WO2004014598A1 - Process gas and method for laser hard soldering - Google Patents

Process gas and method for laser hard soldering Download PDF

Info

Publication number
WO2004014598A1
WO2004014598A1 PCT/EP2003/008371 EP0308371W WO2004014598A1 WO 2004014598 A1 WO2004014598 A1 WO 2004014598A1 EP 0308371 W EP0308371 W EP 0308371W WO 2004014598 A1 WO2004014598 A1 WO 2004014598A1
Authority
WO
WIPO (PCT)
Prior art keywords
process gas
solder
helium
laser beam
vol
Prior art date
Application number
PCT/EP2003/008371
Other languages
German (de)
French (fr)
Inventor
Wolfgang Danzer
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Priority to AU2003251662A priority Critical patent/AU2003251662A1/en
Publication of WO2004014598A1 publication Critical patent/WO2004014598A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • B23K26/125Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases of mixed gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area

Definitions

  • the invention relates to a method for laser beam brazing with a laser beam focused on a solder joint or in the vicinity of the solder joint, the solder being melted by the laser beam at the solder joint.
  • the invention further relates to a process gas and the use of a process gas for laser beam brazing.
  • the method of brazing with a soldering process in the soldering furnace is the most frequently used of all soldering methods. More recently, brazing with an arc has been used more and more when joining components. Brazing with a laser beam is also becoming increasingly popular, although there are still many problems to be overcome when carrying out this method. While the solder melts during the brazing in the soldering furnace due to the heat supply in the furnace, it liquefies locally at the point of energy input when soldering with an arc or laser beam. Local heating has soldering in common with welding.
  • brazing and welding show many similarities to one another, but brazing and welding differ fundamentally: In contrast to welding, brazing does not melt the base material. Only the material added as a solder melts due to the energy input. The connection is created by the interaction of the molten solder with the base material. The melting temperature of the solder is therefore always lower than the melting temperature of the components to be joined; however, the solidus temperature of the solder when brazing is well above the liquefaction temperature of a solder that is used for soft soldering. Due to the lower temperature required for joining compared to welding, the components are influenced less during soldering than during welding. Furthermore, soldering also enables the joining of different materials, since only the solder is melted, but not the base material. In contrast, the welding of components made of materials with different thermal conduction coefficients and different heat capacities is extremely problematic because these properties play a decisive role in the melting of the materials. Due to the differences consequently there are completely different technical requirements when it comes to soldering and welding.
  • Laser beam brazing and arc soldering differ in terms of energy input and show different problems.
  • arc soldering involves a large amount of energy and the stability of the arc is of great importance.
  • soldering with a laser beam as an energy source shows the advantages of laser technology ⁇ .
  • the energy input with the laser beam is very limited locally and the solder solidifies very quickly after the soldering process. This minimizes the distortion caused by the heating of the component and the joining of highly heat-sensitive materials is also possible.
  • Laser production methods are associated with high investment costs and are mainly used to automate production.
  • a flux is usually used in the soldering process, which is usually applied as a soldering paste before the soldering process.
  • the flux acts on the surface of the component, cleans it and prepares the interaction with the solder.
  • the flux therefore has a decisive influence on the interaction of solder and base material.
  • the use of fluxes has numerous disadvantages. Fluxes contain toxic and environmentally harmful substances and are therefore problematic to use.
  • Flux residues that are present in the soldering process have to be removed in a complex manner, since these not only have a negative impact on the appearance but also on the quality of the solder seam, since the aggressive components of the flux attack the base material and the solder seam in the long term and thus increase the susceptibility to corrosion.
  • solder balls which are coated with a fluid that reduces the oxide layer of the aluminum, are fixed in the soldered seam and then melted by means of a laser beam to form the soldered seam.
  • solder balls which are coated with a fluid that reduces the oxide layer of the aluminum, are fixed in the soldered seam and then melted by means of a laser beam to form the soldered seam.
  • the solder is in the form of a wire and this wire is continuously brought to the place of the soldering process by means of a wire feed device.
  • the use of solder parts is also possible.
  • the component to be soldered is equipped with the solder molded parts before they are melted by means of the laser beam and the solder seam is formed.
  • solder foils is also possible, which are also attached before the soldering process.
  • the object of the present invention is therefore to provide a method and a process gas which enable high-quality laser beam brazing.
  • the object is achieved in that the laser beam is encased by a process gas stream directed at the soldering point. If the process gas stream surrounds the laser beam directly and evenly from all sides, it is possible to influence the liquefaction process of the solder in a targeted manner. Furthermore, the surface of the base material is specifically influenced at the solder joint. Since the process gas flow includes the solder joint, it is protected from the environment. A major disadvantage of the ambient air, in addition to the aggressive components, is the moisture contained in the air, since this favors the formation of pores that reduce quality. It is therefore important that the process gas is free of contaminants. There are also advantageous interactions between process gas and Solder or base material. The process gas flow increases the flowability of the solder and the wettability of the base material.
  • the even and rapid running of the solder into the gap to be joined is crucial for the formation of a non-porous solder seam. Since the solder is only liquid under the influence of the laser beam, it is important that the process gas also acts on the solder joint. It is also crucial that the laser beam causes small cracks in the surface of the base material, into which the liquid solder penetrates. The small cracks significantly increase the stapling of the solder seam and also the diffusion processes, which ensure the material connection, are supported. The process e described is extremely effectively supported by the process gas stream of the method according to the invention.
  • the process according to the invention has special advantages in that flux-free soldering is carried out. This is possible because the functions of the flux are completely taken over by the process gas flow. By influencing the wettability of the base material and the surface tension of the solder, the flux influences the flow of the solder on the surface of the base material.
  • This property is now fulfilled according to the invention by the process gas stream encasing the laser steel. This is made possible by the fact that the process gas flow is directed towards the solder and the base material together with the laser.
  • the composition of the process gas also plays a role. If flux-free brazing is used, the labor-intensive reworking of the solder seam to remove flux residues is no longer necessary. It is also advantageous that these environmentally harmful and toxic substances no longer have to be used. Subsequent changes to the solder joint due to the action of the flux on the solder and / or base material are also eliminated.
  • wire-shaped solder is fed to the solder joint.
  • Wire-shaped solder is fed directly and continuously into the solder point. This happens at the same time as soldering; a work step upstream of the soldering process for applying the solder is therefore eliminated.
  • Due to the continuous addition of solder wire-shaped solder is particularly suitable for automated laser beam brazing. This is important because laser systems are mainly used in automated production due to their high investment costs.
  • the process gas stream particularly advantageously contains argon, helium and / or nitrogen. Argon protects the solder joint from harmful influences from the environment and affects the wettability of the surface of the base material and supports the solder flow.
  • Helium also supports the flow of the solder and, due to its high thermal conductivity, concentrates the heat input into the solder joint, so that the solder melts very quickly.
  • Nitrogen protects the solder joint and supports the formation of cracks by the laser beam.
  • the ternary mixture also shows the advantages of the invention. The advantages of the method according to the invention also arise with other gases, such as, for example, with carbon dioxide.
  • the process gas stream advantageously contains 1% by volume of 60% by volume of helium, preferably 5% by volume to 40% by volume of helium, particularly preferably 10% by volume to 20% by volume of helium.
  • the object is achieved in that the process gas contains argon, helium and / or nitrogen. These gases and gas mixtures show the advantages mentioned.
  • the process gas contains either helium and argon or helium and nitrogen.
  • the process gas advantageously contains 1% by volume to 60% by volume of helium, preferably 5% by volume to 40% by volume of helium, particularly preferably 10% by volume to 20% by volume of helium.
  • the process gas according to the invention is particularly suitable for joining aluminum and aluminum alloys.
  • the process gas according to the invention is also suitable for coated materials, in particular for galvanized steels. But the process gas according to the invention also shows its advantages when joining heterogeneous material connections. In spite of the different material properties, such as different heat conduction coefficients and different heat capacities, the brazed joints show excellent quality.
  • the process gas according to the invention enables the joining of aluminum with aluminum alloys and of different aluminum alloys to one another.
  • FIG. 1 shows the process for laser beam brazing with a process gas stream directed at the components by means of a nozzle
  • FIG. 2 shows the process with wire-shaped solder addition.
  • FIG. 1 and 2 comprise a process gas nozzle 1, a laser beam 2, a solder wire 3, a solder seam 4 and components 5 to be soldered. Furthermore, FIG. 2 shows a wire steering device 6 and a wire feed device 7.
  • a joint is brazed with the laser steel.
  • the components 5 are arranged so that there is a V-shaped joint.
  • the laser steel 2 is focused on the top of the component and liquefies the wire-shaped solder 3. If the focal spot is too small or the energy density in the focal spot is too high, a defocused laser beam must be used.
  • the focus of the laser is then preferably above the component.
  • the solder 3 liquefies at the soldering point through the energy of the laser steel 2.
  • the solder solidifies behind the soldering point and the solder seam 4 is formed.
  • the solder is advantageously fed to the soldering process at an angle of 15 ° to 45 °.
  • the process gas flow is directed to the soldering point by means of the process gas nozzle 1.
  • the process gas stream encases the laser beam.
  • a diode laser is preferably used as the source for the laser beam, but also a solid-state laser (for example an Nd: YAG laser) or a CO 2 laser is used.
  • the coupling of the laser beam into the process gas nozzle is determined by the type of laser. If a diode laser is used, it will preferably be connected directly to the process gas nozzle. If, on the other hand, a glass fiber for the When transporting the laser radiation into the process gas nozzle, the fiber advantageously ends in or near the process gas nozzle.
  • the process gas nozzle 1 ensures that the process gas flows to the soldering point.
  • a mixture of 90% by volume nitrogen and 10% by volume helium is particularly advantageously used as the process gas.
  • the components of the process gas are preferably fed into the process gas nozzle as a gas mixture. However, it is also possible to swirl the components in the process gas nozzle.
  • the solder seams are free of splashes and irregularities, so that reworking is not necessary
  • FIG. 2 shows an advantageous embodiment for the use of wire-shaped solder.
  • the solder wire 3 is continuously conveyed by the wire feed device 7 and guided by the wire guide device 6 to the processing point. On location, the solder wire 3 melts in the laser beam 2 and forms the solder seam 4 after solidification.
  • the process gas is guided to the soldering point with the process gas nozzle 1 and interacts there with the molten solder and the base material.
  • the components 5 consist of different materials.
  • the solder seam 4 is thus created, for example, between an aluminum and a steel component.
  • a mixture of 15% by volume of helium and 85% by volume of argon is advantageously used as the process gas.

Abstract

The invention relates to laser hard soldering involving the use of a process gas, during which the process gas encloses the laser beam. To this end, the process gas advantageously flows out of a process gas nozzle (1) and surrounds the laser beam (2), which liquefies the solder (3) at the soldered junction of the components to be joined (5). Helium, argon and/or nitrogen, in particular, are suited for use as process gas. The inventive method is used, in particular, for soldering aluminum and aluminum alloys and for joining heterogeneous compounds.

Description

Beschreibung description
Prozessgas und Verfahren zum LaserstrahlhartlötenProcess gas and process for laser brazing
Die Erfindung betrifft ein Verfahren zum Laserstrahlhartlöten mit einem auf eine Lötstelle oder in die Nähe der Lötstelle fokussierten Laserstrahl, wobei das Lot an der Lötstelle von dem Laserstrahl aufgeschmolzen wird. Ferner betrifft die Erfindung ein Prozessgas sowie die Verwendung eines Prozessgases zum Laserstrahlhartlöten.The invention relates to a method for laser beam brazing with a laser beam focused on a solder joint or in the vicinity of the solder joint, the solder being melted by the laser beam at the solder joint. The invention further relates to a process gas and the use of a process gas for laser beam brazing.
Das Verfahren des Hartlötens mit Lötprozess im Lötofen ist von allen Lötverfahren das am häufigsten benutzte. In jüngerer Zeit kommt auch das Hartlöten mit Lichtbogen beim Fügen von Bauteilen vermehrt zum Einsatz. Auch das Hartlöten mit Laserstrahl findet zunehmend Interesse, obwohl bei der Durchführung von diesem Verfahren noch viele Probleme zu überwinden sind. Während beim Hartlöten im Lötofen das Lot durch die Wärmezufuhr im Ofen aufschmilzt, verflüssigt es sich beim Löten mit Lichtbogen oder Laserstrahl lokal an der Stelle des EΞnergieeintrags. Die lokale Erwärmung hat das Löten mit dem Schweißen gemeinsam.The method of brazing with a soldering process in the soldering furnace is the most frequently used of all soldering methods. More recently, brazing with an arc has been used more and more when joining components. Brazing with a laser beam is also becoming increasingly popular, although there are still many problems to be overcome when carrying out this method. While the solder melts during the brazing in the soldering furnace due to the heat supply in the furnace, it liquefies locally at the point of energy input when soldering with an arc or laser beam. Local heating has soldering in common with welding.
Hartlöten und Schweißen weisen auf den ersten Blick viele Ähnlichkeiten miteinander auf, jedoch unterscheiden sich Hartlöten und Schweißen fundame ntal: Beim Hartlöten wird im Gegensatz zum Schweißen der Grundwerkstoff nicht aufgeschmolzen. Ledig- lieh das als Lot zusätzlich zugegebene Material schmilzt durch die Energieeinbringung. Durch Wechselwirkung des geschmolzenen Lots mit dem Grundwerkstoff entsteht die Verbindung. Die Schmelztemperatur des Lots liegt folglich beim K artlöten immer unterhalb der Schmelztemperatur der zu fügenden Bauteile; jedoch liegt die Solidustem- peratur des Lots beim Hartlöten deutlich über der Verflüssigungstemperatur eines Lots, welches zum Weichlöten benutzt wird. Aufgrund der im Vergleich zum Schweißen niedrigere zum Fügen notwendige Temperatur werden die Bauteile beim Löten geringer beeinflusst als beim Schweißen. Des Weiteren ermöglicht das Löten auch das Fügen von unterschiedlichen Materialien, da beim Löten nur das Lot, nicht jedoch der Grundwerkstoff aufgeschmolzen wird. Dagegen ist das Schweißen von Bauteilen aus Materialien mit unterschiedlichen Wärmeleitungskoeffizienten und unterschiedlicher Wärmekapazität äußerst problematisch, da diese Eigenschaften .beim Aufschmelzen der Werkstoffe eine entscheidende Rolle spielen. Aufgrund der nterschiede ergeben sich folglich beim Löten und beim Schweißen völlig unterschiedliche Anforderungen an die technische Ausführung.At first glance, brazing and welding show many similarities to one another, but brazing and welding differ fundamentally: In contrast to welding, brazing does not melt the base material. Only the material added as a solder melts due to the energy input. The connection is created by the interaction of the molten solder with the base material. The melting temperature of the solder is therefore always lower than the melting temperature of the components to be joined; however, the solidus temperature of the solder when brazing is well above the liquefaction temperature of a solder that is used for soft soldering. Due to the lower temperature required for joining compared to welding, the components are influenced less during soldering than during welding. Furthermore, soldering also enables the joining of different materials, since only the solder is melted, but not the base material. In contrast, the welding of components made of materials with different thermal conduction coefficients and different heat capacities is extremely problematic because these properties play a decisive role in the melting of the materials. Due to the differences consequently there are completely different technical requirements when it comes to soldering and welding.
Laserstrahlhartlöten und Lichtbogenlöten wiederum unterscheiden sich durch die Ener- gieeinbringung und zeigen eine unterschiedliche Problematik. Beim Lichtbogenlöten wird im Vergleich zum Laserlöten die Energie großflächig eingebracht und der Stabilität des Lichtbogens kommt eine hohe Bedeutung zu. Demgegenüber zeigt das Löten mit einem Laserstrahl als Energiequelle die Vorteile der Lasertechnik^. So ist die Energieeinbringung mit dem Laserstrahl örtlich stark begrenzt und das Lot erstarrt nach dem Lötprozess sehr rasch. Dadurch wird der durch das Erwärmen des Bauteils entstehende Verzug minimiert und auch das Fügen von stark wärmeempfiπdlichen Materialien ist möglich. Laserfertigungsmethoden sind mit hohen Investitionskosten verbunden und werden vor ailern zum Automatisieren der Fertigung eingesetzt.Laser beam brazing and arc soldering, on the other hand, differ in terms of energy input and show different problems. In comparison to laser soldering, arc soldering involves a large amount of energy and the stability of the arc is of great importance. In contrast, soldering with a laser beam as an energy source shows the advantages of laser technology ^. The energy input with the laser beam is very limited locally and the solder solidifies very quickly after the soldering process. This minimizes the distortion caused by the heating of the component and the joining of highly heat-sensitive materials is also possible. Laser production methods are associated with high investment costs and are mainly used to automate production.
Beim Lötvorgang wird normalerweise ein Flussmittel eingesetzt, -welches in der Regel vor dem Lötprozess als Lötpaste aufgebracht wird. Das Flussmittel wirkt auf die Oberfläche des Bauteils ein, reinigt diese und bereitet die Wechselwirkung mit dem Lot vor. Das Flussmittel beeinflusst somit das Zusammenwirken von Lot und Grundwerkstoff entscheidend. Es zeigen sich Auswirkungen auf die Fließfähigk it des Lots, auf die Oberflächenspannung des geschmolzenen Lots und auch auf die Fähigkeit des Grundwerkstoffs zur Benetzung. Die Verwendung von Flussmitteln bringt jedoch zahlreiche Nachteile mit sich. Flussmittel enthalten giftige und umweltschädliche Substanzen und sind folglich problematisch im Einsatz. Mach dem Lötvorgang vorhandene Flussmittelrückstände müssen aufwendig entfernt werden, da diese nicht nur das Aussehen, sondern auch die Qualität der Lötnaht negativ beeinflussen, da die aggressiven Bestandteile des Flussmittels auf lange Sicht hin Grundwerkstoff und Lotnaht angreifen und so die Anfälligkeit für Korrosion erhöhen.A flux is usually used in the soldering process, which is usually applied as a soldering paste before the soldering process. The flux acts on the surface of the component, cleans it and prepares the interaction with the solder. The flux therefore has a decisive influence on the interaction of solder and base material. There are effects on the flowability of the solder, on the surface tension of the molten solder and also on the ability of the base material to wet. However, the use of fluxes has numerous disadvantages. Fluxes contain toxic and environmentally harmful substances and are therefore problematic to use. Flux residues that are present in the soldering process have to be removed in a complex manner, since these not only have a negative impact on the appearance but also on the quality of the solder seam, since the aggressive components of the flux attack the base material and the solder seam in the long term and thus increase the susceptibility to corrosion.
Ein besonderes Verfahren zum Hartlöten von Aluminiumteilen mit Laserstrahlung, welches eine besondere Ausgestaltung für das Flussmittel vorsi eht, ist in der DE 100 32 975 angegeben. Dort werden Lotkü gelchen, die mit einem FI ussmittel, welches die Oxidschicht des Aluminiums reduziert, beschichtet sind, in der Lötnaht fixiert und anschließend mittels eines Laserstrahls zur Bildung der Lotnaht aufgeschmolzen. Beim Hartlöten ist, wie beim Löten generell, die Zugabe von Lot eine immanente Notwendigkeit Für die Zugabe des Lots gibt es verschiedene Möglichkeiten. Das Lot liegt drahtförmig vor und dieser Draht wird mittels einer Drahtvorschubeinrichtung kontinuierlich an die Stelle des Lötprozesses gebracht. Auch die Verwendung von Lotfσrmtei- len ist möglich. Dazu wird das zu verlötende Bauteil mit den Lotformteilen bestückt, bevor diese mittels des Laserstrahls aufgeschmolzen werden und sich die Lotnaht bildet. Weiterhin ist auch die Verwendung von Lotfolien möglich, welche ebenfalls vor dem Lötprozess angebracht werden.A special method for brazing aluminum parts with laser radiation, which provides a special configuration for the flux, is specified in DE 100 32 975. There, solder balls, which are coated with a fluid that reduces the oxide layer of the aluminum, are fixed in the soldered seam and then melted by means of a laser beam to form the soldered seam. With brazing, as with brazing in general, the addition of solder is an inherent necessity. There are various options for adding the solder. The solder is in the form of a wire and this wire is continuously brought to the place of the soldering process by means of a wire feed device. The use of solder parts is also possible. For this purpose, the component to be soldered is equipped with the solder molded parts before they are melted by means of the laser beam and the solder seam is formed. Furthermore, the use of solder foils is also possible, which are also attached before the soldering process.
Trotz der zahlreichen positiven Perspektiven des Laserstrahllötens wird diese Technik bisher wenig eingesetzt, da sich in der Praxis erheblich Probleme ergeben. So weisen die Lotnähte eine Vielzahl von Poren auf, so dass die Qualität leidet und die notwendige Zug- und Druckfestigkeit nicht gegeben ist. Die vorliegenden Probleme sind dabei so gravierend, dass sie den Einsatz des Laserstrahllötens nahezu vollständig verhin- dem. Ausnahmen bilden Laserstrahllötverfahren, die speziellen Vorgehensweisen angepasst wurden, wie beispielsweise in der genannte n DE 100 32975, und das Bilden von Lotnähteπ, welchen keinerlei Erfordernissen an ihre Qualität auferlegt sind. Problematisch ist ferner der Einsatz von Flussmitteln. Auch Vor- und Nacharbeiten sollten möglichst gering sein bzw. entfallen, um einen wirtschaftlichen Einsatz des Laserhartlötens zu ermöglichen.Despite the numerous positive perspectives of laser beam soldering, this technique has not been used so far, since problems arise in practice. The solder seams have a large number of pores, so that the quality suffers and the necessary tensile and compressive strength is not provided. The problems at hand are so serious that they almost completely prevent the use of laser beam soldering. Exceptions are laser beam soldering processes which have been adapted to specific procedures, such as in the aforementioned DE 100 32975, and the formation of solder seams, which are not subject to any quality requirements. The use of flux is also problematic. Preliminary and reworking should also be as little as possible or be omitted in order to enable laser brazing to be used economically.
Der vorliegende Erfindung liegt daher die Aufgabe zug runde, ein Verfahren und ein Prozessgas anzugeben, welche ein qualitativ hochwertiges Laserstrahlhartlöten ermöglichen.The object of the present invention is therefore to provide a method and a process gas which enable high-quality laser beam brazing.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass der Laserstrahl von einem auf die Lötstelle gerichteten Prozessgasstrom ummantelt wird. Umgibt der Prozessgasstrom den Laserstrahl direkt und gleichmäßig von allen Seiten, ist eine gezielte Beeinflussung des Verflüssigungsvorgangs des Lots möglich. Des Weiteren wird die Oberfläche des Grundwerkstoffs gezielt an der Lötstel le beeinfiusst. Da der Prozessgasstrom die Lötstelle umfasst, ist diese vor der Umgebung geschützt. Ein wesentlicher Nachteil der Umgebungsluft ist neben den aggressiven Bestandteilen die in der Luft enthaltene Feuchtigkeit, da diese die Bildung vom qualitätsmindemden Poren begünstigt. Wichtig ist deshalb, dass das Prozessgas entsprechend frei von Verunreini- gungen ist. Auch zeigen sich vorteilhaften Wechselwirkungen von Prozessgases und Lot beziehungsweise Grundwerkstoff. Der Prozessgasstrom erhöht die Fließfähigkeit des Lots und die Benetzbarkeit des Grundwerkstoffs. Das gleichmäßige und zügige Verlaufen des Lots in den zu fügenden Spalt ist entscheidend für das Entstehen einer porenfreien Lotnaht. Da das Lot nur unter der Einwirkung des Laserstrah ls flüssig ist, ist es wichtig, dass auch das Prozessgas an der Lötstelle wirkt. Von entscheidender Bedeutung ist weiterhin, dass der Laserstrahl in der Oberfläche des Grundwerkstoffs kleine Risse verursacht, in welche das flüssige Lot eindringt. Durch die kleinen Risse wird die Verklammerung der Lotnaht deutlich er öht und auch die Diffusionsprozesse, welche für die stoffschlüssige Verbindung sorgen, werden dadurch unterstützt. Die beschriebenen Vorgang e werden von dem Prozessgasstrom des erfindungsgemäßen Verfahrens äußert wirksam unterstützt.The object is achieved in that the laser beam is encased by a process gas stream directed at the soldering point. If the process gas stream surrounds the laser beam directly and evenly from all sides, it is possible to influence the liquefaction process of the solder in a targeted manner. Furthermore, the surface of the base material is specifically influenced at the solder joint. Since the process gas flow includes the solder joint, it is protected from the environment. A major disadvantage of the ambient air, in addition to the aggressive components, is the moisture contained in the air, since this favors the formation of pores that reduce quality. It is therefore important that the process gas is free of contaminants. There are also advantageous interactions between process gas and Solder or base material. The process gas flow increases the flowability of the solder and the wettability of the base material. The even and rapid running of the solder into the gap to be joined is crucial for the formation of a non-porous solder seam. Since the solder is only liquid under the influence of the laser beam, it is important that the process gas also acts on the solder joint. It is also crucial that the laser beam causes small cracks in the surface of the base material, into which the liquid solder penetrates. The small cracks significantly increase the stapling of the solder seam and also the diffusion processes, which ensure the material connection, are supported. The process e described is extremely effectively supported by the process gas stream of the method according to the invention.
Mit besonderen Vorteilen wird bei dem erfindung sgemäßen Verfahren flussmitteifrei gelötet. Dies ist möglich , da die Aufgaben des Flcissmittels vollständig von dem Pro- zessgasstrom übernommen werden. Durch Einwirken auf die Benetzbarkeit des Grundwerkstoffs und die Oberflächenspannung des Lots beeinfiusst das Flussmittel das Verlaufen des Lots auf der Oberfläche des Grundwerkstoffs. Diese Eigenschaft wird nun erfindungsgernäß durch den den Lasersstahl ummantelnden Prozessgasstrom erfüllt. Möglich wird dies durch die Tatsache, dass der Prozessgasstrom zusammen mit dem Laser auf Lot und Grundwerkstoff gerichtet wird. Auch die Zusammensetzung des Prozessgases spielt dabei eine Rolle. Wenn flussmitteifrei hartgelötet wird, entfällt das arbeitsintensive Nacharbeiten der Lotnaht zum Entfernen von Flussmittelresten. Weiterhin ist es von Vorteil, das diese umweltschädl ϊchen und giftigen Substanzen nicht mehr verwendet werden müssen. Auch nachträgliche Veränderungen der Lötverbin- düng aufgrund des Einwirken des Flussmittels auf Lot und/oder Grundwerkstoff entfallen.The process according to the invention has special advantages in that flux-free soldering is carried out. This is possible because the functions of the flux are completely taken over by the process gas flow. By influencing the wettability of the base material and the surface tension of the solder, the flux influences the flow of the solder on the surface of the base material. This property is now fulfilled according to the invention by the process gas stream encasing the laser steel. This is made possible by the fact that the process gas flow is directed towards the solder and the base material together with the laser. The composition of the process gas also plays a role. If flux-free brazing is used, the labor-intensive reworking of the solder seam to remove flux residues is no longer necessary. It is also advantageous that these environmentally harmful and toxic substances no longer have to be used. Subsequent changes to the solder joint due to the action of the flux on the solder and / or base material are also eliminated.
In vorteilhafter Ausgestaltung der Erfindung wird dass der Lötstelle drahtförmiges Lot zugeführt wird. Drahtförmiges Lot wird direkt und kontinuierlich in die Lotstelle geführt. Diese geschieht gleichzeitig zum Löten; ein denn Lötprozess vorgelagerter Arbeitsschritt zum Aufbringen des Lots entfällt daher. Aufgrund der kontinuierlichen Lotzugabe eignet sich drahtförmiges Lot besonders zum automatisierten Laserstrahlhartlöten. Dies ist deshalb von Bedeutung, da Laseranlagen aufgrund ihrer hohen Investitionskosten v.a. bei automatisierten Fertigungen eingesetzt werden. Mit besonderem Vorteil enthält der Prozessgasstrom Argon, Helϊ um und/oder Stickstoff. Argon schützt die Lötstelle vor schädlichen Einflüssen aus der Umgebung und wirkt auf die Benetzbarkeit der Oberfläche des Grundwerkstoffs ein und unterstützt das Verlaufen des Lots. Helium unterstützt ebenfalls das Verlaufen des Lots und konzent- riert dabei aufgrund seiner hohen Wärmeleitfähigkeit den Wärmeintrag in die Lötstelle, so dass das Lot sehr rasch schmilzt. Stickstoff schützt die Lötstelle und unterstützt die Rissbildung durch den Laserstrahl. Neben den reinen Gasen und den binären Mischungen zeigt auch die ternäre Mischung die Vorteile der Erfindung. Auch mit anderen Gasen, wie beispielsweise mit Kohle dioxid, stellen sich die Vorteile des erfin- dungsgemäßen Verfahrens ein.In an advantageous embodiment of the invention, wire-shaped solder is fed to the solder joint. Wire-shaped solder is fed directly and continuously into the solder point. This happens at the same time as soldering; a work step upstream of the soldering process for applying the solder is therefore eliminated. Due to the continuous addition of solder, wire-shaped solder is particularly suitable for automated laser beam brazing. This is important because laser systems are mainly used in automated production due to their high investment costs. The process gas stream particularly advantageously contains argon, helium and / or nitrogen. Argon protects the solder joint from harmful influences from the environment and affects the wettability of the surface of the base material and supports the solder flow. Helium also supports the flow of the solder and, due to its high thermal conductivity, concentrates the heat input into the solder joint, so that the solder melts very quickly. Nitrogen protects the solder joint and supports the formation of cracks by the laser beam. In addition to the pure gases and the binary mixtures, the ternary mixture also shows the advantages of the invention. The advantages of the method according to the invention also arise with other gases, such as, for example, with carbon dioxide.
Vorteilhafterweise ist im Prozessgasstrorn entweder Helium und! Argon oder Helium und Stickstoff enthalten. Die Vorteile der Erfindung zeigen sich i nsbesondere, wenn binäre Gasmischungen verwendet werden, welche Helium enthalten.Advantageously, either helium and! Contain argon or helium and nitrogen. The advantages of the invention are particularly evident when binary gas mixtures are used which contain helium.
Der Prozessgasstrom enthält dabei vorteilhafterweise 1 Vol.-% fois 60 Vol.-% Helium, vorzugsweise 5 Vol.-% bis 40 Vol.-% Helium, besonders bevorzugt 10 Vol.-% bis 20 Vol.-% Helium.The process gas stream advantageously contains 1% by volume of 60% by volume of helium, preferably 5% by volume to 40% by volume of helium, particularly preferably 10% by volume to 20% by volume of helium.
Die Aufgabe wi rd hinsichtlich des Prozessgases dadurch gelöst, dass das Prozessgas Argon, Helium und/oder Stickstoff enthält. Diese Gase und Gas mischungen zeigen die genannten Vorteile.With regard to the process gas, the object is achieved in that the process gas contains argon, helium and / or nitrogen. These gases and gas mixtures show the advantages mentioned.
Mit besonderen Vorteilen enthält das Prozessgas entweder Helium und Argon oder Helium und Stickstoff.With special advantages, the process gas contains either helium and argon or helium and nitrogen.
Das Prozessgas enthält vorteilhafterweise 1 Vol.-% bis 60 Vol.-% Helium, vorzugsweise 5 Vol.-% bis 40 Vol.-% Helium, beso ders bevorzugt 10 VoL-% bis 20 Vol.-% Helium.The process gas advantageously contains 1% by volume to 60% by volume of helium, preferably 5% by volume to 40% by volume of helium, particularly preferably 10% by volume to 20% by volume of helium.
Das erfindungsgemäße Prozessgas eignet sich mit besonderen Vorteilen zum Fügen von Aluminium und Aluminiumlegierungen. Des Weiteren eignet sich das erfindungsgemäße Prozessgas auch für beschichtete Werkstoffe, insbesondere für verzinkte Stähle. Aber auch beim Fügen von heterogen Werkstoffverbindungen zeigt das erfin dungsgemäße Prozessgas seine Vorteile. Die gefügten Hartlotverbindungen zeigen trotz der unterschiedlichen Materialeigenschaften, wie unterschiedliche Wärmeleitung skoeffi- zienten und verschiedene Wärmekapazitäten eine hervorragende Qualität. So wird mit dem erfindungsgemäßen Prozessgas insbesondere das Fügen von Aluminium mit Aluminiumlegierungen und von unterschiedlichen luminiumlegierungen miteinander ermöglicht.The process gas according to the invention is particularly suitable for joining aluminum and aluminum alloys. The process gas according to the invention is also suitable for coated materials, in particular for galvanized steels. But the process gas according to the invention also shows its advantages when joining heterogeneous material connections. In spite of the different material properties, such as different heat conduction coefficients and different heat capacities, the brazed joints show excellent quality. For example, the process gas according to the invention enables the joining of aluminum with aluminum alloys and of different aluminum alloys to one another.
Die Erfindung sowie weitere Einzelheiten der Erfin ung werden im Folgende anhand von in den Zeichnungen dargestellten Ausführungsioeispielen näher erläutert. Hierbei zeigen:The invention and further details of the inven tion are explained in more detail below with reference to exemplary embodiments shown in the drawings. Here show:
Figur 1 das Verfahren zum Laserstrahlhartlöten mit einem mittels einer Düse auf die Bauteile gerichteten Prozessgasstrom und Figur 2 das Verfahren mit drahtförmiger Lotzu<gabe.1 shows the process for laser beam brazing with a process gas stream directed at the components by means of a nozzle, and FIG. 2 shows the process with wire-shaped solder addition.
Figur 1 und 2 umfassen eine Prozessgasduse 1, einen Laserstrahl 2, einen L_otdraht 3, eine Lotnaht 4 und zu verlötende Bauteile 5. Des Weiteren zeigt Figur 2 eine Draht- lenkeinrichtung 6 und eine Drahtvorschubeinrichtung 7.1 and 2 comprise a process gas nozzle 1, a laser beam 2, a solder wire 3, a solder seam 4 and components 5 to be soldered. Furthermore, FIG. 2 shows a wire steering device 6 and a wire feed device 7.
In dem Ausführungsbeispiel gemäß Figur 1 wird eine Fuge mit dem Laserstahl hartgelötet. Dazu sind die Bauteile 5 so angeordnet, dass sich eine V-förmige Fuge ergibt. Der Laserstahl 2 wird auf die Oberseite der Bauteil fokussiert und verflüssigt das draht- förrnig zugegebene Lot 3. Sollte der Brennfleck zu klein oder die Energiedictnte im Brennfleck zu hoch sein, muss ein defokussierter Laserstrahl verwendet werden. Der Fokus des Lasers liegt dann vorzugsweise oberhalb des Bauteils. Das Lot 3 verflüssigt sich an der Lötstelle durch die Energie des Laserstahls 2. Hinter der Lötstelle erstarrt das Lot und die Lotnaht 4 bildet sich aus. Vorteilhafterweise wird das Lot in einem Winkel von 15° bis 45° dem Lötprozess zugeführt. Der Prozessgasstrom wird mittels der Prozessgasduse 1 auf die Lötstelle gelenkt. De r Prozessgasstrom ummantelt dabei den Laserstrahl. Als Quelle für den Laserstrahl dient vorzugsweise ein Diodenlaser, aber auch ein Festkörperlaser (beispielsweise ein Nd:YAG Laser) oder ein C02-Laser wird eingesetzt. Die Einkopplung des Laserstrahls in die Prozessgasduse wϊ rd durch den Lasertyp bestimmt. Bei Verwendung eines Diodenlasers wird dieser vorzugsweise direkt mit der Prozessgasduse verbunden sein. Wird hingegen eine Glasfaser für den Transport der Laserstrahlung in die Prozessgasduse verwendet, endet die Faser vorteilhafterweise in oder nahe an der Prozessgasduse. Die Prozessgasduse 1 sorgt für das Strömen des Prozessgases an die Lötstelle . Als Prozessgas wird mit besonderem Vorteil eine Mischung aus 90 Vol.-% Stickstoff und 10 Vol.-% Helium verwendet. Die Komponenten des Prozessgases werden vorzugsweise als Gasmischung in die Prozessgasduse geführt. Es ist jedoch auch möglicϊn, die Komponenten in der Prozessgasduse zu verwirbeln. Die Lotnähte sind frei von Spritzern und Unregeϊmäßigkeiten, so dass ein Nacharbeiten nicht notwendig istIn the exemplary embodiment according to FIG. 1, a joint is brazed with the laser steel. For this purpose, the components 5 are arranged so that there is a V-shaped joint. The laser steel 2 is focused on the top of the component and liquefies the wire-shaped solder 3. If the focal spot is too small or the energy density in the focal spot is too high, a defocused laser beam must be used. The focus of the laser is then preferably above the component. The solder 3 liquefies at the soldering point through the energy of the laser steel 2. The solder solidifies behind the soldering point and the solder seam 4 is formed. The solder is advantageously fed to the soldering process at an angle of 15 ° to 45 °. The process gas flow is directed to the soldering point by means of the process gas nozzle 1. The process gas stream encases the laser beam. A diode laser is preferably used as the source for the laser beam, but also a solid-state laser (for example an Nd: YAG laser) or a CO 2 laser is used. The coupling of the laser beam into the process gas nozzle is determined by the type of laser. If a diode laser is used, it will preferably be connected directly to the process gas nozzle. If, on the other hand, a glass fiber for the When transporting the laser radiation into the process gas nozzle, the fiber advantageously ends in or near the process gas nozzle. The process gas nozzle 1 ensures that the process gas flows to the soldering point. A mixture of 90% by volume nitrogen and 10% by volume helium is particularly advantageously used as the process gas. The components of the process gas are preferably fed into the process gas nozzle as a gas mixture. However, it is also possible to swirl the components in the process gas nozzle. The solder seams are free of splashes and irregularities, so that reworking is not necessary
Figur 2 zeigt eine vorteilhafte Ausgestaltung für die Verwendung von drahtförmigen Lot. Der Lotdraht 3 wird von der Drahtvorschubeinrichtung 7 kontinuierlich gefördert und von der Drahtlenkeinrichtung 6 an die Bear£>eitungsstelle geführt. Oort schmilzt der Lotdraht 3 im Laserstrahl 2 und bildet nach Erstarrung die Lotnaht 4. Das Prozessgas wird mit der Prozessgasduse 1 an die Lötstelle geführt und wechselwirkt dort mit dem geschmolzenen Lot und dem Grundwerkstoff. Die Bauteile 5 bestehen i einer Ausgestaltung aus unterschiedlichen Materialien. D»ie Lotnaht 4 entsteht so beispielsweise zwischen einem Aluminium- und einem Stahlbauteil. Als Prozessgas wi rd vorteilhafterweise eine Mischung aus 15 Vol.-% Helium und 85 Vol.-% Argon verwendet. Figure 2 shows an advantageous embodiment for the use of wire-shaped solder. The solder wire 3 is continuously conveyed by the wire feed device 7 and guided by the wire guide device 6 to the processing point. On location, the solder wire 3 melts in the laser beam 2 and forms the solder seam 4 after solidification. The process gas is guided to the soldering point with the process gas nozzle 1 and interacts there with the molten solder and the base material. In one configuration, the components 5 consist of different materials. The solder seam 4 is thus created, for example, between an aluminum and a steel component. A mixture of 15% by volume of helium and 85% by volume of argon is advantageously used as the process gas.

Claims

Patentansprüche claims
1. Verfahren zum Laserstrahlhartlöten mit einem auf eine Lötstelle oder in die Nähe der Lötstelle fokussierten Laserstrahl, wobei das Lot an der Lötstelle von dem Laserstrahl aufgeschmolzen wird, dadurch gekennzeichnet, dass der Laserstrahl von einem auf die Lötstelle gerichteten Prozessgasstrom ummantelt wird.1. A method for laser beam brazing with a laser beam focused on a solder joint or in the vicinity of the solder joint, the solder being melted by the laser beam at the solder joint, characterized in that the laser beam is encased by a process gas stream directed onto the solder joint.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass flussmittelfrei gelötet wird.2. The method according to claim 1, characterized in that flux-free soldering.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichn et, dass der Lötstelle drahtförmiges Lot zugeführt wird.3. The method according to claim 1 or 2, characterized gekennzeichn et that wire-shaped solder is supplied to the solder joint.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Prozessgasstrom Argon, Helium und/oder Stickstoff enthält.4. The method according to any one of claims 1 to 3, characterized in that the process gas stream contains argon, helium and / or nitrogen.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Prozessgasstrom Helium und Argo n/Stickstoff enthält.5. The method according to any one of claims 1 to 4, characterized in that the process gas stream contains helium and argo n / nitrogen.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Prozessgasstrom 1 Vol.-% bis 60 V ol.-% Helium, vorzugsweise 5 Vol.-% bis 406. The method according to any one of claims 1 to 5, characterized in that the process gas stream 1 vol .-% to 60 vol .-% helium, preferably 5 vol .-% to 40
Vol.-% Helium, besonders bevorzugt 10 Vol.-% bis 20 Vol.-% Helium enthält.Vol .-% helium, particularly preferably 10 vol .-% to 20 vol .-% helium.
7. Prozessgas zum Laserstrahlhartlöten dadurch gekennzeichnet, dass das Prozessgas Argon, Helium und/oder Stickstoff enthält.7. Process gas for laser beam brazing characterized in that the process gas contains argon, helium and / or nitrogen.
8. Prozessgas nach Anspruch 7, dadurch gekennzeichnet, dass das Prozessgas Helium und Argon/Stickstoff enthält.8. Process gas according to claim 7, characterized in that the process gas contains helium and argon / nitrogen.
9. Prozessgas nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Prozess- gas 1 Vol .-% bis 60 Vol.-% Helium, vorzugsweise 5 VoL-% bis 40 Vol.-% Helium, besonders bevorzugt 10 Vol.-% bis 20 VoI.-% Helium enthält. 9. Process gas according to claim 7 or 8, characterized in that the process gas 1 vol .-% to 60 vol .-% helium, preferably 5 vol% to 40 vol .-% helium, particularly preferably 10 vol .-% contains up to 20% by volume of helium.
10. Verwendung eines Prozessgases nach einem der Ansprüche 7 bis 9 und/oder Anwendung eines Verfahrens nach einem der Ansprüche 1 bis 6 zum Laserstahlhartlöten von Aluminium und Aluminiumlegierungen.10. Use of a process gas according to one of claims 7 to 9 and / or application of a method according to one of claims 1 to 6 for laser steel brazing of aluminum and aluminum alloys.
11. Verwendung eines Prozessgases nach einem der Ansprüche 7 bis 9 und/dder Anwendung eines Verfahrens nach einem der Ansprüche 1 bis 6 zum Las-erstahl- hartlöten von heterogen Werkstoffverbindungen. 11. Use of a process gas according to one of claims 7 to 9 and / d the application of a method according to one of claims 1 to 6 for the laser-steel brazing of heterogeneous material connections.
PCT/EP2003/008371 2002-08-05 2003-07-29 Process gas and method for laser hard soldering WO2004014598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003251662A AU2003251662A1 (en) 2002-08-05 2003-07-29 Process gas and method for laser hard soldering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10235822.2 2002-08-05
DE10235822A DE10235822A1 (en) 2002-08-05 2002-08-05 Process for laser beam hard soldering using a laser beam encased by a process gas stream directed onto the solder site

Publications (1)

Publication Number Publication Date
WO2004014598A1 true WO2004014598A1 (en) 2004-02-19

Family

ID=30469462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008371 WO2004014598A1 (en) 2002-08-05 2003-07-29 Process gas and method for laser hard soldering

Country Status (3)

Country Link
AU (1) AU2003251662A1 (en)
DE (1) DE10235822A1 (en)
WO (1) WO2004014598A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1428610B1 (en) * 2002-12-11 2009-05-06 Air Liquide Deutschland GmbH Use of a protective gas for laser soldering of metallic materials
US7840214B2 (en) 2006-04-21 2010-11-23 Alcatel-Lucent Usa Inc. Method of providing access information to an access terminal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002931A1 (en) 2010-07-15 2012-01-19 Bayerische Motoren Werke Aktiengesellschaft Method and apparatus for laser brazing
DE102011005265A1 (en) * 2011-03-09 2012-09-13 Behr Gmbh & Co. Kg Process for the preparation of a heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906812A (en) * 1988-12-22 1990-03-06 General Electric Company Fiber optic laser joining apparatus
EP0538709A1 (en) * 1991-10-15 1993-04-28 Matsushita Electric Industrial Co., Ltd. Light beam heating system
US5256097A (en) * 1990-11-07 1993-10-26 Licentia Patent-Verwaltungs-Gmbh Process for producing a directly heated cathode
EP0628377A1 (en) * 1993-06-14 1994-12-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for continuous laser CO2 welding of either alloyed or non-alloyed steels under protective gases
WO1998019818A1 (en) * 1996-11-06 1998-05-14 Aga Aktiebolag Method and process gas for laser welding metal work pieces
US5977512A (en) * 1995-12-01 1999-11-02 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung Ev Multi-wavelength laser soldering device with substrate cleaning beam
JP2001198670A (en) * 2000-01-17 2001-07-24 Japan Unix Co Ltd Laser type soldering method and device
DE10032975A1 (en) * 2000-07-06 2002-01-17 Behr Gmbh & Co Process for hard soldering aluminum parts comprises melting a solder additive consisting of a powder made from aluminum solder balls coated with a flux which reduces the oxide layer by introducing heat via a laser beam, and hardening

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906812A (en) * 1988-12-22 1990-03-06 General Electric Company Fiber optic laser joining apparatus
US5256097A (en) * 1990-11-07 1993-10-26 Licentia Patent-Verwaltungs-Gmbh Process for producing a directly heated cathode
EP0538709A1 (en) * 1991-10-15 1993-04-28 Matsushita Electric Industrial Co., Ltd. Light beam heating system
EP0628377A1 (en) * 1993-06-14 1994-12-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for continuous laser CO2 welding of either alloyed or non-alloyed steels under protective gases
US5977512A (en) * 1995-12-01 1999-11-02 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung Ev Multi-wavelength laser soldering device with substrate cleaning beam
WO1998019818A1 (en) * 1996-11-06 1998-05-14 Aga Aktiebolag Method and process gas for laser welding metal work pieces
JP2001198670A (en) * 2000-01-17 2001-07-24 Japan Unix Co Ltd Laser type soldering method and device
DE10032975A1 (en) * 2000-07-06 2002-01-17 Behr Gmbh & Co Process for hard soldering aluminum parts comprises melting a solder additive consisting of a powder made from aluminum solder balls coated with a flux which reduces the oxide layer by introducing heat via a laser beam, and hardening

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 24 11 May 2001 (2001-05-11) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1428610B1 (en) * 2002-12-11 2009-05-06 Air Liquide Deutschland GmbH Use of a protective gas for laser soldering of metallic materials
US7840214B2 (en) 2006-04-21 2010-11-23 Alcatel-Lucent Usa Inc. Method of providing access information to an access terminal

Also Published As

Publication number Publication date
AU2003251662A1 (en) 2004-02-25
DE10235822A1 (en) 2004-02-19

Similar Documents

Publication Publication Date Title
DE102018120523A1 (en) Laser beam soldering of metallic workpieces with a relative movement between the laser beam and the flux-cored wire
DE2611248A1 (en) VERTICAL UPWARD ARC WELDING PROCESS
DE19925652C2 (en) Method and device for producing soldered connections between electronic components and a printed circuit board
EP0931180B1 (en) Process for manufacturing a cutting tool
DE10017453B4 (en) Process for producing a welded or soldered connection
DE2824691C3 (en) Process for electroslag welding of metals
DE102009000892A1 (en) Method for layer application of film-shaped soldering materials by ultrasonic welding on same or different surfaces of component, comprises coupling the ultrasonics on component surface to its activation and wettability
WO2004014598A1 (en) Process gas and method for laser hard soldering
WO2015018833A1 (en) Method for producing a welded joint
EP1528968B1 (en) Process gas and method for laser hard soldering
DE10032975B4 (en) Method of brazing aluminum parts
DE102009046661B4 (en) Method and device for joining ceramic components
EP1663568B1 (en) Soldering work piece, soldering method and heat exchanger
BE1029682B1 (en) SOLDER PASTE FOR FLUX-FREE SOLDERING OF DIFFERENT METALS COPPER AND ALUMINUM AND SOLDERING PROCESSES THEREOF
DE102013010560B4 (en) Method for joining workpieces made of zinc-containing copper alloys and joining part
DE4315849C1 (en) Carbon di:oxide laser beam welding
DE19849449C2 (en) Method and system for connecting heat exchanger parts
DE19711955A1 (en) Hard soldering process
DE3824861A1 (en) METHOD FOR PRODUCING SOLDERED CONNECTIONS
DE10239141A1 (en) Laser soldering method for two sheet metal workpieces, involves heating solder using an electric current prior to its supply to the are to be joined
EP1651378B1 (en) Method for non-vacuum electron beam welding metallic materials
EP3427886A1 (en) Laser welding in reduced ambient pressure
DE2153263A1 (en) Process for welding metals, preferably for welding steel pipes under assembly conditions
DE102008024977A1 (en) Method of arc joining
DE10238339A1 (en) Process for laser beam processing for the laser cutting or laser welding of workpieces comprises coupling a laser beam in a fluid containing a molten salt heated to a predetermined temperature

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP