WO2004013478A1 - Engine controller - Google Patents

Engine controller Download PDF

Info

Publication number
WO2004013478A1
WO2004013478A1 PCT/JP2003/004664 JP0304664W WO2004013478A1 WO 2004013478 A1 WO2004013478 A1 WO 2004013478A1 JP 0304664 W JP0304664 W JP 0304664W WO 2004013478 A1 WO2004013478 A1 WO 2004013478A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake pressure
intake
crankshaft
detecting means
engine
Prior art date
Application number
PCT/JP2003/004664
Other languages
French (fr)
Japanese (ja)
Inventor
Michihisa Nakamura
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to AU2003236226A priority Critical patent/AU2003236226A1/en
Publication of WO2004013478A1 publication Critical patent/WO2004013478A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control device for controlling an engine, and is particularly suitable for controlling an engine having a fuel injection device for injecting fuel.
  • injectors In recent years, with the spread of fuel injectors called injectors, it has become easier to control the timing of fuel injection and the amount of injected fuel, that is, the air-fuel ratio, etc., and to achieve higher output, lower fuel consumption, and cleaner exhaust gas. It has become possible to promote. Of these, especially for the timing of fuel injection, strictly speaking, it is common to detect the state of the intake valve, that is, generally the phase state of the power shaft, and inject fuel accordingly. However, a so-called cam sensor for detecting the phase state of a camshaft is expensive, and particularly in a motorcycle or the like, it cannot be adopted because of a problem such as a large cylinder head. Therefore, for example, Japanese Patent Application Laid-Open No.
  • H10-227252 proposes an engine control device that detects a phase state of a crankshaft and an intake pressure, and detects a stroke state of a cylinder therefrom. Therefore, by using this conventional technology, it is possible to detect the stroke state without detecting the phase of the camshaft, and it is possible to control the injection timing of the twisting material and the like according to the stroke state. It becomes possible.
  • the above-mentioned intake pressure can be detected by intake pressure detecting means such as an intake pressure sensor.
  • intake pressure detecting means such as an intake pressure sensor.
  • the intake pressure detecting means when the intake pressure detecting means is disengaged from the intake pipe and is released to the atmosphere, it always becomes large. Atmospheric pressure will be detected. Since atmospheric pressure is generally the detection area of the intake pressure detecting means, it has been found that an abnormality of the intake pressure detecting means cannot be detected as it is.
  • the present invention has been developed to solve the above problems, and an object of the present invention is to provide an engine control device capable of reliably detecting an abnormality of intake pressure detecting means. Disclosure of the invention
  • the engine control device includes a crankshaft phase detecting means for detecting a phase of a crankshaft, an intake pressure detecting means for detecting an intake pressure in an intake pipe of an engine, and the crankshaft.
  • Engine control means for controlling the operation state of the engine based on the crankshaft phase detected by the shaft phase detection means and the intake pressure detected by the intake pressure detection means, and the engine control means detecting the crankshaft phase detection means
  • Detecting means force ⁇ intake pressure abnormality detecting means for detecting an abnormality.
  • the engine control device according to claim 2 of the present invention according to claim 1 further includes an engine speed detecting means for detecting an engine speed, wherein the intake pressure abnormality detecting means comprises: The predetermined value of the intake pressure fluctuation is set to be smaller, as the engine speed power detected by the engine speed detecting means ⁇ smaller.
  • the engine control device according to claim 3 of the present invention according to claim 1 or 2, further comprising a throttle opening detecting means for detecting an opening of a throttle valve, wherein the intake pressure abnormality detecting means is provided.
  • a throttle opening detecting means for detecting an opening of a throttle valve, wherein the intake pressure abnormality detecting means is provided.
  • FIG. 1 is a schematic configuration diagram of an auto / key engine and its control device.
  • Figure 2 is an explanatory view of the principle of delivering crank pulse in the engine of FIG. 1.
  • FIG. 3 is a block diagram showing an embodiment of the engine control device of the present invention.
  • FIG. 4 is an explanatory diagram for detecting a stroke state from the phase of the crankshaft and the intake pressure.
  • FIG. 5 is a block diagram of the intake air amount calculation unit.
  • FIG. 6 is a control map for obtaining the mass flow rate of the intake air from the P and the air pressure.
  • FIG. 7 is a block diagram of a fuel injection amount calculation unit and a fuel behavior model.
  • FIG. 8 is an explanatory diagram showing a state where the intake pressure sensor is attached to the intake pipe.
  • FIG. 9 is an explanatory diagram showing the relationship between the output value of the intake pressure sensor and the intake pressure.
  • FIG. 10 is a flowchart showing a calculation process for detecting an intake pressure abnormality performed by the engine control unit of FIG.
  • FIG. 1 is a control map used in the arithmetic processing of FIG.
  • FIG. 12 is an explanatory diagram of an intake pressure signal when the intake pressure sensor comes off.
  • FIG. 1 is a schematic configuration showing an example of an engine for an auto-knob and its control device.
  • This engine 1 is a four-cylinder four-stroke engine, with a cylinder body 2, a crankshaft 3, a piston 4, a combustion chamber 5, an intake pipe 6, an intake valve 7, an exhaust pipe 8, an exhaust valve 9, a spark plug 10, and an ignition plug. It has a coil 11.
  • a throttle valve 12 that opens and closes according to the accelerator opening is provided in the intake pipe 6, and an injector 13 as a fuel injection device is provided in the intake pipe 6 downstream of the throttle valve 12. Have been.
  • the injector 13 is connected to a filter 18, a fuel pump 17, and a pressure control valve 16 provided in a fuel tank 19.
  • the engine 1 is a so-called independent intake system, and the aforementioned injectors 13 are provided in each intake pipe 6 of each cylinder.
  • the operating state of the engine 1 is controlled by an engine control unit 15.
  • the crank angle sensor 20 for detecting the rotation angle of the crankshaft 3, that is, the phase, and the temperature of the cylinder body 2
  • a cooling water temperature sensor 21 for detecting a temperature of the cooling water, that is, a temperature of the engine body
  • an exhaust air-fuel ratio sensor 22 for detecting an air-fuel ratio in the exhaust pipe 8
  • an intake pressure for detecting an intake pressure in the intake pipe 6.
  • a sensor 24 and an intake air temperature sensor 25 for detecting the temperature in the intake pipe 6 , that is, the intake air temperature, are provided. Then, the engine control unit 15 receives the detection signals of these sensors and sends the control signals to the fuel pump 17, the pressure control valve 16, the injector 13, and the ignition coil 11. Is output.
  • a plurality of teeth 23 are protruded at substantially equal intervals on the outer periphery of the crankshaft 3, and the approach thereof is detected by a crank angle sensor 20 such as a magnetic sensor, and an electric Performs the appropriate processing and sends out the nourse signal.
  • the circumferential pitch between each tooth 23 is 30 ° in terms of the phase (rotation angle) of the crankshaft 3, and the circumferential width of each tooth 23 is in the phase (rotation angle) of the crankshaft 3. To 10 °. However, only one portion does not follow this pitch, and there are portions where the pitch of the other teeth 23 is twice as large.
  • this portion is also referred to as a toothless portion.
  • FIG. 2B shows the signal sequence of each tooth 23 when the crankshaft 3 rotates at a constant speed (the same applies to the form of exhaust top dead center). Then, the next / less signal is shown as “1”, the next noise signal is shown as "2”, and so on.
  • the tooth 23 following the tooth signal of "4" shown in the figure is a tooth missing portion, and it is counted as an extra tooth "I” assuming that a tooth exists. It illustrated "6" to Nan / ring.
  • the engine control unit 15 is a microcomputer (not shown). It is composed of FIG. 3 is a block diagram showing an embodiment of the engine control arithmetic processing performed by the microphone computer in the engine control unit 15. As shown in FIG. In this calculation process, an engine speed calculating unit 26 for calculating the engine speed from the crank angle signal, and crank timing information for detecting the crank angle signal and the intake pressure signal force, that is, crank timing information for detecting the stroke state. Unit 27, an intake air amount calculation unit 28 that reads crank timing information detected by the crank timing detection unit 27, and calculates an intake air amount from the intake air temperature signal and the intake air pressure signal, and the engine speed calculation unit.
  • the fuel injection amount and the fuel injection amount are determined.
  • An injection pulse output unit 30 that reads the It report and outputs an injection pulse corresponding to the fuel injection amount and the fuel injection timing set by the fuel injection amount setting unit 29 to the injector 13;
  • the crank timing information detected by the crank timing detection unit 27 is read, and ignition is performed based on the engine speed calculated by the engine speed calculation unit 26 and the fuel injection amount set by the fuel injection amount setting unit 29.
  • An ignition timing setting unit 31 for setting a timing, and crank timing information detected by the crank timing detection unit 27 are read, and an ignition noise corresponding to the ignition timing set by the ignition timing setting unit 31 is read by the ignition coil 1.
  • an ignition pulse output unit 32 that outputs the signal toward 1.
  • the engine speed calculation unit 26 calculates the rotation speed of the crankshaft, which is the output shaft of the engine, as the engine speed from the time rate of change of the crank angle signal. Specifically, an instantaneous value of the engine speed obtained by dividing the phase between the adjacent teeth 23 by the required crank pulse detection time and an average value of the engine speed obtained from the moving average value are calculated. .
  • the crank timing detection unit 27 has a configuration similar to that of the stroke determination device described in Japanese Patent Application Laid-Open No. Hei 10-227252, and thereby detects the stroke state of each cylinder, for example, as shown in FIG. And outputs it as crank timing information.
  • the crankshaft and the camshaft always rotate at a predetermined phase difference, so that, for example, when the crank / loose is read as shown in FIG. , Mentioned above
  • the fourth crank pulse "9" or "21" shown from the missing portion is either the exhaust stroke or the compression stroke.
  • the exhaust / lube is open and the intake / lube is closed, so the intake pressure is high in the early stage of the compression stroke when the intake pressure is high. Even if the valve is closed, the intake pressure is low in the preceding intake stroke. Accordingly, when the intake pressure is low, the crank / lus of "21" shown in the drawing is in the compression stroke, and immediately after the crank / lusker of "0" shown is obtained, the compression top dead center is obtained. In this way, if any of the stroke states can be detected, the current stroke state can be more finely detected by interpolating between the strokes with the rotational speed of the crankshaft. Further, if the stroke of any one of the cylinders can be detected as described above, the four cylinders of the present embodiment are constantly rotating with a predetermined phase difference, so that the strokes of the other cylinders can be naturally detected.
  • the intake air amount calculation unit 28 includes an intake pressure detection unit 281 that detects intake pressure from the intake pressure signal and the crank timing information, and an intake pressure detection unit 281 that detects a mass flow rate of intake air from the intake pressure.
  • a mass flow rate map storage unit 282 that stores a map, a mass flow rate calculation unit 283 that calculates a mass flow rate according to the detected intake pressure using the mass flow rate map, and an intake air flow rate based on the intake air temperature signal.
  • An intake air temperature detector 284 for detecting a temperature, and a mass for correcting the intake air mass flow from the intake air mass flow calculated by the mass flow calculator 283 and the intake air temperature detected by the intake air temperature detector 284.
  • the flow rate correction unit 285 is provided. That is, since the mass flow rate map is created based on the mass flow rate when the intake air temperature is 20 ° C., for example, the intake air flow rate is calculated by correcting this with the actual intake air temperature (absolute temperature ratio). .
  • the intake air amount is calculated using the intake pressure value between the bottom dead center in the compression stroke and the intake / end closing timing. That is, when the intake valve is opened, the intake pressure and the cylinder pressure are substantially equal, so that the intake pressure, the cylinder volume, and the intake temperature are known, and thus the in-cylinder air mass can be obtained.
  • the intake / lube remains open for a while after the start of the compression stroke, air flows in and out between the cylinder and the intake pipe during this time, and the intake air volume calculated from the intake pressure before BDC May be different from the amount of air actually drawn into the cylinder.
  • the fuel injection amount setting unit 29 includes a steady-state target air-fuel ratio calculation unit 33 that calculates a steady-state target air-fuel ratio based on the engine speed 26 calculated by the engine speed calculation unit 26 and the intake pressure signal. On the basis of the steady-state target air-fuel ratio calculated by the steady-state target air-fuel ratio calculator 33 and the intake air amount calculated by the intake air amount calculator 28, a constant fuel injection amount and fuel injection timing are calculated.
  • a constant fuel injection amount calculation unit 34 a fuel behavior model 35 used for calculating the steady state fuel injection amount and the fuel injection timing in the steady state fuel injection amount calculation unit 34, the crank angle signal and the intake pressure signal And an acceleration state detecting means 41 for detecting an acceleration state based on the crank timing information detected by the crank timing detection section 27, and according to the acceleration state detected by the acceleration state detection means 41, Engine speed calculating section acceleration fuel injection quantity according to the engine rotational speed calculated at 26 and the acceleration fuel injection quantity calculating section for calculating a fuel injection timing 4 and a 2 and.
  • the fuel behavior model 35 is substantially integrated with the steady-state fuel injection amount calculation unit 34.
  • the fuel behavior model 35 requires the intake air temperature signal, the engine speed and the coolant temperature signal.
  • the steady-state fuel injection amount calculation unit 34 and the fuel behavior model 35 are configured, for example, as shown in a block diagram of FIG.
  • the fuel injection amount injected from the injector 13 into the intake pipe 6 and the fuel adhesion rate adhering to the wall of the intake pipe 6 is X
  • the fuel injection amount is directly injected into the cylinder.
  • Direct inflow is ((1 -X) XM
  • the amount of adhesion to the intake pipe wall is (X x lVUi).
  • Some of the deposited fuel flows into the cylinder along the intake pipe wall.
  • the remaining amount is the residual fuel amount I JF
  • the inflow amount carried away and flowing into the cylinder is (XM FBUF ) .
  • the steady-state fuel injection amount calculation unit 34 first calculates a cooling water temperature correction coefficient K w from the cooling water temperature T w using a cooling water temperature correction coefficient table. Meanwhile, the relative amount of intake air IV ⁇ , for example, performs a fuel force Ttoruchin for cutting fuel when the throttle opening force "is zero, then the intake air temperature T A with the temperature corrected air flow rate M A is calculated, and the target air-fuel ratio AF is calculated. Of multiplying the inverse ratio, further calculates the cooling water temperature correction factor K w a multiplied by the required fuel inflow amount M F.
  • the intake air amount calculated by the intake air amount calculation unit 28 is detected at the end of the intake stroke of the cycle immediately before the intake stroke that enters the explosion (expansion) stroke or at the beginning of the subsequent compression stroke.
  • the steady-state fuel injection amount and the fuel injection timing calculated and set by the steady-state fuel injection amount calculation unit 34 are also the results of the immediately preceding cycle according to the intake air amount. .
  • the acceleration state detection section 41 has an acceleration state threshold value table. This is performed by calculating a difference value between the intake pressure at the same stroke as the present, specifically, the exhaust stroke or the intake stroke at the same crank angle and the current intake pressure, and determining the value as a predetermined value. Is a threshold value for detecting that the vehicle is in the accelerated state as compared with the value of, and specifically differs for each crank angle. Therefore, to detect the acceleration state, This is performed by comparing a difference value with a predetermined value that differs at each crank angle. The detection of the acceleration state is performed after a predetermined cycle has elapsed since the previous acceleration state was detected.
  • the acceleration fuel injection amount calculation unit 42 when the acceleration state force ⁇ is detected by the acceleration state detection unit 41, the difference value between the current value and the previous value of the intake pressure, and the engine speed N the acceleration fuel injection quantity Micromax ⁇ calculated from the three-dimensional map corresponding to the E.
  • the fuel injection timing at acceleration is defined as when the acceleration state is detected by the acceleration state detection unit 41, that is, when the acceleration state is detected, the acceleration fuel injection amount M F ACC is immediately injected. It shall be.
  • the ignition timing setting unit 31 calculates a basic ignition timing based on the engine speed calculated by the engine speed calculation unit 26 and the target air-fuel ratio calculated by the target air-fuel ratio calculation unit 33.
  • the basic ignition timing calculation unit 36 obtains the ignition timing at which the generated torque force ⁇ the largest from the current engine speed and the target air-fuel ratio at that time by searching a map or the like, and calculates the basic ignition timing. That is, the ignition timing calculated by the ignition timing calculation unit 36 is the same as that of the steady-state fuel injection amount calculation unit 34, and is based on the result of the intake stroke of the immediately preceding cycle. Further, the ignition timing correction unit 38 calculates the acceleration fuel injection amount when the acceleration fuel injection amount is added to the constant fuel injection amount in accordance with the acceleration fuel injection amount calculated by the acceleration fuel injection amount calculation unit 42.
  • the cylinder air-fuel ratio is determined, and when the cylinder air-fuel ratio is significantly different from the target air-fuel ratio set by the steady-state target air-fuel ratio calculation unit 33, the cylinder air-fuel ratio, engine speed, and intake pressure are used.
  • the ignition timing is corrected by setting a new ignition timing.
  • the intake pressure sensor 24 has a pressure guiding tube 23 attached to the intake pipe 6 so as not to be directly exposed to fuel, and is attached to the tip of the pressure guiding tube 23.
  • the relationship between the output of the intake pressure sensor 24 and the actual intake pressure is as shown in FIG. 9, if only abnormalities such as a disconnection or a short circuit are considered, for example, the upper limit of the output value or the lower limit value
  • the region excluding the vicinity may be regarded as a normal region, and an abnormality may be detected when the output of the intake pressure sensor is not in the normal region.
  • the intake pressure sensor 24 is released to the atmosphere, and detects and outputs the atmospheric pressure.
  • the output value of the intake pressure sensor 24 includes the atmospheric pressure as shown in FIG. 9, so it is assumed that the abnormality is merely when the intake pressure sensor 24 is not in the normal range. No error can be detected. Therefore, in the engine control unit 15, the abnormality of the intake pressure sensor is detected by the arithmetic processing shown in FIG. This calculation process is performed by, for example, an interrupt process every two rotations of the crankshaft. Further, in this arithmetic processing, although no step is particularly provided for communication, information necessary for the arithmetic is read as needed, and the result of the arithmetic is stored as needed.
  • step S1 the intake pressure for two rotations of the crankshaft is read, for example, each time the crank pulse is rotated, that is, each time the crankshaft rotates 30 °.
  • the intake pressure is stored in a shift register as described above, and the intake pressure for each crankshaft 30 ° is read for two rotations of the crankshaft, that is, for one cycle.
  • step S2 it is determined whether or not all the intake pressures read in step S1 are within the normal range in FIG. 9 and whether or not the detected intake pressures are all within the normal range. Proceeds to step S3, otherwise proceeds to step S4.
  • step S3 the engine speed calculated by the engine speed calculator 26 is read, and then the process proceeds to step S5.
  • step S5 in accordance with the control map shown in FIG ⁇ ⁇ , moves after setting the intake pressure variation threshold ⁇ P 0 corresponding to the engine speed in step S6.
  • the intake pressure fluctuation threshold P is increased as the engine speed N increases. Is set to increase linearly.
  • step S6 the intake pressure fluctuation value ⁇ is calculated from the difference between the maximum value and the small value of the intake pressure for two revolutions of the crankshaft read in step S1, and then the process proceeds to step S7.
  • step S7 it is determined whether the intake pressure variation value ⁇ ⁇ ⁇ calculated in step S6 is equal to or less than the intake pressure variation threshold ⁇ 0 set in step S5, and the intake pressure variation value ⁇ is determined as the intake pressure. Pressure fluctuation threshold ⁇ . If so, the process proceeds to step S8; otherwise, the process proceeds to step S9. In step S9, the intake pressure abnormality counter GNT is cleared to "0", and then the process returns to the main program.
  • step S8 the intake pressure abnormality counter is used. After incrementing by 1 ⁇ 11, shift to step S10.
  • step S10 the intake pressure abnormality counter CNT is set to a predetermined value CNT.
  • the routine proceeds to step S4, otherwise, the process returns to the main program.
  • step S4 an abnormality is determined according to the individual arithmetic processing performed in the step, and a predetermined fail-safe processing is performed, and then the arithmetic processing ends.
  • This fail-safe processing is performed by, for example, gradually turning on the ignition for each cylinder, gradually shifting the ignition of each cylinder to the retard side, or closing the throttle quickly at first and then slowly. This includes gradually reducing the engine torque or displaying an abnormality.
  • the intake pressure fluctuation threshold ⁇ according to the engine speed.
  • the intake pressure fluctuation value ⁇ ⁇ ⁇ is calculated in two rotations of the crankshaft, that is, in one cycle, and the intake pressure fluctuation value ⁇ is the intake pressure fluctuation threshold ⁇ ⁇ ⁇ .
  • the state below is the specified value.
  • Fig. 12 shows the output of the intake pressure sensor when the crankshaft keeps rotating, when the crankshaft engine continues to operate, and when the intake pressure sensor comes off when the crankshaft rotates. .
  • the output of the sensor when the force of the intake pressure sensor deviates is the value of the atmospheric pressure, and is within the normal output range, that is, the normal range.
  • the intake pressure fluctuation value ⁇ calculated by the arithmetic processing in FIG. 10 becomes the predetermined value ⁇ . As described below, it is possible to detect an abnormality.
  • the intake pressure fluctuation threshold ⁇ P according to the engine speed. Need to be set. In fact, the intake pressure fluctuation within one cycle is smaller as the throttle opening is larger than just the engine speed. Since the present embodiment has been developed in order to omit the throttle sensor, an intake pressure fluctuation threshold ⁇ P based on the throttle opening at which a clear throttle opening detection value is obtained.
  • the throttle opening is estimated from other parameters such as the force omitting the setting of, and the intake pressure fluctuation threshold ⁇ ⁇ ⁇ according to the estimated throttle opening. May be set.
  • the intake pressure fluctuation in one cycle depends on the engine speed and the throttle opening, and conversely, the throttle opening is estimated from the intake pressure fluctuation and the engine speed in one cycle. can do.
  • the rate of change of the throttle opening during the transition period can be estimated. If the integrated value of the rate of change of the throttle opening in the transition period is added to the throttle opening in the steady state described above, the throttle opening in the transition period can also be estimated.
  • the intake pressure detecting means such as the intake pressure sensor is abnormal. Since it is sufficient to know the difference between the intake pressures of the intake stroke and the exhaust stroke, for example, in the four-cylinder engine of the embodiment, the intake pressure of the intake stroke and the intake stroke of the exhaust stroke in different cylinders are considered. If the intake pressure difference can be obtained from the pressure, it is not necessary to wait for the crankshaft to make two revolutions.
  • the intake pressure fluctuation within two revolutions of the crankshaft means the intake pressure variation for two revolutions of the crankshaft at the maximum, and is detected as if the intake pressure detecting means such as the intake pressure sensor came off.
  • the intake pressure fluctuation may be detected at any timing.
  • the engine control device of the present invention is also applicable to an in-cylinder injection type engine, a so-called direct injection type engine. .
  • a direct injection engine since fuel does not adhere to the intake pipe, it is not necessary to consider this, and the total amount of injected fuel may be substituted for the calculation of the air-fuel ratio.
  • a so-called multi-cylinder engine having four cylinders is used.
  • the engine control device of the present invention can be similarly applied to a single cylinder engine.
  • the engine control unit can be replaced with various arithmetic circuits instead of the microcomputer.
  • the intake pressure detecting means is configured to detect that the pressure is abnormal, so that, for example, even when the pressure of the intake pressure detecting means such as an intake pressure sensor is deviated and released to the atmosphere, it can be reliably detected. .
  • the smaller the detected engine speed, the smaller the predetermined value of the intake pressure fluctuation for detecting abnormality of the intake pressure detecting means is set. With this configuration, it is possible to reliably detect abnormalities in the layer and the intake pressure detecting means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

An engine controller in which abnormality of intake pressure can be detected by making it possible to detect the abnormality when an intake pressure sensor is removed from an inlet pipe. Intake pressure variation ΔP during two revolutions, i.e. one cycle, of the crankshaft of a four-stroke engine is calculated and a decision is made that the intake pressure is abnormal when a state where the intake pressure variation ΔP is not higher than a threshold level ΔP0 continues for a specified value CNT0 or more. Abnormality of intake pressure can be detected more reliably when the intake pressure variation ΔP is set smaller for a lower engine r.p.m. and set smaller for a larger throttle opening.

Description

明細書 エンジン制御装置 技術分野  Description Engine control device Technical field
本発明は、エンジンを制御するエンジン制御装置に関するものであり、特に燃料を 噴射する燃料噴射装置を備えたエンジンの制御に好適なものである。 背景技術  The present invention relates to an engine control device for controlling an engine, and is particularly suitable for controlling an engine having a fuel injection device for injecting fuel. Background art
近年、インジェクタと呼ばれる燃料噴射装置が普及するにつれて、燃料を噴身 る タイミングや噴射燃料量、つまり空燃比などの制御力《容易になり、高出力化、低燃費 化、排ガスのクリーン化などを促進することがで るようになった。このうち、特に燃料 を噴射するタイ グについては、厳密には吸気バルブの状態、つまリー般的には力 ムシャフトの位相状態を検出し、それに合わせて燃料を噴射するのが一般的である。 しかしながら、カムシャフトの位相状態を検出するための所謂カムセンサは高価であ リ、特に二輪車などではシリンダヘッドが大型化するなどの問題があって採用できな し、ことが多い。そのため、例えば特開平 10—227252号公報では、クランクシャフト の位相状態及び吸気圧力を検出し、それらから気筒の行程状態を検出するエンジン 制御装置が提案されている。従って、この従来技術を用 Ι ることにより、カムシャフト の位相を検出することなぐ行程状態を検出することができるので、その行程状態に 合わせて撚料の噴射タイ^グなどを制御することが可能となる。  In recent years, with the spread of fuel injectors called injectors, it has become easier to control the timing of fuel injection and the amount of injected fuel, that is, the air-fuel ratio, etc., and to achieve higher output, lower fuel consumption, and cleaner exhaust gas. It has become possible to promote. Of these, especially for the timing of fuel injection, strictly speaking, it is common to detect the state of the intake valve, that is, generally the phase state of the power shaft, and inject fuel accordingly. However, a so-called cam sensor for detecting the phase state of a camshaft is expensive, and particularly in a motorcycle or the like, it cannot be adopted because of a problem such as a large cylinder head. Therefore, for example, Japanese Patent Application Laid-Open No. H10-227252 proposes an engine control device that detects a phase state of a crankshaft and an intake pressure, and detects a stroke state of a cylinder therefrom. Therefore, by using this conventional technology, it is possible to detect the stroke state without detecting the phase of the camshaft, and it is possible to control the injection timing of the twisting material and the like according to the stroke state. It becomes possible.
ところで、前述した吸気圧力は、例えば吸気圧力センサ等の吸気圧力検出手段に よって検出することができるが、例えばこの吸気圧力検出手段が吸気管カゝら外れて 大気解放されると、常時、大気圧を検出することになる。大気圧は、一般に吸気圧力 検出手段の検出領域であるから、そのままでは吸気圧力検出手段の異常を検出で きないことが判明した。  By the way, the above-mentioned intake pressure can be detected by intake pressure detecting means such as an intake pressure sensor. For example, when the intake pressure detecting means is disengaged from the intake pipe and is released to the atmosphere, it always becomes large. Atmospheric pressure will be detected. Since atmospheric pressure is generally the detection area of the intake pressure detecting means, it has been found that an abnormality of the intake pressure detecting means cannot be detected as it is.
本発明は前記諸問題を解決すべく開発されたものであり、吸気圧力検出手段の異 常を確実に検出することが可能なエンジン制御装置を提供することを目的とするもの である。 発明の開示 The present invention has been developed to solve the above problems, and an object of the present invention is to provide an engine control device capable of reliably detecting an abnormality of intake pressure detecting means. Disclosure of the invention
而して、本発明のうち請求項 1に係るエンジン制御装置は、クランクシャフトの位相 を検出するクランクシャフト位相検出手段と、エンジンの吸気管内の吸気圧力を検出 する吸気圧力検出手段と、前記クランクシャフト位相検出手段で検出されたクランク シャフトの位相及び前記吸気圧力検出手段で検出された吸気圧力に基づいてェンジ ンの運転状態を制御するエンジン制御手段と、前記クランクシャフト位相検出手段で 検出されたクランクシャフトの位相からクランクシャフトが回転してし、るときであり、且 つ前記吸気圧力検出手段で検出されたクランクシャフト二回転内の吸気圧力の変動 が所定値以下であるときに前記吸気圧力検出手段力《異常であると検出する吸気圧 力異常検出手段とを備えたことを特徴とするものである。なお、ここにいうクランクシ ャフ卜二回転内とは、最大でクランクシャフト二回転分を意味し、その中で検出される 吸気圧力変動が所定値以下であるときに吸気圧力検出手段が異常であるとみなす。 また、本発明のうち青求項 2に係るエンジン制御装置は、前記請求項 1の発明にお いて、エンジンの回転数を検出するエンジン回転数検出手段を備え、前記吸気圧力 異常検出手段は、前記エンジン回転数検出手段で検出されたエンジン回転数力《小さ いほど、前記吸気圧力変動の所定値を小さく設定することを特徴とするものである。 また、本発明のうち請求項 3に係るエンジン制御装置は、前記請求項 1又は 2の発 明において、スロットルバルブの開度を検出するスロットル開度検出手段を備え、前 記吸気圧力異常検出手段は、前記スロットル開度検出手段で検出されたスロットル ノくルブの開度が大きいほど、前記吸気圧力変動の所定値を小さく設定することを特 徴とする のである。 図面の簡単な説明  Thus, the engine control device according to claim 1 of the present invention includes a crankshaft phase detecting means for detecting a phase of a crankshaft, an intake pressure detecting means for detecting an intake pressure in an intake pipe of an engine, and the crankshaft. Engine control means for controlling the operation state of the engine based on the crankshaft phase detected by the shaft phase detection means and the intake pressure detected by the intake pressure detection means, and the engine control means detecting the crankshaft phase detection means When the crankshaft rotates from the phase of the crankshaft, and when the fluctuation of the intake pressure within two revolutions of the crankshaft detected by the intake pressure detecting means is less than or equal to a predetermined value, Detecting means force << intake pressure abnormality detecting means for detecting an abnormality. The term "within two crankshaft rotations" as used herein means a maximum of two rotations of the crankshaft, and when the intake pressure fluctuation detected therein is equal to or less than a predetermined value, the intake pressure detecting means is abnormal. Assume that there is. Further, the engine control device according to claim 2 of the present invention according to claim 1 further includes an engine speed detecting means for detecting an engine speed, wherein the intake pressure abnormality detecting means comprises: The predetermined value of the intake pressure fluctuation is set to be smaller, as the engine speed power detected by the engine speed detecting means << smaller. Further, the engine control device according to claim 3 of the present invention according to claim 1 or 2, further comprising a throttle opening detecting means for detecting an opening of a throttle valve, wherein the intake pressure abnormality detecting means is provided. Is characterized in that the larger the opening of the throttle valve detected by the throttle opening detecting means, the smaller the predetermined value of the intake pressure fluctuation is set. BRIEF DESCRIPTION OF THE FIGURES
図 1は、オート/くィ用のエンジン及びその制御装置の概略構成図である。  FIG. 1 is a schematic configuration diagram of an auto / key engine and its control device.
図 2は、図1のエンジンでクランクパルスを送出する原理の説明図である。 Figure 2 is an explanatory view of the principle of delivering crank pulse in the engine of FIG. 1.
図 3は、本発明のエンジン制御装置の一実施形態を示すブロック図である。  FIG. 3 is a block diagram showing an embodiment of the engine control device of the present invention.
図 4は、クランクシャフトの位相と吸気圧力から行程状態を検出する説明図である。 図 5は、吸入空気量算出部のブロック図である。 図 6は、 P及気圧力から吸入空気の質量流量を求める制御マップである。 FIG. 4 is an explanatory diagram for detecting a stroke state from the phase of the crankshaft and the intake pressure. FIG. 5 is a block diagram of the intake air amount calculation unit. FIG. 6 is a control map for obtaining the mass flow rate of the intake air from the P and the air pressure.
図 7は、燃料噴射量算出部及び燃料挙動モデルのブロック図である。  FIG. 7 is a block diagram of a fuel injection amount calculation unit and a fuel behavior model.
図 8は、吸気圧力センサの吸気管への取付け状態を示す説明図である。  FIG. 8 is an explanatory diagram showing a state where the intake pressure sensor is attached to the intake pipe.
図 9は、吸気圧力センサの出力値と吸気圧力との関係を示す説明図である。  FIG. 9 is an explanatory diagram showing the relationship between the output value of the intake pressure sensor and the intake pressure.
図 1 0は、図 1のエンジンコントロールユニットで行われる吸気圧力異常検出の演算 処理を示すフローチャートである。  FIG. 10 is a flowchart showing a calculation process for detecting an intake pressure abnormality performed by the engine control unit of FIG.
図 Ί 1は、図 10の演算処理で用し、られる制御マップである。  FIG. 1 is a control map used in the arithmetic processing of FIG.
図 1 2は、吸気圧力センサが外れたときの吸気圧力信号の説明図である。 発明を実施するための最良の形態  FIG. 12 is an explanatory diagram of an intake pressure signal when the intake pressure sensor comes off. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described.
図 1は、例えばオートノくィ用のエンジン及びその制御装置の一例を示す概略構成 である。このエンジン 1は、 4気筒 4サイクルエンジンであり、シリンダボディ 2、クラン クシャフト 3、ピストン 4、燃焼室 5、吸気管 6、吸気バルブ 7、排気管 8、排気バルブ 9、 点火プラグ 1 0、点火コイル 1 1を備えている。また、吸気管 6内には、アクセル開度に 応じて開閉されるスロットルバルブ 1 2が設けられ、このスロットルバルブ 1 2の下流 側の吸気管 6に、燃料噴射装置としてのインジェクタ 1 3が設けられている。このイン ジェクタ 1 3は、燃料タンク 1 9内に配設されているフィルタ 1 8、燃料ポンプ 1 7、圧力 制御バルブ 1 6に接続されてしゝる。なお、このエンジン 1は所謂独立吸気系であり、前 記インジ工クタ 1 3は、各気筒の各吸気管 6に設けられてし、る。  FIG. 1 is a schematic configuration showing an example of an engine for an auto-knob and its control device. This engine 1 is a four-cylinder four-stroke engine, with a cylinder body 2, a crankshaft 3, a piston 4, a combustion chamber 5, an intake pipe 6, an intake valve 7, an exhaust pipe 8, an exhaust valve 9, a spark plug 10, and an ignition plug. It has a coil 11. A throttle valve 12 that opens and closes according to the accelerator opening is provided in the intake pipe 6, and an injector 13 as a fuel injection device is provided in the intake pipe 6 downstream of the throttle valve 12. Have been. The injector 13 is connected to a filter 18, a fuel pump 17, and a pressure control valve 16 provided in a fuel tank 19. Note that the engine 1 is a so-called independent intake system, and the aforementioned injectors 13 are provided in each intake pipe 6 of each cylinder.
このエンジン 1の運転状態は、エンジンコントロールユニット 1 5によって制御される。 そして、このエンジンコントロールユニット 1 5の制御入力、つまリエンジン 1の運転状 態を検出する手段として、クランクシャフト 3の回転角度、つまり位相を検出するため のクランク角度センサ 20、シリンダボディ 2の温度又は冷却水温度、即ちエンジン本 体の温度を検出する冷却水温度センサ 21、排気管 8内の空燃比を検出する排気空 燃比センサ 22、吸気管 6内の吸気圧力を検出するための吸気圧力センサ 24、吸気 管6内の温度、即ち吸気温度を検出する吸気温度センサ 25が設けられてしゝる。そし て、前記エンジンコントロールユニット 1 5は、これらのセンサの検出信号を入力し、前 記燃料ポンプ 1 7、圧力制御バルブ 1 6、インジェクタ 1 3、点火コイル 1 1に制御信号 を出力する。 The operating state of the engine 1 is controlled by an engine control unit 15. As means for detecting the control input of the engine control unit 15 and the operating state of the pinch engine 1, the crank angle sensor 20 for detecting the rotation angle of the crankshaft 3, that is, the phase, and the temperature of the cylinder body 2 Alternatively, a cooling water temperature sensor 21 for detecting a temperature of the cooling water, that is, a temperature of the engine body, an exhaust air-fuel ratio sensor 22 for detecting an air-fuel ratio in the exhaust pipe 8, and an intake pressure for detecting an intake pressure in the intake pipe 6. A sensor 24 and an intake air temperature sensor 25 for detecting the temperature in the intake pipe 6 , that is, the intake air temperature, are provided. Then, the engine control unit 15 receives the detection signals of these sensors and sends the control signals to the fuel pump 17, the pressure control valve 16, the injector 13, and the ignition coil 11. Is output.
ここで、前記クランク角度センサ 20から出力されるクランク角度信号の原理につい て説明する。本実施形態では、図 2aに示すように、クランクシャフト 3の外周に、略等 間隔で複数の歯 23を突設し、その接近を磁気センサ等のクランク角度センサ 20で 検出して、適宜電気的処理を施してノ ルス信号を送出する。各歯 23間の周方向へ のピッチは、クランクシャフト 3の位相 (回転角度)にして 30° であり、各歯 23の周方 向への幅は、クランクシャフト 3の位相 (回転角度)にして 1 0° としてしゝる。但し、一箇 所だけ、このピッチに従っておらず、その他の歯 23のピッチに対して二倍のピッチに なっている箇所がある。それは、図 2aに二点鎖線で示すように、本来、歯のある部分 に歯がない、特殊な設定になっており、この部分が不等間隔に相当する。以下、この 部分を歯抜け部とも記す。  Here, the principle of the crank angle signal output from the crank angle sensor 20 will be described. In this embodiment, as shown in FIG. 2a, a plurality of teeth 23 are protruded at substantially equal intervals on the outer periphery of the crankshaft 3, and the approach thereof is detected by a crank angle sensor 20 such as a magnetic sensor, and an electric Performs the appropriate processing and sends out the nourse signal. The circumferential pitch between each tooth 23 is 30 ° in terms of the phase (rotation angle) of the crankshaft 3, and the circumferential width of each tooth 23 is in the phase (rotation angle) of the crankshaft 3. To 10 °. However, only one portion does not follow this pitch, and there are portions where the pitch of the other teeth 23 is twice as large. As shown by the two-dot chain line in FIG. 2a, it is originally a special setting where there is no tooth in the toothed part, and this part corresponds to unequal spacing. Hereinafter, this portion is also referred to as a toothless portion.
従って、クランクシャフト 3が等速回転してしゝるときの各歯 23の/ レス信号列は図 2 bのように表れる。そして、図 2aは圧縮上死点時の状態を示してしゝる (排気上死点も 形態としては同じである)が、この圧縮上死点時の直前の/ ルス信号を図示" 0"とし、 その次の/ レス信号に図示" 1 "、次のノ ルス信号に図示" 2"、といった順で図示" 4" までナン/くリング (番号付け)する。この図示" 4"のノ ルス信号に相当する歯 23の次 は歯抜け部なので、それを、あたかも歯が存在すると考えて" I歯余分にカウントし、 次の歯 23のノ ルス信号には図示" 6"とナン/ リングする。これを繰り返してゆくと、 今度は図示" 1 6"の/ルス信号の次に歯抜け部が接近するので、前述と同様に 1歯 余分にカウン卜し、次の歯 23の/ルス信号には図示" 1 8"とナン/くリングする。クラン クシャフト 3が二回転すると、 4つの行程のサイクルが全て完了するので、図示" 23" までナン/くリングが済んだら、次の歯 23の ルス信号には再び図示" 0"とナン zくリ ングする。原則的に、この図示" 0"とナンバリングされた歯 23のパルス信号の直後 が圧縮上死点になっているはずである。このように、検出されたパルス信号列、又は その単体の/ルス信号をクランク/ルスと定義する。そして、このクランク/ルスに 基づいて、後述のようにして行程検出を行うと、クランクタイミングを検出することがで きる。なお、前記歯 23は、クランクシャフト 3と同期回転する部材の外周に設けても、 全く同じである。 Accordingly, the signal sequence of each tooth 23 when the crankshaft 3 rotates at a constant speed appears as shown in FIG. 2B. FIG. 2a shows the state at the time of compression top dead center (the same applies to the form of exhaust top dead center). Then, the next / less signal is shown as "1", the next noise signal is shown as "2", and so on. The tooth 23 following the tooth signal of "4" shown in the figure is a tooth missing portion, and it is counted as an extra tooth "I" assuming that a tooth exists. It illustrated "6" to Nan / ring. When Yuku Repeat this in turn so toothless portion to the next / pulse signal shown "1 6" approaches, extra and counter Bok one tooth in the same manner as described above Then, for the next tooth 23, the lug signal is ringed with "18" as shown. When the crankshaft 3 rotates twice, all four stroke cycles are completed. After the ring is completed, the ring signal of the next tooth 23 is ringed again with the number “0” shown in the figure.In principle, immediately after the pulse signal of the tooth 23 numbered “0” in the figure, compression is applied. In this way, the detected pulse signal sequence or the single / When the stroke is detected as described later on the basis of the crank / loose, the crank timing can be detected. It is exactly the same even if it is provided on the outer periphery of the member to be used.
一方、前記エンジンコントロールユニット 1 5は、図示されないマイクロコンピュータな どによって構成されてしゝる。図 3は、このエンジンコントロールュニッ卜 15内のマイク 口コンピュータで行われるエンジン制御演算処理の実施形態を示すブロック図である。 この演算処理では、前記クランク角度信号からエンジン回転数を算出するエンジン 回転数算出部 26と、同じくクランク角度信号及び前記吸気圧力信号力、らクランクタイ ミング情報、即ち行程状態を検出するクランクタイミング検出部 27と、このクランクタ イミング検出部 27で検出されたクランクタイミング情報を読込み、前記吸気温度信号 及び前記吸気圧力信号から吸入空気量を算出する吸入空気量算出部 28と、前記 エンジン回転数算出部 26で算出されたエンジン回転数及び前記吸入空気量算出部 28で算出された吸入空気量に基づいて目標空燃比を設定したり、加速状態を検出 したりすることにより、燃料噴射量と燃料噴射時期を算出設定する燃料噴射量設定 部 29と、前記クランクタイミング検出部 27で検出されたクランクタイミング It報を読込 み、前記燃料噴射量設定部 29で設定された燃料噴射量及び燃料噴射時期に応じ た噴射パルスを前記インジ工クタ13に向けて出力する噴射パルス出力部 30と、前 記クランクタイミング検出部 27で検出されたクランクタイミング情報を読込み、前記ェ ンジン回転数算出部 26で算出されたエンジン回転数及び前記燃料噴射量設定部 2 9で設定された燃料噴射量に基づいて点火時期を設定する点火時期設定部 31と、 前記クランクタイミング検出部 27で検出されたクランクタイミング情報を読込み、前記 点火時期設定部 31で設定された点火時期に応じた点火ノ レスを前記点火コイル 1 1に向けて出力する点火パルス出力部 32とを備えて構成される。 On the other hand, the engine control unit 15 is a microcomputer (not shown). It is composed of FIG. 3 is a block diagram showing an embodiment of the engine control arithmetic processing performed by the microphone computer in the engine control unit 15. As shown in FIG. In this calculation process, an engine speed calculating unit 26 for calculating the engine speed from the crank angle signal, and crank timing information for detecting the crank angle signal and the intake pressure signal force, that is, crank timing information for detecting the stroke state. Unit 27, an intake air amount calculation unit 28 that reads crank timing information detected by the crank timing detection unit 27, and calculates an intake air amount from the intake air temperature signal and the intake air pressure signal, and the engine speed calculation unit. By setting a target air-fuel ratio based on the engine speed calculated at 26 and the intake air amount calculated at the intake air amount calculation unit 28 or detecting an acceleration state, the fuel injection amount and the fuel injection amount are determined. A fuel injection amount setting unit 29 for calculating and setting a timing; and a crank timing detected by the crank timing detection unit 27. An injection pulse output unit 30 that reads the It report and outputs an injection pulse corresponding to the fuel injection amount and the fuel injection timing set by the fuel injection amount setting unit 29 to the injector 13; The crank timing information detected by the crank timing detection unit 27 is read, and ignition is performed based on the engine speed calculated by the engine speed calculation unit 26 and the fuel injection amount set by the fuel injection amount setting unit 29. An ignition timing setting unit 31 for setting a timing, and crank timing information detected by the crank timing detection unit 27 are read, and an ignition noise corresponding to the ignition timing set by the ignition timing setting unit 31 is read by the ignition coil 1. And an ignition pulse output unit 32 that outputs the signal toward 1.
前記エンジン回転数算出部 26は、前記クランク角度信号の時間変化率から、ェン ジンの出力軸であるクランクシャフトの回転速度をエンジン回転数として算出する。具 体的には、前記隣合う歯 23間の位相を、対応するクランクパルス検出所要時間で除 したエンジン回転数の瞬間値と、その移動平均値からなるエンジン回転数の平均値 とを算出する。  The engine speed calculation unit 26 calculates the rotation speed of the crankshaft, which is the output shaft of the engine, as the engine speed from the time rate of change of the crank angle signal. Specifically, an instantaneous value of the engine speed obtained by dividing the phase between the adjacent teeth 23 by the required crank pulse detection time and an average value of the engine speed obtained from the moving average value are calculated. .
前記クランクタイミング検出部 27は、前述した特開平 10—227252号公報に記載 される行程判別装置と同様の構成を有し、これにより例えば図 4に示すように各気筒 毎の行程状態を検出し、それをクランクタイミング情報として出力する。即ち、 4サイク ルエンジンにおしゝて、クランクシャフトとカムシャフトとは所定の位相差で常時回転し 続けてしヽるから、例えば図 4に示すようにクランク/ ルスが読込まれているとき、前述 した歯抜け部から四番目の図示" 9"又は" 21 "のクランクパルスは排気行程か又は 圧縮行程の何れかである。周知のように、排気行程では排気/くルブが開き、吸気/ ルブが閉じているので吸気圧力力高ぐ圧縮行程の初期は、未だ吸気バルブが開い ているために吸気圧力が低ぐ若しくは吸気バルブが閉じてし、ても、先行する吸気行 程で吸気圧力が低くなつている。従って、吸気圧力が低いときの図示" 21 "のクランク / ルスは圧縮行程にあることを示しており、図示" 0"のクランク/ ルスカ得られた直 後が圧縮上死点になる。このようにして、何れかの行程状態が検出できたら、この行 程の間を、クランクシャフトの回転速度で補間すれば、現在の行程状態を更に細かく 検出することができる。また、このように何れか気筒の行程が検出で れば、本実施 形態の四つの気筒は所定の位相差で常時回転し続けているから、その他の気筒の 行程も自ずと検出できる。 The crank timing detection unit 27 has a configuration similar to that of the stroke determination device described in Japanese Patent Application Laid-Open No. Hei 10-227252, and thereby detects the stroke state of each cylinder, for example, as shown in FIG. And outputs it as crank timing information. In other words, in a four-cycle engine, the crankshaft and the camshaft always rotate at a predetermined phase difference, so that, for example, when the crank / loose is read as shown in FIG. , Mentioned above The fourth crank pulse "9" or "21" shown from the missing portion is either the exhaust stroke or the compression stroke. As is well known, in the exhaust stroke, the exhaust / lube is open and the intake / lube is closed, so the intake pressure is high in the early stage of the compression stroke when the intake pressure is high. Even if the valve is closed, the intake pressure is low in the preceding intake stroke. Accordingly, when the intake pressure is low, the crank / lus of "21" shown in the drawing is in the compression stroke, and immediately after the crank / lusker of "0" shown is obtained, the compression top dead center is obtained. In this way, if any of the stroke states can be detected, the current stroke state can be more finely detected by interpolating between the strokes with the rotational speed of the crankshaft. Further, if the stroke of any one of the cylinders can be detected as described above, the four cylinders of the present embodiment are constantly rotating with a predetermined phase difference, so that the strokes of the other cylinders can be naturally detected.
前記吸入空気量算出部 28は、図 5に示すように、前記吸気圧力信号及びクランク タイミング情報から吸気圧力を検出する吸気圧力検出部 281と、吸気圧力から吸入 空気の質量流量を検出するためのマップを記憶している質量流量マップ記憶部 282 と、この質量流量マップを用しゝて、検出された吸気圧力に応じた質量流量を算出する 質量流量算出部 283と、前記吸気温度信号から吸気温度を検出する吸気温度検出 部 284と、前記質量流量算出部 283で算出された吸入空気の質量流量と前記吸気 温度検出部 284で検出された吸気温度とから吸入空気の質量流量を補正する質量 流量補正部 285とを備えて構成されている。つまり、前記質量流量マップは、例えば 吸気温度 20°Cのときの質量流量で作成されてしゝるため、実際の吸気温度 (絶対温 度比)でこれを補正して吸入空気量を算出する。  As shown in FIG. 5, the intake air amount calculation unit 28 includes an intake pressure detection unit 281 that detects intake pressure from the intake pressure signal and the crank timing information, and an intake pressure detection unit 281 that detects a mass flow rate of intake air from the intake pressure. A mass flow rate map storage unit 282 that stores a map, a mass flow rate calculation unit 283 that calculates a mass flow rate according to the detected intake pressure using the mass flow rate map, and an intake air flow rate based on the intake air temperature signal. An intake air temperature detector 284 for detecting a temperature, and a mass for correcting the intake air mass flow from the intake air mass flow calculated by the mass flow calculator 283 and the intake air temperature detected by the intake air temperature detector 284. The flow rate correction unit 285 is provided. That is, since the mass flow rate map is created based on the mass flow rate when the intake air temperature is 20 ° C., for example, the intake air flow rate is calculated by correcting this with the actual intake air temperature (absolute temperature ratio). .
本実施形態では、圧縮行程における下死点から吸気/くルブ閉じタイミング間の吸 気圧力値を用しゝて吸入空気量を算出する。即ち、吸気バルブ解放時は吸気圧力と 気筒内圧力とがほぼ同等となるため、吸気圧力と気筒内容積及び吸気温度が分か れぱ気筒内空気質量を求めることができる。しかしながら、吸気/《ルブは圧縮行程 開始後もしばらく開し、ているため、この間に気筒内と吸気管との間で空気が出入りし て、下死点以前の吸気圧力から求めた吸入空気量は、実際に気筒内に吸入された 空気量と異なる可能性がある。そのため、同じ吸気バルブ解放時でも、気筒内と吸 気管との間で空気の出入りがなし、圧縮行程の吸気圧力を用し、て吸入空気量を算出 する。なお、更に厳密を期すために、既燃ガス分圧の影響を考慮して、それと相関の 高し、エンジン回転数を用し、て、実験で求めたエンジン回転数に応じた補正を施してもIn the present embodiment, the intake air amount is calculated using the intake pressure value between the bottom dead center in the compression stroke and the intake / end closing timing. That is, when the intake valve is opened, the intake pressure and the cylinder pressure are substantially equal, so that the intake pressure, the cylinder volume, and the intake temperature are known, and thus the in-cylinder air mass can be obtained. However, since the intake / lube remains open for a while after the start of the compression stroke, air flows in and out between the cylinder and the intake pipe during this time, and the intake air volume calculated from the intake pressure before BDC May be different from the amount of air actually drawn into the cylinder. Therefore, even when the intake valve is open, no air flows between the cylinder and the intake pipe, and the intake air volume is calculated using the intake pressure during the compression stroke. I do. In order to further strictly consider the effect of the burned gas partial pressure, take into account the effect of the burned gas partial pressure, use the engine speed, and make a correction according to the engine speed obtained through experiments. Also
'よい。 'Good.
また、独立吸気系である本実施形態では、吸入空気量算出のための質量流量マツ プは、図 6に示すように、吸気圧力と比較的リニアな関係のものを用し、てし、る。これ は、求める空気質量力ボイルシャルルの法則 (PV=nRT)に基づいているためであ る。これに対して、吸気管が全ての気筒で連結されている場合には、他の気筒の圧 力の影響により、吸気圧力 気筒内圧力という前提が成り立たないため、図に破線 で示すようなマップを用し、なければならない。  Further, in the present embodiment which is an independent intake system, the mass flow map for calculating the intake air amount uses a relatively linear relationship with the intake pressure as shown in FIG. . This is because it is based on the required air mass force Boyle Charles law (PV = nRT). On the other hand, when the intake pipe is connected to all cylinders, the assumption of intake pressure and cylinder pressure is not established due to the influence of the pressure of the other cylinders. Must be used.
前記燃料噴射量設定部 29は、前記エンジン回転数算出部 26で算出されたェンジ ン回転数 26及び前記吸気圧力信号に基づいて定常時目標空燃比を算出する定常 時目標空燃比算出部 33と、この定常時目標空燃比算出部 33で算出された定常時 目標空燃比及び前記吸入空気量算出部 28で算出された吸入空気量に基づいて定 常時燃料噴射量及び燃料噴射時期を算出する定常時燃料噴射量算出部 34と、こ の定常時燃料噴射量算出部 34で定常時燃料噴射量及び燃料噴射時期を算出する のに用いられる燃料挙動モデル 35と、前記クランク角度信号及び吸気圧力信号及 びクランクタイミング検出部 27で検出されたクランクタイミング情報に基づいて加速 状態を検出する加速状態検出手段 41と、この加速状態検出手段 41で検出された 加速状態に応じて、前記エンジン回転数算出部 26で算出されたエンジン回転数に 応じた加速時燃料噴射量及び燃料噴射時期を算出する加速時燃料噴射量算出部 4 2とを備えている。前記燃料挙動モデル 35は、実質的に、前記定常時燃料噴射量算 出部 34と一体のものである。即ち、燃料挙動モデル 35がなければ、吸気管内噴射 を行う本実施形態では、正確な燃料噴射量や燃料噴射時期の算出設定ができない のである。なお、燃料挙動モデル 35は、前記吸気温度信号及びエンジン回転数及 び冷却水温度信号を必要とする。  The fuel injection amount setting unit 29 includes a steady-state target air-fuel ratio calculation unit 33 that calculates a steady-state target air-fuel ratio based on the engine speed 26 calculated by the engine speed calculation unit 26 and the intake pressure signal. On the basis of the steady-state target air-fuel ratio calculated by the steady-state target air-fuel ratio calculator 33 and the intake air amount calculated by the intake air amount calculator 28, a constant fuel injection amount and fuel injection timing are calculated. A constant fuel injection amount calculation unit 34, a fuel behavior model 35 used for calculating the steady state fuel injection amount and the fuel injection timing in the steady state fuel injection amount calculation unit 34, the crank angle signal and the intake pressure signal And an acceleration state detecting means 41 for detecting an acceleration state based on the crank timing information detected by the crank timing detection section 27, and according to the acceleration state detected by the acceleration state detection means 41, Engine speed calculating section acceleration fuel injection quantity according to the engine rotational speed calculated at 26 and the acceleration fuel injection quantity calculating section for calculating a fuel injection timing 4 and a 2 and. The fuel behavior model 35 is substantially integrated with the steady-state fuel injection amount calculation unit 34. That is, without the fuel behavior model 35, it is impossible to accurately calculate and set the fuel injection amount and the fuel injection timing in the present embodiment in which the injection in the intake pipe is performed. The fuel behavior model 35 requires the intake air temperature signal, the engine speed and the coolant temperature signal.
前記定常時燃料噴射量算出部 34と燃料挙動モデル 35とは、例えば図 7のブロッ ク図のように構成されている。ここでは、前記インジェクタ 13から吸気管 6内に噴射さ れる燃料噴射量を 、そのうち吸気管 6壁に付着する燃料付着率を Xとすると、前 記燃料噴射量 のうち、気筒内に直接噴射される直接流入量は ((1 -X) XM となり、吸気管壁に付着する付着量は (X x lVUi)となる。この付着した燃料のう ちの幾らかは吸気管壁に沿って気筒内に流れ込む。その残量を燃料残留量 I JFと すると、この燃料残留量 のうち、吸気流れによって持ち去られる持ち去り率を てとすると、持ち去られて気筒内に流入する流入量は(て X MFBUF)となる。 The steady-state fuel injection amount calculation unit 34 and the fuel behavior model 35 are configured, for example, as shown in a block diagram of FIG. Here, assuming that the fuel injection amount injected from the injector 13 into the intake pipe 6 and the fuel adhesion rate adhering to the wall of the intake pipe 6 is X, of the fuel injection amount, the fuel injection amount is directly injected into the cylinder. Direct inflow is ((1 -X) XM And the amount of adhesion to the intake pipe wall is (X x lVUi). Some of the deposited fuel flows into the cylinder along the intake pipe wall. Assuming that the remaining amount is the residual fuel amount I JF, assuming the carry-out rate of the residual fuel amount taken away by the intake air flow, the inflow amount carried away and flowing into the cylinder is (XM FBUF ) .
そこで、この定常時燃料噴射量算出部 34では、まず前記冷却水温度 Twから冷却 水温補正係数テーブルを用して冷却水温補正係数 Kwを算出する。一方、前記吸入 空気量 IV ^に対し、例えばスロットル開度力《零であるときに燃料をカットする燃料力 ットルーチンを行い、次に吸入空気温度 TAを用いて温度補正された空気流入量 MA を算出し、これに前記目標空燃比 AF。の逆比を乗じ、更に前記冷却水温補正係数 Kw を乗じて要求燃料流入量 MFを算出する。これに対して、前記エンジン回転数 Νε及び 吸気圧力 から燃料付着率マップを用いて前記燃料付着率 Xを求めると共に、 同じくエンジン回転数 NE及び吸気圧力 から持ち去り率マップを用し、て前記持ち 去り率てを算出する。そして、前回の演算時に求めた燃料残留量 IV Fに前記持ち 去り率 τを乗じて燃料持ち去り量 Μ„Αを算出し、これを前記要求燃料流入量!\ ^か ら減じ rltr記燃料直接流入量 M IRを算出する。前述のように、この燃料直接流入Therefore, the steady-state fuel injection amount calculation unit 34 first calculates a cooling water temperature correction coefficient K w from the cooling water temperature T w using a cooling water temperature correction coefficient table. Meanwhile, the relative amount of intake air IV ^, for example, performs a fuel force Ttoruchin for cutting fuel when the throttle opening force "is zero, then the intake air temperature T A with the temperature corrected air flow rate M A is calculated, and the target air-fuel ratio AF is calculated. Of multiplying the inverse ratio, further calculates the cooling water temperature correction factor K w a multiplied by the required fuel inflow amount M F. In contrast, with obtaining the fuel adhesion rate X by using the fuel deposition rate map from the engine speed New epsilon and intake pressure, similarly to use the carry-off ratio map from the engine speed N E and the intake pressure, Te Calculate the carry-out rate. Then, by multiplying the retention away rate τ to the fuel residual quantity IV F obtained in the previous operation to calculate the carried-off amount Micromax "Alpha fuel, the required fuel flow rate! \ ^ Pressurized et subtracting rltr Symbol fuel directly in Calculate the inflow MIR, as described above.
MM™は、前記燃料噴射量 M の ( 1—X)倍であるから、ここでは ( 1 -X)で除して 定常時燃料噴射量 を算出する。また、前回までに吸気管に残留した燃料残留 量 M のうち、((1一て) X M が今回も残留するため、これに前記燃料付着量 (X X
Figure imgf000010_0001
Since MM ™ is (1−X) times the fuel injection amount M, the constant fuel injection amount is calculated here by dividing by (1−X). Of the remaining fuel amount M remaining in the intake pipe up to the previous time, ((1)) XM also remains this time, and the fuel adhesion amount (XX
Figure imgf000010_0001
なお、前記吸入空気量算出部 28で算出される吸入空気量が、これから爆発 (膨 張)行程に入る吸気行程の一つ前のサイクルの吸気行程の終盤又はそれに続く圧 縮行程の初期で検出されたものであるため、この定常時燃料噴射量算出部 34で算 出設定される定常時燃料噴射量及び燃料噴射時期も、その吸入空気量に応じた、 一つ前のサイクルの結果である。  The intake air amount calculated by the intake air amount calculation unit 28 is detected at the end of the intake stroke of the cycle immediately before the intake stroke that enters the explosion (expansion) stroke or at the beginning of the subsequent compression stroke. The steady-state fuel injection amount and the fuel injection timing calculated and set by the steady-state fuel injection amount calculation unit 34 are also the results of the immediately preceding cycle according to the intake air amount. .
また、前記加速状態検出部 41は、加速状態閾値テーブルを有してしゝる。これは、 前記吸気圧力信号のうち、現在と同じ行程、具体的には排気行程か又は吸気行程 で且つ同じクランク角度での吸気圧力と現在の吸気圧力との差分値を求め、その値 を所定の値と比較して加速状態であることを検出するための閾値であり、具体的に は各クランク角度毎に異なる。従って、加速状態の検出には、前記吸気圧力の前回 値との差分値を、各クランク角度で異なる所定値と比較して行う。なお、加速状態の 検出は、前回加速状態が検出されてカヽら所定サイクル経過後に行う。 Further, the acceleration state detection section 41 has an acceleration state threshold value table. This is performed by calculating a difference value between the intake pressure at the same stroke as the present, specifically, the exhaust stroke or the intake stroke at the same crank angle and the current intake pressure, and determining the value as a predetermined value. Is a threshold value for detecting that the vehicle is in the accelerated state as compared with the value of, and specifically differs for each crank angle. Therefore, to detect the acceleration state, This is performed by comparing a difference value with a predetermined value that differs at each crank angle. The detection of the acceleration state is performed after a predetermined cycle has elapsed since the previous acceleration state was detected.
また、前記加速時燃料噴射量算出部 42は、前記加速状態検出部 41で加速状態 力《検出されたときに、前記吸気圧力の現在値と前回値との差分値、及びエンジン回 転数 NEに応じた加速時燃料噴射量 Μ を三次元マップから算出する。なお、この 実施形態では加速時燃料噴射時期を、前記加速状態検出部 41で加速状態が検出 されたときとし、つまり加速状態が検出されたら、即座に前記加速時燃料噴射量 MF ACCを噴射するものとする。 Further, the acceleration fuel injection amount calculation unit 42, when the acceleration state force << is detected by the acceleration state detection unit 41, the difference value between the current value and the previous value of the intake pressure, and the engine speed N the acceleration fuel injection quantity Micromax calculated from the three-dimensional map corresponding to the E. In this embodiment, the fuel injection timing at acceleration is defined as when the acceleration state is detected by the acceleration state detection unit 41, that is, when the acceleration state is detected, the acceleration fuel injection amount M F ACC is immediately injected. It shall be.
また、前記点火時期設定部 31は、前記エンジン回転数算出部 26で算出されたェ ンジン回転数及び目標空燃比算出部 33で算出された目標空燃比に基づいて基本 点火時期を算出する基本点火時期算出部 36と、前記加速時燃料噴射量算出部 42 で算出された加速時燃料噴射量に基づいて前記基本点火時期算出部 36で算出さ れた基本点火時期を補正する点火時期補正部 8とを備えて構成される。  The ignition timing setting unit 31 calculates a basic ignition timing based on the engine speed calculated by the engine speed calculation unit 26 and the target air-fuel ratio calculated by the target air-fuel ratio calculation unit 33. A timing calculation unit 36, and an ignition timing correction unit 8 that corrects the basic ignition timing calculated by the basic ignition timing calculation unit 36 based on the acceleration fuel injection amount calculated by the acceleration fuel injection amount calculation unit 42. And is provided.
前記基本点火時期算出部 36は、現在のエンジン回転数と、そのときの目標空燃 比で、最も発生トルク力《大きくなる点火時期をマップ検索などにより求め、基本点火 時期として算出する。つまり、この 点火時期算出部 36で算出される 点火時 期は、前記定常時燃料噴射量算出部 34と同樹こ、一つ前のサイクルの吸気行程の 結果に基づし、ている。また、前記点火時期補正部 38では、前記加速時燃料噴射量 算出部 42で算出された加速時燃料噴射量に応じ、この加速時燃料噴射量が前記 定常時燃料噴射量に加算されたときの気筒内空燃比を求め、その気筒内空燃比が 前記定常時目標空燃比算出部 33で設定された目標空燃比と大きく異なるときに、当 該気筒内空燃比、エンジン回転数、吸気圧力を用しゝて新たな点火時期を設定するこ とで点火時期を補正するものである。  The basic ignition timing calculation unit 36 obtains the ignition timing at which the generated torque force << the largest from the current engine speed and the target air-fuel ratio at that time by searching a map or the like, and calculates the basic ignition timing. That is, the ignition timing calculated by the ignition timing calculation unit 36 is the same as that of the steady-state fuel injection amount calculation unit 34, and is based on the result of the intake stroke of the immediately preceding cycle. Further, the ignition timing correction unit 38 calculates the acceleration fuel injection amount when the acceleration fuel injection amount is added to the constant fuel injection amount in accordance with the acceleration fuel injection amount calculated by the acceleration fuel injection amount calculation unit 42. The cylinder air-fuel ratio is determined, and when the cylinder air-fuel ratio is significantly different from the target air-fuel ratio set by the steady-state target air-fuel ratio calculation unit 33, the cylinder air-fuel ratio, engine speed, and intake pressure are used. The ignition timing is corrected by setting a new ignition timing.
ところで、前記吸気圧力センサ 24は、図 8に示すように、燃料が直接かかったりし ないように、吸気管 6に導圧管 23を取付け、この導圧管 23の先端に取付けられてい る。この吸気圧力センサ 24の出力と実際の吸気圧力との関係が図 9のようなもので あるとき、例えば断線や短絡といった異常だけを考えるならば、例えば出力値の上 P艮値近傍や下限値近傍を除く領域を正常領域とし、吸気圧力センサ出力が正常領 域にない時に異常であると検出すればよい。しかしながら、例えば前記吸気管 6から 導圧管 23ごと吸気圧力センサ 24が外れてしまった場合、吸気圧力センサ 24は大 気解放されることになリ、大気圧を検出して出力される。通常、吸気圧力センサ 24の 出力値は、図 9に示すように大気圧を含んでいるので、単に正常領域にないときを異 常としてし、たのでは、吸気圧力センサ 24が外れたことによる異常を検出できない。 そこで、前記エンジンコントロールュニッ卜 15内では、図 1 0に示す演算処理によつ て吸気圧力センサの異常検出を行う。この演算処理ま、例えばクランクシャフト二回 転毎に割込処理によって行われる。また、この演算処理では、特に通信のためのス 亍ップを設けていないが、演算に必要な情報は随時読込まれるし、演算の結果は随 時記憶される。 By the way, as shown in FIG. 8, the intake pressure sensor 24 has a pressure guiding tube 23 attached to the intake pipe 6 so as not to be directly exposed to fuel, and is attached to the tip of the pressure guiding tube 23. When the relationship between the output of the intake pressure sensor 24 and the actual intake pressure is as shown in FIG. 9, if only abnormalities such as a disconnection or a short circuit are considered, for example, the upper limit of the output value or the lower limit value The region excluding the vicinity may be regarded as a normal region, and an abnormality may be detected when the output of the intake pressure sensor is not in the normal region. However, for example, from the intake pipe 6 When the intake pressure sensor 24 has come off together with the pressure guiding tube 23, the intake pressure sensor 24 is released to the atmosphere, and detects and outputs the atmospheric pressure. Normally, the output value of the intake pressure sensor 24 includes the atmospheric pressure as shown in FIG. 9, so it is assumed that the abnormality is merely when the intake pressure sensor 24 is not in the normal range. No error can be detected. Therefore, in the engine control unit 15, the abnormality of the intake pressure sensor is detected by the arithmetic processing shown in FIG. This calculation process is performed by, for example, an interrupt process every two rotations of the crankshaft. Further, in this arithmetic processing, although no step is particularly provided for communication, information necessary for the arithmetic is read as needed, and the result of the arithmetic is stored as needed.
この演算処理では、まずステップ S1でクランクシャフト二回転分の吸気圧力を、例 えば前記クランクパルス一回毎、つまリクランクシャフトが 30° 回転する毎に読込む。 具体的には、例えば前述したようなシフトレジスタに記憶されてし、るクランクシャフト 3 0° 毎の吸気圧力をクランクシャフト二回転分、つまり 1サイクル分読込む。  In this calculation process, first, in step S1, the intake pressure for two rotations of the crankshaft is read, for example, each time the crank pulse is rotated, that is, each time the crankshaft rotates 30 °. Specifically, for example, the intake pressure is stored in a shift register as described above, and the intake pressure for each crankshaft 30 ° is read for two rotations of the crankshaft, that is, for one cycle.
次にステップ S2に移行して、前記ステップ S1で読込んだ吸気圧力が全て前記図 9 の正常領域内にある力、否かを判定し、検出吸気圧力が全て正常領域内に或る場合 にはステップ S3に移行し、そうでない場合にはステップ S4に移行する。  Next, proceeding to step S2, it is determined whether or not all the intake pressures read in step S1 are within the normal range in FIG. 9 and whether or not the detected intake pressures are all within the normal range. Proceeds to step S3, otherwise proceeds to step S4.
前記ステップ S3では、前記エンジン回転数算出部 26で算出されたエンジン回転数 を読込んでからステップ S5に移行する。  In step S3, the engine speed calculated by the engine speed calculator 26 is read, and then the process proceeds to step S5.
前記ステップ S5では、図 Ί Ίに示す制御マップに従って、エンジン回転数に応じた 吸気圧力変動閾値厶 P0を設定してからステップ S6に移行する。この図 Ί 1の制御マ ップでは、エンジン回転数 Nの増加に伴って吸気圧力変動閾値厶 P。がリニアに大き くなるように設定されている。 At step S5, in accordance with the control map shown in FIG Ί Ί, moves after setting the intake pressure variation threshold厶P 0 corresponding to the engine speed in step S6. In the control map shown in Fig. 1, the intake pressure fluctuation threshold P is increased as the engine speed N increases. Is set to increase linearly.
前記ステップ S6では、前記ステップ S1で読込んだクランクシャフト二回転分の吸気 圧力の最大値 ^小値との差カゝら吸気圧力変動値 ΔΡを算出してからステップ S7 に移行する。  In step S6, the intake pressure fluctuation value ΔΡ is calculated from the difference between the maximum value and the small value of the intake pressure for two revolutions of the crankshaft read in step S1, and then the process proceeds to step S7.
前記ステップ S7では、前記ステップ S6で算出された吸気圧力変動値 ΔΡが前記 ステップ S5で設定された吸気圧力変動閾値 ΔΡ0以下であるか否カゝを判定し、当該 吸気圧力変動値 ΔΡが吸気圧力変動閾値 ΔΡ。以下である場合にはステップ S8に 移行し、そうでなしゝ場合にはステップ S9に移行する。 前記ステップ S9では、吸気圧力異常カウンタ GNT¾"0"にクリアしてからメインプロ グラムに復帰する。 In step S7, it is determined whether the intake pressure variation value Δ 変 動 calculated in step S6 is equal to or less than the intake pressure variation threshold ΔΡ 0 set in step S5, and the intake pressure variation value ΔΡ is determined as the intake pressure. Pressure fluctuation threshold ΔΡ. If so, the process proceeds to step S8; otherwise, the process proceeds to step S9. In step S9, the intake pressure abnormality counter GNT is cleared to "0", and then the process returns to the main program.
—方、前記ステップ S8では、前記吸気圧力異常カウンタ。1\11¾ィンクリメントしてか らステップ S 10に移行する。  On the other hand, in step S8, the intake pressure abnormality counter is used. After incrementing by 1 \ 11, shift to step S10.
前記ステップ S10では、前記吸気圧力異常カウンタ CNTが予め設定された所定値 CNT。以上であるか否かを判定し、当該吸気圧力異常カウンタ CNTが所定値 CNT0 以上である場合には前記ステップ S4に移行し、そうでない場合にはメインプログラム に復帰する。 In step S10, the intake pressure abnormality counter CNT is set to a predetermined value CNT. To determine at either above, when the intake pressure abnormality counter CNT is a predetermined value CNT 0 or more, the routine proceeds to step S4, otherwise, the process returns to the main program.
前記ステップ S4では、同ステップ内で行われる個別の演算処理に従って、異常判 定を行うと共に、所定のフエ一ルセーフ処理を行ってから演算処理を終了する。この フェールセーフ処理とは、例えば気筒毎に点火を次第に間弓 Iくとか、各気筒の点火を 次第に遅角側に移行するとか、スロットルを、最初は速く、その後、ゆっくりと閉じるな どにより、エンジントルクを漸減することや、或いは異常表示を行うことなどが挙げら れる。  In step S4, an abnormality is determined according to the individual arithmetic processing performed in the step, and a predetermined fail-safe processing is performed, and then the arithmetic processing ends. This fail-safe processing is performed by, for example, gradually turning on the ignition for each cylinder, gradually shifting the ignition of each cylinder to the retard side, or closing the throttle quickly at first and then slowly. This includes gradually reducing the engine torque or displaying an abnormality.
この演算処理によれば、エンジン回転数に応じた吸気圧力変動閾値 ΔΡ。を設定 すると共に、クランクシャフト二回転、即ち 1サイクル内の吸気圧力変動値厶 Pを算 出し、この吸気圧力変動値 ΔΡが前記吸気圧力変動閾値 ΔΡ。以下である状態が 所定値 CN丁。以上繰り返されると、吸気圧力異常と判定すると共に前述したようなフ エールセーフ処理が行われる ο  According to this calculation processing, the intake pressure fluctuation threshold ΔΡ according to the engine speed. The intake pressure fluctuation value Δ 圧 力 is calculated in two rotations of the crankshaft, that is, in one cycle, and the intake pressure fluctuation value ΔΡ is the intake pressure fluctuation threshold Δ 閾 値. The state below is the specified value. When the above is repeated, it is determined that the intake pressure is abnormal, and the above-described fail-safe processing is performed.ο
図 1 2は、クランクシャフトが回転し続けてし、るとき、つまリエンジンが運転し続けて し、るときに吸気圧力センサが外れたときの吸気圧力センサの出力を示したものであ る。図から明らかなように、吸気圧力センサ力外れたときのセンサの出力は、大気圧 の値であり、通常の出力領域、つまり前記正常領域内にある。しかしながら、吸気圧 力センサの出力値力《大気圧相当の一定値となると、前記図 10の演算処理で算出さ れる吸気圧力変動値 ΔΡが所定値 ΔΡ。以下となるため、異常を検出することが可 能となる。  Fig. 12 shows the output of the intake pressure sensor when the crankshaft keeps rotating, when the crankshaft engine continues to operate, and when the intake pressure sensor comes off when the crankshaft rotates. . As is apparent from the figure, the output of the sensor when the force of the intake pressure sensor deviates is the value of the atmospheric pressure, and is within the normal output range, that is, the normal range. However, when the output value of the intake pressure sensor becomes << a constant value equivalent to the atmospheric pressure, the intake pressure fluctuation value ΔΡ calculated by the arithmetic processing in FIG. 10 becomes the predetermined value ΔΡ. As described below, it is possible to detect an abnormality.
-方、前記クランクシャフトが回転してしゝるとき、つまりエンジンが運転してしゝるとき のクランクシャフト二回転内の、即ち 1サイクル内の吸気圧力変動は、エンジン回転 数が大きいほど、小さい。従って、より確実に吸気圧力の異常を検出するためには、 エンジン回転数に応じて前記吸気圧力変動閾値 Δ P。を設定する必要がある。実は、 1サイクル内の吸気圧力変動は、エンジン回転数だけではなぐスロットル開度が大 きいほど、小さい。本実施形態は、スロットルセンサを省略するために開発されたも のであるから、明確なスロットル開度の検出値がなぐこのスロットル開度による吸気 圧力変動閾値 Δ P。の設定を省略している力《、その他のノラメータからスロットル開 度を推定することは可能であり、その推定されたスロットル開度に応じて吸気圧力変 動閾値 ΔΡ。を設定してもよい。例えば、定常状態における 1サイクル内の吸気圧力 変動はエンジン回転数とスロットル開度とに依存してし、るので、逆に 1サイクル内の 吸気圧力変動とエンジン回転数とからスロットル開度を推定することができる。また、 前述した加速状態の検出、つまり現在と同じ行程の 1サイクル前の吸気圧力との差 は、即ちスロットル開度の変化量であるから、過渡期におけるスロットル開度の変化 率が推定でき、前述した定常状態のスロットル開度に、過渡期におけるスロットル開 度の変化率の積分値を加算すれば、過渡期のスロットル開度も推定で る。 On the other hand, when the crankshaft rotates, that is, when the engine operates, the intake pressure fluctuation in two rotations of the crankshaft, that is, in one cycle, is larger as the engine speed is larger. small. Therefore, in order to more reliably detect an abnormality in the intake pressure, The intake pressure fluctuation threshold ΔP according to the engine speed. Need to be set. In fact, the intake pressure fluctuation within one cycle is smaller as the throttle opening is larger than just the engine speed. Since the present embodiment has been developed in order to omit the throttle sensor, an intake pressure fluctuation threshold ΔP based on the throttle opening at which a clear throttle opening detection value is obtained. It is possible to estimate the throttle opening from other parameters such as the force omitting the setting of, and the intake pressure fluctuation threshold Δ 応 じ according to the estimated throttle opening. May be set. For example, in a steady state, the intake pressure fluctuation in one cycle depends on the engine speed and the throttle opening, and conversely, the throttle opening is estimated from the intake pressure fluctuation and the engine speed in one cycle. can do. Also, since the above-described detection of the acceleration state, that is, the difference from the intake pressure one cycle before the same stroke as the present stroke is the change amount of the throttle opening, the rate of change of the throttle opening during the transition period can be estimated. If the integrated value of the rate of change of the throttle opening in the transition period is added to the throttle opening in the steady state described above, the throttle opening in the transition period can also be estimated.
なお、前記実施形態では、各気筒に着目し、その気筒の 1サイクル、即ちクランクシ ャフトニ回転内の吸気圧力変動が所定値以下であるときに吸気圧力センサ等の吸 気圧力検出手段が異常であるとみなしてし、る力《、要するに例えば吸気行程と排気行 程との吸気圧力差が分かればよいので、前記実施形態における四気筒エンジンで、 異なる気筒における吸気行程の吸気圧力と排気行程の吸気圧力とから吸気圧力差 を求めることができれば、クランクシャフトが二回転するのを待つ必要はない。つまり、 クランクシャフト二回転内の吸気圧力変動とは、最大でクランクシャフト二回転分の吸 気圧力変動を意味し、吸気圧力センサ等の吸気圧力検出手段が外れたときのように、 検出される吸気圧力が一定又はほぼ一定であることを検出できれば、どのようなタイ ミングで吸気圧力変動を検出してもかまわない。  In the above embodiment, attention is paid to each cylinder, and when one cycle of the cylinder, that is, when the intake pressure fluctuation during the rotation of the crankshaft, is equal to or less than a predetermined value, the intake pressure detecting means such as the intake pressure sensor is abnormal. Since it is sufficient to know the difference between the intake pressures of the intake stroke and the exhaust stroke, for example, in the four-cylinder engine of the embodiment, the intake pressure of the intake stroke and the intake stroke of the exhaust stroke in different cylinders are considered. If the intake pressure difference can be obtained from the pressure, it is not necessary to wait for the crankshaft to make two revolutions. In other words, the intake pressure fluctuation within two revolutions of the crankshaft means the intake pressure variation for two revolutions of the crankshaft at the maximum, and is detected as if the intake pressure detecting means such as the intake pressure sensor came off. As long as the intake pressure can be detected to be constant or almost constant, the intake pressure fluctuation may be detected at any timing.
また、本実施形態では、吸気管内噴射型エンジンにつし、てのみ詳述したが、本発 明のエンジン制御装置は、気筒内噴射型エンジン、所謂直噴型エンジンにも適用可 能である。但し、直噴型エンジンでは、吸気管に燃料が付着することはないから、そ れを考慮する必要はなく、空燃比の算出には噴射される燃料量総量を代入すればよ い。  Further, in this embodiment, only the in-pipe injection type engine has been described in detail. However, the engine control device of the present invention is also applicable to an in-cylinder injection type engine, a so-called direct injection type engine. . However, in a direct injection engine, since fuel does not adhere to the intake pipe, it is not necessary to consider this, and the total amount of injected fuel may be substituted for the calculation of the air-fuel ratio.
また、前記実施形態では、気筒数が 4気筒の、所謂マルチシリンダ型エンジンにつ いて詳述したが、本発明のエンジン制御装置は、単気筒エンジンにも同様に展開で きる。 In the above-described embodiment, a so-called multi-cylinder engine having four cylinders is used. As described above, the engine control device of the present invention can be similarly applied to a single cylinder engine.
また、エンジンコントロールユニットは、マイクロコンピュータに代えて各種の演算回 路で代用することも可能である。 産業上の利用の可能性  Also, the engine control unit can be replaced with various arithmetic circuits instead of the microcomputer. Industrial potential
以上説明したように、本発明のうち請求項 1に係るエンジン制御装置によれば、クラ ンクシャフトが回転しているときであり、且つクランクシャフト二回転内の吸気圧力の 変動力《所定値以下であるときに吸気圧力検出手段が異常であると検出する構成とし たため、例えば吸気圧力センサ等の吸気圧力検出手段力《外れて大気解放されたと きにも、それを確実に検出することができる。  As described above, according to the engine control apparatus according to claim 1 of the present invention, the fluctuation force of the intake pressure during the rotation of the crankshaft and within two rotations of the crankshaft << the predetermined value or less In this case, the intake pressure detecting means is configured to detect that the pressure is abnormal, so that, for example, even when the pressure of the intake pressure detecting means such as an intake pressure sensor is deviated and released to the atmosphere, it can be reliably detected. .
また、本発明のうち請求項 2に係るエンジン制御装置によれば、検出された工ンジ ン回転数が小さいほど、吸気圧力検出手段の異常検出のための吸気圧力変動の所 定値を小さく設定する構成としたため、よリー層、吸気圧力検出手段の異常を確実に 検出することができる。  Further, according to the engine control device according to claim 2 of the present invention, the smaller the detected engine speed, the smaller the predetermined value of the intake pressure fluctuation for detecting abnormality of the intake pressure detecting means is set. With this configuration, it is possible to reliably detect abnormalities in the layer and the intake pressure detecting means.
また、本発明のうち請求項 3に係るエンジン制御装置によれば、検出されたスロット ル /くルブの開度が大きいほど、吸気圧力検出手段の異常検出のための吸気圧力 変動の所定値を小さく設定する構成としたため、よリー層、吸気圧力検出手段の異 常を確実に検出することができる。  Further, according to the engine control device according to claim 3 of the present invention, the larger the detected throttle / opening degree of the throttle is, the more the predetermined value of the intake pressure fluctuation for abnormality detection of the intake pressure detecting means becomes. Since the configuration is set to be small, it is possible to reliably detect abnormalities in the layer and the intake pressure detecting means.

Claims

請求の範囲 The scope of the claims
1. クランクシャフトの位相を検出するクランクシャフト位相検出手段と、エンジンの 吸気管内の吸気圧力を検出する吸気圧力検出手段と、前記クランクシャフト位相検 出手段で検出されたクランクシャフトの位相及び前記吸気圧力検出手段で検出され た吸気圧力に基づいてエンジンの運転状態を制御するエンジン制御手段と、前記ク ランクシャフト位相検出手段で検出されたクランクシャフトの位相からクランクシャフト 力回転してし、るときであり、且つ前記吸気圧力検出手段で検出されたクランクシャフ トニ回転内の吸気圧力の変動が所定値以下であるときに前記吸気圧力検出手段が 異常であると検出する吸気圧力異常検出手段とを備えたことを特徴とするエンジン 制御装置。 1. Crankshaft phase detecting means for detecting a phase of a crankshaft, intake pressure detecting means for detecting an intake pressure in an intake pipe of an engine, a phase of the crankshaft detected by the crankshaft phase detecting means and the intake air Engine control means for controlling the operating state of the engine based on the intake pressure detected by the pressure detection means; and crankshaft power rotation based on the crankshaft phase detected by the crankshaft phase detection means. And an intake pressure abnormality detecting means for detecting that the intake pressure detecting means is abnormal when the variation of the intake pressure in the crankshaft rotation detected by the intake pressure detecting means is equal to or less than a predetermined value. An engine control device, comprising:
2. エンジンの回転数を検出するエンジン回転数検出手段を備え、前記吸気圧力 異常検出手段は、前記エンジン回転数検出手段で検出されたエンジン回転数が小さ いほど、前記吸気圧力変動の所定値を小さく設定することを特徴とする請求項 1に記 載のエンジン制御装置。  2. An engine speed detecting means for detecting an engine speed, wherein the intake pressure abnormality detecting means sets a predetermined value of the intake pressure fluctuation as the engine speed detected by the engine speed detecting means decreases. The engine control device according to claim 1, wherein the engine control device is set to be small.
3. スロットルバルブの開度を検出するスロットル開度検出手段を備え、前記吸気 圧力異常検出手段は、前記スロットル開度検出手段で検出されたスロットル/くルブ の開度が大きいほど、前記吸気圧力変動の所定値を小さく設定することを特徴とす る請求項 1又は 2に記載のエンジン制御装置。  3. A throttle opening detecting means for detecting an opening of a throttle valve is provided, and the intake pressure abnormality detecting means detects the intake pressure as the opening of the throttle / knob detected by the throttle opening detecting means increases. 3. The engine control device according to claim 1, wherein a predetermined value of the fluctuation is set to be small.
PCT/JP2003/004664 2002-07-31 2003-04-11 Engine controller WO2004013478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003236226A AU2003236226A1 (en) 2002-07-31 2003-04-11 Engine controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002223928 2002-07-31
JP2002-223928 2002-07-31

Publications (1)

Publication Number Publication Date
WO2004013478A1 true WO2004013478A1 (en) 2004-02-12

Family

ID=31492120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004664 WO2004013478A1 (en) 2002-07-31 2003-04-11 Engine controller

Country Status (3)

Country Link
AU (1) AU2003236226A1 (en)
TW (1) TWI221882B (en)
WO (1) WO2004013478A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151754A (en) * 1987-12-07 1989-06-14 Aisan Ind Co Ltd Intake air pipe pressure measuring device
JPH02132833U (en) * 1989-04-11 1990-11-05
JPH08200143A (en) * 1995-01-31 1996-08-06 Nippondenso Co Ltd Trouble detecting device for pressure sensor
JPH09217647A (en) * 1996-02-13 1997-08-19 Unisia Jecs Corp Diagnostic device of intake air pressure sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151754A (en) * 1987-12-07 1989-06-14 Aisan Ind Co Ltd Intake air pipe pressure measuring device
JPH02132833U (en) * 1989-04-11 1990-11-05
JPH08200143A (en) * 1995-01-31 1996-08-06 Nippondenso Co Ltd Trouble detecting device for pressure sensor
JPH09217647A (en) * 1996-02-13 1997-08-19 Unisia Jecs Corp Diagnostic device of intake air pressure sensor

Also Published As

Publication number Publication date
AU2003236226A1 (en) 2004-02-23
TWI221882B (en) 2004-10-11
TW200403386A (en) 2004-03-01

Similar Documents

Publication Publication Date Title
JP4152950B2 (en) Engine control device
JP4202370B2 (en) Control device for internal combustion engine
KR100827587B1 (en) Apparatus and method for controlling internal combustion engine
JP3978679B2 (en) Engine control device
JP2008095642A (en) Intake air amount detection system for internal combustion engine
JP3976322B2 (en) Engine control device
JPH09170471A (en) Method for controlling air-fuel ratio of multi-cylinder engine
JP4073914B2 (en) Engine control device
JP4027892B2 (en) Engine control device
JP3544197B2 (en) Electronic control unit for internal combustion engine
JP2002147269A (en) Engine control device
JP4027893B2 (en) Engine control device
JP2011157852A (en) Control device of internal combustion engine
WO2004013478A1 (en) Engine controller
JP4115677B2 (en) Atmospheric pressure detection device for internal combustion engine
JP2005042589A (en) Crank angle detector of internal combustion engine
JP5282744B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2011214411A (en) Fuel injection control device for internal combustion engine
JP2005069045A (en) Fuel injection control device for internal combustion engine
JP2007205274A (en) Control device of internal combustion engine
WO2004013477A1 (en) Engine control device
JP5263184B2 (en) Control device for internal combustion engine
JP2008088983A (en) Engine control device
JP2007192027A (en) Instable idling detecting device and instable idling detecting method
JP2002147280A (en) Engine control device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase