WO2004016716A1 - Gasification furnace - Google Patents

Gasification furnace Download PDF

Info

Publication number
WO2004016716A1
WO2004016716A1 PCT/JP2003/010267 JP0310267W WO2004016716A1 WO 2004016716 A1 WO2004016716 A1 WO 2004016716A1 JP 0310267 W JP0310267 W JP 0310267W WO 2004016716 A1 WO2004016716 A1 WO 2004016716A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
fluidized
gasification
combustion chamber
amount
Prior art date
Application number
PCT/JP2003/010267
Other languages
French (fr)
Japanese (ja)
Inventor
Kei Matsuoka
Tatsuo Tokudome
Shugo Hosoda
Seiichiro Toyoda
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to AU2003255009A priority Critical patent/AU2003255009A1/en
Priority to JP2004528865A priority patent/JP4283222B2/en
Publication of WO2004016716A1 publication Critical patent/WO2004016716A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion

Definitions

  • the present invention t background art various waste and solid fuel such as a gas furnace for gasifying by pyrolysis
  • a fluidized-bed gasifier that pyrolyzes various wastes and solid fuels to gasify it.
  • gasification The flow rate of oxygen supplied into the furnace or the flow rate of gas containing oxygen (for example, air) was changed.
  • a gasification zone is provided for gasification of various wastes and solid fuels
  • a combustion zone is provided for burning gasification residues such as char and tar generated by gasification.
  • the heat of combustion is used for heat of gasification reaction in the gasification zone, and each of the gasification zone and the combustion zone is used as a fluidized bed apparatus, and the above-mentioned transfer of the gasification residue and heat is transferred via a fluidized medium.
  • a high temperature fluid medium c is caused to flow inside to form a gasification chamber fluidized bed having a first interface.
  • a gasification chamber 1 for gasifying the gas a high-temperature fluidized medium c is caused to flow therein to form a fluidized bed of a combustion chamber having a second interface, and a gas generated by gasification in the gasification chamber 1
  • a combustion chamber for burning 1 h in the fluidized bed of the combustion chamber and heating a fluid medium c; and a gasification chamber 1 and a combustion chamber 2 of the combustion chamber are located at an interface between the respective fluidized beds.
  • the upper part in the vertical direction is partitioned by partition walls 11 and 15 so that gas does not flow, and the gasification chamber 1 and the char combustion chamber 2 are located below the partition walls 11 and 15.
  • the communication ports 21 and 25 communicate with each other, and the height of the upper end of each of the communication ports 21 and 25 is equal to or lower than the first interface and the second interface.
  • a certain communication port 21, 25 is formed, and the flow in the vicinity of the communication port 21, 25 of one of the gasification chamber 1 and the char combustion chamber 2 sandwiching the communication port 21, 25.
  • the fluidized state of the medium c is stronger than the fluidized state of the fluidized medium c near the communication ports 21 and 25 of the other chamber, and the weak fluidized state is provided through the communication ports 21 and 25.
  • the fluidized medium c is configured to move from the fluidized state to the strong fluidized state; and by adjusting the flow strength of the weak fluidized state, the gasification chamber 1 and the char-
  • a control device 6 is provided for controlling the temperature of the gasification chamber 1 or the combustion chamber 2 by controlling the amount of the fluid medium c flowing between the gasification chamber 1 and the gasification furnace 101.
  • the gasification chamber 1, the combustion chamber 2, and the control device 6 are provided.
  • the strength of the flow in the weak fluidized state the gasification chamber 1 and the gas chamber 1 are controlled.
  • the temperature of the gasification chamber 1 or the first combustion chamber 2 can be controlled.
  • the control device 6 may also adjust the strength of the strong fluidized state.
  • the temperature of the gasification chamber 1 is typically the temperature of the gasification fluidized bed, and the temperature of the char combustion chamber 2 is typically the temperature of the fluidized bed.
  • the amount of the fluid medium c The flow rate of fluidizing gas g1, g2, and g4 is small, and the temperature of gasification chamber 1 or combustion chamber 2 is controlled without significantly affecting other operating conditions. can do.
  • the fluidized bed is typically fluidized by a fluidizing gas g blown from the furnace bottom.
  • the fluidization state can be adjusted by the blowing speed and the amount of the fluidizing gas g.
  • Control valves 61 to 65 for controlling the flow rates of the fluidizing gas g1, g2, g4 may be provided for each section where the amount of the fluidizing gas g1, g2, g4 is to be controlled.
  • Control unit that controls the opening of control valves 6 1 to 65 of compartments 1 a, lb, 2 a, 2 b, and 4 a of gasification chamber 1 and channel combustion chamber 2 sandwiching communication ports 2 1 and 25
  • the fluidization state can be adjusted by adjusting the blowing speed and the blowing amount of the fluidizing gas gl, g2, and g4.
  • the gasification furnace 101 includes a gasification chamber 1 for thermally decomposing an object a with a high-temperature fluidized medium c to generate a gas b and a charge h; A combustion chamber for heating the fluid medium c by burning the fuel h generated in 1; the fluid medium c is configured to circulate between the gasification chamber 1 and the combustion chamber 2 Further, a control device 6 for controlling the composition of the gas b generated in the gasification chamber 1 by adjusting the circulation amount of the fluid medium c may be provided.
  • the gasification chamber 1, the combustion chamber 2, and the control device 6 are provided.
  • the circulation amount of the fluid medium c By adjusting the circulation amount of the fluid medium c, the gas generated in the gasification chamber 1 is adjusted.
  • the composition of b can be controlled.
  • the control device 6 may control the concentration of one type of gas, or may control the concentration ratio of a plurality of gases to a predetermined set value.
  • a high-temperature fluidized medium c is caused to flow locally, thereby forming a gasification chamber fluidized bed having a first interface.
  • a combustion chamber 2 for heating the fluid medium c by burning the generated h in the fluidized bed of the combustion chamber; and the gasification chamber 1 and the combustion chamber 2 floor
  • the partition walls 11 and 15 prevent the flow of gas vertically above the interface between the gasification chamber 1 and the combustion chamber 2 at the bottom of the partition walls 11 and 15.
  • Communication ports 21, 25 for communicating with the communication ports 21, 25, wherein the height of the upper ends of the communication ports 21, 25 is less than or equal to the first interface and the second interface.
  • the fluid medium c is stronger than the fluidized state of the fluid medium c near the communication ports 21 and 25 through the communication ports 21 and 25 and moves from the weak fluidized state to the fluidized state toward the strong fluidized state.
  • c is configured to move; and further, by controlling the strength of the flow in the weak fluidized state, the flow flowing between the gasification chamber 1 and the char combustion chamber 2 is controlled.
  • a control device 6 may be provided which controls the amount of the moving medium c to control the composition of the gas b generated by the gasification.
  • the gasification chamber 1, the combustion chamber 2, and the control device 6 are provided.
  • the strength of the flow in the weak fluidized state By adjusting the strength of the flow in the weak fluidized state, the gasification chamber 1 and the gas chamber 1 are controlled.
  • the composition of the gas b generated by gasification can be controlled by controlling the amount of the fluid medium c flowing between the combustion chambers 2.
  • the strength of the flow in the weak fluidized state is adjusted, the change in the flow rate of the fluidized gas g1, g2, and g4 generated to control the amount of the fluidized medium c is small, and the flow rate of the fluidized gas g1, g2, and g4 is small.
  • the composition of the gas b generated from the gasification chamber 1 can be controlled without significant influence.
  • the gasifier 101 is, for example, as shown in FIG. 1, a heat recovery chamber 3 for introducing a fluid medium c from the char combustion chamber 2 and a fluid recovery medium c from the char combustion chamber 2.
  • a heat recovery chamber 3 having a heat recovery device 41 for recovering heat; and a control device 6 for controlling the amount of heat recovery in the heat recovery device 41 by adjusting the strength of the flow in the heat recovery chamber 3. It may be provided.
  • the control device 6 controls the strength of the flow in the heat recovery chamber 3 so that the heat recovery device 3 is controlled.
  • the amount of heat recovery in 4 1 can be controlled.
  • the heat recovery chamber 3 is typically a heat recovery chamber 3 provided adjacent to the char combustion chamber 2.
  • the heat recovery apparatus 41 typically includes an in-layer heat transfer tube 41.
  • the heat recovery unit 41 typically heats the steam s 1 with the recovered heat.
  • Control device 6 is steam s 1 The amount may be controlled.
  • gasifier 101 When the gasifier 101 has a heat recovery chamber 3 provided in contact with the char combustion chamber 2, the flow of the char combustion chamber is between the char combustion chamber 2 and the heat recovery chamber 3.
  • a partition wall 12 is provided to partition the fluidized bed of the bed, and an opening 22 is formed at the lower part of the partition wall 12.
  • the fluid medium c of the chamber 1 is recovered from the upper part of the partition wall 12.
  • gasifier 101 is further equipped, for example, as shown in FIG.
  • the control device 6 for controlling the heat recovery amount may control the heat recovery amount in the heat recovery device 41 and control the temperature of the first combustion chamber 2.
  • the gasification furnace 101 further includes a first pressure above the first interface of the gasification chamber 1 and a second pressure of the second combustion chamber 2.
  • Pressure measuring devices 8 1, 8 2 for measuring the upper second pressure and the gas; the first discharge linear velocity of the gas b generated from the gasification chamber 1 discharged from the gasification chamber 1; Adjusting devices 78, 79 for adjusting the second discharge linear velocity of the combustion gas e generated from the chamber 2 and discharged from the combustion chamber 2; the first pressure and the second pressure with urchin configuration this it may also be c be one and a control device 6 for controlling the urchin adjusting device 7 8, 7 9 I to a predetermined value the pressure difference between the pressure measuring device 81, 82 and Since the control device 6 is provided with the control devices 7 8 and 7 9 and the control device 6, the first pressure and the second pressure are measured by the pressure measurement devices 8 1 and 8 2, and the control device 7 8 , 79 adjust the first discharge linear velocity and the second discharge linear velocity, and the controller 6 controls the pressure difference between the first
  • the pressure difference between the first pressure and the second pressure can be set to a predetermined value, the effect of the pressure on the moving amount of the fluid medium particles between the gasification chamber 1 and the chamber 1 Can be suppressed to a constant value, and it becomes easy to precisely control the moving amount of the fluid medium particles.
  • the predetermined value may be substantially equal to zero, or the control device 6 may control the adjusting devices 78 and 79 so that the first pressure and the second pressure become substantially equal.
  • Figure 1 is a block diagram conceptually showing the configuration of the integrated gasifier.
  • FIG. 2 is a schematic side sectional view of two chambers separated by a partition wall. It is classified into (a), (b) and (c) according to the form of the partition wall.
  • FIG. 3 is a diagram showing the relationship between the fluidizing gas velocity and the apparent bed viscosity.
  • FIG. 4 is a diagram showing the relationship between the fluidizing gas velocity and the moving amount of the fluidized medium.
  • FIG. 5 is a block diagram in a case where a predetermined weak fluidized region and a strong fluidized region are separated into a region near a predetermined opening and a remote region.
  • FIG. 6 is a diagram for explaining the definition of the circulation amount of the fluid medium circulating between the gasification chamber and the settling chamber.
  • FIG. 7 is a diagram for explaining the diffusion of the flowing medium between the gasification chamber and the settling chamber.
  • FIG. 8 is a diagram showing the relationship between the superficial velocity of the fluidized gas in the settling channel combustion chamber, the amount of heat transfer from the settling channel combustion chamber to the gasification chamber, and the amount of circulation (convection).
  • Fig. 9 is a graph showing the relationship between the superficial velocity of the fluidized gas in the settling channel combustion chamber and the amount of fluidized medium transferred from the settling channel combustion chamber to the gasification chamber (convection + diffusion).
  • FIG. 10 is a diagram for explaining the relationship between the fluidized bed height and the circulation amount.
  • FIG. 11 is a diagram showing the relationship between the circulation ratio and the gasification chamber layer temperature in case 1.
  • FIG. 12 is a diagram showing the relationship between the circulation ratio and the gasification chamber layer temperature in case 2.
  • FIG. 13 is a diagram showing the relationship between the circulation ratio and the product gas composition.
  • FIG. 14 is a diagram showing the relationship between the circulation ratio and the H 2 / CO ratio of the produced gas.
  • FIG. 15 is a diagram showing the relationship between the circulation ratio and the calorific value of the produced gas.
  • FIG. 16 is a diagram showing the relationship between the gasification chamber bed temperature and the gasification chamber outlet calorific value ratio.
  • FIG. 17 is a diagram showing the relationship between the gasification chamber layer temperature and the cold gas efficiency.
  • FIG. 18 is a diagram showing the relationship between the circulation ratio and the calorific value of the generated gas.
  • FIG. 19 is a graph showing the relationship between the gasification chamber bed temperature and the rate at which carbon in the raw material transfers to tar.
  • FIG. 20 is a diagram showing the relationship between the amount of circulation and the rate at which carbon in the raw material transfers to the combustion chamber.
  • FIG. 21 is a graph showing the relationship between the gasification chamber bed temperature and the rate at which carbon in the raw material transfers to the combustion chamber.
  • FIG. 22 is a block diagram showing the configuration of the fluid medium supply device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram conceptually showing the configuration of an integrated gasifier 101 as a gasifier.
  • the integrated gasifier 101 has a gasification chamber 1 for pyrolysis and gasification of waste or solid fuel a as an object to be treated, and a chamber for burning one minute h generated in the gasification chamber 1. And a combustible gas generated in the gasification chamber 1 and a combustion gas e generated in the first combustion chamber 2 as an integrated gas. It is characterized in that it is supplied separately to a gas utilization device (not shown) at the subsequent stage of the gasification furnace 101.
  • the char combustion chamber 2 is composed of the char combustion chamber body 5 and the sedimentation char combustion chamber.
  • the integrated gasifier 101 is connected to a gasification chamber 1 and supplies a generated gas b generated in the gasification chamber 1 for supplying a generated gas b. Combustion gas generated in the combustion chamber body 5 And a combustion gas supply pipe 27 for supplying e.
  • the integrated gasifier 101 further includes a gas composition measuring device 46 installed on the generated gas supply pipe 26 and measuring the gas composition of the generated gas b.
  • the integrated gasifier 101 is installed in the generated gas supply pipe 26 and controls the discharge linear velocity (first discharge linear velocity) of the generated gas b discharged from the generated gas supply pipe 26.
  • a control valve 78 for example, a damper
  • a control valve 79 for example, a damper
  • the integrated gasifier 101 has a gasification chamber 1 and a char combustion chamber 2 that are responsible for the pyrolysis gasification and char combustion functions described above, respectively.
  • a recovery chamber 3 is provided, and the gasification chamber 1, the char combustion chamber 2, and the heat recovery chamber 3 are housed in, for example, a cylindrical or rectangular furnace.
  • the integrated gasifier 101 has a control device 6 that controls the control valves 61, 62, 63, 64, 65, 66, and 67 (61 to 67) described below, respectively. Is provided.
  • the control device 6 also controls the control valves 78 and 79 described above.
  • the gasification chamber 1, the combustion chamber 2, and the heat recovery chamber 3 are divided by partition walls 11 to 15.A fluidized bed that is a dense layer containing a high-temperature fluidized medium c is formed at the bottom of each. .
  • temperature measuring devices 42 and 43 for measuring the layer temperature of each dense layer are installed.
  • the layer temperature of the rich layer in the gasification chamber 1 is the temperature of the gasification chamber 1
  • the layer temperature of the rich layer in the main section 5 of the combustion chamber is the temperature of the combustion chamber 2.
  • the temperature measuring devices 42 and 43 send a temperature signal i 3 (partially indicated by a broken line in the figure) based on the measured temperature to the control device 6.
  • the controller 6 controls the control valves 6 1 to 67 so that the temperature of the gasification chamber 1 and the temperature of the combustion chamber 2 become the set value based on the temperature signal i 3 as described later.
  • the control device 6 is the temperature control device of the present invention.
  • the above-mentioned gas composition measuring device 46 sends a gas composition signal i 4 based on the measured gas composition to the control device 6.
  • the control device 6 can be configured to control the control valves 61 to 67 so that the gas composition of the generated gas b becomes a set value based on the gas composition signal i4, as described later.
  • the control device 6 This is a control device for controlling the composition of the steel.
  • the thermometers 42 and 43 use thermocouples.
  • pressure measuring devices 81 and 82 are installed to measure the pressure in the freeboard sections.
  • the pressure at the freeboard portion of the gasification chamber 1 is the first pressure of the present invention, and the pressure at the freeboard portion of the chamber 1 for the combustion chamber is the second pressure of the present invention.
  • the freeboard section will be described later.
  • the pressure measuring devices 8 1 and 8 2 send a pressure signal i 5 (partially indicated by broken lines in the figure) to the control device 6 based on the measured pressure.
  • the control device 6 is configured to control the control valves 61 to 67 so that the pressure in the gasification chamber 1 and the pressure in the combustion chamber 2 are set to predetermined values based on the pressure signal i5. can do.
  • Gas composition signal i 4 is yo When H 2, CO, C 0 2 , CH 4, H 2 mole 0/0, such as 0 les.
  • the control device 6 obtains the gas composition signal i 4, calculates the H 2 / CO ratio, etc., and further calculates the gas composition signal i 4 and the temperature signal i 3 of the product gas b measured by the temperature measuring device 42. It is preferable that the calorific value of the gas of the generated gas b be calculated based on the pressure signal i 5 of the generated gas b measured by the pressure measuring device 81.
  • each of the chambers 1 to 3 namely the fluidized bed of the gasification chamber, the fluidized bed of the combustion chamber and the fluidized bed of the fluidized bed of the heat recovery chamber, the furnace bottom which is the bottom of each of the chambers 1 to 3
  • the fluidizing gas gl, g2, g3, g4 (the distinction between the fluidizing gas gl, g2, g3, and g4 will be described later.
  • Each of the diffusers 31 to 36 includes, for example, a perforated plate laid on the furnace bottom where the diffusers 3:! To 36 are installed, and the perforated plates are divided in the width direction. Is divided into several rooms.
  • the integrated gasifier 1 0 1 has a supply pipe 5 1 connected to the diffuser 3 1, a supply pipe 5 connected to the diffuser 3 2, a supply pipe 5 connected to the diffuser 3 3 5 3, a supply pipe 54 connected to the diffuser 34, a supply pipe 55 connected to the diffuser 35, and a supply pipe 56 connected to the diffuser 36.
  • Each of the supply pipes 51 to 56 includes a control valve 61 to 66 as a control device and a flow measuring device 71 to 76, respectively.
  • the mobilizing gas g is supplied to each of the air diffusers 31 to 36.
  • the control valves 61 to 66 adjust the supply amount of the fluidizing gas g to each of the air diffusers 31 to 36. Therefore, each air diffuser 31 to 36 is in each room!
  • each part in ⁇ 3 In order to change the superficial velocity of each part in ⁇ 3 (in the figure, the location indicated by la and lb in room 1, the location indicated by 2a, 2b, 4a in room 2 and the location indicated by 3a in room 3) In addition, it is configured to change the flow velocity of the fluidizing gas g blown out from the chambers of the air diffusers 31 to 36 through the perforated plate.
  • the flow measuring devices 71 to 76 are installed downstream of the control valves 61 to 66 of the supply pipes 5 :! to 56, respectively, and measure the flow rate of the fluidized gas g.
  • Each of the control valves 61 to 66 receives a separate control signal i1 (partially indicated by a broken line in the figure) sent from the control device 6, and operates to change the opening.
  • Flowmeter 7 To 76 send a flow signal i 2 (partially indicated by a broken line in the figure) based on the measured flow rate to the controller 6.
  • the fluidized state of the fluid medium c in each of the chambers 1 to 3 is also different in each part of the chambers 1 to 3, so that an internal swirling flow is formed.
  • the internal swirling flow circulates through the chambers 1 to 3 in the furnace because the fluidization state is different in each part of the chambers 1 to 3.
  • the size of the white arrows indicated by the air diffusers 3:! To 36 indicates the flow velocity of the fluidized gas g to be blown out.
  • the thick arrow at the point indicated by 2b has a larger flow velocity than the thin arrow at the point indicated by 2a.
  • the flow velocity at the location indicated by the white arrow is uniform throughout the location.
  • a partition wall 11 and a partition wall 15 separate the gasification chamber 1 from the combustion chamber main body 5, and a partition wall 12 separates the combustion chamber main body 5 from the heat recovery chamber 3.
  • the gasification chamber 1 and the heat recovery chamber 3 are separated by a partition wall 13 (note that in this drawing, the furnace is developed in a plan view, so that the partition wall 11 is a gasification chamber). It is shown as if it was not between 1 and the main part 5 of the combustion chamber, and the partition 13 was not between the gasification chamber 1 and the heat recovery chamber 3). That is, in the integrated gasification furnace 101, each of the first to third chambers is not configured as a separate furnace, but is integrally configured as one furnace.
  • a sedimentation chamber 1 is provided near the surface of the main body 5 of the chamber 1 in contact with the gasification chamber 1 so that the fluid medium c descends. That is, as described above, the first combustion chamber 2 is divided into the sedimentation combustion chamber 4 and the main body 5 of the combustion chamber other than the sedimentation combustion chamber 4c. Other parts of combustion chamber 2 A partition wall 14 for partitioning from the part 5) is provided. In addition, the sedimentation chamber combustion chamber 4 and the gasification chamber 1 are separated by a partition wall 15 as shown in FIG.
  • the fluidized bed consists of a dense layer at the lower part in the vertical direction, which contains the fluidized medium c (for example, silica sand), which is placed in a fluidized state by the fluidizing gas g, and a vertically upper part of the dense layer.
  • the fluidized medium c for example, silica sand
  • a large amount of gas coexists with the fluid medium c in the part, and the fluid medium c consists of a splash zone that is vigorously splashing.
  • Above the fluidized bed that is, above the splash zone, there is a freeboard portion mainly containing gas and containing almost no fluid medium c.
  • the interface may be considered as a force that refers to the splash zone having a certain thickness, or as a virtual surface intermediate the upper surface and the lower surface (the upper surface of the dense layer) of the splash zone.
  • partitioned by a partition wall so that gas does not flow vertically above the interface of the fluidized bed means that it is vertically above the upper surface of the dense layer further below the interface. It is preferable that there is no gas flow in the area.
  • the partition wall 11 between the gasification chamber 1 and the chamber 1 of the combustion chamber is almost entirely partitioned from the ceiling 19 of the furnace to the bottom of the furnace (perforated plate of the diffuser 31).
  • the lower end does not contact the furnace bottom, and there is an opening 21 near the furnace bottom as a communication port.
  • the upper end of the opening 21 is located above any of the interface of the fluidized bed of the gasification chamber as the first interface and the interface of the fluidized bed of the combustion chamber as the second interface. More preferably, the upper end of the opening 21 reaches the upper part of the upper surface of the dense bed of the fluidized bed of the gasification chamber or the upper surface of the dense bed of the fluidized bed of the combustion chamber. Not to be.
  • the opening 21 is configured so as to always dive into the dense layer. That is, the gasification chamber 1 and the char combustion chamber 2 are separated from each other at least at the free board part, more specifically, above the interface, and more preferably, above the upper surface of the dense layer. In other words, it is divided by a partition wall so that there is no distribution.
  • the upper end of the partition wall 12 between the combustion chamber 2 and the heat recovery chamber 3 is near the interface, that is, above the upper surface of the dense layer, but below the upper surface of the splash zone.
  • the lower end of the partition wall 12 is close to the bottom of the furnace, and the lower end does not contact the bottom of the furnace like the partition wall 11 and does not reach above the upper surface of the dense layer near the bottom of the furnace.
  • only the fluidized bed portion is partitioned by the partition wall 12 between the first combustion chamber 2 and the heat recovery chamber 3, and the partition wall 12 has an opening 22 near the hearth surface.
  • the fluid medium c in the first combustion chamber 2 flows into the heat recovery chamber 3 from above the partition wall 1 2, and returns to the first combustion chamber 2 again through the opening 22 near the hearth surface of the partition wall 12. It is configured to have flow.
  • the partition wall 13 between the gasification chamber 1 and the heat recovery chamber 3 completely separates from the furnace bottom to the furnace ceiling.
  • the upper end of the partition wall 14 that partitions the inside of the first combustion chamber 2 in order to provide the first settling combustion chamber 4 is near the interface of the fluidized bed, and the lower end is in contact with the furnace bottom.
  • the relationship between the upper end of the partition wall 14 and the fluidized bed is the same as the relationship between the partition wall 12 and the fluidized bed.
  • the partition wall 15 that separates the combustion chamber 4 and the gasification chamber 1 is similar to the partition wall 11 and almost entirely partitions from the furnace ceiling to the furnace bottom, and the lower end is located at the furnace bottom.
  • the waste or solid fuel a charged into the gasification chamber 1 receives heat from the fluidized medium c, and is pyrolyzed and gasified to generate product gas b.
  • waste or fuel a does not burn in gasification chamber 1 but is so-called carbonized.
  • the remaining dry distillation channel h flows together with the fluid medium c from the opening 21 at the lower part of the partition wall 11 into the main chamber 5 of the combustion chamber. In this way, the channel h introduced from the gasification chamber 1 is burned in the main chamber 5 of the channel combustion chamber to heat the fluid medium c.
  • the fluid medium c heated by the combustion heat of the channel h in the channel chamber main body 5 flows into the heat recovery chamber 3 beyond the upper end of the partition wall 12 and below the interface in the heat recovery chamber 3.
  • the in-layer heat transfer tube 41 as a heat recovery device arranged as shown in Fig. 2, it passes through the lower opening 22 of the partition wall 1 2 again and the combustion chamber It flows into the main unit 5.
  • the in-layer heat transfer tube 4 1 includes an in-layer heat transfer tube main body 4 1 A disposed in the heat recovery chamber 3, an introduction portion 4 1 B for guiding the steam s 1 to the in-layer heat transfer tube main body 4 1 A, It consists of a discharge section 41 C that discharges superheated steam s 2 from the heat transfer tube body 41 A.
  • the steam s1 introduced into the bed heat transfer tube body 41A is superheated and becomes superheated steam s2.
  • the integrated gasifier 101 has temperature measuring devices 44, 45, a control valve 67, and flow measurement Vessel 7 7.
  • the temperature measuring device 44 is installed in the introduction section 41B and measures the temperature of the steam s1.
  • the control valve 67 is installed in the introduction section 41B and controls the flow rate of the steam s1.
  • the flow rate measuring device 77 is installed in the introduction section 41B to measure the flow rate of the steam s1.
  • the temperature measuring instrument 45 is installed in the discharge section 41C to measure the temperature of the superheated steam s2.
  • the control valve 67 operates in response to a control signal i 1 (partially indicated by a broken line in the figure) sent from the control device 6 to change the opening.
  • the flow measuring device 7 7 sends a flow signal i 2 based on the measured flow rate (partially indicated by a broken line in the figure) to the control device 6, and the temperature measuring devices 4 4 and 4 5 A temperature signal i 3 (partially indicated by a broken line in the figure) is sent to the control device 6.
  • the control device 6 is a control device for controlling the heat recovery amount of the present invention.
  • the heat recovery chamber 3 is not essential in the integrated gasification furnace 101 according to the embodiment of the present invention. That is, it is necessary to heat the fluid medium c in the gas combustion chamber 2 and the amount of the carbon mainly composed of mainly carbon remaining after gasification of volatile components in the gasification chamber 1. If the amount of the charged particles is almost the same, the heat recovery chamber 3 for removing heat from the fluid medium c is unnecessary. If the difference in the amount of the h is small, for example, the gasification temperature in the gasification chamber 1 becomes higher, and the amount of co-gas generated in the gasification chamber 1 increases. Is kept.
  • the heat recovery chamber 3 when the heat recovery chamber 3 is provided as shown in Fig. 1, it can handle a wide variety of wastes or fuels a, from coal that generates a large amount of char-h to municipal waste that generates almost no char-a-h. be able to. That is, no matter what kind of waste or fuel a, by adjusting the amount of heat recovery in the heat recovery chamber 3, the combustion temperature of the combustion chamber main body 5 can be appropriately adjusted, and the fluid medium The temperature of c can be maintained properly. Further, the supply amount of the fluidizing gas g3 to the air diffuser 36 is adjusted by the control valve 66, and the heat recovery chamber 3 having the weak fluidization region 3a maintained in the weak fluidization state is provided. The amount of heat recovery in the heat recovery chamber 3 can be controlled by adjusting the strength of the fluidized state. Therefore, the control device 6 that controls the heat recovery amount controls the heat recovery amount in the in-layer heat transfer tube 41, and controls the temperature of the combustion chamber 2.
  • the fluid medium c heated in the main part 5 of the combustion chamber of the chamber flows over the upper end of the partition wall 14 and flows into the combustion chamber 4 of the sedimentation chamber, and then from the opening 25 at the lower part of the partition wall 15. Flow into gasification chamber 1.
  • FIGS. 2 (a), (b), and (c) two chambers separated by a partition X, a partition Y, or a partition Z formed in the furnace F.
  • the fluidization state and movement of the fluid medium c between R a R b will be described.
  • the two chambers R a R b are separated by a partition wall X having an opening PX only in the upper part.
  • the two chambers R a R b are separated by a partition wall Y having an opening Q y only at the lower part.
  • FIG. 2 (a) the two chambers R a R b are separated by a partition wall Y having an opening Q y only at the lower part.
  • the two chambers R a R b are partitioned by a partition wall Z having an opening P z at the top and an opening Q z at the bottom.
  • a diffuser D a D b for injecting fluidized gas gagb is provided at the bottom of each of the chambers R a R b for accommodating the fluidized medium c.
  • the upper end of the partition wall XZ is near the height of the interface, and the opening QyQz is located at a position below the dense layer.
  • the movement of the fluid medium c between the two chambers R a and R b separated by the partition wall X, the partition wall Y or the partition wall Z is the difference in the fluidization state between the chamber Ra side and the chamber R b side.
  • the opening P x between the chambers Ra and Rb The moving amount and moving direction (from the chamber Ra to the chamber Rb or from the chamber Rb to the chamber Ra) of the fluid medium c via QyPzQz can be adjusted.
  • the movement of the fluid medium c between the chamber R a and the chamber R b via the opening Q y Q z generally takes place in the fluidized state near the opening Q y Q z on the chamber Ra side.
  • the fluid medium c moves from the weakly fluidized chamber to the strongly fluidized chamber, affected by the difference in the fluidized state near the opening ⁇ 3 Qz on the chamber 1 side.
  • the fluidization state in the chamber R a is uniform in the chamber R a
  • the fluidization state in the chamber R b is uniform in the chamber R b Therefore, the difference in the gas velocity of the fluidized gas gagb in the chamber R a and the chamber R b can be discussed.
  • the fluid medium c moves to the faster chamber.
  • the fluidized state of the chamber R a is made stronger than the fluidized state of the chamber R b while the fluidized state of the chamber R b is kept constant, that is, the fluidized gas velocity of the chamber R b is kept constant
  • the velocity of the fluidizing gas in chamber R a is set to be higher than the velocity of the fluidizing gas in chamber R b
  • the fluid medium c splashed from chamber R a crosses partition X to chamber R b. Since the amount of the fluid medium c that has splashed from the chamber R b side moves beyond the partition wall X to the chamber Ra side than the amount of movement, the overall amount from the chamber Ra side to the chamber R b side increases.
  • the moving amount of the fluid medium c does not become 0, and the fluid medium c moves from the chamber Ra side to the chamber Rb side (this state is indicated by a white arrow in the figure).
  • the fluid medium c moves from the chamber Ra side to the chamber Rb side.
  • the height of the fluidized bed in the chamber Ra decreases gradually, and the height of the fluidized bed in the chamber Rb gradually increases.
  • the amount of the fluid medium c moving from the chamber Ra side to the chamber Rb side beyond the partition wall X decreases as the fluidized bed interface on the chamber Ra side becomes lower. Due to the decrease in bed height, the moving amount of the fluid medium c from the chamber Ra side to the chamber Rb side decreases. Similarly, the amount of the fluid medium c from which the splashing from the chamber Rb moves over the partition X to the chamber Ra side increases as the fluidized bed interface on the chamber Rb side increases. Of room R As the height of the fluidized bed increases, the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra increases.
  • the movement of the fluid medium c from the chamber Ra to the chamber Rb is performed.
  • the fluid medium c is supplied from the outside to the chamber Ra so that the amount of the fluid medium c filled in both chambers Ra and Rb, that is, the fluidized bed height is constant.
  • the configuration may be such that the fluid medium c is extracted from the chamber Rb to the outside.
  • the fluidization speed is 2 Umf or less, and more preferably, 1 Umf or less.
  • the fluidization speed is maintained at a sufficiently high level, preferably at a fluidization velocity force of at least Umf, and more preferably at 5 Umf or more, the maximum movement amount of the fluid medium c can be ensured.
  • Umf is a unit where the minimum fluidization speed (speed of fluidized gas at which fluidization starts) is defined as lUmf. That is, 5Umf is 5 times the minimum fluidization rate.
  • Figure 3 shows the relationship between the fluidized state of the fluid medium c and the apparent layer viscosity of the particle layer. This shows a case where the gas velocity of the fluidizing gas gb in the chamber R b is changed in the range shown in FIG. 3, while the gas velocity of the fluidizing gas ga in the chamber R a is kept constant.
  • the viscosity of the fluidized bed in a fixed bed with a fluidizing gas velocity of 1 Umf or less is almost equal to infinity.
  • the fluidizing gas velocity exceeds 1 Umf, the viscosity of the fluidized bed decreases rapidly.
  • the relative velocity between the settling fluid medium and the rising fluidizing gas occurs, so that even if the fluidizing gas velocity is 1 Umf or less, the relative velocity of the fluidizing gas is 1 Umf or more.
  • the viscosity changes and the amount of movement (Circulation amount) can be controlled. Therefore, the amount of change in the amount of fluidizing gas for controlling the amount of movement (circulation) of the fluid medium c can be minimized. In other words, the effect of changes in the process factor for controlling the circulation amount (here, the amount of fluidized gas) on other process factors can be minimized.
  • the velocity of the fluidizing gas in the chamber R b is reduced while keeping the velocity of the fluidizing gas in the chamber R a constant, the amount of movement of the fluid medium c according to the absolute value of the velocity of the fluidizing gas in the chamber R b Change behavior is different.
  • the initial state it is assumed that both the chamber Ra and the chamber Rb have sufficiently fluidized, that is, the fluidized gas velocity exceeds 5 Umf. From this state, if the velocity of the fluidizing gas in the chamber R b is reduced, the relative velocity of the fluidizing gas in the chamber R b (the relative velocity between the settling velocity of the fluid medium and the rising velocity of the fluidizing gas) becomes about 2 Umf.
  • Figure 4 shows that the relative velocity of the fluidized gas ga in the chamber Ra (the relative velocity between the settling velocity of the fluidized medium and the rising velocity of the fluidized gas) is kept constant (4 Umf, 5 Umf, 6 Umf). The three cases are shown below) .However, when the gas velocity of the fluidizing gas gb in the chamber Rb is changed, how does the movement amount of the flowing medium c from the chamber Ra to the chamber Rb change? Indicates As shown in Fig.
  • the relative velocity of the fluidizing gas gb (the sedimentation velocity of the fluidizing medium and the fluidizing velocity of the fluidizing gas gb) that gives the maximum amount of movement of the fluidizing medium c from the chamber Ra to the chamber Rb in FIG.
  • the relative velocity with the gas is about 1.7 Umf.
  • the relative velocity of the fluidizing gas in the chamber Rb (the relative velocity between the settling velocity of the fluidizing medium and the fluidizing gas) is preferably in the range of lUmf to 2Umf, more preferably in the range of lUmf to 1.7Umf.
  • the flow rate of the fluidizing gas in the chamber Ra is preferably adjusted to 4 Umf or more, more preferably 5 Umf or more.
  • the fluidized gas velocity in the chambers R a and R b is higher than the fluidized gas velocity in the chamber R b.
  • the fluid medium c moves from the chamber Rb to the chamber Ra immediately after the difference is made, but the fluidized bed height of the chamber Ra rises to some extent.
  • the pressure near the opening Qy at the bottom of the chamber Ra increases, and the pressure near the opening Qy at the bottom of the chamber Rb decreases.
  • the pressure difference in the vicinity of the opening Qy at the bottom of the layer between the chambers Ra and Rb which was the driving force for the movement of the air, becomes smaller.
  • the pressure difference becomes zero, the overall movement amount of the fluid medium c between the two chambers Ra and Rb becomes zero again.
  • a certain amount of difference is set so that the velocity of the fluidizing gas in the chamber R a becomes larger than the relative velocity of the fluidizing gas in the chamber R b (the relative velocity between the settling velocity of the fluid medium and the rising velocity of the fluidizing gas).
  • the amount of the fluid medium c filled in both chambers Ra and Rb that is, the height of the fluidized bed
  • the fluid medium c may be supplied from the outside to the chamber Rb, and the fluid medium c may be withdrawn from the chamber Ra to the outside so that the pressure is constant.
  • the opening Pz is provided at the upper part and the opening Qz is provided at the lower part. Therefore, at the upper opening Pz, the phenomenon described above with reference to FIG. At z, the phenomenon described above with reference to Fig. 2 (b) occurs.
  • the fluidized gas velocity of the chamber R a If the relative velocity of the fluidizing gas in the chamber R b (the relative velocity between the settling velocity of the fluid medium and the relative velocity of the fluidizing gas) is changed to be small while maintaining the same, the opening Pz will start from the chamber Ra side. Movement of the fluid medium c to the chamber R b side occurs, and at the opening Q z, movement of the fluid medium c from the chamber Ra side to the chamber R b side occurs. Therefore, circulation of the fluid medium c occurs between the chamber Ra and the chamber Rb.
  • the amount of movement of the fluid medium c through the opening Q z and the amount of movement of the fluid medium c through the opening P z are such that the fluidized state of the chamber Ra is stronger than the fluidized state of the chamber Rb. In the initial state, they are not always equal. However, after a certain transient state, the moving amount of the fluid medium c through each opening Q z P z becomes equal due to the change in the fluidized bed height caused by the difference in the moving amount of the fluid medium c. A certain steady state of the circulation of the fluid medium c is obtained.
  • the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra via the opening Qz is greater than the amount of movement of the fluid medium c from the chamber Ra to the chamber Rb via the opening Pz.
  • the height of the fluidized bed in the chamber Rb gradually decreases, and at the same time, the height of the fluidized bed in the chamber Ra gradually increases.
  • a decrease in the fluidized bed height of the chamber Rb decreases the pressure near the hearth of the chamber Rb, while an increase in the fluidized bed height of the chamber Ra increases the pressure near the hearth of the chamber Ra.
  • the pressure difference between the chamber R a and the chamber R b sandwiching the opening Q z is reduced, that is, the amount of movement of the fluid medium c from the chamber R b to the chamber Ra via the opening Q z is reduced.
  • the fluid medium c easily jumps from the chamber Ra to the chamber Rb beyond the upper end of the partition Z. That is, the amount of movement of the fluid medium c from the chamber Ra to the chamber Rb via the opening Pz increases. Due to the above effects, the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra through the opening Qz decreases, and the fluid medium c from the chamber Ra to the chamber Rb through the opening Pz.
  • Room R a and room R The height of the fluidized bed of R b further changes and balances where the amount of movement of the fluid medium c from chamber R b to chamber R a and the amount of movement of chamber R a to chamber R b are equal.
  • the movement amount (circulation amount) of the fluid medium c finally obtained by balancing is determined by the width, height, area and shape of the opening Q z and the furnace F such as the height of the partition wall Z. It depends on the shape conditions and the amount of fluidizing gas supplied to each chamber. Therefore, in order to obtain a desired circulation amount, the width, height, area and shape of the opening Q z and the height of the partition wall Z are taken into consideration in consideration of the supply amount of the fluidizing gas amount.
  • the shape of the furnace F should be determined.
  • the gasification furnace 101 has the same configuration as that shown in Fig. 1, but for simplicity of explanation, the strong fluidization zone 1 b of the gasification chamber 1 and the weak fluidization It is described as being constituted by the sedimentation chamber 1 which is the area 4a, the combustion chamber 4, and the partition wall 15 in which the opening 25 is formed, and other components are omitted.
  • the superficial velocity of the fluidized gas g1 (Fig. 1) in the strong fluidized zone 1b of the gasification chamber 1 is V1b, and the fluidized gas in the sedimentation chamber 1 combustion chamber 4, which is the weak fluidized zone 4a.
  • the fluid medium c circulates and moves through the opening 25 at the bottom of 15.
  • the furnace bottom pressure (fluid bed pressure at the furnace bottom) is P m [Pa]
  • the bulk density of the fluid bed is D f [kg / m 3 ]
  • the gravitational acceleration is ga [kg / s 2 ]
  • the height of the fluid bed is If (floor height) is H f [m]
  • the sedimentation chamber 4 has a weak fluidized zone 4a and a small amount of air bubbles, so the fluidized bed bulk density Df4a is large (there are few voids and the particle concentration is high).
  • the bulk density D f 1 b of the fluidized bed is small because there are many bubbles (there are many voids and the particle density is low). Therefore, the fluidized bed bulk density D f 4 a of the sedimentation chamber 1 combustion chamber 4 (weak fluidized zone 4 a) is the fluidized bed bulk density D f 1 of the strong fluidized zone 1 b of the gasification chamber 1.
  • the macroscopic one-way movement of the fluid medium c between the gasification chamber 1 and the settling chamber 1 as shown in Fig. 6 is called convection.
  • the two-way movement of particles between the gasification chamber 1 of the fluid medium c and the settling chamber 1 as shown in Fig. 7 is called diffusion. Even in the region where convection occurs in Fig. 6, if attention is paid to each particle in the micro region, diffusion as shown in Fig. 7 occurs.
  • the mass flow rate [kg / s] of the macro one-way flow shown in Fig. 6 is defined as the circulation amount.
  • the amount of circulation is determined by the pressure difference at the bottom of the fluidized bed, the viscosity of the upstream fluidized bed and the viscosity of the downstream fluidized bed (especially, the viscosity of the upstream fluidized bed is dominant). .
  • the apparent viscosity of the fluidized bed is It depends on the mobilization state, that is, the superficial velocity V 1 b and V 4 a of the fluidizing gas. Therefore, the fluidized gas velocity V 1 b in the strong fluidization zone 1 b of the gasification chamber 1 is changed, or the superficial velocity V 4 a of the fluidized gas in the sedimentation chamber 1 combustion chamber 4 is changed.
  • the amount of circulation can be controlled by changing the apparent viscosity.
  • the circulation amount becomes zero.
  • the fluid medium c between the two chambers 1 and 4 is exchanged by diffusion at the opening 25 at the lower part of the partition wall 15.
  • the pyrolysis residue (excluding large non-fluidized residue) in the strong fluidization zone 1 b of the gasification chamber 1 moves to the sedimentation char combustion chamber 4 and burns.
  • the fluidized bed temperature is higher in the sedimentation-chamber combustion chamber 4 where the residue is burned than in the gasification chamber 1 where the pyrolysis of the raw material as the endothermic reaction is performed.
  • the fluid medium c is exchanged between the two chambers 1 and 4 by diffusion, so that the exchange of the fluid medium c also causes the sensible heat of the fluid medium c to change. , Exchanged between rooms 1 and 4. Therefore, the sensible heat of the fluidized medium c is transferred from the high-temperature settling chamber combustion chamber 4 to the low-temperature gasification chamber 1.
  • Figure 9 shows that the superficial velocity (assumed to be Umf) of the fluidized gas in the sedimentation chamber 1 that is the weak fluidization zone 4a where the fluid medium c settles is from 0 Umf to about 1.7 Umf.
  • the figure shows the change in the amount of fluid medium transferred from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 (convection + diffusion) (unit: kg / s) when changed.
  • the moving amount of the fluid medium increases almost linearly with an increase in the superficial velocity. Even below lUmf, the moving amount of the fluid medium changes and is within the control range.
  • Umf is the minimum fluidization speed (the flow at which fluidization starts The superficial velocity of activated gas) is defined as l Umf.
  • fluidized gas supplied to the region near the opening 21 in the weak fluidization region 1a of the gasification chamber 1 and the region near the opening 21 in the strong fluidization region 2b of the combustion chamber body 5 By installing flow rate measuring devices 71 1 and 7 4 for measuring the quantities gl and g 2 and flow rate control devices (for example, flow control valves 61 and 64) to change the flow rates, the gasification chamber 1 and the channel It is possible to control the amount of heat transfer due to diffusion around the opening of the combustion chamber body 5.
  • the control device 6 as the heat transfer amount control device is connected to the fluidized gas flow control device (for example, the flow control valve 65) of the sedimentation chamber and the combustion chamber 4. Send a signal to reduce the flow rate to zero. As a result, fluidization of the sedimentation-chamber combustion chamber 4 stops, and the movement of the fluid medium due to convection between the gasification chamber 1 and the combustion chamber 1 does not occur.
  • the control device 6 as a heat transfer amount control device controls the fluidization gas g1 to be supplied to the region near the opening 21 in the weak fluidization region 1a of the gasification chamber 1.
  • the quantity control device eg flow rate control valve 63.
  • furnace 10 2 includes two chambers R p and R q partitioned by a partition wall W.
  • the chambers R p and R q contain the fluid medium c.
  • the partition wall W has an opening Pw at the top and an opening Qw at the bottom.
  • a diffuser D pa and a diffuser D pb for blowing fluidized gas are provided at the furnace bottom of the chamber R p, and a diffuser D qa for blowing a fluidized gas is provided at the furnace bottom of the chamber R q. I have. It is assumed that the upper end of the partition wall W is near the height of the interface, and the opening Qw is located at a position below the dense layer.
  • the chamber R p has two compartments: a weak fluidization zone pa just above the diffuser D pa where the fluidization state is weak, and a strong fluidization zone pb just above the diffuser D pb and the fluidization state. It is divided into The chamber R q is a weakly fluidized zone qa with a weak fluidized state. Further, it is assumed that the fluidized state is uniform in the weakly fluidized region pa of the room Rp, in the strong fluidized region pb of the room Rp, and in the room Rq. It is assumed that the strong fluidization zone pb of the chamber R p has a furnace bottom B pb, and the chamber R q has a furnace bottom B qa.
  • the higher the fluidized bed height the greater the circulation volume.
  • P m [Pa] is the pressure at the bottom of the furnace
  • D f [kg / m 3 ] is the volume of the fluidized bed.
  • the fluidized bed bulk density D fqa is Large (small voids and high particle concentration).
  • the strong fluidization zone pb of the chamber R p there are many bubbles, and the bulk density D fpb of the fluidized bed is small (there are many voids and the particle density is low).
  • the bed bulk density D fqa is larger than the fluidized bed bulk density D fpb in the strong fluidization zone pb of the chamber R p (D fqa> D fpb), and therefore the furnace bottom pressure P mqa of the furnace bottom B qa of the chamber R q Is larger than the pressure P mpb at the bottom B pb of the strong fluidization zone pb of the chamber R p (Pm qa> P mpb), and a pressure difference occurs, and the chamber R at the weak fluidization zone qa
  • the fluid medium moves c from q through the strong fluidization zone pb opening Qw of the chamber R p.
  • the higher the fluidized bed height the more proportionally the pressure P mqa at the bottom B qa of the weak fluidization zone qa of the chamber R q and the strong fluidization zone pb of the chamber R p Since the pressure difference from the pressure Pm pb at the bottom B pb of the furnace increases, the higher the height of the fluidized bed, the greater the amount of movement. It becomes bad.
  • the circulation amount increases as the moving amount of the fluid medium c moving from the chamber Rq to the chamber Rp increases (the first reason that the circulation amount increases as the height of the fluidized bed increases).
  • the bubble rupture occurs in the upper part of the strong fluidization region pb of the chamber Rp, and the rupture of the bubble causes the fluid medium c to scatter around, opening from the chamber Rp to the chamber Rq. Movement of the fluid medium c occurs through section P w.
  • the higher the height of the fluidized bed the greater the distance ( ⁇ ⁇ in the figure) from the upper end of the partition wall W between the chamber Rq and the chamber Rp to the upper surface of the fluidized bed. Due to the accompanying movement of the particles of the fluid medium c, the amount of the fluid medium c moving to the chamber R q increases, so that the circulation amount increases (the higher the bed height, the greater the circulation amount). Reason) .
  • the circulation amount can be increased by increasing the height of the fluidized bed within a certain range.
  • the fluid medium c is supplied into the chambers Rq and Rp to increase the height of the fluidized bed to increase the circulation amount, or to move the fluid medium c to the room R. q, It is possible to take out from the chamber R p and lower the fluidized bed height to reduce the circulation amount.
  • two pressure measuring devices 91 and 92 are installed in the settling channel combustion chamber 4 at two upper and lower points (preferably the same horizontal position) in the fluidized bed of the settling channel combustion chamber 4. It is set up to measure fluidized bed pressure. By measuring the pressure with the pressure measuring devices 91 and 92, it is possible to calculate the fluidized bed height and control the circulation amount.
  • the pressure measurement point for calculating the fluidized bed height may be the gasification chamber 1 instead of the sedimentation chamber combustion chamber 4.
  • P f is the fluidized bed pressure [Pa]
  • D f is the fluidized bed bulk density [kg / m 3 ]
  • ga is the gravitational acceleration [kg / s 2 ]
  • H f X is the height of the fluidized bed above [ m] and PO are the pressure [Pa] on the freeboard.
  • a pressure measuring device 91, 92 is installed to measure the fluidized bed pressures Pf1, Pf2, and a control device is used as a computing unit that receives a pressure signal based on the measured value from the pressure measuring device 91, 92.
  • the fluidized bed height H f can be calculated by the controller 6. By controlling the fluidized bed height H f calculated in this way by the control device 6, the circulation amount can be controlled.
  • the control device 6 may output a fluidized bed height signal indicating the calculated fluidized bed height Hf.
  • the pressure measuring devices 9 1 and 9 2 have slow fluidization and small pressure fluctuations, and have weak sedimentation chamber 1 and weak gasification chamber 1a of gasification chamber 1 and weak flow of chamber 1 Although it is desirable to install it in the gasification zone 2a, it may be installed in the strong fluidization zone 1b of the gasification chamber 1 and the strong fluidization zone 2b of the main body 5 of the combustion chamber.
  • the amount of ring can be controlled. To change the height of the fluidized bed, supply the fluidized medium when increasing the height of the fluidized bed, and extract the fluidized medium when decreasing the height of the fluidized bed.
  • a fluidized medium supply device for supplying the fluidized medium may be provided, a fluidized medium may be supplied, and a fluidized medium extracting device for extracting the fluidized medium may be provided to extract the fluidized medium.
  • the fluid medium supply device 1 1 1 supplies the fluid medium c from the fluid medium storage device 1 1 2 that stores the fluid medium c and the fluid medium c from the fluid medium storage device 1 1 2 that stores the fluid medium c.
  • the fluid medium supply amount measuring device 1 13 that measures the amount and outputs the fluid medium supply amount signal i 21 representing the supply amount, and the fluid medium storage tank in the fluid medium storage device 1 1 2 for the fluid medium c
  • a fluid medium supply amount control device 114 for controlling the supply amount of the fluid.
  • the fluid medium supply amount control device 114 is installed, for example, on a line 115 for free-falling the fluid medium from the fluid medium storage device 112 and transporting it to the gasification chamber 1, for example. This is a control valve for controlling the supply amount.
  • the fluid medium supply amount measuring device 113 measures, for example, the change over time of the weight of the fluid medium storage tank in the fluid medium storage device 112 and obtains the fluid medium supply amount from the measured change over time.
  • the fluid medium supply amount control device 1 14 (for example, the control valve described above) is connected to the fluid medium supply amount signal i 21 from the fluid medium supply amount measurement device 113 and the control device 6 (FIG. 1) described later. To control the fluid medium supply amount.
  • the fluid medium extraction device 1 16 includes a fluid medium extraction pipe 1 17 provided at the furnace bottom of the gasification chamber 1 and a fluid medium transfer device 1 18 (a screw conveyor, an apron conveyor, etc.). It is comprised including.
  • the fluid medium c extracted and transported by the fluidized-bed medium extracting device 1 16 is supplied to and stored in the above-mentioned “fluid medium storage device 1 12”.
  • the fluid medium discharge amount control device 1 19 (for example, a screw conveyor on / off switch or a screw speed controller) is used to extract the fluid medium from the fluid medium discharge amount measurement device 120.
  • the signal i 22 and the circulating amount signal described below from the control device 6 (Fig.
  • the fluid medium extracting device drive signal i 23 is sent to the fluid medium extracting device 1 16 to control the fluid medium extracting amount.
  • the fluid medium The supply amount measuring device 1 1 3 and the fluid medium withdrawal amount measuring device 1 2 0 are the same, for example, by measuring the change over time of the weight of the fluid medium storage tank in the fluid medium storage device 1 12 and measuring. The amount of withdrawal of the fluid medium is determined from the change with time.
  • the fluid medium withdrawal amount measuring device 120 is different from the fluid medium supply amount measuring device 113, and the transport amount of the fluid medium c transported by the fluid medium transport device 118 is defined as the withdrawal amount. It can be measured directly.
  • the pressure loss of the fluidizing gas in a fluidized bed with a settling flow of the fluidized medium c, such as the settling channel combustion chamber 4, is greater than the pressure loss of the fluidizing gas in a fluidized bed without a settling flow.
  • the reason for this is that the fluidizing gas has an upward flow, and therefore runs counter to the sedimentation flow of the fluidizing medium, thus increasing the resistance of the fluidizing gas.
  • the circulation amount can be measured using the following phenomena.
  • the circulation amount can be measured using the following equation.
  • Equations (3) and (4) are of the third-order approximation, but may be first-order and second-order approximations, respectively.
  • the control device 6 calculates the pressure difference Pd between them, and further causes the control device 6 to calculate (Pd-Pn).
  • the flow rate of the fluidizing gas g4 (Fig. 1) supplied to the sedimentation-chamber combustion chamber 4 (Fig. 1) is determined by the flow meter 75 (Fig. 1), and the flow signal i2 (Fig. 1) is obtained. Since it is sent to the controller 6, the controller 6 can calculate the fluidized gas velocity V g (V g 4) of the sedimentation chamber 1 and the combustion chamber 4.
  • V g is substituted into equation (or equation (1)) to obtain F2
  • (Pd-Pn) is substituted into equation (3) (or equation (2)) to obtain F1
  • equation (2) is obtained.
  • the flow medium settling velocity is determined.
  • is known (it can be empirically obtained at the time of test operation etc.) Therefore, the circulation amount can be obtained.
  • the amount of circulation can be controlled using the amount of circulation obtained in this way. That is, the flow rate of the sedimentation channel and combustion chamber 4 is set so that the obtained circulation amount becomes an appropriate value.
  • the gasification chamber layer temperature and the gasification chamber outlet gas composition can be controlled by controlling the amount of mobilized gas.
  • the control device 6 may output a fluid medium circulation amount signal indicating the amount of circulation of the fluid medium.
  • the amount of fluidized gas in the sedimentation-chamber combustion chamber 4 is an operating factor of the circulation amount control. Therefore, in order to control the amount of circulation, a flow control valve (control valve) 65 (Fig. 1) for changing the flow rate of the fluidized gas in the sedimentation chamber 1 combustion chamber 4 is provided. It can be carried out.
  • the circulating volume can be controlled by combining the measurement of the fluidized bed height and the circulating volume described above.
  • the circulation amount is controlled as follows. First, the height of the fluidized bed is measured (step 1). In order to measure the fluidized bed height, the fluidized bed pressure at each point is measured by each pressure measuring device 91, 92 installed between two points in the fluidized bed. The measured value of the fluidized bed pressure is input to the control device 6 as an arithmetic unit for calculating the fluidized bed height, where the fluidized bed height is calculated. The calculated fluidized bed height is input to the control unit 6 for controlling the circulation amount (data is exchanged in the control unit 6).
  • Measured values by the pressure measuring devices 91 and 92 installed between two points in the fluidized bed of the settling channel combustion chamber 4 and the flow rate installed for measuring the fluidized gas flow rate of the settling channel combustion chamber 4 The measured value of the measuring device 75 is input to the control device 6 as an arithmetic device for calculating the amount of circulation, and the amount of circulation is calculated by the control device 6.
  • the calculated circulation amount is input to the control device 6 for controlling the circulation amount (data is exchanged in the control device 6).
  • the controller 6 sends a signal to increase the height of the fluidized bed to the fluid medium supply controller 114 (FIG. 22) . If Ws> WP, the controller 6 increases the fluidized bed height. The lowering signal is sent to the fluid extraction device 118 (FIG. 22).
  • the fluid medium supply control device 114 receives a signal to increase the fluidized bed height.
  • the fluid medium supply control device 114 increases the fluid medium supply amount by, for example, opening the control valve. To the control valve. As a result, when the opening of the control valve is opened, the fluidized medium is supplied into the furnace, the height of the fluidized bed is increased, and the circulation amount is increased.
  • the fluid medium supply amount control device 114 also receives a signal from the fluid medium supply amount measurement device 113 (FIG. 22), and performs an operation for determining the fluid medium supply amount so that the fluid medium is not suddenly supplied into the furnace. Perform (Because the fluid medium stored in the fluid medium storage layer of the fluid medium storage device 112 (Fig. 22) is lower than the furnace temperature, make sure that the furnace temperature does not fall too low due to the rapid supply of the fluid medium. .
  • a switch to reduce the fluidized media supply for example, a screw conveyer 118 for fluidized media withdrawal (Fig. 22) Send an ON signal or a signal to increase the speed of the screw conveyor.
  • the screw conveyer is activated or the number of revolutions of the screw conveyer increases, and as a result, the flow medium is discharged from the furnace through the flow medium discharge pipe 117 (Fig. 22).
  • the height of the fluidized bed is reduced and the circulation amount is reduced.
  • the combustion chamber main body 5 and the sedimentation combustion chamber 4 (which have an opening PX at the top) are separated by a partition wall 14 having an opening at the top.
  • the fluid medium c moves between the chambers A and B separated by the partition wall X (see Fig. 2 (a)), and the partition wall 11 has an opening 21 at the bottom.
  • Fluid medium c between gasification chamber 1 and chamber 5 of the combustion chamber (corresponding to chambers A and B separated by a partition wall Y having an opening Qy at the bottom (see Fig.
  • the fluidizing gas g 1 has a uniform fluidization rate over the entire area.
  • the main combustion chamber main part 5 is a weak fluidized area 2a in the center where a weak fluidized state is maintained, and a strong fluidized area in the periphery where a strong fluidized state is maintained. It has a zone 2b, in which the fluid medium c and the channel h form an internal swirling flow. In the strong fluidization zone 2b and the weak fluidization zone 2a, the fluidizing gas g2 has a uniform fluidization rate over the entire area. It is preferable that the fluidization speed in the strong fluidization zone 2 b in the gasification chamber 1 and the chamber 1 of the combustion chamber main body 5 be 5 Umf or more, and that in the weak fluidization zone 2 a be 5 Umf or less.
  • the fluidizing gas g3 and g4 each have a uniform fluidization rate over the entire area. If necessary, the bottom of the furnace should be located from the weak fluidization zone to the strong fluidization zone. It is better to provide a gradient that goes down (not shown).
  • the fluidized state of the main combustion chamber main body 5 near the partition wall 12 between the main combustion chamber main body 5 and the heat recovery chamber 3 is relative to the fluidized state of the heat recovery chamber 3 side.
  • the fluid medium c flows into the heat recovery chamber 3 from the combustion chamber main body 5 side over the upper end of the partition wall 12 near the fluidized bed interface, and flows in The fluid medium c moves downward (toward the bottom of the furnace) due to the relatively weak fluidized state, ie, high density state, in the heat recovery chamber 3, and the lower end of the partition wall 12 near the bottom of the furnace (opening of the bottom). 2 2), and move from the heat recovery chamber 3 side to the char combustion chamber main body 5 side.
  • the fluid medium c moves through the opening 22 from the heat recovery chamber 3 to the combustion chamber main body 5 side through the opening 2 2 in the strong fluidization zone 2 b of the combustion chamber main body 5. Comparing the fluidized state of the fluid medium c near 2 and the fluidized state of the fluid medium c near 2 2 near the opening of the weak fluidized area 3 a of the heat recovery chamber 3, the former is better than the latter. Is also strong.
  • the fluidization state on the side of the combustion chamber main body 5 near the partition wall 14 between the main chamber 5 of the combustion chamber and the combustion chamber 4 on the sedimentation is referred to as the fluidization state on the side of the combustion chamber 4
  • the fluid medium c is settled from the side of the combustion chamber main body 5 over the upper end of the partition wall 14 near the interface of the fluidized bed and the sedimentation chamber 4 Move in to the side.
  • the fluid medium c that has flowed into the settling chamber 4 moves downward (toward the furnace bottom) due to the relatively weak fluidized state in the settling chamber 4, that is, the high-density state.
  • the relatively weak fluidized state in the settling chamber 4 that is, the high-density state.
  • the sedimentation chamber moves from the combustion chamber 4 side to the gasification chamber 1 side.
  • the fluidized state of the fluid medium c near the opening 25 of the strong fluidization zone 1 b of the gasification chamber 1 and the vicinity of the opening 25 of the weak fluidization zone 4 a of the sedimentation combustion chamber 4 Comparing with the fluidized state of the fluid medium c, the former is stronger than the latter. Thereby, the movement of the fluid medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 is assisted by the attracting action.
  • the fluidization state on the side of the combustion chamber body 5 near the partition wall 11 between the gasification chamber 1 and the combustion chamber body 5 is higher than the fluidization state on the gasification chamber 1 side. Relatively strong liquidity is maintained. Therefore, the fluid medium c passes through the opening 21 below the fluidized bed interface of the partition wall 11, preferably below the upper surface of the dense layer (submerged in the dense layer), and through the opening portion 21, the main body of the combustion chamber of the chamber is discharged. Flow into the 5 side.
  • Fluid medium c has opening 2 1 Moving from the gasification chamber 1 side to the combustion chamber main body 5 side through the chamber is the fluidization of the fluid medium c near the opening 21 of the strong fluidization zone 2 b of the combustion chamber main body 5 When the state is compared with the state of fluidization of the fluid medium c near the opening 21 of the weak fluidization zone 1a of the gasification chamber 1, the former is stronger than the latter.
  • the entire heat recovery chamber 3 is uniformly fluidized, and the fluidized state is generally weaker than the fluidized state of the main combustion chamber main body 5 in contact with the heat recovery chamber 3 at most. Will be maintained. Therefore, the superficial velocity of the fluidizing gas g3 in the heat recovery chamber 3 is controlled between 0 and 3 Umf, and the fluidized medium c forms a settling fluidized bed while flowing slowly.
  • 0 Umf means that the fluidizing gas g 3 has stopped. In such a state, the heat recovery in the heat recovery chamber 3 can be minimized. That is, the heat recovery chamber 3 can arbitrarily adjust the amount of recovered heat from the maximum to the minimum by changing the fluidized state of the fluid medium c.
  • the fluidization may be uniformly started and stopped or controlled in intensity throughout the entire chamber.However, it is also possible to stop the fluidization in a part of the area and place the others in the fluidized state. However, the flow strength of the fluidized state in a part of the area may be adjusted.
  • Fluidized gas velocity in the weak fluidization zone 1a located on the gasification chamber 1 side of the opening 21 provided in the lower end of the partition wall 1 1 that separates the gasification chamber 1 from the chamber 1 of the combustion chamber Let us consider a case in which the amount of movement of the fluid medium c from the gasification chamber 1 through the opening 21 to the main chamber 5 of the combustion chamber is increased by changing the pressure. In this case, the movement amount of the fluid medium c from the gasification chamber 1 to the combustion chamber main body 5 through the opening 21 first increases, so that the height of the fluidized bed of the combustion chamber main body 5 increases. Then, the height of the fluidized bed in the gasification chamber 1 decreases temporarily.
  • the movement of the fluidized medium c through the opening 21 acts in a direction that can be suppressed, and the fluid medium c is balanced in a certain state.
  • the rise in the fluidized bed height in the main chamber 5 of the combustion chamber increases the amount of the fluid medium c that jumps from the main body 5 of the combustion chamber into the sedimentation chamber 4 through the partition wall 14. Bring increase.
  • the pressure at the bottom of the sedimentation chamber 1 combustion chamber 4 increases,
  • the pressure at the bottom of the gasification chamber 1 decreases due to the decrease in the height of the fluidized bed in the gasification chamber 1.
  • the pressure on the sedimentation-chamber combustion chamber 4 side increases, Since the pressure on the gasification chamber 1 side decreases, the amount of movement of the fluid medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 via the opening 25 increases using the pressure difference as the driving force. I do.
  • the height of the fluidized bed changes due to the increase in the amount of movement of the fluidized medium c from the gasification chamber 1 given to the chamber 1 to the combustion chamber main body 5.
  • the increase in the amount of fluidized medium c transferred to the combustion chamber body 5 is slightly negated, and the amount of fluidized medium c transferred from the cylinder to the gasification chamber 1 via the sedimentation chamber 1 and the combustion chamber 4 Is brought about.
  • the flow of gas between the gasification chamber 1 and the main part of the combustion chamber 5 is finally balanced so that the amount of particles of the fluid medium c between the gasification chamber 1 and the main part of the combustion chamber 5 is balanced.
  • the bed height changes and stabilizes, but the amount of particle movement in a stable state is kept higher than the initial state.
  • the movement amount of the fluid medium c from the gasification chamber 1 to the char combustion chamber main body 5 is adjusted. May be changed. Also, the amount of movement of the fluid medium c from the chamber 1 to the gasification chamber 1 may be changed, or both may be changed. By changing the height of the fluidized bed, only one of the two operations is performed, and the amount of movement of the fluid medium c from the gasification chamber 1 to the chamber 1 of the combustion chamber and the It is possible to stabilize the state in which the amount of movement of the fluid medium c from one combustion chamber body 5 to the gasification chamber 1 is balanced.
  • the combustion chamber 1 is moved from the gasification chamber 1 through the opening 21 as described above.
  • the amount of movement of the fluid medium c to the firing chamber body 5 may be adjusted, or the fluid medium from the combustion chamber body 5 to the sedimentation chamber 4 beyond the upper end of the partition wall 14
  • the moving amount of c may be adjusted, or the moving amount of the fluid medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 through the opening 25 may be adjusted.
  • the amount of movement of the fluidized medium c is adjusted by changing the amount of fluidized gas g supplied from the furnace bottom.
  • the supply amount of the fluidizing gas g was changed to change the fuel gasification reaction performed in the gasification chamber 1 and the fuel gasification reaction performed in the combustion chamber body 5. It is desirable that the combustion reaction is not affected. That is, it is desirable that the total amount of the fluidizing gas g 1 supplied to the gasification chamber 1 or the total amount of the fluidizing gas g 2 supplied to the chamber 1 for the combustion chamber does not change.
  • the supply of the fluidized gas g 1 in the weak fluidization zone 1 a is reduced, and the strong flow near the opening 21 of the combustion chamber body 5 is reduced.
  • the supply of the fluidizing gas g2 in the gasification zone 2b it is possible to increase the amount of movement of the fluidizing medium c from the gasification chamber 1 to the char combustion chamber main body 5 through the opening 21.
  • the supply amount of the fluidizing gas g1 to the strong fluidization area 1b of the opening 21 of the gasification chamber 1 is increased, and the opening 21 of the main body 5 of the combustion chamber is reduced.
  • each fluidized gas g1, g2 supplied to each of the gasification chamber 1 and the combustion chamber main body 5 is reduced. It is desirable to perform an operation that does not change the total amount including the supply amount.
  • the supply amount of the fluidizing gas g2 in the strong fluidization zone 2b near the partition wall 14 of the chamber 1 of the combustion chamber was increased, and the sedimentation chamber 1
  • the amount of the fluid medium c that jumps across the partition wall 14 to the partition wall 4 increases.
  • the amount of fluidized gas g2 supplied to the weak fluidization zone 2a away from the partition wall 14 of the combustion chamber main body 5 is reduced, the supply volume of the combustion chamber main body 5 is reduced. It is desirable to perform an operation so that the total amount of the supplied fluidized gas g2 does not change.
  • the strong flow area 1 b is located near the opening 25 on the gasification chamber 1 side,
  • the submerged sedimentation chamber 4 side is maintained in a weakly fluidized state because it is a weak fluidized area 4a as a section, so the strong fluidized area on the gasification chamber 1 side is maintained.
  • the sedimentation channel combustion chamber 4 is effectively moved from the sedimentation channel combustion chamber 4 to the gasification chamber 1.
  • the moving amount of the fluid medium c can be adjusted.
  • the strong fluidization region 1b near the gasification chamber 1 side of the opening 25 is desirably maintained in a strong fluidization state, and the fluidizing gas velocity is preferably 4 Umf or more. However, more preferably, it should be kept at 5 Umf or more.
  • the velocity of the fluidizing gas in the sedimentation chamber 1 is set to a range of 4 Umf or less (when the flow rate of the fluidizing gas in the strong fluidization region lb is 4 Umf or more) or a range of 5 Umf or less (the strong fluidization region lb
  • the flow rate of the fluidized medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 is adjusted in accordance with the characteristics shown in Fig. 4 by changing the flow rate of the fluidizing gas to 5 Umf or more. can do.
  • the weak fluidization state of the settling channel combustion chamber 4 is kept constant, and the strong fluidization state of the gasification chamber 1 is changed. It is also possible to change the moving amount of the fluid medium c to 1. However, in that case, the change in the flow rate of the fluidizing gas g1 for changing the moving amount of the fluidizing medium c increases, and the conditions of the gasification reaction in the gasification chamber 1 also change, which is not preferable. In other words, as described later, in practice, changing the bed temperature of the gasification chamber 1 is very important in controlling the properties of the generated gas b. When the state is changed, the reaction conditions of the gasification chamber 1 are also changed with the change of the bed temperature, and it becomes difficult to independently control only the bed temperature of the gasification chamber 1.
  • the gasification chamber has the advantages of good controllability and little effect on the efficiency of the entire process. There is a great advantage in that the bed temperature of the gasification chamber 1 can be controlled without changing the flow rate of the fluidizing gas g1 supplied to 1.
  • control of the gas velocity of the fluidizing gas g will be described with reference to FIG.
  • control of the gas velocity of the fluidizing gas g1 supplied to the gasification chamber 1 will be described.
  • the control valve 61 installed in the supply pipe 51 connected to the air diffuser 31 arranged at the bottom of the furnace corresponding to the weak fluidization zone 1a of the gasification chamber 1 is controlled by the control valve 61.
  • the valve opening is set in response to the control signal i 1 from the device 6.
  • Fluidizing gas g 1 having a flow rate corresponding to the valve opening is supplied to the air diffuser 31 via the control valve 61.
  • the fluidized gas g 1 is supplied to the weak fluidized zone 1 a at the fluidized gas velocity determined by the flow rate of the supplied fluidized gas c
  • the fluidized gas g 1 is supplied to the fluidized area 1 a
  • the control valve 6 on the supply pipe 5 1 The flow rate is measured by a flow rate measuring device 71 installed on the downstream side of 1 and the measured flow rate is sent from the flow rate measuring device 71 to the control device 6 as a flow rate signal i 2.
  • the control device 6 compares the measured flow signal i 2 with the target flow rate in the weak fluidization zone 1 a stored inside, and controls the control valve 61 so that the flow signal i 2 approaches the target value.
  • the value of the control signal i 1 is changed, and the changed control signal i 1 is sent from the control device 6 to the control valve 61.
  • the target value of the flow rate of the fluidized gas g1 supplied to the weak fluidization zone 1a of the gasification chamber 1 and the target value of the flow rate of the fluidized gas g1 supplied to the strong fluidization zone 1b are the target The strength of the fluidized state inside the gasification chamber 1 that moves from the weakly fluidized area 1a of the gasification chamber 1 to the weakly fluidized area 1a of the main body 5 of the combustion chamber via the opening 21.
  • the amount of the fluidized medium c moved to the gasification chamber 1 measured by the temperature measuring device 4 2 Bed temperature and gas composition of the gas b measured by the gas composition measuring device 46 are taken into consideration, and the bed temperature of the gasification chamber 1 is set to a predetermined value (for example, 600 to 800 ° C). Or the gas composition is When it is determined that the content is constant (for example, the H 2 / CO molar ratio is 2.6 to 5.8),
  • the target value of the flow rate of the fluidizing gas g2 supplied to the strong fluidization zone 2b is settling.
  • the target value of the flow rate of the fluidizing gas g4 supplied to the chamber 1 is determined by the strength of the fluidized state inside the main body 5 of the combustion chamber and the target sedimentation chamber by the target.
  • the strength of the fluidized state at 4 the amount of movement of the fluid medium c that moves from the strong fluidized area 2b of the chamber 1 to the sedimentation chamber 4 over the upper end of the partition wall 14.
  • the amount of movement of the fluid medium c moving to the strong fluidization zone 2 b of the combustion chamber body 5, the heat recovery chamber from the strong fluidization zone 2 b of the combustion chamber body 5 to the upper end of the partition wall 1 2 Move to 3 Considering the total amount of movement of the flowing medium c and the layer temperature of the chamber 1 of the combustion chamber measured by the temperature measuring device 4 3, the layer temperature of the chamber 5 of the combustion chamber becomes a predetermined value (for example, 850-950 ° C), and the gasification residue (char, tar, etc.) supplied from the gasification chamber 1 is determined to be completely burned.
  • a predetermined value for example, 850-950 ° C
  • the layer temperature of the main chamber 5 is affected by the amount of heat recovered in the heat recovery chamber 3, and if the amount of heat recovery increases, the layer temperature of the main body 5 of the combustion chamber 5 increases.
  • the bed temperature decreases, and if the heat recovery amount decreases, the bed temperature of the main chamber 5 of the combustion chamber increases.
  • the amount of heat recovery in the heat recovery chamber 3 is determined by the heat transfer coefficient between the fluid medium c and the in-bed heat transfer tube 41A. This heat transfer coefficient is closely related to the degree of fluidization in the heat recovery chamber 3, and the stronger the fluidization, the larger the heat transfer coefficient, and the more the in-bed heat transfer tubes take away heat from the fluid medium. . Therefore, in order to keep the bed temperature of the main chamber 5 of the combustion chamber constant, the flow rate of the fluidizing gas g3 supplied to the fluidized bed of the heat recovery chamber 3 is controlled to control the heat recovery chamber 3 In this case, the level of fluidization may be changed.
  • the control valve 6 6 installed in the supply pipe 56 for introducing the fluidized gas g 3 supplied to the heat recovery chamber 3 receives the control signal i 1 from the control device 6 and sets the valve opening. Fluidizing gas g3 at a flow rate corresponding to the valve opening is supplied to the fluidized bed of the heat recovery chamber 3 via the control valve 66. Supplied. The flow rate of the fluidizing gas g3 is measured by a flow rate measuring device 76 installed downstream of the control valve 66, and the measured flow rate is sent to the control device 6 as a control signal i2.
  • the control device 6 changes the value of the control signal i 1 to the control valve 66 so that the bed temperature of the main portion 5 of the combustion chamber approaches the target value, and adjusts the flow rate of the fluidizing gas g 3. What is necessary is just to configure so that it may increase. If the bed temperature of the main chamber 5 is lower than the target value, the controller 6 controls the control valves 6 6 so that the bed temperature of the main chamber 5 approaches the target value. What is necessary is just to change the value of the signal i 1 and reduce the flow rate of the fluidizing gas g 3.
  • a control valve 67 installed in the introduction section 41B of the in-layer heat transfer tube 41 receives the control signal i1 from the control device 6 and sets the valve opening.
  • Steam s 1 having a flow rate corresponding to the valve opening is supplied to the in-layer heat transfer tube main body 41 A via the control valve 67.
  • the steam s 1 introduced into the bed heat transfer tube body 4 1 A receives heat from the fluid medium c according to the heat transfer coefficient determined by the fluidized state of the heat recovery chamber 3 and is heated to become superheated steam s 2, which is discharged. Emitted from part 41 C.
  • the flow rate of the steam s 1 is measured by a flow rate measuring device 77 installed downstream of the control valve 67 on the inlet 41 B, and the measured flow rate is a flow rate signal i 2, 7 Sent to controller 6 from 7
  • the temperature of the steam s 1 before overheating is measured by a temperature measuring device 44 installed in the introduction section 41B, and the measured temperature is sent to the control device 6 as a temperature signal i 3.
  • the temperature of the steam s 2 after the overheating is measured by a temperature measuring device 45 installed in the discharge part 41 C, and the measured temperature is sent to the control device 6 as a temperature signal i 3.
  • the controller 6 changes the value of the control signal i 1 to the control valve 67 when the temperature signal i 3 of the steam s 2 after overheating is higher than the target temperature of the steam s 2.
  • Stream of steam s 1 It may be configured to increase the amount. Conversely, if the temperature signal i 3 of the steam s 2 after overheating is lower than the target temperature of the steam s 2, the value of the control signal i 1 to the control valve 67 is changed to decrease the flow rate of the steam s 1 It may be configured as follows.
  • Relatively large incombustibles contained in waste or fuel a are discharged from the incombustible outlet (not shown) provided at the bottom of the gasification chamber 1.
  • the bottom of the furnace in each chamber may be horizontal.
  • the furnace bottom may be inclined according to the flow of the fluidized medium c near the furnace bottom.
  • the noncombustible material discharge port (not shown) may be provided not only in the furnace bottom of the gasification chamber 1 but also in the furnace bottom of the combustion chamber main body 5, the sedimentation combustion chamber 4, or the heat recovery chamber 3. .
  • the most preferable fluidized gas g1 in the gasification chamber 1 is to use the product gas b at a high pressure for recycle.
  • the generated gas b from the gasification chamber 1 is only the generated gas b purely generated from the fuel, and a very high quality generated gas b can be obtained.
  • a gas containing as little oxygen as possible oxygen-free gas
  • oxygen-free gas such as steam, carbon dioxide (C02) or flue gas from the combustion chamber 2
  • a gas containing oxygen for example, air may be supplied to burn a part of the product gas b.
  • the fluidizing gas g2, g4 supplied to the char combustion chamber 2 supplies a gas containing oxygen necessary for char combustion, for example, a mixed gas of air, oxygen and steam.
  • a gas containing oxygen necessary for char combustion for example, a mixed gas of air, oxygen and steam.
  • the calorific value of fuel a is low, it is preferable to increase the amount of oxygen, and oxygen is supplied as it is.
  • Air, steam, combustion exhaust gas, and the like are used as the fluidizing gas g3 to be supplied to the heat recovery chamber 3.
  • the portion above the upper surface of the fluidized bed (the upper surface of the splash zone) of the gasification chamber 1 and the combustion chamber 2, that is, the freeboard portion, is completely separated by partition walls 11, 15. Furthermore, since the upper part of the fluidized bed above the dense layer, that is, the splash zone and the freeboard part, are completely separated by partition walls, the freebore of each of the combustion chamber 2 and the gasification chamber 1 is used. Even if the pressure balance at the tip part is slightly disturbed, the difference in the position of the interface between both fluidized beds or the difference in the position of the upper surface of the dense bed, that is, the difference in the height of the fluidized bed is large Disturbance can be absorbed with only a small change.
  • the gasification chamber 1 and the char combustion chamber 2 are separated by the partition walls 11 and 15, even if the pressure in each chamber fluctuates, this pressure difference is absorbed by the fluidized bed height difference. It can be absorbed until either layer falls to the top of the openings 21, 25. Therefore, the upper limit of the pressure difference between the freeboard of the char combustion chamber 2 and the freeboard of the gasification chamber 1 that can be absorbed by the height difference of the fluidized bed is the lower opening 21, 25 of the partition walls 11, 15.
  • the head difference between the head of the gasification chamber fluidized bed and the head of the fluidized bed of the combustion chamber from the upper end of the chamber is approximately equal.
  • the generated gas b discharged from the gasification chamber 1 and the combustion gas e discharged from the char combustion chamber 2 pass through a control valve 78 or 799 for pressure control installed at the subsequent stage, respectively. It is discharged and used.
  • control valves 78 and 79 are installed immediately after the gas is discharged from the gasification chamber 1 or the char combustion chamber 2. Even if the control valve 78 or control valve 79 is installed after passing through other equipment, the corresponding gasification chamber 1 or control valve can be controlled by adjusting the opening of the control valve 78 or control valve ⁇ 9. It suffices if the resistance of gas discharge from the first combustion chamber 2 can be changed and the pressure of the gasification chamber 1 or the first combustion chamber 2 can be changed.
  • the freeboard section of the gasification chamber 1 and the freeboard section of the char combustion chamber 2 are equipped with pressure measuring devices 81 and 82 as pressure measuring devices, respectively. , 2 are detected and sent to the controller 6 as a pressure signal i 5.
  • the controller 6 compares the pressure signal i5 of the freeboard section of the gasification chamber 1 with the pressure signal i5 of the freeboard section of the combustion chamber 2 and finds the difference between the chambers of the fluid medium c. Within a certain range that does not affect the amount of movement, preferably the pressure difference between the two chambers 1 and 2 is less than ⁇ 10% of the pressure loss of the fluidized bed in the gasification chamber 1 or the char-combustion chamber 2, and The control signal i 1 is adjusted so that the pressure is preferably ⁇ 5% or less, and more preferably the pressures in both chambers 1 and 2 are equal.
  • the integrated gasifier 101 enables circulation of a large amount of the fluid medium c between the combustion chamber 2 and the gasification chamber 1, so that only the sensible heat of the fluid medium c can be used for gasification. A sufficient amount of heat can be supplied.
  • the seal between the combustion gas e and the generated gas b is completely completed, so that the pressure balance between the gasification chamber 1 and the combustion chamber 2 can be controlled. Successful, the combustion gas e and the product gas b do not mix, and the properties of the product gas b do not deteriorate.
  • the fluid medium c as a heat medium and the channel h flow from the gasification chamber 1 to the channel combustion chamber 2 side. Since it is configured to return from the chamber 2 side to the gasification chamber 1 side, a natural balance is achieved, and a conveyer etc. is used to return the fluid medium c from the first combustion chamber 2 side to the gasification chamber 1 side. There is no need to transport them mechanically, and there are no problems such as difficulty in handling high-temperature particles and large sensible heat loss.
  • the gasification chamber 1 and the char combustion chamber are adjusted.
  • the purpose of this method is to control the fluidized bed temperature arbitrarily in practical use, or to change the composition of the generated gas b generated from the gasification chamber 1. For this reason, integrated gasifier
  • the controller 6 is instructed to change the fluidized gas amount. That is, a control signal i for controlling the flow rate from the control device 6 to the control valves 61 to 67.
  • Adjusting the fluidizing gas flow rate means adjusting the fluidizing gas velocity.
  • the control device 6 When the velocity of the fluidizing gas is adjusted, how the internal circulation rate is adjusted, whereby the temperature of the fluidized bed of the gasification chamber 1 and the combustion chamber 2 of the gasification chamber, and also the product gas b generated from the gasification chamber 1 Composition It is preferable to configure the control device 6 with a control logic that measures whether or not it changes as described above and adjusts the fluidized gas amount based on the result.
  • the fluidizing gas velocity in the settling chamber 1 combustion chamber 4 is in a weak fluidization state in the range of about lUmf to 2Umf, and the temperature of the fluidized bed temperature in the gasification chamber 1 is measured by the temperature measuring device 42.
  • the temperature is lower than the target fluidized bed temperature of gasification chamber 1.
  • the viscosity of the fluidized bed of the sedimentation-chamber combustion chamber 4 is reduced by increasing the amount of fluidizing gas in the sedimentation-chamber combustion chamber 4 within the range of lUmf to 2Umf ( The amount of movement of the fluid medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 can be reduced (see Fig. 3) (see Fig. 4).
  • the gas height of the gasification chamber 1 temporarily increases, and the gas The moving amount of the fluid medium c from the gasification chamber 1 to the first combustion chamber 2 increases, and the bed height of the first combustion chamber 2 slightly increases. Then, the amount of the flowing medium c from the chamber 1 to the combustion chamber 4 also increases, and as a result, the combustion chamber 2 from the gasification chamber 1 and the combustion chamber 2 from the combustion chamber 2 settle.
  • Combustion chamber 4, sedimentation channel 1 The amount of movement of fluid medium c from combustion chamber 4 to gasification chamber 1 is stabilized with the amount of movement increased from the initial state (at this time, gasification chamber 1 and The temperature difference between the gasification chamber 1 and the combustion chamber 2 becomes smaller due to the increase in the amount of movement of the fluid medium c between the combustion chambers 2. That is, the fluidized bed temperature of the gasification chamber 1 rises. Therefore, the fluidized bed temperature of the first combustion chamber 2 will decrease.
  • the following is the case where the first combustion chamber 2 from the gasification chamber 1, the second combustion chamber 4 from the first combustion chamber 2, and the first combustion chamber of the sedimentation.
  • the amount of fluidized gas in the sedimentation chamber 1 combustion chamber 4 May be further increased. If the stable temperature is higher than the target fluidized bed temperature, the amount of fluidized gas in the settling chamber 1 Or decrease it.
  • the above operation is performed by inputting the measured value and the target value of the fluidized bed temperature of the gasification chamber 1 to the control device 6 including the arithmetic unit by the configuration as shown in Fig. 1.
  • the control signal i1 to the control valve 65 changes to change the supply amount of the fluidizing gas g4 to the settling chamber 1 combustion chamber 4 based on the magnitude of the difference, and the opening of the control valve 65 is changed. It can be easily realized by changing the configuration.
  • the weak fluidization zones la, 2a, 3a, 4a and the strong fluidization zones lb, 2b are air diffusers 3 1 to 3 6 each connected to one control valve 61 to 66. It was explained that it had.
  • the weak fluidized zone 1a and the strong fluidized zone 2b sandwiching the opening 21 are respectively 2 1 is separated into neighboring areas 1 aX and 2 bX immediately adjacent to 1 and remote areas 1 ay and 2 by other than the neighboring areas 1 aX and 2 bx. Even if it is configured to be separated into the neighboring parts 31 x and 34 x corresponding to the neighboring areas 1 ax and 2 bx and the remote parts 31 y and 34 y corresponding to the remote areas lay and 2 by respectively. Good.
  • 34X may be connected to supply pipes 51X, 54x provided with flow rate measuring devices 71x, 74x and control valves 61x, 64X.
  • the speed of the fluidizing gas g1, g2 supplied to control the amount of movement of the fluid medium c through the opening 21 is reduced to the weak fluidized area 1a and the strong fluidized area 2b, respectively.
  • the gas velocities of the fluidizing gases g1 and g2 supplied from the neighborhoods 1aX and 2bX may be controlled respectively. This control is performed by controlling the control valves 6 lx and 64 x by the control device 6 (see FIG. 1) as described above.
  • the openings 25, 22 of the weak fluidization zone 4a and the strong fluidization zone 1b sandwiching the opening 25, and the weak fluidization zone 3a and the strong fluidization zone 2b sandwiching the opening 22 Is separated into a nearby area (not shown) directly adjacent to and a remote area (not shown) other than the nearby area, and flows supplied to control the amount of movement of the medium c through the openings 25 and 22.
  • the gas flow velocity of the fluidizing gas supplied from the vicinity may be controlled individually.
  • the residence time of the fluid medium c in the chambers 1 and 2 changes in both the gasification chamber 1 and the combustion chamber 2. For example, when the internal circulation amount is reduced to 1/2, the residence time of the fluid medium c in each of the chambers 1 and 2 is doubled. Conversely, when the internal circulation amount is doubled, the residence time of the fluid medium c in each of the chambers 1 and 2 becomes 1/2.
  • the amount of char h generated in the gasification chamber 1 changes. For example, when the amount of internal circulation is reduced, the amount of generated gas per hour in the gasification chamber 1 increases, reflecting the decrease in the bed temperature in the gasification chamber 1. In general, the amount of char h increases as the bed temperature decreases. When the amount of internal circulation is increased, the amount of generated gas per hour decreases, reflecting the rise in the bed temperature of the gasification chamber 1. In general, the amount of char h decreases as the bed temperature of the gasification chamber 1 increases. The gas composition of the product gas b generated in the gasification chamber 1 changes, reflecting the change in the amount of generated gas and the change in the bed temperature in the gasification chamber 1.
  • the H 2 / CO ratio and gas calorific value of the generated gas b change due to the change in the generated gas composition.
  • the H 2 ZCO ratio is an important factor related to the production efficiency of hydrogen, liquid fuel, etc. from the generated gas b. It is.
  • the gas calorific value is an important factor when using the generated gas b for combustion.
  • the bed temperature of the gasification chamber 1 is arbitrarily controlled in practical use, and thereby the composition of the generated gas b (H 2 , CO, C 0 2 , CH 4 , in addition to the mole percent of such H 2 0, H 2 / CO ratio, such as a gas heating value, and concept including factor determined by the product gas composition.) can be changed.
  • the composition of the generated gas b H 2 , CO, C 0 2 , CH 4 , in addition to the mole percent of such H 2 0, H 2 / CO ratio, such as a gas heating value, and concept including factor determined by the product gas composition.
  • the operating temperature of the char combustion chamber should be maintained within the optimal temperature range for complete combustion of the char and tar transferred from the gasification chamber 1, preferably 850-950 ° C. Therefore, if the bed temperature of the gasification chamber 1 is changed by changing the internal circulation amount, another method is used so that the temperature of the combustion chamber 2 does not deviate from the above optimum range. Need to adjust.
  • the layer temperature of the main chamber 5 of the combustion chamber is kept constant. Control can be performed. In addition, by directly supplying a part of the raw materials used to the char combustion chamber, or by changing the supply amount, control is performed so as to directly change the combustion amount of the combustible component in the char combustion chamber. May be. When the temperature of the combustion chamber 2 becomes extremely high, the temperature of the fluidized bed is directly cooled by supplying water to the fluidized bed or changing the supply amount. You can perform such control.
  • Figure 11 shows the relationship between the internal circulation volume (circulation ratio) in Case 1 and the gasification chamber layer temperature (unit ° C).
  • Figure 12 shows the internal circulation volume (circulation ratio) in Case 2 and the gasification chamber layer. Shows the relationship between temperature (in units).
  • Figures 11 and 12 show the calculation results. Although the absolute value of the gasification chamber temperature that decreases depends on the scale of the gasifier 1, the raw material a, and the process conditions (fluidized steam, air, etc.), it is shown in Figs. 11 and 12. As the internal circulation amount (circulation ratio) decreases, the bed temperature of the gasification chamber 1 decreases and the internal circulation amount (circulation ratio) increases. However, the temperature of the gasification chamber 1 rises. For example, in Fig.
  • the internal circulation amount for maintaining 700 ° C is Approximately 44% (20/45), the amount of circulation to maintain at 600 ° C is approximately 22% (10/45).
  • the internal circulation amount of the fluid medium c should be within the range of the maximum value to about 20% of the maximum value. It is preferable to configure so that it can be changed arbitrarily in practice. Typically, the internal circulation amount is controlled so that the bed temperature of the gasification chamber 1 becomes constant.
  • Figure 13 shows the relationship between the amount of internal circulation (circulation ratio) and the composition of the product gas. This figure shows the calculation results when the gas residence time in the gasification chamber 1 is assumed to be sufficiently long, or when the reaction proceeds to a state close to the equilibrium composition by a catalyst or the like.
  • the internal circulation amount (circulation ratio) decreases, so the composition of the generated gas b decreases in H 2 and CO and increases in CO H 20 .
  • the amount of internal circulation (circulation ratio) is small and the bed temperature of the gasification chamber 1 is low, the amount of CH 4 increases remarkably, and H 2 and CO decrease correspondingly.
  • Figure 14 shows the relationship between the internal circulation amount (circulation ratio) and the HzZCO ratio of the produced gas. This figure shows the calculation results when the gas residence time in the gasification chamber 1 is assumed to be sufficiently long, or when the reaction has progressed to a state close to the equilibrium composition by a catalyst or the like.
  • the HsZCO ratio increases as the internal circulation amount (circulation ratio) decreases in response to changes in the product gas composition. Therefore, it is possible to control H 2 and CO to a desired value between 2.6 and 5.7 by controlling the internal circulation amount (circulation ratio).
  • Figure 15 shows the relationship between the amount of internal circulation (circulation ratio) and the calorific value of the generated gas. This figure shows the calculation results when it is assumed that the gas residence time in gasification chamber 1 (Fig. 1) is sufficiently long, or when the reaction has progressed to a state close to the equilibrium composition by a catalyst or the like.
  • FIG. 1 The first control of the gas property of the gasifier 101 (FIG. 1) will be described.
  • Figure 16 shows the gasification chamber bed temperature (in units) and gasification chamber (GC) outlet gas calorific value ratio (counting tar to calorific value) (unit%) when gasification raw material a is biomass. If t gasification chamber layer temperature showing a relationship is low, since Atamanetsu loss is small, the gasification chamber outlet gas heating value is high, if the gasification chamber layer temperature is hot, since the sensible heat loss is large However, the calorific value at the outlet of the gasification chamber is reduced. Since there is a dependence between the gasification chamber layer temperature and the circulation amount, the calorific value at the gasification chamber outlet gas can be increased by reducing the circulation amount.
  • the gasification chamber outlet calorific value ratio is the ratio of the calorific value of the gas (including tar) generated from the unit weight of the gasification raw material at the gasification chamber outlet divided by the heat generation amount due to the combustion of the unit weight of the gasification raw material.
  • Figure 17 shows the gasification chamber bed temperature (unit) and cold gas efficiency (unit%) when gasification raw material a is biomass (based on the calorific value of combustible gas excluding tar at the gasification chamber outlet). )).
  • gasification chamber layer temperature is low, the amount of tar generated increases, and the cold gas efficiency decreases.
  • gasification chamber layer temperature is high, tar generation decreases, and the cold gas efficiency increases.
  • Cold gas efficiency is the percentage of the calorific value of the gas (excluding tar) generated from a unit weight of gasification raw material at the gasification chamber outlet divided by the calorific value of the unit weight gasification raw material combustion.
  • Figure 18 shows the internal circulation amount (circulation ratio) and the calorific value of the generated gas at the gasification chamber outlet (excluding tar) when the gasification raw material a is biomass (excluding tar) (HHV D.B) (unit: KJ / m 3 -NPT). If the internal circulation volume (circulation ratio) is small, the gasification chamber bed temperature will be low and tar will increase, so the heat generation will decrease. If the internal circulation volume (circulation ratio) is large, the gasification chamber bed temperature will be high. The amount of generated heat increases because tar generation is reduced.
  • Figure 19 shows the gasification chamber bed temperature when the gasification raw material a is biomass (unit: C). And the ratio (unit%) of carbon (C) in raw material a transferred to tar. The figure shows that the lower the gasification chamber layer temperature, the higher the amount of tar generated, and the higher the gasification chamber layer temperature, the lower the amount of tar generation.
  • Figure 20 shows the amount of circulation (unit: kg h) when gasification raw material a is biomass, and the transfer ratio of carbon in raw material a supplied to gasification chamber 1 to char combustion chamber 2 (unit). %). The figure shows that as the circulation amount increases, the ratio of carbon that has not been released as volatile matter to the char-chamber 2 increases, and as the circulation amount decreases, the unreleased carbon is released as volatile matter. This indicates that the rate at which carbon transfers to the first combustion chamber 2 decreases.
  • Figure 21 shows the gasification chamber bed temperature (unit: C) when gasification raw material a is biomass, and the carbon gas in the gasification raw material a supplied to gasification chamber 1 to combustion chamber 2. This shows the relationship with the rate of transfer (unit%).
  • the bed temperature is high, the amount of volatile matter released is large (the amount of remaining volatile matter is small) and the volatile matter release rate is also high, so that the ratio of carbon in the raw material a to the combustion chamber 2 is small.
  • the gasification chamber layer temperature is high, the ratio of carbon in the raw material a to the char combustion chamber 2 increases, and when the gasification chamber layer temperature is low, the carbon in the raw material a is char combustion.
  • the rate of transition to room 2 is small. This means that the gasification chamber layer temperature is high, which means that the amount of circulation is large, so that the gasification raw material a (here, biomass) that has not released volatile components accompanies the flowing medium. It is shown that the transition to one combustion chamber 2 is dominant.
  • the gasification furnace according to the present invention includes the gasification chamber, the combustion chamber, and the control device, the gasification chamber and the combustion chamber are controlled by adjusting the strength of the flow in the weak fluidized state.
  • the amount of the fluid medium flowing between the firing chambers By controlling the amount of the fluid medium flowing between the firing chambers, the composition of the gas generated from the gasification chamber can be controlled, and the control characteristics can be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

A gasification furnace (101) having increased control characteristics, comprising a gasification chamber (1) for flowing hot flow medium (c), forming a fluidized bed, and gasifying treated matter (a), a char combustion chamber (2) for flowing the flow medium (c), forming the fluidized bed, and burning char (h) generated by the gasification of the treated matter in the chamber (1) to heat the flow medium and a control device (6) for controlling the temperature of the gasification chamber or the char combustion chamber by controlling the intensity of flow in a weak flow state to control the amount of the flow medium circulating between the chambers, wherein the chambers (1) and (2) are separated from each other through partition walls (11) and (15) to prevent gas from flowing therebetween over the boundary surface of the fluidized bed, communication ports (21) and (25) allowing the chamber (1) to communicate with the chamber (2) and having upper end heights of below the boundary surface are formed in the lower parts of the partition walls, the flow state of the flow medium (c) near the communication port of one chamber of the chambers (1) and (2) on both sides of the communication ports is set stronger than the flow state of the flow medium near the communication port of the other chamber to move the flow medium (c) from a weak flow state to a strong flow state through the communication ports.

Description

明 細 書 ガス化炉 技術分野  Description Gasification furnace Technical field
本発明は、 各種廃棄物や固体燃料等を熱分解してガス化するガス化炉に関する t 背景技術 The present invention, t background art various waste and solid fuel such as a gas furnace for gasifying by pyrolysis
各種の廃棄物や固体燃料を熱分解してガス化する流動床式のガス化炉において. 反応に関わる諸因子のうち、 例えばガス化炉の流動層の層温を変えるためには、 ガス化炉内に供給する酸素の流量、 または酸素を含むガス (例えば空気など) の 流量を変えることが行われていた。  In a fluidized-bed gasifier that pyrolyzes various wastes and solid fuels to gasify it. Among the factors related to the reaction, for example, to change the bed temperature of the fluidized bed of the gasifier, gasification The flow rate of oxygen supplied into the furnace or the flow rate of gas containing oxygen (for example, air) was changed.
しかし、 酸素の供給を増やした場合は、 生成ガスに含まれる燃焼ガスの量が増 加し、 生成ガスの発熱量が低下する。 一方、 酸素の供給を減らした場合には、 チ ヤー、 タール等のガス化残渣の発生量が増大し、 ガス化効率が低下する。  However, when the supply of oxygen is increased, the amount of combustion gas contained in the product gas increases, and the calorific value of the product gas decreases. On the other hand, if the supply of oxygen is reduced, the amount of gasification residues such as char and tar increases, and the gasification efficiency decreases.
これに対処するため、 各種廃棄物や固体燃料のガス化を行うガス化ゾーンと、 ガス化により発生したチヤ一、 タール等のガス化残渣を燃焼する燃焼ゾーンとを 備え、 燃焼ゾーンで発生した燃焼熱をガス化ゾーンでのガス化反応熱に利用し、 さ らに、 ガス化ゾーン及び燃焼ゾーンのそれぞれを流動層装置と し、 上記のガス 化残渣及び熱の移動を流動媒体を介して行う、 内部循環流動床式のガス化炉を採 用する方法がある。  To cope with this, a gasification zone is provided for gasification of various wastes and solid fuels, and a combustion zone is provided for burning gasification residues such as char and tar generated by gasification. The heat of combustion is used for heat of gasification reaction in the gasification zone, and each of the gasification zone and the combustion zone is used as a fluidized bed apparatus, and the above-mentioned transfer of the gasification residue and heat is transferred via a fluidized medium. There is a method that employs an internal circulating fluidized bed gasifier.
内部循環流動床式のガス化炉では、 ガス化ゾーンから燃焼ゾーンへのガス化残 渣の移動、 燃焼ゾーンからガス化ゾーンへの熱の移動を円滑に行うため、 流動媒 体粒子の移動量を精緻に制御することが重要である。 しかし、 この従来の内部循 環流動床式のガス化炉では、 流動媒体粒子の移動量を制御するために、 流動層装 置に供給する流動化ガスの量を大幅に変化させる必要があり、 装置の操作条件が 大きく変化してしま う という問題があった。 また、 制御の容易さ、 制御の自由度, 運転の安定特性、 制御の精度、 制御の幅、 制御の速度の向上等が望まれる状況に あった。 本発明は、 上記の従来技術の問題点に鑑みてなされたもので、 制御特性を大幅 に向上させた内部循環流動床式のガス化炉を提供することを目的とする。 発明の開示 In an internal circulating fluidized bed gasifier, the amount of fluidized medium particles to move smoothly from the gasification zone to the combustion zone and to the heat from the combustion zone to the gasification zone It is important to control precisely. However, in this conventional internal-circulating fluidized-bed gasifier, the amount of fluidizing gas supplied to the fluidized bed device needs to be greatly changed in order to control the movement amount of the fluidized medium particles. There was a problem that the operating conditions of the device changed significantly. In addition, there were situations in which it was desired to improve control easiness, control freedom, operation stability characteristics, control accuracy, control width, and control speed. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the related art, and has as its object to provide an internal circulating fluidized bed gasifier having significantly improved control characteristics. Disclosure of the invention
本発明は、 例えば図 1に示すよ うに、 高温の流動媒体 c を内部で流動させ、 第 1 の界面を有するガス化室流動床を形成し、 前記ガス化室流動床内で被処理物 a をガス化するガス化室 1 と ; 高温の流動媒体 c を内部で流動させ、 第 2の界面を 有するチヤ一燃焼室流動床を形成し、 ガス化室 1 でのガス化に伴い発生するチヤ 一 hを前記チヤ一燃焼室流動床内で燃焼させ流動媒体 c を加熱するチヤ一燃焼室 2 とを備え ; ガス化室 1 とチヤ一燃焼室 2 とは、 前記それぞれの流動床の界面よ り鉛直方向上方においてはガスの流通がないよ う に仕切壁 1 1、 1 5によ り仕切 られ、 仕切壁 1 1、 1 5の下部にはガス化室 1 とチヤ一燃焼室 2 とを連通する連 通口 2 1、 2 5であって、 該連通口 2 1、 2 5の上端の高さは前記第 1 の界面お よび第 2の界面以下である連通口 2 1、 2 5が形成され、 該連通口 2 1、 2 5を 挟むガス化室 1 とチヤ一燃焼室 2のうち一方の室の連通口 2 1、 2 5近傍におけ る流動媒体 c の流動化状態が、 他方の室の連通口 2 1、 2 5近傍における流動媒 体 cの流動化状態より も強く 、 該連通口 2 1、 2 5を通じて、 前記弱い流動化状 態の方から強い流動化状態の方に流動媒体 cが移動するよ うに構成され ; さ らに、 前記弱い流動化状態の流動の強弱を調節することによ り、 ガス化室 1 とチヤ一燃 焼室 2 との間で流通する流動媒体 cの量を制御して、 ガス化室 1又はチヤ一燃焼 室 2の温度を制御する制御装置 6 を備える ; ガス化炉 1 0 1 を提供するこ とを目 的とする。  In the present invention, for example, as shown in FIG. 1, a high temperature fluid medium c is caused to flow inside to form a gasification chamber fluidized bed having a first interface. And a gasification chamber 1 for gasifying the gas; a high-temperature fluidized medium c is caused to flow therein to form a fluidized bed of a combustion chamber having a second interface, and a gas generated by gasification in the gasification chamber 1 A combustion chamber for burning 1 h in the fluidized bed of the combustion chamber and heating a fluid medium c; and a gasification chamber 1 and a combustion chamber 2 of the combustion chamber are located at an interface between the respective fluidized beds. The upper part in the vertical direction is partitioned by partition walls 11 and 15 so that gas does not flow, and the gasification chamber 1 and the char combustion chamber 2 are located below the partition walls 11 and 15. The communication ports 21 and 25 communicate with each other, and the height of the upper end of each of the communication ports 21 and 25 is equal to or lower than the first interface and the second interface. A certain communication port 21, 25 is formed, and the flow in the vicinity of the communication port 21, 25 of one of the gasification chamber 1 and the char combustion chamber 2 sandwiching the communication port 21, 25. The fluidized state of the medium c is stronger than the fluidized state of the fluidized medium c near the communication ports 21 and 25 of the other chamber, and the weak fluidized state is provided through the communication ports 21 and 25. The fluidized medium c is configured to move from the fluidized state to the strong fluidized state; and by adjusting the flow strength of the weak fluidized state, the gasification chamber 1 and the char- A control device 6 is provided for controlling the temperature of the gasification chamber 1 or the combustion chamber 2 by controlling the amount of the fluid medium c flowing between the gasification chamber 1 and the gasification furnace 101. With the goal.
このよ うに構成すると、 ガス化室 1 と、 チヤ一燃焼室 2 と、 制御装置 6 とを備 えるので、 弱い流動化状態の流動の強弱を調節することによ り、 ガス化室 1 とチ ヤー燃焼室 2の間で流通する流動媒体 cの量を制御して、 ガス化室 1又はチヤ一 燃焼室 2の温度を制御することができる。 制御装置 6は、 強い流動化状態の強さ をも併せて調節するよ うにしてもよい。 ガス化室 1の温度は典型的にはガス化流 動床の温度であり、 チヤ一燃焼室 2の温度は典型的にはチヤ一燃焼室流動床の温 度である。 また、 弱い流動化状態の流動の強弱を調節するので、 流動媒体 cの量 を制御するために生じる流動化ガス g 1、 g 2、 g 4の流量の変化が小さく 、 他 の操業条件に大きな影響を与えることなく ガス化室 1 またはチヤ一燃焼室 2の温 度を制御することができる。 With this configuration, the gasification chamber 1, the combustion chamber 2, and the control device 6 are provided. By adjusting the strength of the flow in the weak fluidized state, the gasification chamber 1 and the gas chamber 1 are controlled. By controlling the amount of the fluid medium c flowing between the first combustion chamber 2 and the first combustion chamber 2, the temperature of the gasification chamber 1 or the first combustion chamber 2 can be controlled. The control device 6 may also adjust the strength of the strong fluidized state. The temperature of the gasification chamber 1 is typically the temperature of the gasification fluidized bed, and the temperature of the char combustion chamber 2 is typically the temperature of the fluidized bed. Also, since the strength of the flow in the weak fluidized state is adjusted, the amount of the fluid medium c The flow rate of fluidizing gas g1, g2, and g4 is small, and the temperature of gasification chamber 1 or combustion chamber 2 is controlled without significantly affecting other operating conditions. can do.
流動床は典型的には炉底から吹き出す流動化ガス gによ り流動化する。 流動化 ガス gの吹き出し速度、 吹き出し量によ り流動化状態を調節できる。 炉底には散 気装置 3 :!〜 3 5 を配置し、 複数の区画 l a、 l b、 2 a s 2 b、 4 a に分割す るとよい。 流動化ガス g 1、 g 2、 g 4の量を調節したい各区画毎に流動化ガス g 1、 g 2、 g 4の流量を調節する調節弁 6 1〜6 5を設けてもよい。 連通口 2 1、 2 5を挟むガス化室 1 とチヤ一燃焼室 2のそれぞれの区画 1 a、 l b、 2 a , 2 b、 4 a の調節弁 6 1〜 6 5の開度を制御装置 6によ り調節するこ とによ り 、 流動化ガス g l、 g 2、 g 4の吹き出し速度、 吹き出し量を調節し流動化状態を 調節できる。 The fluidized bed is typically fluidized by a fluidizing gas g blown from the furnace bottom. The fluidization state can be adjusted by the blowing speed and the amount of the fluidizing gas g. Furnace bottom diffuser air device in 3: Place 1-3 5, a plurality of compartments la, lb, 2 a s 2 b, 4 may it divided into a. Control valves 61 to 65 for controlling the flow rates of the fluidizing gas g1, g2, g4 may be provided for each section where the amount of the fluidizing gas g1, g2, g4 is to be controlled. Control unit that controls the opening of control valves 6 1 to 65 of compartments 1 a, lb, 2 a, 2 b, and 4 a of gasification chamber 1 and channel combustion chamber 2 sandwiching communication ports 2 1 and 25 By adjusting with 6, the fluidization state can be adjusted by adjusting the blowing speed and the blowing amount of the fluidizing gas gl, g2, and g4.
ガス化炉 1 0 1は、 例えば、 図 1に示すよ うに、 被処理物 aを高温の流動媒体 cで熱分解してガス b とチヤ一 hを生成するガス化室 1 と ; ガス化室 1で生成し たチヤ一 hを燃焼して流動媒体 c を加熱するチヤ一燃焼室 2 とを備え ; 流動媒体 cはガス化室 1 とチヤ一燃焼室 2 との間で循環するよ うに構成され ; さ らに、 流 動媒体 cの循環量を調節することによ り、 ガス化室 1 で発生するガス bの組成を 制御する制御装置 6 を備えるものであってもよい。  For example, as shown in FIG. 1, the gasification furnace 101 includes a gasification chamber 1 for thermally decomposing an object a with a high-temperature fluidized medium c to generate a gas b and a charge h; A combustion chamber for heating the fluid medium c by burning the fuel h generated in 1; the fluid medium c is configured to circulate between the gasification chamber 1 and the combustion chamber 2 Further, a control device 6 for controlling the composition of the gas b generated in the gasification chamber 1 by adjusting the circulation amount of the fluid medium c may be provided.
このよ うに構成すると、 ガス化室 1 と、 チヤ一燃焼室 2 と、 制御装置 6 とを備 えるので、 流動媒体 cの循環量を調節することによ り、 ガス化室 1で発生するガ ス bの組成を制御することができる。 当該制御装置 6は、 1種類のガス種の濃度 を制御するものであってもよいし、 複数のガスの濃度比を所定の設定値に制御す るものであってもよい。  With this configuration, the gasification chamber 1, the combustion chamber 2, and the control device 6 are provided. By adjusting the circulation amount of the fluid medium c, the gas generated in the gasification chamber 1 is adjusted. The composition of b can be controlled. The control device 6 may control the concentration of one type of gas, or may control the concentration ratio of a plurality of gases to a predetermined set value.
ガス化炉 1 0 1は、 例えば図 1に示すよ うに、 高温の流動媒体 c を內部で流動 させ、 第 1 の界面を有するガス化室流動床を形成し、 前記ガス化室流動床内で被 処理物 a をガス化するガス化室 1 と ; 高温の流動媒体 c を内部で流動させ、 第 2 の界面を有するチヤ一燃焼室流動床を形成し、 ガス化室 1 でのガス化に伴い発生 するチヤ一 hを前記チヤ一燃焼室流動床内で燃焼させ流動媒体 c を加熱するチヤ 一燃焼室 2 とを備え ; ガス化室 1 とチヤ一燃焼室 2 とは、 前記それぞれの流動床 の界面よ り鉛直方向上方においてはガスの流通がないよ うに仕切壁 1 1、 1 5に より仕切られ、 仕切壁 1 1、 1 5の下部にはガス化室 1 とチヤ一燃焼室 2 とを連 通する連通口 2 1、 2 5であって、 該連通口 2 1、 2 5の上端の高さは前記第 1 の界面および第 2の界面以下である連通口 2 1、 2 5が形成され、 該連通口 2 1 . 2 5を挟むガス化室 1 とチヤ一燃焼室 2のうち一方の室の連通口 2 1、 2 5近傍 における流動媒体 cの流動化状態が、 他方の室の連通口 2 1、 2 5近傍における 流動媒体 cの流動化状態よ り も強く 、 該連通口 2 1、 2 5を通じて、 前記弱い流 動化状態の方から強い流動化状態の方に流動媒体 c が移動するよ うに構成され ; さらに、 前記弱い流動化状態の流動の強弱を調節することにより、 ガス化室 1 と チヤ一燃焼室 2の間で流通する流動媒体 cの量を制御して、 前記ガス化によ り発 生するガス bの組成を制御する制御装置 6を備えるものであってもよい。 In the gasification furnace 101, for example, as shown in FIG. 1, a high-temperature fluidized medium c is caused to flow locally, thereby forming a gasification chamber fluidized bed having a first interface. A gasification chamber 1 for gasifying the object to be treated a; a high-temperature fluidized medium c is caused to flow therein to form a fluidized bed in a combustion chamber having a second interface, and the gasification in the gasification chamber 1 is performed. And a combustion chamber 2 for heating the fluid medium c by burning the generated h in the fluidized bed of the combustion chamber; and the gasification chamber 1 and the combustion chamber 2 floor The partition walls 11 and 15 prevent the flow of gas vertically above the interface between the gasification chamber 1 and the combustion chamber 2 at the bottom of the partition walls 11 and 15. Communication ports 21, 25 for communicating with the communication ports 21, 25, wherein the height of the upper ends of the communication ports 21, 25 is less than or equal to the first interface and the second interface. The fluidized state of the fluid medium c in the vicinity of the communication ports 21 and 25 of one of the gasification chamber 1 and the combustion chamber 2 sandwiching the communication port 21. The fluid medium c is stronger than the fluidized state of the fluid medium c near the communication ports 21 and 25 through the communication ports 21 and 25 and moves from the weak fluidized state to the fluidized state toward the strong fluidized state. c is configured to move; and further, by controlling the strength of the flow in the weak fluidized state, the flow flowing between the gasification chamber 1 and the char combustion chamber 2 is controlled. A control device 6 may be provided which controls the amount of the moving medium c to control the composition of the gas b generated by the gasification.
このよ うに構成すると、 ガス化室 1 と、 チヤ一燃焼室 2 と、 制御装置 6 とを備 えるので、 弱い流動化状態の流動の強弱を調節することによ り、 ガス化室 1 とチ ャ一燃焼室 2の間で流通する流動媒体 cの量を制御して、 ガス化によ り発生する ガス bの組成を制御することができる。 また、 弱い流動化状態の流動の強弱を調 節するので、 流動媒体 c の量を制御するために生じる流動化ガス g 1、 g 2、 g 4の流量の変化が小さく 、 他の操業条件に大きな影響を与えることなく ガス化室 1 よ り発生するガス bの組成を制御することができる。  With this configuration, the gasification chamber 1, the combustion chamber 2, and the control device 6 are provided. By adjusting the strength of the flow in the weak fluidized state, the gasification chamber 1 and the gas chamber 1 are controlled. The composition of the gas b generated by gasification can be controlled by controlling the amount of the fluid medium c flowing between the combustion chambers 2. In addition, since the strength of the flow in the weak fluidized state is adjusted, the change in the flow rate of the fluidized gas g1, g2, and g4 generated to control the amount of the fluidized medium c is small, and the flow rate of the fluidized gas g1, g2, and g4 is small. The composition of the gas b generated from the gasification chamber 1 can be controlled without significant influence.
ガス化炉 1 0 1 は、 例えば、 図 1 に示すよ うに、 さらにチヤ一燃焼室 2から流 動媒体 c を導入する熱回収室 3であって、 チヤ一燃焼室 2からの流動媒体 cから 熱を回収する熱回収装置 4 1 を有する熱回収室 3 と ; 該熱回収室 3内の流動の強 弱を調節することにより、 熱回収装置 4 1 における熱回収量を制御する制御装置 6を備えるものであってもよレ、。  The gasifier 101 is, for example, as shown in FIG. 1, a heat recovery chamber 3 for introducing a fluid medium c from the char combustion chamber 2 and a fluid recovery medium c from the char combustion chamber 2. A heat recovery chamber 3 having a heat recovery device 41 for recovering heat; and a control device 6 for controlling the amount of heat recovery in the heat recovery device 41 by adjusting the strength of the flow in the heat recovery chamber 3. It may be provided.
このよ うに構成すると、 熱回収装置 4 1 を有する熱回収室 3 と、 制御装置 6 と を備えるので、 制御装置 6によって熱回収室 3内の流動の強弱を調節することに より、 熱回収装置 4 1 における熱回収量を制御することができる。 熱回収室 3は. 典型的にはチヤ一燃焼室 2に隣接して設けられた熱回収室 3である。 熱回収装置 4 1は典型的には層内伝熱管 4 1 を含んで構成される。 熱回収装置 4 1 は典型的 には回収した熱により蒸気 s 1 を過熱する。 制御装置 6は過熱される蒸気 s 1の 量を制御するよ うにしてもよい。 With such a configuration, since the heat recovery chamber 3 having the heat recovery device 41 and the control device 6 are provided, the control device 6 controls the strength of the flow in the heat recovery chamber 3 so that the heat recovery device 3 is controlled. The amount of heat recovery in 4 1 can be controlled. The heat recovery chamber 3 is typically a heat recovery chamber 3 provided adjacent to the char combustion chamber 2. The heat recovery apparatus 41 typically includes an in-layer heat transfer tube 41. The heat recovery unit 41 typically heats the steam s 1 with the recovered heat. Control device 6 is steam s 1 The amount may be controlled.
ガス化炉 1 0 1が、 チヤ一燃焼室 2に接して設けられた熱回収室 3を備える場 合は、 チヤ一燃焼室 2 と熱回収室 3 との間には前記チヤ一燃焼室流動床の流動層 部を仕切る仕切壁 1 2が設けられ、 仕切壁 1 2の下部には開口部 2 2が形成され. チヤ一燃焼室 2の流動媒体 c は仕切壁 1 2の上部から熱回収室 3に流入し、 開口 部 2 2を通じてチヤ一燃焼室 2に戻る循環流が形成されるよ うに構成すると よい: ガス化炉 1 0 1 は、 例えば、 図 1 に示すよ うに、 さ らに熱回収量を制御する制 御装置 6が、 熱回収装置 4 1 における熱回収量を制御し、 チヤ一燃焼室 2の温度 を制御するものであってもよレ、。  When the gasifier 101 has a heat recovery chamber 3 provided in contact with the char combustion chamber 2, the flow of the char combustion chamber is between the char combustion chamber 2 and the heat recovery chamber 3. A partition wall 12 is provided to partition the fluidized bed of the bed, and an opening 22 is formed at the lower part of the partition wall 12. The fluid medium c of the chamber 1 is recovered from the upper part of the partition wall 12. Preferably, a circulating flow into chamber 3 and back through opening 22 to char combustion chamber 2 is formed: gasifier 101 is further equipped, for example, as shown in FIG. The control device 6 for controlling the heat recovery amount may control the heat recovery amount in the heat recovery device 41 and control the temperature of the first combustion chamber 2.
ガス化炉 1 0 1 は、 例えば図 1 に示すよ うに、 さ らにガス化室 1の第 1の界面 よ り上部の第 1の圧力と、 チヤ一燃焼室 2の第 2の界面よ り上部の第 2の圧力と を測定する圧力測定装置 8 1、 8 2 と ; ガス化室 1から発生するガス bの、 ガス 化室 1から排出する第 1の排出線速度と、 およびチヤ一燃焼室 2から発生する燃 焼ガス eの、 チヤ一燃焼室 2から排出する第 2の排出線速度とを調節する調節装 置 7 8、 7 9 と ; 前記第 1 の圧力と前記第 2の圧力との圧力差を所定の値とする よ うに調節装置 7 8、 7 9を制御する制御装置 6 とを備えるものであってもよい c このよ うに構成すると、 圧力測定装置 8 1、 8 2 と、 調節装置 7 8、 7 9 と、 制御装置 6 とを備えるので、 圧力測定装置 8 1、 8 2によって第 1圧力と、 第 2 の圧力とを測定し、 調節装置 7 8、 7 9によって第 1 の排出線速度と、 第 2の排 出線速度とを調整し、 制御装置 6によって、 第 1 の圧力と第 2の圧力との圧力差 を所定の値とするよ うに調節装置 7 8、 7 9を制御することができる。 For example, as shown in FIG. 1, the gasification furnace 101 further includes a first pressure above the first interface of the gasification chamber 1 and a second pressure of the second combustion chamber 2. Pressure measuring devices 8 1, 8 2 for measuring the upper second pressure and the gas; the first discharge linear velocity of the gas b generated from the gasification chamber 1 discharged from the gasification chamber 1; Adjusting devices 78, 79 for adjusting the second discharge linear velocity of the combustion gas e generated from the chamber 2 and discharged from the combustion chamber 2; the first pressure and the second pressure with urchin configuration this it may also be c be one and a control device 6 for controlling the urchin adjusting device 7 8, 7 9 I to a predetermined value the pressure difference between the pressure measuring device 81, 82 and Since the control device 6 is provided with the control devices 7 8 and 7 9 and the control device 6, the first pressure and the second pressure are measured by the pressure measurement devices 8 1 and 8 2, and the control device 7 8 , 79 adjust the first discharge linear velocity and the second discharge linear velocity, and the controller 6 controls the pressure difference between the first pressure and the second pressure to a predetermined value. The adjusting devices 78, 79 can be controlled.
第 1の圧力と第 2の圧力との圧力差を所定の値とすることができるので、 ガス 化室 1 とチ.ャ一燃焼室 2の間の流動媒体粒子の移動量に与える圧力の影響を一定 の値に抑えることができ、 流動媒体粒子の移動量を精緻に制御することが容易と なる。 なお、 所定の値はほぼゼロに等しく てもよく 、 第 1の圧力と第 2の圧力と がほぼ等しく なるように制御装置 6が調節装置 7 8、 7 9を制御するものであつ てもよい。 この出願は、 日本国で 2 0 0 2年 8月 1 5 日に出願された特願 2 0 0 2 - 2 3 6 9 9 7号に基づいており、 その内容は本出願の内容と して、 その一部を形成す る。 Since the pressure difference between the first pressure and the second pressure can be set to a predetermined value, the effect of the pressure on the moving amount of the fluid medium particles between the gasification chamber 1 and the chamber 1 Can be suppressed to a constant value, and it becomes easy to precisely control the moving amount of the fluid medium particles. The predetermined value may be substantially equal to zero, or the control device 6 may control the adjusting devices 78 and 79 so that the first pressure and the second pressure become substantially equal. . This application was filed in Japanese Patent Application No. 200-23, filed on August 15, 2002 in Japan. No. 6997, the contents of which form a part of the present application.
また、 本発明は以下の詳細な説明により さ らに完全に理解できるであろう。 本 発明のさ らなる応用範囲は、 以下の詳細な説明によ り明らかとなるであろう。 し かしながら、 詳細な説明及び特定に実例は、 本発明の望ましい実施の形態であり、 説明の目的のためにのみ記載されているものである。 この詳細な説明から、 種々 の変更、 改変が、 本発明の精神の範囲内において、 当業者にとって明らかである からである。  The invention will be more fully understood from the detailed description below. Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. However, the detailed description and specific examples are preferred embodiments of the invention and are described for illustrative purposes only. From this detailed description, various changes and modifications will be apparent to those skilled in the art without departing from the spirit of the invention.
出願人は、 記載された実施の形態のいずれをも公衆に献上する意図はなく 、 開 示された改変、 代替案のうち、 特許請求の範囲内に文言上含まれないかもいれな いものも、 均等論下での発明の一部とする。 図面の簡単な説明  Applicant does not intend to publish any of the described embodiments to the public, and discloses any of the disclosed modifications and alternatives that may not be literally included within the scope of the claims. It shall be part of the invention under the doctrine of equivalents. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 統合型ガス化炉の構成を概念的に示すブロック図である。  Figure 1 is a block diagram conceptually showing the configuration of the integrated gasifier.
図 2は、 仕切壁によ り仕切られた二つの室の模式的側面断面図である。 仕切壁 の形態により ( a ) 、 ( b ) 、 ( c ) に分類される。  FIG. 2 is a schematic side sectional view of two chambers separated by a partition wall. It is classified into (a), (b) and (c) according to the form of the partition wall.
図 3は、 流動化ガス速度とみかけの層粘性の関係を示す図である。  FIG. 3 is a diagram showing the relationship between the fluidizing gas velocity and the apparent bed viscosity.
図 4は、 流動化ガス速度と流動媒体の移動量の関係を示す図である。  FIG. 4 is a diagram showing the relationship between the fluidizing gas velocity and the moving amount of the fluidized medium.
図 5は、 所定の弱流動化域と強流動化域とを所定の開口部の近傍域と遠隔域と に分離した場合のブロック図である。  FIG. 5 is a block diagram in a case where a predetermined weak fluidized region and a strong fluidized region are separated into a region near a predetermined opening and a remote region.
図 6は、 ガス化室と沈降チヤ一燃焼室の間を循環する流動媒体の循環量の定義 を説明するための図である。  FIG. 6 is a diagram for explaining the definition of the circulation amount of the fluid medium circulating between the gasification chamber and the settling chamber.
図 7は、 ガス化室と沈降チヤ一燃焼室の間の流動媒体の拡散を説明するための 図である。  FIG. 7 is a diagram for explaining the diffusion of the flowing medium between the gasification chamber and the settling chamber.
図 8は、 沈降チヤ一燃焼室の流動化ガスの空塔速度と、 沈降チヤ一燃焼室から ガス化室への熱移動量と循環量(対流)の関係を示す図である。  FIG. 8 is a diagram showing the relationship between the superficial velocity of the fluidized gas in the settling channel combustion chamber, the amount of heat transfer from the settling channel combustion chamber to the gasification chamber, and the amount of circulation (convection).
図 9は、 沈降チヤ一燃焼室の流動化ガスの空塔速度と、 沈降チヤ一燃焼室から ガス化室への流動媒体移動量 (対流 +拡散) の関係を示す図である。  Fig. 9 is a graph showing the relationship between the superficial velocity of the fluidized gas in the settling channel combustion chamber and the amount of fluidized medium transferred from the settling channel combustion chamber to the gasification chamber (convection + diffusion).
図 1 0は、 流動層高と循環量の関係について説明する図である。 図 1 1 は、 ケース 1の場合の循環比とガス化室層温の関係を示す図である。 図 1 2は、 ケース 2の場合の循環比とガス化室層温の関係を示す図である。 図 1 3 は、 循環比と生成ガス組成の関係を示す図である。 FIG. 10 is a diagram for explaining the relationship between the fluidized bed height and the circulation amount. FIG. 11 is a diagram showing the relationship between the circulation ratio and the gasification chamber layer temperature in case 1. FIG. 12 is a diagram showing the relationship between the circulation ratio and the gasification chamber layer temperature in case 2. FIG. 13 is a diagram showing the relationship between the circulation ratio and the product gas composition.
図 1 4は、 循環比と生成ガスの H 2 / C O比の関係を示す図である。 FIG. 14 is a diagram showing the relationship between the circulation ratio and the H 2 / CO ratio of the produced gas.
図 1 5は、 循環比と生成ガス発熱量の関係を示す図である。  FIG. 15 is a diagram showing the relationship between the circulation ratio and the calorific value of the produced gas.
図 1 6 は、 ガス化室層温とガス化室出口熱量割合の関係を示す図である。 図 1 7は、 ガス化室層温と冷ガス効率の関係を示す図である。  FIG. 16 is a diagram showing the relationship between the gasification chamber bed temperature and the gasification chamber outlet calorific value ratio. FIG. 17 is a diagram showing the relationship between the gasification chamber layer temperature and the cold gas efficiency.
図 1 8は、 循環比と生成ガス発熱量の関係を示す図である。  FIG. 18 is a diagram showing the relationship between the circulation ratio and the calorific value of the generated gas.
図 1 9は、 ガス化室層温と、 原料中の炭素がタールに移行する割合との関係を 示す図である。  FIG. 19 is a graph showing the relationship between the gasification chamber bed temperature and the rate at which carbon in the raw material transfers to tar.
図 2 0は、 循環量と、 原料中の炭素がチヤ一燃焼室へ移行する割合との関係を 示す図である。  FIG. 20 is a diagram showing the relationship between the amount of circulation and the rate at which carbon in the raw material transfers to the combustion chamber.
図 2 1 は、 ガス化室層温と、 原料中の炭素がチヤ一燃焼室へ移行する割合との 関係を示す図である。  FIG. 21 is a graph showing the relationship between the gasification chamber bed temperature and the rate at which carbon in the raw material transfers to the combustion chamber.
図 2 2は、 流動媒体供給装置の構成を示すブロ ック図である。 発明を実施するための最良の形態  FIG. 22 is a block diagram showing the configuration of the fluid medium supply device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について、 図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 ガス化炉と しての統合型ガス化炉 1 0 1 の構成を概念的に示すプロ ッ ク図である。  FIG. 1 is a block diagram conceptually showing the configuration of an integrated gasifier 101 as a gasifier.
統合型ガス化炉 1 0 1 は、 被処理物と しての廃棄物または固体燃料 a を熱分解 ガス化するガス化室 1 と、 ガス化室 1 において生成したチヤ一分 hを燃焼するチ ヤー燃焼室 2 とを含んで構成され、 ガス化室 1 において生成した可燃性ガスであ るガスと しての生成ガス b と、 チヤ一燃焼室 2において生成した燃焼ガス e とを 統合型ガス化炉 1 0 1 の後段のガス利用装置 (不図示) に分離して供給すること を特徴とする。 チヤ一燃焼室 2は、 チヤ一燃焼室本体部 5 と沈降チヤ一燃焼室 The integrated gasifier 101 has a gasification chamber 1 for pyrolysis and gasification of waste or solid fuel a as an object to be treated, and a chamber for burning one minute h generated in the gasification chamber 1. And a combustible gas generated in the gasification chamber 1 and a combustion gas e generated in the first combustion chamber 2 as an integrated gas. It is characterized in that it is supplied separately to a gas utilization device (not shown) at the subsequent stage of the gasification furnace 101. The char combustion chamber 2 is composed of the char combustion chamber body 5 and the sedimentation char combustion chamber.
(流動媒体沈降室) 4 とを含んで構成される。 統合型ガス化炉 1 0 1は、 ガス化 室 1 に接続されガス化室 1 で生成した生成ガス bを供給する生成ガス供給配管 2 6 と、 チヤ一燃焼室本体部 5に接続されチヤ一燃焼室本体部 5で発生した燃焼ガ ス eを供給する燃焼ガス供給配管 2 7 とを備える。 統合型ガス化炉 1 0 1は、 さ らに生成ガス供給配管 2 6に設置され、 生成ガス b のガス組成を測定するガス組 成測定器 4 6 を備える。 (Flow medium settling chamber) 4. The integrated gasifier 101 is connected to a gasification chamber 1 and supplies a generated gas b generated in the gasification chamber 1 for supplying a generated gas b. Combustion gas generated in the combustion chamber body 5 And a combustion gas supply pipe 27 for supplying e. The integrated gasifier 101 further includes a gas composition measuring device 46 installed on the generated gas supply pipe 26 and measuring the gas composition of the generated gas b.
統合型ガス化炉 1 0 1 は、 生成ガス供給配管 2 6に設置され、 生成ガス供給配 管 2 6から排出される生成ガス b の排出線速度(第 1 の排出線速度)を調整する調 整装置と しての調節弁 7 8 (例えば、 ダンパ) と、 燃焼ガス供給配管 2 7に設置 され、 燃焼ガス供給配管 2 7から排出される燃焼ガス e の排出線速度(第 2の排出 線速度)を調整する調整装置と しての調節弁 7 9 (例えば、 ダンバ) とを備える。 本統合型ガス化炉 1 0 1は、 前述の熱分解ガス化、 チヤ一燃焼の機能をそれぞ れ担当するガス化室 1 、 チヤ一燃焼室 2に加え、 熱回収の機能を担当する熱回収 室 3を備え、 ガス化室 1、 チヤ一燃焼室 2、 熱回収室 3は、 例えば全体が円筒形 又は矩形を成した炉体内に収納されている。 本統合型ガス化炉 1 0 1は、 後述の 調節弁 6 1、 6 2、 6 3、 6 4、 6 5、 6 6、 6 7 ( 6 1〜6 7 ) をそれぞれ制 御する制御装置 6 を備える。 制御装置 6は、 前述の調節弁 7 8、 7 9をも制御す る。 ガス化室 1、 チヤ一燃焼室 2、 熱回収室 3は仕切壁 1 1〜 1 5で分割されて おり、 それぞれの底部に高温の流動媒体 c を含む濃厚層である流動床が形成され る。  The integrated gasifier 101 is installed in the generated gas supply pipe 26 and controls the discharge linear velocity (first discharge linear velocity) of the generated gas b discharged from the generated gas supply pipe 26. A control valve 78 (for example, a damper) as a regulating device, and a discharge line speed (second discharge line) of the combustion gas e discharged from the combustion gas supply pipe 27 installed in the combustion gas supply pipe 27 And a control valve 79 (for example, a damper) as an adjusting device for adjusting the speed. The integrated gasifier 101 has a gasification chamber 1 and a char combustion chamber 2 that are responsible for the pyrolysis gasification and char combustion functions described above, respectively. A recovery chamber 3 is provided, and the gasification chamber 1, the char combustion chamber 2, and the heat recovery chamber 3 are housed in, for example, a cylindrical or rectangular furnace. The integrated gasifier 101 has a control device 6 that controls the control valves 61, 62, 63, 64, 65, 66, and 67 (61 to 67) described below, respectively. Is provided. The control device 6 also controls the control valves 78 and 79 described above. The gasification chamber 1, the combustion chamber 2, and the heat recovery chamber 3 are divided by partition walls 11 to 15.A fluidized bed that is a dense layer containing a high-temperature fluidized medium c is formed at the bottom of each. .
ガス化室 1 、 チヤ一燃焼室本体部 5には、 それぞれの濃厚層の層温を測定する 温度測定器 4 2、 4 3が設置されている。 本実施の形態では、 ガス化室 1の濃厚 層の層温が、 ガス化室 1の温度であり、 チヤ一燃焼室本体部 5の濃厚層の層温が チヤ一燃焼室 2の温度であると している。 温度測定器 4 2、 4 3は、 測定された 温度に基づく温度信号 i 3 (図中、 破線で部分的に表示) を制御装置 6 に送る。 制御装置 6は、 後述のよ うに、 温度信号 i 3に基づきガス化室 1の温度チヤ一燃 焼室 2の温度が設定された値になるよ う、 調節弁 6 1〜 6 7を制御するよ うに構 成することができ、 この場合制御装置 6は、 本発明の、 温度を制御する制御装置 である。 また、 前述のガス組成測定器 4 6は、 測定されたガス組成に基づく ガス 組成信号 i 4を制御装置 6に送る。 制御装置 6は、 後述のよ うに、 ガス組成信号 i 4に基づき生成ガス bのガス組成が設定された値になるよ う、 調節弁 6 1〜6 7を制御するよ うに構成することができ、 この場合制御装置 6は、 本発明の、 ガ スの組成を制御する制御装置である。 温度測定器 4 2、 4 3は、 熱電対を使用し ている。 In the gasification chamber 1 and the combustion chamber main body 5, temperature measuring devices 42 and 43 for measuring the layer temperature of each dense layer are installed. In the present embodiment, the layer temperature of the rich layer in the gasification chamber 1 is the temperature of the gasification chamber 1, and the layer temperature of the rich layer in the main section 5 of the combustion chamber is the temperature of the combustion chamber 2. And The temperature measuring devices 42 and 43 send a temperature signal i 3 (partially indicated by a broken line in the figure) based on the measured temperature to the control device 6. The controller 6 controls the control valves 6 1 to 67 so that the temperature of the gasification chamber 1 and the temperature of the combustion chamber 2 become the set value based on the temperature signal i 3 as described later. In this case, the control device 6 is the temperature control device of the present invention. Further, the above-mentioned gas composition measuring device 46 sends a gas composition signal i 4 based on the measured gas composition to the control device 6. The control device 6 can be configured to control the control valves 61 to 67 so that the gas composition of the generated gas b becomes a set value based on the gas composition signal i4, as described later. In this case, the control device 6 This is a control device for controlling the composition of the steel. The thermometers 42 and 43 use thermocouples.
ガス化室 1、 チヤ一燃焼室本体部 5には、 それぞれのフリーボー ド部の圧力を 測定する圧力測定器 8 1、 8 2が設置されている。 ガス化室 1のフリーボー ド部 の圧力が本発明の第 1 の圧力であり、 チヤ一燃焼室本体部 5のフリーボー ド部の 圧力が本発明の第 2の圧力である。 なお、 フリーボー ド部については後述する。 圧力測定装置 8 1、 8 2は、 測定された圧力に基づく圧力信号 i 5 (図中、 破線 で部分的に表示) を制御装置 6 に送る。 制御装置 6は、 圧力信号 i 5に基づき、 ガス化室 1 の圧力と、 チヤ一燃焼室 2の圧力を所定の値とするよ う、 調節弁 6 1 〜 6 7を制御するよ う に構成することができる。  In the gasification chamber 1 and the combustion chamber main body 5, pressure measuring devices 81 and 82 are installed to measure the pressure in the freeboard sections. The pressure at the freeboard portion of the gasification chamber 1 is the first pressure of the present invention, and the pressure at the freeboard portion of the chamber 1 for the combustion chamber is the second pressure of the present invention. The freeboard section will be described later. The pressure measuring devices 8 1 and 8 2 send a pressure signal i 5 (partially indicated by broken lines in the figure) to the control device 6 based on the measured pressure. The control device 6 is configured to control the control valves 61 to 67 so that the pressure in the gasification chamber 1 and the pressure in the combustion chamber 2 are set to predetermined values based on the pressure signal i5. can do.
ガス組成信号 i 4は、 H2、 C O、 C 02、 CH4、 H20等のモル0 /0とするとよ レ、。 制御装置 6は、 ガス組成信号 i 4を得て、 H2/C O比等を計算し、 さらにガ ス組成信号 i 4 と、 温度測定器 4 2により測定された生成ガス bの温度信号 i 3 と、 圧力測定器 8 1により測定された生成ガス bの圧力信号 i 5 とによ り生成ガ ス bのガスの発熱量を計算するよ うに構成するとよい。 Gas composition signal i 4 is yo When H 2, CO, C 0 2 , CH 4, H 2 mole 0/0, such as 0 les. The control device 6 obtains the gas composition signal i 4, calculates the H 2 / CO ratio, etc., and further calculates the gas composition signal i 4 and the temperature signal i 3 of the product gas b measured by the temperature measuring device 42. It is preferable that the calorific value of the gas of the generated gas b be calculated based on the pressure signal i 5 of the generated gas b measured by the pressure measuring device 81.
各室 1〜3の流動床、 即ちガス化室流動床、 チヤ一燃焼室流動床、 熱回収室流 動床の流動媒体 c を流動させるために、 各室 1〜 3の底である炉底には、 流動媒 体 c 中に流動化ガス g l、 g 2、 g 3、 g 4 (流動化ガス g l、 g 2、 g 3、 g 4の区別は後述する、 以下流動化ガスを総称する場合は符号 gをつける) を吹き 込む散気装置 3 1〜 3 6が設けられている。 即ち、 ガス化室 1 には散気装置 3 1. 3 2が、 チヤ一燃焼室 2には散気装置 3 3、 3 4、 3 5が、 熱回収装置 3には散 気装置 3 6が設けられている。 各散気装置 3 1〜 3 6は、 散気装置 3 :!〜 3 6が 設置されている炉底部に敷かれた例えば多孔板を含んで構成され、 該多孔板を広 さ方向に区分して複数の部屋に分割されている。  The fluidized bed of each of the chambers 1 to 3, namely the fluidized bed of the gasification chamber, the fluidized bed of the combustion chamber and the fluidized bed of the fluidized bed of the heat recovery chamber, the furnace bottom which is the bottom of each of the chambers 1 to 3 In the fluid medium c, the fluidizing gas gl, g2, g3, g4 (the distinction between the fluidizing gas gl, g2, g3, and g4 will be described later. Is provided with a symbol g). That is, the gasification chamber 1 is provided with an air diffuser 31.32, the chamber 1 is provided with an air diffuser 33, 34, 35, and the heat recovery unit 3 is provided with an air diffuser 36. Is provided. Each of the diffusers 31 to 36 includes, for example, a perforated plate laid on the furnace bottom where the diffusers 3:! To 36 are installed, and the perforated plates are divided in the width direction. Is divided into several rooms.
統合型ガス化炉 1 0 1は、 散気装置 3 1 に接続された供給配管 5 1、 散気装置 3 2に接続された供給配管 5 2、 散気装置 3 3に接続された供給配管 5 3、 散気 装置 3 4に接続された供給配管 5 4、 散気装置 3 5に接続された供給配管 5 5、 散気装置 3 6に接続された供給配管 5 6を備える。 供給配管 5 1〜5 6は、 それ ぞれ調節装置と しての調節弁 6 1〜6 6 と、 流量測定器 7 1〜 7 6 とを備え、 流 動化ガス gを各散気装置 3 1〜 3 6へ供給する。 調節弁 6 1〜 6 6は、 各散気装 置 3 1〜3 6への流動化ガス gの供給量を調節する。 よって、 各散気装置 3 1〜 3 6は、 各室:!〜 3内の各部 (図中、 室 1の l a、 l bで示す箇所、 室 2の 2 a , 2 b、 4 aで示す箇所、 室 3の 3 aで示す箇所) の空塔速度を変えるために、 散 気装置 3 1〜 3 6の各部屋から多孔板を通して吹き出す流動化ガス gの流速を変 化させるよ うに構成されている。 流量測定器 7 1〜7 6は、 各供給配管 5 :!〜 5 6 の調節弁 6 1〜 6 6 の下流側に設置され、 流動化ガス gの流量を測定する。 調 節弁 6 1〜 6 6は、 制御装置 6から送られる別々の制御信号 i 1 (図中、 破線で 部分的に表示) を受けてそれぞれ作動し開度を変える。 流量測定器 7 :!〜 7 6は、 測定された流量に基づく流量信号 i 2 (図中、 破線で部分的に表示) を制御装置 6に送る。 The integrated gasifier 1 0 1 has a supply pipe 5 1 connected to the diffuser 3 1, a supply pipe 5 connected to the diffuser 3 2, a supply pipe 5 connected to the diffuser 3 3 5 3, a supply pipe 54 connected to the diffuser 34, a supply pipe 55 connected to the diffuser 35, and a supply pipe 56 connected to the diffuser 36. Each of the supply pipes 51 to 56 includes a control valve 61 to 66 as a control device and a flow measuring device 71 to 76, respectively. The mobilizing gas g is supplied to each of the air diffusers 31 to 36. The control valves 61 to 66 adjust the supply amount of the fluidizing gas g to each of the air diffusers 31 to 36. Therefore, each air diffuser 31 to 36 is in each room! In order to change the superficial velocity of each part in ~ 3 (in the figure, the location indicated by la and lb in room 1, the location indicated by 2a, 2b, 4a in room 2 and the location indicated by 3a in room 3) In addition, it is configured to change the flow velocity of the fluidizing gas g blown out from the chambers of the air diffusers 31 to 36 through the perforated plate. The flow measuring devices 71 to 76 are installed downstream of the control valves 61 to 66 of the supply pipes 5 :! to 56, respectively, and measure the flow rate of the fluidized gas g. Each of the control valves 61 to 66 receives a separate control signal i1 (partially indicated by a broken line in the figure) sent from the control device 6, and operates to change the opening. Flowmeter 7 :! To 76 send a flow signal i 2 (partially indicated by a broken line in the figure) based on the measured flow rate to the controller 6.
また、 空塔速度は、 室 1〜 3の各部で相対的に異なるので各室 1〜 3内の流動 媒体 c も室 1〜 3の各部で流動化状態が異なり、 そのため内部旋回流が形成され る。 また室 1〜 3の各部で流動化状態が異なるところから、 内部旋回流は、 炉内 の各室 1〜3を循環する。 図中、 散気装置 3 :!〜 3 6 に示す白抜き矢印の大きさ は、 吹き出される流動化ガス gの流速を示している。 例えば 2 bで示す箇所の太 い矢印は、 2 aで示す箇所の細い矢印よ り も流速が大きい。 また、 白抜きの矢印 で示される箇所の流速は、 その箇所の全体に渡り均一である。 In addition, since the superficial velocity is relatively different in each part of the chambers 1 to 3, the fluidized state of the fluid medium c in each of the chambers 1 to 3 is also different in each part of the chambers 1 to 3, so that an internal swirling flow is formed. You. In addition, the internal swirling flow circulates through the chambers 1 to 3 in the furnace because the fluidization state is different in each part of the chambers 1 to 3. In the figure, the size of the white arrows indicated by the air diffusers 3:! To 36 indicates the flow velocity of the fluidized gas g to be blown out. For example, the thick arrow at the point indicated by 2b has a larger flow velocity than the thin arrow at the point indicated by 2a. The flow velocity at the location indicated by the white arrow is uniform throughout the location.
ガス化室 1 とチヤ一燃焼室本体部 5の間は仕切壁 1 1及び仕切壁 1 5で仕切ら れ、 チヤ一燃焼室本体部 5 と熱回収室 3の間は仕切壁 1 2で仕切られ、 ガス化室 1 と熱回収室 3の間は仕切壁 1 3で仕切られている (なお本図は、 炉を平面的に 展開して図示しているため、 仕切壁 1 1 はガス化室 1 とチヤ一燃焼室本体部 5の 間にはないかのよ うに、 また仕切壁 1 3はガス化室 1 と熱回収室 3 の間にはない かのよ うに示されている) 。 即ち、 統合型ガス化炉 1 0 1は、 各 1〜 3室が別々 の炉と して構成されておらず、 一つの炉と して一体に構成されている。 さ らに、 チヤ一燃焼室本体部 5のガス化室 1 と接する面の近傍には、 流動媒体 cが下降す るべく沈降チヤ一燃焼室 4を設ける。 即ち、 前述のよ うにチヤ一燃焼室 2は沈降 チヤ一燃焼室 4 と沈降チヤ一燃焼室 4以外のチヤ一燃焼室本体部 5 とに分かれる c このため、 沈降チヤ一燃焼室 4をチヤ一燃焼室 2の他の部分 (チヤ一燃焼室本体 部 5 ) と仕切るための仕切壁 1 4が設けられている。 また沈降チヤ一燃焼室 4 と ガス化室 1 とは、 図 1 に示すよ うに、 仕切壁 1 5で仕切られている。 A partition wall 11 and a partition wall 15 separate the gasification chamber 1 from the combustion chamber main body 5, and a partition wall 12 separates the combustion chamber main body 5 from the heat recovery chamber 3. The gasification chamber 1 and the heat recovery chamber 3 are separated by a partition wall 13 (note that in this drawing, the furnace is developed in a plan view, so that the partition wall 11 is a gasification chamber). It is shown as if it was not between 1 and the main part 5 of the combustion chamber, and the partition 13 was not between the gasification chamber 1 and the heat recovery chamber 3). That is, in the integrated gasification furnace 101, each of the first to third chambers is not configured as a separate furnace, but is integrally configured as one furnace. Further, a sedimentation chamber 1 is provided near the surface of the main body 5 of the chamber 1 in contact with the gasification chamber 1 so that the fluid medium c descends. That is, as described above, the first combustion chamber 2 is divided into the sedimentation combustion chamber 4 and the main body 5 of the combustion chamber other than the sedimentation combustion chamber 4c. Other parts of combustion chamber 2 A partition wall 14 for partitioning from the part 5) is provided. In addition, the sedimentation chamber combustion chamber 4 and the gasification chamber 1 are separated by a partition wall 15 as shown in FIG.
ここで、 流動床と界面について説明する。 流動床は、 その鉛直方向下方部にあ る、 流動化ガス gによ り流動化状態に置かれている流動媒体 c (例えば珪砂) を 濃厚に含む濃厚層と、 その濃厚層の鉛直方向上方部にある流動媒体 c と多量のガ スが共存し、 流動媒体 cが勢いよく はねあがつているスプラッシュゾーンとから なる。 流動床の上方即ちスプラッシュゾーンの上方には流動媒体 cをほとんど含 まずガスを主体とするフ リーボー ド部がある。 界面は、 ある厚さをもった前記ス プラッシュゾーンをいう力 またスプラッシュゾーンの上面と下面 (濃厚層の上 面) との中間にある仮想的な面と と らえてもよい。  Here, the fluidized bed and the interface will be described. The fluidized bed consists of a dense layer at the lower part in the vertical direction, which contains the fluidized medium c (for example, silica sand), which is placed in a fluidized state by the fluidizing gas g, and a vertically upper part of the dense layer. A large amount of gas coexists with the fluid medium c in the part, and the fluid medium c consists of a splash zone that is vigorously splashing. Above the fluidized bed, that is, above the splash zone, there is a freeboard portion mainly containing gas and containing almost no fluid medium c. The interface may be considered as a force that refers to the splash zone having a certain thickness, or as a virtual surface intermediate the upper surface and the lower surface (the upper surface of the dense layer) of the splash zone.
また 「流動床の界面よ り鉛直方向上方においてはガスの流通がないよ うに仕切 壁によ り仕切られ」 という とき、 さ らに界面よ り鉛直方向下方の濃厚層の上面よ り鉛直方向上方においてガスの流通がないよ うにするのが好ま しい。  In addition, the phrase "partitioned by a partition wall so that gas does not flow vertically above the interface of the fluidized bed" means that it is vertically above the upper surface of the dense layer further below the interface. It is preferable that there is no gas flow in the area.
ガス化室 1 とチヤ一燃焼室本体部 5の間の仕切壁 1 1 は、 炉の天井 1 9から炉 底 (散気装置 3 1の多孔板) に向かってほぼ全面的に仕切っているが、 下端は炉 底に接することはなく 、 炉底近傍に連通口と しての開口部 2 1がある。 但しこの 開口部 2 1 の上端が、 第 1 の界面と してのガス化室流動床界面、 第 2の界面と し てのチヤ一燃焼室流動床界面のいずれの界面よ り も上部にまで達することはない さ らに好ましく は、 開口部 2 1の上端が、 ガス化室流動床の濃厚層の上面、 チヤ 一燃焼室流動床の濃厚層の上面のいずれよ り も上部にまで達することはないよ う にする。 言い換えれば、 開口部 2 1 は、 常に濃厚層に潜っているよ うに構成する のが好ま しい。 即ち、 ガス化室 1 とチヤ一燃焼室 2 とは、 少なく ともフリ一ボー ド部においては、 さらに言えば界面よ り上方においては、 さ らに好ましく は濃厚 層の上面よ り上方ではガスの流通がないよ うに仕切壁により仕切られていること になる。  The partition wall 11 between the gasification chamber 1 and the chamber 1 of the combustion chamber is almost entirely partitioned from the ceiling 19 of the furnace to the bottom of the furnace (perforated plate of the diffuser 31). However, the lower end does not contact the furnace bottom, and there is an opening 21 near the furnace bottom as a communication port. However, the upper end of the opening 21 is located above any of the interface of the fluidized bed of the gasification chamber as the first interface and the interface of the fluidized bed of the combustion chamber as the second interface. More preferably, the upper end of the opening 21 reaches the upper part of the upper surface of the dense bed of the fluidized bed of the gasification chamber or the upper surface of the dense bed of the fluidized bed of the combustion chamber. Not to be. In other words, it is preferable that the opening 21 is configured so as to always dive into the dense layer. That is, the gasification chamber 1 and the char combustion chamber 2 are separated from each other at least at the free board part, more specifically, above the interface, and more preferably, above the upper surface of the dense layer. In other words, it is divided by a partition wall so that there is no distribution.
またチヤ一燃焼室 2 と熱回収室 3の間の仕切壁 1 2はその上端が界面近傍、 即 ち濃厚層の上面よ りは上方であるが、 スプラッシュゾーンの上面よ りは下方に位 置しており、 仕切壁 1 2の下端は炉底近傍までであり、 仕切壁 1 1 と同様に下端 が炉底に接することはなく 、 炉底近傍に濃厚層の上面より上方に達することのな い開口部 2 2がある。 言い換えれば、 チヤ一燃焼室 2 と熱回収室 3の間は流動層 部のみ仕切壁 1 2で仕切られており、 その仕切壁 1 2の炉床面近傍には開口部 2 2を有し、 チヤ一燃焼室 2の流動媒体 cは仕切壁 1 2の上部から熱回収室 3に流 入し、 仕切壁 1 2の炉床面近傍の開口部 2 2を通じて再びチヤ一燃焼室 2に戻る 循環流を有するよ うに構成されている。 The upper end of the partition wall 12 between the combustion chamber 2 and the heat recovery chamber 3 is near the interface, that is, above the upper surface of the dense layer, but below the upper surface of the splash zone. The lower end of the partition wall 12 is close to the bottom of the furnace, and the lower end does not contact the bottom of the furnace like the partition wall 11 and does not reach above the upper surface of the dense layer near the bottom of the furnace. There are two openings 22. In other words, only the fluidized bed portion is partitioned by the partition wall 12 between the first combustion chamber 2 and the heat recovery chamber 3, and the partition wall 12 has an opening 22 near the hearth surface. The fluid medium c in the first combustion chamber 2 flows into the heat recovery chamber 3 from above the partition wall 1 2, and returns to the first combustion chamber 2 again through the opening 22 near the hearth surface of the partition wall 12. It is configured to have flow.
ガス化室 1 と熱回収室 3の間の仕切壁 1 3は炉底から炉の天井にわたって完全 に仕切っている。 沈降チヤ一燃焼室 4を設けるべくチヤ一燃焼室 2内を仕切る仕 切壁 1 4の上端は流動床の界面近傍で、 下端は炉底に接している。 仕切壁 1 4の 上端と流動床との関係は、 仕切壁 1 2 と流動床との関係と同様である。 沈降チヤ 一燃焼室 4 とガス化室 1 を仕切る仕切壁 1 5は、 仕切壁 1 1 と同様であり 、 炉の 天井から炉底に向かってほぼ全面的に仕切っており、 下端は炉底に接することは なく 、 炉底近傍に連通口と しての開口部 2 5があり、 この開口の上端が濃厚層の 上面よ り下にある。 即ち、 開口部 2 5 と流動床の関係は、 開口部 2 1 と流動床の 関係と同様である。  The partition wall 13 between the gasification chamber 1 and the heat recovery chamber 3 completely separates from the furnace bottom to the furnace ceiling. The upper end of the partition wall 14 that partitions the inside of the first combustion chamber 2 in order to provide the first settling combustion chamber 4 is near the interface of the fluidized bed, and the lower end is in contact with the furnace bottom. The relationship between the upper end of the partition wall 14 and the fluidized bed is the same as the relationship between the partition wall 12 and the fluidized bed. Sedimentation chamber The partition wall 15 that separates the combustion chamber 4 and the gasification chamber 1 is similar to the partition wall 11 and almost entirely partitions from the furnace ceiling to the furnace bottom, and the lower end is located at the furnace bottom. There is no contact, and there is an opening 25 as a communication port near the furnace bottom, and the upper end of this opening is below the upper surface of the dense layer. That is, the relationship between the opening 25 and the fluidized bed is the same as the relationship between the opening 21 and the fluidized bed.
ガス化室 1 に投入された廃棄物または固体燃料 a は流動媒体 cから熱を受け、 熱分解、 ガス化され、 生成ガス bが生成される。 典型的には、 廃棄物または燃料 aはガス化室 1 では燃焼せず、 いわゆる乾留される。 残った乾溜チヤ一 hは流動 媒体 c と共に仕切壁 1 1の下部にある開口部 2 1からチヤ一燃焼室本体部 5に流 入する。 このよ うにしてガス化室 1から導入ざれたチヤ一 hはチヤ一燃焼室本体 部 5で燃焼して流動媒体 c を加熱する。 チヤ一燃焼室本体部 5でチヤ一 hの燃焼 熱によって加熱された流動媒体 cは仕切壁 1 2の上端を越えて熱回収室 3に流入 し、 熱回収室 3内で界面よ り も下方にあるよ うに配設された熱回収装置と しての 層内伝熱管 4 1で収熱され、 冷却された後、 再び仕切壁 1 2の下部の開口部 2 2 を通ってチヤ一燃焼室本体部 5に流入する。  The waste or solid fuel a charged into the gasification chamber 1 receives heat from the fluidized medium c, and is pyrolyzed and gasified to generate product gas b. Typically, waste or fuel a does not burn in gasification chamber 1 but is so-called carbonized. The remaining dry distillation channel h flows together with the fluid medium c from the opening 21 at the lower part of the partition wall 11 into the main chamber 5 of the combustion chamber. In this way, the channel h introduced from the gasification chamber 1 is burned in the main chamber 5 of the channel combustion chamber to heat the fluid medium c. The fluid medium c heated by the combustion heat of the channel h in the channel chamber main body 5 flows into the heat recovery chamber 3 beyond the upper end of the partition wall 12 and below the interface in the heat recovery chamber 3. After the heat is collected and cooled by the in-layer heat transfer tube 41 as a heat recovery device arranged as shown in Fig. 2, it passes through the lower opening 22 of the partition wall 1 2 again and the combustion chamber It flows into the main unit 5.
層内伝熱管 4 1は、 熱回収室 3内に配置された層内伝熱管本体 4 1 Aと、 蒸気 s 1 を層内伝熱管本体 4 1 Aに導く導入部 4 1 B と、 層内伝熱管本体 4 1 Aから 過熱蒸気 s 2を排出する排出部 4 1 Cからなる。 層內伝熱管本体 4 1 Aに導入さ れた蒸気 s 1は過熱され過熱蒸気 s 2 となる。  The in-layer heat transfer tube 4 1 includes an in-layer heat transfer tube main body 4 1 A disposed in the heat recovery chamber 3, an introduction portion 4 1 B for guiding the steam s 1 to the in-layer heat transfer tube main body 4 1 A, It consists of a discharge section 41 C that discharges superheated steam s 2 from the heat transfer tube body 41 A. The steam s1 introduced into the bed heat transfer tube body 41A is superheated and becomes superheated steam s2.
統合型ガス化炉 1 0 1は、 温度測定器 4 4、 4 5 と、 調節弁 6 7 と、 流量測定 器 7 7 とを備える。 温度測定器 4 4は、 導入部 4 1 Bに設置され、 蒸気 s 1 の温 度を測定する。 調節弁 6 7は、 導入部 4 1 Bに設置され、 蒸気 s 1の流量を制御 する。 流量測定器 7 7は、 導入部 4 1 Bに設置され、 蒸気 s 1 の流量を測定する 温度測定器 4 5は、 排出部 4 1 Cに設置され、 過熱蒸気 s 2の温度を測定する。 調節弁 6 7は、 制御装置 6から送られる制御信号 i 1 (図中、 破線で部分的に表 示) を受けて作動し開度を変える。 流量測定器 7 7は、 測定された流量に基づく 流量信号 i 2 (図中、 破線で部分的に表示) を制御装置 6 に送り、 温度測定器 4 4、 4 5は、 測定された温度に基づく温度信号 i 3 (図中、 破線で部分的に表 示) を制御装置 6に送る。 制御装置 6は、 本発明の熱回収量を制御する制御装置 である。 The integrated gasifier 101 has temperature measuring devices 44, 45, a control valve 67, and flow measurement Vessel 7 7. The temperature measuring device 44 is installed in the introduction section 41B and measures the temperature of the steam s1. The control valve 67 is installed in the introduction section 41B and controls the flow rate of the steam s1. The flow rate measuring device 77 is installed in the introduction section 41B to measure the flow rate of the steam s1. The temperature measuring instrument 45 is installed in the discharge section 41C to measure the temperature of the superheated steam s2. The control valve 67 operates in response to a control signal i 1 (partially indicated by a broken line in the figure) sent from the control device 6 to change the opening. The flow measuring device 7 7 sends a flow signal i 2 based on the measured flow rate (partially indicated by a broken line in the figure) to the control device 6, and the temperature measuring devices 4 4 and 4 5 A temperature signal i 3 (partially indicated by a broken line in the figure) is sent to the control device 6. The control device 6 is a control device for controlling the heat recovery amount of the present invention.
ここで、 熱回収室 3は本発明の実施の形態である統合型ガス化炉 1 0 1におい て必須ではない。 即ち、 ガス化室 1で主と して揮発成分がガス化した後に残る主 と してカーボンからなるチヤ一 hの量と、 チヤ一燃焼室 2で流動媒体 c を加熱す るのに必要と されるチヤ一の量がほぼ等しければ、 流動媒体 cから熱を奪う こと になる熱回収室 3は不要である。 また前記チヤ一 hの量の差が小さければ、 例え ば、 ガス化室 1 でのガス化温度が高目になり、 ガス化室 1 で発生する c oガスの 量が増えるという形で、 バランス状態が保たれる。  Here, the heat recovery chamber 3 is not essential in the integrated gasification furnace 101 according to the embodiment of the present invention. That is, it is necessary to heat the fluid medium c in the gas combustion chamber 2 and the amount of the carbon mainly composed of mainly carbon remaining after gasification of volatile components in the gasification chamber 1. If the amount of the charged particles is almost the same, the heat recovery chamber 3 for removing heat from the fluid medium c is unnecessary. If the difference in the amount of the h is small, for example, the gasification temperature in the gasification chamber 1 becomes higher, and the amount of co-gas generated in the gasification chamber 1 increases. Is kept.
しかしながら図 1 に示すよ うに熱回収室 3を備える場合は、 チヤ一 hの発生量 の大きい石炭から、 ほとんどチヤ一 hを発生させない都市ゴミまで、 幅広く多種 類の廃棄物または燃料 a に対応することができる。 即ち、 どのよ うな廃棄物また は燃料 aであっても、 熱回収室 3における熱回収量を加減することによ り、 チヤ 一燃焼室本体部 5の燃焼温度を適切に調節し、 流動媒体 c の温度を適切に保つこ とができる。 また、 流動化ガス g 3 の散気装置 3 6への供給量を調節弁 6 6によ つて調節し、 弱い流動化状態に維持される弱流動化域 3 a を有する熱回収室 3内 の流動化状態の強弱を調節することにより 、 熱回収室 3における熱回収量を制御 することができる。 よって、 熱回収量を制御する制御装置 6が、 層内伝熱管 4 1 における熱回収量を制御し、 チヤ一燃焼室 2の温度を制御する。  However, when the heat recovery chamber 3 is provided as shown in Fig. 1, it can handle a wide variety of wastes or fuels a, from coal that generates a large amount of char-h to municipal waste that generates almost no char-a-h. be able to. That is, no matter what kind of waste or fuel a, by adjusting the amount of heat recovery in the heat recovery chamber 3, the combustion temperature of the combustion chamber main body 5 can be appropriately adjusted, and the fluid medium The temperature of c can be maintained properly. Further, the supply amount of the fluidizing gas g3 to the air diffuser 36 is adjusted by the control valve 66, and the heat recovery chamber 3 having the weak fluidization region 3a maintained in the weak fluidization state is provided. The amount of heat recovery in the heat recovery chamber 3 can be controlled by adjusting the strength of the fluidized state. Therefore, the control device 6 that controls the heat recovery amount controls the heat recovery amount in the in-layer heat transfer tube 41, and controls the temperature of the combustion chamber 2.
一方チヤ一燃焼室本体部 5で加熱された流動媒体 cは仕切壁 1 4の上端を越え て沈降チヤ一燃焼室 4に流入し、 次いで仕切壁 1 5の下部にある開口部 2 5から ガス化室 1に流入する。 On the other hand, the fluid medium c heated in the main part 5 of the combustion chamber of the chamber flows over the upper end of the partition wall 14 and flows into the combustion chamber 4 of the sedimentation chamber, and then from the opening 25 at the lower part of the partition wall 15. Flow into gasification chamber 1.
ここで、 図 2 ( a ) ( b ) ( c ) の模式的側面断面図を参照して、 炉 F内 に形成された仕切壁 X、 仕切壁 Yあるいは仕切壁 Zで仕切られた二つの室 R a R b間の流動媒体 cの流動化状態及ぴ移動について説明する。 図 2 ( a ) では、 二つの室 R a R bは、 上部のみに開口部 P Xを有する仕切壁 Xによって仕切ら れる。 図 2 ( b ) では、 二つの室 R a R bは、 下部にのみ開口部 Q yを有する 仕切壁 Yによって仕切られる。 図 2 ( c ) では、 二つの室 R a R bは、 上部に 開口部 P z、 さらに下部に開口部 Q z を有する仕切壁 Zによって仕切られる。 図 2 ( a ) ( b ) ( c ) において、 共に、 流動媒体 c を収納する各室 R a R bの炉底には、 それぞれ流動化ガス g a g bを吹き込む散気装置 D a D bが. 設けられている。 また、 仕切壁 X Zの上端は、 界面の高さ近傍にあり 、 開口部 Q y Q zは、 濃厚層に潜った位置にあるものとする。 また、 図 2 ( a )  Here, referring to the schematic side sectional views of FIGS. 2 (a), (b), and (c), two chambers separated by a partition X, a partition Y, or a partition Z formed in the furnace F. The fluidization state and movement of the fluid medium c between R a R b will be described. In FIG. 2 (a), the two chambers R a R b are separated by a partition wall X having an opening PX only in the upper part. In FIG. 2 (b), the two chambers R a R b are separated by a partition wall Y having an opening Q y only at the lower part. In FIG. 2 (c), the two chambers R a R b are partitioned by a partition wall Z having an opening P z at the top and an opening Q z at the bottom. In FIGS. 2 (a), (b) and (c), a diffuser D a D b for injecting fluidized gas gagb is provided at the bottom of each of the chambers R a R b for accommodating the fluidized medium c. Has been. It is assumed that the upper end of the partition wall XZ is near the height of the interface, and the opening QyQz is located at a position below the dense layer. Fig. 2 (a)
( b ) . ( c ) において、 室 R a内の流動化状態は、 室 R a 内で均一であり、 室 R b内の流動化状態は、 室 R b内で均一であるとする。  (b) In (c), the fluidized state in the chamber Ra is uniform in the chamber Ra, and the fluidized state in the chamber Rb is uniform in the chamber Rb.
仕切壁 X、 仕切壁 Yあるいは仕切壁 Zによ り仕切られた 2室 R a R b間の流 動媒体 cの移動は、 室 R a側と室 R b側との流動化状態の強弱差によ り引き起こ されるので、 室 R a側と室 R b側との流動化状態の強弱差を実用上任意に変える ことによ り、 室 R a と室 R b間の開口部 P x Q y P z Q z を介した流動媒 体 cの移動量と移動方向 (室 R aから室 R b あるいは室 R bから室 R aへ) を調節することができる。 以下では、 室 R a と室 R bの流動化状態をどのよ うに 変えた場合に、 室 R a と室 R b間の流動媒体 cの移動量をどのよ うに調節できる かについて具体的に説明する。  The movement of the fluid medium c between the two chambers R a and R b separated by the partition wall X, the partition wall Y or the partition wall Z is the difference in the fluidization state between the chamber Ra side and the chamber R b side. By changing the fluidity difference between the chambers Ra and Rb arbitrarily in practice, the opening P x between the chambers Ra and Rb The moving amount and moving direction (from the chamber Ra to the chamber Rb or from the chamber Rb to the chamber Ra) of the fluid medium c via QyPzQz can be adjusted. The following specifically describes how the amount of movement of the fluid medium c between the chambers Ra and Rb can be adjusted when the fluidization state of the chambers Ra and Rb is changed. I do.
なお、 開口部 Q y Q z を介して移動する、 室 R a と室 R b間の流動媒体 cの 移動は、 一般的には室 R a側の開口部 Q y Q z近傍における流動化状態と、 室 1 側の開ロ部<3 Q z近傍における流動化状態の強弱差に影響され、 弱い流 動化状態の室から強い流動化状態の室へ、 流動媒体 cが移動する。 図 2 ( a ) ( b ) 、 ( c ) では、 室 R a 内の流動化状態が室 R a内で均一であり、 また室 R b内の流動化状態が室 R b内で均一であるので、 室 R a 内、 室 R b内の流動化ガ ス g a g bのガス速度の差で論じることができ、 ガス速度の遅い室から、 ガス 速度の速い方の室へ、 流動媒体 cが移動する。 The movement of the fluid medium c between the chamber R a and the chamber R b via the opening Q y Q z generally takes place in the fluidized state near the opening Q y Q z on the chamber Ra side. As a result, the fluid medium c moves from the weakly fluidized chamber to the strongly fluidized chamber, affected by the difference in the fluidized state near the opening <3 Qz on the chamber 1 side. In FIGS. 2 (a), (b) and (c), the fluidization state in the chamber R a is uniform in the chamber R a, and the fluidization state in the chamber R b is uniform in the chamber R b Therefore, the difference in the gas velocity of the fluidized gas gagb in the chamber R a and the chamber R b can be discussed. The fluid medium c moves to the faster chamber.
まず、 図 2 ( a ) を参照して、 2室 R a 、 R bが、 上端が界面の高さ近傍にあ る仕切壁 Xによって仕切られる場合について説明する。 2室 R a 、 R b の流動化 状態が等しい場合は、 室 R a側からはねあがった流動媒体 cが仕切壁 Xを越えて 室 R b側に移動する量と、 室 R b側からはねあがった流動媒体 cが仕切壁 Xを越 えて室 R a側へ移動する量が平均的に等しく なる。 よって、 局所的には 2室 R a . R b間の流動媒体 cの移動は生じているが、 全体的 (室 R a、 及び室 R bそれぞ れ全体、 以下同様) には流動媒体 c の移動量は 0 となる。  First, a case where the two chambers R a and R b are partitioned by a partition wall X whose upper end is near the height of the interface will be described with reference to FIG. When the fluidized state of the two chambers R a and R b is equal, the amount of the fluid medium c splashed from the chamber Ra side moves across the partition wall X to the chamber R b side, and from the chamber R b side The amount of the fluid medium c that has jumped over the partition wall X and moves toward the chamber Ra becomes equal on average. Therefore, the movement of the fluid medium c between the two chambers R a and R b occurs locally, but the movement of the fluid medium c as a whole (the entire chamber R a and the chamber R b, the same applies hereinafter). Is 0.
例えば、 室 R bの流動化状態を一定に保ったまま、 室 R a の流動化状態を室 R bの流動化状態より も強く した場合、 即ち室 R bの流動化ガス速度を一定に保つ たまま室 R a の流動化ガス速度を室 R b の流動化ガス速度よ り も大きく した場合. 室 R a側からはねあがった流動媒体 cが仕切壁 Xを超えて室 R b側へ移動する量 より、 室 R b側からはねあがった流動媒体 cが仕切壁 Xを超えて室 R a側へ移動 する量が多く なるため、 室 R a側から室 R b側への全体的な流動媒体 cの移動量 は 0 とはならず、 室 R a側から室 R b側への流動媒体 cの移動が生じる (図中、 この状態を白抜き矢印で表示している) 。  For example, when the fluidized state of the chamber R a is made stronger than the fluidized state of the chamber R b while the fluidized state of the chamber R b is kept constant, that is, the fluidized gas velocity of the chamber R b is kept constant When the velocity of the fluidizing gas in chamber R a is set to be higher than the velocity of the fluidizing gas in chamber R b, the fluid medium c splashed from chamber R a crosses partition X to chamber R b. Since the amount of the fluid medium c that has splashed from the chamber R b side moves beyond the partition wall X to the chamber Ra side than the amount of movement, the overall amount from the chamber Ra side to the chamber R b side increases. The moving amount of the fluid medium c does not become 0, and the fluid medium c moves from the chamber Ra side to the chamber Rb side (this state is indicated by a white arrow in the figure).
なお、 ここでは室 R bの流動化ガス速度を一定に保ったまま室 R a の流動化ガ ス速度を大きくするよ うに変化する場合を考えたが、 逆に室 R a の流動化ガス速 度を一定に保ったまま室 R bの流動化ガス速度を小さくするよ うに変化させても, 同様の効果が得られる。  Here, we considered a case where the fluidizing gas velocity in the chamber R a was increased while keeping the fluidizing gas velocity in the chamber R b constant. The same effect can be obtained by changing the fluidizing gas velocity in the chamber Rb so as to decrease it while keeping the degree constant.
いま、 室 R a、 室 R bにおいて流動媒体 cの外部からの補充や、 外部への抜き 出しを行わないものとすると、 室 R a側から室 R b側への流動媒体 cの移動によ り、 室 R aの流動層高は次第に低下し、 室 R bの流動層高は次第に上昇すること になる。  Now, assuming that the fluid medium c is not externally replenished or extracted outside in the chambers Ra and Rb, the fluid medium c moves from the chamber Ra side to the chamber Rb side. As a result, the height of the fluidized bed in the chamber Ra decreases gradually, and the height of the fluidized bed in the chamber Rb gradually increases.
室 R a側からはねあがり仕切壁 Xを超えて室 R b側へ移動する流動媒体 c の量 は、 室 R a側の流動層界面が低く なるほど減少するから、 上述の室 R a の流動層 高の低下によ り 、 室 R a側から室 R b側への流動媒体 cの移動量は減少する。 同 様に、 室 R b側からはねあがりが仕切壁 Xを超えて室 R a側へ移動する流動媒体 cの量は、 室 R b側の流動層界面が高く なるほど増加するから、 上述の室 R の 流動層高の上昇によ り、 室 R b側から室 R a側への流動媒体 c の移動量は増加す る。 The amount of the fluid medium c moving from the chamber Ra side to the chamber Rb side beyond the partition wall X decreases as the fluidized bed interface on the chamber Ra side becomes lower. Due to the decrease in bed height, the moving amount of the fluid medium c from the chamber Ra side to the chamber Rb side decreases. Similarly, the amount of the fluid medium c from which the splashing from the chamber Rb moves over the partition X to the chamber Ra side increases as the fluidized bed interface on the chamber Rb side increases. Of room R As the height of the fluidized bed increases, the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra increases.
このため、 室 R a と室 R bの流動化ガス g a、 g bのガス速度が同じである場 合を初期状態と して、 室 R a の流動化ガス速度が室 R bの流動化ガス速度よ り大 きく なるよ うに一定量の差をつけた場合、 始めは室 R a側から室 R b側への全体 的な流動媒体 cの移動が生じるが、 ある程度室 R a の流動層高が低下し、 室 R b の流動層高が上昇した段階において、 再度室 R a側から室 R b側への局所的な流 動媒体 c の移動量と室 R b側から室 R a側への局所的な流動媒体 cの移動量が全 体と して釣り合う ことによ り、 2室 R a、 R b間の流動媒体 cの全体的な移動量 は再び 0 となる。  For this reason, the case where the gas velocities of the fluidizing gases ga and gb in the chamber R a and the chamber R b are the same as the initial state, and the fluidizing gas velocity in the chamber Ra is If a certain amount of difference is set so as to be larger, initially the entire fluid medium c moves from the chamber Ra side to the chamber Rb side, but the fluidized bed height of the chamber Ra is somewhat increased. At the stage where the height of the fluidized bed in chamber Rb rises, the amount of local movement of fluid medium c from chamber Ra side to chamber Rb side again and from chamber Rb side to chamber Ra side Since the movement amount of the local fluid medium c is balanced as a whole, the overall movement amount of the fluid medium c between the two chambers Ra and Rb becomes zero again.
したがって、 室 R aの流動化ガス速度が、 室 R bの流動化ガス速度よ り大きく なるよ うに一定量の差をつけた場合において、 室 R aから室 R bへの流動媒体 c の移動を連続的に行うためには、 両室 R a、 R bに充填されている流動媒体 cの 量、 即ち流動層高が一定となるよ うに、 外部から室 R aへ流動媒体 cが供給され, かつ室 R bから外部へ流動媒体 cが抜き出されるよ うな構成とすればよいことに なる。  Therefore, when a certain amount of difference is made so that the fluidizing gas velocity in the chamber Ra is higher than the fluidizing gas velocity in the chamber Rb, the movement of the fluid medium c from the chamber Ra to the chamber Rb is performed. In order to perform the process continuously, the fluid medium c is supplied from the outside to the chamber Ra so that the amount of the fluid medium c filled in both chambers Ra and Rb, that is, the fluidized bed height is constant. In addition, the configuration may be such that the fluid medium c is extracted from the chamber Rb to the outside.
この場合、 室 R a と室 R bの流動化ガス速度の差を大きくするほど室 R aから 室 R bへの流動媒体 cの移動量を大きく確保することができるため、 室 R bの流 動化を止めた状態または最低流動化に近い状態、 即ち好ましく は流動化速度が 2 Umf以下、 さ らに好ましく は l Umf以下になるよ うにし、 室 R aの流動化速度を これに比べて十分高い状態、 好ましく は流動化速度力 Umf以上、 さ らに好まし く は 5Umf以上に保った場合に最大の流動媒体 cの移動量を確保することができ る。 ここで、 Umf とは最低流動化速度 (流動化が開始される流動化ガスの速 度) を lUmf と した単位である。 即ち、 5Umfは最低流動化速度の 5倍の速度で ある。  In this case, the larger the difference between the fluidizing gas velocities of the chambers R a and R b, the larger the movement amount of the fluid medium c from the chamber R a to the chamber R b can be. In a state where the fluidization is stopped or close to the minimum fluidization, that is, preferably, the fluidization speed is 2 Umf or less, and more preferably, 1 Umf or less. When the fluidization speed is maintained at a sufficiently high level, preferably at a fluidization velocity force of at least Umf, and more preferably at 5 Umf or more, the maximum movement amount of the fluid medium c can be ensured. Here, Umf is a unit where the minimum fluidization speed (speed of fluidized gas at which fluidization starts) is defined as lUmf. That is, 5Umf is 5 times the minimum fluidization rate.
次に、 図 2 ( b ) に示すよ うに、 2室 R a 、 R bが濃厚層に潜った開口部 Q y を有する仕切壁 Yによって仕切られている場合について考える。 2室 R a、 R b の流動化状態等しい場合 (室 R a の流動化ガス速度と、 室 R bの流動化ガス速度 とが等しい場合) は、 開口部 Q yを介しての室 R a側から室 R b側への、 あるい は室 R a側から室 R b側への流動媒体 cの拡散量は釣り合うため、 局所的には 2 室 R a 、 R b間の流動媒体 cの移動は生じているけれども、 全体的な流動媒体 c の移動量は 0である。 Next, as shown in FIG. 2 (b), let us consider a case where the two chambers R a and R b are partitioned by a partition wall Y having an opening Q y buried in the dense layer. When the fluidized state of the two chambers Ra and Rb is equal (when the fluidized gas velocity of the chamber Ra is equal to the fluidized gas velocity of the chamber Rb), the chamber Ra through the opening Qy From side to room R b side, or Since the diffusion amount of the fluid medium c from the chamber Ra side to the chamber Rb side is balanced, the movement of the fluid medium c between the two chambers R a and R b occurs locally, but the overall flow The moving amount of the medium c is 0.
室 R bの流動化状態を同一に保ったまま、 室 R aの流動化状態を室 R bの流動 化状態より も強く した場合、 即ち室 R b の流動化ガス速度を一定に保ったまま室 R a の流動化ガス速度を室 R bの流動化ガス速度より も大きく した場合、 室 R a の濃厚層内には室 R bの濃厚層內に比べよ り多量の気泡が発生するため、 室 R a のみかけの層密度は室 R bのみかけの層密度に比べて低下する。 このため、 室 R a と室 R bの各々の流動層高が等しければ、 室 R aの層下部の開口部 Q y近傍に おける圧力は、 室 R bの層下部の開口部 Q y近傍における圧力よ り低く なる。 こ の圧力差を駆動力とする誘引作用によ り 、 室 R b側から室 R a側へと流動媒体 c の移動が開口部 Q y全体に渡って生じる (図中、 この状態を白抜き矢印で表示し ている) 。  When the fluidized state of the chamber Rb is made stronger than that of the chamber Rb while the fluidized state of the chamber Rb is kept the same, that is, while the fluidized gas velocity in the chamber Rb is kept constant When the fluidizing gas velocity in the chamber R a is set higher than the fluidizing gas velocity in the chamber R b, more bubbles are generated in the dense layer of the chamber R a than in the dense layer 室 of the chamber R b. The apparent layer density of the chamber R a is lower than the apparent layer density of the chamber R b. For this reason, if the heights of the fluidized beds of the chambers Ra and Rb are equal, the pressure near the opening Qy near the lower part of the chamber Ra is equal to the pressure near the opening Qy near the lower part of the chamber Rb. Lower than pressure. Due to the attraction effect using this pressure difference as a driving force, the movement of the fluid medium c occurs from the chamber Rb side to the chamber Ra side over the entire opening Qy. This is indicated by the arrow).
逆に、 室 R a の流動化ガス速度を一定に保ったまま室 R b の流動化ガス速度を 小さく した場合は、 若干状況が異なる。 ここで考えている流動媒体 cの移動は、 濃厚層内に設けられた仕切壁 Yの開口部 Q yを介して生じており、 室 R a と室 R bの層下部の開口部 Q y近傍における圧力差がその駆動力となっている。 言い換 えれば、 室 R a と室 R bの層下部の開口部 Q y近傍における圧力差が、 流動媒体 cが開口部 Q yを通過して移動するのに必要な抵抗力と釣り合つていることにな るが、 この抵抗力は、 粒子層のみかけの層粘性と密接な関係がある。  Conversely, when the fluidizing gas velocity in the chamber Rb is reduced while the velocity of the fluidizing gas in the chamber Ra is kept constant, the situation is slightly different. The movement of the fluid medium c considered here occurs through the opening Qy of the partition wall Y provided in the dense layer, and the vicinity of the opening Qy at the lower part of the layer of the chambers Ra and Rb. Is the driving force. In other words, the pressure difference near the opening Qy in the lower part of the layer between the chambers R a and R b balances the resistance required for the fluid medium c to move through the opening Q y. However, this resistance is closely related to the apparent layer viscosity of the particle layer.
次に、 図 2 ( b ) 、 図 3、 図 4を参照して説明する。  Next, a description will be given with reference to FIGS. 2 (b), 3 and 4.
図 3に、 流動媒体 cの流動化状態と粒子層のみかけの層粘性との関係を示す。 室 R b の流動化ガス g b のガス速度を、 図 3に示す範囲で変化させ、 一方、 室 R a の流動化ガス g a のガス速度は、 一定に保った場合を示している。 単純パブリ ング流動層(沈降流なし)の場合、 流動化ガス速度が 1 Umf以下の固定層では流 動層の粘性が無限大にほぼ等しく なる。 流動化ガス速度が 1 Umf以上で流動層 の粘性が急激に減少する。 室 R b (沈降室)の場合、 沈降する流動媒体と上昇する 流動化ガスの相対速度が生じるので、 流動化ガス速度が、 1 Umf以下でも、 流 動化ガス相対速度が、 1 Umf以上の流動層となるので、 粘性が変化し、 移動量 (循環量) が制御できる。 よって、 流動媒体 c の移動量 (循環量) を制御するた めの流動化ガス量の変化量を最小にすることができる。 すなわち、 循環量を制御 するためのプロセス因子 (ここでは流動化ガス量) の変化が、 他のプロセス因子 に及ぼす影響を最小にすることができる。 Figure 3 shows the relationship between the fluidized state of the fluid medium c and the apparent layer viscosity of the particle layer. This shows a case where the gas velocity of the fluidizing gas gb in the chamber R b is changed in the range shown in FIG. 3, while the gas velocity of the fluidizing gas ga in the chamber R a is kept constant. In the case of a simple publishing fluidized bed (no sedimentation flow), the viscosity of the fluidized bed in a fixed bed with a fluidizing gas velocity of 1 Umf or less is almost equal to infinity. When the fluidizing gas velocity exceeds 1 Umf, the viscosity of the fluidized bed decreases rapidly. In the case of the chamber R b (sedimentation chamber), the relative velocity between the settling fluid medium and the rising fluidizing gas occurs, so that even if the fluidizing gas velocity is 1 Umf or less, the relative velocity of the fluidizing gas is 1 Umf or more. As it becomes a fluidized bed, the viscosity changes and the amount of movement (Circulation amount) can be controlled. Therefore, the amount of change in the amount of fluidizing gas for controlling the amount of movement (circulation) of the fluid medium c can be minimized. In other words, the effect of changes in the process factor for controlling the circulation amount (here, the amount of fluidized gas) on other process factors can be minimized.
したがって、 室 R a の流動化ガス速度を一定に保ったまま室 R bの流動化ガス 速度を小さく した場合、 室 R bの流動化ガス速度の絶対値に応じて、 流動媒体 c の移動量の変化の挙動が異なる。 初期状態において、 室 R a及び室 R bの双方が 十分強流動化した状態、 即ち流動化ガス速度が 5 Umf を超える状態にあつたと する。 この状態から、 室 R b の流動化ガス速度を減じてゆく と、 室 R b の流動化 ガス相対速度 (流動媒体の沈降速度と流動化ガスの上昇速度との相対速度) が 2 Umf程度を超える範囲では、 室 R bの流動化ガス速度を小さくするほど、 室 R a と室 R bの層下部の開口部 P y近傍における圧力差が大きく なるため、 室 R b から室 R aへの流動媒体 c の移動量が大き く なる。 しかし、 室 R bの流動化ガス 相対速度 (流動媒体の沈降速度と流動化ガスの上昇速度との相対速度) が 2 Umf 程度よ り小さい範囲では、 室 R bの流動化ガス速度が小さいほど、 層粘性が急激 に大き く なり、 流動媒体 cが仕切壁 Yの開口部 Q yを通過するための抵抗力が大 きく なるため、 室 R bから室 R aへの流動媒体 c の移動量は逆に小さく なる。 図 4に、 室 R a の流動化ガス g aのガス相対速度 (流動媒体の沈降速度と流動 化ガスの上昇速度との相対速度) を、 一定に保った場合 ( 4 Umf、 5 Umf, 6 Umf の 3つのケースをそれぞれ示す) に、 室 R b の流動化ガス g bのガス速度 を変化させた場合に、 室 R aから室 R bへの流動媒体 cの移動量がどのよ うに変 化するかを示す。 図 4に示すよ うに、 室 R bの流動化ガス相対速度 (流動媒体の 沈降速度と流動化ガス との相対速度) が 2 Umf程度より小さい範囲において、 流動化ガス相対速度 (流動媒体の沈降速度と流動化ガスの上昇速度との相対速 度) に対して、 ほぼ線形的に流動媒体 c の移動量が変化することがわかる。 即ち、 この範囲を積極的に利用することによ り、 少ない流動化ガス量のもとで、 流動化 ガス量のわずかな変化によ り大きな流動媒体 c の移動量の変化を引き起こすこと ができる。 また、 図 4では室 R aの流動化状態が一定に保たれている場合を示し ているが、 本図のよ うに室 R aの流動化状態は十分強い流動化の状態に保たれて いることが特に好ましい。 Therefore, if the velocity of the fluidizing gas in the chamber R b is reduced while keeping the velocity of the fluidizing gas in the chamber R a constant, the amount of movement of the fluid medium c according to the absolute value of the velocity of the fluidizing gas in the chamber R b Change behavior is different. In the initial state, it is assumed that both the chamber Ra and the chamber Rb have sufficiently fluidized, that is, the fluidized gas velocity exceeds 5 Umf. From this state, if the velocity of the fluidizing gas in the chamber R b is reduced, the relative velocity of the fluidizing gas in the chamber R b (the relative velocity between the settling velocity of the fluid medium and the rising velocity of the fluidizing gas) becomes about 2 Umf. In the range above, as the fluidizing gas velocity in the chamber Rb decreases, the pressure difference near the opening Py at the lower part of the layer between the chamber Rb and the chamber Rb increases, so that the pressure from the chamber Rb to the chamber Ra increases. The moving amount of the fluid medium c increases. However, when the relative velocity of the fluidizing gas in chamber R b (the relative velocity between the settling velocity of the fluidized medium and the rising velocity of the fluidizing gas) is smaller than about 2 Umf, the lower the velocity of the fluidizing gas in chamber R b, Since the bed viscosity increases sharply and the resistance of the fluid medium c to pass through the opening Qy of the partition wall Y increases, the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra is increased. Becomes smaller on the contrary. Figure 4 shows that the relative velocity of the fluidized gas ga in the chamber Ra (the relative velocity between the settling velocity of the fluidized medium and the rising velocity of the fluidized gas) is kept constant (4 Umf, 5 Umf, 6 Umf). The three cases are shown below) .However, when the gas velocity of the fluidizing gas gb in the chamber Rb is changed, how does the movement amount of the flowing medium c from the chamber Ra to the chamber Rb change? Indicates As shown in Fig. 4, when the relative velocity of the fluidizing gas in the chamber Rb (the relative velocity between the sedimentation velocity of the fluidizing medium and the fluidizing gas) is less than about 2 Umf, the relative velocity of the fluidizing gas (the sedimentation of the fluidizing medium) It can be seen that the moving amount of the fluid medium c changes almost linearly with respect to the velocity (the relative speed between the velocity and the rising velocity of the fluidizing gas). In other words, by actively using this range, a small change in the amount of fluidized gas can cause a large change in the amount of movement of the fluidized medium c under a small amount of fluidized gas. . Fig. 4 shows the case where the fluidization state of the chamber Ra is kept constant, but as shown in this figure, the fluidization state of the chamber Ra is maintained at a sufficiently strong fluidization state. Is particularly preferred.
発明者らの知見によれば、 図 4における室 R aから室 R bへの流動媒体 c の移 動量の最大値を与える流動化ガス g bのガス相対速度 (流動媒体の沈降速度と流 動化ガスとの相対速度) は約 1. 7Umfである。 以上の観点からは、 室 R bの流動 化ガス相対速度 (流動媒体の沈降速度と流動化ガスとの相対速度) は好ましく は lUmf〜2Umfの範囲、 さらに好ましく は lUmf〜1. 7Umf の範囲で調整するのが よく 、 また室 R a の流動化ガス速度は、 好ましく は 4Umf以上、 さ らに好ましく は 5Umf以上に保つのがよい。  According to the findings of the inventors, the relative velocity of the fluidizing gas gb (the sedimentation velocity of the fluidizing medium and the fluidizing velocity of the fluidizing gas gb) that gives the maximum amount of movement of the fluidizing medium c from the chamber Ra to the chamber Rb in FIG. The relative velocity with the gas is about 1.7 Umf. From the above viewpoint, the relative velocity of the fluidizing gas in the chamber Rb (the relative velocity between the settling velocity of the fluidizing medium and the fluidizing gas) is preferably in the range of lUmf to 2Umf, more preferably in the range of lUmf to 1.7Umf. The flow rate of the fluidizing gas in the chamber Ra is preferably adjusted to 4 Umf or more, more preferably 5 Umf or more.
なお、 室 R b の流動化ガス g b のガス速度を一定に保ったまま室 R a の流動化 ガス g aのガス速度を大きく した場合でも、 あるいは室 R aの流動化ガス g aの ガス速度を一定に保ったまま室 R b の流動化ガス g b のガス速度を小さく した場 合でも、 流動媒体 cの外部からの補充や、 外部への抜き出しを行わないものとす ると、 室 R b側から室 R a側への流動媒体 cの移動により 、 室 R bの流動層高は 低下し、 室 R a の流動層高は上昇することになる。  Even if the gas velocity of the fluidizing gas ga in the chamber R a is increased while the gas velocity of the fluidizing gas gb in the chamber R b is kept constant, or the gas velocity of the fluidizing gas ga in the chamber R a is kept constant. Even if the gas velocity of the fluidizing gas gb in the chamber R b is reduced while maintaining the pressure in the chamber R b, if the fluid medium c is not replenished or extracted from the outside, Due to the movement of the fluid medium c to the chamber Ra side, the height of the fluidized bed in the chamber Rb decreases and the height of the fluidized bed in the chamber Ra increases.
即ち、 室 R a と室 R bの流動化ガス速度が同じである場合を初期状態と して、 室 R a側の流動化ガス速度が室 R b側の流動化ガス速度よ り大きく なるよ うに、 一定量の差をつけた場合、 差をつけた直後は室 R b側から室 R a側への流動媒体 cの移動が生じるが、 ある程度室 R a の流動層高が上昇し、 室 R b の流動層高が 低下すると、 室 R a の層下部の開口部 Q y近傍における圧力が高く なり、 室 R b の層下部の開口部 Q y近傍における圧力が低く なるため、 流動媒体 cの移動の駆 動力であった室 R a と室 R bの層下部の開口部 Q y近傍における圧力差が小さく なる。 この圧力差が 0 となった段階において、 2室 R a、 R b間の流動媒体 cの 全体的な移動量は再び 0 となる。  That is, when the fluidized gas velocity in the chambers R a and R b is the same as the initial state, the fluidized gas velocity in the chamber Ra is higher than the fluidized gas velocity in the chamber R b. Thus, when a certain amount of difference is made, the fluid medium c moves from the chamber Rb to the chamber Ra immediately after the difference is made, but the fluidized bed height of the chamber Ra rises to some extent, When the height of the fluidized bed of Rb decreases, the pressure near the opening Qy at the bottom of the chamber Ra increases, and the pressure near the opening Qy at the bottom of the chamber Rb decreases. The pressure difference in the vicinity of the opening Qy at the bottom of the layer between the chambers Ra and Rb, which was the driving force for the movement of the air, becomes smaller. When the pressure difference becomes zero, the overall movement amount of the fluid medium c between the two chambers Ra and Rb becomes zero again.
したがって、 室 R a の流動化ガス速度が、 室 R b の流動化ガス相対速度 (流動 媒体の沈降速度と流動化ガスの上昇速度との相対速度) よ り大きく なるよ うに一 定量の差をつけた場合において、 室 R bから室 R aへの流動媒体 cの移動を連続 的に行うためには、 両室 R a、 R bに充填されている流動媒体 c の量、 即ち流動 層高が一定となるよ うに、 外部から室 R bへ流動媒体 cが供給され、 かつ室 R a から外部へ流動媒体 cが抜き出されるよ うな構成とすればよいことになる。 次に、 図 2 ( c ) を参照して説明する。 図 2 ( c ) では、 上部に開口部 P z を, 下部に開口部 Q z を有するので、 上部の開口部 P zでは、 図 2 ( a ) に関し前述 した現象が生じ、 下部の開口部 Q zでは、 図 2 ( b ) に関し前述した現象が生じ る。 Therefore, a certain amount of difference is set so that the velocity of the fluidizing gas in the chamber R a becomes larger than the relative velocity of the fluidizing gas in the chamber R b (the relative velocity between the settling velocity of the fluid medium and the rising velocity of the fluidizing gas). In this case, in order to continuously move the fluid medium c from the chamber Rb to the chamber Ra, the amount of the fluid medium c filled in both chambers Ra and Rb, that is, the height of the fluidized bed, In this case, the fluid medium c may be supplied from the outside to the chamber Rb, and the fluid medium c may be withdrawn from the chamber Ra to the outside so that the pressure is constant. Next, description will be made with reference to FIG. In FIG. 2 (c), the opening Pz is provided at the upper part and the opening Qz is provided at the lower part. Therefore, at the upper opening Pz, the phenomenon described above with reference to FIG. At z, the phenomenon described above with reference to Fig. 2 (b) occurs.
したがって、 例えば、 室 R bの流動化状態を一定に保ったまま、 室 R a の流動 化状態を室 R bの流動化状態より も強く した場合、 逆に室 R a の流動化ガス速度 を一定に保ったまま室 R bの流動化ガス相対速度 (流動媒体の沈降速度と流動化 ガスとの相対速度) を小さくするよ うに変化させた場合、 開口部 P zでは、 室 R a側から室 R b側への流動媒体 c の移動が生じ、 開口部 Q z では、 室 R a側から 室 R b側への流動媒体 cの移動が生じる。 よって、 室 R a と室 R b間で流動媒体 c の循環が生じる。  Therefore, for example, if the fluidized state of the chamber R a is made stronger than the fluidized state of the chamber R b while keeping the fluidized state of the chamber R b constant, the fluidized gas velocity of the chamber R a If the relative velocity of the fluidizing gas in the chamber R b (the relative velocity between the settling velocity of the fluid medium and the relative velocity of the fluidizing gas) is changed to be small while maintaining the same, the opening Pz will start from the chamber Ra side. Movement of the fluid medium c to the chamber R b side occurs, and at the opening Q z, movement of the fluid medium c from the chamber Ra side to the chamber R b side occurs. Therefore, circulation of the fluid medium c occurs between the chamber Ra and the chamber Rb.
この場合、 開口部 Q z を介する流動媒体 cの移動量と、 開口部 P z を介する流 動媒体 cの移動量は、 室 R a の流動化状態を室 R bの流動化状態より も強く した 初期の状態では、 必ずしも等しく はない。 しかし、 ある過渡状態を経た後には、 流動媒体 c の移動量の相違に起因する流動層高の変化によ り、 各々の開口部 Q z P z を介する流動媒体 c の移動量が等しく なり、 ある定常的な流動媒体 c の循環 状態が得られる。  In this case, the amount of movement of the fluid medium c through the opening Q z and the amount of movement of the fluid medium c through the opening P z are such that the fluidized state of the chamber Ra is stronger than the fluidized state of the chamber Rb. In the initial state, they are not always equal. However, after a certain transient state, the moving amount of the fluid medium c through each opening Q z P z becomes equal due to the change in the fluidized bed height caused by the difference in the moving amount of the fluid medium c. A certain steady state of the circulation of the fluid medium c is obtained.
例えば、 開口部 Q z を介する流動媒体 c の室 R bから室 R aへの移動量が、 開 口部 P z を介する流動媒体 cの室 R aから室 R bへの移動量よ り も大きい場合に ついて考える。 この場合、 室 R bの流動層高は次第に低く なり、 同時に室 R aの 流動層高は次第に高く なる。 室 R bの流動層高の低下は室 R bの炉床近傍の圧力 を低下させ、 一方で室 R aの流動層高の上昇は室 R aの炉床近傍の圧力を上昇さ せる。 これにより、 開口部 Q z を挟んだ室 R a と室 R bの圧力差が小さく なり、 すなわち開口部 Q z を介した室 R bから室 R aへの流動媒体 c の移動量は減少す る。 また、 室 R aの流動層高が上昇することによ り、 仕切壁 Zの上端を超えて室 R aから室 R bへ流動媒体 cが飛び込みやすくなる。 即ち、 開口部 P z を介する 流動媒体 cの室 R aから室 R bへの移動量は増加する。 以上の効果によ り、 開口 部 Q z を介する流動媒体 c の室 R bから室 R aへの移動量は減少し、 開口部 P z を介する流動媒体 cの室 R aから室 R bへの移動量は増加するため、 室 R a と室 R b の流動層高はさらに変化し、 流動媒体 c の室 R bから室 R a への移動量と室 R aから室 R bへの移動量が等しく なるところでバランスする。 For example, the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra via the opening Qz is greater than the amount of movement of the fluid medium c from the chamber Ra to the chamber Rb via the opening Pz. Think about the bigger case. In this case, the height of the fluidized bed in the chamber Rb gradually decreases, and at the same time, the height of the fluidized bed in the chamber Ra gradually increases. A decrease in the fluidized bed height of the chamber Rb decreases the pressure near the hearth of the chamber Rb, while an increase in the fluidized bed height of the chamber Ra increases the pressure near the hearth of the chamber Ra. As a result, the pressure difference between the chamber R a and the chamber R b sandwiching the opening Q z is reduced, that is, the amount of movement of the fluid medium c from the chamber R b to the chamber Ra via the opening Q z is reduced. You. In addition, as the height of the fluidized bed in the chamber Ra increases, the fluid medium c easily jumps from the chamber Ra to the chamber Rb beyond the upper end of the partition Z. That is, the amount of movement of the fluid medium c from the chamber Ra to the chamber Rb via the opening Pz increases. Due to the above effects, the amount of movement of the fluid medium c from the chamber Rb to the chamber Ra through the opening Qz decreases, and the fluid medium c from the chamber Ra to the chamber Rb through the opening Pz. Room R a and room R The height of the fluidized bed of R b further changes and balances where the amount of movement of the fluid medium c from chamber R b to chamber R a and the amount of movement of chamber R a to chamber R b are equal.
以上において、 最終的にバランス して得られた流動媒体 cの移動量 (循環量) は、 開口部 Q z の幅、 高さ、 面積及び形状と、 仕切壁 Zの高さなどの炉 Fの形状 の条件と、 各室に供給する流動化ガス量によって決まる。 したがって、 所望の循 環量が得られるよ うにするためには、 流動化ガス量の供給量を考慮して、 開口部 Q z の幅、 高さ、 面積及び形状と、 仕切壁 Zの高さなどの炉 Fの形状を決定すれ ば良い。  In the above, the movement amount (circulation amount) of the fluid medium c finally obtained by balancing is determined by the width, height, area and shape of the opening Q z and the furnace F such as the height of the partition wall Z. It depends on the shape conditions and the amount of fluidizing gas supplied to each chamber. Therefore, in order to obtain a desired circulation amount, the width, height, area and shape of the opening Q z and the height of the partition wall Z are taken into consideration in consideration of the supply amount of the fluidizing gas amount. The shape of the furnace F should be determined.
ここで、 図 6 を参照して、 ガス化室 1 と沈降チヤ一燃焼室 4 との間を開口部 2 5を通って循環する流動媒体 c の循環量の定義について以下説明する。 図中、 ガ ス化炉 1 0 1は、 図 1 に記載されたものと同じ構成であるが、 説明をわかりやす くするため、 ガス化室 1 の強流動化域 1 b と、 弱流動化域 4 aである沈降チヤ一 燃焼室 4 と、 開口部 2 5が形成された仕切壁 1 5 とで構成されるように記載され、 他の構成要素は省略してある。  Here, with reference to FIG. 6, the definition of the amount of circulation of the fluid medium c circulating through the opening 25 between the gasification chamber 1 and the settling chamber 1 combustion chamber 4 will be described below. In the figure, the gasification furnace 101 has the same configuration as that shown in Fig. 1, but for simplicity of explanation, the strong fluidization zone 1 b of the gasification chamber 1 and the weak fluidization It is described as being constituted by the sedimentation chamber 1 which is the area 4a, the combustion chamber 4, and the partition wall 15 in which the opening 25 is formed, and other components are omitted.
ガス化室 1 の強流動化域 1 b の流動化ガス g 1 (図 1 )の空塔速度を V 1 b と し、 弱流動化域 4 a である沈降チヤ一燃焼室 4の流動化ガス g 4 (図 1 )の空塔速度を V 4 a とする。 空塔速度 V l bは、 空塔速度 V 4 a よ り大きいので(V 1 b > V 4 a )、 ガス化室 1 の流動化状態は、 沈降チヤ一燃焼室 4の流動化状態よ り強く 、 沈 降チヤ一燃焼室 4の炉底部 B 4 a とガス化室 1 の強流動化域 1 b の炉底部 B 1 b とにおいて圧力差がつき、 両流動化域の間に存在する仕切壁 1 5の下部の開口部 2 5を通り流動媒体 cが循環し移動する。 炉底部圧力 (炉底部における流動層圧 力) を P m [Pa]、 流動層のかさ密度を D f [kg/m3]、 重力加速度を g a [kg/s2]、 流動層の高さ(層高)を H f [m]とすれば、 The superficial velocity of the fluidized gas g1 (Fig. 1) in the strong fluidized zone 1b of the gasification chamber 1 is V1b, and the fluidized gas in the sedimentation chamber 1 combustion chamber 4, which is the weak fluidized zone 4a. Let the superficial velocity of g 4 (Figure 1) be V 4 a. Since the superficial velocity V lb is higher than the superficial velocity V 4 a (V 1 b> V 4 a), the fluidization state of the gasification chamber 1 is stronger than that of the sedimentation chamber and combustion chamber 4. There is a pressure difference between the bottom B 4 a of the sedimentation chamber 1 combustion chamber 4 and the bottom B 1 b of the strong fluidization zone 1 b of the gasification chamber 1, and there is a partition wall between the two fluidization zones. The fluid medium c circulates and moves through the opening 25 at the bottom of 15. The furnace bottom pressure (fluid bed pressure at the furnace bottom) is P m [Pa], the bulk density of the fluid bed is D f [kg / m 3 ], the gravitational acceleration is ga [kg / s 2 ], and the height of the fluid bed is If (floor height) is H f [m],
P m = D f X g a X H f . · · ( 1 ) の関係が成立する。  P m = D f X g a X H f. (1)
沈降チヤ一燃焼室 4は弱流動化域 4 aであり、 気泡が少ないため、 流動層かさ 密度 D f 4 aが大きい (空隙が少なく 、 粒子濃度が濃い) 。 一方、 ガス化室 1 の 強流動化域 1 bでは、 気泡が多いため、 流動層かさ密度 D f 1 bが小さい (空隙 が多く 、 粒子密度が薄い) 。 よって、 沈降チヤ一燃焼室 4 (弱流動化域 4 a )の流 動層かさ密度 D f 4 aは、 ガス化室 1 の強流動化域 1 bの流動層かさ密度 D f 1 b よ り も大きく なり (D f 4 a > D f l b ) 、 圧力差が生じて、 チヤ一燃焼室 4 (弱流動化域 4 a )からガス化室 1 の強流動化域 1 b の方へ流動媒体 c が移動する。 これに対して、 図 7に示すよ うに、 ガス化室 1の強流動化域 1 bの空塔速度 V 1 bが、 沈降チヤ一燃焼室 4の空塔速度 V 4 a に等しいとき(V I b = V 4 a )は、 ガス化室 1 の強流動化域 1 bの炉底部 B 1 bにおける炉底部圧力 P m 1 bは、 沈 降チヤ一燃焼室 4の炉底部 B 4 a における炉底部圧力 P m 4 a に等しく なる(P m 1 b = P m 4 a )ので、 仕切壁 1 5の下部の開口部 2 5では、 マクロ的にみると沈 降チヤ一燃焼室 4からガス化室 1 の強流動化域 1 bへの流動媒体 c の移動も、 ガ ス化室 1から沈降チヤ一燃焼室 4への流動媒体 c の移動も生じない。 The sedimentation chamber 4 has a weak fluidized zone 4a and a small amount of air bubbles, so the fluidized bed bulk density Df4a is large (there are few voids and the particle concentration is high). On the other hand, in the strong fluidization zone 1 b of the gasification chamber 1, the bulk density D f 1 b of the fluidized bed is small because there are many bubbles (there are many voids and the particle density is low). Therefore, the fluidized bed bulk density D f 4 a of the sedimentation chamber 1 combustion chamber 4 (weak fluidized zone 4 a) is the fluidized bed bulk density D f 1 of the strong fluidized zone 1 b of the gasification chamber 1. b (D f 4 a> D flb), and a pressure difference is generated from the char combustion chamber 4 (weak fluidization zone 4 a) to the strong fluidization zone 1 b of the gasification chamber 1 The fluid medium c moves. On the other hand, as shown in FIG. 7, when the superficial velocity V 1 b of the strong fluidization zone 1 b of the gasification chamber 1 is equal to the superficial velocity V 4 a of the sedimentation chamber 1 combustion chamber 4 (VI b = V 4 a) is the furnace bottom pressure P m 1 b at the bottom B 1 b of the strong fluidization zone 1 b of the gasification chamber 1, and the furnace pressure at the bottom B 4 a of the settling chamber 1 Since the bottom pressure is equal to P m 4 a (P m 1 b = P m 4 a), the lower opening 25 of the partition wall 15 gasifies from the sedimentation chamber 1 combustion chamber 4 from a macro perspective. Neither the movement of the fluid medium c to the strong fluidization zone 1 b of the chamber 1 nor the movement of the fluid medium c from the gasification chamber 1 to the sedimentation chamber 1 combustion chamber 4 occurs.
しかし、 流動層内のすべての流動化域で同じ空塔速度である流動層において、 ミクロ的に 1個 1個の粒子に着目すると、 粒子は任意の方向に絶えず移動してい るので、 ガス化室 1 と沈降チヤ一燃焼室 4の間の仕切壁 1 5の下部の開口部 2 5 にて、 ガス化室 1 と沈降チヤ一燃焼室 4 との間を流動媒体粒子 cの双方向の流れ が生じ、 流動媒体粒子 cの交換が生じている。  However, in a fluidized bed with the same superficial velocity in all fluidized areas in the fluidized bed, focusing on microscopic particles one by one, the particles are constantly moving in an arbitrary direction, so gasification At the lower opening 25 of the partition wall 15 between the chamber 1 and the sedimentation-chamber combustion chamber 4, the bidirectional flow of the fluid medium particles c flows between the gasification chamber 1 and the sedimentation-chamber combustion chamber 4. And the exchange of the fluid medium particles c has occurred.
図 6のよ うなガス化室 1 と沈降チヤ一燃焼室 4 との間の流動媒体 c のマクロな 一方向の移動を対流と称することにする。 図 7のよ うな流動媒体 cのガス化室 1 と沈降チヤ一燃焼室 4 との間の双方向の粒子の移動を拡散と称するこ とにする。 図 6の対流が生じている領域でも、 ミクロな領域での 1個 1個の粒子に着目する と、 図 7のよ うな拡散が生じている。  The macroscopic one-way movement of the fluid medium c between the gasification chamber 1 and the settling chamber 1 as shown in Fig. 6 is called convection. The two-way movement of particles between the gasification chamber 1 of the fluid medium c and the settling chamber 1 as shown in Fig. 7 is called diffusion. Even in the region where convection occurs in Fig. 6, if attention is paid to each particle in the micro region, diffusion as shown in Fig. 7 occurs.
これに対し、 図 6にょ うなマク ロな一方向流れの質量流量 [kg/s]を循環量と定 義する。 この循環量は、 流動層の炉底部の圧力差と、 上流側の流動層の粘性と下 流側の流動層の粘性によって定まる (特に、 上流側の流動層の粘性が支配的であ る) 。 図 6において、 沈降チヤ一燃焼室 4の炉底部 B 4 aの炉底部圧力 P m 4 a と、 ガス化室 1の炉底部 B 1 bの炉底部圧力 P m 1 b との差が大きいほど、 仕切 壁 1 5の下部の開口部 2 5を通じて、 沈降チヤ一燃焼室 4からガス化室 1への流 動媒体 cの移動量 (循環量) は、 増加する。 また、 仕切壁 1 5の下部の開口部 2 5 .は、 流動媒体 c の流れに対して絞り抵抗になる。 したがって、 沈降チヤ一燃焼 室 4の流動層のみかけの粘性が小さいほど、 開口部 2 5での絞り抵抗を流動媒体 cが流れやすく なり、 循環量が増加する。 流動層のみかけの粘性は、 流動層の流 動化状態、 すなわち流動化ガスの空塔速度 V 1 b、 V 4 a に依存して決まる。 し たがって、 ガス化室 1 の強流動化域 1 b の流動化ガス速度 V 1 b を変化させ、 あ るいは沈降チヤ一燃焼室 4の流動化ガスの空塔速度 V 4 a を変化させて、 みかけ の粘性を変化させることで、 循環量を制御することができる。 On the other hand, the mass flow rate [kg / s] of the macro one-way flow shown in Fig. 6 is defined as the circulation amount. The amount of circulation is determined by the pressure difference at the bottom of the fluidized bed, the viscosity of the upstream fluidized bed and the viscosity of the downstream fluidized bed (especially, the viscosity of the upstream fluidized bed is dominant). . In FIG. 6, as the difference between the furnace bottom pressure P m 4 a of the bottom B 4 a of the sedimentation chamber 1 and the bottom B 1 a of the gasification chamber 1 and the bottom pressure P m 1 b of the bottom B 1 b of the gasification chamber 1 increases, The amount of movement (circulation) of the fluid medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 increases through the lower opening 25 of the partition wall 15. The lower opening 25 of the partition wall 15 acts as a throttle resistance against the flow of the flowing medium c. Therefore, the smaller the apparent viscosity of the fluidized bed of the settling chamber 1 combustion chamber 4 is, the easier the fluid medium c flows through the throttle resistance at the opening 25 and the amount of circulation increases. The apparent viscosity of the fluidized bed is It depends on the mobilization state, that is, the superficial velocity V 1 b and V 4 a of the fluidizing gas. Therefore, the fluidized gas velocity V 1 b in the strong fluidization zone 1 b of the gasification chamber 1 is changed, or the superficial velocity V 4 a of the fluidized gas in the sedimentation chamber 1 combustion chamber 4 is changed. The amount of circulation can be controlled by changing the apparent viscosity.
例えば、 ガス化室 1 の全領域の流動化状態と、 沈降チヤ一燃焼室 4の全領域の 流動化状態とを同じにすれば、 循環量は 0になる。 しかし、 このようにして、 循 環量を 0にしても、 仕切壁 1 5の下部の開口部 2 5では拡散による 2室 1、 4間 の流動媒体 c の交換が行われるので、 この流動媒体 c の交換に同伴して、 ガス化 室 1の強流動化域 1 bの熱分解残渣 (流動化しない大型の残渣は除く) は沈降チ ヤー燃焼室 4へ移動して、 燃焼する。  For example, if the fluidized state of the entire area of the gasification chamber 1 and the fluidized state of the entire area of the sedimentation chamber and the combustion chamber 4 are made the same, the circulation amount becomes zero. However, in this way, even if the circulation amount is set to 0, the fluid medium c between the two chambers 1 and 4 is exchanged by diffusion at the opening 25 at the lower part of the partition wall 15. Along with the exchange of c, the pyrolysis residue (excluding large non-fluidized residue) in the strong fluidization zone 1 b of the gasification chamber 1 moves to the sedimentation char combustion chamber 4 and burns.
したがって、 吸熱反応である原料の熱分解が行われるガス化室 1 より も、 残渣 燃焼が行われる沈降チヤ一燃焼室 4の方が流動層温度が高く なる。 仕切壁 1 5の 下部の開口部 2 5では拡散による 2室 1、 4間の流動媒体 cの交換が行われるの で、 この流動媒体 c の交換によ り、 流動媒体 c のもつ顕熱も、 2室 1、 4間で交 換される。 したがって、 温度の高い沈降チヤ一燃焼室 4から、 温度の低いガス化 室 1へ流動媒体 c の顕熱が移動する。  Therefore, the fluidized bed temperature is higher in the sedimentation-chamber combustion chamber 4 where the residue is burned than in the gasification chamber 1 where the pyrolysis of the raw material as the endothermic reaction is performed. In the lower opening 25 of the partition wall 15, the fluid medium c is exchanged between the two chambers 1 and 4 by diffusion, so that the exchange of the fluid medium c also causes the sensible heat of the fluid medium c to change. , Exchanged between rooms 1 and 4. Therefore, the sensible heat of the fluidized medium c is transferred from the high-temperature settling chamber combustion chamber 4 to the low-temperature gasification chamber 1.
以上のことから、 沈降チヤ一燃焼室 4の流動化ガス速度(流動化ガスの空塔速 度)と、 循環量 (対流) および熱移動量とには、 図 8のよ うな関係がある。 すなわ ち、 沈降チヤ一燃焼室 4の流動媒体 cの空塔速度が 0になると、 循環量 (対流) は 0になるが、 熱移動量は 0にはならない。 これは、 ガス化室 1 とチヤ一燃焼室 本体部 5の仕切壁 1 1 の下部の開口部 2 1 にて、 ガス化室 1 とチヤ一燃焼室本体 部 5間の拡散による、 流動媒体 cの交換が生じ、 それにともなって、 残渣移動と 熱移動が存在するからである。  From the above, there is a relationship as shown in Fig. 8 between the fluidizing gas velocity (superficial velocity of fluidizing gas) in the sedimentation chamber 1 and the amount of circulation (convection) and heat transfer. That is, when the superficial velocity of the fluidized medium c in the settling chamber 1 becomes zero, the circulation amount (convection) becomes zero, but the heat transfer amount does not become zero. This is due to the diffusion medium between the gasification chamber 1 and the combustion chamber main body 5 due to the diffusion between the gasification chamber 1 and the combustion chamber main body 5 at the lower opening 21 of the partition wall 11 of the gasification chamber 1 and the combustion chamber main body 5. This is due to the exchange of residue and the corresponding transfer of residue and heat.
図 9に、 流動媒体 cが沈降する弱流動化域 4 aである沈降チヤ一燃焼室 4の流 動化ガスの空塔速度(単位を Umf とする)を 0 Umf から約 1 . 7 Umfまで変化さ せたときの沈降チヤ一燃焼室 4からガス化室 1への流動媒体移動量 (対流 +拡 散) (単位 kg/s) の変化を示す。 図に示すよ うに、 空塔速度の増加により流動媒 体移動量がほぼ直線的に増加する。 lUmf以下でも、 流動媒体移動量が変化し制 御範囲内である。 ここで、 Umf とは最低流動化速度 (流動化が開始される流動 化ガスの空塔速度) を l Umf と した単位である。 また、 図中、 沈降チヤ一燃焼室 4の流動化速度を 0にしたときに、 沈降チヤ一燃焼室 4から、 ガス化室 1への流 動媒体移動量が 0になっていない。 これは、 ガス化室 1 と沈降チヤ一燃焼室 4の 間の仕切壁 1 5に形成された開口部 2 5間の拡散による流動媒体移動が生じてい るためである。 よって、 沈降チヤ一燃焼室 4の流動化状態を停止して、 対流によ る熱移動量を 0にして、 ガス化室 1 と沈降チヤ一燃焼室 4の開口部 2 5周辺の流 動化状態を変える (流動化ガス量を変える) ことによ り、 ガス化室 1 と沈降チヤ 一燃焼室 4の開口部 2 5周辺での拡散による熱移動量を変化させることで、 熱移 動量をよ り小さい範囲で制御することが可能になる。 Figure 9 shows that the superficial velocity (assumed to be Umf) of the fluidized gas in the sedimentation chamber 1 that is the weak fluidization zone 4a where the fluid medium c settles is from 0 Umf to about 1.7 Umf. The figure shows the change in the amount of fluid medium transferred from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 (convection + diffusion) (unit: kg / s) when changed. As shown in the figure, the moving amount of the fluid medium increases almost linearly with an increase in the superficial velocity. Even below lUmf, the moving amount of the fluid medium changes and is within the control range. Here, Umf is the minimum fluidization speed (the flow at which fluidization starts The superficial velocity of activated gas) is defined as l Umf. In addition, in the figure, when the fluidization speed of the settling channel combustion chamber 4 is set to 0, the moving amount of the moving medium from the settling channel combustion chamber 4 to the gasification chamber 1 is not 0. This is because the fluid medium moves due to diffusion between the openings 25 formed in the partition wall 15 between the gasification chamber 1 and the settling chamber 1 combustion chamber 4. Therefore, the fluidized state of the settling channel combustion chamber 4 is stopped, the amount of heat transfer by convection is set to 0, and the fluidization around the opening 25 of the gasification chamber 1 and the settling channel combustion chamber 4 is performed. By changing the state (changing the amount of fluidizing gas), the amount of heat transfer by diffusion around the gasification chamber 1 and the sedimentation chamber 1 and the opening 25 of the combustion chamber 4 is changed to reduce the amount of heat transfer. It is possible to control in a smaller range.
したがって、 ガス化室 1の弱流動化域 1 aで開口部 2 1 に近い領域と、 チヤ一 燃焼室本体 5 の強流動化域 2 bで開口部 2 1 に近い領域に供給する流動化ガス 量 g l、 g 2を測定する流量測定装置 7 1、 7 4 と、 その流量を変化させる流 量制御装置 (例えば流量制御弁 6 1、 6 4 ) を設けることで、 ガス化室 1 とチ ヤー燃焼室本体 5 の開口部周辺での拡散による熱移動量を制御することが可能 になる。  Therefore, fluidized gas supplied to the region near the opening 21 in the weak fluidization region 1a of the gasification chamber 1 and the region near the opening 21 in the strong fluidization region 2b of the combustion chamber body 5 By installing flow rate measuring devices 71 1 and 7 4 for measuring the quantities gl and g 2 and flow rate control devices (for example, flow control valves 61 and 64) to change the flow rates, the gasification chamber 1 and the channel It is possible to control the amount of heat transfer due to diffusion around the opening of the combustion chamber body 5.
例えば、 熱移動量を小さい値に制御したい場合、 熱移動量制御装置と しての制 御装置 6は、 沈降チヤ一燃焼室 4の流動化ガス流量制御装置 (例えば流量制御 弁 6 5 ) に流量を 0にする信号を送る。 その結果、 沈降チヤ一燃焼室 4の流動 化は停止して、 ガス化室 1 とチヤ一燃焼室 2の間の対流による流動媒体の移動 は起こ らなく なる。 さ らに、 熱移動量制御装置と しての制御装置 6は、 ガス化 室 1 の弱流動化域 1 aで開口部 2 1 に近い領域に供給する流動化ガス g 1 を制 御する流動化ガス量制御装置 (例えば流量制御弁 6 1 ) と、 チヤ一燃焼室本体 5の強流動化域 2 bで開口部 2 1 に近い領域に供給する流動化ガス g 2を制御 する流動化ガス量制御装置 (例えば流量制御弁 6 3 ) に、 流量を下げる信号を 送る。 その結果、 ガス化室 1の弱流動化域 1 aで開口部 2 1 に近い領域と、 チ ヤー燃焼室本体 5の強流動化域 2 bで開口部 2 1 に近い領域の流動化ガス量が 減少し、 開口部 2 1周辺での拡散が弱く なり、 熱移動量が減少する。  For example, when it is desired to control the heat transfer amount to a small value, the control device 6 as the heat transfer amount control device is connected to the fluidized gas flow control device (for example, the flow control valve 65) of the sedimentation chamber and the combustion chamber 4. Send a signal to reduce the flow rate to zero. As a result, fluidization of the sedimentation-chamber combustion chamber 4 stops, and the movement of the fluid medium due to convection between the gasification chamber 1 and the combustion chamber 1 does not occur. In addition, the control device 6 as a heat transfer amount control device controls the fluidization gas g1 to be supplied to the region near the opening 21 in the weak fluidization region 1a of the gasification chamber 1. And a fluidizing gas for controlling the fluidizing gas g2 to be supplied to the region near the opening 21 in the strong fluidizing region 2b of the combustion chamber body 5. Send a signal to reduce the flow rate to the quantity control device (eg flow rate control valve 63). As a result, the amount of fluidized gas in the region near the opening 21 in the weak fluidization region 1a of the gasification chamber 1 and in the region near the opening 21 in the strong fluidization region 2b of the main body 5 of the combustion chamber 5 And the diffusion around the opening 21 is weakened, and the amount of heat transfer is reduced.
図 1 0を参照して、 流動層高と循環量の関係について記述する。 図中、 炉 1 0 2は、 仕切壁 Wに仕切られた二つの室 R p と室 R qを含んで構成される。 室 R p と室 R qは流動媒体 cを収納する。 仕切壁 Wには上部に開口部 P wが、 下部に開 口部 Qwが形成されている。 室 R pの炉底には流動化ガスを吹き込む散気装置 D p a、 散気装置 D p bが設けられ、 室 R qの炉底には流動化ガスを吹き込む散気 装置 D q aが設けられている。 仕切壁 Wの上端は界面の高さの近傍にあり、 開口 部 Qwは濃厚層に潜った位置にあるものとする。 室 R pは散気装置 D p aの真上 の流動化の状態の弱い弱流動化域 p a と、 散気装置 D p bの真上の流動化状態の 強い強流動化域 p b との二つの区画に区分される。 室 R qは流動化状態の弱い弱 流動化域 q a である。 また、 流動化状態は、 室 R pの弱流動化域 p a 内、 室 R p の強流動化域 p b内、 室 R q内でそれぞれ均一であるとする。 室 R pの強流動化 域 p bは炉底部 B p bを有し、 室 R qは炉底部 B q a を有するとする。 The relationship between the fluidized bed height and the circulation amount will be described with reference to FIG. In the figure, furnace 10 2 includes two chambers R p and R q partitioned by a partition wall W. The chambers R p and R q contain the fluid medium c. The partition wall W has an opening Pw at the top and an opening Qw at the bottom. A diffuser D pa and a diffuser D pb for blowing fluidized gas are provided at the furnace bottom of the chamber R p, and a diffuser D qa for blowing a fluidized gas is provided at the furnace bottom of the chamber R q. I have. It is assumed that the upper end of the partition wall W is near the height of the interface, and the opening Qw is located at a position below the dense layer. The chamber R p has two compartments: a weak fluidization zone pa just above the diffuser D pa where the fluidization state is weak, and a strong fluidization zone pb just above the diffuser D pb and the fluidization state. It is divided into The chamber R q is a weakly fluidized zone qa with a weak fluidized state. Further, it is assumed that the fluidized state is uniform in the weakly fluidized region pa of the room Rp, in the strong fluidized region pb of the room Rp, and in the room Rq. It is assumed that the strong fluidization zone pb of the chamber R p has a furnace bottom B pb, and the chamber R q has a furnace bottom B qa.
以下に示す 2つの理由により、 流動層高が高いほど、 循環量は多く なる。 前述 したとおり、 弱流動化域 q aである室 R qの炉底部 B q a における炉底部圧力 P m q a と、 室 R pの強流動化域 p bの炉底部 B p bの炉底部圧力 P m p b との圧 力差がつく ことで、 両領域の間の仕切壁 Wの下部の開口部 Qwから流動媒体が移 動する。 炉底部での圧力は前述のよ うに、 P m = D f X g a X H f · · · ( 1 ) から求められる。 ここで、 P m [Pa]が炉底部圧力、 D f [kg/m3]が流動層のかさ 弱流動化域 q aである室 R qでは、 気泡が少ないため、 流動層かさ密度 D f q aが大きい (空隙が少なく 、 粒子濃度が濃い) 。 室 R pの強流動化域 p bでは、 気泡が多いため、 流動層かさ密度 D f p bが小さい (空隙が多く、 粒子密度が薄 レ、) よって、 弱流動化域 q aである室 R qの流動層かさ密度 D f q aは、 室 R pの強流動化域 p bの流動層かさ密度 D f p b より も大きく なり (D f q a >D f p b )、 よって室 R qの炉底部 B q aの炉底部圧力 P m q aが、 室 R pの強流動化 域 p bの炉底部 B p bの炉底部圧力 P m p b よ り も大きく なり (Pm q a > P m p b )、 圧力差が生じて、 弱流動化域 q aである室 R qから室 R pの強流動化域 p b 開口部 Qwを通って流動媒体が c移動する。 For the following two reasons, the higher the fluidized bed height, the greater the circulation volume. As described above, the pressure between the furnace bottom pressure P mqa at the furnace bottom B qa of the chamber R q, which is the weak fluidization region qa, and the furnace bottom pressure P mpb at the furnace bottom B pb of the strong fluidization region pb of the room R p. Due to the difference in force, the flowing medium moves from the opening Qw below the partition W between the two regions. As described above, the pressure at the furnace bottom is obtained from Pm = DfXgaXHf (1). Here, P m [Pa] is the pressure at the bottom of the furnace, and D f [kg / m 3 ] is the volume of the fluidized bed. In the chamber R q, which is the weak fluidized zone qa, there are few bubbles, so the fluidized bed bulk density D fqa is Large (small voids and high particle concentration). In the strong fluidization zone pb of the chamber R p, there are many bubbles, and the bulk density D fpb of the fluidized bed is small (there are many voids and the particle density is low). Therefore, the flow of the chamber R q in the weak fluidization zone qa The bed bulk density D fqa is larger than the fluidized bed bulk density D fpb in the strong fluidization zone pb of the chamber R p (D fqa> D fpb), and therefore the furnace bottom pressure P mqa of the furnace bottom B qa of the chamber R q Is larger than the pressure P mpb at the bottom B pb of the strong fluidization zone pb of the chamber R p (Pm qa> P mpb), and a pressure difference occurs, and the chamber R at the weak fluidization zone qa The fluid medium moves c from q through the strong fluidization zone pb opening Qw of the chamber R p.
( 1 ) 式によ り、 流動層高が高いほど、 それに比例して、 室 R qの弱流動化域 q a の炉底部 B q a の圧力 P m q a と、 室 R pの強流動化域 p bの炉底部 B p b の圧力 Pm p b との圧力差が大きく なるので、 流動層高が高いほうが移動量が多 く なる。 室 R qから室 R pへ移動する流動媒体 cの移動量が多いほど、 循環量は 多く なる (流動層高が高いほど、 循環量が多く なる第一の理由) 。 According to Eq. (1), the higher the fluidized bed height, the more proportionally the pressure P mqa at the bottom B qa of the weak fluidization zone qa of the chamber R q and the strong fluidization zone pb of the chamber R p Since the pressure difference from the pressure Pm pb at the bottom B pb of the furnace increases, the higher the height of the fluidized bed, the greater the amount of movement. It becomes bad. The circulation amount increases as the moving amount of the fluid medium c moving from the chamber Rq to the chamber Rp increases (the first reason that the circulation amount increases as the height of the fluidized bed increases).
図 1 0に示すように、 室 R pの強流動化域 p bの上部で気泡の破裂が起こ り、 この気泡の破裂によって流動媒体 cが周囲に飛散し、 室 R pから室 R qへ開口部 P wを通って流動媒体 cの移動が生じる。 流動層高が高いほど、 室 R q と室 R p の間の仕切壁 Wの上端から流動層上面までの距離 (図の Δ Η) が高く なり、 室 R pの上部での気泡の破裂に伴う流動媒体 cの粒子の移動によ り、 室 R qへ移動 する流動媒体 c の量が多く なるので、 循環量が多く なる (層高さが高いほど、 循 環量が多く なる第二の理由) 。 室 R pの上部での気泡の破裂により、 流動媒体 c が室 R qへ移動する現象は、 気泡の破裂する流動層上方付近のある限られた範囲 で起こるので、 ある値以上に、 流動層高を高く しても、 流動媒体 cの移動は増加 しなく なる。  As shown in FIG. 10, the bubble rupture occurs in the upper part of the strong fluidization region pb of the chamber Rp, and the rupture of the bubble causes the fluid medium c to scatter around, opening from the chamber Rp to the chamber Rq. Movement of the fluid medium c occurs through section P w. The higher the height of the fluidized bed, the greater the distance (Δ の in the figure) from the upper end of the partition wall W between the chamber Rq and the chamber Rp to the upper surface of the fluidized bed. Due to the accompanying movement of the particles of the fluid medium c, the amount of the fluid medium c moving to the chamber R q increases, so that the circulation amount increases (the higher the bed height, the greater the circulation amount). Reason) . The phenomenon that the fluid medium c moves to the chamber Rq due to the burst of the bubble at the upper part of the chamber Rp occurs in a limited range near the upper part of the fluidized bed where the bubble is ruptured. Even if the height is increased, the movement of the fluid medium c does not increase.
したがって、 ある範囲内であれば流動層高を高くすることで、 循環量を増加さ せることが可能である。 運転中に、 循環量を調整したいときに、 室 R q、 室 R p 内に流動媒体 c を供給して、 流動層高を高く して、 循環量を増加させたり、 流動 媒体 c を室 R q、 室 R pから抜き出して、 流動層高を低く して、 循環量を低下さ せたりすることが可能である。  Therefore, the circulation amount can be increased by increasing the height of the fluidized bed within a certain range. During operation, when it is desired to adjust the circulation amount, the fluid medium c is supplied into the chambers Rq and Rp to increase the height of the fluidized bed to increase the circulation amount, or to move the fluid medium c to the room R. q, It is possible to take out from the chamber R p and lower the fluidized bed height to reduce the circulation amount.
次に、 図 6を参照して、 流動層高の測定の方法について説明する。 図に示すよ うに、 沈降チヤ一燃焼室 4には二つの圧力測定装置 9 1、 9 2が、 沈降チヤ一燃 焼室 4の流動層中の上下 2点 (水平位置は同じが望ましい) の流動層圧力を測定 するよ う設置されている。 圧力測定装置 9 1、 9 2によって圧力を測定すること によ り、 流動層高を算出し、 循環量の制御を行う ことができる。 ただし、 流動層 高算出のための圧力測定の箇所は沈降チヤ一燃焼室 4でなく、 ガス化室 1であつ てもよい。 まず、 流動層圧力と流動層高の関係について述べる。 流動層圧力 P f と流動層高 H f には以下に述べる関係にある。  Next, a method of measuring the height of the fluidized bed will be described with reference to FIG. As shown in the figure, two pressure measuring devices 91 and 92 are installed in the settling channel combustion chamber 4 at two upper and lower points (preferably the same horizontal position) in the fluidized bed of the settling channel combustion chamber 4. It is set up to measure fluidized bed pressure. By measuring the pressure with the pressure measuring devices 91 and 92, it is possible to calculate the fluidized bed height and control the circulation amount. However, the pressure measurement point for calculating the fluidized bed height may be the gasification chamber 1 instead of the sedimentation chamber combustion chamber 4. First, the relationship between fluidized bed pressure and fluidized bed height is described. Fluidized bed pressure P f and fluidized bed height H f have the relationship described below.
P f =D f X g a X H f x + P O - - - ( 2 )  P f = D f X g a X H f x + P O---(2)
ここに、 P f は流動層圧力 [Pa]、 D f は流動層かさ密度 [kg/m3]、 g a は重力 加速度 [kg/s 2] 、 H f Xは上方に存在する流動層高 [m]、 P Oはフリーボードに おける圧力 [Pa]である。 ( 2 ) 式から、 炉底部 B 4 aに近い測定点における流動層圧力を P f 1、 上方 の流動層高を H f X 1 とすれば、 Where P f is the fluidized bed pressure [Pa], D f is the fluidized bed bulk density [kg / m 3 ], ga is the gravitational acceleration [kg / s 2 ], and H f X is the height of the fluidized bed above [ m] and PO are the pressure [Pa] on the freeboard. From equation (2), if the fluidized bed pressure at the measurement point near the furnace bottom B4a is Pf1 and the fluidized bed height above is HfX1,
P f l =D f 4 a X g a X H f x l + P 0 - · · ( 2 ) '  P f l = D f 4 a X g a X H f x l + P 0-
炉底部 B 4 a から遠い測定点における流動層圧力を P f 2、 上方の流動層高を H f X 2 とすれば、  If the fluidized bed pressure at the measurement point far from the furnace bottom B 4 a is P f 2 and the fluidized bed height above is H f X 2,
P f 2 =D f 4 a X g a X H f x 2 + P 0 - · · ( 2 ) "  P f 2 = D f 4 a X g a X H f x 2 + P 0-(2) "
となる。 ここで、 測定点間距離を Δ H f (既知)とすると、 Δ H f = H f X 1 — H f X 2である。 流動層圧力を表す両式 ( 2 ) ' 、 ( 2 ) " の差を取ると、 P f l — P f 2 =D f 4 a X g a X A H f ' . ' ( 3 ) となる。  It becomes. Here, assuming that the distance between the measurement points is ΔH f (known), ΔH f = H f X 1 — H f X 2. Taking the difference between the two equations (2) 'and (2) "representing the fluidized bed pressure, Pfl-Pf2 = Df4aXgaXAHf'. '(3).
以下のステップによ り、 流動層高を算出することができる。 まず、 流動層中の 上下 2点 (水平位置は同じが望ま しい) での各々の流動層圧力 P f 1、 P f 2 を 測定し、 各流動層圧力の圧力差 Δ P (= P f 1 - P f 2 ) を計算する。 次に、 The fluidized bed height can be calculated by the following steps. First, the fluidized bed pressures P f 1 and P f 2 at the upper and lower two points (preferably at the same horizontal position) in the fluidized bed are measured, and the pressure difference ΔP (= P f 1 -Calculate P f 2). next,
( 3 ) 式から流動層かさ密度 D f 4 a を計算する (上下 2点間の高さ Δ H f は既 知) 。 どちらかの測定点の流動層圧力 (測定層高さは既知であり、 また炉底部 B 4 a に近いほうを選択することが望ましい) の値と、 フリーボー ドでの圧力はほ とんど 0であるので、 P 0 = 0から、 ( 2 ) ' 式を用いて、 流動層圧力測定点か ら流動層上面までの高さ H f X 1 を計算する。 流動層高を H f 、 炉底部 B 4 a に 近い測定点の高さを H f 1 (既知) とすれば、 H f =H f l +H f x l となり、 この式から流動層層高さ H f を計算する。 Calculate the fluidized bed bulk density D f 4 a from equation (3) (the height ΔH f between the upper and lower points is known). The value of the fluidized bed pressure at one of the measurement points (the height of the measured bed is known and it is desirable to select the one closer to the furnace bottom B4a) and the pressure at free board is almost 0. From P 0 = 0, the height H f X 1 from the fluidized bed pressure measurement point to the fluidized bed upper surface is calculated using the equation (2) ′. Assuming that the height of the fluidized bed is H f and the height of the measurement point near the furnace bottom B 4 a is H f 1 (known), then H f = H fl + H fxl. Is calculated.
圧力測定装置 9 1、 9 2を設け、 流動層圧力 P f 1、 P f 2を測定し、 圧力測 定装置 9 1、 9 2から測定値に基づく圧力信号を演算器と しての制御装置 6に送 り、 制御装置 6によって流動層高 H f を演算することができる。 このよ うに演算 した流動層高 H f を制御装置 6でコン ト口ールすることで、 循環量の制御を行う ことができる。 制御装置 6は、 演算した流動層高 H f を表す流動層高信号を出力 するよ うにしてもよレ、。  A pressure measuring device 91, 92 is installed to measure the fluidized bed pressures Pf1, Pf2, and a control device is used as a computing unit that receives a pressure signal based on the measured value from the pressure measuring device 91, 92. The fluidized bed height H f can be calculated by the controller 6. By controlling the fluidized bed height H f calculated in this way by the control device 6, the circulation amount can be controlled. The control device 6 may output a fluidized bed height signal indicating the calculated fluidized bed height Hf.
圧力測定装置 9 1, 9 2は、 流動化が緩慢で、 圧力変動が小さい、 沈降チヤ一 燃焼室 4、 ガス化室 1の弱流動化域 1 a、 チヤ一燃焼室本体部 5の弱流動化域 2 aに設置することが望ましいが、 ガス化室 1の強流動化域 1 b、 チヤ一燃焼室本 体部 5の強流動化域 2 bに設置してもよい。 流動層高を変化させることで、 循 環量を制御できる。 流動層高を変化させるためには、 流動層高を增加させる場 合は流動媒体を供給し、 流動層高を減少させる場合は流動媒体を抜き出す。 よ つて、 流動層高を変化させるためには、 流動媒体を供給する流動媒体供給装置 を設け流動媒体を供給し、 流動媒体を抜き出す流動媒体抜出装置を設け流動媒 体を抜き出せばよい。 The pressure measuring devices 9 1 and 9 2 have slow fluidization and small pressure fluctuations, and have weak sedimentation chamber 1 and weak gasification chamber 1a of gasification chamber 1 and weak flow of chamber 1 Although it is desirable to install it in the gasification zone 2a, it may be installed in the strong fluidization zone 1b of the gasification chamber 1 and the strong fluidization zone 2b of the main body 5 of the combustion chamber. By changing the fluidized bed height, The amount of ring can be controlled. To change the height of the fluidized bed, supply the fluidized medium when increasing the height of the fluidized bed, and extract the fluidized medium when decreasing the height of the fluidized bed. Therefore, in order to change the height of the fluidized bed, a fluidized medium supply device for supplying the fluidized medium may be provided, a fluidized medium may be supplied, and a fluidized medium extracting device for extracting the fluidized medium may be provided to extract the fluidized medium.
図 2 2に示すよ うに、 流動媒体供給装置 1 1 1 は、 流動媒体 c を貯留する流動 媒体貯留装置 1 1 2 と、 流動媒体 cの流動媒体貯留装置 1 1 2からの流動媒体 cの供給量を測定し、 当該供給量を表す流動媒体供給量信号 i 2 1 を出力する 流動媒体供給量測定装置 1 1 3 と、 流動媒体 cの流動媒体貯留装置 1 1 2内の 流動媒体貯留槽からの供給量を制御する流動媒体供給量制御装置 1 1 4 とを含 んで構成される。  As shown in FIG. 22, the fluid medium supply device 1 1 1 supplies the fluid medium c from the fluid medium storage device 1 1 2 that stores the fluid medium c and the fluid medium c from the fluid medium storage device 1 1 2 that stores the fluid medium c. The fluid medium supply amount measuring device 1 13 that measures the amount and outputs the fluid medium supply amount signal i 21 representing the supply amount, and the fluid medium storage tank in the fluid medium storage device 1 1 2 for the fluid medium c And a fluid medium supply amount control device 114 for controlling the supply amount of the fluid.
流動媒体供給量制御装置 1 1 4は、 例えば流動媒体貯留装置 1 1 2から流動媒 体を自由落下させて例えばガス化室 1 に搬送するライン 1 1 5に設置されると 共に流動媒体 c の供給量を制御する制御弁である。 流動媒体供給量測定装置 1 1 3は、 例えば流動媒体貯留装置 1 1 2内の流動媒体貯留槽の重量の経時変化 を測定し、 測定した経時変化から流動媒体供給量を求めるものである。  The fluid medium supply amount control device 114 is installed, for example, on a line 115 for free-falling the fluid medium from the fluid medium storage device 112 and transporting it to the gasification chamber 1, for example. This is a control valve for controlling the supply amount. The fluid medium supply amount measuring device 113 measures, for example, the change over time of the weight of the fluid medium storage tank in the fluid medium storage device 112 and obtains the fluid medium supply amount from the measured change over time.
流動媒体供給量制御装置 1 1 4 (例えば前述の制御弁) は、 流動媒体供給量測 定装置 1 1 3からの流動媒体供給量信号 i 2 1 と制御装置 6 (図 1 ) からの後 述の流動媒体循環量信号を受け、 流動媒体供給量を制御する。  The fluid medium supply amount control device 1 14 (for example, the control valve described above) is connected to the fluid medium supply amount signal i 21 from the fluid medium supply amount measurement device 113 and the control device 6 (FIG. 1) described later. To control the fluid medium supply amount.
流動媒体抜出装置 1 1 6は、 例えばガス化室 1の炉底に設けられた流動媒体抜 出管 1 1 7 と流動媒体搬送装置 1 1 8 (スク リ ューコンペャ、 エプロンコンペ ャなど) とを含んで構成される。 流層媒体抜出装置 1 1 6により抜き出され搬 送された流動媒体 cは、 前述の'流動媒体貯留装置 1 1 2に供給され貯留される。 流動媒体抜出量制御装置 1 1 9 (例えばスク リ ューコンペャのオンオフスイ ツ チ、 あるいは、 スク リ ューコンペャの回転数制御装置) は、 流動媒体抜出量測 定装置 1 2 0からの流動媒体抜出信号 i 2 2 と制御装置 6 (図 1 ) からの後述 の循環量信号を受け、 流動媒体抜出装置 1 1 6へ流動媒体抜出装置駆動信号 i 2 3を送り流動媒体抜出量を制御する。 ここで、 本実施の形態では、 流動媒体 供給量測定装置 1 1 3 と流動媒体抜出量測定装置 1 2 0は同一物であり、 例え ば流動媒体貯留装置 1 1 2内の流動媒体貯留槽の重量の経時変化を測定し、 測 定した経時変化から流動媒体抜出量を求めるものである。 流動媒体抜出量測定 装置 1 2 0を、 流動媒体供給量測定装置 1 1 3 と別のものと し、 流動媒体搬送 装置 1 1 8によって搬送される流動媒体 cの搬送量を抜出量と して直接計測す るものであってもよレ、。 For example, the fluid medium extraction device 1 16 includes a fluid medium extraction pipe 1 17 provided at the furnace bottom of the gasification chamber 1 and a fluid medium transfer device 1 18 (a screw conveyor, an apron conveyor, etc.). It is comprised including. The fluid medium c extracted and transported by the fluidized-bed medium extracting device 1 16 is supplied to and stored in the above-mentioned “fluid medium storage device 1 12”. The fluid medium discharge amount control device 1 19 (for example, a screw conveyor on / off switch or a screw speed controller) is used to extract the fluid medium from the fluid medium discharge amount measurement device 120. In response to the signal i 22 and the circulating amount signal described below from the control device 6 (Fig. 1), the fluid medium extracting device drive signal i 23 is sent to the fluid medium extracting device 1 16 to control the fluid medium extracting amount. I do. Here, in the present embodiment, the fluid medium The supply amount measuring device 1 1 3 and the fluid medium withdrawal amount measuring device 1 2 0 are the same, for example, by measuring the change over time of the weight of the fluid medium storage tank in the fluid medium storage device 1 12 and measuring. The amount of withdrawal of the fluid medium is determined from the change with time. The fluid medium withdrawal amount measuring device 120 is different from the fluid medium supply amount measuring device 113, and the transport amount of the fluid medium c transported by the fluid medium transport device 118 is defined as the withdrawal amount. It can be measured directly.
次に図 6を参照して循環量の測定方法について、 説明する。  Next, a method of measuring the circulation amount will be described with reference to FIG.
沈降チヤ一燃焼室 4のよ う に、 流動媒体 c の沈降流がある流動層における流動 化ガスの圧力損失は、 沈降流のない流動層における流動化ガスの圧力損失に比べ て、 大きく なる。 この理由は、 流動化ガスは上昇流であるため、 流動媒体の沈降 流と逆行することから、 流動化ガスの抵抗が大きく なるためである。 流動層中の 高さの異なる上下二点 (水平位置は同じが望ましい) 間において、 流動化ガスの 圧力損失を考える。 流動媒体の沈降流がない場合の流動化ガスの抵抗を P n と し、 流動媒体の沈降流がある場合の流動化ガスの抵抗を P d とすると、 両者の差 P d _ P nは、 流動媒体の沈降流が速いほど、 大きく なる。 この現象を利用すること で、 流動媒体の沈降流の速度を測定することができ、 その結果から、 流動媒体 c の循環量を測定するこ とができる。  The pressure loss of the fluidizing gas in a fluidized bed with a settling flow of the fluidized medium c, such as the settling channel combustion chamber 4, is greater than the pressure loss of the fluidizing gas in a fluidized bed without a settling flow. The reason for this is that the fluidizing gas has an upward flow, and therefore runs counter to the sedimentation flow of the fluidizing medium, thus increasing the resistance of the fluidizing gas. Consider the pressure loss of the fluidized gas between the upper and lower two points with different heights in the fluidized bed (the horizontal position is preferably the same). Assuming that the resistance of the fluidizing gas when there is no sedimentation flow of the fluid medium is Pn and the resistance of the fluidizing gas when there is the sedimentation flow of the fluid medium is Pd, the difference Pd_Pn between them is The faster the settling flow of the flowing medium, the greater. By utilizing this phenomenon, the velocity of the settling flow of the flowing medium can be measured, and from the result, the circulation amount of the flowing medium c can be measured.
すなわち、 以下の現象を利用して循環量を測定することができる。 (1)循環量が 大きいほど、 流動媒体沈降流の速度は速く なる。 (2)流動媒体沈降流の速度が早い ほど、 流動化ガスの圧力損失は大きく なる。 (3)流動化ガス速度 V gが速いほど、 流動化ガスの圧力損失は大きく なる。  That is, the circulation amount can be measured using the following phenomena. (1) The velocity of the settling flow of the fluid medium increases as the circulation volume increases. (2) The higher the velocity of the settling flow of the fluidized medium, the greater the pressure loss of the fluidized gas. (3) The higher the fluidizing gas velocity Vg, the greater the pressure loss of the fluidizing gas.
例えば、 沈降チヤ一燃焼室 4においては、 以下の式を用いて、 循環量を測定す ることができる。  For example, in the sedimentation chamber 1 combustion chamber 4, the circulation amount can be measured using the following equation.
(循環量) [kg/s]= (流動層かさ密度) [kg/m3] X (流動媒体沈降速度) [m/ s]) X (沈降チヤ一燃焼室断面積) [m2], · ' ① (Circulation rate) [ kg / s] = (Body density of fluidized bed) [kg / m 3 ] X (Sedimentation velocity of fluidized medium) [m / s]) X (Cross section of sedimentation chamber) [m 2 ] , · '①
(流動媒体沈降速度) = a X F l ( P d - P n ) X F 2 ( V g ) · · ·② ( P d - P n ) の関数である F l、 V gの関数である F 2については、 例えば、 以下のように表すことができる。  (Flowing medium settling velocity) = a XF l (Pd-Pn) XF2 (Vg) · · · Fl which is a function of (Pd-Pn) and F2 which is a function of Vg Can be represented, for example, as follows:
F 1 ( P d - P n ) = a 0 + a 1 X (P d— P n ) + a 2 X (P d— P n) 2 + a 3 X ( P d - P n ) 3+ · · ' ③ F 1 (Pd-Pn) = a0 + a1X (Pd-Pn) + a2X (Pd-Pn) 2 + a 3 X (P d-P n) 3 + · · '③
あるレヽは、  One reed
F 1 (P d— Ρ η ) = β (P d— P n) γ · · ' ④ F 1 (P d— Ρ η) = β (P d— P n) γ · · '④
F 2 ( V g ) = b O + b l X V g + b 2 X V g 2+ b 3 X V g 3+ - · · © あるいは、 F 2 (V g) = b O + bl XV g + b 2 XV g 2 + b 3 XV g 3 +-
F 2 (V g ) = Vgf · · · ⑥ F 2 (V g) = Vg f
ここで、 α、 β、 γ、 、 "、ョ0、 31、 32、 33、 ".、 130、 131、 2、 63、 ''.はガス 化炉 1 0 1の形状によ り決まる定数である。 ③式および⑤式において、 3次近似 の式と しているが、 それぞれ 1次近似、 2次近似と してもよい。  Here, α, β, γ,, ", 0, 31, 32, 33,"., 130, 131, 2, 63, '' are constants determined by the shape of the gasifier 101. is there. Equations (3) and (4) are of the third-order approximation, but may be first-order and second-order approximations, respectively.
ここで、 沈降流がない場合の上下二点間の圧力差 P f 1 — P f 2は、 P f l — P f 2 = P n、 沈降流がある場合の上下二点間の圧力差 P f 1 — P f 2は、 P f 1 一 P f 2 = P d、 である。 沈降流がない状態を例えば試運転段階で各種条件下 で発生させ、 上下二点間の圧力を測定し、 測定したデータを制御装置 6 (図 1 ) に送り、 沈降流がない場合の上下二点間の圧力差 P nを制御装置 6に計算させて 記憶させておく。 ガス化炉 1 0 1の実際の生成ガスの製造運転時に沈降流がある 場合の上下二点間の圧力を測定し、 測定したデータを制御装置 6 に送り、 沈降流 がある場合の上下二点間の圧力差 P dを制御装置 6に計算させて、 さらに (P d 一 P n ) を制御装置 6に計算させる。  Here, the pressure difference P f 1 — P f 2 between the upper and lower points when there is no sedimentation flow is P fl — P f 2 = P n, and the pressure difference P f between the upper and lower points when there is a sedimentation flow 1 — P f 2 is P f 1 −P f 2 = P d. For example, a state where there is no sedimentation flow is generated under various conditions during the test operation stage, the pressure between the upper and lower points is measured, and the measured data is sent to the control device 6 (Fig. 1). The control unit 6 calculates and stores the pressure difference Pn between the two. Measure the pressure between the upper and lower points when there is a sedimentation flow during the actual production gas production operation of the gasifier 101, and send the measured data to the control device 6 to control the upper and lower points when there is a sedimentation flow. The control device 6 calculates the pressure difference Pd between them, and further causes the control device 6 to calculate (Pd-Pn).
沈降チヤ一燃焼室 4 (図 1 ) へ供給する流動化ガス g 4 (図 1 ) の流量は、 流 量測定器 7 5 (図 1 ) によって側定され、 流量信号 i 2 (図 1 ) が制御装置 6に 送られるので、 制御装置 6は、 沈降チヤ一燃焼室 4の流動化ガス速度 V g (V g 4 ) を計算することができる。  The flow rate of the fluidizing gas g4 (Fig. 1) supplied to the sedimentation-chamber combustion chamber 4 (Fig. 1) is determined by the flow meter 75 (Fig. 1), and the flow signal i2 (Fig. 1) is obtained. Since it is sent to the controller 6, the controller 6 can calculate the fluidized gas velocity V g (V g 4) of the sedimentation chamber 1 and the combustion chamber 4.
よって、 制御装置 6に、 式⑤ (または式⑥) に V gを代入し F 2を求め、 式③ (または式④) に (P d— P n ) を代入し F 1 を求め、 式②に F 1、 F 2を代入 して流動媒体沈降速度を求める。 このよ うに求めた流動媒体沈降速度と、 前述の ( 3 ) 式から求めた流動層かさ密度を、 ①式に代入し、 αは既知 (試運転時等に 経験的に求めておく ことができる) であることから、 循環量を求めることができ る。 このようにして求められた循環量を用いて、 循環量の制御を行う ことができ る。 すなわち、 求めた循環量が適切な値になるよ うに、 沈降チヤ一燃焼室 4の流 動化ガス量を制御することで、 ガス化室層温、 および、 ガス化室出口ガス組成を コン トロールすることができる。 制御装置 6は、 流動媒体の循環量を表す流動媒 体循環量信号を出力するよ うにしてもよい。 Therefore, in the control device 6, V g is substituted into equation (or equation (1)) to obtain F2, and (Pd-Pn) is substituted into equation (3) (or equation (2)) to obtain F1, and equation (2) is obtained. Substituting F 1 and F 2 into, the flow medium settling velocity is determined. Substituting the settling velocity of the fluidized medium thus obtained and the bulk density of the fluidized bed obtained from the above equation (3) into equation (1), α is known (it can be empirically obtained at the time of test operation etc.) Therefore, the circulation amount can be obtained. The amount of circulation can be controlled using the amount of circulation obtained in this way. That is, the flow rate of the sedimentation channel and combustion chamber 4 is set so that the obtained circulation amount becomes an appropriate value. The gasification chamber layer temperature and the gasification chamber outlet gas composition can be controlled by controlling the amount of mobilized gas. The control device 6 may output a fluid medium circulation amount signal indicating the amount of circulation of the fluid medium.
以上説明したよ うに、 沈降チヤ一燃焼室 4の流動層中の上下 2点の流動層圧力 を測定するための圧力測定装置 9 1、 9 2 と、 沈降チヤ一燃焼室 4の流動化ガ ス g 4の流量測定装置 (流量測定器) 7 5 (図 1 ) と、 上下 2点の流動層圧力 の差と流動化ガス量から循環量を計算するための演算装置と しての制御装置 6 を設けるので、 循環量を測定することができる。  As described above, the pressure measuring devices 91 and 9 2 for measuring the fluidized bed pressure at the upper and lower points in the fluidized bed of the settling channel combustion chamber 4 and the fluidizing gas of the settling channel combustion chamber 4 g 4 Flow rate measuring device (flow rate measuring device) 7 5 (Fig. 1) and control device as an arithmetic device for calculating the circulation amount from the difference between the fluidized bed pressure at the upper and lower points and the amount of fluidized gas 6 , The amount of circulation can be measured.
前述の原理によ り、 沈降チヤ一燃焼室 4の流動化ガス量は、 循環量制御の操作 因子である。 したがって、 循環量を制御するために、 沈降チヤ一燃焼室 4の流 動化ガス流量を変化させるための流量制御弁 (調節弁) 6 5 (図 1 ) を設けて いるので、 循環量制御を行う ことができる。  According to the principle described above, the amount of fluidized gas in the sedimentation-chamber combustion chamber 4 is an operating factor of the circulation amount control. Therefore, in order to control the amount of circulation, a flow control valve (control valve) 65 (Fig. 1) for changing the flow rate of the fluidized gas in the sedimentation chamber 1 combustion chamber 4 is provided. It can be carried out.
これまでに述べた流動層高の測定と循環量の測定とを組み合わせて、循環量の制 御をおこなうことができる。  The circulating volume can be controlled by combining the measurement of the fluidized bed height and the circulating volume described above.
循環量の制御は以下のように行う。 まず流動層高の測定を行う(ステップ 1 )。 流動 層高の測定を行うためには、流動層中の 2点間に設置された各圧力測定装置 9 1、 92 によって各点の流動層圧力を測定する。 流動層圧力の測定値が流動層高を計算する ための演算装置としての制御装置 6に入力され、そこで、流動層高が計算される。 計 算された流動層高は、循環量制御のための制御装置 6に入力される(制御装置 6内で データのやりとりを行う)。  The circulation amount is controlled as follows. First, the height of the fluidized bed is measured (step 1). In order to measure the fluidized bed height, the fluidized bed pressure at each point is measured by each pressure measuring device 91, 92 installed between two points in the fluidized bed. The measured value of the fluidized bed pressure is input to the control device 6 as an arithmetic unit for calculating the fluidized bed height, where the fluidized bed height is calculated. The calculated fluidized bed height is input to the control unit 6 for controlling the circulation amount (data is exchanged in the control unit 6).
次に循環量の測定を行う(ステップ 2 )。  Next, the circulation amount is measured (step 2).
沈降チヤ一燃焼室 4の流動層中の 2点間に設置された圧力測定装置 9 1、 9 2による 測定値と、沈降チヤ一燃焼室 4の流動化ガス流量測定のために設置された流量測定 装置 7 5の測定値が、循環量を計算する計算するための演算装置としての制御装置 6 に入力され、制御装置 6で、循環量が計算される。計算された循環量は、循環量制御 のための制御装置 6に入力される(制御装置 6内でデータのやりとりを行う)。  Measured values by the pressure measuring devices 91 and 92 installed between two points in the fluidized bed of the settling channel combustion chamber 4 and the flow rate installed for measuring the fluidized gas flow rate of the settling channel combustion chamber 4 The measured value of the measuring device 75 is input to the control device 6 as an arithmetic device for calculating the amount of circulation, and the amount of circulation is calculated by the control device 6. The calculated circulation amount is input to the control device 6 for controlling the circulation amount (data is exchanged in the control device 6).
次に循環量の制御を行う(ステップ 3 )。  Next, the circulation amount is controlled (step 3).
例えばある時点で、 W pの循環量であるものを Wsの循環量に制御する場合、ステ ップ 2で計算された循環量の測定値 Wpに対応する信号と、設定したい循環量である Wsに対応する信号が制御装置 6に送られる。もし、 Ws< Wpならば、制御装置 6は、 流動層高を上げる信号を、流動媒体供給量制御装置 114(図 22)に送り、 Ws> W Pならば、制御装置 6は、流動層高を下げる信号を、流動媒体抜出装置 118 (図 22) に送る。 For example, at some point, if the amount of circulation of Wp is controlled to the amount of circulation of Ws, The signal corresponding to the measurement value Wp of the circulation amount calculated in Step 2 and the signal corresponding to the circulation amount Ws to be set are sent to the control device 6. If Ws <Wp, the controller 6 sends a signal to increase the height of the fluidized bed to the fluid medium supply controller 114 (FIG. 22) .If Ws> WP, the controller 6 increases the fluidized bed height. The lowering signal is sent to the fluid extraction device 118 (FIG. 22).
流動媒体供給量制御装置 114 (図 22)が、 流動層高を上げる信号を受け取ったとき. 流動媒体供給量制御装置 114は、流動媒体供給量を増やすために、例えば制御弁 開度を開ける信号を制御弁に送る。 その結果、制御弁の開度が開くことにより、流動 媒体が炉内に供給されて、流動層高が増加し、循環量が増加する。また、流動媒体供 給量制御装置 114は、流動媒体供給量測定装置 113 (図 22)からも信号を受け取り、 急激に流動媒体が炉内に供給されないように、流動媒体供給量を定める動作も行う (流動媒体貯留装置 112 (図 22)の流動媒体貯留層に貯留された流動媒体は、炉内 温度より低いため、流動媒体の急激な供給により炉内温度が下がり過ぎないようにす る)。  When the fluid medium supply control device 114 (FIG. 22) receives a signal to increase the fluidized bed height. The fluid medium supply control device 114 increases the fluid medium supply amount by, for example, opening the control valve. To the control valve. As a result, when the opening of the control valve is opened, the fluidized medium is supplied into the furnace, the height of the fluidized bed is increased, and the circulation amount is increased. The fluid medium supply amount control device 114 also receives a signal from the fluid medium supply amount measurement device 113 (FIG. 22), and performs an operation for determining the fluid medium supply amount so that the fluid medium is not suddenly supplied into the furnace. Perform (Because the fluid medium stored in the fluid medium storage layer of the fluid medium storage device 112 (Fig. 22) is lower than the furnace temperature, make sure that the furnace temperature does not fall too low due to the rapid supply of the fluid medium. .
流動媒体抜出量制御装置 119 (図 22)が、流動層高を下げる信号を受け取ったら、 流動媒体供給量を減らすために、例えば流動媒体抜出しのためのスクリューコンペャ 118(図 22)にスィッチオンの信号を送るか、あるいは、スクリューコンペャの回転数 をあげる信号を送る。その結果、スクリューコンペャが作動するか、あるいは、スクリュ 一コンペャの回転数が増加するなどして、 その結果、流動媒体抜出管 117(図 22)を 介して、 流動媒体が炉内から抜出されて、流動層高が減少し、循環量が減少する。 上記の構成によって、流動層高を変化させて循環量を制御することが可能になる。 次に、 図 1を参照して説明する。 本発明における統合型ガス化炉 1 0 1では、 上部に開口部を有する仕切壁 1 4によって仕切られたチヤ一燃焼室本体部 5 と沈 降チヤ一燃焼室 4 (上部に開口部 P Xを有する仕切壁 Xで仕切られた室 Aと室 B に相当 (図 2 ( a ) 参照) ) との間の流動媒体 cの移動と、 下部に開口部 2 1を 有する仕切壁 1 1によって仕切られたガス化室 1 とチヤ一燃焼室本体部 5 (下部 に開口部 Q yを有する仕切壁 Yで仕切られた室 Aと室 Bに相当 (図 2 ( b ) 参 照) ) 間の流動媒体 cの移動、 下部に開口部 2 5を有する仕切壁 1 5によって仕 切られた沈降チヤ一燃焼室 4 とガス化室 1 (下部に開口部 Q yを有する仕切壁 Y で仕切られた室 Aと室 Bに相当 (図 2 ( b ) 参照) ) 間の流動媒体 cの移動、 上 部の開口部と下部の開口部 2 2 とを有する仕切壁 1 2によって仕切られた熱回収 室 3 とチヤ一燃焼室本体部 5 (上部の開口部 P z と下部の開口部 Q z を有する仕 切壁 Zで仕切られた室 Aと室 Bに相当 (図 2 ( c ) 参照) ) 間との流動媒体じ の 移動を適宜組み合わせることによって、 隣接する室間の流動媒体 cの移動を連続 的に行い、 かつその移動量を調節することが可能なよ うに構成されている。 ガス化室 1の内部で沈降チヤ一燃焼室 4 との間の仕切壁 1 5に接する面寄り に は、 沈降チヤ一燃焼室 4の弱い流動化状態が維持される弱流動化域 4 a の流動化 状態と比べて強い流動化状態が維持される区画と しての強流動化域 1 bが配置さ れている。 全体と しては投入された燃料と流動媒体 c の混合拡散が促進されるよ うに、 場所によって流動化ガスの空塔速度を変化させるのが良く 、 一例と して図 2に示したよ うに、 強流動化域 1 bの他に弱い流動化状態が維持される区画と し ての弱流動化域 1 a を設けて旋回流を形成させるよ うにする。 強流動化域 1 b、 と弱流動化領域 l aでは、 流動化ガス g 1 はそれぞれ領域の全体に渡って均一の 流動化速度を有する。 When the fluid medium withdrawal control device 119 (Fig. 22) receives a signal to lower the fluidized bed height, a switch to reduce the fluidized media supply, for example, a screw conveyer 118 for fluidized media withdrawal (Fig. 22) Send an ON signal or a signal to increase the speed of the screw conveyor. As a result, the screw conveyer is activated or the number of revolutions of the screw conveyer increases, and as a result, the flow medium is discharged from the furnace through the flow medium discharge pipe 117 (Fig. 22). As a result, the height of the fluidized bed is reduced and the circulation amount is reduced. With the above configuration, it is possible to control the circulation amount by changing the fluidized bed height. Next, a description will be given with reference to FIG. In the integrated gasifier 101 according to the present invention, the combustion chamber main body 5 and the sedimentation combustion chamber 4 (which have an opening PX at the top) are separated by a partition wall 14 having an opening at the top. The fluid medium c moves between the chambers A and B separated by the partition wall X (see Fig. 2 (a)), and the partition wall 11 has an opening 21 at the bottom. Fluid medium c between gasification chamber 1 and chamber 5 of the combustion chamber (corresponding to chambers A and B separated by a partition wall Y having an opening Qy at the bottom (see Fig. 2 (b))) Movement by a partition wall 15 with an opening 25 at the bottom Separated sedimentation channel 1 Fluid medium between combustion chamber 4 and gasification chamber 1 (corresponding to chambers A and B separated by a partition wall Y having an opening Qy at the bottom (see Fig. 2 (b))) Movement of c, heat recovery chamber 3 and char combustion chamber body 5 separated by a partition wall 12 having an upper opening and a lower opening 22 (an upper opening P z and a lower opening Corresponds to chambers A and B separated by a partition wall Z having a section Q z (see Fig. 2 (c)). By appropriately combining the movement of the fluid medium between It is configured so that c can be moved continuously and the amount of movement can be adjusted. In the gasification chamber 1, near the surface in contact with the partition wall 15 between the sedimentation chamber and the combustion chamber 4, there is a weak fluidization zone 4 a where the weak fluidization state of the sedimentation chamber and the combustion chamber 4 is maintained. There is a strong fluidized area 1b as a section where the fluidized state is maintained stronger than the fluidized state. As a whole, the superficial velocity of the fluidizing gas should be varied depending on the location so that the mixed diffusion of the injected fuel and the fluidized medium c is promoted.As an example, as shown in FIG. In addition to the strong fluidization zone 1b, a weak fluidization zone 1a is provided as a section where a weak fluidization state is maintained so that a swirling flow is formed. In the strong fluidization zone 1 b and the weak fluidization zone la, the fluidizing gas g 1 has a uniform fluidization rate over the entire area.
チヤ一燃焼室本体部 5は中央部に弱い流動化状態が維持される区画と しての弱 流動化域 2 a 、 周辺部に強い流動化状態が維持される区画と しての強流動化域 2 bを有し、 流動媒体 cおよびチヤ一 hが内部旋回流を形成している。 強流動化域 2 b、 と弱流動化領域 2 aでは、 流動化ガス g 2はそれぞれ領域の全体に渡って 均一の流動化速度を有する。 ガス化室 1、 チヤ一燃焼室本体部 5内の強流動化域 2 bの流動化速度は 5 Umf以上、 弱流動化域 2 a の流動化速度は 5 Umf以下と するのが好適であるが、 弱流動化域 2 a と強流動化域 2 bに相対的な明確な流動 化速度の差を設ければ、 この範囲を超えても特に差し支えはない。 チヤ一燃焼室 本体部 5内の熱回収室 3、 および沈降チヤ一燃焼室 4に接する部分には強流動化 域 2 b を配するよ うにするのがよい。 また、 熱回収室 3内には弱流動化域 3 a、 沈降チヤ一燃焼室 4内には弱流動化域 4 a を配する。 弱流動化域 3 a、 と弱流動 化領域 4 aでは、 流動化ガス g 3、 g 4は、 それぞれ領域の全体に渡って均一の 流動化速度を有する。 また必要に応じて炉底には弱流動化域側から強流動化域側 に下るよ うな勾配を設けるのがよい (不図示) 。 The main combustion chamber main part 5 is a weak fluidized area 2a in the center where a weak fluidized state is maintained, and a strong fluidized area in the periphery where a strong fluidized state is maintained. It has a zone 2b, in which the fluid medium c and the channel h form an internal swirling flow. In the strong fluidization zone 2b and the weak fluidization zone 2a, the fluidizing gas g2 has a uniform fluidization rate over the entire area. It is preferable that the fluidization speed in the strong fluidization zone 2 b in the gasification chamber 1 and the chamber 1 of the combustion chamber main body 5 be 5 Umf or more, and that in the weak fluidization zone 2 a be 5 Umf or less. However, if there is a clear difference in the fluidization rate between the weak fluidization zone 2a and the strong fluidization zone 2b, there is no particular problem if the difference is exceeded. It is preferable to provide a strong fluidization zone 2b in the part that contacts the heat recovery chamber 3 in the main chamber 5 and the settling chamber 4. In the heat recovery chamber 3, a weak fluidized area 3a is provided, and in the settling channel combustion chamber 4, a weak fluidized area 4a is provided. In the weak fluidization zone 3a and the weak fluidization zone 4a, the fluidizing gas g3 and g4 each have a uniform fluidization rate over the entire area. If necessary, the bottom of the furnace should be located from the weak fluidization zone to the strong fluidization zone. It is better to provide a gradient that goes down (not shown).
このよ うに、 チヤ一燃焼室本体部 5 と熱回収室 3 との仕切壁 1 2近傍のチヤ一 燃焼室本体部 5側の流動化状態を熱回収室 3側の流動化状態より も相対的に強い 流動化状態に保つことによって、 流動媒体 cは仕切壁 1 2の流動床の界面近傍に ある上端を越えてチヤ一燃焼室本体部 5側から熱回収室 3側に流入し、 流入した 流動媒体 cは熱回収室 3内の相対的に弱い流動化状態即ち高密度状態のために下 方 (炉底方向) に移動し、 仕切壁 1 2の炉底近傍にある下端 (の開口部 2 2 ) を く ぐって熱回収室 3側からチヤ一燃焼室本体部 5側に移動する。 流動媒体 cが開 口部 2 2 をく ぐって熱回収室 3側からチヤ一燃焼室本体部 5側に移動するのは、 チヤ一燃焼室本体部 5の強流動化域 2 bの開口部 2 2近傍の流動媒体 cの流動化 状態と、 熱回収室 3の弱流動化域 3 aの開口部 2 2近傍の流動媒体 cの流動化状 態とを比較すると、 前者の方が後者よ り も強いからである。  As described above, the fluidized state of the main combustion chamber main body 5 near the partition wall 12 between the main combustion chamber main body 5 and the heat recovery chamber 3 is relative to the fluidized state of the heat recovery chamber 3 side. By maintaining the fluidized state, the fluid medium c flows into the heat recovery chamber 3 from the combustion chamber main body 5 side over the upper end of the partition wall 12 near the fluidized bed interface, and flows in The fluid medium c moves downward (toward the bottom of the furnace) due to the relatively weak fluidized state, ie, high density state, in the heat recovery chamber 3, and the lower end of the partition wall 12 near the bottom of the furnace (opening of the bottom). 2 2), and move from the heat recovery chamber 3 side to the char combustion chamber main body 5 side. The fluid medium c moves through the opening 22 from the heat recovery chamber 3 to the combustion chamber main body 5 side through the opening 2 2 in the strong fluidization zone 2 b of the combustion chamber main body 5. Comparing the fluidized state of the fluid medium c near 2 and the fluidized state of the fluid medium c near 2 2 near the opening of the weak fluidized area 3 a of the heat recovery chamber 3, the former is better than the latter. Is also strong.
同様に、 チヤ一燃焼室本体部 5 と沈降チヤ一燃焼室 4 との仕切壁 1 4近傍のチ ヤー燃焼室本体部 5側の流動化状態を沈降チヤ一燃焼室 4側の流動化状態よ り も 相対的に強い流動化状態に保つことによって、 流動媒体 cは仕切壁 1 4の流動床 の界面近傍にある上端を越えてチヤ一燃焼室本体部 5の側から沈降チヤ一燃焼室 4の側に移動流入する。 沈降チヤ一燃焼室 4の側に流入した流動媒体 c は、 沈降 チヤ一燃焼室 4内の相対的に弱い流動化状態即ち高密度状態のために下方 (炉底 方向) に移動し、 仕切壁 1 5の炉底近傍にある下端 (の開口部 2 5 ) をく ぐって 沈降チヤ一燃焼室 4側からガス化室 1側に移動する。 なおここで、 ガス化室 1 の 強流動化域 1 bの開口部 2 5近傍の流動媒体 c の流動化状態と、 沈降チヤ一燃焼 室 4の弱流動化域 4 aの開口部 2 5近傍の流動媒体 cの流動化状態とを比較する と、 前者の方が後者より も強い。 これにより流動媒体 c の沈降チヤ一燃焼室 4か らガス化室 1への移動を誘引作用によ り助ける。  Similarly, the fluidization state on the side of the combustion chamber main body 5 near the partition wall 14 between the main chamber 5 of the combustion chamber and the combustion chamber 4 on the sedimentation is referred to as the fluidization state on the side of the combustion chamber 4 By maintaining a relatively strong fluidization state, the fluid medium c is settled from the side of the combustion chamber main body 5 over the upper end of the partition wall 14 near the interface of the fluidized bed and the sedimentation chamber 4 Move in to the side. The fluid medium c that has flowed into the settling chamber 4 moves downward (toward the furnace bottom) due to the relatively weak fluidized state in the settling chamber 4, that is, the high-density state. Through the lower end (opening 25) near the bottom of the furnace of No. 15, the sedimentation chamber moves from the combustion chamber 4 side to the gasification chamber 1 side. Here, the fluidized state of the fluid medium c near the opening 25 of the strong fluidization zone 1 b of the gasification chamber 1 and the vicinity of the opening 25 of the weak fluidization zone 4 a of the sedimentation combustion chamber 4 Comparing with the fluidized state of the fluid medium c, the former is stronger than the latter. Thereby, the movement of the fluid medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 is assisted by the attracting action.
同様に、 ガス化室 1 とチヤ一燃焼室本体部 5 との間の仕切壁 1 1近傍のチヤ一 燃焼室本体部 5側の流動化状態はガス化室 1側の流動化状態よ り も相対的に強い 流動化状態に保たれている。 したがって、 流動媒体 cは仕切壁 1 1の流動床の界 面よ り下方、 好ましく は濃厚層の上面よ り も下方にある (濃厚層に潜った) 開口 部 2 1 を通してチヤ一燃焼室本体部 5の側に流入する。 流動媒体 cが開口部 2 1 を通ってガス化室 1側からチヤ一燃焼室本体部 5側に移動するのは、 チヤ一燃焼 室本体部 5の強流動化域 2 bの開口部 2 1近傍の流動媒体 cの流動化状態と、 ガ ス化室 1の弱流動化域 1 aの開口部 2 1近傍の流動媒体 cの流動化状態とを比較 すると、 前者の方が後者よ り も強いからである。 Similarly, the fluidization state on the side of the combustion chamber body 5 near the partition wall 11 between the gasification chamber 1 and the combustion chamber body 5 is higher than the fluidization state on the gasification chamber 1 side. Relatively strong liquidity is maintained. Therefore, the fluid medium c passes through the opening 21 below the fluidized bed interface of the partition wall 11, preferably below the upper surface of the dense layer (submerged in the dense layer), and through the opening portion 21, the main body of the combustion chamber of the chamber is discharged. Flow into the 5 side. Fluid medium c has opening 2 1 Moving from the gasification chamber 1 side to the combustion chamber main body 5 side through the chamber is the fluidization of the fluid medium c near the opening 21 of the strong fluidization zone 2 b of the combustion chamber main body 5 When the state is compared with the state of fluidization of the fluid medium c near the opening 21 of the weak fluidization zone 1a of the gasification chamber 1, the former is stronger than the latter.
前述のよ う に熱回収室 3は全体が均等に流動化され、 通常は最大でも熱回収室 3に接したチヤ一燃焼室本体部 5の流動化状態よ り弱い流動化状態となるよ うに 維持される。 したがって、 熱回収室 3の流動化ガス g 3の空塔速度は 0〜 3 Umf の間で制御され、 流動媒体 cは緩やかに流動しながら沈降流動層を形成する。 な おここで 0 Umf とは、 流動化ガス g 3が止まった状態である。 このよ うな状態 にすれば、 熱回収室 3 での熱回収を最小にすることができる。 即ち、 熱回収室 3 は流動媒体 cの流動化状態を変化させることによって回収熱量を最大から最小の 範囲で任意に調節することができる。 また、 熱回収室 3では、 流動化を室全体で 一様に発停あるいは強弱を調節してもよいが、 その一部の領域の流動化を停止し 他を流動化状態に置く こと もできる し、 その一部の領域の流動化状態の流動の強 弱を調節してもよい。  As described above, the entire heat recovery chamber 3 is uniformly fluidized, and the fluidized state is generally weaker than the fluidized state of the main combustion chamber main body 5 in contact with the heat recovery chamber 3 at most. Will be maintained. Therefore, the superficial velocity of the fluidizing gas g3 in the heat recovery chamber 3 is controlled between 0 and 3 Umf, and the fluidized medium c forms a settling fluidized bed while flowing slowly. Here, 0 Umf means that the fluidizing gas g 3 has stopped. In such a state, the heat recovery in the heat recovery chamber 3 can be minimized. That is, the heat recovery chamber 3 can arbitrarily adjust the amount of recovered heat from the maximum to the minimum by changing the fluidized state of the fluid medium c. In the heat recovery chamber 3, the fluidization may be uniformly started and stopped or controlled in intensity throughout the entire chamber.However, it is also possible to stop the fluidization in a part of the area and place the others in the fluidized state. However, the flow strength of the fluidized state in a part of the area may be adjusted.
さらに図 1 を参照し、 ガス化室 1 とチヤ一燃焼室本体部 5の間の流動媒体 cの 循環量を調節する方法について、 以下において具体的に説明する。  Further, with reference to FIG. 1, a method of adjusting the amount of circulation of the fluid medium c between the gasification chamber 1 and the combustion chamber main body 5 will be specifically described below.
ガス化室 1 とチヤ一燃焼室本体部 5 とを仕切る仕切壁 1 1 の下端に設けられた 開口部 2 1 のガス化室 1側に配置された弱流動化域 1 a の流動化ガス速度を変化 させることにより、 開口部 2 1 を介したガス化室 1からチヤ一燃焼室本体部 5へ の流動媒体 c の移動量を増加させた場合を考える。 この場合、 開口部 2 1 を介し たガス化室 1 からチヤ一燃焼室本体部 5への流動媒体 c の移動量がまず増加する ことにより、 チヤ一燃焼室本体部 5の流動層高の上昇と、 ガス化室 1の流動層高 の低下が一時的に起こる。  Fluidized gas velocity in the weak fluidization zone 1a located on the gasification chamber 1 side of the opening 21 provided in the lower end of the partition wall 1 1 that separates the gasification chamber 1 from the chamber 1 of the combustion chamber Let us consider a case in which the amount of movement of the fluid medium c from the gasification chamber 1 through the opening 21 to the main chamber 5 of the combustion chamber is increased by changing the pressure. In this case, the movement amount of the fluid medium c from the gasification chamber 1 to the combustion chamber main body 5 through the opening 21 first increases, so that the height of the fluidized bed of the combustion chamber main body 5 increases. Then, the height of the fluidized bed in the gasification chamber 1 decreases temporarily.
前述したよ うに、 このよ うな流動層高の変化によ り、 開口部 2 1 を介した流動 媒体 c の移動は抑えられる方向に作用し、 ある状態でバランスすることになる。 —方では、 チヤ一燃焼室本体部 5の流動層高の上昇は、 チヤ一燃焼室本体部 5か ら沈降チヤ一燃焼室 4へ仕切壁 1 4を越えて飛び込む流動媒体 c の飛び込み量の 増加をもたらす。 これによ り、 沈降チヤ一燃焼室 4の炉底部の圧力は上昇し、 一 方ではガス化室 1 の流動層高の低下によ り、 ガス化室 1の炉底部の圧力は低下す る。 As described above, due to such a change in the fluidized bed height, the movement of the fluidized medium c through the opening 21 acts in a direction that can be suppressed, and the fluid medium c is balanced in a certain state. The rise in the fluidized bed height in the main chamber 5 of the combustion chamber increases the amount of the fluid medium c that jumps from the main body 5 of the combustion chamber into the sedimentation chamber 4 through the partition wall 14. Bring increase. As a result, the pressure at the bottom of the sedimentation chamber 1 combustion chamber 4 increases, On the other hand, the pressure at the bottom of the gasification chamber 1 decreases due to the decrease in the height of the fluidized bed in the gasification chamber 1.
このため、 ガス化室 1 と沈降チヤ一燃焼室 4 とを仕切る仕切壁 1 5の下端に設 けられた開口部 2 5に注目する と、 沈降チヤ一燃焼室 4側の圧力は上昇し、 ガス 化室 1側の圧力は低下するから、 その圧力差を駆動力と して、 開口部 2 5を介し た沈降チヤ一燃焼室 4からガス化室 1への流動媒体 cの移動量が増加する。 このよ うに、 最初に与えたガス化室 1からチヤ一燃焼室本体部 5への流動媒体 cの移動量の増加により、 流動層高の変化が生じて、 そのためにガス化室 1から チヤ一燃焼室本体部 5への流動媒体 c の移動量増加が若干打ち消され、 またチヤ —燃焼室本体部 5から沈降チヤ一燃焼室 4を経由してガス化室 1に至る流動媒体 cの移動量が増加するよ うな作用がもたらされる。 この機構により、 最終的には ガス化室 1 とチヤ一燃焼室本体部 5 との間の流動媒体 cの粒子移動量が釣り合う ようにガス化室 1 とチヤ一燃焼室本体部 5 との流動層高が変化して安定するが、 安定した状態での粒子移動量は、 最初の状態よ り増加した状態に保たれることに なる。  For this reason, paying attention to the opening 25 provided at the lower end of the partition wall 15 that separates the gasification chamber 1 and the sedimentation-chamber combustion chamber 4, the pressure on the sedimentation-chamber combustion chamber 4 side increases, Since the pressure on the gasification chamber 1 side decreases, the amount of movement of the fluid medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 via the opening 25 increases using the pressure difference as the driving force. I do. As described above, the height of the fluidized bed changes due to the increase in the amount of movement of the fluidized medium c from the gasification chamber 1 given to the chamber 1 to the combustion chamber main body 5. The increase in the amount of fluidized medium c transferred to the combustion chamber body 5 is slightly negated, and the amount of fluidized medium c transferred from the cylinder to the gasification chamber 1 via the sedimentation chamber 1 and the combustion chamber 4 Is brought about. By this mechanism, the flow of gas between the gasification chamber 1 and the main part of the combustion chamber 5 is finally balanced so that the amount of particles of the fluid medium c between the gasification chamber 1 and the main part of the combustion chamber 5 is balanced. The bed height changes and stabilizes, but the amount of particle movement in a stable state is kept higher than the initial state.
即ち、 ガス化室 1 とチヤ一燃焼室本体部 5 との間の流動媒体 cの循環量を調節 するためには、 ガス化室 1からチヤー燃焼室本体部 5への流動媒体 c の移動量を 変化させてもよい。 また、 チヤ一燃焼室本体部 5からガス化室 1への流動媒体 c の移動量を変化させてもよいし、 あるいはその両者を変化させるようにしてもよ いが、 実際上は各室の流動層高が変化することによ り、 どちらか一方の移動量を 変化させる操作を行うだけで、 ガス化室 1からチヤ一燃焼室本体部 5への流動媒 体 cの移動量と、 チヤ一燃焼室本体部 5からガス化室 1への流動媒体 c の移動量 が釣り合うような状態で安定させることが可能である。  That is, in order to adjust the circulation amount of the fluid medium c between the gasification chamber 1 and the char combustion chamber main body 5, the movement amount of the fluid medium c from the gasification chamber 1 to the char combustion chamber main body 5 is adjusted. May be changed. Also, the amount of movement of the fluid medium c from the chamber 1 to the gasification chamber 1 may be changed, or both may be changed. By changing the height of the fluidized bed, only one of the two operations is performed, and the amount of movement of the fluid medium c from the gasification chamber 1 to the chamber 1 of the combustion chamber and the It is possible to stabilize the state in which the amount of movement of the fluid medium c from one combustion chamber body 5 to the gasification chamber 1 is balanced.
したがって、 ガス化室 1 とチヤ一燃焼室本体部 5 との間の流動媒体 cの移動量 を調節するためには、 前述のよ うに開口部 2 1 を介したガス化室 1からチヤ一燃 焼室本体部 5への流動媒体 c の移動量を調節してもよいし、 または仕切壁 1 4の 上端を超えてのチヤ一燃焼室本体部 5から沈降チヤ一燃焼室 4への流動媒体 cの 移動量を調節してもよいし、 あるいは開口部 2 5を介した沈降チヤ一燃焼室 4か らガス化室 1への流動媒体 cの移動量を調節してもよい。 ここで、 いずれの方法の場合においても、 流動媒体 cの移動量の調節は、 炉底 部から供給される流動化ガス gの量を変化させることによって行われるが、 ガス 化炉 1 0 1 の機能を確保するためには、 流動化ガス g の供給量を変化させたこと によ り、 ガス化室 1 で行われる燃料のガス化反応、 チヤ一燃焼室本体部 5で行わ れるチヤ一の燃焼反応が影響を受けないよ うにすることが望ま しい。 即ち、 ガス 化室 1 に供給される流動化ガス g 1 の総量、 あるいはチヤ一燃焼室本体部 5に供 給される流動化ガス g 2 の総量が変化しないよ うにすることが望ましい。 Therefore, in order to adjust the amount of movement of the fluid medium c between the gasification chamber 1 and the main chamber 5 of the combustion chamber, as described above, the combustion chamber 1 is moved from the gasification chamber 1 through the opening 21 as described above. The amount of movement of the fluid medium c to the firing chamber body 5 may be adjusted, or the fluid medium from the combustion chamber body 5 to the sedimentation chamber 4 beyond the upper end of the partition wall 14 The moving amount of c may be adjusted, or the moving amount of the fluid medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 through the opening 25 may be adjusted. Here, in either case, the amount of movement of the fluidized medium c is adjusted by changing the amount of fluidized gas g supplied from the furnace bottom. In order to ensure the function, the supply amount of the fluidizing gas g was changed to change the fuel gasification reaction performed in the gasification chamber 1 and the fuel gasification reaction performed in the combustion chamber body 5. It is desirable that the combustion reaction is not affected. That is, it is desirable that the total amount of the fluidizing gas g 1 supplied to the gasification chamber 1 or the total amount of the fluidizing gas g 2 supplied to the chamber 1 for the combustion chamber does not change.
例えば、 ガス化室 1 の開口部 2 1 の近く弱流動化域 1 a の流動化ガス g 1 の供 給量を減少させ、 チヤ一燃焼室本体部 5の開口部 2 1 の近傍の強流動化域 2 bの 流動化ガス g 2の供給量を増加させることで、 開口部 2 1 を介したガス化室 1か らチヤー燃焼室本体部 5への流動媒体 c の移動量を増加させるよ うに調節する場 合、 ガス化室 1 の開口部 2 1 の強流動化域 1 bへの流動化ガス g 1 の供給量を増 加させ、 チヤ一燃焼室本体部 5の開口部 2 1 の弱流動化域 2 a の流動化ガス g 2 の供給量を減少させるこ とで、 ガス化室 1 とチヤ一燃焼室本体部 5 の各々に供給 される各々の流動化ガス g 1、 g 2の供給量を加えた総量が変化しないよ うな操 作を行う ことが望ましい。  For example, near the opening 21 of the gasification chamber 1, the supply of the fluidized gas g 1 in the weak fluidization zone 1 a is reduced, and the strong flow near the opening 21 of the combustion chamber body 5 is reduced. By increasing the supply of the fluidizing gas g2 in the gasification zone 2b, it is possible to increase the amount of movement of the fluidizing medium c from the gasification chamber 1 to the char combustion chamber main body 5 through the opening 21. When adjusting the flow rate, the supply amount of the fluidizing gas g1 to the strong fluidization area 1b of the opening 21 of the gasification chamber 1 is increased, and the opening 21 of the main body 5 of the combustion chamber is reduced. By reducing the supply of the fluidized gas g2 in the weak fluidized zone 2a, each fluidized gas g1, g2 supplied to each of the gasification chamber 1 and the combustion chamber main body 5 is reduced. It is desirable to perform an operation that does not change the total amount including the supply amount.
また、 チヤ一燃焼室本体部 5 の仕切壁 1 4の近くの強流動化域 2 bの流動化ガ ス g 2の供給量を増加させ、 チヤ一燃焼室本体部 5から沈降チヤ一燃焼室 4へ仕 切壁 1 4を越えて飛び込む流動媒体 c の飛び込み量を増加させるこ とで、 チヤ一 燃焼室本体部 5から沈降チヤ一燃焼室 4への流動媒体 c の移動量を増加させるよ うに調節する場合、 チヤ一燃焼室本体部 5 の仕切壁 1 4から離れた弱流動化域 2 aへの流動化ガス g 2の供給量を減少させることで、 チヤ一燃焼室本体部 5に供 給される流動化ガス g 2の総量が変化しないよ うな操作を行う ことが望ましい。 これに対して、 開口部 2 5を介した、 沈降チヤ一燃焼室 4からガス化室 1への 流動媒体 c の移動量を調節する場合は、 ガス化室 1 あるいはチヤ一燃焼室本体部 5への流動化ガス g l、 g 2の供給量を変化させることなく、 沈降チヤ一燃焼室 4への流動化ガス g 4の供給量を変化させるのみで流動媒体 cの移動量を調節す ることができるので、 特に好適である。  In addition, the supply amount of the fluidizing gas g2 in the strong fluidization zone 2b near the partition wall 14 of the chamber 1 of the combustion chamber was increased, and the sedimentation chamber 1 By increasing the amount of the fluid medium c that jumps across the partition wall 14 to the partition wall 4, the amount of the fluid medium c that moves from the main combustion chamber body 5 to the sedimentation chamber 4 increases. When the amount of fluidized gas g2 supplied to the weak fluidization zone 2a away from the partition wall 14 of the combustion chamber main body 5 is reduced, the supply volume of the combustion chamber main body 5 is reduced. It is desirable to perform an operation so that the total amount of the supplied fluidized gas g2 does not change. On the other hand, when adjusting the movement amount of the fluidized medium c from the sedimentation chamber 1 to the gasification chamber 1 through the opening 25, the gasification chamber 1 or the chamber 5 The amount of fluidized gas g4 supplied to the sedimentation chamber 1 combustion chamber 4 only by changing the amount of fluidized gas g4 supplied to the sedimentation chamber 1 without changing the supply of fluidized gas gl and g2 This is particularly suitable because
この場合、 ガス化室 1側の開口部 2 5寄りは強流動化域 1 b であるので強流動 化状態に保たれ、 沈降チヤ一燃焼室 4側は区画と しての弱流動化域 4 a であるの で弱流動化状態に保たれているから、 ガス化室 1側の強流動化域 1 bの強流動化 状態を一定に保ったまま、 沈降チヤ一燃焼室 4側の弱流動化状態の強弱を変化さ せることによって、 効果的に沈降チヤ一燃焼室 4からガス化室 1への流動媒体 c の移動量を調節することができる。 In this case, the strong flow area 1 b is located near the opening 25 on the gasification chamber 1 side, The submerged sedimentation chamber 4 side is maintained in a weakly fluidized state because it is a weak fluidized area 4a as a section, so the strong fluidized area on the gasification chamber 1 side is maintained. By changing the strength of the weak fluidization state on the settling channel combustion chamber 4 side while maintaining the strong fluidized state of 1 b constant, the sedimentation channel combustion chamber 4 is effectively moved from the sedimentation channel combustion chamber 4 to the gasification chamber 1. The moving amount of the fluid medium c can be adjusted.
既に説明したよ うに、 開口部 2 5のガス化室 1側の近傍の強流動化域 1 bは、 強流動化状態に保たれていることが望ましく 、 流動化ガス速度が好ましく は 4Um f以上、 さ らに好ま しく は 5Umf以上に保たれているのがよい。 この場合、 沈降 チヤ一燃焼室 4の流動化ガス速度を、 4Umf以下の範囲 (強流動化域 l bの流動 化ガスの流速が 4Umf以上の場合) または 5Umf以下の範囲 (強流動化域 l bの 流動化ガスの流速が 5Umf以上の場合) で変化させることによ り、 沈降チヤ一燃 焼室 4からガス化室 1への流動媒体 c の移動量を、 図 4によって示される特性に 従って調節することができる。  As described above, the strong fluidization region 1b near the gasification chamber 1 side of the opening 25 is desirably maintained in a strong fluidization state, and the fluidizing gas velocity is preferably 4 Umf or more. However, more preferably, it should be kept at 5 Umf or more. In this case, the velocity of the fluidizing gas in the sedimentation chamber 1 is set to a range of 4 Umf or less (when the flow rate of the fluidizing gas in the strong fluidization region lb is 4 Umf or more) or a range of 5 Umf or less (the strong fluidization region lb The flow rate of the fluidized medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 is adjusted in accordance with the characteristics shown in Fig. 4 by changing the flow rate of the fluidizing gas to 5 Umf or more. can do.
なお図 4によれば、 特に沈降チヤ一燃焼室 4側の流動化ガス速度を、 好ま しく は lUmf〜2Umf の範囲、 さらに好ましく は lUmf ~ 1 · 7Umfの範囲で変化させた 場合に、 流動媒体 cの移動量がほぼ線形的に大きく変化することがわかる。 この 場合、 沈降チヤ一燃焼室 4に供給される流動化ガス g 4の量を少なく して、 かつ 流動媒体 c の移動量を細かく調節することができるため、 特に好適である。 According to FIG. 4, especially when the velocity of the fluidizing gas on the settling chamber 1 combustion chamber 4 side is changed in the range of lUmf to 2Umf, more preferably in the range of lUmf to 1.7Umf, It can be seen that the movement amount of c changes largely linearly. In this case, the amount of the fluidizing gas g4 supplied to the sedimentation-chamber combustion chamber 4 can be reduced, and the moving amount of the fluidizing medium c can be finely adjusted.
もちろんこれとは逆に、 沈降チヤ一燃焼室 4の弱流動化の状態を一定と して、 ガス化室 1 の強流動化の状態を変化させて、 沈降チヤ一燃焼室 4からガス化室 1 への流動媒体 cの移動量を変化させることも可能ではある。 しかし、 その場合に は流動媒体 c の移動量を変化させるための流動化ガス g 1の流量の変化が大きく なり、 ガス化室 1におけるガス化反応の条件も変わってしま うため好適ではない。 すなわち、 後で述べるよ うに、 実用上はガス化室 1 の層温を変化させることが生 成ガス bの性状を制御する上で非常に重要であるが、 ガス化室 1 の強流動化の状 態を変化させる場合は、 層温の変化に付随してガス化室 1 の反応条件も変わって しまい、 ガス化室 1 の層温だけを独立に制御することが難しく なる。 これに対し て、 上記で説明した沈降チヤ一燃焼室 4の弱流動化の状態を変化させることによ る流動媒体 cの移動量の制御の場合は、 流動化ガス g 4の流量の変化が非常に少 なく ても流動媒体 cの移動量の大きな変化を実現することができるため (図 4参 照) 、 制御性が良い、 プロセス全体の効率に与える影響が少ないなどの利点に加 えて、 ガス化室 1に供給する流動化ガス g 1 の流量を変えずにガス化室 1の層温 のを制御することができるという大きな利点がある。 Of course, conversely, the weak fluidization state of the settling channel combustion chamber 4 is kept constant, and the strong fluidization state of the gasification chamber 1 is changed. It is also possible to change the moving amount of the fluid medium c to 1. However, in that case, the change in the flow rate of the fluidizing gas g1 for changing the moving amount of the fluidizing medium c increases, and the conditions of the gasification reaction in the gasification chamber 1 also change, which is not preferable. In other words, as described later, in practice, changing the bed temperature of the gasification chamber 1 is very important in controlling the properties of the generated gas b. When the state is changed, the reaction conditions of the gasification chamber 1 are also changed with the change of the bed temperature, and it becomes difficult to independently control only the bed temperature of the gasification chamber 1. On the other hand, in the case of controlling the amount of movement of the fluidized medium c by changing the state of weak fluidization of the settling channel combustion chamber 4 described above, the change in the flow rate of the fluidized gas g4 Very little Since a large change in the moving amount of the fluid medium c can be realized without this (see Fig. 4), the gasification chamber has the advantages of good controllability and little effect on the efficiency of the entire process. There is a great advantage in that the bed temperature of the gasification chamber 1 can be controlled without changing the flow rate of the fluidizing gas g1 supplied to 1.
次に図 1 を参照して流動化ガス gのガス速度の制御について説明する。 まず、 ガス化室 1 に供給される流動化ガス g 1のガス速度の制御について説明する。 前 述のよ うに、 ガス化室 1 の弱流動化域 1 a に対応する炉底に配置された散気装置 3 1 に接続された供給配管 5 1 に設置された調節弁 6 1は、 制御装置 6からの制 御信号 i 1 を受けて弁開度を設定する。 弁開度に対応した流量の流動化ガス g 1 が調節弁 6 1 を介して散気装置 3 1 に供給される。 供給される流動化ガスの流量 によって決まる流動化ガス速度で弱流動化域 1 aに流動化ガス g 1が供給される c 流動化ガス g 1 の流量は、 供給配管 5 1上の調節弁 6 1 の下流側に設置された流 量測定器 7 1 によって測定され、 測定された流量は流量信号 i 2 と して流量測定 器 7 1から制御装置 6に送られる。 制御装置 6は、 測定された流量信号 i 2 と内 部に記憶された弱流動化域 1 a の目標流量と比較し、 流量信号 i 2が目標値に近 づく よ うに調節弁 6 1 への制御信号 i 1 の値を変更し、 変更された制御信号 i 1 が制御装置 6から調節弁 6 1に送られる。 Next, control of the gas velocity of the fluidizing gas g will be described with reference to FIG. First, control of the gas velocity of the fluidizing gas g1 supplied to the gasification chamber 1 will be described. As described above, the control valve 61 installed in the supply pipe 51 connected to the air diffuser 31 arranged at the bottom of the furnace corresponding to the weak fluidization zone 1a of the gasification chamber 1 is controlled by the control valve 61. The valve opening is set in response to the control signal i 1 from the device 6. Fluidizing gas g 1 having a flow rate corresponding to the valve opening is supplied to the air diffuser 31 via the control valve 61. The fluidized gas g 1 is supplied to the weak fluidized zone 1 a at the fluidized gas velocity determined by the flow rate of the supplied fluidized gas c The fluidized gas g 1 is supplied to the fluidized area 1 a The control valve 6 on the supply pipe 5 1 The flow rate is measured by a flow rate measuring device 71 installed on the downstream side of 1 and the measured flow rate is sent from the flow rate measuring device 71 to the control device 6 as a flow rate signal i 2. The control device 6 compares the measured flow signal i 2 with the target flow rate in the weak fluidization zone 1 a stored inside, and controls the control valve 61 so that the flow signal i 2 approaches the target value. The value of the control signal i 1 is changed, and the changed control signal i 1 is sent from the control device 6 to the control valve 61.
以上、 ガス化室 1 の弱流動化域 1 aの流動化ガス g 1のガス速度の制御につい て説明したが、 ガス化室 1 の強流動化域 1 b 、 チヤ一燃焼室 2の弱流動化域 2 a、 強流動化域 2 b、 弱流動化域 4 a、 熱回収室 3 の弱流動化域 3 a についても同様 である。  The control of the gas velocity of the fluidized gas g1 in the weak fluidization zone 1a of the gasification chamber 1 has been described above.The weak flow in the strong fluidization zone 1b of the gasification chamber 1 and the weak combustion chamber 2 The same applies to the fluidized zone 2a, the strong fluidized zone 2b, the weak fluidized zone 4a, and the weakly fluidized zone 3a of the heat recovery chamber 3.
ガス化室 1 の弱流動化域 1 a に供給される流動化ガス g 1の流量の目標値、 強 流動化域 1 bに供給される流動化ガス g 1の流量の目標値は、 目標とするガス化 室 1内部での流動化状態の強さ、 ガス化室 1 の弱流動化域 1 aから開口部 2 1 を 介してチヤ一燃焼室本体部 5の弱流動化域 1 a へ移動する流動媒体 c の移動量、 沈降チヤ一燃焼室 4からガス化室 1 の強流動化域 1 bへ移動する流動媒体 c の移 動量、 温度測定器 4 2によって測定されたガス化室 1 の層温、 ガス組成測定器 4 6により測定された生成ガス bのガス組成を総合的に勘案し、 ガス化室 1の層温 が所定の値 (例えば、 6 0 0〜 8 0 0 °C ) になるよ うに、 あるいはガス組成が所 定の内容 (例えば、 H 2 / C Oモル比が 2 . 6〜5 . 8 ) になるよ うに決めるとよ レゝ The target value of the flow rate of the fluidized gas g1 supplied to the weak fluidization zone 1a of the gasification chamber 1 and the target value of the flow rate of the fluidized gas g1 supplied to the strong fluidization zone 1b are the target The strength of the fluidized state inside the gasification chamber 1 that moves from the weakly fluidized area 1a of the gasification chamber 1 to the weakly fluidized area 1a of the main body 5 of the combustion chamber via the opening 21. Of the fluidized medium c moving from the settling chamber 1 to the strong fluidized area 1 b of the gasification chamber 1, the amount of the fluidized medium c moved to the gasification chamber 1 measured by the temperature measuring device 4 2 Bed temperature and gas composition of the gas b measured by the gas composition measuring device 46 are taken into consideration, and the bed temperature of the gasification chamber 1 is set to a predetermined value (for example, 600 to 800 ° C). Or the gas composition is When it is determined that the content is constant (for example, the H 2 / CO molar ratio is 2.6 to 5.8),
チヤ一燃焼室 2の弱流動化域 2 a に供給される流動化ガス g 2の流量の目標値. 強流動化域 2 bに供給される流動化ガス g 2の流量の目標値は、 沈降チヤ一燃焼 室 4に供給される流動化ガス g 4の流量の目標値は、 目標とするチヤ一燃焼室本 体部 5内部での流動化状態の強さ、 目標とする沈降チヤ一燃焼室 4での流動化状 態の強さ、 チヤ一燃焼室本体部 5の強流動化域 2 bから仕切壁 1 4の上端を越え て沈降チヤ一燃焼室 4に移動する流動媒体 c の移動量、 沈降チヤ一燃焼室 4から 開口部 2 5を介してガス化室 1 の強流動化域 2 bへ移動する流動媒体 cの移動量, 熱回収室 3から開口部 2 2を介してチヤ一燃焼室本体部 5の強流動化域 2 bへ移 動する流動媒体 c の移動量、 チヤ一燃焼室本体部 5 の強流動化域 2 bから仕切壁 1 2の上端を越えて熱回収室 3に移動する流動媒体 c の移動量、 温度測定器 4 3 によって測定されたチヤ一燃焼室本体部 5の層温を総合的に勘案し、 チヤ一燃焼 室本体部 5の層温が所定の値 (例えば、 8 5 0〜 9 5 0 °C ) になり、 かつガス化 室 1から供給されるガス化残渣 (チヤ一、 タール等) が完全燃焼されるよ うに決 めるとよレ、。  The target value of the flow rate of the fluidizing gas g2 supplied to the weak fluidization zone 2a of the first combustion chamber 2. The target value of the flow rate of the fluidizing gas g2 supplied to the strong fluidization zone 2b is settling. The target value of the flow rate of the fluidizing gas g4 supplied to the chamber 1 is determined by the strength of the fluidized state inside the main body 5 of the combustion chamber and the target sedimentation chamber by the target. The strength of the fluidized state at 4, the amount of movement of the fluid medium c that moves from the strong fluidized area 2b of the chamber 1 to the sedimentation chamber 4 over the upper end of the partition wall 14. The amount of the fluid medium c moving from the sedimentation chamber combustion chamber 4 to the strong fluidization zone 2 b of the gasification chamber 1 via the opening 25, and from the heat recovery chamber 3 via the opening 22. The amount of movement of the fluid medium c moving to the strong fluidization zone 2 b of the combustion chamber body 5, the heat recovery chamber from the strong fluidization zone 2 b of the combustion chamber body 5 to the upper end of the partition wall 1 2 Move to 3 Considering the total amount of movement of the flowing medium c and the layer temperature of the chamber 1 of the combustion chamber measured by the temperature measuring device 4 3, the layer temperature of the chamber 5 of the combustion chamber becomes a predetermined value (for example, 850-950 ° C), and the gasification residue (char, tar, etc.) supplied from the gasification chamber 1 is determined to be completely burned.
熱回収室 3 を有する場合、 チヤ一燃焼室本体部 5 の層温は、 熱回収室 3で回収 される熱回収量の影響を受け、 熱回収量が増えればチヤ一燃焼室本体部 5の層温 は低下し、 熱回収量が減ればチヤ一燃焼室本体部 5の層温は増加する。  When the heat recovery chamber 3 is provided, the layer temperature of the main chamber 5 is affected by the amount of heat recovered in the heat recovery chamber 3, and if the amount of heat recovery increases, the layer temperature of the main body 5 of the combustion chamber 5 increases. The bed temperature decreases, and if the heat recovery amount decreases, the bed temperature of the main chamber 5 of the combustion chamber increases.
次に熱回収室 3で、 熱回収量を増減するための制御の方法について説明する。 熱回収室 3における熱回収量は、 流動媒体 c と層内伝熱管 4 1 Aとの間の熱伝達 係数によって決まる。 この熱伝達係数は、 熱回収室 3における流動化の強弱に密 接な関係があり、 流動化が強いほど熱伝達係数が大きく なり、 層内伝熱管が流動 媒体から熱を奪う量が増加する。 したがって、 チヤ一燃焼室本体部 5の層温を一 定に保っためには、 熱回収室 3の流動層に供給される流動化ガス g 3の流量を制 御することにより、 熱回収室 3における流動化の強弱を変化させればよい。  Next, a control method for increasing or decreasing the heat recovery amount in the heat recovery chamber 3 will be described. The amount of heat recovery in the heat recovery chamber 3 is determined by the heat transfer coefficient between the fluid medium c and the in-bed heat transfer tube 41A. This heat transfer coefficient is closely related to the degree of fluidization in the heat recovery chamber 3, and the stronger the fluidization, the larger the heat transfer coefficient, and the more the in-bed heat transfer tubes take away heat from the fluid medium. . Therefore, in order to keep the bed temperature of the main chamber 5 of the combustion chamber constant, the flow rate of the fluidizing gas g3 supplied to the fluidized bed of the heat recovery chamber 3 is controlled to control the heat recovery chamber 3 In this case, the level of fluidization may be changed.
熱回収室 3 に供給される流動化ガス g 3を導入する供給配管 5 6に設置された 調節弁 6 6は、 制御装置 6からの制御信号 i 1 を受けて弁開度を設定する。 弁開 度に対応した流量の流動化ガス g 3が調節弁 6 6 を介して熱回収室 3の流動層に 供給される。 流動化ガス g 3の流量は調節弁 6 6の下流に設置された流量測定器 7 6によって測定され、 測定された流量は制御信号 i 2 と して制御装置 6に送ら れる。 前述のよ うに、 流動化ガス g 3の流量が大きいほど熱回収室 3の流動化が 強く なり、 熱回収量が増加するから、 チヤ一燃焼室本体部 5 の層温が目標値よ り 高い場合には、 制御装置 6はチヤ一燃焼室本体部 5の層温が目標値に近づく よ う に調節弁 6 6への制御信号 i 1 の値を変更し、 流動化ガス g 3の流量を増加させ るよ うに構成すればよい。 またチヤ一燃焼室本体部 5 の層温が目標値よ り低い場 合には、 制御装置 6はチヤ一燃焼室本体部 5の層温が目標値に近づく よ うに調節 弁 6 6への制御信号 i 1 の値を変更し、 流動化ガス g 3の流量を減少させるよ う に構成すればよい。 The control valve 6 6 installed in the supply pipe 56 for introducing the fluidized gas g 3 supplied to the heat recovery chamber 3 receives the control signal i 1 from the control device 6 and sets the valve opening. Fluidizing gas g3 at a flow rate corresponding to the valve opening is supplied to the fluidized bed of the heat recovery chamber 3 via the control valve 66. Supplied. The flow rate of the fluidizing gas g3 is measured by a flow rate measuring device 76 installed downstream of the control valve 66, and the measured flow rate is sent to the control device 6 as a control signal i2. As described above, the greater the flow rate of the fluidizing gas g3, the stronger the fluidization of the heat recovery chamber 3 and the greater the amount of heat recovery, so that the bed temperature of the main chamber 5 of the combustion chamber is higher than the target value. In this case, the control device 6 changes the value of the control signal i 1 to the control valve 66 so that the bed temperature of the main portion 5 of the combustion chamber approaches the target value, and adjusts the flow rate of the fluidizing gas g 3. What is necessary is just to configure so that it may increase. If the bed temperature of the main chamber 5 is lower than the target value, the controller 6 controls the control valves 6 6 so that the bed temperature of the main chamber 5 approaches the target value. What is necessary is just to change the value of the signal i 1 and reduce the flow rate of the fluidizing gas g 3.
一方、 蒸気については、 層内伝熱管 4 1 の導入部 4 1 Bに設置された調節弁 6 7が、 制御装置 6からの制御信号 i 1 を受けて弁開度を設定する。 弁開度に対応 した流量の蒸気 s 1が調節弁 6 7を介して層内伝熱管本体 4 1 Aに供給される。 層内伝熱管本体 4 1 Aに導入された蒸気 s 1 は熱回収室 3 の流動化状態によって 決まる熱伝達係数に応じた熱量を流動媒体 cから受けて加熱され過熱蒸気 s 2 と なり、 排出部 4 1 Cから排出される。 蒸気 s 1 の流量は、 導入部 4 1 B上の調節 弁 6 7の下流側に設置された流量測定器 7 7によって測定され、 測定された流量 は流量信号 i 2 と して、 流量測定器 7 7から制御装置 6に送られる。 過熱前の蒸 気 s 1 の温度は、 導入部 4 1 Bに設置された温度測定器 4 4によって測定され、 測定された温度は温度信号 i 3 と して制御装置 6に送られる。 過熱後の蒸気 s 2 の温度は、 排出部 4 1 Cに設置された温度測定器 4 5によって測定され、 測定さ れた温度は温度信号 i 3 と して制御装置 6に送られる。  On the other hand, for steam, a control valve 67 installed in the introduction section 41B of the in-layer heat transfer tube 41 receives the control signal i1 from the control device 6 and sets the valve opening. Steam s 1 having a flow rate corresponding to the valve opening is supplied to the in-layer heat transfer tube main body 41 A via the control valve 67. The steam s 1 introduced into the bed heat transfer tube body 4 1 A receives heat from the fluid medium c according to the heat transfer coefficient determined by the fluidized state of the heat recovery chamber 3 and is heated to become superheated steam s 2, which is discharged. Emitted from part 41 C. The flow rate of the steam s 1 is measured by a flow rate measuring device 77 installed downstream of the control valve 67 on the inlet 41 B, and the measured flow rate is a flow rate signal i 2, 7 Sent to controller 6 from 7 The temperature of the steam s 1 before overheating is measured by a temperature measuring device 44 installed in the introduction section 41B, and the measured temperature is sent to the control device 6 as a temperature signal i 3. The temperature of the steam s 2 after the overheating is measured by a temperature measuring device 45 installed in the discharge part 41 C, and the measured temperature is sent to the control device 6 as a temperature signal i 3.
例えば熱回収室 3の流動化の強弱を強めて熱回収量を増加させた場合、 層内伝 熱管 4 1に供給される蒸気 s i の流量が一定に保たれているとすると、 得られる 過熱蒸気 s 2の温度が上昇する。 過熱蒸気 s 2の利用形態上、 温度が上昇するこ とが好ましく ない場合には、 供給する蒸気 s 1の流量を增加させることで、 熱回 収量の増加を回収される過熱蒸気 s 2の流量の増加に反映させることができる。 この場合、 制御装置 6は、 過熱後の蒸気 s 2の温度信号 i 3が蒸気 s 2の目標温 度よ り高い場合には、 調節弁 6 7への制御信号 i 1 の値を変更して蒸気 s 1 の流 量を増加させるよ うに構成すればよい。 逆に過熱後の蒸気 s 2の温度信号 i 3が 蒸気 s 2 の目標温度より低い場合には、 調節弁 6 7への制御信号 i 1 の値を変更 して蒸気 s 1 の流量を減少させるよ うに構成すればよい。 For example, if the fluidization of the heat recovery chamber 3 is strengthened to increase the amount of heat recovery, if the flow rate of the steam si supplied to the in-bed heat transfer tubes 41 is kept constant, the obtained superheated steam The temperature of s2 rises. If the use of superheated steam s2 makes it unfavorable to increase the temperature, the flow rate of superheated steam s2 is recovered by increasing the flow rate of steam s1 supplied to recover the increase in heat recovery. Can be reflected in the increase. In this case, the controller 6 changes the value of the control signal i 1 to the control valve 67 when the temperature signal i 3 of the steam s 2 after overheating is higher than the target temperature of the steam s 2. Stream of steam s 1 It may be configured to increase the amount. Conversely, if the temperature signal i 3 of the steam s 2 after overheating is lower than the target temperature of the steam s 2, the value of the control signal i 1 to the control valve 67 is changed to decrease the flow rate of the steam s 1 It may be configured as follows.
廃棄物または燃料 a 中に含まれる比較的大きな不燃物はガス化室 1の炉底に設 けた不燃物排出口 (不図示) から排出する。 また、 各室の炉底面は水平でもよい 力 流動媒体 cの流れの滞留部を作らないよ うにするために、 炉底近傍の流動媒 体 cの流れに従って、 炉底を傾斜させてもよい。 なお、 不燃物排出口 (不図示) は、 ガス化室 1の炉底だけでなく 、 チヤ一燃焼室本体部 5、 沈降チヤ一燃焼室 4 あるいは熱回収室 3の炉底に設けてもよい。  Relatively large incombustibles contained in waste or fuel a are discharged from the incombustible outlet (not shown) provided at the bottom of the gasification chamber 1. In addition, the bottom of the furnace in each chamber may be horizontal. In order not to form a stagnant portion for the flow of the fluidized medium c, the furnace bottom may be inclined according to the flow of the fluidized medium c near the furnace bottom. In addition, the noncombustible material discharge port (not shown) may be provided not only in the furnace bottom of the gasification chamber 1 but also in the furnace bottom of the combustion chamber main body 5, the sedimentation combustion chamber 4, or the heat recovery chamber 3. .
ガス化室 1 の流動化ガス g 1 と して最も好ましいのは生成ガス bを昇圧してリ サイクル使用することである。 このよ うにすればガス化室 1から出る生成ガス b は純粋に燃料から発生した生成ガス bのみとなり、 非常に高品質の生成ガス b を 得ることができる。 それが不可能な場合は水蒸気、 炭酸ガス ( C 0 2 ) あるいは チヤ一燃焼室 2から得られる燃焼排ガス等、 できるだけ酸素を含まないガス (無 酸素ガス) を流動化ガス g 1 と して用いるのがよい。 ガス化の際の吸熱反応によ つて流動媒体 cの層温が低下する場合は、 必要に応じて熱分解温度より温度の高 い燃焼排ガスを供給するか、 あるいは無酸素ガスに加えて、 酸素もしく は酸素を 含むガス、 例えば空気を供給して生成ガス bの一部を燃焼させるよ うにしてもよ レ、。 チヤ一燃焼室 2に供給する流動化ガス g 2、 g 4は、 チヤ一燃焼に必要な酸 素を含むガス、 例えば空気、 酸素と蒸気の混合ガスを供給する。 燃料 aの発熱量 (カロ リー) が低い場合は、 酸素量を多くする方が好ま しく 、 酸素をそのまま供 給する。 また熱回収室 3に供給する流動化ガス g 3は、 空気、 水蒸気、 燃焼排ガ ス等を用いる。  The most preferable fluidized gas g1 in the gasification chamber 1 is to use the product gas b at a high pressure for recycle. In this way, the generated gas b from the gasification chamber 1 is only the generated gas b purely generated from the fuel, and a very high quality generated gas b can be obtained. If this is not possible, a gas containing as little oxygen as possible (oxygen-free gas), such as steam, carbon dioxide (C02) or flue gas from the combustion chamber 2, is used as the fluidizing gas g1. Is good. If the bed temperature of the fluidized medium c decreases due to the endothermic reaction during gasification, supply combustion exhaust gas with a temperature higher than the thermal decomposition temperature as necessary, or add oxygen to the oxygen-free gas. Alternatively, a gas containing oxygen, for example, air may be supplied to burn a part of the product gas b. The fluidizing gas g2, g4 supplied to the char combustion chamber 2 supplies a gas containing oxygen necessary for char combustion, for example, a mixed gas of air, oxygen and steam. When the calorific value of fuel a is low, it is preferable to increase the amount of oxygen, and oxygen is supplied as it is. Air, steam, combustion exhaust gas, and the like are used as the fluidizing gas g3 to be supplied to the heat recovery chamber 3.
ガス化室 1 とチヤ一燃焼室 2の流動床の上面 (スプラッシュゾーンの上面) よ り上方の部分即ちフリーボー ド部は完全に仕切壁 1 1、 1 5で仕切られている。 さらに言えば、 流動床の濃厚層の上面よ り上方の部分即ちスプラ ッシュゾーン及 びフリーボー ド部は完全に仕切壁で仕切られているので、 チヤ一燃焼室 2 とガス 化室 1のそれぞれのフリーボ一 ド部の圧力のバランスが多少乱れても、 双方の流 動層の界面の位置の差、 あるいは濃厚層の上面の位置の差、 即ち流動層高差が多 少変化するだけで乱れを吸収するこ とができる。 即ち、 ガス化室 1 とチヤ一燃焼 室 2 とは、 仕切壁 1 1、 1 5で仕切られているので、 それぞれの室の圧力が変動 しても、 この圧力差は流動層高差で吸収でき、 どちらかの層が開口部 2 1、 2 5 の上端に下降するまで吸収可能である。 したがって、 流動層高差で吸収できるチ ヤー燃焼室 2 とガス化室 1のフリーボー ドの圧力差の上限値は、 互いを仕切る仕 切壁 1 1、 1 5の下部の開口 2 1、 2 5の上端からの、 ガス化室流動床のヘッ ド と、 チヤ一燃焼室流動床のへッ ドとのへッ ド差にほぼ等しレ、。 The portion above the upper surface of the fluidized bed (the upper surface of the splash zone) of the gasification chamber 1 and the combustion chamber 2, that is, the freeboard portion, is completely separated by partition walls 11, 15. Furthermore, since the upper part of the fluidized bed above the dense layer, that is, the splash zone and the freeboard part, are completely separated by partition walls, the freebore of each of the combustion chamber 2 and the gasification chamber 1 is used. Even if the pressure balance at the tip part is slightly disturbed, the difference in the position of the interface between both fluidized beds or the difference in the position of the upper surface of the dense bed, that is, the difference in the height of the fluidized bed is large Disturbance can be absorbed with only a small change. That is, since the gasification chamber 1 and the char combustion chamber 2 are separated by the partition walls 11 and 15, even if the pressure in each chamber fluctuates, this pressure difference is absorbed by the fluidized bed height difference. It can be absorbed until either layer falls to the top of the openings 21, 25. Therefore, the upper limit of the pressure difference between the freeboard of the char combustion chamber 2 and the freeboard of the gasification chamber 1 that can be absorbed by the height difference of the fluidized bed is the lower opening 21, 25 of the partition walls 11, 15. The head difference between the head of the gasification chamber fluidized bed and the head of the fluidized bed of the combustion chamber from the upper end of the chamber is approximately equal.
ただし、 上記において、 圧力バランスの多少の乱れを、 流動層高差で吸収する 場合、 流動層高の変化に応じて、 流動媒体 cの各室間の移動量に変化が生じる。 したがって、 流動媒体 cの各室間の移動量を一定に保っためには、 圧力バランス の乱れを最小限に抑える制御機構を付加することが重要となる。  However, in the case described above, when a slight disturbance in the pressure balance is absorbed by the difference in the height of the fluidized bed, the amount of movement of the fluidized medium c between the chambers changes according to the change in the height of the fluidized bed. Therefore, in order to keep the moving amount of the fluid medium c between the respective chambers, it is important to add a control mechanism for minimizing the disturbance of the pressure balance.
図 1 を参照して、 圧力バランスの乱れを抑えるための制御の方法について、 以 下で説明する。 ガス化室 1から排出される生成ガス b と、 チヤ一燃焼室 2から排 出されるチヤ一燃焼ガス eは、 それぞれ後段に設置された圧力制御用の調節弁 7 8 または調節弁 7 9を経由して排出され利用される。  With reference to FIG. 1, a control method for suppressing the disturbance of the pressure balance will be described below. The generated gas b discharged from the gasification chamber 1 and the combustion gas e discharged from the char combustion chamber 2 pass through a control valve 78 or 799 for pressure control installed at the subsequent stage, respectively. It is discharged and used.
ここで、 図 1 ではガス化室 1から、 あるいはチヤ一燃焼室 2からガスが排出さ れた直後に調節弁 7 8及び調節弁 7 9が設置されている様に描かれているが、 そ の他の機器を通過した後に調節弁 7 8あるいは調節弁 7 9が設置されていても、 調節弁 7 8あるいは調節弁 Ί 9の開度を調節することによ り対応するガス化室 1 あるいはチヤ一燃焼室 2からのガスの排出の抵抗を変化させ、 ガス化室 1 あるい はチヤ一燃焼室 2の圧力を変化させることができるのであれば構わない。 ガス化 室 1のフ リーボー ド部と、 チヤ一燃焼室 2のフ リーボー ド部には、 それぞれ圧力 測定装置と しての圧力測定器 8 1、 8 2が設置されており、 各々の室 1、 2の圧 力が検出されて圧力信号 i 5 と して制御装置 6に送られる。 制御装置 6は、 ガス 化室 1のフリーボー ド部の圧力信号 i 5 と、 チヤ一燃焼室 2のフリーボー ド部の 圧力信号 i 5を比較して、 その差が流動媒体 cの各室間の移動量に影響を及ぼさ ない一定の範囲内、 好ましく は両室 1、 2の圧力差がガス化室 1 またはチヤ一燃 焼室 2の流動層の圧力損失の ± 1 0 %以下、 さ らに好ましく は ± 5 %以下、 さ ら に好ましく は両室 1、 2の圧力が等しく なるよ うに、 制御信号 i 1 を調節弁 7 8 あるいは調節弁 7 9に送り、 調節弁 7 8あるいは調節弁 7 9の開度を変化させる ; 以上説明した統合型ガス化炉 1 0 1では、 一つの流動床炉の内部に、 ガス化室. 1、 チヤ一燃焼室 2、 熱回収室の 3つを、 それぞれ隔壁を介して設け、 さらにチ ヤー燃焼室 2 とガス化室 1、 チヤ一燃焼室 2 と熱回収室 3はそれぞれ隣接して設 けられている。 この統合型ガス化炉 1 0 1は、 チヤ一燃焼室 2 とガス化室 1 間に 大量の流動媒体 cの循環を可能にしているので、 流動媒体 cの顕熱だけでガス化 のための熱量を充分に供給できる。 Here, in FIG. 1, it is illustrated that the control valves 78 and 79 are installed immediately after the gas is discharged from the gasification chamber 1 or the char combustion chamber 2. Even if the control valve 78 or control valve 79 is installed after passing through other equipment, the corresponding gasification chamber 1 or control valve can be controlled by adjusting the opening of the control valve 78 or control valve Ί9. It suffices if the resistance of gas discharge from the first combustion chamber 2 can be changed and the pressure of the gasification chamber 1 or the first combustion chamber 2 can be changed. The freeboard section of the gasification chamber 1 and the freeboard section of the char combustion chamber 2 are equipped with pressure measuring devices 81 and 82 as pressure measuring devices, respectively. , 2 are detected and sent to the controller 6 as a pressure signal i 5. The controller 6 compares the pressure signal i5 of the freeboard section of the gasification chamber 1 with the pressure signal i5 of the freeboard section of the combustion chamber 2 and finds the difference between the chambers of the fluid medium c. Within a certain range that does not affect the amount of movement, preferably the pressure difference between the two chambers 1 and 2 is less than ± 10% of the pressure loss of the fluidized bed in the gasification chamber 1 or the char-combustion chamber 2, and The control signal i 1 is adjusted so that the pressure is preferably ± 5% or less, and more preferably the pressures in both chambers 1 and 2 are equal. Alternatively, it is sent to the control valve 79 to change the opening of the control valve 78 or the control valve 79 ; in the integrated gasifier 101 described above, the inside of one fluidized bed furnace is provided with a gasification chamber. 1.Character combustion chamber 2 and heat recovery chamber are respectively provided via partition walls.Charger combustion chamber 2 and gasification chamber 1, and char combustion chamber 2 and heat recovery chamber 3 are adjacent to each other. It is set up. The integrated gasifier 101 enables circulation of a large amount of the fluid medium c between the combustion chamber 2 and the gasification chamber 1, so that only the sensible heat of the fluid medium c can be used for gasification. A sufficient amount of heat can be supplied.
さ らに以上の統合型ガス化炉 1 0 1では、 チヤ一燃焼ガス e と生成ガス bの間 のシールが完全にされるので、 ガス化室 1 とチヤ一燃焼室 2の圧力バランス制御 がうまく なされ、 燃焼ガス e と生成ガス bが混ざることがなく 、 生成ガス bの性 状を低下させること もない。  Furthermore, in the integrated gasifier 101 described above, the seal between the combustion gas e and the generated gas b is completely completed, so that the pressure balance between the gasification chamber 1 and the combustion chamber 2 can be controlled. Successful, the combustion gas e and the product gas b do not mix, and the properties of the product gas b do not deteriorate.
また、 熱媒体と しての流動媒体 c とチヤ一 hはガス化室 1側からチヤ一燃焼室 2側に流入するよ うになつており、 さ らに同量の流動媒体 cがチヤ一燃焼室 2側 からガス化室 1側に戻るよ うに構成されているので、 自然にマスバランスがとれ、 流動媒体 cをチヤ一燃焼室 2側からガス化室 1側に戻すために、 コンペャ等を用 いて機械的に搬送する必要もなく 、 高温粒子のハンドリ ングの困難さ、 顕熱ロス が多いといった問題もない。  In addition, the fluid medium c as a heat medium and the channel h flow from the gasification chamber 1 to the channel combustion chamber 2 side. Since it is configured to return from the chamber 2 side to the gasification chamber 1 side, a natural balance is achieved, and a conveyer etc. is used to return the fluid medium c from the first combustion chamber 2 side to the gasification chamber 1 side. There is no need to transport them mechanically, and there are no problems such as difficulty in handling high-temperature particles and large sensible heat loss.
次に、 図 1 を参照して統合型ガス化炉 1 0 1 の生成ガス bのガス組成の制御に ついて説明する。  Next, the control of the gas composition of the generated gas b of the integrated gasifier 101 will be described with reference to FIG.
本発明では、 前述のよ うにガス化室 1 とチヤ一燃焼室 2の間の流動媒体 c の移 動量、 即ち内部循環量を調節するこ とによ り 、 ガス化室 1及びチヤ一燃焼室 2 の 流動層温度をそれぞれ実用上任意に制御し、 あるいはガス化室 1 から発生する生 成ガス bの組成を変化させることを目的と している。 このため、 統合型ガス化炉 In the present invention, as described above, by adjusting the moving amount of the fluid medium c between the gasification chamber 1 and the char combustion chamber 2, that is, the internal circulation amount, the gasification chamber 1 and the char combustion chamber are adjusted. The purpose of this method is to control the fluidized bed temperature arbitrarily in practical use, or to change the composition of the generated gas b generated from the gasification chamber 1. For this reason, integrated gasifier
1 0 1 の運転上は、 制御装置 6に流動化ガス量に変化を与える指令を出させるこ とになる。 即ち、 制御装置 6から調節弁 6 1〜 6 7に流量を制御する制御信号 iIn the operation of 101, the controller 6 is instructed to change the fluidized gas amount. That is, a control signal i for controlling the flow rate from the control device 6 to the control valves 61 to 67.
1が送られ調節弁 6 :!〜 6 7が流動化ガス流量を調節する。 流動化ガス流量が調 整されることは流動化ガス速度が調節されることである。 流動化ガス速度が調節 されると内部循環量がどのよ うに調節され、 それによつてガス化室 1及びチヤ一 燃焼室 2 の流動層温度、 さらにはガス化室 1から発生する生成ガス bの組成がど のよ うに変化するかを計測し、 その結果をもとに流動化ガス量を調節するよ うな 制御ロジックを制御装置 6に構成することが好ま しい。 1 is sent and control valve 6:! ~ 67 adjusts the fluidizing gas flow rate. Adjusting the fluidizing gas flow rate means adjusting the fluidizing gas velocity. When the velocity of the fluidizing gas is adjusted, how the internal circulation rate is adjusted, whereby the temperature of the fluidized bed of the gasification chamber 1 and the combustion chamber 2 of the gasification chamber, and also the product gas b generated from the gasification chamber 1 Composition It is preferable to configure the control device 6 with a control logic that measures whether or not it changes as described above and adjusts the fluidized gas amount based on the result.
例えば、 ガス化室 1 の流動層温度を変化させることを目的と して内部循環量を 調節する場合について、 以下説明する。  For example, the case where the internal circulation amount is adjusted for the purpose of changing the fluidized bed temperature of the gasification chamber 1 will be described below.
具体的に、 沈降チヤ一燃焼室 4の流動化ガス速度が lUmf〜2Umf程度の範囲 の弱流動化状態にあって、 ガス化室 1 の流動層温度の温度測定器 4 2の測定値が. 目標とするガス化室 1 の流動層温度よ り も低い場合を考える。 この場合、 既に説 明したように、 沈降チヤ一燃焼室 4の流動化ガス量を lUmf〜2Umfの範囲内で 増加させることによつて沈降チヤ一燃焼、室 4の流動層粘性を低下させ (図 3参 照) 、 沈降チヤ一燃焼室 4からガス化室 1への流動媒体 c の移動量を增やすこと ができる (図 4参照) 。  More specifically, the fluidizing gas velocity in the settling chamber 1 combustion chamber 4 is in a weak fluidization state in the range of about lUmf to 2Umf, and the temperature of the fluidized bed temperature in the gasification chamber 1 is measured by the temperature measuring device 42. Consider the case where the temperature is lower than the target fluidized bed temperature of gasification chamber 1. In this case, as described above, the viscosity of the fluidized bed of the sedimentation-chamber combustion chamber 4 is reduced by increasing the amount of fluidizing gas in the sedimentation-chamber combustion chamber 4 within the range of lUmf to 2Umf ( The amount of movement of the fluid medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 can be reduced (see Fig. 3) (see Fig. 4).
先に述べたよ うに、 このとき沈降チヤ一燃焼室 4からガス化室 1への流動媒体 c の移動量が増えると、 ガス化室 1 の層高が一時的に上昇することによ り、 ガス 化室 1からチヤ一燃焼室 2への流動媒体 c の移動量が増加し、 チヤ一燃焼室 2の 層高も若干上昇する。 すると、 チヤ一燃焼室 2から沈降チヤ一燃焼室 4への流動 媒体 cの飛び込み量も增加し、 結果と してガス化室 1 からチヤ一燃焼室 2、 チヤ 一燃焼室 2から沈降チヤ一燃焼室 4、 沈降チヤ一燃焼室 4からガス化室 1への全 ての流動媒体 cの移動量が初期の状態より も増加した状態で安定することになる ( このとき、 ガス化室 1 とチヤ一燃焼室 2の相互間の流動媒体 cの移動量の増加に より、 ガス化室 1 とチヤ一燃焼室 2の温度差は小さく なる。 即ちガス化室 1 の流 動層温度は上昇し、 チヤ一燃焼室 2の流動層温度は低下することになる。 なお以 下では、 ガス化室 1からチヤ一燃焼室 2、 チヤ一燃焼室 2から沈降チヤ一燃焼室 4、 沈降チヤ一燃焼室 4からガス化室 1への全ての流動媒体 cの移動量が同じ値 に安定した状態での、 ガス化室 1 とチヤ一燃焼室 2の相互間の流動媒体 cの移動 量を 「内部循環量」 と呼ぶ。 As described above, at this time, if the moving amount of the fluidized medium c from the sedimentation chamber 1 combustion chamber 4 to the gasification chamber 1 increases, the gas height of the gasification chamber 1 temporarily increases, and the gas The moving amount of the fluid medium c from the gasification chamber 1 to the first combustion chamber 2 increases, and the bed height of the first combustion chamber 2 slightly increases. Then, the amount of the flowing medium c from the chamber 1 to the combustion chamber 4 also increases, and as a result, the combustion chamber 2 from the gasification chamber 1 and the combustion chamber 2 from the combustion chamber 2 settle. Combustion chamber 4, sedimentation channel 1 The amount of movement of fluid medium c from combustion chamber 4 to gasification chamber 1 is stabilized with the amount of movement increased from the initial state (at this time, gasification chamber 1 and The temperature difference between the gasification chamber 1 and the combustion chamber 2 becomes smaller due to the increase in the amount of movement of the fluid medium c between the combustion chambers 2. That is, the fluidized bed temperature of the gasification chamber 1 rises. Therefore, the fluidized bed temperature of the first combustion chamber 2 will decrease.The following is the case where the first combustion chamber 2 from the gasification chamber 1, the second combustion chamber 4 from the first combustion chamber 2, and the first combustion chamber of the sedimentation. When the amount of movement of all the fluid medium c from chamber 4 to gasification chamber 1 is stable at the same value, The amount of movement of the fluid medium c between the combustion chambers 2 is called "internal circulation amount".
ある一定時間が経過して、 ガス化室 1 の流動層温度が安定した段階において、 その安定した温度が目標とする流動層温度より もまだ低ければ、 沈降チヤ一燃焼 室 4の流動化ガス量をさらに増加させればよい。 また、 その安定した温度が目標 とする流動層温度より も高ければ、 沈降チヤ一燃焼室 4の流動化ガス量をいく ら か減少させればよい。 After a certain period of time, at the stage where the fluidized bed temperature of the gasification chamber 1 is stabilized, if the stabilized temperature is still lower than the target fluidized bed temperature, the amount of fluidized gas in the sedimentation chamber 1 combustion chamber 4 May be further increased. If the stable temperature is higher than the target fluidized bed temperature, the amount of fluidized gas in the settling chamber 1 Or decrease it.
以上のよ うな操作は、 図 1 に示したよ うな構成によ り、 演算装置を内包する制 御装置 6に対してガス化室 1の流動層温度の測定値と 目標値とを入力し、 その差 分の大小に基づいて沈降チヤ一燃焼室 4への流動化ガス g 4の供給量を変化させ るよ うに調節弁 6 5への制御信号 i 1が変化し調節弁 6 5の開度を変化させるよ う構成することで、 容易に実現することができる。  The above operation is performed by inputting the measured value and the target value of the fluidized bed temperature of the gasification chamber 1 to the control device 6 including the arithmetic unit by the configuration as shown in Fig. 1. The control signal i1 to the control valve 65 changes to change the supply amount of the fluidizing gas g4 to the settling chamber 1 combustion chamber 4 based on the magnitude of the difference, and the opening of the control valve 65 is changed. It can be easily realized by changing the configuration.
前述において、 弱流動化域 l a、 2 a、 3 a、 4 a 、 強流動化域 l b、 2 bは、 それぞれ一つの調節弁 6 1〜 6 6が接続された散気装置 3 1 ~ 3 6を有すると し て説明した。  In the above description, the weak fluidization zones la, 2a, 3a, 4a and the strong fluidization zones lb, 2b are air diffusers 3 1 to 3 6 each connected to one control valve 61 to 66. It was explained that it had.
しかし、 図 5 (統合型ガス化炉 1 0 1 の一部を省略) に示すよ うに、 例えば、 開口部 2 1 を挟む弱流動化域 1 a、 強流動化域 2 b を、 それぞれ開口部 2 1 に直 接隣接する近傍域 1 a X、 2 b X と、 近傍域 1 a X、 2 b x以外の遠隔域 1 a y、 2 b y とに分離し、 散気装置 3 1、 3 4を、 それぞれ近傍域 1 a x、 2 b xに対 応する近傍部分 3 1 x、 3 4 x と、 遠隔域 l a y、 2 b yに対応する遠隔部 3 1 y、 3 4 yに分離するよ うに構成してもよい。  However, as shown in Fig. 5 (a part of the integrated gasifier 101 is omitted), for example, the weak fluidized zone 1a and the strong fluidized zone 2b sandwiching the opening 21 are respectively 2 1 is separated into neighboring areas 1 aX and 2 bX immediately adjacent to 1 and remote areas 1 ay and 2 by other than the neighboring areas 1 aX and 2 bx. Even if it is configured to be separated into the neighboring parts 31 x and 34 x corresponding to the neighboring areas 1 ax and 2 bx and the remote parts 31 y and 34 y corresponding to the remote areas lay and 2 by respectively. Good.
散気装置 3 1、 3 4の遠隔部 3 1 y、 3 4 yに前述の供給配管 5 1、 5 4をそ れぞれ接続し、 散気装置 3 1、 3 4の近傍部 3 1 X、 3 4 Xに、 流量測定器 7 1 x、 7 4 x及び調節弁 6 1 x、 6 4 Xが設置された供給配管 5 1 X、 5 4 xを接 続するよ うにしてもよい。 開口部 2 1 を介して流動媒体 cが移動する移動量を制 御するために供給される流動化ガス g 1、 g 2の速度をそれぞれ弱流動化域 1 a、 強流動化域 2 b全域に渡って制御する代わり に、 近傍域 1 a X、 2 b Xから供給 される流動化ガス g 1、 g 2のガス流速をそれぞれ制御するよ うにしてもよい。 この制御は、 前述のよ うに制御装置 6 (図 1参照) によ り調節弁 6 l x、 6 4 X を制御することによ り行う。  Connect the above-mentioned supply pipes 51 and 54 to the remote parts 3 1 y and 34 y of the diffusers 31 and 34, respectively, and connect the parts 31 and 34 near the diffusers 31 and 34. , 34X may be connected to supply pipes 51X, 54x provided with flow rate measuring devices 71x, 74x and control valves 61x, 64X. The speed of the fluidizing gas g1, g2 supplied to control the amount of movement of the fluid medium c through the opening 21 is reduced to the weak fluidized area 1a and the strong fluidized area 2b, respectively. Instead of controlling over the range, the gas velocities of the fluidizing gases g1 and g2 supplied from the neighborhoods 1aX and 2bX may be controlled respectively. This control is performed by controlling the control valves 6 lx and 64 x by the control device 6 (see FIG. 1) as described above.
開口部 2 5を挟む弱流動化域 4 a、 強流動化域 1 b、 開口部 2 2を挟む弱流動 化域 3 a 、 強流動化域 2 bも同様に、 開口部 2 5、 2 2に直接隣接する不図示の 近傍域と近傍域以外の不図示の遠隔域に分離し、 開口部 2 5、 2 2を介して流動 媒体 cが移動する移動量を制御するために供給される流動化ガスの速度をそれぞ れ弱流動化域 4 a、 3 a 、 強流動化域 l b、 2 b全域に渡って制御する代わりに、 近傍域から供給される流動化ガスのガス流速をそれぞれ制御するようにしてもよ レヽ Similarly, the openings 25, 22 of the weak fluidization zone 4a and the strong fluidization zone 1b sandwiching the opening 25, and the weak fluidization zone 3a and the strong fluidization zone 2b sandwiching the opening 22 Is separated into a nearby area (not shown) directly adjacent to and a remote area (not shown) other than the nearby area, and flows supplied to control the amount of movement of the medium c through the openings 25 and 22. Instead of controlling the velocity of the gasification over the weak fluidization zone 4a, 3a and the strong fluidization zone lb, 2b, respectively, The gas flow velocity of the fluidizing gas supplied from the vicinity may be controlled individually.
統合型ガス化炉 1 0 1 のある一つの安定した運転状態から内部循環量を変化さ せた場合に発生する現象、 得られる効果について以下で述べる。 まず、 内部循環 量の変化に対応してガス化室 1あるいはチヤ一燃焼室 2 層温の変化が生じる。 内部循環量を増加させた場合は、 ガス化室 1 の層温は上昇し、 チヤ一燃焼室 2の 層温は低下する。 逆に内部循環量を減少させた場合、 ガス化室 1 の層温は低下し、 チヤ一燃焼室 2の層温は上昇する。  The phenomena that occur when the amount of internal circulation is changed from one stable operating state of the integrated gasifier 101 and the effects obtained are described below. First, a change in the temperature of the gasification chamber 1 or the temperature of the two-chamber combustion chamber occurs according to the change in the internal circulation volume. When the internal circulation volume is increased, the bed temperature in the gasification chamber 1 rises and the bed temperature in the combustion chamber 2 decreases. Conversely, when the amount of internal circulation is reduced, the bed temperature in the gasification chamber 1 decreases and the bed temperature in the combustion chamber 2 increases.
また、 ガス化室 1、 チヤ一燃焼室 2 ともに、 室 1、 2内の流動媒体 cの滞留時 間が変化する。 例えば、 内部循環量を 1 / 2に減らした場合、 各室 1、 2内の流 動媒体 cの滞留時間は 2倍となる。 逆に、 内部循環量を 2倍に増やした場合、 各 室 1、 2内の流動媒体 cの滞留時間は 1 / 2 となる。  In addition, the residence time of the fluid medium c in the chambers 1 and 2 changes in both the gasification chamber 1 and the combustion chamber 2. For example, when the internal circulation amount is reduced to 1/2, the residence time of the fluid medium c in each of the chambers 1 and 2 is doubled. Conversely, when the internal circulation amount is doubled, the residence time of the fluid medium c in each of the chambers 1 and 2 becomes 1/2.
また、 ガス化室 1でのチヤ一 hの発生量が変化する。 例えば、 内部循環量を減 少させた場合、 ガス化室 1 の層温の低下を反映し、 ガス化室 1でのチヤ一 hの発 生量は増加する。 一般にチヤ一 hの発生量は、 層温が低いほど増加する。 内部循 環量を増加させた場合、 ガス化室 1の層温の上昇を反映し、 チヤ一 hの発生量は 減少する。 一般にチヤ一 hの発生量は、 ガス化室 1 の層温が高いほど減少する。 チヤ一 hの発生量の変化とガス化室 1の層温の変化を反映して、 ガス化室 1で 生成される生成ガス bのガス組成が変化する。 これは、 チヤ一 hの発生量 (ガス 化室 1からチヤ一燃焼室 2に移動する可燃分の量) が変化することによる元素バ ランス (炭素、 水素、 酸素等のモル比 (%) ) の変化と、 温度によるガス成分の 平衡状態の変化による。  In addition, the amount of char h generated in the gasification chamber 1 changes. For example, when the amount of internal circulation is reduced, the amount of generated gas per hour in the gasification chamber 1 increases, reflecting the decrease in the bed temperature in the gasification chamber 1. In general, the amount of char h increases as the bed temperature decreases. When the amount of internal circulation is increased, the amount of generated gas per hour decreases, reflecting the rise in the bed temperature of the gasification chamber 1. In general, the amount of char h decreases as the bed temperature of the gasification chamber 1 increases. The gas composition of the product gas b generated in the gasification chamber 1 changes, reflecting the change in the amount of generated gas and the change in the bed temperature in the gasification chamber 1. This is due to the element balance (molar ratio (%) of carbon, hydrogen, oxygen, etc.) due to the change in the amount of char h generated (the amount of combustibles moving from gasification chamber 1 to char combustion chamber 2). And the change in the equilibrium state of the gas components with temperature.
生成ガス組成の変化によ り生成ガス bの H 2 / C O比、 ガス発熱量等が変化する, H 2 Z C O比は、 生成ガス bからの水素、 液体燃料等の製造効率に関わる重要因 子である。 ガス発熱量は、 生成ガス b を燃焼利用する場合の重要因子である。 The H 2 / CO ratio and gas calorific value of the generated gas b change due to the change in the generated gas composition.The H 2 ZCO ratio is an important factor related to the production efficiency of hydrogen, liquid fuel, etc. from the generated gas b. It is. The gas calorific value is an important factor when using the generated gas b for combustion.
以上から、 内部循環量を変化させることによ り、 ガス化室 1の層温を実用上任 意に制御し、 それによ り生成ガス bの組成 (H 2、 C O、 C 0 2、 C H 4、 H 2 0等 のモル%に加え、 H 2 / C O比、 ガス発熱量など、 生成ガス組成によって決まる 因子を含む概念とする。 ) を変化させることができる。 この場合、 例えばガス化室 1 の層温を下げるよ うに制御すると、 対応してチヤ 一燃焼室 2の層温は上昇する。 逆に、 ガス化室 1 の層温を上げるよ うに制御する と、 対応してチヤ一燃焼室 2の層温は低下する。 チヤ一燃焼室の運転温度は、 ガ ス化室 1から移動してきたチヤ一 hやタール分を完全燃焼するのに最適な温度範 囲、 好ましく は 8 5 0〜 9 5 0 °Cに保つことが好ま しいから、 内部循環量を変化 させることでガス化室 1 の層温を変化させた場合には、 チヤ一燃焼室 2の温度が 上記の最適な範囲を外れないよ うに別の方法で調節する必要がある。 From the above, by changing the internal circulation amount, the bed temperature of the gasification chamber 1 is arbitrarily controlled in practical use, and thereby the composition of the generated gas b (H 2 , CO, C 0 2 , CH 4 , in addition to the mole percent of such H 2 0, H 2 / CO ratio, such as a gas heating value, and concept including factor determined by the product gas composition.) can be changed. In this case, for example, when the bed temperature of the gasification chamber 1 is controlled to be lowered, the bed temperature of the first combustion chamber 2 is correspondingly increased. Conversely, if the bed temperature of the gasification chamber 1 is controlled to increase, the bed temperature of the combustion chamber 2 will decrease correspondingly. The operating temperature of the char combustion chamber should be maintained within the optimal temperature range for complete combustion of the char and tar transferred from the gasification chamber 1, preferably 850-950 ° C. Therefore, if the bed temperature of the gasification chamber 1 is changed by changing the internal circulation amount, another method is used so that the temperature of the combustion chamber 2 does not deviate from the above optimum range. Need to adjust.
そのためには、 既に説明したよ うに熱回収室 3を有する場合には、 熱回収室 3 における熱回収量を制御することによ りチヤ一燃焼室本体部 5の層温を一定に保 つよ うに制御を行う ことができる。 また、 用いられる原料の一部を直接にチヤ一 燃焼室へ供給したり、 あるいはその供給量を変化させることにより、 チヤ一燃焼 室における可燃分の燃焼量を直接に変化させるよ うに制御を行ってもよい。 また, チヤ一燃焼室 2の温度が非常に高くなつてしま う場合には、 流動層部に水を供給 したり、 あるいはその供給量を変化させることによ り直接に流動層の温度を冷却 するよ うな制御を行ってもよレ、。  To this end, when the heat recovery chamber 3 is provided as described above, by controlling the amount of heat recovery in the heat recovery chamber 3, the layer temperature of the main chamber 5 of the combustion chamber is kept constant. Control can be performed. In addition, by directly supplying a part of the raw materials used to the char combustion chamber, or by changing the supply amount, control is performed so as to directly change the combustion amount of the combustible component in the char combustion chamber. May be. When the temperature of the combustion chamber 2 becomes extremely high, the temperature of the fluidized bed is directly cooled by supplying water to the fluidized bed or changing the supply amount. You can perform such control.
以下に、 統合型ガス化炉 1 ◦ 1 (図 1 )を想定した試算結果の一例を示す (図 1 1、 図 1 3〜図 1 5 ) 。 原料 aは、 木質系バイオマス、 ガス化室 1は 2 0 0での 蒸気によ りガス化し、 チヤ一燃焼室 2は、 空気によ りチヤ一 hを燃焼するものと した。 チヤ一燃焼室 2の層温は、 熱回収室 3の熱回収量の制御によって 9 0 0 °C で一定に保ち、 内部循環量を変化させた場合に、 ガス化室 1の層温がどう変わる 力 、 それに伴って生成ガス b の組成や発熱量がどう変わるかを試算した。 なお、 内部循環量については、 媒体粒子の循環量 ( k g / h ) を原料 a の投入量 ( k g / h ) で除した無次元数 (以下 「循環比」 という) によって整理してある。  The following is an example of the results of a trial calculation assuming an integrated gasifier 1 ◦ 1 (Figure 1) (Figure 11, Figure 13 to Figure 15). Raw material a was woody biomass, gasification chamber 1 was gasified by steam in 200, and char combustion chamber 2 was to burn char h by air. The bed temperature of the combustion chamber 2 is kept constant at 900 ° C by controlling the amount of heat recovered in the heat recovery chamber 3, and when the internal circulation rate is changed, the layer temperature of the gasification chamber 1 changes. We calculated the changing power and how the composition and calorific value of the generated gas b change accordingly. The internal circulation volume is organized by the dimensionless number (hereinafter referred to as “circulation ratio”) obtained by dividing the circulation volume of media particles (kg / h) by the input volume of raw material a (kg / h).
図 1 1に、 ケース 1 の内部循環量 (循環比) とガス化室層温 (単位 °C ) の関係 を示し、 図 1 2にケース 2の内部循環量 (循環比) とガス化室層温 (単位で) の 関係を示す。 図 1 1、 図 1 2は、 計算結果である。 ガス化炉 1のスケール、 原料 a 、 プロセス条件 (流動化蒸気、 空気など) によ り、 低下するガス化室層温の絶 対値は異なるが、 図 1 1および、 図 1 2に示すよ うに、 内部循環量(循環比)を減 少させるほど、 ガス化室 1の層温は低下し、 内部循環量(循環比)を増加させるほ ど、 ガス化室 1の層温は上昇する。 例えば、 図 1 1 (ケース 1 ) では、 ガス化室 1の層温を 8 0 0 °Cに保っための内部循環量を基準と して、 7 0 0 °Cに保っため の内部循環量は約 44% ( 2 0 /4 5 ) 、 6 0 0 °Cに保っための循環量は約 2 2 % ( 1 0/4 5) となる。 以上から、 ガス化室 1の層温を 6 00 ~8 00 °Cの範 囲で制御可能とするためには、 流動媒体 cの内部循環量は、 最大値から最大値の 20 %程度の範囲で実用上任意に変化させることができるよ うに構成することが 好ましい。 典型的には、 ガス化室 1の層温が一定になるよ うに、 内部循環量を制 御する。 Figure 11 shows the relationship between the internal circulation volume (circulation ratio) in Case 1 and the gasification chamber layer temperature (unit ° C). Figure 12 shows the internal circulation volume (circulation ratio) in Case 2 and the gasification chamber layer. Shows the relationship between temperature (in units). Figures 11 and 12 show the calculation results. Although the absolute value of the gasification chamber temperature that decreases depends on the scale of the gasifier 1, the raw material a, and the process conditions (fluidized steam, air, etc.), it is shown in Figs. 11 and 12. As the internal circulation amount (circulation ratio) decreases, the bed temperature of the gasification chamber 1 decreases and the internal circulation amount (circulation ratio) increases. However, the temperature of the gasification chamber 1 rises. For example, in Fig. 11 (Case 1), based on the internal circulation amount for maintaining the bed temperature of gasification chamber 1 at 800 ° C, the internal circulation amount for maintaining 700 ° C is Approximately 44% (20/45), the amount of circulation to maintain at 600 ° C is approximately 22% (10/45). From the above, in order to be able to control the bed temperature of the gasification chamber 1 in the range of 600 to 800 ° C, the internal circulation amount of the fluid medium c should be within the range of the maximum value to about 20% of the maximum value. It is preferable to configure so that it can be changed arbitrarily in practice. Typically, the internal circulation amount is controlled so that the bed temperature of the gasification chamber 1 becomes constant.
図 1 3に内部循環量(循環比)と生成ガス組成の関係を示す。 本図は、 ガス化室 1でのガス滞留時間が十分長いと仮定した場合、 あるいは、 触媒等によって反応 が平衡組成に近い状態まで進行した場合の計算結果である。  Figure 13 shows the relationship between the amount of internal circulation (circulation ratio) and the composition of the product gas. This figure shows the calculation results when the gas residence time in the gasification chamber 1 is assumed to be sufficiently long, or when the reaction proceeds to a state close to the equilibrium composition by a catalyst or the like.
図に示すよ うに、 内部循環量(循環比)を減少させるほど、 ガス化室 1の層温が 低下するため、 生成ガス bの組成は、 H2、 COが減り、 CO H20が増える。 特に内部循環量(循環比)が少なく、 ガス化室 1の層温が低い場合は、 CH4の量が 顕著に増加し、 H2、 COがこれに対応して大きく減少する。 内部循環量(循環 比)を変化させることによ り、 所望の図に示すガス組成を得るよ う制御することが できる。 As shown in the figure, as the internal circulation amount (circulation ratio) decreases, the bed temperature of the gasification chamber 1 decreases, so the composition of the generated gas b decreases in H 2 and CO and increases in CO H 20 . In particular, when the amount of internal circulation (circulation ratio) is small and the bed temperature of the gasification chamber 1 is low, the amount of CH 4 increases remarkably, and H 2 and CO decrease correspondingly. By changing the internal circulation amount (circulation ratio), it is possible to control so as to obtain a gas composition shown in a desired diagram.
図 1 4に内部循環量(循環比)と生成ガスの HzZCO比の関係を示す。 本図は、 ガス化室 1でのガス滞留時間が十分長いと仮定した場合、 あるいは、 触媒等によ つて反応が平衡組成に近い状態まで進行した場合の計算結果である。  Figure 14 shows the relationship between the internal circulation amount (circulation ratio) and the HzZCO ratio of the produced gas. This figure shows the calculation results when the gas residence time in the gasification chamber 1 is assumed to be sufficiently long, or when the reaction has progressed to a state close to the equilibrium composition by a catalyst or the like.
図に示すよ うに、 生成ガス組成の変化に対応して、 内部循環量(循環比)を減少 させるほど、 HsZCO比が大きく なる。 したがって、 内部循環量(循環比)の制御 によ り H2, COを比 2. 6から 5. 7の間の所望の値に制御することが可能であ る。 As shown in the figure, the HsZCO ratio increases as the internal circulation amount (circulation ratio) decreases in response to changes in the product gas composition. Therefore, it is possible to control H 2 and CO to a desired value between 2.6 and 5.7 by controlling the internal circulation amount (circulation ratio).
図 1 5に内部循環量(循環比)と生成ガス発熱量の関係を示す。 本図は、 ガス化 室 1 (図 1 )でのガス滞留時間が十分長いと仮定した場合、 あるいは、 触媒等によ つて反応が平衡組成に近い状態まで進行した場合の計算結果である。  Figure 15 shows the relationship between the amount of internal circulation (circulation ratio) and the calorific value of the generated gas. This figure shows the calculation results when it is assumed that the gas residence time in gasification chamber 1 (Fig. 1) is sufficiently long, or when the reaction has progressed to a state close to the equilibrium composition by a catalyst or the like.
図に示すように、 全体と しては、 生成ガス組成の変化に対応して、 内部循環量 (循環比)を減少させるほど、 CO濃度が低下するため、 生成ガス発熱量が減少す る傾向にある。 特に、 内部循環量(循環比)が少なく 、 ガス化室 1 の層温が低い場 合は、 C H 4濃度が増加するため、 発熱量が上昇する。 内部循環量(循環比)を変え ることにより、 約 1 0, 6 0 0力 ら約 1 0, 9 0 0 ( H H V D . B . ) k J / m 3— N T Pの間で所望の値に制御することができる。 As shown in the figure, as a whole, as the internal circulation amount (circulation ratio) decreases in response to changes in the product gas composition, the CO concentration decreases, and the calorific value of the product gas decreases. Tend to be. In particular, when the internal circulation amount (circulation ratio) is small and the bed temperature of the gasification chamber 1 is low, the calorific value increases because the CH 4 concentration increases. The Rukoto changing the internal circulation rate (recycle ratio), about 1 0, 6 0 0 Power et al. About 1 0, 9 0 0 k J / m 3 (HHVD B..) - controlled to a desired value between the NTP can do.
ガス化室 1 でのガス滞留時間が短く 、 ガス組成が平衡組成と異なる場合には、 以下のよ うな現象となる。  When the gas residence time in the gasification chamber 1 is short and the gas composition is different from the equilibrium composition, the following phenomenon occurs.
ガス化炉 1 0 1 (図 1 )のガス性状の第 1の制御について説明する。 図 1 6は、 ガス化原料 a をバイオマスと したときの、 ガス化室層温 (単位で) とガス化室(G C )出口ガス熱量割合 (タールを発熱量にカウントする) (単位%) の関係を示す t ガス化室層温が低温の場合は、 頭熱ロスが少ないので、 ガス化室出口ガス発熱量 は高く なり、 ガス化室層温が高温の場合は、 顕熱ロスが多いので、 ガス化室出口 ガス発熱量は低く なる。 ガス化室層温と循環量に依存関係があることから、 循環 量を小さくすることによってガス化室出口ガス発熱量を高くすることができる。 ガス化室出口熱量割合とは、 ガス化室出口における単位重量のガス化原料から発 生するガス (タールを含む) の発熱量を、 単位重量のガス化原料の燃焼による発 熱量で割ったパ一セン トをいう。 The first control of the gas property of the gasifier 101 (FIG. 1) will be described. Figure 16 shows the gasification chamber bed temperature (in units) and gasification chamber (GC) outlet gas calorific value ratio (counting tar to calorific value) (unit%) when gasification raw material a is biomass. If t gasification chamber layer temperature showing a relationship is low, since Atamanetsu loss is small, the gasification chamber outlet gas heating value is high, if the gasification chamber layer temperature is hot, since the sensible heat loss is large However, the calorific value at the outlet of the gasification chamber is reduced. Since there is a dependence between the gasification chamber layer temperature and the circulation amount, the calorific value at the gasification chamber outlet gas can be increased by reducing the circulation amount. The gasification chamber outlet calorific value ratio is the ratio of the calorific value of the gas (including tar) generated from the unit weight of the gasification raw material at the gasification chamber outlet divided by the heat generation amount due to the combustion of the unit weight of the gasification raw material. One center.
図 1 7に、 ガス化原料 a をバイオマスと したときの、 ガス化室層温 (単位で) と冷ガス効率 (単位%) (ガス化室出口のタールを除く 可燃ガス発熱量を基に求 める) の関係を示す。 ガス化室層温が低温の場合は、 タール発生が多く なるので、 冷ガス効率が下がり、 ガス化室層温が高温の場合は、 タール発生が少なく なるの で、 冷ガス効率が上がる。 冷ガス効率とは、 ガス化室出口における単位重量のガ ス化原料から発生するガス (タールを含まず) の発熱量を、 単位重量のガス化原 料の燃焼による発熱量で割ったパーセン トをいう。  Figure 17 shows the gasification chamber bed temperature (unit) and cold gas efficiency (unit%) when gasification raw material a is biomass (based on the calorific value of combustible gas excluding tar at the gasification chamber outlet). )). When the gasification chamber layer temperature is low, the amount of tar generated increases, and the cold gas efficiency decreases. When the gasification chamber layer temperature is high, tar generation decreases, and the cold gas efficiency increases. Cold gas efficiency is the percentage of the calorific value of the gas (excluding tar) generated from a unit weight of gasification raw material at the gasification chamber outlet divided by the calorific value of the unit weight gasification raw material combustion. Say.
図 1 8に、 ガス化原料 a をバイオマスと したときの、 内部循環量(循環比)とガ ス化室出口の生成ガス発熱量 (タールを除く) (HHV D. B) (単位 K J / m 3 - N P T ) の関係を示す。 内部循環量(循環比)が小さいとガス化室層温が低温に なり、 タール発生が多く なるので、 発熱量が下がり、 内部循環量(循環比)が大き いとガス化室層温が高温になり、 タール発生が少なく なるので、 発熱量が上がる。 図 1 9に、 ガス化原料 a をバイオマスと したときの、 ガス化室層温 (単位。 C ) と、 原料 a 中の炭素 (C) がタールに移行した割合 (単位%) との関係を示す。 図は、 ガス化室層温が低いほど、 タール発生量が多いことを示し、 ガス化室層温 が高いほど、 タール発生量が少ないことを示す。 Figure 18 shows the internal circulation amount (circulation ratio) and the calorific value of the generated gas at the gasification chamber outlet (excluding tar) when the gasification raw material a is biomass (excluding tar) (HHV D.B) (unit: KJ / m 3 -NPT). If the internal circulation volume (circulation ratio) is small, the gasification chamber bed temperature will be low and tar will increase, so the heat generation will decrease. If the internal circulation volume (circulation ratio) is large, the gasification chamber bed temperature will be high. The amount of generated heat increases because tar generation is reduced. Figure 19 shows the gasification chamber bed temperature when the gasification raw material a is biomass (unit: C). And the ratio (unit%) of carbon (C) in raw material a transferred to tar. The figure shows that the lower the gasification chamber layer temperature, the higher the amount of tar generated, and the higher the gasification chamber layer temperature, the lower the amount of tar generation.
したがって、 バイオマスのよ うなタール発生量が多く 、 発熱量の低い原料 a に おいて、 冷ガス効率を高くするためには、 ( 1 )ガス化室層温を低温と して顕熱ロ スを低く して、 かつ、 その際に発生したタールを分解 (低分子化) する力 、 (2 ) 循環量を増加して、 ガス化室層温を高く してタール発生量を抑える方法がある。 次に、 ガス化炉 1 0 1 (図 1 )のガス性状の第 2の制御について説明する。  Therefore, in order to increase the cold gas efficiency of raw material a, which generates a large amount of tar such as biomass and generates a small amount of heat, it is necessary to (1) reduce the sensible heat loss by setting the gasification chamber layer temperature to a low temperature. There is a method of lowering and reducing the amount of tar generated by decomposing (lower molecular weight) tar generated at that time. (2) Increasing the amount of circulation and raising the temperature of the gasification chamber layer. Next, the second control of the gas property of the gasifier 101 (FIG. 1) will be described.
循環量を制御するこ とによ り 、 ガス化原料 a の揮発分放出量を制御し、 原料 a 中の炭素の、 チヤ一燃焼室 2へ移動させる量をコン トロールするこ とができる。 図 2 0に、 ガス化原料 a をバイオマスと したときの、 循環量 (単位 kg h) と、 ガス化室 1に供給された原料 a 中の炭素のチヤ一燃焼室 2への移行割合 (単位 % ) との関係を示す。 図は、 循環量が大きく なると、 揮発分と して未放出状態の 炭素がチヤ一燃焼室 2へ移行する割合が大きく なり、 循環量が小さ く なると、 揮 発分と して未放出状態の炭素がチヤ一燃焼室 2へ移行する割合が小さく なること を示している。  By controlling the circulation amount, it is possible to control the amount of volatile matter released from the gasification raw material a, and to control the amount of carbon in the raw material a to be transferred to the first combustion chamber 2. Figure 20 shows the amount of circulation (unit: kg h) when gasification raw material a is biomass, and the transfer ratio of carbon in raw material a supplied to gasification chamber 1 to char combustion chamber 2 (unit). %). The figure shows that as the circulation amount increases, the ratio of carbon that has not been released as volatile matter to the char-chamber 2 increases, and as the circulation amount decreases, the unreleased carbon is released as volatile matter. This indicates that the rate at which carbon transfers to the first combustion chamber 2 decreases.
図 2 1 に、 ガス化原料 a をバイオマスと したときの、 ガス化室層温 (単位。 C ) と、 ガス化室 1 に供給されたガス化原料 a 中の炭素のチヤ一燃焼室 2へ移行する 割合 (単位%) との関係を示す。 層温が高い場合は、 揮発分放出量が多く (揮発量 残存量が少ない)、 かつ、 揮発分放出速度も速いので、 原料 a 中の炭素がチヤ一燃 焼室 2へ移行する割合は小さく なると考えられるが、 図ではその逆の現象となつ ている。 すなわち、 ガス化室層温が高い場合は、 原料 a 中の炭素がチヤ一燃焼室 2へ移行する割合は大きく なり 、 ガス化室層温が低い場合は、 原料 a 中の炭素が チヤ一燃焼室 2へ移行する割合は、 小さく なる。 これは、 ガス化室層温が高いと いう ことは、 すなわち、 循環量が大きいことを意味するので、 流動媒体に同伴し て、 揮発分未放出のガス化原料 a (ここではバイオマス) がチヤ一燃焼室 2へ移 行するこ とが支配的であることが示されている。  Figure 21 shows the gasification chamber bed temperature (unit: C) when gasification raw material a is biomass, and the carbon gas in the gasification raw material a supplied to gasification chamber 1 to combustion chamber 2. This shows the relationship with the rate of transfer (unit%). When the bed temperature is high, the amount of volatile matter released is large (the amount of remaining volatile matter is small) and the volatile matter release rate is also high, so that the ratio of carbon in the raw material a to the combustion chamber 2 is small. Although it is thought to be the case, it is the opposite phenomenon in the figure. That is, when the gasification chamber layer temperature is high, the ratio of carbon in the raw material a to the char combustion chamber 2 increases, and when the gasification chamber layer temperature is low, the carbon in the raw material a is char combustion. The rate of transition to room 2 is small. This means that the gasification chamber layer temperature is high, which means that the amount of circulation is large, so that the gasification raw material a (here, biomass) that has not released volatile components accompanies the flowing medium. It is shown that the transition to one combustion chamber 2 is dominant.
以上のことから、 循環量を制御することによって、 チヤ一燃焼室 2での燃焼量 をコン トロールすることが可能であるため、 ガス化原料 aの変動に応じて、 チヤ —燃焼室 2での燃焼量を最適にコン ト 口ールすることができる。 From the above, it is possible to control the amount of combustion in the first combustion chamber 2 by controlling the amount of circulation. —The amount of combustion in the combustion chamber 2 can be controlled optimally.
なお、 図示の実施の形態はあく までも例示であり、 本発明の技術的範囲を限定 する趣旨の記述ではない。 産業上の利用可能性  The illustrated embodiments are merely examples, and do not limit the technical scope of the present invention. Industrial applicability
本発明に係るガス化炉は、 ガス化室と、 チヤ一燃焼室と、 制御装置とを備える ので、 弱い流動化状態の流動の強弱を調節することによ り、 ガス化室とチヤ一燃 焼室の間で流通する流動媒体の量を制御して、 ガス化室よ り発生するガスの組成 を制御することができ、 制御特性をさ らに向上させることができる。  Since the gasification furnace according to the present invention includes the gasification chamber, the combustion chamber, and the control device, the gasification chamber and the combustion chamber are controlled by adjusting the strength of the flow in the weak fluidized state. By controlling the amount of the fluid medium flowing between the firing chambers, the composition of the gas generated from the gasification chamber can be controlled, and the control characteristics can be further improved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 高温の流動媒体を内部で流動させ、 第 1の界面を有するガス化室流動床 を形成し、 前記ガス化室流動床内で被処理物をガス化するガス化室と ; 1. a gasification chamber in which a high-temperature fluidized medium is flown to form a gasification chamber fluidized bed having a first interface; and a gasification object is gasified in the gasification chamber fluidized bed;
高温の流動媒体を內部で流動させ、 第 2の界面を有するチヤ一燃焼室流動床を 形成し、 前記ガス化室でのガス化に伴い発生するチヤ一を前記チヤ一燃焼室流動 床內で燃焼させ前記流動媒体を加熱するチヤ一燃焼室とを備え ;  A high-temperature fluidized medium is caused to flow in a part, thereby forming a fluidized bed in the combustion chamber having a second interface, and the fluid generated by gasification in the gasification chamber is fluidized in the fluidized bed in the combustion chamber. A combustion chamber for burning and heating the fluid medium;
前記ガス化室と前記チヤ一燃焼室とは、 前記それぞれの流動床の界面よ り鉛直 方向上方においてはガスの流通がないよ うに仕切壁により仕切られ、 前記仕切壁 の下部には前記ガス化室と前記チヤ一燃焼室とを連通する連通口であって、 該連 通口の上端の高さは前記第 1の界面および第 2の界面以下である連通口が形成さ れ、 該連通口を挟む前記ガス化室と前記チヤ一燃焼室のうち一方の室の前記連通 口近傍における前記流動媒体の流動化状態が、 他方の室の前記連通口近傍におけ る前記流動媒体の流動化状態よ り も強く 、 該連通口を通じて、 前記弱い流動化状 態の方から強い流動化状態の方に流動媒体が移動するよ うに構成され ;  The gasification chamber and the first combustion chamber are separated by a partition wall so that gas does not flow vertically above an interface between the respective fluidized beds, and the gasification chamber is formed at a lower portion of the partition wall. A communication port for communicating between the chamber and the first combustion chamber, the communication port having a height at an upper end that is equal to or lower than the first interface and the second interface. The fluidized state of the fluid medium in the vicinity of the communication port of one of the gasification chamber and the char combustion chamber sandwiching the fluidized medium is the fluidized state of the fluid medium in the vicinity of the communication port of the other chamber. The fluid medium is configured to move from the weak fluidized state to the strong fluidized state through the communication port;
さらに、 前記弱い流動化状態の流動の強弱を調節することによ り、 前記ガス化 " 室と前記チヤ一燃焼室との間で流通する流動媒体の量を制御して、 前記ガス化室 又は前記チヤ一燃焼室の温度を制御する制御装置を備える ;  Further, by controlling the strength of the flow in the weak fluidized state, the amount of the fluidized medium flowing between the gasification chamber and the combustion chamber is controlled, and the gasification chamber or A control device for controlling the temperature of the combustion chamber;
ガス化炉。  Gasifier.
2 . 被処理物を高温の流動媒体で熱分解してガスとチヤ一を生成するガス化 室と ;  2. a gasification chamber for pyrolyzing the object to be processed with a high-temperature fluidized medium to produce gas and char;
前記ガス化室で生成したチヤ一を燃焼して前記流動媒体を加熱するチヤ一燃焼 室とを備え ;  A char combustion chamber for heating the fluid medium by burning the char generated in the gasification chamber;
前記流動媒体は前記ガス化室と前記チヤ一燃焼室との間で循環するよ うに構成 され ;  The fluid medium is configured to circulate between the gasification chamber and the char combustion chamber;
さらに、 前記流動媒体の循環量を調節することによ り、 前記ガス化室で発生す るガスの組成を制御する制御装置を備える ;  Further, a control device is provided for controlling a composition of gas generated in the gasification chamber by adjusting a circulation amount of the fluidized medium;
ガス化炉。  Gasifier.
3 . 高温の流動媒体を内部で流動させ、 第 1の界面を有するガス化室流動床 を形成し、 前記ガス化室流動床内で被処理物をガス化するガス化室と ; 高温の流動媒体を内部で流動させ、 第 2の界面を有するチヤ一燃焼室流動床を 形成し、 前記ガス化室でのガス化に伴い発生するチヤ一を前記チヤ一燃焼室流動 床内で燃焼させ前記流動媒体を加熱するチヤ一燃焼室とを備え ; 3. A gasification chamber fluidized bed having a first interface with a hot fluidized medium flowing therethrough And a gasification chamber for gasifying an object to be processed in the fluidized bed of the gasification chamber; and flowing a high-temperature fluidized medium therein to form a fluidized bed of a combustion chamber having a second interface. A char combustion chamber for heating the fluid medium by burning the char generated with gasification in the gasification chamber in the fluidized bed of the char combustion chamber;
前記ガス化室と前記チヤ一燃焼室とは、 前記それぞれの流動床の界面より鉛直 方向上方においてはガスの流通がないよ うに仕切壁によ り仕切られ、 前記仕切壁 の下部には前記ガス化室と前記チヤ一燃焼室とを連通する連通口であって、 該連 通口の上端の高さは前記第 1 の界面および第 2の界面以下である連通口が形成さ れ、 該連通口を挟む前記ガス化室と前記チヤ一燃焼室のうち一方の室の前記連通 口近傍における前記流動媒体の流動化状態が、 他方の室の前記連通口近傍におけ る前記流動媒体の流動化状態より も強く 、 該連通口を通じて、 前記弱い流動化状 態の方から強い流動化状態の方に流動媒体が移動するよ うに構成され ;  The gasification chamber and the char combustion chamber are separated by a partition wall so that gas does not flow vertically above the interface between the respective fluidized beds, and the gas is provided below the partition wall. A communication port for communicating the gasification chamber with the first combustion chamber, the communication port having a height at an upper end that is equal to or lower than the first interface and the second interface. The fluidized state of the fluid medium in the vicinity of the communication port of one of the gasification chamber and the char combustion chamber sandwiching the port is the fluidization state of the fluid medium in the vicinity of the communication port of the other chamber. A fluid medium that is stronger than the fluid state and moves from the weak fluidized state to the strong fluidized state through the communication port;
さらに、 前記弱い流動化状態の流動の強弱を調節する ςとによ り、 前記ガス化 室と前記チヤ一燃焼室の間で流通する流動媒体の量を制御して、 前記ガス化によ り発生するガスの組成を制御する制御装置を備える ;  Further, by controlling the strength of the flow in the weak fluidized state, the amount of the fluidized medium flowing between the gasification chamber and the first combustion chamber is controlled, and Equipped with a control device for controlling the composition of the generated gas;
ガス化炉。  Gasifier.
4 . 前記チヤ一燃焼室から流動媒体を導入する熱回収室であって、 前記チヤ —燃焼室からの流動媒体から熱を回収する熱回収装置を有する熱回収室と ; 該熱回収室内の流動の強弱を調節することによ り 、 前記熱回収装置における熱 回収量を制御する制御装置を備える ;  4. A heat recovery chamber for introducing a fluid medium from the first combustion chamber, the heat recovery chamber having a heat recovery device for recovering heat from the fluid medium from the chamber; and a flow in the heat recovery chamber. A control device for controlling the amount of heat recovery in the heat recovery device by adjusting the strength of the heat recovery device;
請求項 1乃至請求項 3のいずれか 1項に記載のガス化炉。  The gasifier according to any one of claims 1 to 3.
5 . 前記熱回収量を制御する制御装置が、 前記熱回収装置における熱回収量 を制御し、 前記チヤ一燃焼室の温度を制御する ;  5. The control device for controlling the heat recovery amount controls the heat recovery amount in the heat recovery device, and controls the temperature of the first combustion chamber;
請求項 4に記載のガス化炉。  The gasifier according to claim 4.
6 . 前記ガス化室の第 1の界面よ り上部の第 1 の圧力と、 前記チヤ一燃焼室の 第 2の界面よ り上部の第 2の圧力とを測定する圧力測定装置と ;  6. a pressure measuring device for measuring a first pressure above a first interface of the gasification chamber and a second pressure above a second interface of the gas combustion chamber;
前記ガス化室から発生するガスの、 前記ガス化室から排出する第 1 の排出線速 度と、 および前記チヤ一燃焼室から発生する燃焼ガスの、 前記チヤ一燃焼室から 排出する第 2の排出線速度とを調節する調節装置と ; 前記第 1の圧力と前記第 2の圧力との圧力差を所定の値とするよ うに前記調節 装置を制御する制御装置とを備える ; A first discharge linear velocity of the gas generated from the gasification chamber, a second discharge linear velocity discharged from the gasification chamber, and a second discharge rate of the combustion gas generated from the charge combustion chamber from the charge combustion chamber. An adjusting device for adjusting the discharge linear velocity; A control device that controls the adjusting device so that a pressure difference between the first pressure and the second pressure is a predetermined value;
請求項 1乃至請求項 5のいずれか 1項に記載のガス化炉。  The gasifier according to any one of claims 1 to 5.
PCT/JP2003/010267 2002-08-15 2003-08-12 Gasification furnace WO2004016716A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003255009A AU2003255009A1 (en) 2002-08-15 2003-08-12 Gasification furnace
JP2004528865A JP4283222B2 (en) 2002-08-15 2003-08-12 Gasification furnace and gasification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002236997 2002-08-15
JP2002-236997 2002-08-15

Publications (1)

Publication Number Publication Date
WO2004016716A1 true WO2004016716A1 (en) 2004-02-26

Family

ID=31884427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010267 WO2004016716A1 (en) 2002-08-15 2003-08-12 Gasification furnace

Country Status (3)

Country Link
JP (1) JP4283222B2 (en)
AU (1) AU2003255009A1 (en)
WO (1) WO2004016716A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021686A1 (en) * 2003-08-29 2005-03-10 Ebara Corporation Recycling method and system
JP2006206840A (en) * 2005-01-31 2006-08-10 Nippon Steel Corp Integrated gasification furnace and its operation method
JP2006206842A (en) * 2005-01-31 2006-08-10 Nippon Steel Corp Integrated gasification furnace and its operation method
JP2007024492A (en) * 2005-07-14 2007-02-01 Ebara Corp Fluidized bed gasification furnace, and pyrolizing gasification method
JP2008156552A (en) * 2006-12-26 2008-07-10 Ihi Corp Fluidized bed gasification method and apparatus
JP2008545840A (en) * 2005-06-03 2008-12-18 プラスコ エナジー グループ インコーポレイテッド A system for converting carbonaceous feedstock to gas of specific composition
JP2009536258A (en) * 2006-05-05 2009-10-08 プラスコエナジー アイピー ホールデイングス,エス.エル.,ビルバオ,シャフハウゼン ブランチ Gas reforming system using plasma torch heat
JP2011042768A (en) * 2009-08-24 2011-03-03 Ihi Corp Circulating fluidized bed type gasification method and apparatus
JP2016216634A (en) * 2015-05-22 2016-12-22 株式会社Ihi Gasification gas generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935482B2 (en) * 2019-12-27 2021-09-15 荏原環境プラント株式会社 Pyrolysis equipment and pyrolysis method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031202A1 (en) * 1997-12-18 1999-06-24 Ebara Corporation Fuel gasifying system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031202A1 (en) * 1997-12-18 1999-06-24 Ebara Corporation Fuel gasifying system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021686A1 (en) * 2003-08-29 2005-03-10 Ebara Corporation Recycling method and system
JP2006206840A (en) * 2005-01-31 2006-08-10 Nippon Steel Corp Integrated gasification furnace and its operation method
JP2006206842A (en) * 2005-01-31 2006-08-10 Nippon Steel Corp Integrated gasification furnace and its operation method
JP4520872B2 (en) * 2005-01-31 2010-08-11 新日鉄エンジニアリング株式会社 Integrated gasifier and method of operation thereof
JP4528145B2 (en) * 2005-01-31 2010-08-18 新日鉄エンジニアリング株式会社 Integrated gasifier and method of operation thereof
JP2008545840A (en) * 2005-06-03 2008-12-18 プラスコ エナジー グループ インコーポレイテッド A system for converting carbonaceous feedstock to gas of specific composition
JP2007024492A (en) * 2005-07-14 2007-02-01 Ebara Corp Fluidized bed gasification furnace, and pyrolizing gasification method
JP2009536258A (en) * 2006-05-05 2009-10-08 プラスコエナジー アイピー ホールデイングス,エス.エル.,ビルバオ,シャフハウゼン ブランチ Gas reforming system using plasma torch heat
JP2008156552A (en) * 2006-12-26 2008-07-10 Ihi Corp Fluidized bed gasification method and apparatus
JP2011042768A (en) * 2009-08-24 2011-03-03 Ihi Corp Circulating fluidized bed type gasification method and apparatus
JP2016216634A (en) * 2015-05-22 2016-12-22 株式会社Ihi Gasification gas generator

Also Published As

Publication number Publication date
AU2003255009A1 (en) 2004-03-03
JPWO2004016716A1 (en) 2005-12-02
JP4283222B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
BR9815349B1 (en) fuel gasification system.
CN105026725B (en) Material gasification method and apparatus
JP4835581B2 (en) Circulating fluidized bed reformer
JP2010521544A (en) Gasifier
JP2007112873A (en) Method and system for gasification of gasification fuel
CZ20014156A3 (en) Device for gasification of carbonaceous charge material
JP2007024492A (en) Fluidized bed gasification furnace, and pyrolizing gasification method
WO2004016716A1 (en) Gasification furnace
Jobaidur et al. Implementation of a demoisturization and devolatilization model in multi-phase simulation of a hybrid entrained-flow and fluidized bed mild gasifier
de Souza-Santos A new version of CSFB, comprehensive simulator for fluidised bed equipment
JPS63176912A (en) Method of generating heat
JP4998551B2 (en) Fluidized bed gasification facility
JP6008082B2 (en) Gasification apparatus and gasification method
JP2011099066A (en) Circulating fluidized bed type gasification method and apparatus therefor
Sharma et al. Effect of steam injection location on syngas obtained from an air–steam gasifier
WO2021131634A1 (en) Thermal decomposition apparatus and thermal decomposition method
JP2011149658A (en) Operation control method for circulating fluidized bed boiler
KR20100009098A (en) Rectangular dual circulating fluidized bed reactor
JP4102167B2 (en) Gasifier
JP2004533506A (en) Gasifier and operating method thereof
Habibi et al. Simulation of coconut shell combustion in a grate-fired furnace using distributed pyrolysis products model
Namkung et al. Kinetics and combustion characteristics of deinking sludge in a thermobalance and an internally circulating fluidized bed
JP3820142B2 (en) Combustible gas generator
JPH06134287A (en) Two-tower circulation type fluidized beds
EP0155166A2 (en) Fluidization and solids recirculation apparatus and process for a fluidized bed gasifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004528865

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase