WO2004013331A1 - Pathogenic genes of xanthomonas oryzae pv. oryzae and utilization thereof - Google Patents

Pathogenic genes of xanthomonas oryzae pv. oryzae and utilization thereof Download PDF

Info

Publication number
WO2004013331A1
WO2004013331A1 PCT/JP2003/009922 JP0309922W WO2004013331A1 WO 2004013331 A1 WO2004013331 A1 WO 2004013331A1 JP 0309922 W JP0309922 W JP 0309922W WO 2004013331 A1 WO2004013331 A1 WO 2004013331A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
rice
plant
seq
present
Prior art date
Application number
PCT/JP2003/009922
Other languages
French (fr)
Japanese (ja)
Inventor
Hisatoshi Kaku
Hirokazu Ochiai
Masaru Takeya
Yasuhiro Inoue
Original Assignee
National Institute Of Agrobiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Agrobiological Sciences filed Critical National Institute Of Agrobiological Sciences
Publication of WO2004013331A1 publication Critical patent/WO2004013331A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the present invention relates to crop disease diagnosis and crop breeding.
  • Bacteria have a genome size much smaller than animals and plants, and their genome size is about 1/10 or less than that of filamentous fungi, which is the same microorganism. Genome analysis is progressing.
  • Genome analysis analyzes all the genes present in a genome by revealing the genome that is the source of genetic information at the nucleotide sequence level, and understands the whole life phenomenon such as gene networks and interactions. It is expected to provide valuable information, and is widely used worldwide with a wide variety of organisms. In particular, in the field of animal pathogenic bacteria, elucidation of the pathogenic mechanism of human infection and disease, and the knowledge obtained therefrom, various research developments and applications such as genomic drug discovery are expected. Currently, tuberculosis bacteria ( Cole, ST et al. (1998) .Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.Nature 393: 537-44) and E. coli 0-157 (Hayashi, T.
  • Bacterial leaf blight of rice is a globally important disease of rice that occurs not only in Japan, but also in rice cultivation areas in Asia, Africa, Australia, Latin America and the United States. It is.
  • the pathogenic bacterium that causes this disease is Xanthom as oryzae pv. Oryzae, a rice cultivar that is known to have a large number of races that differ in pathogenicity to rice varieties, and that is highly differentiated. .
  • the genus to which this bacterium belongs is composed of bacteria that cause disease in various plants, and is known to be of a very large variety, and is a group of bacteria important in agriculture.
  • rice the infection partner (host)
  • This is a model plant that has been studied.
  • the process by which phytopathogenic bacteria cause disease in plants involves two processes, host recognition / infection establishment and pathogen release / pathogenesis, and many genes are thought to be involved in these processes. .
  • details are still unknown.
  • rice blight disease bacterium has no effective materials such as pesticides.
  • rice blast blight resistance genes are mainly introduced by breeding to control rice blast blight resistant varieties. It has been raised and cultivated. However, it has been reported that cultivation of disease-resistant varieties into which a resistance gene has been introduced becomes ill with the emergence of pathogenic bacteria exhibiting a new pathogenic type (race), so-called resistance crushing.
  • the present invention has been made in view of such a situation, and an object of the present invention is to identify a gene involved in the pathogenicity of a rice bacterial wilt disease which is an important pathogenic bacterium of rice. More specifically, it is an object of the present invention to provide a method for easily diagnosing rice leaf blight on a test rice by setting the presence or absence of a gene related to the virulence of rice leaf blight fungus as an indicator. .
  • pathogenic bacteria both plants and animals, exist in the form of large clusters (pathogenic islands) on genomes or plasmids, causing genes that cause pathogens. It was predicted that the bacterial pathogen of the present invention may form such a virulence gene cluster. Therefore, the present invention
  • the hrp gene class encoding a pathogenic secretory device (type III secretion device) that is important for expressing pathogenicity in plant pathogenic bacteria such as Bacterial Blight Fungus of Rice, and race differentiation ⁇ Pathogenic genes involved in diversification of pathogenicity such as
  • the present inventors set out to establish a molecular biological basis for elucidating the mechanism of pathogenicity expression and response mechanism on the microorganism side in plant-microbe interaction.
  • the present inventors have analyzed the genome of rice white leaf blight fungus.
  • the strain used for genome analysis was Xal (Yoshimura, S. et al. (1998), a rice leaf blight resistance gene in rice genome research.
  • Xal a bacterial blight-resistance gene in rice, is induced by bacterial inoculat ion.Pro Natl.Acad.Sci. USA 95: 1663-8) and its structural analysis was performed. In other words, in elucidating the interaction, it is considered that strains having a non-pathogenic gene (avrXal) with respect to the resistance gene (Xal) may have more non-pathogenic genes (pathogenicity). As a result of considering the narrow spectrum, we tested MAFF311018 (T7174), a representative strain of Race I in Japan.
  • PCR-based detection that amplifies a gene region specific to Bacterial Blight Leaf Blight is effective.
  • it is effective to introduce a virulence gene derived from a pathogenic bacterium into a plant body so that the plant can always induce resistance to the plant side.
  • the present inventors cloned the DNA of the virulence gene group and the DNA in the vicinity thereof from Japanese rice leaf blight fungus stored at the National Institute for Agricultural Resources, and determined the nucleotide sequence. We succeeded in identifying 14 novel virulence genes unique to Bacterial Blight Pathogen that do not show significant homosexuality.
  • the novel gene discovered by the present inventors can be said to be extremely useful.
  • the present inventors have actually hybridized to the novel virulence gene and succeeded in specifically detecting rice Bacterial Blight on test rice using a PCR primer set capable of spreading the gene.
  • the information on the genome analysis of Bacterial Leaf blight obtained by the present invention will be a powerful 'I blueprint' for elucidating the pathogenic mechanism, as well as genetic information including the diversity of pathogenicity of XanthomoMS bacteria. It is expected to be useful knowledge in the analysis of genetic diversity and classification research.
  • the present invention relates to a novel virulence gene group of rice bacterial wilt and its use.
  • SEQ ID NO: Encodes a protein having an amino acid sequence in which one or more amino acids have been substituted, deleted, inserted, and / or added in the even-numbered amino acid sequence of any one of SEQ ID NOS: 2 to 28 DNA.
  • [4] A transformed cell carrying the DNA of [1] or [2] or the vector of [3].
  • [6] A transformed plant comprising the transformed cell according to [5].
  • a transformed plant which is a progeny or clone of the transformed plant of [6].
  • An oligonucleotide comprising at least 15 consecutive nucleotide sequences in the arrangement (J number: any one of the odd-numbered numbers from 1 to 27, or its complementary arrangement [J].
  • SEQ ID NO: 1 An oligonucleotide which specifically hybridizes with DNA consisting of the nucleotide sequence of any one of odd numbers of SEQ ID NO: 27 and has a chain length of at least 15 bases.
  • a method for determining that the rice to be diagnosed is infected with Bacterial Leaf blight, if the presence of the DNA or its expression product according to [1] is detected in step (b). Things.
  • the present inventors have identified 14 novel virulence genes of the bacterial leaf blight fungus.
  • the present invention provides DNA derived from the bacterial wilt of rice.
  • the nucleotide sequence of the virulence gene of Bacterial Leaf blight of Rice isolated by the present inventors, which is included in the present invention, is encoded by an odd number of SEQ ID NO: 1 and the like by each of the nucleotide sequences.
  • the amino acid sequence of the protein is shown in SEQ ID NO: 2 Shown in the numbers. That is, the present invention relates to a DNA encoding a protein consisting of the amino acid sequence described in any one of SEQ ID NOS: 2 to 28 derived from Bacterial Leaf blight of rice, and any one of SEQ ID NOs: 1 to 27.
  • a DNA comprising the coding region of the nucleotide sequence described in the odd number.
  • the present invention also provides a DNA encoding a protein structurally similar to the protein described in any of SEQ ID NOs: 2 to 28.
  • Examples of such MA include a DNA encoding a protein consisting of an amino acid sequence in which one or more amino acids have been substituted, deleted, added, or inserted or inserted in the protein.
  • the DNA of the present invention includes natural or isolated / purified genomic DNA, cDNA, and chemically synthesized DNA.
  • Preparation of genomic DNA and cDNA can be performed by a person skilled in the art using conventional means.
  • genomic DNA is extracted from an organism having a gene encoding a protein represented by any one of SEQ ID NOs: 2 to 28, and a genomic library (plasmid, phage , Cosmids, BACs, PACs, etc. can be used), developed and developed using a probe prepared based on the DNA encoding the protein. It can be prepared by performing knee hybridization or plaque hybridization.
  • cDNA for example, a cDNA is synthesized based on mRNA extracted from an organism having a gene encoding the protein, inserted into a vector such as ⁇ ZAP to prepare a cDNA library, and developed. Then, it can be prepared by performing colony hybridization or plaque hybridization as described above, or by performing PCR.
  • DNA that can be isolated by the hybridization technique or the PCR technique and that hybridizes with the DNA consisting of the base sequence described in any of the odd-numbered SEQ ID NO: 27 or 27 is also used. It is included in the DNA of the present invention.
  • a hybridization reaction is preferably performed under stringent conditions.
  • the stringent hybridization conditions refer to conditions of 6 M urea, 0.4% SDS, 0.5 XSSC or a hybridization condition of a stringency equivalent thereto. Under conditions of higher stringency, for example, 6M urea, 0.4% SDS, and 0.1 ⁇ SSC, it is expected that more homologous DNA can be isolated.
  • the DNA thus isolated is considered to have high homology at the amino acid level to the amino acid sequence described in any of the even-numbered SEQ ID NOs: 2 to 28.
  • High homology refers to sequence identity of at least 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more of the entire amino acid sequence.
  • the amino acid sequence and nucleotide sequence identity can be determined by the algorithm BLAST (Proc. Natl. Acad. Sei. USA, 1990, 87, 2264-2268. Karl in, S. & Al tscliul, SF. Natl. Acad. Sei. USA, 1993, 90, 5873.).
  • a program called BLASTN or BLASTX based on the BLAST algorithm.
  • a program has been developed (Altschul, SF. Et al., J Mol Biol, 1990, 215, 403.).
  • the present invention also provides a DNA encoding an antisense RNA complementary to a transcript of the DNA of the present invention, and a DNA encoding an RNA having a lipozyme activity that specifically cleaves the transcript of the DNA of the present invention. .
  • the above-mentioned DNA can be used, for example, to produce a plant resistant to bacterial blight of rice with suppressed expression of the DNA of the present invention.
  • a DNA for suppressing the expression of the DNA of the present invention is inserted into an appropriate vector and introduced into a plant cell. Then, the transformed plant cells thus obtained are regenerated.
  • "Suppression of expression of the DNA of the present invention” includes suppression of gene transcription and suppression of translation into Z or protein. It also includes a decrease in expression as well as a complete cessation of DNA expression.
  • the action of the antisense nucleic acid to suppress the expression of the target gene has several factors as follows. In other words, inhibition of transcription initiation by triplex formation, inhibition of transcription by hybridization with a site where an open loop structure was locally formed by RNA polymerase, inhibition of transcription by formation of a hybrid with RNA that is undergoing synthesis Inhibition of splicing by hybridization at the junction of intron and exon; inhibition of splicing by hybridization with spliceosome-forming sites; inhibition of nuclear-to-cytoplasmic translocation by hybridization with mRNA; capping; (A) Splicing inhibition by the formation of a hybrid with the additional site, translation initiation inhibition by the formation of a hybrid with the translation initiation factor binding site, translation inhibition by the formation of a hybrid with the liposomal binding site near the start codon, translation region of mRNA And hybrids with polysome binding sites Outgrowth inhibitory peptide chain by forming, and the like gene expression inhibition by Haipuriddo forming the interaction site with our and
  • antisense nucleic acids suppress target gene expression by inhibiting various processes such as transcription, splicing, and translation.
  • Hirashima and Inoue Shinsei Kagaku Kenkyusho Lecture Nucleic acid IV gene replication and expression (Japan Biochemical Society, Tokyo Chemical Dojin) p.319-347, 1993).
  • the antisense sequence used in the present invention may suppress the expression of the target gene by any of the actions described above.
  • designing an antisense sequence complementary to the untranslated region near the 5 'end of the mRNA of a gene is considered to be effective in inhibiting translation of the gene.
  • a sequence complementary to the coding region or the 3 ′ untranslated region can also be used.
  • the antisense DNA used in the present invention includes not only the translated region of the gene but also the DNA containing the antisense sequence of the untranslated region.
  • the antisense DNA to be used is ligated downstream of an appropriate promoter, and preferably a sequence containing a transcription termination signal is ligated on the 3 'side.
  • the DNA thus prepared can be transformed into a desired plant by using a known method. Wear.
  • the sequence of the antisense DNA is preferably a sequence that is complementary to the pathogenic gene of rice leaf blight of the present invention or a part thereof, but is completely complementary as long as gene expression can be effectively suppressed. It does not have to be.
  • the transcribed RNA has preferably 90% or more, and most preferably 95% or more complementarity to the transcript of the target gene.
  • the length of the antisense DNA is at least 15 bases or more, preferably 100 bases or more, and more preferably 500 bases or more.
  • the length of commonly used antisense DNA is shorter than 5 kb, preferably shorter than 2.5 kb.
  • Liposomes refer to RNA molecules that have catalytic activity. There are various types of liposomes that have various activities.Research focused on lipozymes as enzymes that cleave RNA has made it possible to design liposomes that cleave RNA in a site-specific manner. Was.
  • Lipozymes include those with a size of 400 nucleotides or more, such as Daphlepe I intron type and Ml RNA contained in RNase P.Hammerhead type ⁇ Hairpin type has an active domain of about 40 nucleotides There are also others (Makoto Koizumi and Eiko Otsuka: Protein Nucleic Acid Enzyme, 35: 2191, 1990).
  • the self-cleaving domain of the hammerhead lipozyme cleaves the 3 'side of C15 in the sequence G13U14C15, but its activity requires base pairing between U14 and A9, and A15 instead of C15.
  • U15 can also be cleaved (Koizumi M, et al: FEBS Lett 228: 228, 1988).
  • Hairpin type liposomes are also useful for the purpose of the present invention.
  • This lipozyme is found, for example, in the minus strand of satellite RNA of evening bacillus spot virus (Buzayan JM: Nature 323: 349, 1986). It has been shown that a hairpin-type lipozyme can also produce a target-specific NA-cleaved lipozyme (Kikuchi Y & Sasaki N: Nucl Acids Res 19: 6751, 1991; Kikuchi, Hiroshi: Chemistry and biology 30: 112, 1992) .
  • the lipozyme designed to cleave the target is ligated to a promoter and transcription termination sequence, such as the cauliflower mosaic virus 35S promoter, so that it is transcribed in plant cells.
  • a promoter and transcription termination sequence such as the cauliflower mosaic virus 35S promoter
  • lipozyme activity may be lost.
  • the transcripted ribozyme contains
  • another trimming ribozyme that acts on cis on the 5 'or 3' side of the lipozyme portion (Taira K, et al: Protein Eng 3: 733) , 1990, Dzianott AM & Bujarski JJ: Proc Natl Acad Sc i USA 86: 4823, 1989, Gross ans CA & Cech T: Nucl Acids Res 19: 3875, 1991, Taira K, et al: Nucl Acids Res 19: 5125, 1991).
  • the DNA of the present invention can be used, for example, for preparing a recombinant protein.
  • the DNA of the present invention is inserted into an appropriate expression vector, the vector is introduced into appropriate cells, and the expressed protein is purified by culturing the transformed cells. I do.
  • the recombinant protein can be expressed as a fusion protein with another protein, for example, to facilitate purification. For example, a method for preparing a fusion protein with maltose binding protein using E.
  • the host cell is not particularly limited as long as it is a cell suitable for the expression of the recombinant protein.
  • yeast various animal and plant cells, insect cells, and the like can be used.
  • Various methods known to those skilled in the art can be used for introducing a vector into a host cell.
  • the recombinant protein expressed in the host cell can be purified and recovered from the host cell or a culture supernatant thereof by a method known to those skilled in the art.
  • affinity purification can be easily performed.
  • the protein encoded by the DNA of the present invention thus produced is also included in the present invention.
  • an antibody that binds to the protein can be prepared.
  • the antibody can be used for a method for diagnosing whether or not the rice is infected with the bacterial leaf blight described below.
  • the polyclonal antibody is, for example, a purified protein of the present invention or one thereof.
  • a part of the peptide can be immunized to immunized animals such as egrets, and after a certain period of time, blood can be collected and prepared from serum from which blood bladders have been removed.
  • the monoclonal antibody is obtained by fusing antibody-producing cells of the animal immunized with the above-mentioned protein or peptide with bone tumor cells to produce a single-clonal cell (hybrid-ma) that produces an antibody that is used as an eye-opening stump. It can be prepared by isolating and obtaining an antibody from the cells. The antibody thus obtained can be used for purification and detection of the protein of the present invention.
  • the antibodies of the present invention include polyclonal antibodies, monoclonal antibodies, and the fragmentability of these antibodies.
  • the present invention provides a vector comprising the above DNA, a transformed meniscus which carries the vector, a transformed cell which is a plant cell, a transformed plant comprising the transformed cell, a transformed plant comprising the transformed cell, Provided are a transformed plant that is a progeny or a clone, and a propagation material of the transformed plant.
  • the introduction of the DNA or nucleic acid of the present invention into plant cells can be carried out by those skilled in the art by known methods, for example, the agrobacterium method, the electroporation method (elect-portation method), and the particle gun method. it can.
  • the agrobacterium method for example, the method of Nagel et al. (Microbiol. Lett., 1990, 67, 325.) is used.
  • the recombinant vector is transformed into bacterium agrobacterium, and the transformed agrobacterium is then introduced into plant cells by a known method such as a leaf disk method.
  • the vector contains an expression promoter so that the DNA of the present invention is expressed in the plant, for example, after introduction into the plant.
  • the DNA of the present invention is located downstream of the promoter, and furthermore, one minute and one minute is located downstream of the DNA.
  • the recombinant vector used for this purpose is appropriately selected by those skilled in the art according to the method of introduction into the plant or the type of the plant.
  • Examples of the above promoter include CaMV35S derived from cauliflower mosaic virus, corn ubiquitin promoter (Japanese Patent Publication No. 2-79983), and the like.
  • the above-mentioned one-minute-one-one-one-one can be exemplified by a terminator derived from a cauliflower mosaic virus or a terminator-derived one derived from a nopaline synthase gene. If it is one, it is not limited to these.
  • the plant into which the DNA or nucleic acid of the present invention is introduced may be an explant, or cultured cells may be prepared from these plants and introduced into the obtained cultured cells.
  • the "plant cell” of the present invention includes, for example, plant cells such as leaves, roots, stems, flowers, and scutellum in seeds, virulent, suspension cultured cells, and the like.
  • the above-mentioned recombinant vector contains an appropriate selection marker gene and a selection marker marker gene. It is preferably introduced into a plant cell together with the containing plasmid vector.
  • Selectable marker genes used for this purpose include, for example, the hygromycin phosphotransferase gene, which is resistant to the antibiotic hygromycin, the neomycin phosphotransferase, which is resistant to kinamicin or genyumycin, and the herbicide phosphinothricin And an acetyltransferase gene that is resistant to acetyl.
  • the plant cells into which the recombinant vector has been introduced are placed on a known selection medium containing an appropriate selection agent and cultured according to the type of the introduced selection marker gene. As a result, transformed plant culture cells can be obtained.
  • a plant is regenerated from the transformed cell into which the DNA or nucleic acid of the present invention has been introduced.
  • Plant regeneration can be performed by a method known to those skilled in the art depending on the type of plant cell (Toki. Et al., Plant Physiol, 1995, 100, 1503-1507.).
  • a method for producing a transformed plant is to introduce a gene into protoplasts using polyethylene glycol to regenerate the plant (Indian rice varieties are suitable) (Dat ta, S K. et al., In Gene Transfer To Plants (Potrykus I and Spangenberg Eds.), 1995, 66-74. Gene transfer into toplasts to regenerate plants (suitable for Japanese rice varieties) (Mi.
  • the plant regenerated from the transformed cells is then cultured in a conditioned medium. Thereafter, when the regenerated acclimated plant is cultivated under normal cultivation conditions, a plant is obtained, which can be matured and ripened to obtain a seed.
  • the presence of the introduced foreign DNA or nucleic acid in the transformed and cultivated transformed plant is determined by a known PCR method or Southern hybridization method, or by the base of the nucleic acid in the plant. It can be confirmed by analyzing the sequence. In this case, extraction of DNA or nucleic acid from the transformed plant can be performed according to the known method of J. Sambrook et al. (Molecular Cloning, 2nd edition, Cold Spring Harbor laboratory Press, 1989).
  • an amplification reaction is performed using the nucleic acid extracted from the regenerated plant as type III as described above.
  • the nucleic acid of the present invention is DNA
  • a synthesized oligonucleotide having a base sequence appropriately selected according to the base sequence of the DNA is used as a primer, and the resulting mixture is mixed in a reaction solution.
  • DNA denaturation, annealing, and extension reactions are repeated several tens of times to obtain an amplification product of a DNA fragment containing the MA sequence of the present invention.
  • the reaction solution containing the amplified product is subjected to, for example, agarose electrophoresis, each amplified DNA fragment is fractionated, and it is confirmed that the DNA fragments correspond to the DNA of the present invention. It is possible to do.
  • progeny can be obtained from the plant by sexual or asexual reproduction.
  • a propagation material eg, seeds, fruits, cuttings, tubers, tubers, strains, calli, protoplasts, etc.
  • the present invention also provides an oligonucleotide comprising at least 15 contiguous base sequences in any of the odd-numbered base sequences of SEQ ID NOs: 1 to 27 or a complementary sequence thereof.
  • acquisition sequence refers to the other sequence for one strand of a double-stranded DNA consisting of A: T, G: C base pairs.
  • the nucleotide sequence is not limited to a completely complementary sequence in at least 15 contiguous nucleotide regions, and is at least 70%, preferably at least 80%, more preferably 90%, and still more preferably 95% or more.
  • DNA is useful as a probe for detecting or isolating the DNA of the present invention, and as a primer for performing amplification.
  • the present invention provides an oligonucleotide having a chain length of at least 15 bases, which specifically hybridizes with a DNA consisting of the base sequence represented by any of the odd-numbered SEQ ID NOs: 1 to 27.
  • the U-nucleotide specifically hybridizes to the DNA of the present invention.
  • “specifically hybridizes” means under ordinary hybridization conditions, preferably under stringent hybridization conditions (for example, Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, New York). , USA, 2nd edition 1989), does not significantly cause cross-hybridization with DNA encoding other proteins.
  • the oligonucleotide need not be completely complementary to the DNA of the present invention, if specific hybridization is possible.
  • Oligonucleotides that hybridize to the DNA of the present invention and have a chain length of at least 15 nucleotides can be used as probes and primers for detecting the DNA of the present invention.
  • the oligonucleotide is used as a primer, its length is usually 15 bp to 100 bp, preferably 17 bp to 30 bp.
  • the primer is not particularly limited as long as it can amplify at least a part of the DNA of the present invention.
  • the probe is not particularly limited as long as it specifically hybridizes to the MA of the present invention.
  • the probe may be a synthetic oligonucleotide and usually has a chain length of at least 15 bp or more.
  • the oligonucleotide of the present invention is used as a probe, it is preferable that the oligonucleotide is appropriately labeled before use. Labeling can be performed by using T4 polynucleotide kinase to phosphorylate the 5 'end of the oligonucleotide with 32 P, or by random DNA oligonucleotide using a DNA polymerase such as Klenow enzyme. A method of incorporating a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin or the like using the primers as a primer (random prime method, etc.) can be exemplified.
  • the present invention provides a method for diagnosing whether or not rice is infected with the bacterial wilt of rice.
  • a nucleic acid sample is prepared from a rice plant or a part thereof.
  • detecting the presence of MA of the present invention or its expression product in the nucleic acid sample is detected, it is determined that the rice to be diagnosed is infected with the bacterial wilt of rice.
  • the “part thereof” refers to, for example, a plant tissue, a cell, a cell extract, or the like.
  • One embodiment of the diagnostic method of the present invention uses a primer or a probe to detect a DNA encoding a rice bacterial wilt disease protein.
  • a probe group As the primer, the above oligonucleotide of the present invention can be used.
  • the present inventors have actually hybridized to the gene of the present invention, and succeeded in detecting the bacterial leaf blight of a test rice in a specific white stump using a PCR primer set capable of amplifying the gene. Therefore, the above-mentioned oligonucleotide of the present invention can be suitably used for the diagnostic method of the present invention.
  • a set of primers described in Example 5 described below can be shown, but is not limited thereto.
  • Those skilled in the art can appropriately design a set of primers capable of amplifying the DNA of the present invention based on the base sequence described in any one of the odd numbers of SEQ ID NOS: 1 to 28.
  • a probe capable of detecting the DNA of the present invention based on the base sequence described in any of the odd numbers of SEQ ID NO: 1 and 28. That power S is possible.
  • Primers and probes may be labeled as necessary. Examples of the label include a radiolabel. Primers or probes that can be used in the diagnostic method of the present invention are also included in the present invention.
  • the diagnostic method of the present invention includes, for example, a method of preparing a nucleic acid sample from a rice plant or a part thereof suspected of being infected with the bacterial leaf blight fungus, and a polymerase chain reaction (PCR) method using the above primer, or It can be carried out by a Northern plotting method or the like using the above-mentioned probe.
  • PCR polymerase chain reaction
  • Another aspect of the diagnostic method of the present invention is a method for diagnosing a test rice using an antibody as an index based on the presence or absence of a protein encoded by the pathogenic gene of rice leaf blight of the present invention. It is.
  • the antibody used for this diagnosis can be prepared, for example, as described above.
  • the antibody may be labeled if necessary. Examples of the label include an enzyme label.
  • the target protein may be detected by labeling with a substance that binds to the antibody, such as protein A.
  • a test sample is prepared from a rice plant or a part thereof suspected of having been infected with the bacterial leaf blight fungus, It can be performed by ELISA or Western blotting using antibodies.
  • FIG. 1 is a diagram showing a gene map of hrp and peripheral regions.
  • FIG. 2 shows the sequences of SEQ ID NO: 19 and SEQ ID NO: 21 used for preparing a set of PCR primers.
  • the portion where the sequence is indicated by a black frame indicates the sequence of each primer.
  • FIG. 3 is a photograph showing the results of PCR detection of various ⁇ 7 ⁇ iM3 ⁇ 47 bacteria using a primer set designed based on the nucleotide sequence of SEQ ID NO: 19. Bacterial names in each lane are shown below the photograph.
  • FIG. 3 is a diagram comparing the structures of the hpaB-hrpF regions between X. oryzae pv. Oryzae, I. axo lord odis pv. Citri, and yohi campestris pv. BEST MODE FOR CARRYING OUT THE INVENTION
  • BAC bacterial art if icial chromosome
  • the present inventors prepared a BAG library for about 16 genomes with an average insert length of about 100 to 120 kb (Ocliiai, H., Inoue, ⁇ ., Hasebe, A. and Kaku, H. (2001). Cons compilt ion and character izat ion of a Xan thomonas oryzae pv. oryzae bacterial artificial chromosome library. FEMS Microbiol. Lett. 200: 59-65).
  • phytopathogenic bacteria can cause disease in plants: the establishment of host infection by Shinkanzin Z and the release / development of pathogens.
  • the genes included in the hrp gene class are not only those encoding the pathogenic factor secretory mechanism (typelll), which plays an important role in the process of establishing host recognition infection, but also those that are not. It is also known to be the most important pathogenic genes in plant pathogenic bacteria (Bonas, U., Schulte, R., Fenselau, S., Minsavage, GV , Staskawicz, BJ, and Stall, RE (1991). Isolation of a gene cluster from Xanthomonas campestris pv.vesicatoria that determines pathogenicty and the hypersensitive response on pepper and tomato. Mol. Plant-Microbe Interact.
  • nucleotide sequence of the BAC clone having the hrp gene cluster isolated by PCR screening was determined by the shotgun method.
  • the determined region is about 220 kb including about 30 kb of the hrp gene cluster.
  • Figure 1 shows the results of gene prediction in this region. A total of 171 genes were predicted, including all 24 genes that make up the known hrp gene cluster in the XantJw genus.
  • transposase homologue insert sequence: IS
  • IS transposase homologue
  • PCR was carried out using the primer set shown in FIG. 2A on the rice ⁇ and various Xantho nasae bacteria belonging to the same genus as the rice wilt fungus under the following conditions.
  • primer sets of 20 sense nucleotides and antisense nucleotides were prepared from SEQ ID NOs: 19 and 21, respectively.
  • Sense primer 5'-ATGATCTTGGAATCGCACAA (SEQ ID NO: 29)
  • Antisense primer 5'-TCATGATGCCACCTCCTGCG (SEQ ID NO: 30) PCR primer in SEQ ID NO: 21
  • Sense primer 5'-ATGAAACTCTCCGGCGGTAT (SEQ ID NO: 31)
  • Antisense primer 5'-TCATGCTCGCCCGCTTTGCC (SEQ ID NO: 32)
  • the PCR reaction conditions were as follows: initial denaturation 94 ° C for 2 minutes, denaturation 94 15 seconds, annealing 55 ° C 30 seconds, extension reaction 72 2 minutes 30 cycles, and final extension reaction 72 ° C 7 minutes .
  • the PCR amplification product was detected by agarose dull electrophoresis and detected after ethidium bromide staining. As a result, it was detected only in lanes A13, A16, B15, B16 and C15 on which the PCR amplification product of rice bacterial blight fungus DNA type II was placed (FIG. 3).
  • the pathogenic gene of Bacterial blight of the rice plant identified by the present invention has no significant homology with the known nucleotide sequence and amino acid sequence, a specific probe or PCR primer set using the nucleotide sequence is prepared. Then, it can be used for simple detection of rice leaf blight by PCR.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Pathogenic genes and DNAs around them are cloned from Xanthomonas oryzae pv. oryzae and thus 14 novel genes relating to the pathogenicity of X. oryzae pv. oryzae are found out. Infection with X. oryzae pv. oryzae of a rice sample can be conveniently and accurately diagnosed by using the presence/absence of the DNAs of these genes as an indication.

Description

明細書 ィネ白葉枯病菌の病原性遺伝子群: ¾よびその利用 技術分野  Description Pathogenic genes of rice leaf blight fungus: ¾ and its use
本発明は、 作物病害診断および作物育種に関する。 背景技術  The present invention relates to crop disease diagnosis and crop breeding. Background art
ffaemwJiijus
Figure imgf000002_0001
R. D. et al. (1995) . Whole-genome random seauencing and assembly of Haemophilus influenzae Rd. Science
ffaemwJiijus
Figure imgf000002_0001
RD et al. (1995) .Whole-genome random seauencing and assembly of Haemophilus influenzae Rd. Science
269:496-512)の全ゲノム配列が報告されて以来、 モデル微生物である大腸菌ゃ枯 草菌の全ゲノム配列、 動物病原細菌をはじめとした多様な細菌の全ゲノム配列が 報告されている。 細菌は、 ゲノムサイズが動物 ·植物に比べ遙かに小さく、 また、 同じ微生物である糸状菌に比べてもゲノムサイズは約 1/10 以下であることから、 近年の解析技術の向上とともに急速にゲノム解析力進展している。 269: 496-512), the whole genome sequence of Escherichia coli and Bacillus subtilis, which is a model microorganism, and the whole genome sequences of various bacteria including animal pathogenic bacteria have been reported. Bacteria have a genome size much smaller than animals and plants, and their genome size is about 1/10 or less than that of filamentous fungi, which is the same microorganism. Genome analysis is progressing.
ゲノム解析は、 遺伝情報の根源であるゲノムを塩基配列レベルで明らかにする ことによって、 ゲノム上に存在するすべての遺伝子を解析し、 そして遺伝子間の ネットワークや相互作用等の生命現象全体を理解する上で貴重な情報をもたらす ものと期待され、 多種多様な生物で全世界的に盛んに行われている。 特に動物病 原細菌の分野においては、 ヒトへの感染や疾病等の病原性機構解明やそこで得ら れる知見から、 ゲノム創薬等様々な研究展開 ·応用が期待され、 現在では、 結核 菌(Cole, S. T. et al. (1998) . Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393 :537 - 44)をはじ めとして大腸菌 0-157(Hayashi, T. et al. (2001). Co即 lete genome seauence' of Entero emorr agic Esc elichia col i 0157:H7 and genomic comparison with a laboratory strain K-12. DNA Research 8:11- 22)等、 多くの種で全ゲノ ム配列が明らかとなりつつある。 Genome analysis analyzes all the genes present in a genome by revealing the genome that is the source of genetic information at the nucleotide sequence level, and understands the whole life phenomenon such as gene networks and interactions. It is expected to provide valuable information, and is widely used worldwide with a wide variety of organisms. In particular, in the field of animal pathogenic bacteria, elucidation of the pathogenic mechanism of human infection and disease, and the knowledge obtained therefrom, various research developments and applications such as genomic drug discovery are expected. Currently, tuberculosis bacteria ( Cole, ST et al. (1998) .Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.Nature 393: 537-44) and E. coli 0-157 (Hayashi, T. et al. (2001). Co. Immediately lete genome seauence 'of Entero emorr agic Esc elichia col i 0157: H7 and genomic comparison with a laboratory strain K-12.DNA Research 8: 11-22) System arrangements are becoming apparent.
一方、 植物病原細菌の分野においては、 1998年の第 7回国際植物病理学会で ゲノム解析に関する緊急ミーティングが開かれ、 今後の展開に関して議論が行わ れた。 植物病原細菌においても、 動物病原細菌と同じ観点からゲノム解析に大き な期待がもたれ、 今後の重要な研究の方向性として認識されつつある。 当時、 植 物病原細菌のゲノム解析では、 ブラジルのグループが先鞭をつけ、 Xylella / /' /り の解析が進行しており、 また、 フランスのグループでは、 Ralstonia solanacearuaの解析が予定されている。 日本でも、 イネ白葉枯病菌を候補とし てゲノム解析を行うことが提案され、 現在、 ほぼ完了している。  On the other hand, in the field of plant pathogenic bacteria, an emergency meeting on genome analysis was held at the 7th International Society for Plant Pathology in 1998, and discussions were held on future developments. For plant pathogenic bacteria, there is great expectation for genome analysis from the same viewpoint as animal pathogenic bacteria, and it is being recognized as an important future research direction. At that time, in the genome analysis of plant pathogenic bacteria, the Brazilian group had taken the lead in the analysis of Xylella / / '/ r, and the French group was planning to analyze Ralstonia solanacearua. In Japan, it has been proposed to perform a genome analysis on rice bacterial wilt as a candidate, and it is almost complete at present.
イネ白葉枯病 (bac ter i al leaf bl ight of r ice) は、 日本のみならずアジア の稲作地帯をはじめ、 アフリカ、 オーストラリア、 ラテンアメリカ及び米国にお いて発生する世界的に重要なイネの病害である。  Bacterial leaf blight of rice is a globally important disease of rice that occurs not only in Japan, but also in rice cultivation areas in Asia, Africa, Australia, Latin America and the United States. It is.
本病を引き起こす病原細菌は、 Xanthom as oryzae pv. oryzae (イネ白葉枯 病菌) で、 イネ品種に対して病原性が異なる多数のレースの存在が知られ、 病原 性が高度に分化した細菌である。  The pathogenic bacterium that causes this disease is Xanthom as oryzae pv. Oryzae, a rice cultivar that is known to have a large number of races that differ in pathogenicity to rice varieties, and that is highly differentiated. .
葉枯れを引き起こす病原細菌は、 主に葉縁に分布する水孔から通道管を通って 導管内へ侵入し増殖する。 増殖した細菌が水分の上昇を妨げるために、 葉は局部 的に萎ちようし、 葉枯れ (leaf bl ight) の症状が起こるものと考えられている。 白葉枯病の発症メカニズムについては、 毒素説などが知られているが、 その詳細 は不明であり、 今後解明すべき問題の一つである。  Pathogenic bacteria that cause leaf wilt invade the conduits, mainly through the water holes distributed on the leaf margins, through conduits, and multiply. It is believed that the leaves grow wrinkled locally as the bacteria that grow out impede the rise in water, causing the phenomenon of leaf blight. Although there is a known toxin theory about the onset mechanism of Bacterial blight, the details are unknown, and it is one of the issues that should be elucidated in the future.
また、 本細菌が属する 属は、 多様な植物に病気を引き起こす細菌 で構成され、 且つその種類も非常に多いことが知られ、 農業上重要な細菌群であ る。  The genus to which this bacterium belongs is composed of bacteria that cause disease in various plants, and is known to be of a very large variety, and is a group of bacteria important in agriculture.
一方、 感染相手 (宿主) であるイネは、 重要な穀物であると同時に、 育種、 病 害抵抗性機構をはじめとした様々な植物の分子生物学的研究の一大モデルとして 世界的に精力的に研究がなされているモデル植物である。 一般に、 植物病原細菌が植物に病気を弓 ίき起こす過程には、 宿主認識/感染成 立と発病因子放出 Ζ発病という 2つの過程があり、 そこには多くの遺伝子が関与 すると考えられている。 しかし、 詳細については未だ不明な点が多い。 On the other hand, rice, the infection partner (host), is an important crop, and at the same time, is a vigorous global model as a major model for molecular biology research on various plants, including breeding and disease resistance mechanisms. This is a model plant that has been studied. In general, the process by which phytopathogenic bacteria cause disease in plants involves two processes, host recognition / infection establishment and pathogen release / pathogenesis, and many genes are thought to be involved in these processes. . However, details are still unknown.
現在までに、 イネ白葉枯病菌において【ま、 いくつかの病原性関連遺伝子がクロ —ン化され、 それらの機能解析が行われている。 しかしながら、 病原性関連遺伝 子群の全体像を網羅的に把握し、 またゲノム上での分布 ·位置関係を特定すると いった分子生物学的基盤の確立を目指した総合的な解析は行われていない。  Until now, several pathogenicity-related genes have been cloned in the bacterial blight of rice, and their functional analysis has been performed. However, comprehensive analyzes have been conducted with the aim of establishing a molecular biological basis, such as comprehensively understanding the entire picture of the pathogenicity-related genes and identifying their distribution and location on the genome. Absent.
これまでイネ白葉枯病菌には有効な農薬等の資材がないため、 その防除対策と しては主にイネ白葉枯病抵抗性遺伝子を育種によって導入することで、 イネ白葉 枯病抵抗性品種を育成し栽培してきた。 しかし、 抵抗性遺伝子を導入した耐病性 品種の栽培は新たな病原型(レース)を示す病原菌の出現とともに罹病化する、 所 謂、 抵抗性の崩壌が報告されている。  To date, rice blight disease bacterium has no effective materials such as pesticides. As a control measure, rice blast blight resistance genes are mainly introduced by breeding to control rice blast blight resistant varieties. It has been raised and cultivated. However, it has been reported that cultivation of disease-resistant varieties into which a resistance gene has been introduced becomes ill with the emergence of pathogenic bacteria exhibiting a new pathogenic type (race), so-called resistance crushing.
また、 病原菌の検出法としてはイネ白葉枯病菌に特異的に感染するファージを 検出することによって、 発生予察を行う方法が知られている。 しかし、 DNAの検 出による簡便なイネ白葉枯病の診断技術【まこれまでのところ知られていない。 発明の開示  In addition, as a method for detecting pathogens, a method of predicting the outbreak by detecting phages specifically infecting Bacterial Blight Pathogen of rice is known. However, a simple technique for diagnosing rice blight disease by detecting DNA is not known. Disclosure of the invention
本発明は、 このような状況に鑑みてなされたものであり、 その目的は、 イネの 重要な病原細菌であるイネ白葉枯病菌の病原性に関わる遺伝子を同定することを 目的とする。 より詳しくは、 イネ白葉枯病菌の病原性に関わる遺伝子の有無を指 標とすることにより、 被検ィネについてィネ白葉枯病を簡便に診断することがで きる方法の提供を課題とする。  The present invention has been made in view of such a situation, and an object of the present invention is to identify a gene involved in the pathogenicity of a rice bacterial wilt disease which is an important pathogenic bacterium of rice. More specifically, it is an object of the present invention to provide a method for easily diagnosing rice leaf blight on a test rice by setting the presence or absence of a gene related to the virulence of rice leaf blight fungus as an indicator. .
一般に、 植物、 動物を問わず病原細菌【ま、 病原を引き起こす遺伝子群をゲノム あるいはプラスミド上に大きなクラスター (病原性アイランド) を形成して存在 させていることが知られている。 本発明のイネ白葉枯病菌においても、 そのよう な病原性遺伝子クラスターを形成している可能性が予測された。 そこで、 本発明 者らは、 特にイネ白葉枯病菌をはじめとした植物病原細菌において、 病原性を発 現する上で重要な病原性分泌装置 (タイプ III分泌装置)をコードする hrp遺伝子 クラス夕一と、 レース分化等の病原性の多様化に関わる^病原性遺伝子 In general, it is known that pathogenic bacteria, both plants and animals, exist in the form of large clusters (pathogenic islands) on genomes or plasmids, causing genes that cause pathogens. It was predicted that the bacterial pathogen of the present invention may form such a virulence gene cluster. Therefore, the present invention In particular, we found that the hrp gene class encoding a pathogenic secretory device (type III secretion device) that is important for expressing pathogenicity in plant pathogenic bacteria such as Bacterial Blight Fungus of Rice, and race differentiation ^ Pathogenic genes involved in diversification of pathogenicity such as
(avrilucence gene)の解析を中心に、 鋭意研究を行った。  (avrilucence gene) analysis.
まず本発明者らは、 植物一微生物相互作用における微生物側の病原性発現機構 や応答機構解明のための分子生物学的基盤の確立をはかることに着手した。 詳し くは、 イネゲノム研究で得られる病害抵抗性遺伝子の解析を通して、 植物 ^微生 物相互作用の研究に応用展開されることを視野におき、 本発明者らは、 イネ白葉 枯病菌のゲノム解析を行った。 ゲノム解析に用いた菌株としては、 イネゲノム研 究においてイネ白葉枯病抵抗性遺伝子 Xal (Yoshimura, S. et al. (1998) .  First, the present inventors set out to establish a molecular biological basis for elucidating the mechanism of pathogenicity expression and response mechanism on the microorganism side in plant-microbe interaction. In detail, through the analysis of the disease resistance gene obtained in the rice genome research, with the view that it will be applied to the research on plant-microorganism interaction, the present inventors have analyzed the genome of rice white leaf blight fungus. Was done. The strain used for genome analysis was Xal (Yoshimura, S. et al. (1998), a rice leaf blight resistance gene in rice genome research.
Expression of Xal, a bacterial bl ight-resistance gene in rice, is induced by bacterial inoculat ion. Pro Nat l. Acad. Sci. U. S. A. 95 : 1663- 8)が単離され、 その構造解析が行われていた点、 即ち相互作用を解明するに当た り、 抵抗性遺伝子 (Xal)に対して非病原性遺伝子(avrXal)を有する菌株を対象に、 さらに多数の非病原性遺伝子を有すると考えられる (病原性スペクトラムが狭 レ 点を考慮した結果、 日本のレース Iの代表菌株である MAFF311018 (T7174)を 供試した。 Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculat ion.Pro Natl.Acad.Sci. USA 95: 1663-8) and its structural analysis was performed. In other words, in elucidating the interaction, it is considered that strains having a non-pathogenic gene (avrXal) with respect to the resistance gene (Xal) may have more non-pathogenic genes (pathogenicity). As a result of considering the narrow spectrum, we tested MAFF311018 (T7174), a representative strain of Race I in Japan.
迅速かつ簡便的な病原菌の診断には、 ィネ白葉枯病菌に特異的な遺伝子領域等 を増幅する PCRによる検出が有効である。 また、 病害抵抗'性品種には、 病原菌由 来の病原性遺伝子を植物体に導入することによって、 植物側に常時抵抗性誘導さ せること力 S有効である。 本発明者らは農業資源研究所で保存してある日本産のィ ネ白葉枯病菌から病原性遺伝子群及びその近傍領域の DNAをクローン化し、 その 塩基配列を決定した結果、 既存のデータベース上に有意なネ目同性を示さないイネ 白葉枯病菌固有の 14の新規病原性遺伝子を同定することに成功した。 これらの 遺伝子はイネゲノム中には見出されないことから、 被検イネについて、 これらの 新規病原性遺伝子の.有無を指標とすることにより、 簡便かつ正確にィネ白葉枯病 の診断を行うことが可能である。 従って、 本発明者らによって見出された新規遺 伝子は、 非常に有用性の高いものと言える。 本発明者らは実際に、 該新規病原性 遺伝子にハイブリダィズし、 該遺伝子を增幅可能な PCRプライマーセットを用い て、 被検イネについてイネ白葉枯病菌を特異的に検出することに成功した。 また、 本発明によって得られたイネ白葉枯病菌のゲノム解析に関する情報は、 病原性機構解明のための有力な' I青報になるとともに、 XanthomoMS属細菌の病原 性の多様性をはじめとした遺伝的多様性の解析や分類研究において有効な知見と なるものと期待される。 For a quick and simple diagnosis of pathogenic bacteria, PCR-based detection that amplifies a gene region specific to Bacterial Blight Leaf Blight is effective. In addition, it is effective to introduce a virulence gene derived from a pathogenic bacterium into a plant body so that the plant can always induce resistance to the plant side. The present inventors cloned the DNA of the virulence gene group and the DNA in the vicinity thereof from Japanese rice leaf blight fungus stored at the National Institute for Agricultural Resources, and determined the nucleotide sequence. We succeeded in identifying 14 novel virulence genes unique to Bacterial Blight Pathogen that do not show significant homosexuality. Since these genes are not found in the rice genome, the use of these novel pathogenic genes in test rice as an index makes it easy and accurate Can be diagnosed. Therefore, the novel gene discovered by the present inventors can be said to be extremely useful. The present inventors have actually hybridized to the novel virulence gene and succeeded in specifically detecting rice Bacterial Blight on test rice using a PCR primer set capable of spreading the gene. In addition, the information on the genome analysis of Bacterial Leaf blight obtained by the present invention will be a powerful 'I blueprint' for elucidating the pathogenic mechanism, as well as genetic information including the diversity of pathogenicity of XanthomoMS bacteria. It is expected to be useful knowledge in the analysis of genetic diversity and classification research.
即ち本発明は、 イネ白葉枯病菌の新規病原性遺伝子群およびその利用に関し、 より詳しくは、  That is, the present invention relates to a novel virulence gene group of rice bacterial wilt and its use.
〔1〕 イネ白葉枯病菌に由来する、 下記 (a ) から (d ) のいずれかに記載の  [1] Any one of the following (a) to (d) derived from the bacterial wilt of rice
( a ) 配列番号: 2力、ら 2 8のいずれかの偶数番号に記載のアミノ酸配列からな るタンパク質をコードする DNA。 (a) SEQ ID NO: DNA encoding a protein consisting of the amino acid sequence of any one of the even numbers of any one of 28, et al.
( b ) 配列番号: 1力 ^ら 2 7のいずれかの奇数番号に記載の塩基配列のコード領 域を含む DNA。  (b) SEQ ID NO: DNA containing the coding region of the nucleotide sequence described in any of the odd-numbered amino acids of SEQ ID NO: 27.
( c ) 配列番号: 2から 2 8のいずれかの偶数番号に記載のアミノ酸配列におい て 1若しくは複数のアミノ酸が置換、 欠失、 挿入、 および/または付加したアミ ノ酸配列を有するタンパク質をコードする DNA。  (c) SEQ ID NO: Encodes a protein having an amino acid sequence in which one or more amino acids have been substituted, deleted, inserted, and / or added in the even-numbered amino acid sequence of any one of SEQ ID NOS: 2 to 28 DNA.
( d ) 配列番号: 1から 2 7のいずれかの奇数番号に記載の塩基配列からなる DNAとストリンジェントな条件下でハイブリダイズする DNA。  (d) a DNA that hybridizes under stringent conditions to a DNA consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 27;
〔2〕 下記 (a ) または (b ) のいずれかに記載の DNA。  [2] DNA according to any one of the following (a) or (b):
( a ) 〔1〕 に記載の DNAの転写産物と相補的なアンチセンス RNAをコードする DNA。  (a) DNA encoding an antisense RNA complementary to the transcript of the DNA of [1].
( b ) 〔1〕 に記載の DNAの転写産物を特異的に開裂するリポザィム活性を有す る NAをコードする DNA。 〔3〕 〔1〕 または 〔2〕 に記載の DNAを含むベクター。 (b) DNA encoding NA having lipozyme activity that specifically cleaves the transcription product of the DNA according to [1]. [3] A vector containing the DNA of [1] or [2].
〔4〕 〔1〕 または 〔2〕 に記載の DNAまたは 〔3〕 に記載のベクターを保持 する形質転換細胞。  [4] A transformed cell carrying the DNA of [1] or [2] or the vector of [3].
〔5〕 植物細胞である、 〔4〕 に記載の形質転換細胞  [5] the transformed cell of [4], which is a plant cell;
〔6〕 〔5〕 に記載の形質転換細胞を含む形質転換植物体。  [6] A transformed plant comprising the transformed cell according to [5].
〔7〕 〔6〕 に記載の形質転換植物体の子孫またはクローンである、 形質転換 植物体。  [7] A transformed plant, which is a progeny or clone of the transformed plant of [6].
〔8〕 〔6〕 または 〔7〕 に記載の形質転換植物体の繁殖材料。  [8] A material for propagation of the transformed plant according to [6] or [7].
〔9〕 配歹 (J番号: 1から 2 7のいずれかの奇数番号に記載の塩基配列若しくは その相補配歹【Jにおける少なくとも 15の連続する塩基配列を含むオリゴヌクレオ チド。  [9] An oligonucleotide comprising at least 15 consecutive nucleotide sequences in the arrangement (J number: any one of the odd-numbered numbers from 1 to 27, or its complementary arrangement [J].
〔1 0〕 配列番号: 1力、ら 2 7のいずれかの奇数番号に記載の塩基配列からな る DNAと特異的にハイブリダィズし、 少なくとも 15塩基の鎖長を有するオリゴ ヌクレオチド。  [10] SEQ ID NO: 1. An oligonucleotide which specifically hybridizes with DNA consisting of the nucleotide sequence of any one of odd numbers of SEQ ID NO: 27 and has a chain length of at least 15 bases.
〔1 1〕 イネがイネ白葉枯病菌に感染しているか否かを診断する方法であって、 [11] A method for diagnosing whether or not rice is infected with the bacterial wilt disease,
( a ) イネ植物体若しくはその一部から核酸試料を調製する工程、 (a) preparing a nucleic acid sample from a rice plant or a part thereof,
( b ) 該核酸試料における、 〔1〕 に記載の DNAまたはその発現産物の存在を検 出する工程、 を含み、  (b) detecting the presence of the DNA or the expression product thereof according to (1) in the nucleic acid sample,
工程 (b ) において 〔1〕 に記載の DNAまたはその発現産物の存在が検出され た場合に、 診断対象であるイネがイネ白葉枯病菌に感染していると判定される方 法、 を提供するものである。  A method for determining that the rice to be diagnosed is infected with Bacterial Leaf blight, if the presence of the DNA or its expression product according to [1] is detected in step (b). Things.
本発明者らは、 イネ白葉枯病菌の新規な 14の病原性遺伝子を同定した。 本発 明ままず、 イネ白葉枯病菌に由来する DNAを提供する。  The present inventors have identified 14 novel virulence genes of the bacterial leaf blight fungus. First, the present invention provides DNA derived from the bacterial wilt of rice.
本発明に含まれる、 本発明者らにより単離されたイネ白葉枯病菌病原性遺伝子 の塩基配列を配列番号: 1力 ^ら 2 7の奇数番号に、 それぞれの塩基配列によつて コードされる夕ンパク質のアミノ酸配列をそれぞれ配列番号: 2力 ら 2 8の偶数 番号に示す。 即ち本発明は、 イネ白葉枯病菌に由来する配列番号: 2から 2 8の いずれかの偶数番号に記載のァミノ酸配列からなるタンパク質をコードする DNA、 および、 配列番号: 1から 2 7のいずれかの奇数番号に記載の塩基配列のコード 領域を含む DNAを提供する。 The nucleotide sequence of the virulence gene of Bacterial Leaf blight of Rice isolated by the present inventors, which is included in the present invention, is encoded by an odd number of SEQ ID NO: 1 and the like by each of the nucleotide sequences. The amino acid sequence of the protein is shown in SEQ ID NO: 2 Shown in the numbers. That is, the present invention relates to a DNA encoding a protein consisting of the amino acid sequence described in any one of SEQ ID NOS: 2 to 28 derived from Bacterial Leaf blight of rice, and any one of SEQ ID NOs: 1 to 27. A DNA comprising the coding region of the nucleotide sequence described in the odd number.
また、 本発明は、 配列番号: 2から 2 8のいずれかの偶数番号に記載のタンパ ク質と構造的に類似しているタンパク質をコードする DNAも提供する。 このよう な MAとしては、 該タンパク質において 1または複数のアミノ酸が置換、 欠失、 付加、 およびノまたは挿入されたアミノ酸配列からなるタンパク質をコードする DNAが挙げられる。  The present invention also provides a DNA encoding a protein structurally similar to the protein described in any of SEQ ID NOs: 2 to 28. Examples of such MA include a DNA encoding a protein consisting of an amino acid sequence in which one or more amino acids have been substituted, deleted, added, or inserted or inserted in the protein.
上記の DNAを調製するために、 当業者によく知られた方法としては、 /\ィプリ ダイゼーシヨン技術 (Southern, EM., J Mol Biol, 1975, 98, 503. ) やポリメ ラーゼ連鎖反応 (PCR) 技術 (Saiki, RK. et al. , Sc ience, 1985, 230, 1350·、 Saiki, RK. et al. , Sc ience, 1988, 239, 487. ) の他に、 例えば、 該 DNAに対 し、 s i te— directed mu tagenes i s法 (Kramer, . & Fr i tz, HJ. , Methods  Methods well known to those skilled in the art for preparing the above-mentioned DNA include / \ technology (Southern, EM., J Mol Biol, 1975, 98, 503.) and polymerase chain reaction (PCR). In addition to technology (Saiki, RK. Et al., Science, 1985, 230, 1350 ·, Saiki, RK. Et al., Science, 1988, 239, 487.), for example, for the DNA, si te—directed mu tagenes is method (Kramer,. & Fritz, HJ., Methods
Enzymol, 1987, 154, 350. ) により変異を導入する方法が挙げられる。 また、 自 然界においても、 塩基配列の変異によりコードするタンパク質のアミノ酸配列が 変異することは起こり得ることである。 また、 塩基配列が変異していても、 その 変異がタンパク質中のアミノ酸の変異を伴わない場合 (縮重変異) があり、 この ような縮重変異 DNAも本発明に含まれる。 Enzymol, 1987, 154, 350.). Also, in nature, it is possible that the amino acid sequence of the encoded protein is mutated due to the mutation of the base sequence. Further, even when the nucleotide sequence is mutated, the mutation may not accompany the amino acid mutation in the protein (degenerate mutation), and such a degenerate mutant DNA is also included in the present invention.
本発明の DNAには、 天然あるいは単離 ·精製されたゲノム DNA、 cDNA、 および 化学合成 DNAが含まれる。 ゲノム DNAおよび cDNAの調製は、 当業者にとって常 套手段を利用して行うことが可能である。 ゲノム DNAは、 例えば、 配列番号: 2 から 2 8のいずれかの偶数番号に記載のタンパク質をコードする遺伝子を有する 生物からゲノム DNAを抽出し、 ゲノミックライブラリー (ベクタ一としては、 プ ラスミド、 ファージ、 コスミド、 BAC、 PAC等が利用できる) を作成し、 これを 展開して、 該タンパク質をコードする DNAを基に調製したプローブを用いてコロ ニーハイブリダイゼーシヨンあるいはプラークハイプリダイゼーシヨンを行うこ とにより調製することが可能である。 また、 配列番号: 2から 2 8のいずれかの 偶数番号に記載のタンパク質をコードする DNAに特異的なプライマーを作成し、 これを利用した PCRを行うことによって調製することも可能である。 また、 cDNA は、 例えば、 該タンパク質をコードする遺伝子を有する生物から抽出した mRNA を基に cDNAを合成し、 これを λ ZAP等のベクターに挿入して cDNAライブラリ一 を作成し、 これを展開して、 上記と同様にコロニーハイブリダィゼーシヨンある いはプラークハイブリダィゼーシヨンを行うことにより、 また、 PCRを行うこと により調製することが可能である。 このように、 ハイブリダィゼーシヨン技術や PCR技術によって単離し得る、 配列番号: 1力、ら 2 7のいずれかの奇数番号に記 載の塩基配列からなる DNAとハイプリダイズする DNAもまた、 本発明の DNAに含 まれる。 The DNA of the present invention includes natural or isolated / purified genomic DNA, cDNA, and chemically synthesized DNA. Preparation of genomic DNA and cDNA can be performed by a person skilled in the art using conventional means. For example, genomic DNA is extracted from an organism having a gene encoding a protein represented by any one of SEQ ID NOs: 2 to 28, and a genomic library (plasmid, phage , Cosmids, BACs, PACs, etc. can be used), developed and developed using a probe prepared based on the DNA encoding the protein. It can be prepared by performing knee hybridization or plaque hybridization. It can also be prepared by preparing a primer specific to the DNA encoding the protein described in any of the even-numbered SEQ ID NOs: 2 to 28, and performing PCR using the primer. For cDNA, for example, a cDNA is synthesized based on mRNA extracted from an organism having a gene encoding the protein, inserted into a vector such as λ ZAP to prepare a cDNA library, and developed. Then, it can be prepared by performing colony hybridization or plaque hybridization as described above, or by performing PCR. Thus, DNA that can be isolated by the hybridization technique or the PCR technique and that hybridizes with the DNA consisting of the base sequence described in any of the odd-numbered SEQ ID NO: 27 or 27 is also used. It is included in the DNA of the present invention.
このような DNAを単離するためには、 好ましくはストリンジェントな条件下で ハイブリダィゼーション反応を行う。 本発明においてストリンジェン卜な八イブ リダィゼ一シヨン条件とは、 6M尿素、 0. 4% SDS、 0. 5 XSSCの条件またはこれ と同等のストリンジエンシーのハイブリダイゼ一ション条件を指す。 よりストリ ンジエンシーの高い条件、 例えば、 6M尿素、 0. 4% SDS、 0. 1 X SSCの条件下で は、 より相同性の高い DNAを単離できることが期待される。 こうして単離された DNAは、 アミノ酸レベルにおいて、 列番号: 2から 2 8のいずれかの偶数番号に 記載のアミノ酸配列と高い相同性を有すると考えられる。 高い相同性とは、 アミ ノ酸配列全体で少なくとも 70 %以上、 好ましくは 80%以上、 さらに好ましくは 90%以上、 最も好ましくは 95 %以上の配列の同一性を指す。  To isolate such DNA, a hybridization reaction is preferably performed under stringent conditions. In the present invention, the stringent hybridization conditions refer to conditions of 6 M urea, 0.4% SDS, 0.5 XSSC or a hybridization condition of a stringency equivalent thereto. Under conditions of higher stringency, for example, 6M urea, 0.4% SDS, and 0.1 × SSC, it is expected that more homologous DNA can be isolated. The DNA thus isolated is considered to have high homology at the amino acid level to the amino acid sequence described in any of the even-numbered SEQ ID NOs: 2 to 28. High homology refers to sequence identity of at least 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more of the entire amino acid sequence.
アミノ酸配列や塩基配列の同一性は、 力一リンおよびアルチユールによるアル ゴリズム BLAST (Proc. Nat l. Acad. Sei. USA, 1990, 87, 2264-2268. Karl in, S. & Al tscliul, SF. , Proc. Nat l. Acad. Sei. USA, 1993, 90, 5873. ) を用い て決定できる。 BLASTのアルゴリズムに基づいた BLASTNや BLASTXと呼ばれるプ ログラムが開発されている (Al tschul, SF. et al. , J Mol B iol, 1990, 215, 403. ) 。 BLASTNを用いて塩基配列を解析する場合は、 ノ°ラメータ一は、 例えば score= 100、 wordlength= 12とする。 また、 BLASTXを用いてアミノ酸配列を解 析する場合は、 パラメ一夕一は、 例えば score=50、 wordlength=3とする。 The amino acid sequence and nucleotide sequence identity can be determined by the algorithm BLAST (Proc. Natl. Acad. Sei. USA, 1990, 87, 2264-2268. Karl in, S. & Al tscliul, SF. Natl. Acad. Sei. USA, 1993, 90, 5873.). A program called BLASTN or BLASTX based on the BLAST algorithm. A program has been developed (Altschul, SF. Et al., J Mol Biol, 1990, 215, 403.). When a nucleotide sequence is analyzed using BLASTN, the parameters are, for example, score = 100 and wordlength = 12. Also, when analyzing amino acid sequences using BLASTX, the parameters should be, for example, score = 50 and wordlength = 3.
BLASTと Gapped BLASTプログラムを用いる場合は、 各プログラムのデフォルト パラメータ一を用いる。 これらの解析方法の具体的な手法は公知である When using BLAST and Gapped BLAST programs, use the default parameter of each program. Specific methods of these analysis methods are known.
(ht tp://www. ncbi. nlm. nih. gov/) 0 (ht tp: //www.ncbi.nlm.nih.gov/) 0
また本発明は、 本発明の DNAの転写産物と相補的なアンチセンス RNAをコード する DNA、 および本発明の DNAの転写産物を特異的に開裂するリポザィム活性を 有する RNAをコードする DNAを提供する。  The present invention also provides a DNA encoding an antisense RNA complementary to a transcript of the DNA of the present invention, and a DNA encoding an RNA having a lipozyme activity that specifically cleaves the transcript of the DNA of the present invention. .
本発明の好ましい態様においては、 上記 DNAを用いて、 例えば、 本発明の DNA の発現が抑制されたイネ白葉枯病抵抗性植物の作出を行うことができる。  In a preferred embodiment of the present invention, the above-mentioned DNA can be used, for example, to produce a plant resistant to bacterial blight of rice with suppressed expression of the DNA of the present invention.
本発明の DNAの発現が抑制された形質転換植物体を作製する場合には、 本発明 の DNAの発現を抑制するための DNAを適当なベクタ一に挿入して、 これを植物細 胞に導入し、 これにより得られた形質転換植物細胞を再生させる。 「本発明の DNAの発現抑制」 には、 遺伝子の転写の抑制、 および Zまたはタンパク質への翻 訳の抑制が含まれる。 また、 DNAの発現の完全な停止のみならず発現の減少も含 まれる。  When producing a transformed plant in which the expression of the DNA of the present invention is suppressed, a DNA for suppressing the expression of the DNA of the present invention is inserted into an appropriate vector and introduced into a plant cell. Then, the transformed plant cells thus obtained are regenerated. "Suppression of expression of the DNA of the present invention" includes suppression of gene transcription and suppression of translation into Z or protein. It also includes a decrease in expression as well as a complete cessation of DNA expression.
植物における特定の遺伝子の発現を抑制する方法としては、 アンチセンス技術 を利用する方法が当業者に最もよく利用されている。 植物細胞におけるアンチセ ンス効果は、 電気穿孔法で導入したアンチセンス RNAが植物においてアンチセン ス効果を発揮することをエッカーらが示したことで初めて実証された (Ecker JR & Davis RW: Proc. Nat l. Acad. Sci. USA 83 : 5372, 1986) 。 その後、 タバコ やペチュニアにおいてもアンチセンス RNAの発現により標的遺伝子の発現が低下 した例が報告されており (van der Krol AR, et al : Nature 333: 866, 1988) 、 現在では、 アンチセンス技術は植物における遺伝子発現を抑制させる手段として - 1 o - 確立している。 As a method for suppressing the expression of a specific gene in a plant, a method utilizing antisense technology is most often used by those skilled in the art. The antisense effect in plant cells was first demonstrated by Ecker et al. Showing that antisense RNA introduced by electroporation exerts an antisense effect in plants (Ecker JR & Davis RW: Proc. Natl. Acad. Sci. USA 83: 5372, 1986). Since then, it has been reported that the expression of the target gene was reduced in tobacco and petunia due to the expression of antisense RNA (van der Krol AR, et al: Nature 333: 866, 1988). As a means to suppress gene expression in plants -1 o-Established.
ァンチセンス核酸が標的遺伝子の発現を抑制する作用としては、 以下のような 複数の要因が存在する。 すなわち、 三重鎖形成による転写開始阻害、 RNAポリメ ラ一ゼによって局部的に開状ループ構造が作られた部位とのハイブリッド形成に よる転写阻害、 合成の進みつつある RNAとのハイプリッド形成による転写阻害、 イン卜ロンとェクソンとの接合点におけるハイブリッド形成によるスプライシン グ阻害、 スプライソソーム形成部位とのハイブリツド形成によるスプライシング 阻害、 mRNAとのハイブリッド形成による核から細胞質への移行阻害、 キヤッピ ング ¾ 立やポリ(A)付加部位とのハイプリッド形成によるスプライシング阻害、 翻訳開始因子結合部位とのハイプリッド形成による翻訳開始阻害、 開始コドン近 傍のリポソ一ム結合部位とのハイプリッド形成による翻訳阻害、 mRNAの翻訳領 域やポリゾーム結合部位とのハイプリッド形成によるペプチド鎖の伸長阻害、 お よび核酸とタンパク質との相互作用部位とのハイプリッド形成による遺伝子発現 阻害などである。 このようにアンチセンス核酸は、 転写、 スプライシングまたは 翻訳など様々な過程を阻害することで、 標的遺伝子の発現を抑制する (平島およ び井上: 新生化学実験講座 核酸 IV遺伝子の複製と発現 (日本生化学会編, 東 京化学同人) p. 319-347, 1993) 。  The action of the antisense nucleic acid to suppress the expression of the target gene has several factors as follows. In other words, inhibition of transcription initiation by triplex formation, inhibition of transcription by hybridization with a site where an open loop structure was locally formed by RNA polymerase, inhibition of transcription by formation of a hybrid with RNA that is undergoing synthesis Inhibition of splicing by hybridization at the junction of intron and exon; inhibition of splicing by hybridization with spliceosome-forming sites; inhibition of nuclear-to-cytoplasmic translocation by hybridization with mRNA; capping; (A) Splicing inhibition by the formation of a hybrid with the additional site, translation initiation inhibition by the formation of a hybrid with the translation initiation factor binding site, translation inhibition by the formation of a hybrid with the liposomal binding site near the start codon, translation region of mRNA And hybrids with polysome binding sites Outgrowth inhibitory peptide chain by forming, and the like gene expression inhibition by Haipuriddo forming the interaction site with our and nucleic acids and proteins. In this way, antisense nucleic acids suppress target gene expression by inhibiting various processes such as transcription, splicing, and translation. (Hirashima and Inoue: Shinsei Kagaku Kenkyusho Lecture Nucleic acid IV gene replication and expression (Japan Biochemical Society, Tokyo Chemical Dojin) p.319-347, 1993).
本発明で用いられるアンチセンス配列は、 上記のいずれの作用により標的遺伝 子の発現を抑制してもよい。 一つの態様としては、 遺伝子の mRNAの 5'端近傍の 非翻訳領域に相補的なアンチセンス配列を設計すれば、 遺伝子の翻訳阻害に効果 的と考えられる。 また、 コード領域もしくは 3'側の非翻訳領域に相補的な配列 も使用することができる。 このように、 遺伝子の翻訳領域だけでなく非翻訳領域 の配歹 [Jのアンチセンス配列を含む DNAも、 本発明で利用されるァンチセンス DNA に含まれる。 使用されるアンチセンス DNAは、 適当なプロモーターの下流に連結 され、 好ましくは 3'側に転写終結シグナルを含む配列が連結される。 このよう にして調製された DNAは、 公知の方法を用いることで、 所望の植物へ形質転換で きる。 アンチセンス DNAの配列は、 本発明のイネ白葉枯病の病原遺伝子またはそ の一部と相補的な配列であることが好ましいが、 遺伝子の発現を有効に抑制でき る限りにおいて、 完全に相補的でなくてもよい。 転写された RNAは、 標的遺伝子 の転写産物に対して好ましくは 90%以上、 最も好ましくは 95%以上の相補性を 有する。 アンチセンス配列を用いて標的遺伝子の発現を効果的に抑制するには、 アンチセンス DNAの長さは少なくとも 15塩基以上であり、 好ましくは 100塩基 以上であり、 さらに好ましくは 500塩基以上である。 通常用いられるアンチセン ス DNAの長さは 5kbよりも短く、 好ましくは 2. 5kbよりも短い。 The antisense sequence used in the present invention may suppress the expression of the target gene by any of the actions described above. In one embodiment, designing an antisense sequence complementary to the untranslated region near the 5 'end of the mRNA of a gene is considered to be effective in inhibiting translation of the gene. In addition, a sequence complementary to the coding region or the 3 ′ untranslated region can also be used. Thus, the antisense DNA used in the present invention includes not only the translated region of the gene but also the DNA containing the antisense sequence of the untranslated region. The antisense DNA to be used is ligated downstream of an appropriate promoter, and preferably a sequence containing a transcription termination signal is ligated on the 3 'side. The DNA thus prepared can be transformed into a desired plant by using a known method. Wear. The sequence of the antisense DNA is preferably a sequence that is complementary to the pathogenic gene of rice leaf blight of the present invention or a part thereof, but is completely complementary as long as gene expression can be effectively suppressed. It does not have to be. The transcribed RNA has preferably 90% or more, and most preferably 95% or more complementarity to the transcript of the target gene. To effectively suppress the expression of a target gene using an antisense sequence, the length of the antisense DNA is at least 15 bases or more, preferably 100 bases or more, and more preferably 500 bases or more. The length of commonly used antisense DNA is shorter than 5 kb, preferably shorter than 2.5 kb.
遺伝子の発現の抑制は、 また、 リポザィムをコードする DNAを利用して行うこ とも可能である。 リポザィムとは触媒活性を有する RNA分子のことを指す。 リポ ザィムには種々の活性を有するものが存在するが、 中でも RNAを切断する酵素と してのリポザィムに焦点を当てた研究により、 RNAを部位特異的に切断するリポ ザィムの設計が可能となった。 リポザィムには、 ダフレープ Iイントロン型や RNase Pに含まれる Ml RNAのように 400ヌクレオチド以上の大きさのものもあ る力 ハンマーへッド型ゃヘアピン型と呼ばれる 40ヌクレオチド程度の活性ド メインを有するものもある (小泉誠および大塚栄子: 蛋白質核酸酵素, 35 : 2191, 1990) 。  Suppression of gene expression can also be performed using DNA encoding lipozyme. Liposomes refer to RNA molecules that have catalytic activity. There are various types of liposomes that have various activities.Research focused on lipozymes as enzymes that cleave RNA has made it possible to design liposomes that cleave RNA in a site-specific manner. Was. Lipozymes include those with a size of 400 nucleotides or more, such as Daphlepe I intron type and Ml RNA contained in RNase P.Hammerhead type ゃ Hairpin type has an active domain of about 40 nucleotides There are also others (Makoto Koizumi and Eiko Otsuka: Protein Nucleic Acid Enzyme, 35: 2191, 1990).
例えば、 ハンマーヘッド型リポザィムの自己切断ドメインは、 G13U14C15とい う配列の C15の 3'側を切断するが、 その活性には U14と A9との塩基対形成が重 要とされ、 C15の代わりに A15または U15でも切断され得ることが示されている (Ko izumi M, et al : FEBS Let t 228: 228, 1988) 。 基質結合部位が標的部位近 傍の RNA配列と相補的なリポザィムを設計すれば、 標的 RNA中の Ϊ;、 UUまたは UAという配列を認識する制限酵素的な RNA切断リボザィムを作出することがで きる (Koizumi M, et al : FEBS Let t 239 : 285, 1988、 小泉誠および大塚栄子: 蛋白質核酸酵素 35 : 2191, 1990、 Koizumi M, et al : Nucl Acids Res 17 : 7059, 1989) 。 例えば、 イネ白葉枯病の病原遺伝子の DNA (配列番号: 1から 2 7のいずれかの奇数番号に記載) 中には、 標的となり得る部位が複数存在するも のと推定される。 For example, the self-cleaving domain of the hammerhead lipozyme cleaves the 3 'side of C15 in the sequence G13U14C15, but its activity requires base pairing between U14 and A9, and A15 instead of C15. Alternatively, it has been shown that U15 can also be cleaved (Koizumi M, et al: FEBS Lett 228: 228, 1988). By designing a lipozyme in which the substrate binding site is complementary to the RNA sequence near the target site, it is possible to create a restriction-enzymatic RNA-cleaving ribozyme that recognizes 、;, UU or UA in the target RNA. (Koizumi M, et al: FEBS Lett 239: 285, 1988, Makoto Koizumi and Eiko Otsuka: Protein Nucleic Acid Enzyme 35: 2191, 1990, Koizumi M, et al: Nucl Acids Res 17: 7059, 1989). For example, the DNA (SEQ ID NO: 1 to 2) It is presumed that there are a plurality of potential target sites in some of the odd numbers in 7).
また、 ヘアピン型リポザィムも本発明の目的に有用である。 このリポザィムは、 例えば夕バコリングスポットウィルスのサテライト RNAのマイナス鎖に見出され る (Buzayan JM: Nature 323 : 349, 1986) 。 ヘアピン型リポザィムからも、 標 的特異的な NA切断リポザィムを作出できることが示されている (Kikuchi Y & Sasaki N : Nucl Acids Res 19 : 6751, 1991、 菊池洋: 化学と生物 30 : 112, 1992) 。  Hairpin type liposomes are also useful for the purpose of the present invention. This lipozyme is found, for example, in the minus strand of satellite RNA of evening bacillus spot virus (Buzayan JM: Nature 323: 349, 1986). It has been shown that a hairpin-type lipozyme can also produce a target-specific NA-cleaved lipozyme (Kikuchi Y & Sasaki N: Nucl Acids Res 19: 6751, 1991; Kikuchi, Hiroshi: Chemistry and biology 30: 112, 1992) .
標的を切断できるように設計されたリポザィムは、 植物細胞中で転写されるよ うに、 カリフラワーモザイクウィルスの 35Sプロモー夕一などのプロモーターお よび転写終結配列に連結される。 このとき、 転写された RNAの 5'端や 3'端に余 分な配列が付加されていると、 リポザィムの活性が失われることがあるが、 こう いった場合は、 転写されたリボザィムを含む Aからリポザィム部分だけを正確 に切り出すために、 リポザィム部分の 5'側や 3'側にシスに働く別のトリミング リボザィムを配置させることも可能である (Taira K, et al : Protein Eng 3 : 733, 1990、 Dz ianot t AM & Buj arski JJ : Proc Nat l Acad Sc i USA 86 : 4823, 1989、 Gross ans CA & Cech T : Nucl Acids Res 19 : 3875, 1991、 Taira K, et al : Nucl Acids Res 19 : 5125, 1991) 。 また、 このような構成単位をタンデ ムに並べ、 標的遺伝子内の複数の部位を切断できるようにすることで、 より効果 を高めることもできる (Yuyama N, et al : Biochem Biop ys Res Commun 186 : 1271, 1992) 。 このように、 リポザィムを用いて本発明における標的遺伝子の転 写産物を特異的に切断することで、 該遺伝子の発現を抑制することができる。 また、 本発明の DNAを植物体に導入することによって、 植物側に常時抵抗性を 誘導させることも有効である。  The lipozyme designed to cleave the target is ligated to a promoter and transcription termination sequence, such as the cauliflower mosaic virus 35S promoter, so that it is transcribed in plant cells. At this time, if extra sequences are added to the 5'-end or 3'-end of the transcribed RNA, lipozyme activity may be lost.In such cases, the transcripted ribozyme contains In order to accurately cut out only the lipozyme portion from A, it is also possible to arrange another trimming ribozyme that acts on cis on the 5 'or 3' side of the lipozyme portion (Taira K, et al: Protein Eng 3: 733) , 1990, Dzianott AM & Bujarski JJ: Proc Natl Acad Sc i USA 86: 4823, 1989, Gross ans CA & Cech T: Nucl Acids Res 19: 3875, 1991, Taira K, et al: Nucl Acids Res 19: 5125, 1991). In addition, by arranging such structural units in tandem so that multiple sites in the target gene can be cleaved, the effect can be further enhanced (Yuyama N, et al: Biochem Biop ys Res Commun 186: 1271, 1992). Thus, by specifically cleaving the transcript of the target gene of the present invention using lipozyme, expression of the gene can be suppressed. It is also effective to introduce the DNA of the present invention into a plant so that the plant always induces resistance.
本発明の DNAは、 例えば、 組み換えタンパク質の調製に利用することが可能で ある。 組み換えタンパク質を調製する場合には、 通常、 本発明の DNAを適当な発現べ クタ一に挿入し、 該ベクターを適当な細胞に導入し、 形質転換細胞を培養して発 現させたタンパク質を精製する。 組み換えタンパク質は、 精製を容易にするなど の目的で、 他のタンパク質との融合タンパク質として発現させることも可能であ る。 例えば、 大腸菌を宿主としてマルトース結合タンパク質との融合タンパク質 として調製する方法 (米国 New Engl and BioLabs社発売のベクター pMALシリー ズ) 、 グルタチオン- S-トランスフェラーゼ(GST)との融合タンパク質として調製 する方法 (Amersham Pharmacia Biotech社発売のベクター pGEXシリーズ) 、 ヒ スチジンタグを付加して調製する方法 (Novagen社の pETシリーズ) などを利用 することが可能である。 宿主細胞としては、 組み換えタンパク質の発現に適した 細胞であれば特に制限はなく、 上記の大腸菌の他、 発現ベクターを変;!ることに より、 例えば、 酵母、 種々の動植物細胞、 昆虫細胞などを用いることが可能であ る。 宿主細胞へのベクタ一の導入には、 当業者に公知の種々の方法を用いること が可能である。 例えば、 大腸菌への導入にま、 カルシウムイオンを利用した導入 方法 (Mandel, M. & Higa, A. , Journal of Molecular Biology, 1970, 53, 158-162. , Hanahan, D. , Journal of Molecu l ar Biology, 1983, 166, 557- 580. ) を用いることができる。 宿主細胞内で発現させた組み換えタンパク質は、 該宿主細胞またはその培養上清から、 当業者に公知の方法により精製し、 回収す ることができる。 組み換えタンパク質を上記したマルト一ス結合タンパク質など との融合タンパク質として発現させた場合には、 容易にァフィ二ティ一精製を行 うことが可能である。 このようにして作製される本発明の DNAによってコードさ れるタンパク質もまた、 本発明に含まれる。 The DNA of the present invention can be used, for example, for preparing a recombinant protein. When preparing a recombinant protein, usually, the DNA of the present invention is inserted into an appropriate expression vector, the vector is introduced into appropriate cells, and the expressed protein is purified by culturing the transformed cells. I do. The recombinant protein can be expressed as a fusion protein with another protein, for example, to facilitate purification. For example, a method for preparing a fusion protein with maltose binding protein using E. coli as a host (vector pMAL series released by New Engl and BioLabs, USA), a method for preparing a fusion protein with glutathione-S-transferase (GST) (Amersham It is possible to use the vector pGEX series released by Pharmacia Biotech) or the method of adding and preparing a histidine tag (Novagen's pET series). The host cell is not particularly limited as long as it is a cell suitable for the expression of the recombinant protein. Thus, for example, yeast, various animal and plant cells, insect cells, and the like can be used. Various methods known to those skilled in the art can be used for introducing a vector into a host cell. For example, a method using calcium ions for introduction into E. coli (Mandel, M. & Higa, A., Journal of Molecular Biology, 1970, 53, 158-162., Hanahan, D., Journal of Molecule ar Biology, 1983, 166, 557-580.). The recombinant protein expressed in the host cell can be purified and recovered from the host cell or a culture supernatant thereof by a method known to those skilled in the art. When the recombinant protein is expressed as a fusion protein with the above-mentioned maltose binding protein or the like, affinity purification can be easily performed. The protein encoded by the DNA of the present invention thus produced is also included in the present invention.
得られた組み換えタンパク質を用いることにより、 これに結合する抗体を調製 することも可能である。 該抗体は、 後述のイネ白葉枯病菌に感染しているか否か を診断する方法に使用することができる。  By using the obtained recombinant protein, an antibody that binds to the protein can be prepared. The antibody can be used for a method for diagnosing whether or not the rice is infected with the bacterial leaf blight described below.
ポリクロ一ナル抗体は、 例えば、 精製した本発明のタンパク質若しくはその一 部のペプチドをゥサギなどの免疫動物に免疫し、 一定期間の後に血液を採取し、 血べいを除去した血清より調製することが可能である。 また、 モノクローナル抗 体は、 上記夕ンパク質もしくはべプチドで免疫した動物の抗体産生細胞と骨腫瘍 細胞とを融合させ、 目白勺とする抗体を産生する単一クローンの細胞 (ハイブリド —マ) を単離し、 該細胞から抗体を得ることにより調製することができる。 これ により得られた抗体は、 本発明のタンパク質の精製や検出などに利用することが 可能である。 本発明の抗体には、 ポリクローナル抗体、 モノクローナル抗体、 お よびこれら抗体の断片力 S含まれる。 The polyclonal antibody is, for example, a purified protein of the present invention or one thereof. A part of the peptide can be immunized to immunized animals such as egrets, and after a certain period of time, blood can be collected and prepared from serum from which blood bladders have been removed. In addition, the monoclonal antibody is obtained by fusing antibody-producing cells of the animal immunized with the above-mentioned protein or peptide with bone tumor cells to produce a single-clonal cell (hybrid-ma) that produces an antibody that is used as an eye-opening stump. It can be prepared by isolating and obtaining an antibody from the cells. The antibody thus obtained can be used for purification and detection of the protein of the present invention. The antibodies of the present invention include polyclonal antibodies, monoclonal antibodies, and the fragmentability of these antibodies.
また本発明は、 上記 DNAを含むベクタ一、 該ベクタ一を保持する形質転換細月包、 植物細胞である形質転換細胞、 該形質転換細胞を含む形質転換植物体、 該形質転 換植物体の子孫またはクローンである形質転換植物体、 および該形質転換植物体 の繁殖材料を提供する。  Further, the present invention provides a vector comprising the above DNA, a transformed meniscus which carries the vector, a transformed cell which is a plant cell, a transformed plant comprising the transformed cell, a transformed plant comprising the transformed cell, Provided are a transformed plant that is a progeny or a clone, and a propagation material of the transformed plant.
本発明の DNAまたは核酸の植物細胞への導入は、 当業者においては、 公知の方 法、 例えばァグロパクテリゥム法、 電気穿孔法 (エレクト口ポーレーシヨン法) 、 パーティクルガン法により実施することができる。  The introduction of the DNA or nucleic acid of the present invention into plant cells can be carried out by those skilled in the art by known methods, for example, the agrobacterium method, the electroporation method (elect-portation method), and the particle gun method. it can.
上記ァグロパクテリゥム法を用いる場合、 例えば Nagel らの方法 (Microbiol. Lett. , 1990, 67, 325. ) が用いられる。 この方法によれば、 組み換えべクタ一 をァグロパクテリゥム細菌中に形質転換して、 次いで形質転換されたァグロパク テリゥムを、 リーフディスク法等の公知の方法により植物細胞に導入する。 上記 ベクタ一は、 例えば植物体に導入した後、 本発明の DNAが植物体中で発現するよ うに、 発現プロモーターを含む。 一般に、 該プロモーターの下流には本発明の DNAが位置し、 さらに該 DNAの下流には夕一ミネ一夕一が位置する。 この目的に 用いられる組み換えべクタ一は、 植物への導入方法、 または植物の種類に応じて、 当業者によって適宜選択される。 上記プロモータ一として、 例えばカリフラワー モザイクウィルス由来の CaMV35S、 トウモロコシのュビキチンプロモーター (特 開平 2-79983号公報) 等を挙げることができる。 また、 上記夕一ミネ一夕一は、 カリフラワーモザイクウィルス由来のターミネ 一ター、 あるいはノパリン合成酵素遺伝子由来のターミネ一夕一等を例示するこ とができるが、 植物体中で機能するプロモーターやターミネータ一であれば、 こ れらに限定されない。 When the agrobacterium method is used, for example, the method of Nagel et al. (Microbiol. Lett., 1990, 67, 325.) is used. According to this method, the recombinant vector is transformed into bacterium agrobacterium, and the transformed agrobacterium is then introduced into plant cells by a known method such as a leaf disk method. The vector contains an expression promoter so that the DNA of the present invention is expressed in the plant, for example, after introduction into the plant. In general, the DNA of the present invention is located downstream of the promoter, and furthermore, one minute and one minute is located downstream of the DNA. The recombinant vector used for this purpose is appropriately selected by those skilled in the art according to the method of introduction into the plant or the type of the plant. Examples of the above promoter include CaMV35S derived from cauliflower mosaic virus, corn ubiquitin promoter (Japanese Patent Publication No. 2-79983), and the like. In addition, the above-mentioned one-minute-one-one-one-one can be exemplified by a terminator derived from a cauliflower mosaic virus or a terminator-derived one derived from a nopaline synthase gene. If it is one, it is not limited to these.
また、 本発明の DNAまたは核酸を導入する植物は、 外植片であってもよく、 こ れらの植物から培養細胞を調製し、 得られた培養細胞に導入してもよい。 本発明 の 「植物細胞」 は、 例えば葉、 根、 茎、 花および種子中の胚盤等の植物細胞、 力 ルス、 懸濁培養細胞等が挙げられる。  The plant into which the DNA or nucleic acid of the present invention is introduced may be an explant, or cultured cells may be prepared from these plants and introduced into the obtained cultured cells. The "plant cell" of the present invention includes, for example, plant cells such as leaves, roots, stems, flowers, and scutellum in seeds, virulent, suspension cultured cells, and the like.
また、 本発明の DNAまたは核酸の導入により形質転換した植物細胞を効率的に 選択するために、 上記組み換えべクタ一は、 適当な選抜マ一力一遺伝子を含む、 もしく 選抜マーカ一遺伝子を含むプラスミドベクターと共に植物細胞へ導入す るのが好ましい。 この目的に使用する選抜マーカ一遺伝子は、 例えば抗生物質ハ ィグロマイシンに耐性であるハイグロマイシンホスホトランスフェラーゼ遺伝子、 力ナマイシンまたはゲン夕マイシンに耐性であるネオマイシンホスホトランスフ エラ一ゼ、 および除草剤ホスフィノスリシンに耐性であるァセチルトランスフエ ラ一ゼ遺伝子等が挙げられる。  Further, in order to efficiently select plant cells transformed by introducing the DNA or nucleic acid of the present invention, the above-mentioned recombinant vector contains an appropriate selection marker gene and a selection marker marker gene. It is preferably introduced into a plant cell together with the containing plasmid vector. Selectable marker genes used for this purpose include, for example, the hygromycin phosphotransferase gene, which is resistant to the antibiotic hygromycin, the neomycin phosphotransferase, which is resistant to kinamicin or genyumycin, and the herbicide phosphinothricin And an acetyltransferase gene that is resistant to acetyl.
組み換えベクターを導入した植物細胞は、 導入された選抜マーカー遺伝子の種 類に従つて適当な選抜用薬剤を含む公知の選抜用培地に置床し培養する。 これに より形質転換された植物培養細胞を得ることができる。  The plant cells into which the recombinant vector has been introduced are placed on a known selection medium containing an appropriate selection agent and cultured according to the type of the introduced selection marker gene. As a result, transformed plant culture cells can be obtained.
次いで、 本発明の DNAまたは核酸を導入した形質転換細胞から植物体を再生す る。 植物体の再生は植物細胞の種類に応じて当業者に公知の方法で行うことが可 能である (Toki. et al. , Plant Phys iol, 1995, 100, 1503-1507. ) 。 例えばィ ネにおレ ^ては、 形質転換植物体を作出する手法については、 ポリエチレングリコ ールによりプロトプラストへ遺伝子導入し、 植物体 (インド型イネ品種が適して いる) を再生させる方法 (Dat ta, S K. et al. , In Gene Transfer To Plants (Potrykus I and Spangenberg Eds. ) , 1995, 66-74. ) 、 電気パルスによりプロ トプラストへ遺伝子導入し、 植物体 (日本型イネ品種が適している) を再生させ る方法 (Mi. et al. , Plant Phys iol, 1992, 100, 1503-1507. ) 、 パーテイク ルガン法により細胞へ遺伝子を直接導入し、 植物体を再生させる方法 (Chri stou, et al. , Bio/ t echno logy, 1991, 9, 957-962. ) およぴァグロバクテリウムを介 して遺伝子を導入し、 植物体を再生させる方法 (Hiei. et al. , Plant J, 1994, 6, 271-282. ) 等、 いくつかの技術が既に確立し、 本願発明の技術分野において 広く用いられている。 本発明においては、 これらの方法を好適に用いることがで さる。 Next, a plant is regenerated from the transformed cell into which the DNA or nucleic acid of the present invention has been introduced. Plant regeneration can be performed by a method known to those skilled in the art depending on the type of plant cell (Toki. Et al., Plant Physiol, 1995, 100, 1503-1507.). For example, for rice, a method for producing a transformed plant is to introduce a gene into protoplasts using polyethylene glycol to regenerate the plant (Indian rice varieties are suitable) (Dat ta, S K. et al., In Gene Transfer To Plants (Potrykus I and Spangenberg Eds.), 1995, 66-74. Gene transfer into toplasts to regenerate plants (suitable for Japanese rice varieties) (Mi. et al., Plant Physiol, 1992, 100, 1503-1507.). Genes can be directly introduced and the plant can be regenerated (Christou, et al., Bio / technology, 1991, 9, 957-962.). Some techniques such as a method for regenerating a plant (Hiei. Et al., Plant J, 1994, 6, 271-282.) Have already been established and are widely used in the technical field of the present invention. In the present invention, these methods can be suitably used.
形質転換細胞から再生させた植物体は、 次いで順化用培地で培養する。 その後、 順化した再生植物体を、 通常の栽培条件で栽培すると、 植物体が得られ、 成熟し て結実して種子を得ることができる。  The plant regenerated from the transformed cells is then cultured in a conditioned medium. Thereafter, when the regenerated acclimated plant is cultivated under normal cultivation conditions, a plant is obtained, which can be matured and ripened to obtain a seed.
なお、 このように再生され、 かつ栽培した形質転換植物体中の導入された外来 DNAまたは核酸の存在は、 公知の PCR法やサザンハイプリダイゼーション法によ つて、 または植物体中の核酸の塩基配列を解析することによって確認することが できる。 この場合、 形質転換植物体からの DNAまたは核酸の抽出は、 公知の J. Sambrookらの方法 (Molecular Cloning, 第 2版, Cold SpringHarbor laboratory Press, 1989) に準じて実施することができる。  The presence of the introduced foreign DNA or nucleic acid in the transformed and cultivated transformed plant is determined by a known PCR method or Southern hybridization method, or by the base of the nucleic acid in the plant. It can be confirmed by analyzing the sequence. In this case, extraction of DNA or nucleic acid from the transformed plant can be performed according to the known method of J. Sambrook et al. (Molecular Cloning, 2nd edition, Cold Spring Harbor laboratory Press, 1989).
再生させた植物体中に存在する本発明の DNAよりなる外来遺伝子を、 PCR法を 用いて解析する場合には、 上記のように再生植物体から抽出した核酸を铸型とし て増幅反応を行う。 また、 本発明の核酸が DNAである場合には、 該 DNAの塩基配 列に従って適当に選択された塩基配列をもつ合成したオリゴヌクレオチドをブラ イマ一として用い、 これらを混合させた反応液中おいて増幅反応を行うこともで きる。 増幅反応においては、 DNAの変性、 アニーリング、 伸張反応を数十回繰り 返すと、 本発明の MA配列を含む DNA断片の増幅生成物を得ることができる。 増 幅生成物を含む反応液を、 例えばァガロース電気泳動にかけると、 増幅された各 種の DNA断片が分画されて、 その DNA断片が本発明の DNAに対応することを確認 することが可能である。 When a foreign gene consisting of the DNA of the present invention present in a regenerated plant is analyzed by PCR, an amplification reaction is performed using the nucleic acid extracted from the regenerated plant as type III as described above. . When the nucleic acid of the present invention is DNA, a synthesized oligonucleotide having a base sequence appropriately selected according to the base sequence of the DNA is used as a primer, and the resulting mixture is mixed in a reaction solution. To perform amplification reactions. In the amplification reaction, DNA denaturation, annealing, and extension reactions are repeated several tens of times to obtain an amplification product of a DNA fragment containing the MA sequence of the present invention. When the reaction solution containing the amplified product is subjected to, for example, agarose electrophoresis, each amplified DNA fragment is fractionated, and it is confirmed that the DNA fragments correspond to the DNA of the present invention. It is possible to do.
一旦、 染色体内に本発明の DNAが、導入された形質転換植物体が得られれば、 該 植物体から有性生殖または無性生殖により子孫を得ることが可能である。 また、 該植物体やその子孫あるいはクローンから繁殖材料 (例えば種子、 果実、 切穂、 塊茎、 塊根、 株、 カルス、 プロトプラスト等) を得て、 それらを基に該植物体を 量産することも可能である。  Once a transformed plant into which the DNA of the present invention has been introduced into the chromosome is obtained, progeny can be obtained from the plant by sexual or asexual reproduction. In addition, it is also possible to obtain a propagation material (eg, seeds, fruits, cuttings, tubers, tubers, strains, calli, protoplasts, etc.) from the plant, its progeny or clones, and mass-produce the plant based on them. It is.
また、 本発明は、 配列番号: 1から 2 7のいずれかの奇数番号に記載の塩基配 列若しくはその相補配列における少なくとも 15の連続する塩基配列を含むオリ ゴヌクレオチドを提供する。 ここで 「相捕配列」 とは、 A:T、 G: Cの塩基対から なる 2本鎖 DNAの一方の鎖に対する他方の配列を指す。 また、 少なくとも 15個 の連続したヌクレオチド領域で完全に相捕配列である場合に限られず、 少なくと も 70%、 好ましくは少なくとも 80%、 より好ましくは 90%、 さらに好ましくは 95%以上の塩基配列の同一性を有すればよレ^ このような DNAは、 本発明の DNA の検出や単離を行うためのプローブとして、 また、 増幅を行うためのプライマー として有用である。  The present invention also provides an oligonucleotide comprising at least 15 contiguous base sequences in any of the odd-numbered base sequences of SEQ ID NOs: 1 to 27 or a complementary sequence thereof. As used herein, the term “acquisition sequence” refers to the other sequence for one strand of a double-stranded DNA consisting of A: T, G: C base pairs. The nucleotide sequence is not limited to a completely complementary sequence in at least 15 contiguous nucleotide regions, and is at least 70%, preferably at least 80%, more preferably 90%, and still more preferably 95% or more. Such DNA is useful as a probe for detecting or isolating the DNA of the present invention, and as a primer for performing amplification.
さらに、 本発明は、 配列番号: 1から 2 7のいずれかの奇数番号に記載の塩基 配列からなる DNAと特異的にハイブリダィズし、 少なくとも 15塩基の鎖長を有 するオリゴヌクレオチドを提供する。 該ォ Uゴヌクレオチドは、 本発明の DNAに 特異的にハイブリダィズするものである。 ここで 「特異的にハイブリダィズす る」 とは、 通常のハイプリダイゼーシヨン条件下、 好ましくはストリンジェント なハイブリダィゼ一シヨン条件下 (例えば、 サムブルックら、 Molecular Cloning, Cold Spring Harbour Laboratory Press, New York, USA,第 2版 1989 に記載の条件) において、 他のタンパク質をコードする DNAとクロスハイブリダ ィゼーションを有意に生じないことを意味する。 特異的なハイブリダィズが可能 であれば、 該オリゴヌクレオチドは、 本発明の DNAに対し、 完全に相補的である 必要はない。 本発明の DNAにハイプリダイズし、 少なくとも 15ヌクレオチドの鎖長を有す るオリゴヌクレオチドは、 本発明の DNAを検出するためのプローブやプライマー として用いることができる。 該オリゴヌクレオチドをプライマーとして用いる場 合、 その長さは、 通常 15bp〜100bpであり、 好ましくは 17bp〜30bpである。 プ ライマーは、 本発明の DNAの少なくとも一部を増幅しうるものであれば、 特に制 限されない。 Furthermore, the present invention provides an oligonucleotide having a chain length of at least 15 bases, which specifically hybridizes with a DNA consisting of the base sequence represented by any of the odd-numbered SEQ ID NOs: 1 to 27. The U-nucleotide specifically hybridizes to the DNA of the present invention. As used herein, "specifically hybridizes" means under ordinary hybridization conditions, preferably under stringent hybridization conditions (for example, Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, New York). , USA, 2nd edition 1989), does not significantly cause cross-hybridization with DNA encoding other proteins. The oligonucleotide need not be completely complementary to the DNA of the present invention, if specific hybridization is possible. Oligonucleotides that hybridize to the DNA of the present invention and have a chain length of at least 15 nucleotides can be used as probes and primers for detecting the DNA of the present invention. When the oligonucleotide is used as a primer, its length is usually 15 bp to 100 bp, preferably 17 bp to 30 bp. The primer is not particularly limited as long as it can amplify at least a part of the DNA of the present invention.
また、 上記オリゴヌクレオチドをプローブとして使用する場合、 該プローブは、 本発明の MAに特異的にハイブリダィズするものであれば、 特に制限されない。 該プローブは、 合成オリゴヌクレオチドであってもよく、 通常少なくとも 15bp 以上の鎖長を有する。  When the above oligonucleotide is used as a probe, the probe is not particularly limited as long as it specifically hybridizes to the MA of the present invention. The probe may be a synthetic oligonucleotide and usually has a chain length of at least 15 bp or more.
本発明のオリゴヌクレオチドをプローブとして用いる場合は、 適宜標識して用 レ ることが好ましい。 標識する方法としては、 T4ポリヌクレオチドキナーゼを 用いて、 オリゴヌクレオチドの 5' 端を32 Pでリン酸化することにより標識する 方法、 およびクレノウ酵素等の DNAポリメラーゼを用い、 ランダムへキサマ一ォ リゴヌクレオチド等をプライマーとして32 P等のアイソトープ、 蛍光色素、 また はピオチン等によって標識された基質塩基を取り込ませる方法 (ランダムプライ ム法等) を例示することができる。 When the oligonucleotide of the present invention is used as a probe, it is preferable that the oligonucleotide is appropriately labeled before use. Labeling can be performed by using T4 polynucleotide kinase to phosphorylate the 5 'end of the oligonucleotide with 32 P, or by random DNA oligonucleotide using a DNA polymerase such as Klenow enzyme. A method of incorporating a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin or the like using the primers as a primer (random prime method, etc.) can be exemplified.
さらに本発明は、 イネがイネ白葉枯病菌に感染しているか否かを診断する方法 を提供する。  Further, the present invention provides a method for diagnosing whether or not rice is infected with the bacterial wilt of rice.
本発明の上記診断方法においては、 まず、 (a ) イネ植物体若しくはその一部 力、ら核酸試料を調製する。 次いで、 ( b ) 該核酸試料における本発明の MAまた はその発現産物の存在を検出する。 ( b ) において、 発現産物が検出された場合 は、 診断対象であるイネがイネ白葉枯病菌に感染していると判定される。 なお、 上記 「その一部」 とは、 例えば、 植物体組織、 細胞、 または細胞抽出液等を指す。  In the diagnostic method of the present invention, first, (a) a nucleic acid sample is prepared from a rice plant or a part thereof. Next, (b) detecting the presence of MA of the present invention or its expression product in the nucleic acid sample. In (b), when the expression product is detected, it is determined that the rice to be diagnosed is infected with the bacterial wilt of rice. The “part thereof” refers to, for example, a plant tissue, a cell, a cell extract, or the like.
本発明の診断方法の一つの態様は、 プライマ一あるいはプローブを利用してィ ネ白葉枯病菌タンパク質をコードする DNAを検出する。 このようなプローブゃプ ライマーとしては、 本発明の上記オリゴヌクレオチドを用いることができる。 本発明者らは実際に、 本発明の遺伝子にハイブリダィズし、 該遺伝子を増幅可 倉 な PCRプライマーセットを用いて、 被検イネについてイネ白葉枯病菌を特異白勺 に検出することに成功した。 従って、 本発明の上記オリゴヌクレオチドは、 本発 明の診断方法に好適に使用することが可能である。 本発明の上記診断方法に用い られるオリゴヌクレオチドの一例としては、 後述の実施例 5に記載のプライマ一 セットを示すことができるが、 これに限定されない。 当業者においては、 配列番 号 : 1から 2 8のいずれかの奇数番号に記載の塩基配列を基に、 適宜、 本発明の DNAを増幅可能なプライマ一セットを設計することが可能である。 同様に、 配列 番号: 1力、ら 2 8のいずれかの奇数番号に記載の塩基配列を基に、 本発明の DNA を検出可能なプローブを設計することは、 当業者においては容易に実施すること 力 S可能である。 プライマーやプローブは必要に応じて標識されていてもよい。 標 識としては、 例えば、 放射標識が挙げられる。 本発明の診断方法に使用可能なプ ライマーまたはプローブも、 本発明に包含される。 One embodiment of the diagnostic method of the present invention uses a primer or a probe to detect a DNA encoding a rice bacterial wilt disease protein. Such a probe group As the primer, the above oligonucleotide of the present invention can be used. The present inventors have actually hybridized to the gene of the present invention, and succeeded in detecting the bacterial leaf blight of a test rice in a specific white stump using a PCR primer set capable of amplifying the gene. Therefore, the above-mentioned oligonucleotide of the present invention can be suitably used for the diagnostic method of the present invention. As an example of the oligonucleotide used in the above-described diagnostic method of the present invention, a set of primers described in Example 5 described below can be shown, but is not limited thereto. Those skilled in the art can appropriately design a set of primers capable of amplifying the DNA of the present invention based on the base sequence described in any one of the odd numbers of SEQ ID NOS: 1 to 28. Similarly, it is easy for those skilled in the art to design a probe capable of detecting the DNA of the present invention based on the base sequence described in any of the odd numbers of SEQ ID NO: 1 and 28. That power S is possible. Primers and probes may be labeled as necessary. Examples of the label include a radiolabel. Primers or probes that can be used in the diagnostic method of the present invention are also included in the present invention.
本発明の上記診断方法は、 例えば、 イネ白葉枯病菌に感染したことが疑われる イネ植物体若しくはその一部から核酸試料を調製し、 上記のプライマーを用いた ポリメラーゼ連鎖反応 (PCR) 法、 あるいは上記のプローブを利用したノーザン プロッティング法等により実施することができる。  The diagnostic method of the present invention includes, for example, a method of preparing a nucleic acid sample from a rice plant or a part thereof suspected of being infected with the bacterial leaf blight fungus, and a polymerase chain reaction (PCR) method using the above primer, or It can be carried out by a Northern plotting method or the like using the above-mentioned probe.
本発明の診断方法の他の一つの態様は、 抗体を利用し、 被検イネについて本発 明のイネ白葉枯病の病原遺伝子によってコ一ドされるタンパク質の有無を指標と して診断する方法である。 この診断に用いる抗体は、 例えば、 上述のようにして 調製することができる。 抗体は、 必要に応じて標識されていてもよい。 標識とし ては、 例えば、 酵素標識が挙げられる。 また、 抗体自体を直接標識しなくとも、 抗体に結合する物質、 例えば、 プロテイン Aなどを介して標識して、 目的のタン ノ^ク質を検出してもよい。 この診断においては、 例えば、 イネ白葉枯病菌に感染 したことが疑われるイネ植物体若しくはその一部から被検試料を調製し、 上記の 抗体を用いて ELISA法あるいはウェスタンブロット法により実施することができ る。 図面の簡単な説明 Another aspect of the diagnostic method of the present invention is a method for diagnosing a test rice using an antibody as an index based on the presence or absence of a protein encoded by the pathogenic gene of rice leaf blight of the present invention. It is. The antibody used for this diagnosis can be prepared, for example, as described above. The antibody may be labeled if necessary. Examples of the label include an enzyme label. Instead of directly labeling the antibody itself, the target protein may be detected by labeling with a substance that binds to the antibody, such as protein A. In this diagnosis, for example, a test sample is prepared from a rice plant or a part thereof suspected of having been infected with the bacterial leaf blight fungus, It can be performed by ELISA or Western blotting using antibodies. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 hrp及び周辺領域の遺伝子マップを示す図である。  FIG. 1 is a diagram showing a gene map of hrp and peripheral regions.
図 2は、 PCRプライマ一セット作成に用いた配列番号: 1 9および配列番号: 2 1の配列を表わす。 配列を黒枠で示した部分は、 各プライマーの配列を示す。 A:配列番号: 1 9における PCRプライマ一、 B:配列番号: 2 1における PCRプ ライマー。  FIG. 2 shows the sequences of SEQ ID NO: 19 and SEQ ID NO: 21 used for preparing a set of PCR primers. The portion where the sequence is indicated by a black frame indicates the sequence of each primer. A: PCR primer in SEQ ID NO: 19; B: PCR primer in SEQ ID NO: 21.
図 3は、 配列番号: 1 9の塩基配列を基に設計したプライマーセットによる各 種 ¾7^iM¾7 属細菌の PCR検出の結果を表わす写真である。 各レーンの細菌名 を写真の下に表わす。  FIG. 3 is a photograph showing the results of PCR detection of various 属 7 ^ iM¾7 bacteria using a primer set designed based on the nucleotide sequence of SEQ ID NO: 19. Bacterial names in each lane are shown below the photograph.
図 ま、 X. oryzae pv. oryzae, I. axo卿 odis pv. citri、 よひ campestris pv. 間における hpaB - hrpF領域の構造を比較した図である。 発明を実施するための最良の形態  FIG. 3 is a diagram comparing the structures of the hpaB-hrpF regions between X. oryzae pv. Oryzae, I. axo lord odis pv. Citri, and yohi campestris pv. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により、 さらに具体的に説明するが、 本発明はこれら実 施例に制限されるものではない。 〔実施例 1〕 BACライブラリ一作製  Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. [Example 1] Preparation of one BAC library
BAC (bacter ial art i f ic ial chromosome) は、 大きな DNA断片を安定に取り扱 える点、 またキメラ DNAの生成が少ない点から、 数少ないクローンでゲノム全体 を網羅することができ、 ゲノム解析を行うに当たり有効なツールの一つである。 そこで、 本発明者らは平均挿入断片長約 100から 120kbで、 約 16ゲノム分の BAG ライブラリ一を作製した(Ocliiai, H. , Inoue, Υ. , Hasebe, A. and Kaku, H. (2001) . Cons truct ion and charac ter izat ion of a Xan thomonas oryzae pv. oryzae bacterial artificial chromosome library. FEMS Microbiol. Lett. 200:59 - 65)。 BAC (bacterial art if icial chromosome) can handle large DNA fragments stably and generate less chimeric DNA, so it is possible to cover the entire genome with a few clones, One of the effective tools. Therefore, the present inventors prepared a BAG library for about 16 genomes with an average insert length of about 100 to 120 kb (Ocliiai, H., Inoue, Υ., Hasebe, A. and Kaku, H. (2001). Cons truct ion and character izat ion of a Xan thomonas oryzae pv. oryzae bacterial artificial chromosome library. FEMS Microbiol. Lett. 200: 59-65).
〔実施例 2〕 hr 遺伝子クラスタ一及び周辺領域の解析 [Example 2] Analysis of the hr gene cluster and surrounding regions
植物病原細菌が植物に病気を引き起こすには、 宿主認讖 Z感染成立と発病因子 放出/発病という大きく 2つの過程が考えられる。 hrp遺伝子クラス夕一に含ま れる遺伝子群は、 このうちの宿主認識ノ感染成立といった過程において重要な役 割を果たす病原性因子分泌機構(typelll)の構成分子をコードするのみでなく、 レ っかの病原性因子をもコードしており、 植物病原細菌において最も重要な病 原性遺伝子群であることが知られている(Bonas, U., Schulte, R. , Fenselau, S. , Minsavage, G. V. , Staskawicz, B. J. , and Stall, R. E. (1991) . Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicty and the hypersensitive response on pepper and tomato. Mol. Plant-Microbe Interact. 4:8ト 88)。  There are two major processes by which phytopathogenic bacteria can cause disease in plants: the establishment of host infection by Shinkanzin Z and the release / development of pathogens. The genes included in the hrp gene class are not only those encoding the pathogenic factor secretory mechanism (typelll), which plays an important role in the process of establishing host recognition infection, but also those that are not. It is also known to be the most important pathogenic genes in plant pathogenic bacteria (Bonas, U., Schulte, R., Fenselau, S., Minsavage, GV , Staskawicz, BJ, and Stall, RE (1991). Isolation of a gene cluster from Xanthomonas campestris pv.vesicatoria that determines pathogenicty and the hypersensitive response on pepper and tomato. Mol. Plant-Microbe Interact.
そこで、 PCRスクリーニングで単離した hrp遺伝子クラスタ一を有する BACク ローンの塩基配列をショットガン法で決定した。 決定した領域は hrp遺伝子クラ スタ一約 30 kbを含めた約 220 kbである。 この領域における遺伝子予測の結果 を図 1に示した。 XantJw腫 属で既知の hrp遺伝子クラスターを構成する 24 遺伝子すベてを含め、 合計 171遺伝子の存在を予測した。  Therefore, the nucleotide sequence of the BAC clone having the hrp gene cluster isolated by PCR screening was determined by the shotgun method. The determined region is about 220 kb including about 30 kb of the hrp gene cluster. Figure 1 shows the results of gene prediction in this region. A total of 171 genes were predicted, including all 24 genes that make up the known hrp gene cluster in the XantJw genus.
この領域で特徴的なことは、 トランスポゼースのホモログ (揷入配列: IS)が hrpクラスターの内部をはじめ、 複数の領域で且つタンデムに挿入されていた点 である。 予測した遺伝子数 171に対して、 約 2割に当たる 36個のトランスポゼ —スホモログを見出した。 また、 いくつかのトランスポーターに関連する遺伝子 や、 グレカン関係の遺伝子クラスターを見出した。 一方、 予測した遺伝子を blast検索した結果、 現時点で他に生物と有意な相同性;^認められない 14個の イネ白葉枯病菌固有と考えられる遺伝子を発見した。 該遺伝子の塩基配列を配列 番号: 1から 2 7の奇数番号に、 それぞれの塩基配列から予測されるアミノ酸配 列をそれぞれ配列番号 2力 ^ら 2 8の偶数番号に記載する。 What is unique in this region is that the transposase homologue (insert sequence: IS) was inserted in multiple regions and in tandem, including inside the hrp cluster. About 20% of the predicted 171 genes, 36 transposase-homologs were found. In addition, we found genes related to several transporters and clusters of genes related to grecan. On the other hand, as a result of a blast search of the predicted gene, 14 homologous genes with other organisms at the present time were found; Sequence the base sequence of the gene Numbers: The odd-numbered numbers from 1 to 27 are described, and the amino acid sequences predicted from the respective nucleotide sequences are described in the even-numbered numbers of SEQ ID NO: 28 to 28, respectively.
〔実施例 3〕 PCRによるイネ白葉枯病菌の特異的検出 [Example 3] Specific detection of bacterial bacterial wilt of rice by PCR
ィネ白葉枯病菌及びィネ白葉枯病菌と同じ属である各種 Xantho動 nas属細菌の DNAを踌型に図 2 Aに示したプライマーセットを用いた PCR反応を下記の条件下 で行った。 PCRプライマーセットは、 配列番号: 1 9及び 2 1からそれぞれセン ス及びアンチセンスの 20ォリゴヌクレオチドのプライマーセットを作製した PCR was carried out using the primer set shown in FIG. 2A on the rice 白 and various Xantho nasae bacteria belonging to the same genus as the rice wilt fungus under the following conditions. As the PCR primer set, primer sets of 20 sense nucleotides and antisense nucleotides were prepared from SEQ ID NOs: 19 and 21, respectively.
(図 2 ) 。 (Figure 2 ) .
配列番号: 19における PCRプライマ一  PCR primer in SEQ ID NO: 19
センスプライマー: 5' -ATGATCTTGGAATCGCACAA (配列番号: 2 9 )  Sense primer: 5'-ATGATCTTGGAATCGCACAA (SEQ ID NO: 29)
アンチセンスプライマ一: 5' - TCATGATGCCACCTCCTGCG (配列番号: 3 0 ) 配列番号: 21における PCRプライマ一  Antisense primer: 5'-TCATGATGCCACCTCCTGCG (SEQ ID NO: 30) PCR primer in SEQ ID NO: 21
センスプライマー: 5' -ATGAAACTCTCCGGCGGTAT (配列番号: 3 1 )  Sense primer: 5'-ATGAAACTCTCCGGCGGTAT (SEQ ID NO: 31)
アンチセンスプライマー: 5' - TCATGCTCGCCCGCTTTGCC (配列番号: 3 2 ) Antisense primer: 5'-TCATGCTCGCCCGCTTTGCC (SEQ ID NO: 32)
PCR反応条件は、 初期変性 94°Cで 2分後、 変性 94 15秒、 アニーリング 55°C30秒、 伸長反応 72 2分のサイクルを 30回行った後、 最終伸長反応 72°C7 分間を行った。 The PCR reaction conditions were as follows: initial denaturation 94 ° C for 2 minutes, denaturation 94 15 seconds, annealing 55 ° C 30 seconds, extension reaction 72 2 minutes 30 cycles, and final extension reaction 72 ° C 7 minutes .
PCR増幅産物は、 のァガロースダル電気泳動によって行い、 ェチディウムプ ロマイド染色後検出した。 その結果、 イネ白葉枯病菌 DNAを铸型とした PCR増幅 産物をのせたレーン A13、 A16、 B 15、 B16及び C15のみに検出された (図 3 ) 。  The PCR amplification product was detected by agarose dull electrophoresis and detected after ethidium bromide staining. As a result, it was detected only in lanes A13, A16, B15, B16 and C15 on which the PCR amplification product of rice bacterial blight fungus DNA type II was placed (FIG. 3).
〔実施例 4〕 Xan tho謹 as属細菌間におけるゲノム比較解析 [Example 4] Comparative analysis of genome among bacteria belonging to the genus Xan tho
2002年 5月、 力ンキッかいよう病菌 U¾?力 axonopodis v. citri)と キャベツ黒 i病、 (Janthom as campesiris /ゾ)の比較ゲノム解析 がブラジルの研究グループによって報告された(da Si lva, A. C. R. et al. (2002) . Compar i son of the genomes of two Xant omonas pathogens wi th d i f fer ing hos t spec i f ici t ies. Nature 417 : 459 - 463)。 いくつかの領域におい てゲノムの再編成が認められたが、 全体として相同性は高いことが明らかとなつ た。 しかしながら、 それぞれのゲノム上には 15から 18% (650から 800)の遺伝 子が互いに存在しない種固有のものであることも明らかにされている。 そこで、 イネ白葉枯病菌で得られたゲノム情報とゲノミックサザン解析による 3菌種間の 比較を行った。 In May 2002, a Brazilian research group reported a comparative genomic analysis of the fungus U¾? Axonopodis v. Citri) and cabbage black i disease (Janthom as campesiris) in May 2002 (da Silva, ACR et al. (2002). Compar i son of the genomes of two Xant omonas pathogens without dif fering host spec if ici ties. Nature 417: 459-463). Genome rearrangement was observed in some regions, but the overall homology was clearly high. However, it has also been shown that 15 to 18% (650 to 800) of genes in each genome are species-specific and non-existent. Therefore, genomic information obtained from Bacterial white blight fungus was compared with three species by genomic Southern analysis.
最初に、 hrp遺伝子クラスタ一におけるゲノム構造比較を行った結果、 各々の 遺伝子間の相同性には若干の相違はあるが、 hpaB- hrpF領域以外は同じであった (図 4 ) 。 hpaB-hrpF領域に特徴的な点として、 イネ白葉枯病菌には、 4つのト ランスポゼースのホモログが挿入され、 長さもほぼ 2倍であるのに対して、 カン キッかいよう病菌とキャベツ黒腐病菌には認められなかった。 また、 キャベツ黒 腐病菌には、 hpaBの下流に hrpWが存在するが、 他の 2菌種には見出されなかつ た。 さらに、 キャベツ黒腐病菌では、 hrpFの下流に存在する tipaFが欠失し、 し かも hrpFの転写方向も逆であった。 産業上の利用の可能性  First, the genomic structure of the hrp gene cluster was compared. As a result, there was a slight difference in the homology between the genes, but they were the same except for the hpaB-hrpF region (Fig. 4). One of the features of the hpaB-hrpF region is that the homolog of four tranpososes is inserted into rice Bacterial blight, and its length is almost doubled. Was not found. In cabbage black rot fungi, hrpW was present downstream of hpaB, but was not found in the other two species. Furthermore, in cabbage black rot fungi, tipaF downstream of hrpF was deleted and the transcription direction of hrpF was reversed. Industrial potential
本発明によって同定されたイネ白葉枯病菌の病原遺伝子は、 既知の塩基配列及 びアミノ酸配列と有意な相同性を持たないことから、 同塩基配列を利用した特異 的プローブ、 または PCRプライマーセットを作製して PCRによるイネ白葉枯病菌 の簡易検出用としての利用が可能である。  Since the pathogenic gene of Bacterial blight of the rice plant identified by the present invention has no significant homology with the known nucleotide sequence and amino acid sequence, a specific probe or PCR primer set using the nucleotide sequence is prepared. Then, it can be used for simple detection of rice leaf blight by PCR.
また、 この遺伝子を植物体に導入することによって新しい耐病性植物体の育成 が期待される。  In addition, by introducing this gene into plants, the development of new disease-resistant plants is expected.

Claims

請求の範囲 The scope of the claims
1. イネ白葉枯病菌に由来する、 下記 (a) から (d) のいずれかに記載の ( a) 配列番号: 2から 28のいずれかの偶数番号に記載のアミノ酸配列からな るタンパク質をコードする DNA。 1. Encodes a protein derived from the bacterial wilt of rice and comprising the amino acid sequence of any one of (a) SEQ ID NO: 2 to 28 described in any of (a) to (d) below DNA.
(b) 配列番号: 1から 27のいずれかの奇数番号に記載の塩基配列のコード領 域を含む DNA。  (b) SEQ ID NO: DNA containing the coding region of the nucleotide sequence described in any one of odd numbers 1 to 27.
(c) 配列番号: 2から 28のいずれかの偶数番号に記載のアミノ酸配列におい て 1若しくは複数のアミノ酸が置換、 欠失、 挿入、 およびノまたは付加したアミ ノ酸配列を有するタンパク質をコ一ドする DNA。  (c) a protein having an amino acid sequence in which one or more amino acids have been substituted, deleted, inserted, or added or deleted in the even-numbered amino acid sequence of any of SEQ ID NOs: 2 to 28; DNA to be loaded.
(d) 配列番号: 1から 27のいずれかの奇数番号に記載の塩基配列からなる DNAとストリンジェントな条件下でハイブリダイズする DNA。  (d) a DNA that hybridizes under stringent conditions to a DNA consisting of the nucleotide sequence of any one of SEQ ID NOs: 1 to 27.
2. 下記 (a) または (b) のいずれかに記載の DNA。  2. DNA described in either (a) or (b) below.
(a) 請求項 1に記載の DNAの転写産物と相補的なアンチセンス RNAをコードす る DNA。  (a) DNA encoding an antisense RNA complementary to the DNA transcript according to claim 1.
(b) 請求項 1に記載の DNAの転写産物を特異的に開裂するリポザィム活性を有 する RNAをコードする DNA。  (b) DNA encoding RNA having lipozyme activity that specifically cleaves the transcription product of the DNA according to claim 1.
3. 請求項 1または 2に記載の DNAを含むベクター。  3. A vector comprising the DNA according to claim 1 or 2.
4. 請求項 1または 2に記載の DNAまたは請求項 3に記載のベクタ一を保持す る形質転換細胞。 4. A transformed cell carrying the DNA of claim 1 or 2 or the vector of claim 3.
5. 植物細胞である、 請求項 4に記載の形質転換細胞  5. The transformed cell according to claim 4, which is a plant cell.
6. 請求項 5に記載の形質転換細胞を含む形質転換植物体。 6. A transformed plant comprising the transformed cell according to claim 5.
7. 請求項 6に記載の形質転換植物体の子孫またはクローンである、 形質転換 植物体。 7. A transformed plant, which is a progeny or a clone of the transformed plant according to claim 6.
8. 請求項 6または 7に記載の形質転換植物体の繁殖材料。 8. A propagation material for the transformed plant according to claim 6 or 7.
9 . 配列番号: 1力、ら 2 7のいずれかの奇数番号に記載の塩基配列若しくはそ の相補配列における少なくとも 15の連続する塩基配列を含むオリゴヌクレオチ ド。 9. SEQ ID NO: 1. An oligonucleotide comprising at least 15 contiguous nucleotide sequences in the odd-numbered nucleotide sequence of any one of 27 and the complementary sequence thereof.
1 0 . 配列番号: 1力 ^ら 2 7のいずれかの奇数番号に記載の塩基配列からなる DNAと特異的にハイブリダィズし、 少なくとも 15塩基の鎖長を有するオリゴヌ クレオチド。  10. SEQ ID NO: 1 An oligonucleotide which specifically hybridizes with DNA consisting of the base sequence described in any of the odd-numbered numbers of SEQ ID NO: 27 and has a chain length of at least 15 bases.
1 1 . イネがイネ白葉枯病菌に感染しているか否かを診断する方法であって、 1 1. A method for diagnosing whether or not rice is infected with the bacterial leaf blight fungus,
( a ) イネ植物体若しくはその一部から核酸試料を調製する工程、 (a) preparing a nucleic acid sample from a rice plant or a part thereof,
( b ) 該核酸試料における、 請求項 1に記載の DNAまたはその発現産物の存在を 検出する工程、 を含み、  (b) detecting the presence of the DNA or its expression product according to claim 1 in the nucleic acid sample,
工程. ( b ) において請求項 1に記載の DNAまたはその発現産物の存在が検出さ れた場合に、 診断対象であるイネがイネ白葉枯病菌に感染していると判定される 方法。  Step. A method in which, in (b), the presence of the DNA or the expression product thereof according to claim 1 is detected, whereby it is determined that the rice to be diagnosed is infected with the bacterial wilt of rice.
PCT/JP2003/009922 2002-08-06 2003-08-05 Pathogenic genes of xanthomonas oryzae pv. oryzae and utilization thereof WO2004013331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-228163 2002-08-06
JP2002228163A JP2004065088A (en) 2002-08-06 2002-08-06 Pathogenic gene cluster of xanthomonas oryzae pv. oryzae and use thereof

Publications (1)

Publication Number Publication Date
WO2004013331A1 true WO2004013331A1 (en) 2004-02-12

Family

ID=31492241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009922 WO2004013331A1 (en) 2002-08-06 2003-08-05 Pathogenic genes of xanthomonas oryzae pv. oryzae and utilization thereof

Country Status (2)

Country Link
JP (1) JP2004065088A (en)
WO (1) WO2004013331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373021B2 (en) 2005-05-26 2013-02-12 National Institute Of Agrobiological Sciences Improving disease resistance in plants by introducing transcription factor gene

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348724C (en) * 2005-02-02 2007-11-14 华中农业大学 Rice antiviral related gene OsDR8

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DA SILVA A.C. ET AL.: "Comparison of the genomes of two xanthomonas pathogens with differing host specificities", NATURE, vol. 417, no. 6887, May 2002 (2002-05-01), pages 459 - 463, XP002261557 *
OCHIAI H. ET AL.: "Construction and characterization of a xanthomonas oryzae pv. oryzae bacterial artificial chromosome library", FEMS MICROBIOL. LETT., vol. 200, no. 1, 2001, pages 59 - 65, XP002974827 *
ZHU W. ET AL.: "Identification of two novel hrp-associated genes in the hrp gene cluster of xanthomonas oryzae pv. oryzae", J. BACTERIOL., vol. 182, no. 7, 2000, pages 1844 - 1853, XP002974828 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373021B2 (en) 2005-05-26 2013-02-12 National Institute Of Agrobiological Sciences Improving disease resistance in plants by introducing transcription factor gene

Also Published As

Publication number Publication date
JP2004065088A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
Hocher et al. Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade
Wang et al. The forespore line of gene expression in Bacillus subtilis
NIÑO‐LIU et al. Xanthomonas oryzae pathovars: model pathogens of a model crop
Duyvesteijn et al. Frp1 is a Fusarium oxysporum F‐box protein required for pathogenicity on tomato
Yin et al. Generation and analysis of expression sequence tags from haustoria of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici
Oliver et al. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes
Thajuddin et al. Morphological and genetic diversity of symbiotic cyanobacteria from cycads
Shittu et al. Plant-endophyte interplay protects tomato against a virulent Verticillium
Goel et al. Genetic locus encoding functions involved in biosynthesis and outer membrane localization of xanthomonadin in Xanthomonas oryzae pv. oryzae
Srivastava et al. A zinc-finger-family transcription factor, AbVf19, is required for the induction of a gene subset important for virulence in Alternaria brassicicola
Morel et al. The eggplant AG91‐25 recognizes the type III‐secreted effector RipAX2 to trigger resistance to bacterial wilt (Ralstonia solanacearum species complex)
Gutiérrez-Barranquero et al. Pantoea agglomerans as a new etiological agent of a bacterial necrotic disease of mango trees
Perret et al. Rapid identification of Rhizobium strains by targeted PCR fingerprinting
WO2007000880A1 (en) RICE BLAST DISEASE GENE Pi21, RESISTANCE GENE pi21 AND UTILIZATION THEREOF
Bassi et al. Array-based transcriptional analysis of Clostridium sporogenes UC9000 during germination, cell outgrowth and vegetative life
Song et al. Identification of seven novel virulence genes from Xanthomonas citri subsp. citri by Tn5-based random mutagenesis
McFadden et al. Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum)
CN110172465B (en) Application of aspergillus flavus pathogenic gene wprA
Sakane et al. Identification of a novel effector gene and its functional tradeoff in Fusarium oxysporum f. sp. cepae that infects Welsh onion
US7951996B2 (en) Barley row type gene and use thereof
Gonzalez et al. Characterization of pathogenic and nonpathogenic strains of Xanthomonas axonopodis pv. manihotis by PCR-based DNA fingerprinting techniques
Brumbley et al. Establishment of a functional genomics platform for Leifsonia xyli subsp. xyli
WO2004013331A1 (en) Pathogenic genes of xanthomonas oryzae pv. oryzae and utilization thereof
JP2011103864A (en) Gene encoding protein having deoxynivalenol and nivalenol decomposing activity
Meyer et al. Genomics-driven advances in Xanthomonas biology

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase