga- nische oder nicht herkömmliche, d.h. auf Silizium basierende Halbleitertechnologie schlechthin) Zwischenschicht, die die transparente Elektrode mit der photoaktiven Halbleiterschicht verbindet, kommt somit eine Schlüsselposition bei der Verbesserung der Effizienz der organischen Solarzellen zu, insbe- sondere in Hinsicht auf die Optimierung der elektrischen Verluste durch den Elektroden / Halbleiter Kontakt. Die erfolgreiche Funktionsweise wird demonstriert durch „Zero built in field" und/oder „inverted" organische Solarzellen die über eine chemische und/oder physikalische Veränderung der organi- sehen Zwischenschicht zu realisieren sind.One of the key parameters of organic solar cells is the "built-in voltage" of the photovoltaic device. The built-in voltage corresponds to the compensation voltage that is applied to a solar cell to the cell under intensive lighting and at low temperatures (ideally 0 K The open circuit voltage of a fully functional solar cell is usually accepted as a measure of the built-in voltage. The upper limit of the open circuit voltage is given by the electrical potentials of the semiconductor materials used (the HOMO or valence band of Donors (p-type semiconductor) and the LUMO or conduction band of the acceptor (n-type semiconductor). In the event that the electrical contacts of the solar cell do not form an ideal ohmic contact, the built-in potential or the open circuit voltage can also reach values lower than the maximum value defined above. In this case, the built-in potential or the open circuit voltage is influenced or even dominated by the work function of the metal contacts. The material of the organic ("polymer" the term "polymer" here stands for organic or non-conventional, ie silicon-based semiconductor technology par excellence) intermediate layer, which connects the transparent electrode with the photoactive semiconductor layer, thus has a key position in improving the Efficiency of organic solar cells, especially with regard to the optimization of the electrical losses through the electrode / semiconductor contact. The successful functioning is demonstrated by “zero built in field” and / or “inverted” organic solar cells that can be realized by chemical and / or physical changes in the organic intermediate layer.
Aufgabe der Erfindung ist es daher, ein Material für eine Zwischenschicht eines organischen photovoltaischen Bauelements zu schaffen, das chemisch und/oder physikalisch an die elektrischen Eigenschaften der anschließenden Halbleiterschicht anpassbar ist.The object of the invention is therefore to create a material for an intermediate layer of an organic photovoltaic component which can be adapted chemically and / or physically to the electrical properties of the subsequent semiconductor layer.
Gegenstand .der Erfindung ist ein Material für eine Zwischenschicht eines organischen photovoltaischen Bauelements, des- sen Austrittsarbeit (elektrochemisches Potential oder Fermi- funktion) an die physikalischen Eigenschaften der Halbleiterschicht angepasst ist. Außerdem ist Gegenstand der Erfindung ein Verfahren zum Herstellen eines Materials für eine Zwischenschicht eines organischen photovoltaischen Bauelements und schließlich ist die Verwendung eines Materials für eine Zwischenschicht eines organischen photovoltaischen Bauelements Gegenstand der Erfindung. Gegenstand ist auch ein orga- nisches photovoltaisches Bauelement, das die Bedingungen einer „inverted" Solarzelle oder einer „zero-built-in-field" Solarzelle erfüllt, Gegenstand der Erfindung.The invention relates to a material for an intermediate layer of an organic photovoltaic component, the work function of which (electrochemical potential or Fermi function) is adapted to the physical properties of the semiconductor layer. The invention also relates to a method for producing a material for an intermediate layer of an organic photovoltaic component and finally the use of a material for an intermediate layer of an organic photovoltaic component is the subject of the invention. The subject is also an organic African photovoltaic component that meets the conditions of an "inverted" solar cell or a "zero-built-in-field" solar cell, object of the invention.
Die Erfindung befasst sich mit Verbesserungen für dieseThe invention addresses improvements for them
PEDOT.PSS Schicht. PEDOT.PSS steht stellvertretend für alle weiteren Materialien, die als Lochtransportschichten bekannt sind. Diesen Materialien ist gemein, dass Ihre Leitfähigkeit durch Dotierung (Oxidation) geändert werden kann. Das Einfü- gen einer PEDOT.PSS (oder eventuell PANI) Schicht in denPEDOT.PSS layer. PEDOT.PSS is representative of all other materials known as hole transport layers. What these materials have in common is that their conductivity can be changed by doping (oxidation). The insertion of a PEDOT.PSS (or possibly PANI) layer in the
Zellaufbau dient zur Verbesserung der elektrischen Kontakte, die Ladungsträgerinjektion /extraktion kann dadurch besser kontrolliert und auch verbessert werden. PEDOT.PSS ist vor allem von Leuchtdioden als Lochtransportschicht (HTL, hole transport layer) bekannt.Cell structure serves to improve the electrical contacts, the charge carrier injection / extraction can thus be better controlled and also improved. PEDOT.PSS is primarily known from light-emitting diodes as a hole transport layer (HTL).
Die Erfindung offenbart Ersatzlösungen für diese PEDOT.PSS Schichten. Das Verwenden von bekannten, elektrochemisch dotierten Schichten aus konjugierten Polymeren an Stelle von PEDOT:PSS in organischen photovoltaischen Bauelementen ist die wesentliche Neuerung der Erfindung und dadurch kann die Funktion und die Effizienz eines organischen photovoltaischen Elements verbessert werden.The invention discloses alternative solutions for these PEDOT.PSS layers. The use of known, electrochemically doped layers of conjugated polymers instead of PEDOT: PSS in organic photovoltaic components is the essential innovation of the invention and the function and efficiency of an organic photovoltaic element can be improved thereby.
Als Austrittsarbeit oder Arbeitsfunktion der organischen Zwischenschicht bezeichnet man die Energie, die nötig ist um Ladungsträger aus den Bändern in das Vakuumniveau zu heben. Für dotierte Halbleiter spricht man auch von der Fermieenergie oder von dem elektrochemischen Potential.The work function or work function of the organic interlayer is the energy that is required to lift charge carriers out of the straps into the vacuum level. For doped semiconductors one also speaks of the Fermie energy or of the electrochemical potential.
Die Anpassung des Materials der organischen Zwischenschicht geschieht durch Dotierung, das heißt, dass das Material entweder vor oder nach seiner Aufbringung auf der transparenten Elektrode oder einer sonstigen unteren Schicht des organi- sehen photovoltaischen Bauelements mit chemischen oder elektrochemischen Mitteln, also durch einen chemischen Prozess (Versetzen mit einem Oxidations- oder Reduktionsmittel, z.B. J2, Na, FeCl3) oder (bevorzugt, weil bessere Feineinstellung möglich wird) durch einen elektrochemischen, galvanischen Prozess dotiert, das heißt kontrolliert oxidiert oder reduziert, wird.The adaptation of the material of the organic intermediate layer takes place by doping, that is to say that the material either before or after it is applied to the transparent electrode or another lower layer of the organic photovoltaic component by chemical or electrochemical means, that is to say by a chemical process ( Add an oxidizing or reducing agent, e.g. J 2 , Na, FeCl 3 ) or (preferably because better fine adjustment is possible) is doped by an electrochemical, galvanic process, that is to say oxidized or reduced in a controlled manner.
„Kontrolliert" oder „systematisch" heißt vorliegend, dass das elektrochemische Potential der organische Halbleiterschicht mit einer Genauigkeit, die eine Feineinstellung von +/- 10 mV oder weniger realisiert, aber auch beliebig zufällig oder statistisch sein kann, die Arbeitsfunktion des Materials verschoben werden kann.In the present case, “controlled” or “systematic” means that the electrochemical potential of the organic semiconductor layer can be shifted with an accuracy which realizes a fine adjustment of +/- 10 mV or less, but which can also be arbitrary or statistical, as desired ,
Als organisches Material dienen beispielsweise ein PEDOT (Polyp, 4-ethylenedioxythiophene) ) mit PSS, wobei PSS für Po- lystyrolsulfonat steht, und/oder andere Sorten von Gegenionen, wie Hexafluorophosphat, Tetraphenylborat, Perchlorat und/oder Tetraalkylammoniumsalze. Ebenso wird PDBT (Po- ly (4, 4 ^-dimethoxy-bithiophene) als organisches Material eingesetzt.A PEDOT (polyp, 4-ethylenedioxythiophene)) with PSS, where PSS stands for polystyrene sulfonate, and / or other types of counterions such as hexafluorophosphate, tetraphenylborate, perchlorate and / or tetraalkylammonium salts serve as organic material, for example. PDBT (poly (4, 4 ^ -dimethoxy-bithiophene) is also used as an organic material.
Der Begriff "organisches Material"' und/oder "organisch" um- fasst hier alle Arten von organischen, metallorganischen und/oder anorganischen Kunststoffen, die im Englischen z.B. mit "plastics" bezeichnet werden. Es handelt sich um alle Ar- ten von Stoffen mit Ausnahme der Halbleiter, die die klassischen Dioden bilden (Germanium, Silizium) und der typischen metallischen Leiter. Eine Beschränkung im dogmatischen Sinn auf organis.ches Material als Kohlenstoff-enthaltendes Material ist demnach nicht vorgesehen, vielmehr ist auch an den breiten Einsatz von z.B. Siliconen gedacht. Weiterhin soll der Term keinerlei Beschränkung im Hinblick auf die Molekülgröße, insbesondere auf polymere und/oder oligomere Materialien unterliegen, sondern es ist durchaus auch der Einsatz von "small molecules" möglich.The term "organic material"'and / or "organic" includes fully here all types of organic, organometallic and / or inorganic polymers that are referred to in English, for example, with "plastics". These are all types of substances with the exception of the semiconductors that form the classic diodes (germanium, silicon) and the typical metallic conductors. A limitation in the dogmatic sense to organic material as carbon-containing material is therefore not intended, rather the broad use of, for example, silicones is also contemplated. Furthermore, the term should not be subject to any restriction with regard to the molecular size, in particular to polymeric and / or oligomeric materials, but the use of "small molecules" is also entirely possible.
Nach einer Ausführungsform geschieht die Anpassung oder Dotierung der Zwischenschicht während des Herstellungsprozesses der organischen Zwischenschicht, das heißt es werden die Monomeren aufgebracht und elektrochemisch polymerisiert und gleichzeitig dotiert, also elektrochemisch z.B. mittels angeschlossener und/oder eingetauchter Elektroden kontrolliert reduziert oder oxidiert. Dabei ist eine relativ genaue Feineinstellung der gewünschten Arbeitsfunktion gewährleistet. Die Dotierung kann natürlich ebenso gut an dem bereits vollständig polymerisierten oder vernetzten organischen Material durchgeführt werden.According to one embodiment, the adaptation or doping of the intermediate layer takes place during the manufacturing process the organic intermediate layer, that is to say the monomers are applied and electrochemically polymerized and simultaneously doped, that is to say reduced or oxidized electrochemically, for example by means of connected and / or immersed electrodes. This ensures a relatively precise fine adjustment of the desired work function. The doping can of course also be carried out just as well on the already fully polymerized or crosslinked organic material.
Nach einer anderen Ausführungsform wird das Material vor seiner Aufbringung, beispielsweise aus der Lösung, durch Zugabe und/oder Umsetzung mit einem chemischen Reduktions- oder Oxi- dationsmittel dotiert. Beispiele für chemische Reduktions- oder Oxidationsmittel sind neben Jod, Eisen (III) chlorid, Natrium, Lithium, Kalium.... auch alle weiteren stark oxidieren- den oder reduzierenden Substanzen.According to another embodiment, the material is doped with a chemical reducing or oxidizing agent before it is applied, for example from the solution, by addition and / or reaction. Examples of chemical reducing or oxidizing agents include iodine, iron (III) chloride, sodium, lithium, potassium ... also all other strongly oxidizing or reducing substances.
Das Dotieren des organischen Materials ist bereits aus der Veröffentlichung M.Gross, D.C. Müller, H.-G. Nothofer,The doping of the organic material is already from the publication M.Gross, D.C. Müller, H.-G. Nothofer,
U. Scherf, D. Neher, C. Bräuchle und K. Meerholz in NATURE 2000, 405, 661 bekannt, deren gesamter Inhalt hiermit zum Gegenstand der vorliegenden Offenbarung gemacht wird. Dort wird insbesondere auf Seite 662, letzter Absatz, rechte Spalte bis Seite 663 rechte Spalte beispielhaft beschrieben, wie die Dotierungen konkret durchgeführt werden.U. Scherf, D. Neher, C. Bräuchle and K. Meerholz in NATURE 2000, 405, 661, the entire content of which is hereby made the subject of the present disclosure. On page 662, last paragraph, right column to page 663, right column, there is an example of how the doping is carried out.
Im folgenden wird die Erfindung noch anhand von Figuren, die Ausführungsbeispiele schematisch wiedergeben, näher erläu- tert:The invention is explained in more detail below with reference to figures which schematically represent exemplary embodiments:
Figuren 1 bis 3 zeigen schematisch den Schichtaufbau eines organischen photovoltaischen Bauelements wieder.Figures 1 to 3 schematically show the layer structure of an organic photovoltaic component again.
Figur 1 zeigt ein organisches photovoltaisches Bauelement, das, wie bekannt, ein Substrat 1, eine semitransparente Elektrode 2, einen Halbleiter 4, der auch mehrere Schichten umfassen kann, und eine negative Elektrode 5 umfasst. Eine nach der Erfindung dotierte Schicht 3 wird zwischen die semitransparente p-Elektrode 2 und dem Halbleiter 4 eingebracht.Figure 1 shows an organic photovoltaic device, which, as is known, a substrate 1, a semi-transparent electrode 2, a semiconductor 4, which also has several layers may comprise, and comprises a negative electrode 5. A layer 3 doped according to the invention is introduced between the semi-transparent p-electrode 2 and the semiconductor 4.
Die Schicht 3 wird in diesem Fall positiv dotiert (oxidiert) . Durch den Dotiergrad wird die Austrittsarbeit dieser Schicht 3 festgelegt und kann an das photovoltaische System angepasst werden. Die Dotierung der Halbleiterschicht kann chemisch oder elektrochemisch erfolgen.In this case, layer 3 is positively doped (oxidized). The work function of this layer 3 is determined by the degree of doping and can be adapted to the photovoltaic system. The semiconductor layer can be doped chemically or electrochemically.
In Figur 2 ist ein photovoltaisches organisches Bauelement zu sehen, das wie in Figur 1 ein Substrat 1, eine semitransparente Elektrode 2, einen Halbleiter 4 und eine negativen Elektrode 5. Die dotierte Schicht 3 wird zwischen die negati- ve Elektrode 5 und dem Halbleiter 4 eingebracht.FIG. 2 shows a photovoltaic organic component which, as in FIG. 1, has a substrate 1, a semitransparent electrode 2, a semiconductor 4 and a negative electrode 5. The doped layer 3 is between the negative electrode 5 and the semiconductor 4 brought in.
Die Schicht 3 wird in diesem Fall negativ dotiert (reduziert) . Durch den Dotiergrad wird die Austrittsarbeit dieser Schicht 3 festgelegt und kann an das photovoltaische System angepasst werden. Die Dotierung der Halbleiterschicht kann chemisch oder elektrochemisch erfolgen.In this case, layer 3 is negatively doped (reduced). The work function of this layer 3 is determined by the degree of doping and can be adapted to the photovoltaic system. The semiconductor layer can be doped chemically or electrochemically.
In Figur 3 ist schließlich der Aufbau eines weiteren organischen photovoltaischen Bauelements, das ein Substrat 1, eine semitransparente Elektrode 2, einen Halbleiter 4 und eine negative Elektrode 5 umfasst. Es werden zwei dotierte Schichten 3a und 3b eingebracht. Dabei wird die Schicht 3b zwischen der negative Elektrode 5 und dem Halbleiter 4 eingebracht und die dotierte Schicht 3a zwischen der positiven Elektrode 2 und dem Halbleiter 4 eingebracht.Finally, FIG. 3 shows the structure of a further organic photovoltaic component, which comprises a substrate 1, a semi-transparent electrode 2, a semiconductor 4 and a negative electrode 5. Two doped layers 3a and 3b are introduced. The layer 3b is introduced between the negative electrode 5 and the semiconductor 4 and the doped layer 3a is introduced between the positive electrode 2 and the semiconductor 4.
Die Schicht 3b wird in diesem Fall negativ dotiert (reduziert), die Schicht 3a wird in diesem Fall positiv dotiert (oxidiert) . Durch den Dotiergrad wird die Austrittsarbeit der Schichten (3a, 3b) festgelegt und kann an das photovoltaische System angepasst werden. Die Dotierung der Halbleiterschichten kann chemisch oder elektrochemisch erfolgen. In allen Fällen ist es möglich, die positive oder die negative Elektrode semitransparent auszuführen.In this case, layer 3b is negatively doped (reduced), and layer 3a is positively doped (oxidized) in this case. The work function of the layers (3a, 3b) is determined by the degree of doping and can be adapted to the photovoltaic system. The semiconductor layers can be doped chemically or electrochemically. In all cases it is possible to make the positive or the negative electrode semi-transparent.
Organische photovoltaische Bauelemente sind eine vielversprechende neue Technologie zur preiswerten Wandlung und/oder De- tektion von Photonen, insbesondere von Solarenergie. Durch elektrochemische Veränderung der Arbeitsfunktion des organischen Materials für die organische Zwischenschicht eines Bau- elements des generellen Aufbaus Elektrode/organische Zwi- schenschicht/funktionelle organische Halbleiterschicht/ Elektrode konnte systematisch die Arbeitsfunktion oder die „built-in voltage" angepasst werden. „Zero-built-in-field" und „inverted" organische photovoltaische Bauelemente konnten damit erstmals mit der gleichen chemischen Zwischenschicht realisiert werden wie organische photovoltaische Bauelemente mit optimierten Elektroden / Halbleiter Kontakten. Bei inverted photovoltaischen Bauelementen dient diese organische Zwischenschicht als negative Elektrode, das heißt, dass die or- ganische Zwischenschicht die elektronensammelnde Elektrode ist, was bisher noch nicht bei diesen organischen photovoltaischen Bauelementen bekannt war. Bemerkenswert ist, dass alleine durch die unterschiedliche Dotierung die gleiche Zwischenschicht sowohl als Anode als auch Kathode funktionieren kann.Organic photovoltaic components are a promising new technology for the inexpensive conversion and / or detection of photons, in particular solar energy. By electrochemically changing the work function of the organic material for the organic intermediate layer of a component of the general structure electrode / organic intermediate layer / functional organic semiconductor layer / electrode, the work function or the "built-in voltage" could be systematically adapted. "Zero-built -in-field "and" inverted "organic photovoltaic components could thus be realized for the first time with the same chemical intermediate layer as organic photovoltaic components with optimized electrode / semiconductor contacts. In inverted photovoltaic components, this organic intermediate layer serves as a negative electrode, which means that the organic interlayer is the electron-collecting electrode, which was not previously known for these organic photovoltaic components .. It is noteworthy that the same interlayer as both anode and cathode can also work.
Mit Hilfe der Erfindung ist erstmals ein Weg geschaffen worden, um eine kontrollierte Anpassung organischer Materialien für die Zwischenschicht zur Optimierung der Effizienz organi- scher Solarzellen durchzuführen. „Normale" organische photovoltaische Bauelemente, die kommerziell erhältliches PEDOT verwenden, können durch die Änderung der Arbeitsfunktion (des Dotierungsniveaus) von PEDOT verbessert werden. Die Tatsache, dass ein „inverted" organisches photovoltaisches Bauelement durch Einstellung der Arbeitsfunktion des PEDOTs hergestellt werden kann, zeigt, dass die Arbeitsfunktion kontinuierlich zwischen der Valenzband des Polymers und dem Leitungsband (bzw. über das Niveau des Leitungsbands) des PCBM [6,6]- phenyl-C61-butyricacid-methylester variiert werden kann. Damit ist diese organische Zwischenschicht in der Lage die Arbeitsfunktion und damit auch das Kontaktverhalten von beinahe beliebigen Metallen zu erreichen.With the help of the invention, a way has been created for the first time to carry out a controlled adaptation of organic materials for the intermediate layer in order to optimize the efficiency of organic solar cells. "Normal" organic photovoltaic devices using commercially available PEDOT can be improved by changing the work function (doping level) of PEDOT. The fact that an "inverted" organic photovoltaic device can be manufactured by adjusting the work function of the PEDOT shows that the work function continuously between the valence band of the polymer and the conduction band (or above the level of the conduction band) of the PCBM [6,6] - phenyl-C61-butyricacid methyl ester can be varied. This organic intermediate layer is thus able to achieve the work function and thus the contact behavior of almost any metal.
Mit Hilfe der Erfindung konnten erstmals „inverted" organische photovoltaische Bauelemente wie oben erklärt geschaffen werden. With the help of the invention, “inverted” organic photovoltaic components as explained above could be created for the first time.

Claims

Patentansprüche claims
1. Organisches Material für eine Zwischenschicht eines organischen photovoltaischen Elements, dessen Austrittsarbeit (bzw. elektrochemisches Potential) an die physikalischen Eigenschaften der Halbleiterschicht angepasst ist.1. Organic material for an intermediate layer of an organic photovoltaic element, whose work function (or electrochemical potential) is adapted to the physical properties of the semiconductor layer.
2. Organisches Material nach Anspruch 1, dessen Austrittsarbeit durch Variation der Arbeitsfunktion der Zwischenschicht so angepasst ist, dass sowohl ein optimiertes „normales" organisches photovoltaisches Bauelement als auch ein inverted photovoltaisches Bauelement dargestellt werden kann. Dazu ist es nötig, dass die Arbeitsfunktion der Zwischenschicht zwischen und bzw. außerhalb dem LUMO des Donors und dem HOMO des Akzeptors variiert wird2. Organic material according to claim 1, the work function of which is adjusted by varying the work function of the intermediate layer such that both an optimized “normal” organic photovoltaic component and an inverted photovoltaic component can be represented. To do this, it is necessary that the work function of the intermediate layer is varied between and / or outside the LUMO of the donor and the HOMO of the acceptor
3. Organisches Material nach einem der vorstehenden Ansprüche, wobei das Material zumindest zum Teil ein PEDOT (Polyp, 4-ethylenedioxythiophene) wie das PEDOT-PSS, wobei PSS für Polystyrolsulfonat) steht, ist.3. Organic material according to one of the preceding claims, wherein the material is at least partially a PEDOT (polyp, 4-ethylenedioxythiophene) such as the PEDOT-PSS, where PSS stands for polystyrene sulfonate).
4. Verfahren zur Anpassung einer Arbeitsfunktion eines Materials einer Zwischenschicht eines organischen photovoltaischen Bauelements, durch systematische Reduktion oder Oxida- tion des organischen Materials mit elektrochemischen Mitteln.4. Method for adapting a work function of a material of an intermediate layer of an organic photovoltaic component, by systematic reduction or oxidation of the organic material with electrochemical means.
5. Verfahren nach Anspruch 4, wobei das Verfahren während des Herstellungsprozesses der Zwischenschicht durchgeführt wird.5. The method of claim 4, wherein the method is performed during the manufacturing process of the intermediate layer.
6. Verfahren nach einem der Ansprüche 4 oder 5, wobei das Verfahren vor und/oder nach der Aufbringung der Zwischenschicht durchgeführt wird.6. The method according to any one of claims 4 or 5, wherein the method is carried out before and / or after the application of the intermediate layer.
7. Verwendung des Materials nach einem der Ansprüche 1 bis 3 in einem organischen photovoltaischen Bauelement. 7. Use of the material according to one of claims 1 to 3 in an organic photovoltaic component.
8. Photovoltaisches Bauelement, das die Bedingungen einer „inverted" Solarzelle oder einer „zero-built-in-field" Solarzelle erfüllt. 8. Photovoltaic component that fulfills the conditions of an “inverted” solar cell or a “zero-built-in-field” solar cell.
PCT/DE2003/002464 2002-07-31 2003-07-22 Material for intermediate layer of organic photovoltaic component, production method and use of the latter, in addition to photovoltaic component WO2004017422A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10235012.4 2002-07-31
DE10235012A DE10235012A1 (en) 2002-07-31 2002-07-31 Material for an intermediate layer of an organic photovoltaic component, production method and use therefor, and a photovoltaic component

Publications (2)

Publication Number Publication Date
WO2004017422A2 true WO2004017422A2 (en) 2004-02-26
WO2004017422A3 WO2004017422A3 (en) 2004-12-23

Family

ID=31196896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002464 WO2004017422A2 (en) 2002-07-31 2003-07-22 Material for intermediate layer of organic photovoltaic component, production method and use of the latter, in addition to photovoltaic component

Country Status (2)

Country Link
DE (1) DE10235012A1 (en)
WO (1) WO2004017422A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278585A (en) * 2005-03-28 2006-10-12 Dainippon Printing Co Ltd Organic thin-film solar cell element
WO2020111943A1 (en) 2018-11-30 2020-06-04 Technische Universiteit Delft Electrochemical doping of semiconductor materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4162505A (en) * 1978-04-24 1979-07-24 Rca Corporation Inverted amorphous silicon solar cell utilizing cermet layers
WO2000065653A1 (en) * 1999-04-22 2000-11-02 Thin Film Electronics Asa A method in the fabrication of organic thin-film semiconducting devices
WO2001039276A1 (en) * 1999-11-26 2001-05-31 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
WO2001084644A1 (en) * 2000-04-27 2001-11-08 Qsel-Quantum Solar Energy Linz Forschungs- Und Entwicklungs-Gesellschaft M.B.H. Photovoltaic cell
DE10209789A1 (en) * 2002-02-28 2003-09-25 Univ Dresden Tech Solar cell comprising organic, inorganic and mixed layers, the mixed layer being doped with strong acceptor or donor affecting only one main constituent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4162505A (en) * 1978-04-24 1979-07-24 Rca Corporation Inverted amorphous silicon solar cell utilizing cermet layers
WO2000065653A1 (en) * 1999-04-22 2000-11-02 Thin Film Electronics Asa A method in the fabrication of organic thin-film semiconducting devices
WO2001039276A1 (en) * 1999-11-26 2001-05-31 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
WO2001084644A1 (en) * 2000-04-27 2001-11-08 Qsel-Quantum Solar Energy Linz Forschungs- Und Entwicklungs-Gesellschaft M.B.H. Photovoltaic cell
DE10209789A1 (en) * 2002-02-28 2003-09-25 Univ Dresden Tech Solar cell comprising organic, inorganic and mixed layers, the mixed layer being doped with strong acceptor or donor affecting only one main constituent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278585A (en) * 2005-03-28 2006-10-12 Dainippon Printing Co Ltd Organic thin-film solar cell element
WO2020111943A1 (en) 2018-11-30 2020-06-04 Technische Universiteit Delft Electrochemical doping of semiconductor materials
NL2022110B1 (en) * 2018-11-30 2020-06-26 Univ Delft Tech Electrochemical doping of semiconductor materials

Also Published As

Publication number Publication date
DE10235012A1 (en) 2004-03-04
WO2004017422A3 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
EP2398056B1 (en) Organic solar cell with several transport layer systems
EP1565947B1 (en) Photovoltaic component and production method therefor
AT411306B (en) PHOTOVOLTAIC CELL WITH A PHOTOACTIVE LAYER OF TWO MOLECULAR ORGANIC COMPONENTS
Corcoran et al. Increased efficiency in vertically segregated thin-film conjugated polymer blends for light-emitting diodes
AT410729B (en) PHOTOVOLTAIC CELL WITH A PHOTOACTIVE LAYER OF TWO MOLECULAR ORGANIC COMPONENTS
DE112012003329T5 (en) Graphene interlayer tandem solar cell and method of making the same
EP1535323B1 (en) Method for treating a photovoltaic active layer and organic photovoltaic element
EP1798785A2 (en) Transparent Polymer Electrode for Electro-Optical Devices
Lee et al. Long-term stable recombination layer for tandem polymer solar cells using self-doped conducting polymers
DE112011104040T5 (en) Hole injection layers
Wang et al. Energy level and thickness control on PEDOT: PSS layer for efficient planar heterojunction perovskite cells
Leblebici et al. Dielectric screening to reduce charge transfer state binding energy in organic bulk heterojunction photovoltaics
CN106611818B (en) Polymer-multi-metal oxygen cluster compound composite material, preparation method and application
WO2008125100A1 (en) Organic electronic memory component, memory component arrangement and method for operating an organic electronic memory component
WO2010139804A1 (en) Photoactive component comprising double or multiple mixed layers
EP2132800B1 (en) Organic radiation-emitting device and production method for said device
WO2010133449A1 (en) Material for a hole transport layer with p-dopant
WO2004017422A2 (en) Material for intermediate layer of organic photovoltaic component, production method and use of the latter, in addition to photovoltaic component
EP1442486B1 (en) Solar cell with organic material in the photovoltaic layer and method for the production thereof
DE102008030845B4 (en) Organic electronic component and method for producing an organic electronic component
CN108054283A (en) A kind of insensitive molybdenum trioxide anode interface layer of film thickness and preparation method thereof and the application in organic solar batteries
CN109301071B (en) Preparation method and application of anode dipole interface of organic solar cell
CN109860392B (en) Organic solar cell with functionalized graphene quantum dots as electron transport layer and preparation method thereof
KR101369627B1 (en) High conductive PEDOT:PSS thin film added acetone and organic solar cells using it
Jindal et al. Significant Enhancement of Hole Transport Ability in Conjugated Polymer/Fullerene Bulk Heterojunction Microspheres

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP