WO2004011649A1 - Recombined myosin - Google Patents

Recombined myosin Download PDF

Info

Publication number
WO2004011649A1
WO2004011649A1 PCT/JP2003/009741 JP0309741W WO2004011649A1 WO 2004011649 A1 WO2004011649 A1 WO 2004011649A1 JP 0309741 W JP0309741 W JP 0309741W WO 2004011649 A1 WO2004011649 A1 WO 2004011649A1
Authority
WO
WIPO (PCT)
Prior art keywords
myosin
artificial sequence
recombinant
dna
binding
Prior art date
Application number
PCT/JP2003/009741
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Kohama
Akio Nakamura
Hozumi Kawamichi
Hideyuki Tanaka
Original Assignee
Kazuhiro Kohama
Akio Nakamura
Hozumi Kawamichi
Hideyuki Tanaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuhiro Kohama, Akio Nakamura, Hozumi Kawamichi, Hideyuki Tanaka filed Critical Kazuhiro Kohama
Priority to AU2003254788A priority Critical patent/AU2003254788A1/en
Publication of WO2004011649A1 publication Critical patent/WO2004011649A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4716Muscle proteins, e.g. myosin, actin

Definitions

  • the invention of this application relates to recombinant Ca 2+ -linked myosin. More specifically, the present application relates to a Ca 2+ -binding recombinant myosin that is expected to be useful as an activator in micromachines and a switch element in microelectronic circuits. Background art
  • micromachines that move mechanically at the molecular size.
  • the creation of this micromachine requires a variety of technological developments, ranging from individual component devices and their assembly methods (micromachining).
  • micro-actuator all-in-one which is a micro-machine driving unit, is indispensable for the autonomous movement of machines, etc., and the development of motor devices using various micromachining technologies is being promoted.
  • the size of a microactuator that can be created by applying microfabrication technology is only about ⁇ ⁇ ⁇ ⁇ even if it is small, and further miniaturization is required in order to equip a nanoscale micromachine.
  • molecules that can be used as motors are required to satisfy two points: that they have a power mechanism that converts external energy into motion, and that they can achieve unidirectional motion.
  • the low molecular weight organic compound satisfying such conditions (3R, 3 'R)-(P, P) -trans-l, 1', 2, 2 ', 3, 3', 4, 4'-octahydro-3, 3'-dimethyl-4, 4'-bipheanthrydiene (Nature 401: 15 2-155, 1999) and Triptycyl (4) hel icene (Nature 401: 150-152, 1999) are known I have.
  • biomolecules require various technological developments in order to be used for micromachine activites, but due to their stable driving, etc., they can become extremely powerful devices in future micromachines. Is expected. In addition, it has been proposed that these biomolecules can also be used as switch elements in electronic circuits.
  • myosin is a muscle protein with a molecular weight of about 480 kDa, two myosin heavy chains with a molecular weight of about 220 kDa, and two myosin light chains, two each. Consists of chains.
  • the N-terminal side of the myosin heavy chain is a functional site called heavy meromyosin (HMM), which functions as a protein that generates “force” between actin and ATP by degradation of ATP.
  • HMM heavy meromyosin
  • myosin regulation There are two types of myosin regulation: (a) types that are not externally regulated, such as skeletal muscle myosin, (b) types that are regulated by phosphorylation, such as smooth muscle and cellular slime mold Dictyostelium myosin, and (c) ) Calcium (Ca 2+ ), like the myosin of the slime mold Physarum (sea lop)
  • biomolecules as micromachine actuaries (molecular motors) and switch elements in electronic circuits has been pointed out. And each biomolecule can be applied and combined in various ways depending on its individual properties (difference in rotation, driving mechanism, etc.).
  • the invention of this application has been made in view of the above circumstances, and has an object to provide a Ca 2+ -binding recombinant myosin. Disclosure of the invention
  • one or more amino acid residues in the amino acid sequence of the myosin heavy chain, Ca 2+ binding light chain and / or phosphorylated light chain are substituted with other amino acid residues.
  • a recombinant myosin in which is deleted or one or more amino acid residues are added.
  • each polynucleotide is derived from a true slime mold Physalum.
  • FIG. 1 shows the results of SDS-PAGE of the recombinant S1-heavy chain expressed in Si-9 cells.
  • Lane 1 is the molecular weight marker
  • Lane 2 is the homogenate of uninfected Sf-9 cells
  • Lane 3 is the precipitate of infected Sf-9 cell homogenate
  • Lane 4 is the supernatant of infected Si-9 cell homogenate.
  • FIG. 2 shows the results of SDS-PAG in the S1 purification process.
  • Lane 1 is the separation marker
  • Lane 2 is the homogenized and centrifuged supernatant of uninfected Si-9 cells
  • Lane 3 is the sediment of the same cells
  • Lane 4 is S1-heavy chain, phosphorylated light chain and Ca Supernatants obtained by homogenizing and centrifuging Si-9 cells infected with the 2 + -linked light chain
  • Lane 5 is the precipitate of the same cells
  • Lane 6 is S1 purified from the complex of S1 and actin
  • Lane 7 is S 1 purified by a Ni-NTN column.
  • FIG. 3 shows the results of SDS-PAGE during the recombinant MM purification process.
  • Lane 1 is the molecular weight marker
  • Lane 2 is the centrifuged supernatant of uninfected Sf-9 cell homogenate
  • Lane 3 is the precipitate
  • Lane 4 is the S heavy, phosphorylated and Ca2 + light chains.
  • Lane 5 is the precipitate of the infected cells
  • Lane 6 is the sample before the Ni-NTA column
  • Lane 7 is the purified HMM eluted from the Ni-NTN column.
  • FIG. 4 is an electron micrograph of the recombinant HMM purified in the step of FIG.
  • FIG. 5 shows the measurement results of ATPase activity of S1.
  • 1 is 0. Reference Mg 2+ -ATPase activity in the presence of ImM EGTA
  • 2 is 0. Actin-activating ATPase activity in the presence of ImM EGTA and 5 M actin
  • 3 is 0. 0 in the presence of ImM Ca 2+ Actin activation ATPase activity. Values are the average soil SEM of three measurements.
  • FIG. 6 shows the results of measuring ATPase activity of S1 in the presence of various concentrations of actin. The concentrations of S1 and EGTA were 0. and 0. ImM, respectively. Specified. Other measurement conditions were the same as in FIG.
  • FIG. 7 shows the results of measuring the ATPase activity of the recombinant HMM.
  • 1 is 0.
  • 2 is 0.
  • 3 is 0. 0 in the presence of ImM Ca 2+ and actin Actin-activated ATPase activity. Values are the mean SEM of three measurements.
  • FIG. 8 shows the results of measuring the ATPase activity of recombinant HMM in the presence of various concentrations of actin.
  • FIG. 9 shows the results of measuring the calcium binding activity of the recombinant HMM.
  • the closed circle is HMM
  • the open circle is CaLC
  • the closed diamond is PLC.
  • FIG. 10 shows the results of measuring the effect of Ca 2+ on the motor activity of HMM.
  • A is the measurement result in the presence of 0. ImM EGTA
  • B is the measurement result in the presence of 0. ImM Ca2 +.
  • Arrows indicate the average rate of ATP-dependent movement of actin.
  • Recombinant myosin of the invention the heavy chain of the Ca 2+ binding myosin (about 220 kDa), Ca 2+ binding light chain (approximately 16 kDa), and the polynucleotides encoding each of the phosphorylated light chains (about 18 kDa) It is an expression product.
  • Ca 2+ binding myosin is a myosin that is regulated by binding Ca i + , specifically, myosin of Physarum (Physalum) or Scallop (scal lop). is there. Further, “has substantially the same function as wild-type Ca 2+ -linked myosin” means that myosin degrades ATP and binds to actin to generate mechanical energy. This means that Ca 2+ gives a change. However, recombinant myosin from Physalum reduces ATP degradation and generation of mechanical energy by Ca2 + binding, and recombinant myosin from scallop reduces ATP degradation and generation of mechanical energy by Ca2 + binding. Means to increase.
  • the recombinant myosin of the present invention comprises: It can be prepared by expression in a translation system or an appropriate host vector system.
  • the polynucleotide can be obtained from publicly known base sequence information (eg, myosin heavy chain of Physalum: GenBank No. AF335500 Ca 2+ binding light chain: GenBank No. 03499, phosphorylated light chain: GenBank No. AB076705; scallop) Myosin heavy chain: GenBank No. X55714, light chain: GenBank No. M17208, M17201) can be obtained by screening each cDNA library using an oligonucleotide synthesized based on the same.
  • the desired polynucleotide can be obtained by PCR or RT-PCR using an oligonucleotide primer prepared based on known nucleotide sequence information.
  • each polynucleotide may be cloned into an expression vector as a fusion polynucleotide in which the respective polynucleotides are linked.
  • a stop codon should be provided at the 3 'end of each polynucleotide so that the heavy chain, Ca2 + -binding light chain and phosphorylated light chain are each expressed as a mature protein.
  • the 5 'end of each polynucleotide may be provided with a respective expression control sequence (promoter-no enhancer).
  • the polynucleotide When the recombinant myosin of the present invention is expressed in an in vitro translation system, the polynucleotide is recombined into an expression vector having an RNA polymerase promoter, and this recombinant vector is used for the promoter. It is added to an in vitro translation system, such as a reticulocyte lysate of egrets containing RNA polymerase or a wheat germ extract.
  • the RNA polymerase promoter include T7 and T3 SP6.
  • vectors containing these RNA polymerase promoters include pKAK pCDM8, ⁇ 3 / ⁇ 718, ⁇ 7 / 319, pBluescript II and the like.
  • the recombinant myosin can be used for prokaryotic cells such as Escherichia coli and Bacillus subtilis, and eukaryotic cells such as yeast, insect cells, mammalian cells, and plant cells. Etc. can be produced.
  • prokaryotic cells such as Escherichia coli and Bacillus subtilis
  • eukaryotic cells such as yeast, insect cells, mammalian cells, and plant cells. Etc.
  • a polynucleotide is assembled in an expression vector having an origin, a promoter, a ribosome binding site, a DNA cloning site, and a chromosome that can replicate in the microorganism.
  • an expression vector is prepared by reconstitution, a host cell is transformed with the expression vector, and this transformant is cultured, the target recombinant myosin can be produced in large quantities from the culture.
  • expression vectors for Escherichia coli include a plIC system, pBluescript II, a pET expression system, a pGEX expression system, and the like.
  • the polynucleotide is inserted into an expression vector for eukaryotic cells having a promoter, a splicing region, and a poly (A) -added site.
  • a desired recombinant myosin can be obtained from a eukaryotic cell prepared by preparing a vector and transfecting the vector.
  • expression vectors include pKAl, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2 and the like.
  • eukaryotic cells mammalian cultured cells such as human embryonic kidney cells HEK293, monkey kidney cells C0S7, Chinese hamster ovary cells CH0, or primary cultured cells isolated from human organs can be used. Saccharomyces cerevisiae, fission yeast, silkworm cells, African algae eggs and the like can also be used.
  • the expression vector is transfected into insect cells together with the genomic DNA of nuclear polyhedrosis virus belonging to the baculovirus family, the desired recombinant myosin can be obtained from the insect cells.
  • Si 9, S 1, TD5 and the like can be used as insect cells.
  • known methods such as an electroporation method, a calcium phosphate method, a ribosome method, and a DEAE dextran method can be used.
  • known separation operations can be combined. For example, urea Treatment with any denaturant or surfactant, sonication, enzymatic digestion, salting out / solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion exchange Chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and the like.
  • Another embodiment of the present invention provides a method for preparing a myosin heavy chain, a Ca2 + binding light chain and / or a phosphorylated light chain, wherein one or more amino acid residues in the amino acid sequence is replaced with another amino acid residue, Modified recombinant myosin in which residues are deleted or one or more amino acid residues are added.
  • the “modified type” means that the activity of the recombinant myosin (eg, Ca 2+ binding ability, ATP resolution, mechanical energy generation ability, etc.) is increased or decreased due to the amino acid sequence mutation. Means Alternatively, it refers to an amino acid mutation that increases or decreases the binding to other molecules or compounds.
  • Such an amino acid mutation can be performed by introducing a mutation into the above-described polynucleotide by a known method, and expressing the mutant polynucleotide in the same manner as described above.
  • Kunkel method Kunkel, TA Pro Natl. Acad. Sci. USA 82: 488, 1985 and Kunkel, TA, et al. Methods in Enzymology 154: 367, 1987.
  • Escherichia coli represented by the dut- and ung- genotypes are deficient in dUTPase (Dut) and Uraci DNA glycosylase (Ung). It synthesizes DNA in which part of T) has been replaced by deoxyduracil (dU).
  • dU deoxyduracil
  • an oligonucleotide designed to replace the target residue with another amino acid residue is hybridized in a test tube to a target polynucleotide for mutation, and the DNA polymerase reaction is performed.
  • a complementary DNA strand is synthesized by a DNA ligase reaction. This DNA is ung + E.
  • the original DNA strand containing dU undergoes degradation by Uiig, but the complementary DNA strand synthesized in the test tube is replicated without degradation.
  • the DNA strand on which the mutation has been introduced is selectively amplified, and a polynucleotide encoding myosin containing the target mutation can be obtained.
  • Mutant polynucleotides can be obtained by a method using mutation kit or the like, a mutation-introduced PCR method, or a known polynucleotide synthesis method (for example, Nucleic Acid Res. 25: 3440-3444, 1997 etc.).
  • Restriction enzymes and other enzymes were from Takara Shuzo Co., Ltd. (Kyoto). All other reagents were commercially available special grade reagents. Milli-Q water (Millipore, Bedford, MA, USA) was used when preparing the aqueous solution.
  • the PCR product obtained above was cloned into the BamHI / Sall site of pBlueBac4.5a (Invitrogen, Carlsbad, Calif., USA) to confirm the DNA sequence.
  • the obtained plasmid was designated as pBB / Sl.
  • HMM myomesin meromyosin
  • MeU-Lysll81 The vector for the introduction of the heavy chain of myomesin meromyosin (HMM) heavy chain (MeU-Lysll81) was constructed in the same manner as described above.
  • the obtained PCR product was cloned into Smal / Sall of pBB / S1 plasmid, and the plasmid was constructed into pBB / HMM.
  • vectors for introducing polynucleotides encoding the Ca 2+ binding light chain (CaLC) and the phosphorylated light chain (PLC) were constructed.
  • CaLC Ca 2+ binding light chain
  • PLC phosphorylated light chain
  • BamHI or Kpnl restriction enzyme sites were added to the 5 'end of PLC and CaLC.
  • PLC and A Kpnl or EcoRI site was added to the 3 'end of CaLC.
  • the resulting PCR products were subcloned into BamHI / Kpnl and Kpnl / EcoRI restriction sites of pBlueBac4.5a, respectively, to construct plasmids pBB / PLC and pBB / CaLC.
  • Spodoptera frugiperda (Sf-9) cells were 27 in 75 cm2 flasks.
  • the culture solution was prepared by adding 10% fetal calf serum (FCS) and 10 g / ml gentamicin (Sigma-Aldricli, USA) to Grace's insect cell culture solution (Invitrogen, Carlsbad, CA, USA). Was added.
  • the linear DNA (Bac-M-BlueTM DNA; Invitrogen, Carlsbad, CA, USA) of the nuclear polyhedrosis virus Auto-graphica californica, the transfer vectors pBB / Sl, pBB / HMM, pBB / Infections were introduced with either PLC or pBB / CaLC.
  • InsectinPlus TM ribosome reagent (Invitrogen, Carlsbad, CA, USA) was used to increase the efficiency of infection transfer. Seven days later, a black assay was performed on an X-gal-containing plate to isolate a recombinant paculovirus. We picked up the blue break and infected Si-9 cells (25 cm 2 culture vessel) to amplify the recombinant paculovirus. Four days later, the recombinant Paculovirus in the supernatant was used to infect Si-9 cells cultured in the above-mentioned 75 cm 2 flask for 11 days to prepare a stock having a high virus titer.
  • Si-9 cells were inoculated in each of 10 culture vessels of 72 cm 2 .
  • Si-9 cells were individually co-infected with Pacu Mouth virus into which polynucleotides encoding S heavy chain or HMM-heavy chain, phosphorylated light chain and Ca 2+ binding light chain, respectively, were introduced.
  • the severity of infection m.0.i
  • Infected Si-9 cells were grown at 27 for 3 days. After elongation, the cells were centrifuged at 4 rpm for 10 minutes at 1500 rpm to collect the cells.
  • the supernatant was mixed with 0.2 mg / ml ⁇ heron bone skeletal muscle actin (purified from ⁇ heron skeletal muscle acetone powder) and buffered (20 mM Tris-HCl (pH 7.5), 50 mM KCl, 10 iMMgC12, 0.3 mM DTT, ImM p-ABSF and (1 ig / ml of leptin) for 24 hours. Actin recombinant HMM was formed and precipitated during dialysis, and collected by centrifugation with lOOOOOXg for 1 hour.
  • the precipitate separated S1 / HMM than precipitate buffer [20mM Tris-HCl (pH 7.5 ), lOOmM KCK lOmM MgCl 2, 7mM 2- mercaptoethanol, IOO MP - ABSF, 1 g / ml Roy [Peptin and ImM ATP]], centrifuged with lOOOOOXg for 90 minutes, and the resulting supernatant was applied to a Ni-NTA spa flow (Qiagen, Germany) column.
  • the recombinant myosin was then permeated with buffer UOmMTris-HC1 (pH 7.5), 40 mM KCK 1.5 mM MgCl 2 , 0.1 lmM DTT, 20 M p-ABSF and 0.6 g / ml leptin.
  • the protein was purified under the following temperature conditions. As a result of collecting 0.1 mg of typical recombinant S1 / HMM and quantifying it with Bio-Rad protein measurement solution using BSA as a standard value, 1 ⁇ 10 8 Si-9 cells were obtained. (1-5) gel electrophoresis
  • SDS-PAGE was performed using a 12.53 ⁇ 4 polyacrylamide gel prepared using the buffer system described in the literature (Nature 227: 680-685, 1970) according to the description in the literature (J. Chromatogr 64: 147-155, 1972). It was carried out using.
  • the SDS-sample buffer was composed of 40 mM Tris-HCl (pH 6.8), 50 mM DTT, 13 ⁇ 4 SDS, 7.5 glycerol, and 0.002 bromophenol blue.
  • the purified HMM (0.5 mg / ml) was placed on a mica sheet, washed three times with 0.1 M ammonium acetate containing 30% glycerol, stained with aqueous peranyl acetate, and washed three times.
  • the mica sheet was covered with another divided mica sheet, pressed and peeled off, and then duplicated one by one on platinum at a low angle in a BAF 060 rotary image system. Observed with a JEM-1010 electron microscope.
  • the ATPase activity in S1 / HMM was measured according to the description in the literature (Anal Biochem. 293: 212-215, 2001). All analyzes were performed at 25. Basic Mg 2+ -ATPase activity is 20 mM Tris-HCl (pH 7.5), 40 mM KCK 1.5 mM MgCl 2 , 0.1 liM DTT, 0.5 mM ATP, ⁇ skeletal muscle derived actin and 0.5 M recombinant Analysis was performed with S1 / HMM. Statistical analysis was performed using Student's t-test, and P-0.05 was considered statistically significant.
  • the binding range of Ca 2+ was determined for 3.5 M HMM, 50 M recombinant Ca 2+ light chain or 50 ⁇ M recombinant phosphorylated light chain. In the presence, it was measured at 25 using a flow dialysis method using 0.1 mM LiCl NaCK containing 5 mM MgCl 2 containing MoCl 2 (Du-Pont- ⁇ ) and MOPS / NaOH (pH 7.0).
  • the Ndel restriction enzyme site was added to the 5 'end of the 0RF of each phosphorylated light chain or Ca 2+ light chain, and the BamHI site was added to the 3' end by PCR.
  • Si-9 cells were infected with recombinant S1-heavy chain baculovirus. After 3 days of culture, these cells were collected, homogenized, and centrifuged. The expression product was in the precipitate (FIG. 1), indicating that the S1-heavy chain was insoluble. Similarly, the expression product was obtained as an insoluble substance upon co-infection introduction of the S1-heavy chain baculovirus and the Ca 2+ binding light chain paculovirus. However, this co-infection with the recombinant S1-heavy chain baculovirus, the phosphorylated light chain recombinant paculovirus and the Ca2 + -linked light chain recombinant baculovirus was not effective in Sf-9 cells. Soluble S heavy chains were produced (Fig.
  • HMM is similar to the complex of HMM-heavy chain peptide 135 kDa, phosphorylated light chain peptide 18 kDa and Ca 2+ binding light chain peptide 16 kDa (FIG. 3).
  • a double-headed HMM was shown by electron microscopy ( Figure 4).
  • the maximum binding activity was 2 mol / iDol HMM with Kd at the IOM level.
  • the effect of Ca 2+ binding on recombinant HMM was examined using in vitro kinetic analysis. That is, ATP-dependent movement of actin was observed on the HMM-coated glass surface (Fig. 10).
  • This recombinant myosin is useful as an activator in a micromachine or as a switch element in an electronic circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A Ca2+-binding recombinant myosin which is expressed by polynucleotides respectively encoding the heavy chain, the Ca2+-binding light chain and the phosphorylated light chain or Ca2+-biding myosin and has substantially the same function as Ca2+-binding myosin of the wild type.

Description

明 細 書 組換えミオシン 技術分野  Description Recombinant Myosin Technical Field
この出願の発明は、 Ca2+結合型の組換えミオシンに関するものである。 さらに詳しくは、 この出願は、 マイクロマシンにおけるァクチユエ一夕 一や、 微少電子回路におけるスィツチ素子等としての有用性が期待され る Ca2+結合型組換えミオシンに関するものである。 背景技術 The invention of this application relates to recombinant Ca 2+ -linked myosin. More specifically, the present application relates to a Ca 2+ -binding recombinant myosin that is expected to be useful as an activator in micromachines and a switch element in microelectronic circuits. Background art
近年のナノテクノロジ一の発展に伴って、 分子サイズの大きさで機械 的な動きをするマイクロマシンの開発が注目されている。 このマイクロ マシンの作成には、 個々の要素デバイスや、 それらの組立方法 (マイク ロマシニング)に至るまで、様々な技術開発が必要とされている。特に、 マイクロマシン駆動部であるマイクロアクチユエ一夕一の開発は、 マシ ンの自律運動等にとって不可欠であり、 様々な微細加工技術を利用した モーターデバイスの開発が進められている。 しかしながら微細加工技術 を応用した方法で作成できるマイクロアクチユエ一夕一は、 小さいもの でも Ι ΟΟ ΠΙ程度であり、 ナノスケールのマイクロマシンに装備するに は、 その更なる微少化が求められている。  With the recent development of nanotechnology, attention has been focused on the development of micromachines that move mechanically at the molecular size. The creation of this micromachine requires a variety of technological developments, ranging from individual component devices and their assembly methods (micromachining). In particular, the development of the micro-actuator all-in-one, which is a micro-machine driving unit, is indispensable for the autonomous movement of machines, etc., and the development of motor devices using various micromachining technologies is being promoted. However, the size of a microactuator that can be created by applying microfabrication technology is only about Ι ΟΟ で も even if it is small, and further miniaturization is required in order to equip a nanoscale micromachine.
そこで、 微細加工技術によってモー夕一装置を構築するのではなく、 運動能を有する単一分子をモーターとして利用することが提案されて いる。  Therefore, it has been proposed to use a single molecule with motor ability as a motor, instead of building a motor-and-motor device using microfabrication technology.
一般に、 モーターとして利用できる分子は、 外部エネルギーを運動に 変換する動力機構があること、 および 1方向の運動を実現できることの 2点を満たすことが求められている。 そして、 このような条件を満たす 低分子有機化合物としては、 (3R, 3' R) - (P, P) -trans-l, 1' , 2, 2' , 3, 3' , 4, 4'-octahydro-3, 3' -dimethyl-4, 4' -bipheanthrydiene (Nature 401:15 2-155, 1999) や Triptycyl (4) hel icene (Nature 401:150-152, 1999) が知られている。 しかしながら、 これらの有機化合物は、 速度が極めて 低速であったり、 駆動力が極力であったり、 繰り返し回転ができないな どといった、 マイクロマシンにおけるァクチユエ一夕一としての致命的 な欠陥を有しており、 実用化の目途は立っていないのが現状である。 一方、 前記のような有機化合物とは別の単一分子モータ一としては、 鞭毛モ一ター (Microbiol. 6:1-18, 1967; Nature 245:380-382, 1973)、 ATP合成酵素 (Nature 386:299-302, 1997)、ミオシンモーター (Biochem. Biophys. Res. Comm. 199:1057-1063, 1994; Curr. Opin. Cell Biol. 7: 89-93, 1995)、 微小管系モータ一 (Cell 42:39-50, 1985)、 核酸合成酵 素の運動タンパク質 (Nature409: 113-119, 2001) 等の生体分子が知ら れている。 In general, molecules that can be used as motors are required to satisfy two points: that they have a power mechanism that converts external energy into motion, and that they can achieve unidirectional motion. And, as the low molecular weight organic compound satisfying such conditions, (3R, 3 'R)-(P, P) -trans-l, 1', 2, 2 ', 3, 3', 4, 4'-octahydro-3, 3'-dimethyl-4, 4'-bipheanthrydiene (Nature 401: 15 2-155, 1999) and Triptycyl (4) hel icene (Nature 401: 150-152, 1999) are known I have. However, these organic compounds have fatal defects such as extremely low speed, extremely high driving force, and the inability to rotate repeatedly, as an activator in micromachines. There is no prospect of practical application at present. On the other hand, as a single-molecule motor other than the organic compound as described above, a flagellar motor (Microbiol. 6: 1-18, 1967; Nature 245: 380-382, 1973), ATP synthase (Nature 386: 299-302, 1997), myosin motor (Biochem. Biophys. Res. Comm. 199: 1057-1063, 1994; Curr. Opin. Cell Biol. 7: 89-93, 1995), microtubule motor ( Cell 42: 39-50, 1985) and biomolecules such as motor proteins of nucleic acid synthase (Nature 409: 113-119, 2001) are known.
これらの生体分子も、 もちろんマイクロマシンのァクチユエ一夕一等 に利用するためには、 様々な技術開発を必要とするが、 その安定的な駆 動力等によって、 将来のマイクロマシンにおける極めて有力なデバイス となり得るものと期待されている。 また、 これらの生体分子は、 電子回 路のスィツチ素子等としても利用可能であることが提案されている。 これらの生体分子モ一ターの候補のうち、 ミオシン (myosin) は分子 量約 480kDaの筋夕ンパク質であり、 分子量約 220kDaのミオシン重鎖 2 本と、 それぞれ 2本ずつの 2種のミオシン軽鎖で構成されている。 ミオ シン重鎖の N末端側はへビーメロミオシン (HMM) と呼ばれる機能的部 位であり、 ATPの分解によりァクチンとの間に 「力」 を発生するモ一夕 一タンパク質として機能する。  Of course, these biomolecules require various technological developments in order to be used for micromachine activites, but due to their stable driving, etc., they can become extremely powerful devices in future micromachines. Is expected. In addition, it has been proposed that these biomolecules can also be used as switch elements in electronic circuits. Of these biomolecule monitor candidates, myosin is a muscle protein with a molecular weight of about 480 kDa, two myosin heavy chains with a molecular weight of about 220 kDa, and two myosin light chains, two each. Consists of chains. The N-terminal side of the myosin heavy chain is a functional site called heavy meromyosin (HMM), which functions as a protein that generates “force” between actin and ATP by degradation of ATP.
ミオシンの制御には、 (a)骨格筋ミオシンのように外部制御を受けな いタイプと、 (b)平滑筋や細胞性粘菌 Dictyosteliumミオシンのように リン酸化によって制御を受けるタイプ、そして(c)真性粘菌 Physarum (フ ィザルム)やホ夕テガイ (seal lop)のミオシンのようにカルシウム(Ca2+) を結合することによって制御を受けるタイプが存在する。 There are two types of myosin regulation: (a) types that are not externally regulated, such as skeletal muscle myosin, (b) types that are regulated by phosphorylation, such as smooth muscle and cellular slime mold Dictyostelium myosin, and (c) ) Calcium (Ca 2+ ), like the myosin of the slime mold Physarum (sea lop) There are types that are controlled by combining
前記のとおり、 マイクロマシンのァクチユエ一夕一 (分子モーター) や電子回路のスィツチ素子としての生体分子の有用性が指摘されてい る。 そしてそれぞれの生体分子は、 個々の特性 (回転、 駆動メカニズム の違い等) によって、 様々な適用や組み合わせが可能である。  As mentioned above, the usefulness of biomolecules as micromachine actuaries (molecular motors) and switch elements in electronic circuits has been pointed out. And each biomolecule can be applied and combined in various ways depending on its individual properties (difference in rotation, driving mechanism, etc.).
一方、 これらの生体分子をァクチユエ一夕一ゃスィツチ素子等の機械 的構成要素として使用するためには、 他のデバイスとの機械的、 電気的 結合を可能とするような様々な改変 (各種の修飾) が必要である。 そし て、 そのような改変を確実に行うための最も有効な手段は、 遺伝子工学 的に生体分子を改変することである。  On the other hand, in order to use these biomolecules as mechanical components such as actuator devices, various modifications (such as various types) that enable mechanical and electrical coupling with other devices are required. Modifier) is required. The most effective means for ensuring such modification is to genetically modify the biomolecule.
この点について、 ミオシンの場合には、 前記のタイプ(a)および(b)に ついては組換えミオシンの作成が報告されている (例えば、 Pro Nat l. Acad. Sc i. USA 92 : 704-708, 1995 ; Sc ience 246 : 656-658, 1989)。 し かしながら、 タイプ(c)の Ca2+結合型ミオシンについては、 組換え体の 作成は成功していない。 In this regard, in the case of myosin, the production of recombinant myosin has been reported for the types (a) and (b) (for example, Pro Natl. Acad. Sc. USA 92: 704-708). , 1995; Science 246: 656-658, 1989). However, recombinant production of Ca 2+ -linked myosin of type (c) has not been successful.
この出願の発明は、 以上のとおりの事情に鑑みてなされたものであつ て、 Ca2+結合型の組換えミオシンを提供することを課題としている。 発明の開示 The invention of this application has been made in view of the above circumstances, and has an object to provide a Ca 2+ -binding recombinant myosin. Disclosure of the invention
この出願は、 前記の課題を解決するための発明として、 Ca2+結合型ミ ォシンの重鎖、 Ca2+結合軽鎖、 およびリン酸化軽鎖のそれぞれをコード するポリヌクレオチドの発現産物であって、 野性型の Ca2+結合型ミオシ ンと実質的に同一の機能を有することを特徴とする組換えミオシンを 提供する。 This application, as the invention for solving the above problems, there the heavy chain, Ca 2+ binding light chain, and the expression product of a polynucleotide encoding the respective phosphorylation light chain of Ca 2+ bound Mi Oshin Thus, there is provided a recombinant myosin characterized by having substantially the same function as a wild-type Ca 2+ -binding myosin.
この発明における別の態様は、 ミオシン重鎖、 Ca2+結合軽鎖および/ またはリン酸化軽鎖のアミノ酸配列における 1以上のアミノ酸残基が 他のアミノ酸残基に置換、 1以上のアミノ酸残基が欠失、 または 1以上 のアミノ酸残基が付加している組換えミオシンである。 また、 この発明の組換えミオシンにおいては、 各々のポリヌクレオチ ドが、 真性粘菌フィザルム由来であることを好ましい態様としている。 図面の簡単な説明 In another embodiment of the present invention, one or more amino acid residues in the amino acid sequence of the myosin heavy chain, Ca 2+ binding light chain and / or phosphorylated light chain are substituted with other amino acid residues. Is a recombinant myosin in which is deleted or one or more amino acid residues are added. In a preferred embodiment of the recombinant myosin of the present invention, each polynucleotide is derived from a true slime mold Physalum. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 Si- 9細胞で発現させた組換え S 1-重鎖の SDS- PAGEの結果で ある。 レーン 1は分子量マーカー、 レーン 2は非感染 S f-9 細胞のホモ ジネート、 レーン 3は感染 S f-9 細胞ホモジネートの沈殿物、 レーン 4 は感染 Si- 9細胞ホモジネートの上清である。  FIG. 1 shows the results of SDS-PAGE of the recombinant S1-heavy chain expressed in Si-9 cells. Lane 1 is the molecular weight marker, Lane 2 is the homogenate of uninfected Sf-9 cells, Lane 3 is the precipitate of infected Sf-9 cell homogenate, and Lane 4 is the supernatant of infected Si-9 cell homogenate.
図 2は、 S 1精製過程での SDS- PAG の結果である。 レーン 1は分離量 マーカー、 レーン 2はホモジナイズし、 遠心分離した非感染 Si- 9細胞 の上清、 レーン 3は同細胞の沈殿物、 レーン 4は S 1-重鎖、 リン酸化軽 鎖および Ca2+結合軽鎖を感染させた Si-9細胞をホモジナイズし、 遠心 分離した上清、 レーン 5は同細胞の沈殿物、 レーン 6は S 1 とァクチン との複合体から精製した S l、 レーン 7は Ni-NTNカラムにより精製した S 1である。 FIG. 2 shows the results of SDS-PAG in the S1 purification process. Lane 1 is the separation marker, Lane 2 is the homogenized and centrifuged supernatant of uninfected Si-9 cells, Lane 3 is the sediment of the same cells, Lane 4 is S1-heavy chain, phosphorylated light chain and Ca Supernatants obtained by homogenizing and centrifuging Si-9 cells infected with the 2 + -linked light chain, Lane 5 is the precipitate of the same cells, Lane 6 is S1 purified from the complex of S1 and actin, Lane 7 is S 1 purified by a Ni-NTN column.
図 3は、 組換え MM精製過程での SDS-PAGEの結果である。 レーン 1 は分子量マーカー、 レーン 2は非感染 S f-9細胞ホモジネートの遠心分 離上清、 レーン 3はその沈殿、 レーン 4は S卜重鎖、 リン酸化軽鎖およ び Ca2+結 軽鎖を感染.させた S i- 9細胞ホモジネートの上清、 レーン 5 は同感染細胞の沈殿、 レーン 6ば Ni-NTAカラム前のサンプル、 レーン 7は Ni-NTNカラムから溶出した精製 HMMである。 FIG. 3 shows the results of SDS-PAGE during the recombinant MM purification process. Lane 1 is the molecular weight marker, Lane 2 is the centrifuged supernatant of uninfected Sf-9 cell homogenate, Lane 3 is the precipitate, and Lane 4 is the S heavy, phosphorylated and Ca2 + light chains. The supernatant of the infected Si-9 cell homogenate, Lane 5 is the precipitate of the infected cells, Lane 6 is the sample before the Ni-NTA column, and Lane 7 is the purified HMM eluted from the Ni-NTN column.
図 4は、 図 3の工程で精製した組換え HMMの電子顕微鏡写真である。 図 5は、 S 1の ATPase活性の測定結果である。 1は 0. ImM EGTA存在下 での基準 Mg2+ - ATPase活性、 2は 0. ImM EGTAおよび 5 Mァクチン存在 下でのァクチン活性化 ATPase活性、 3は 0. ImM Ca2+存在下でのァクチ ン活性化 ATPase活性である。 値は 3回の測定の平均土 SEMである。 図 6は、 様々な濃度のァクチン存在下における S 1の ATPase活性測定 結果である。 S 1および EGTAの濃度はそれぞれ 0. および 0. ImMに固 定した。 他の測定条件は図 5と同様とした。 FIG. 4 is an electron micrograph of the recombinant HMM purified in the step of FIG. FIG. 5 shows the measurement results of ATPase activity of S1. 1 is 0. Reference Mg 2+ -ATPase activity in the presence of ImM EGTA, 2 is 0. Actin-activating ATPase activity in the presence of ImM EGTA and 5 M actin, 3 is 0. 0 in the presence of ImM Ca 2+ Actin activation ATPase activity. Values are the average soil SEM of three measurements. FIG. 6 shows the results of measuring ATPase activity of S1 in the presence of various concentrations of actin. The concentrations of S1 and EGTA were 0. and 0. ImM, respectively. Specified. Other measurement conditions were the same as in FIG.
図 7は、組換え HMMの ATPase活性の測定結果である。 1は 0. ImM EGTA 存在下での基準 Mg2+- ATPase活性、 2は 0. ImM EGTAおよび ァクチ ン存在下でのァクチン活性化 ATPase活性、 3は 0. ImM Ca2+および ァクチン存在下でのァクチン活性化 ATPase 活性である。 値は 3回の測 定の平均士 SEMである。 FIG. 7 shows the results of measuring the ATPase activity of the recombinant HMM. 1 is 0. Reference Mg 2+ -ATPase activity in the presence of ImM EGTA, 2 is 0. Actin-activating ATPase activity in the presence of ImM EGTA and actin, 3 is 0. 0 in the presence of ImM Ca 2+ and actin Actin-activated ATPase activity. Values are the mean SEM of three measurements.
図 8は、 様々な濃度のァクチン存在下における組換え HMM の ATPase 活性測定結果である。  FIG. 8 shows the results of measuring the ATPase activity of recombinant HMM in the presence of various concentrations of actin.
図 9は、 組換え HMMのカルシウム結合活性の測定結果である。 黒丸は HMM, 白丸は CaLC、 黒菱型は PLCである。  FIG. 9 shows the results of measuring the calcium binding activity of the recombinant HMM. The closed circle is HMM, the open circle is CaLC, and the closed diamond is PLC.
図 1 0は、 HMMの運動活性に対する Ca2+の効果を測定した結果である。 Aは 0. ImM EGTA存在下での測定結果、 Bは 0. ImM Ca2+存在下での測定結 果である。 矢印はァクチンの ATP依存性運動の平均速度を示す。 発明を実施するための最良の形態 FIG. 10 shows the results of measuring the effect of Ca 2+ on the motor activity of HMM. A is the measurement result in the presence of 0. ImM EGTA, and B is the measurement result in the presence of 0. ImM Ca2 +. Arrows indicate the average rate of ATP-dependent movement of actin. BEST MODE FOR CARRYING OUT THE INVENTION
この発明の組換えミオシンは、 Ca2+結合型ミオシンの重鎖(約 220kDa)、 Ca2+結合軽鎖 (約 16kDa)、 およびリン酸化軽鎖 (約 18kDa) のそれぞれ をコードするポリヌクレオチドの発現産物である。 Recombinant myosin of the invention, the heavy chain of the Ca 2+ binding myosin (about 220 kDa), Ca 2+ binding light chain (approximately 16 kDa), and the polynucleotides encoding each of the phosphorylated light chains (about 18 kDa) It is an expression product.
― 「Ca2+結合型ミオシン」 とは、 Cai+を結合する.ことによって制御を受け るミオシンであり、具体的には、例えば真性粘菌 Physarum (フィザルム) やホタテガイ (scal lop) のミオシンである。 また、 「野性型の Ca2+結合 型ミオシンと実質的に同一の機能を有する」 とは、 具体的には、 ミオシ ンが ATPを分解し、 ァクチンと結合して機械的エネルギーを発生するこ とに Ca2+が変化を与えることを意味する。 ただし、 フィザルム由来の組 換えミオシンは、 Ca2+結合によって ATP分解および機械的エネルギーの 発生を低下し、 ホ夕テガイ由来の組換えミオシンは Ca2+結合によって ATP分解および機械的エネルギーの発生を増加せせることを意味する。 ― “Ca 2+ binding myosin” is a myosin that is regulated by binding Ca i + , specifically, myosin of Physarum (Physalum) or Scallop (scal lop). is there. Further, "has substantially the same function as wild-type Ca 2+ -linked myosin" means that myosin degrades ATP and binds to actin to generate mechanical energy. This means that Ca 2+ gives a change. However, recombinant myosin from Physalum reduces ATP degradation and generation of mechanical energy by Ca2 + binding, and recombinant myosin from scallop reduces ATP degradation and generation of mechanical energy by Ca2 + binding. Means to increase.
この発明の組換えミオシンは、 前記のポリヌクレオチドを in v i t ro 翻訳系または適当な宿主一べクタ一系において発現させることによつ て作成することができる。 The recombinant myosin of the present invention comprises: It can be prepared by expression in a translation system or an appropriate host vector system.
例えば、 ポリヌクレオチド (cDNA) は公知の塩基配列情報 (例えば、 フィザルムのミオシン重鎖 : GenBank No. AF335500 Ca2+結合軽鎖 : GenBank No. 〗03499、 リン酸化軽鎖: GenBank No. AB076705; ホタテガ ィのミオシン重鎖 : GenBankNo. X55714, 軽鎖 : GenBank No.. M17208, M17201)に基づき合成したオリゴヌクレオチドを用いてそれぞれの cDNA ライブラリ一をスクリーニングすることによって取得することができ る。 また公知の塩基配列情報に基づいて作成したオリゴヌクレオチドプ ライマ一を用いた PCR法や RT- PCR法によっても、 目的とするポリヌク レオチドを取得することができる。 For example, the polynucleotide (cDNA) can be obtained from publicly known base sequence information (eg, myosin heavy chain of Physalum: GenBank No. AF335500 Ca 2+ binding light chain: GenBank No. 03499, phosphorylated light chain: GenBank No. AB076705; scallop) Myosin heavy chain: GenBank No. X55714, light chain: GenBank No. M17208, M17201) can be obtained by screening each cDNA library using an oligonucleotide synthesized based on the same. Also, the desired polynucleotide can be obtained by PCR or RT-PCR using an oligonucleotide primer prepared based on known nucleotide sequence information.
得られたポリヌクレオチドは、 それぞれ別個に発現ベクターにクロー ニングし、 それらを共発現させることによって、 この発明の組換えミオ シンを作成することができる。 あるいは、 それぞれのポリヌクレオチド を連結した融合ポリヌクレオチドとして発現ベクターにクローニング してもよい。 ただし、 その場合には、 重鎖、 Ca2+結合軽鎖およびリン酸 化軽鎖がそれぞれ成熟タンパク質として発現するように、 各ポリヌクレ ォチドの 3'端には停止コドンを設けるようにする。 また、 各ポリヌクレ ォチドの 5'端にはそれぞれの発現制御配列(プロモータ一ノエンハンサ 一) を備えるようにしてもよい。  The obtained polynucleotides are separately cloned into expression vectors and co-expressed, whereby the recombinant myosin of the present invention can be prepared. Alternatively, each polynucleotide may be cloned into an expression vector as a fusion polynucleotide in which the respective polynucleotides are linked. However, in this case, a stop codon should be provided at the 3 'end of each polynucleotide so that the heavy chain, Ca2 + -binding light chain and phosphorylated light chain are each expressed as a mature protein. Also, the 5 'end of each polynucleotide may be provided with a respective expression control sequence (promoter-no enhancer).
この発明の組換えミオシンを in vi t ro翻訳系で発現させる場合には、 RNAポリメラーゼプロモ一ターを有する発現べクタ一にポリヌクレオチ ドを組換え、 この組換えベクターをプロモー夕一に対応する RNAポリメ ラーゼを含むゥサギ網状赤血球溶解物や小麦胚芽抽出物などの in vi tro翻訳系に添加する。 RNAポリメラーゼプロモーターとしては、 T7、 T3 SP6などが例示できる。 これらの RNAポリメラーゼプロモー夕一を 含むベクターとしては、 pKAK pCDM8, ΡΤ3/Τ7 18、 ρΤ7/3 19、 pBluescr ipt I Iなどが例示できる。 また、 ポリヌクレオチドを適当な宿主一べクタ一系において発現させ れば、 組換えミオシンを大腸菌、 枯草菌等の原核細胞や、 酵母、 昆虫細 胞、哺乳動物細胞、植物細胞等の真核細胞などで生産することができる。 例えば、 大腸菌などの微生物で発現させる場合には、 微生物中で複製可 能なオリジン、 プロモーター、 リボソーム結合部位、 DNAクローニング 部位、 夕一ミネ一夕一等を有する発現べクタ一にポリヌクレオチドを組 換えて発現ベクターを作成し、 この発現ベクターで宿主細胞を形質転換 し、 この形質転換体を培養すれば、 その培養物から目的の組換えミオシ ンを大量生産することができる。 大腸菌用発現ベクターとしては、 plIC 系、 pB l ue sc r i p t I I、 pET発現システム、 pGEX発現システムなどが例示 できる。 さらに、 組換えミオシンを真核細胞で発現させる場合には、 ポ リヌクレオチドをプロモータ一、 スプライシング領域、 ポリ (A)付加部 位等を有する真核細胞用発現べクタ一に挿入して組換えベクターを作 製し、 このベクターをトランスフエク卜した真核細胞から目的の組換え ミオシンを得ることができる。 発現ベクターとしては、 pKAl、 pCDM8、 pSVK3、 pMSG、 pSVL、 pBK-CMV, pBK-RSV, EBVベクタ一、 pRS、 pYES2 な どが例示できる。 真核細胞としては、 ヒト胎児腎臓細胞 HEK293、 サル腎 臓細胞 C0S7、チャイニーズハムスター卵巣細胞 CH0などの哺乳動物培養 細胞、 あるいはヒト臓器から単離した初代培養細^などが使用できる。 出芽酵母、 分裂酵母、 カイコ細胞、 アフリカッメガエル卵細胞なども使 用できる。 また、 バキュロウィルス科に属する核多角体病ウィルスのゲ ノム DNAとともに前記の発現べクタ一を昆虫細胞にトランスフエクショ ンすれば、 昆虫細胞から目的の組換えミオシンを得ることができる。 昆 虫細胞としては S i 9、 S 1、 TD5などを使用することができる。 When the recombinant myosin of the present invention is expressed in an in vitro translation system, the polynucleotide is recombined into an expression vector having an RNA polymerase promoter, and this recombinant vector is used for the promoter. It is added to an in vitro translation system, such as a reticulocyte lysate of egrets containing RNA polymerase or a wheat germ extract. Examples of the RNA polymerase promoter include T7 and T3 SP6. Examples of vectors containing these RNA polymerase promoters include pKAK pCDM8, ΡΤ3 / Τ718, ρΤ7 / 319, pBluescript II and the like. In addition, if the polynucleotide is expressed in an appropriate host vector system, the recombinant myosin can be used for prokaryotic cells such as Escherichia coli and Bacillus subtilis, and eukaryotic cells such as yeast, insect cells, mammalian cells, and plant cells. Etc. can be produced. For example, when expressing in a microorganism such as Escherichia coli, a polynucleotide is assembled in an expression vector having an origin, a promoter, a ribosome binding site, a DNA cloning site, and a chromosome that can replicate in the microorganism. If an expression vector is prepared by reconstitution, a host cell is transformed with the expression vector, and this transformant is cultured, the target recombinant myosin can be produced in large quantities from the culture. Examples of expression vectors for Escherichia coli include a plIC system, pBluescript II, a pET expression system, a pGEX expression system, and the like. Furthermore, when recombinant myosin is expressed in eukaryotic cells, the polynucleotide is inserted into an expression vector for eukaryotic cells having a promoter, a splicing region, and a poly (A) -added site. A desired recombinant myosin can be obtained from a eukaryotic cell prepared by preparing a vector and transfecting the vector. Examples of expression vectors include pKAl, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2 and the like. As eukaryotic cells, mammalian cultured cells such as human embryonic kidney cells HEK293, monkey kidney cells C0S7, Chinese hamster ovary cells CH0, or primary cultured cells isolated from human organs can be used. Saccharomyces cerevisiae, fission yeast, silkworm cells, African algae eggs and the like can also be used. Further, if the expression vector is transfected into insect cells together with the genomic DNA of nuclear polyhedrosis virus belonging to the baculovirus family, the desired recombinant myosin can be obtained from the insect cells. Si 9, S 1, TD5 and the like can be used as insect cells.
発現ベクターを細胞に導入するには、 電気穿孔法、 リン酸カルシウム 法、 リボソーム法、 DEAEデキストラン法など公知の方法を用いることが できる。 形質転換細胞で発現させたポリべプチドを単離精製するために は、 公知の分離操作を組み合わせて行うことができる。 例えば、 尿素な どの変性剤や界面活性剤による処理、 超音波処理、 酵素消化、 塩析ゃ溶 媒沈殿法、 透析、 遠心分離、 限外濾過、 ゲル濾過、 SDS- PAGE、 等電点電 気泳動、 イオン交換クロマトグラフィー、 疎水性クロマトグラフィー、 ァフィ二ティ一クロマトグラフィー、 逆相クロマトグラフィ一などが挙 げられる。 To introduce the expression vector into cells, known methods such as an electroporation method, a calcium phosphate method, a ribosome method, and a DEAE dextran method can be used. In order to isolate and purify the polypeptide expressed in the transformed cell, known separation operations can be combined. For example, urea Treatment with any denaturant or surfactant, sonication, enzymatic digestion, salting out / solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion exchange Chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and the like.
この発明の別の態様は、 ミオシン重鎖、 Ca2+結合軽鎖および/または リン酸化軽鎖のアミノ酸配列における 1以上のアミノ酸残基が他のァ ミノ酸残基に置換、 1以上のアミノ酸残基が欠失、 または 1以上のアミ ノ酸残基が付加している改変型の組換えミオシンである。 Another embodiment of the present invention provides a method for preparing a myosin heavy chain, a Ca2 + binding light chain and / or a phosphorylated light chain, wherein one or more amino acid residues in the amino acid sequence is replaced with another amino acid residue, Modified recombinant myosin in which residues are deleted or one or more amino acid residues are added.
この場合の 「改変型」 とは、 前記のアミノ酸配列の変異によって、 組 換えミオシンの活性 (例えば、 Ca2+結合能、 ATP 分解能、 機械的ェネル ギ一発生能など)が増加または低下することを意味する。あるいはまた、 他の分子や化合物等との結合性を増加または低下させるようなアミン 酸変異を意味する。 In this case, the “modified type” means that the activity of the recombinant myosin (eg, Ca 2+ binding ability, ATP resolution, mechanical energy generation ability, etc.) is increased or decreased due to the amino acid sequence mutation. Means Alternatively, it refers to an amino acid mutation that increases or decreases the binding to other molecules or compounds.
このようなアミン酸変異は、 公知の方法により前記のポリヌクレオチ ドに変異を導入し、 その変異ポリヌクレオチドを前記と同様に発現させ ることによって行うことができる。 例えば、 任意のアミノ酸コドンを他 のアミノ酸残コドンに置換したポリヌクレオチドを作成する場合には、 公知の Kunke l法 (Kunke l, T. A. Pro Nat l. Acad. Sc i. USA 82 : 488, 1985および Kunke l, T. A., et al. Me thods in Enzy o l ogy 154 : 367, 1987) を採用することができる。 すなわち、 du t -、 ung-の遺伝型で示さ れる大腸菌 (BW313、 CJ 236 等) は、 dUTPase ( Dut ) と Urac i卜 DNA glycosyl ase (Ung) を欠損しているため、 MA中のチアミン (T) の一部 がデォキシゥラシル (dU) に置き換わった DNAを合成する。 この大腸菌 を宿主菌として、 変異導入の目標となるポリヌクレオチドに対して、 目 的残基を他のアミノ酸残基で置換するように設計したオリゴヌクレオ チドを試験管内でハイブリダィズさせ、 DNAポリメラーゼ反応と DNAリ ガーゼ反応により相補 DNA鎖を合成する。 この DNAを ung+の大腸菌株 (DH5 a等) に導入すると、 もとの dUの含まれている DNA鎖は Uiigによ つて分解を受けるが、 試験管内で合成された相補 DNA鎖は分解されずに 複製される。 このようにして変異を導入した側の DNA鎖が選択的に増幅 され、 目的変異を含むミオシンをコードするポリヌクレオチドを得るこ とができる。 また、 変異ポリヌクレオチドは、 ミューテ一シヨン 'キッ ト等を使用する方法や、 変異導入型の PCR法、 あるいは公知のポリヌク レオチド合成法 (例えば、 Nuc le ic Ac id Res. 25 : 3440-3444, 1997等) によっても得ることができる。 Such an amino acid mutation can be performed by introducing a mutation into the above-described polynucleotide by a known method, and expressing the mutant polynucleotide in the same manner as described above. For example, when preparing a polynucleotide in which an arbitrary amino acid codon is replaced by another amino acid codon, the known Kunkel method (Kunkel, TA Pro Natl. Acad. Sci. USA 82: 488, 1985 and Kunkel, TA, et al. Methods in Enzymology 154: 367, 1987). That is, Escherichia coli (BW313, CJ236, etc.) represented by the dut- and ung- genotypes are deficient in dUTPase (Dut) and Uraci DNA glycosylase (Ung). It synthesizes DNA in which part of T) has been replaced by deoxyduracil (dU). Using this Escherichia coli as a host bacterium, an oligonucleotide designed to replace the target residue with another amino acid residue is hybridized in a test tube to a target polynucleotide for mutation, and the DNA polymerase reaction is performed. A complementary DNA strand is synthesized by a DNA ligase reaction. This DNA is ung + E. coli strain When introduced into (DH5a, etc.), the original DNA strand containing dU undergoes degradation by Uiig, but the complementary DNA strand synthesized in the test tube is replicated without degradation. In this manner, the DNA strand on which the mutation has been introduced is selectively amplified, and a polynucleotide encoding myosin containing the target mutation can be obtained. Mutant polynucleotides can be obtained by a method using mutation kit or the like, a mutation-introduced PCR method, or a known polynucleotide synthesis method (for example, Nucleic Acid Res. 25: 3440-3444, 1997 etc.).
以下、 実施例を示してこの出願の発明についてさらに詳細かつ具体的 に説明するが、 この出願の発明は以下の例によって限定されるものでは ない。 実 施 例  Hereinafter, the invention of this application will be described in more detail and specifically with reference to examples, but the invention of this application is not limited to the following examples. Example
(1)材料と方法  (1) Materials and methods
(1-1)化学物質  (1-1) Chemical substances
制限酵素およびその他酵素類は、 宝酒造株式会社 (京都) のものを使 用した。 その他の試薬類は全て、 市販の特級試薬を用いた。 水溶液作成 時には、 ミリ Q水 (Mi l l ipore社、 Bedford, MA、 USA) を用いた。  Restriction enzymes and other enzymes were from Takara Shuzo Co., Ltd. (Kyoto). All other reagents were commercially available special grade reagents. Milli-Q water (Millipore, Bedford, MA, USA) was used when preparing the aqueous solution.
(1-2)バキュロウィルス導入べクタ一の構築  (1-2) Construction of baculovirus introduction vector
フィザルム由来ミオシン重鎖のサブフラグメント- 1 重鎖 (S I- HC ; Me t l-Gly841) をコードする cDNAを RT- PCR法 (KOD DNA polyierase; 東洋紡株式会社、 東京) により合成した。 PCRプライマーは、 既知の配 列情報 (GenBank No. AF335500)  CDNA encoding the subfragment-1 heavy chain (S I-HC; Metl-Gly841) of myosin heavy chain derived from physalum was synthesized by RT-PCR (KOD DNA polyierase; Toyobo Co., Ltd., Tokyo). PCR primers have known sequence information (GenBank No. AF335500)
を基に設計した以下を使用した。  The following, which was designed based on, was used.
5' -CGGGATCCATGGCAAGCGAAAGGCAAC-3' (配列番号 1 )  5'-CGGGATCCATGGCAAGCGAAAGGCAAC-3 '(SEQ ID NO: 1)
5' -ATGGTGCTTGTCGTCGTCGTCGCCAACCAATAAGGGACGCG-3' (配列番号 2 ) PCR条件は、 変性 (94で 1分)、 アニーリング (55t i分)、 伸長 (72 3分) を 1サイクルとし、 35サイクルを行った。 また、 組換えミオシンを発現させるために、 へキサ Hi s -タグの配列を C末端に PCRによって付した。 S 1-HCの終末端の以下のプライマー: 5' -CCGCGGCCGCATGATGATGATGATGGTGCTTGTCGTCGTCGTCGTC-3' (配列番号 3 )には、 へキサ Hi sタグ配列、 停止コドンおよび Sai l制限サイ トを含ま せた。 5′-ATGGTGCTTGTCGTCGTCGTCGCCAACCAATAAGGGACGCG-3 ′ (SEQ ID NO: 2) As the PCR conditions, 35 cycles were performed, with one cycle consisting of denaturation (1 minute at 94), annealing (55 ti minutes), and extension (723 minutes). In order to express recombinant myosin, the sequence of the hexa-His-tag was added to the C-terminus by PCR. The following primers at the end of S1-HC: 5'-CCGCGGCCGCATGATGATGATGATGGTGCTTGTCGTCGTCGTCGTC-3 '(SEQ ID NO: 3) contained a hex His tag sequence, a stop codon and a SaiI restriction site.
ネスト PCRは以下のプライマーを用いて行った。  Nest PCR was performed using the following primers.
5' -CGGGATCCATGGCAAGCGAAAGGCAAC-3' (配列番号 4 )  5'-CGGGATCCATGGCAAGCGAAAGGCAAC-3 '(SEQ ID NO: 4)
以上のより得られた PCR 産物を、 pBlueBac4. 5a ( Invi t rogen 社、 Car l sbad, CA、 USA) の BamHI/Sal lサイ トにクロ一ニングし、 DNA配列 を確認した。 得られたこのプラスミドを pBB/Sl とした。  The PCR product obtained above was cloned into the BamHI / Sall site of pBlueBac4.5a (Invitrogen, Carlsbad, Calif., USA) to confirm the DNA sequence. The obtained plasmid was designated as pBB / Sl.
ミオシン重鎖のへビ一メロミオシン (HMM) 重鎖 (MeU- Lys l l81) の 導入べクタ一も上記と同様な方法で構築した。 ミオシン重鎖の一部分で あるコイルドコイル構造領域を PCRにて S卜 HCの C末端に付与した。  The vector for the introduction of the heavy chain of myomesin meromyosin (HMM) heavy chain (MeU-Lysll81) was constructed in the same manner as described above. A coiled-coil structure region, which is a part of the myosin heavy chain, was added to the C-terminus of the HC by PCR.
Smal制限サイト (ミオシン重鎖の 2044bp) を有するプライマ一: Primer with Smal restriction site (2044 bp of myosin heavy chain):
5' -CAGAAGCCCGGGTACCTTG-3' (配列番号 5 ) と、 5'-CAGAAGCCCGGGTACCTTG-3 '(SEQ ID NO: 5) and
終末端に HMM断片 (Lys l l81) を含んだプライマー: Primers containing an HMM fragment (Lysll81) at the end:
5' -ATGATGATGGTGCTTGAGCTCCTCTACCTG-3' (配列番号 6 )  5'-ATGATGATGGTGCTTGAGCTCCTCTACCTG-3 '(SEQ ID NO: 6)
を用いた。 へキサ Hi sタグ配列を付与するには、 プライマー: Was used. To add a HexaHis tag sequence, primer:
5' -CAGAAGCCCGGGTACCTTG-3' (配列番号 7 ) と、  5'-CAGAAGCCCGGGTACCTTG-3 '(SEQ ID NO: 7) and
へキサ Hi sタグ配列、停止コドン、 Sai l制限サイ トを含んだプライマ一:Primers containing the HexaHis tag sequence, stop codon, and Sail restriction site:
5' -GGACTAGTGTCGACTTAATGATGATGATGATGGTGC-3' (配列番号 8 ) を用いて、 ネスト PCRを行った。 Nest PCR was performed using 5′-GGACTAGTGTCGACTTAATGATGATGATGATGGTGC-3 ′ (SEQ ID NO: 8).
得られた PCR産物は、 pBB/S lプラスミドの Smal/Sal lにクローニング し、 プラスミ ドを pBB/HMMを構築した。  The obtained PCR product was cloned into Smal / Sall of pBB / S1 plasmid, and the plasmid was constructed into pBB / HMM.
さらに、 既知の配列情報に基づいて設計したプライマーを用い、 Ca2+ 結合軽鎖 (CaLC) とリン酸化軽鎖 (PLC) のそれぞれをコードするポリ ヌクレオチドの導入ベクターを構築した。 なお、 PLCおよび CaLCの 5' 端には BamHIまたは Kpnl制限酵素サイ トに付与した。 また、 PLCおよび CaLCの 3'端には Kpnlまたは EcoRIサイトを付与した。 得られた PCR産 物を pBlueBac4.5a の BamHI/Kpnlおよび Kpnl/EcoRI制限サイ トに各々 サブクローニングし、プラスミ ド pBB/PLCおよび pBB/CaLCを構築した。 Furthermore, using primers designed based on the known sequence information, vectors for introducing polynucleotides encoding the Ca 2+ binding light chain (CaLC) and the phosphorylated light chain (PLC) were constructed. In addition, BamHI or Kpnl restriction enzyme sites were added to the 5 'end of PLC and CaLC. Also PLC and A Kpnl or EcoRI site was added to the 3 'end of CaLC. The resulting PCR products were subcloned into BamHI / Kpnl and Kpnl / EcoRI restriction sites of pBlueBac4.5a, respectively, to construct plasmids pBB / PLC and pBB / CaLC.
- 3)組換えウィルスの感染および選択  -3) Infection and selection of recombinant virus
Spodoptera frugiperda (Sf-9) 細胞を 75cm2 のフラスコで、 27 で した。  Spodoptera frugiperda (Sf-9) cells were 27 in 75 cm2 flasks.
培養液(T匪- FH)は、 Grace' s昆虫細胞培養液(Invitrogen社、 Carlsbad, CA、 USA) に 10%牛胎児血清 (FCS) および lO g/ml ゲンタマイシン (Sigma-Aldricli社、 USA) を加えた。 Si- 9細胞に、 核多角病ウィルス Auto-graphica californica の直鎖状 DNA ( Bac-M-BlueTM DNA ; Invitrogen社、 Carlsbad, CA、 USA) と、導入ベクター pBB/Sl、 pBB/HMM, pBB/PLCおよび pBB/CaLCのいずれか一つとを感染導入した。感染導入の 効率を高めるため、 InsectinPlusTM リボソーム試薬 (Invitrogen社、 Carlsbad, CA、 USA) を使用した。 7日後、 X-gal含有プレート上でブラ ークアツセィを行い、 組換えパキュロウィルスを単離した。青いブラー クを拾い上げ、 Si-9細胞 (25cm2の培養容器) に感染させ、 組換えパキ ュロウィルスを増幅させた。 4 日後、 上清中にある組換えパキュロウィ ルスを前記の 75cm2フラスコで 11 日間培養した Si- 9細胞に感染させ、 高いウィルス力価を有するストツクを調-製した。 組換えパキュ口ウィル スに組込んだ各種の導入 cDNAは、 PCRにて確認し、 続いて塩基配列解析 機においても確認した。 得られたこの組換えパキュロウィルスを、 再び 上記の方法によって増殖させた。 The culture solution (Tand-FH) was prepared by adding 10% fetal calf serum (FCS) and 10 g / ml gentamicin (Sigma-Aldricli, USA) to Grace's insect cell culture solution (Invitrogen, Carlsbad, CA, USA). Was added. In Si-9 cells, the linear DNA (Bac-M-BlueTM DNA; Invitrogen, Carlsbad, CA, USA) of the nuclear polyhedrosis virus Auto-graphica californica, the transfer vectors pBB / Sl, pBB / HMM, pBB / Infections were introduced with either PLC or pBB / CaLC. InsectinPlus ™ ribosome reagent (Invitrogen, Carlsbad, CA, USA) was used to increase the efficiency of infection transfer. Seven days later, a black assay was performed on an X-gal-containing plate to isolate a recombinant paculovirus. We picked up the blue break and infected Si-9 cells (25 cm 2 culture vessel) to amplify the recombinant paculovirus. Four days later, the recombinant Paculovirus in the supernatant was used to infect Si-9 cells cultured in the above-mentioned 75 cm 2 flask for 11 days to prepare a stock having a high virus titer. Various introduced cDNAs integrated into the recombinant PacuMouth virus were confirmed by PCR, and subsequently also confirmed by a nucleotide sequence analyzer. The obtained recombinant paculovirus was propagated again by the method described above.
(卜 4)組換え S1および HMMの精製  (4) Purification of recombinant S1 and HMM
72cm2の培養容器 (10個) のそれぞれに、 1X107個の Si- 9細胞を播種 した。 Si- 9細胞に、 S卜重鎖または HMM-重鎖、 リン酸化軽鎖および Ca2+ 結合軽鎖をそれぞれコードするポリヌクレオチドを導入したパキュ口 ウィルスを各々個別に共感染させた。 いずれの場合においても、 感染多 重度 (m.0. i) は 5であった。 感染させた Si-9細胞は、 27 で 3 日間成 長させた後、 4 で 10 分、 1500rpm の速度で遠心し、 細胞を回収した。 回収した細胞はペレッ ト状のため、 7ml ホモゲナイズ緩衝液 [20mM Tris-HCl (pH 7.5)、 ImM MgCl2、 ImM EGTA、 5iM 2 メルカプトエタノー ル、 タンパク質分解酵素阻害因子 lmMp-ABSF (和光純薬化学工業株式会 社)、 lO g/ml ロイぺプチンおよび Hisタグタンパク質分解酵素阻害因 子混合液 (Sigma- Aldrich社、 USA)] で懸濁し、 均質化した。 均質化の 後、内在性ァクチンから組換えミオシンを放出するため 0.2MNaClと ImM ATP に合わせて調節し、 細胞の破片ゃ破碎されていない細胞を取り除く たに 15000Xgで 15分、 遠心分離を行った。 上清を 0.2mg/ml ゥサギ骨 格筋ァクチン (ゥサギ骨格筋アセトン粉から精製) と混合し、 緩衝液 (20mM Tris-HCl (pH7.5)、 50mMKCl、 10iMMgC12, 0.3mMDTT、 ImM p-ABSF および 1 ig/ml ロイぺプチン) で、 24時間透析を行った。 ァクチン組換 え HMMは透析中に形成され沈殿し、 lOOOOOXgで 1時間、 遠心分離を行 い回収した。 沈殿物より分離された S1/HMMの沈殿物を、 緩衝液 [20mM Tris-HCl (pH 7.5)、 lOOmM KCK lOmM MgCl2、 7mM 2-メルカプトエタノ ール、 IOO M P - ABSF、 1 g/ml ロイぺプチンおよび ImM ATP] を用いて ホゲナイズし、 lOOOOOXg で 90 分間遠心分離を行い、 得られた上清を Ni-NTAスパ一フロー (Qiagen社、 ドイツ) カラムに添加した。 この力 ラム内で Hisタグ融合組換え S1'または HMMをトラップし、抽出液 i20mM Tris-HCl (pH 7.5)、 40mM KCK 7mM 2-メルカプトエタノール、 I' g/ml ロイぺプチンおよび 100mM イミダゾ一ル] で抽出した。 SDS-PAGE を行 つた後、 組換え S1/HMM を含む泳動パンド部分を、 Centriprep - 30 concentrator (Millipore社、 USA) を用いて蓄積および濃縮した。 次い で、 組換えミオシンを緩衝液 UOmMTris- HC1 (pH 7.5)、 40mMKCK 1.5mM MgCl2、 0. lmM DTT、 20 M p-ABSFおよび 0.6 g/ml ロイぺプチン] で透 祈した。タンパク質の精製は 4で以下の温度条件で行った。典型的な組換 え S1/HMMを 0· lmgを採取し、 BSAを標準値として用いて Bio-Radタンパ ク質測定液で定量した結果、 1X108個の Si- 9細胞が得られた。 (1 - 5)ゲル電気泳動 1 × 10 7 Si-9 cells were inoculated in each of 10 culture vessels of 72 cm 2 . Si-9 cells were individually co-infected with Pacu Mouth virus into which polynucleotides encoding S heavy chain or HMM-heavy chain, phosphorylated light chain and Ca 2+ binding light chain, respectively, were introduced. In each case, the severity of infection (m.0.i) was 5. Infected Si-9 cells were grown at 27 for 3 days. After elongation, the cells were centrifuged at 4 rpm for 10 minutes at 1500 rpm to collect the cells. Since the collected cells are in pellet form, 7 ml of homogenizing buffer (20 mM Tris-HCl (pH 7.5), ImM MgCl 2 , ImM EGTA, 5iM 2 mercaptoethanol, protease inhibitor lmMp-ABSF (Wako Pure Chemical Industries, Ltd.) Industrial Co., Ltd.), lOg / ml mixture of leptin and His-tagged protease inhibitor (Sigma-Aldrich, USA)]. After homogenization, the recombinant myosin was released from endogenous actin, adjusted to 0.2 M NaCl and ImM ATP, and centrifuged at 15000Xg for 15 minutes to remove cell debris and unbroken cells. . The supernatant was mixed with 0.2 mg / ml ゥ heron bone skeletal muscle actin (purified from ゥ heron skeletal muscle acetone powder) and buffered (20 mM Tris-HCl (pH 7.5), 50 mM KCl, 10 iMMgC12, 0.3 mM DTT, ImM p-ABSF and (1 ig / ml of leptin) for 24 hours. Actin recombinant HMM was formed and precipitated during dialysis, and collected by centrifugation with lOOOOOXg for 1 hour. The precipitate separated S1 / HMM than precipitate buffer [20mM Tris-HCl (pH 7.5 ), lOOmM KCK lOmM MgCl 2, 7mM 2- mercaptoethanol, IOO MP - ABSF, 1 g / ml Roy [Peptin and ImM ATP]], centrifuged with lOOOOOXg for 90 minutes, and the resulting supernatant was applied to a Ni-NTA spa flow (Qiagen, Germany) column. In this column, trap His-tagged recombinant S1 'or HMM, extract i20mM Tris-HCl (pH 7.5), 40mM KCK 7mM 2-mercaptoethanol, I'g / ml leptin and 100mM imidazole ]. After SDS-PAGE, the electrophoretic band containing the recombinant S1 / HMM was accumulated and concentrated using a Centriprep-30 concentrator (Millipore, USA). The recombinant myosin was then permeated with buffer UOmMTris-HC1 (pH 7.5), 40 mM KCK 1.5 mM MgCl 2 , 0.1 lmM DTT, 20 M p-ABSF and 0.6 g / ml leptin. The protein was purified under the following temperature conditions. As a result of collecting 0.1 mg of typical recombinant S1 / HMM and quantifying it with Bio-Rad protein measurement solution using BSA as a standard value, 1 × 10 8 Si-9 cells were obtained. (1-5) gel electrophoresis
SDS- PAGEは、文献(J. Chromatogr 64:147-155, 1972) の記載に従い、 文献 (Nature 227:680-685, 1970) 記載の緩衝液システムを用いて調製 した 12.5¾ポリアクリルアミ ドゲルを用いて行った。 SDS-サンプル緩衝 液は、 40mMTris-HCl (pH 6.8)、 50mMDTT、 1¾ SDS, 7.5 グリセロール、 0.002 ブロモフエノールブルーにて構成した。  SDS-PAGE was performed using a 12.5¾ polyacrylamide gel prepared using the buffer system described in the literature (Nature 227: 680-685, 1970) according to the description in the literature (J. Chromatogr 64: 147-155, 1972). It was carried out using. The SDS-sample buffer was composed of 40 mM Tris-HCl (pH 6.8), 50 mM DTT, 1¾ SDS, 7.5 glycerol, and 0.002 bromophenol blue.
(1-6)電子顕微鏡による観察  (1-6) Observation by electron microscope
精製した HMM (0.5mg/ml) を雲母シートに載置し、 これを 30%グリセ ロール含有 0.1M酢酸アンモニゥムで 3回洗浄し、 2¾酢酸ゥラニル水溶 液で染色し、 3回洗浄した。 この雲母シートに別の分割した雲母シート を被覆し、 押し付け、 剥離して、 BAF 060 ロータリー影像システムにお いて低角度でプラチナに口一タリ一複製し、 この複製した試料を試料台 固定し、 JEM- 1010電子顕微鏡で観察した。  The purified HMM (0.5 mg / ml) was placed on a mica sheet, washed three times with 0.1 M ammonium acetate containing 30% glycerol, stained with aqueous peranyl acetate, and washed three times. The mica sheet was covered with another divided mica sheet, pressed and peeled off, and then duplicated one by one on platinum at a low angle in a BAF 060 rotary image system. Observed with a JEM-1010 electron microscope.
(1-7) ATPase活性による解析  (1-7) Analysis by ATPase activity
S1/HMMにおける ATPase活性測定は、文献(Anal Biochem. 293:212-215, 2001) の記載に従って行った。 全ての解析は、 25でで行った。基本的な Mg2+-ATPase活性は、 20mM Tris-HCl (pH7.5)、 40mM KCK 1.5mM MgCl2、 0. liM DTT、 0.5mM ATP, ゥサギ骨格筋由来の重合型ァクチンおよび 0.5 M組換え S1/HMMで解析を行った。統計解析は Student' s— t- testを用い て行い、 Pく 0.05を統計的有意とした。 The ATPase activity in S1 / HMM was measured according to the description in the literature (Anal Biochem. 293: 212-215, 2001). All analyzes were performed at 25. Basic Mg 2+ -ATPase activity is 20 mM Tris-HCl (pH 7.5), 40 mM KCK 1.5 mM MgCl 2 , 0.1 liM DTT, 0.5 mM ATP, 重合 skeletal muscle derived actin and 0.5 M recombinant Analysis was performed with S1 / HMM. Statistical analysis was performed using Student's t-test, and P-0.05 was considered statistically significant.
(l-8)Ca2+結合の測定 (l-8) Measurement of Ca 2+ binding
Ca2+の結合範囲は、 文献 (Biochemistry 39:3827-3834, 2000) の記載 に従い、 3.5 M HMM、 50 Mの組換え Ca2+軽鎖または 50^ Mの組換えリ ン酸化軽鎖の存在下で、 CaCl2(Du- Pont- ΝΕΝ)を含む 0. liM NaCK 5mM MgCl2 および MOPS/NaOH (pH 7.0) を用いた流動透析法を利用して 25で下で測 定した。 リン酸化軽鎖または Ca2+軽鎖それぞれの 0RFの 5'末端に Ndel 制限酵素サイ トを、 3'末端に BamHIサイトを PCRによって付与した。 こ の PCR産物を Ndelおよび BamHIで酵素処理をして、 pET19b発現べクタ 一システム (Novagen社、 USA) の同じサイ トに揷入した。 メ一カーの説 明書に従い、 pETl¾/PLCまたは pET19b/CaLCを大腸菌 BL21 (DE3) 株に て発現および精製した。 全てのデータは、 Adiarの式に適合させること によって分析した。 As described in the literature (Biochemistry 39: 3827-3834, 2000), the binding range of Ca 2+ was determined for 3.5 M HMM, 50 M recombinant Ca 2+ light chain or 50 ^ M recombinant phosphorylated light chain. In the presence, it was measured at 25 using a flow dialysis method using 0.1 mM LiCl NaCK containing 5 mM MgCl 2 containing MoCl 2 (Du-Pont-ΝΕΝ) and MOPS / NaOH (pH 7.0). The Ndel restriction enzyme site was added to the 5 'end of the 0RF of each phosphorylated light chain or Ca 2+ light chain, and the BamHI site was added to the 3' end by PCR. This PCR product is treated with Ndel and BamHI, and the pET19b expression vector One system (Novagen, USA) was purchased at the same site. PETl¾ / PLC or pET19b / CaLC was expressed and purified in E. coli BL21 (DE3) according to the manufacturer's instructions. All data were analyzed by fitting to the Adiar equation.
(1-9) In Vitroにおける運動力の解析  (1-9) In Vitro Analysis of Motor Force
In Vitroにおける運動力の解析は、 文献 (J. Biochem. 106:955-957, 1989) の記載に従って行った。 すなわち、 ガラス表面に組換え HMMをコ —ティングした。 重合型ァクチン (0.125mg/ml) をローダミンファロィ ジン (Molecular Probe、 USA) でラベルし、 運動解析用培地 [10mMKCl、 2mM ATP、 liM MgC12、 lOmM イミダゾ一ル (pH 7.5)、 14mM 2-メルカプ トエタノールおよび 0. lmM EGTAまたは 0. lmM CaCl2] 上に乗せた。 ATP 依存性の運動は、 蛍光顕微鏡で観察し、 またビデオカメラに撮影し記録 した。 ァクチン運動の速度は、 動いた距離とその動きをビデオカメラ撮 影で収めた時間経過から算出した。 統計解析は Student's t-test を用 いて行い、 Pく 0.05を統計的有意とした。 The analysis of exercise force in vitro was performed as described in the literature (J. Biochem. 106: 955-957, 1989). That is, the recombinant HMM was coated on the glass surface. Polymerized actin (0.125 mg / ml) was labeled with rhodamine phalloidin (Molecular Probe, USA), and the medium for kinetic analysis [10 mM KCl, 2 mM ATP, liM MgC12, lOmM imidazole (pH 7.5), 14 mM 2-mercap Triethanol and 0.1 lmM EGTA or 0.1 lmM CaCl 2 ]. ATP-dependent movement was observed with a fluorescence microscope and recorded with a video camera. The speed of actin movement was calculated from the distance traveled and the time elapsed when the movement was captured with a video camera. Statistical analysis was performed using Student's t-test, and P-0.05 was considered statistically significant.
(2)結果  (2) Results
S1 -重鎖の組換えバキュロウィルスを Si- 9 細胞に感染させた。培養 3 日後、 これら細胞を回収し、 ホモゲナイズし、 遠心分離を行った。発現 産物は沈殿物中にあることから (図 1 )、 S1-重鎖は不溶性であることが 示された。 同様に、 S1-重鎖のバキュロウィルスと Ca2+結合軽鎖のパキ ュロウィルスとの共感染導入に発現産物を不溶性物質として得られた。 しかしながら、 この S1 -重鎖の組換えバキュロウィルスとリン酸化軽鎖 の組換えパキュロウィルスおよび Ca2+結合軽鎖の組換えパキュ口ウィル スとの共感染導入では、 Sf-9細胞内で可溶性の S卜重鎖が生産された(図Si-9 cells were infected with recombinant S1-heavy chain baculovirus. After 3 days of culture, these cells were collected, homogenized, and centrifuged. The expression product was in the precipitate (FIG. 1), indicating that the S1-heavy chain was insoluble. Similarly, the expression product was obtained as an insoluble substance upon co-infection introduction of the S1-heavy chain baculovirus and the Ca 2+ binding light chain paculovirus. However, this co-infection with the recombinant S1-heavy chain baculovirus, the phosphorylated light chain recombinant paculovirus and the Ca2 + -linked light chain recombinant baculovirus was not effective in Sf-9 cells. Soluble S heavy chains were produced (Fig.
2)。 HMM-重鎖の場合も同様に、 リン酸化軽鎖および Ca2+結合軽鎖の組 換えバキュロウィルスとの共感染を行うと、 可溶性産物が得られた (図2). Similarly, in the case of HMM-heavy chain, co-infection of the phosphorylated light chain and Ca 2+ -linked light chain with the recombinant baculovirus resulted in a soluble product (Fig.
3)。 3).
S卜重鎖、 リン酸化軽鎖および Ca2+結合軽鎖の組換えパキュ口ウィル スを感染させた Si- 9細胞の未加工抽出物から、可溶性 S1-重鎖を回収す るために、 多量のァクチンをこの抽出物と混合し、 遠心分離を行った。 得られたペレツ トを ATP含有の緩衝液で懸濁し、 S.卜重鎖をペレツトか ら放出させた。 再度遠心分離を行うことによって、 残存ァクチンを除去 し、 得られた上清を Ni-NTAスパ一フローカラムに注入した。 図 2に示 したように、 抽出物は、 98kDa (S1-重鎖)、 18kDa (リン酸化軽鎖)、 16kDa (Ca2+結合軽鎖) の 3つの大きなバンドで構成されている。 Recombinant Pacu mouth will for S heavy chain, phosphorylated light chain and Ca 2+ binding light chain To recover the soluble S1-heavy chain from the raw extract of infected Si-9 cells, large amounts of actin were mixed with this extract and centrifuged. The resulting pellet was suspended in a buffer containing ATP, and the heavy chain was released from the pellet. The remaining actin was removed by centrifugation again, and the obtained supernatant was injected into a Ni-NTA spa flow column. As shown in FIG. 2, the extract is composed of three large bands, 98 kDa (S1-heavy chain), 18 kDa (phosphorylated light chain), and 16 kDa (Ca 2+ binding light chain).
これにより、 抽出物に S1が含まれていることが分かる。 HMMは、 HMM- 重鎖のペプチド 135kDa、 リン酸化軽鎖のペプチド 18kDaおよび Ca2+結合 軽鎖のペプチド 16kDaの複合体(図 3)と類似している。双頭の HMMが、 電子顕微鏡による観察で示された (図 4)。 S1および HMMの ATPase活性 を、 少量のサンプルでも数量化が可能な高速液体クロマトグラフィーに よって解析した。 組換え S1において、 ATPase活性が確認でき、 この活 性は次のとおり、ァクチンによって活性化された。すなわち、 0.12土 0.01 (s-lhead-1) (n=3) (m土 SEM) の Mg2+- ATPase活性 (図 5) ; This indicates that the extract contains S1. HMM is similar to the complex of HMM-heavy chain peptide 135 kDa, phosphorylated light chain peptide 18 kDa and Ca 2+ binding light chain peptide 16 kDa (FIG. 3). A double-headed HMM was shown by electron microscopy (Figure 4). The ATPase activity of S1 and HMM was analyzed by high performance liquid chromatography, which allows quantification of even small samples. ATPase activity was confirmed in recombinant S1, and this activity was activated by actin as follows. That is, Mg 2+ -ATPase activity of 0.12 soil 0.01 (s-lhead-1) (n = 3) (m soil SEM) (Fig. 5);
また種々の濃度のァクチン存在下では、 その活性が Km=2.5 M と共に Vmax=0.61 (s-lhead-1) に上昇した (図 6)。 このように、 S1はァクチ ンによって約 5倍まで活性化され、 機能性 S1 が発現されたことが確認 された。 HMM も同様に、 0.21±0.02 (s-lhead-1) (n=3) (m土 SEM) の Mg2+ - ATPase活性を示した (図 7 )。 ァクチンは、 Km=l.8 Mによって活 性を Vmax=1.27 (s-lhead-1) に増加させ (図 8)、 HMMがァクチンによ つて約 6倍まで活性化されたことが確認された。 In the presence of various concentrations of actin, the activity increased to Vmax = 0.61 (s-lhead-1) together with Km = 2.5 M (Fig. 6). Thus, it was confirmed that S1 was activated up to about 5-fold by actin, and that functional S1 was expressed. HMM also showed Mg 2+ -ATPase activity of 0.21 ± 0.02 (s-lhead-1) (n = 3) (m soil SEM) (FIG. 7). Actin increased the activity to Vmax = 1.27 (s-lhead-1) by Km = 1.8 M (Fig. 8), confirming that HMM was activated by actin to about 6-fold. .
S1の ATPase活性における Ca2+の効果は、 ァクチンによる最大限の活 性化状態の下で試験した。 Ca2+のキレート剤である EGTAの存在下では、 活性は 0.49±0.07 (s-lhead-1) (n=3) であった。 0. ImM Ca2+が存在し た場合、 活性は 0.45±0.04 (s-lhead-1) (n=3) にわずかに減少した (図 5)。 しかし、 この減少は統計学的には有意ではなかった。 Ca2+の効果を HMMで同様に試験した。しかし、 その効果は、 たとえあったとしても極わ ずかなものであった (図 7)。 The effect of Ca 2+ on S1 ATPase activity was tested under maximal activation by actin. In the presence of EGTA, a chelator of Ca 2+ , the activity was 0.49 ± 0.07 (s-lhead-1) (n = 3). 0. In the presence of ImM Ca 2+ , the activity decreased slightly to 0.45 ± 0.04 (s-lhead-1) (n = 3) (Fig. 5). However, this decrease was not statistically significant. The effect of Ca 2+ was similarly tested on the HMM. But the effect, if any, is It was a quiet thing (Figure 7).
Ca2+の効果が検出されなかったことから、 S1および HMMが Ca2+に結合 するか否かという疑問が発生する。 そのため、 HMM.による Ca2+結合を流 動透析法によって確認した。 図 9に示したとおり、 リン酸化軽鎖は Ca2+ と結合しなかった。 しかし Ca2+結合軽鎖は Ca2+結合活性が確認された。 Since the effect of Ca 2+ is not detected, the question occurs as to whether S1 and HMM is bound to Ca 2+. Therefore, Ca 2+ binding by HMM was confirmed by the flow dialysis method. As shown in FIG. 9, the phosphorylated light chain did not bind to Ca 2+ . However, Ca 2+ binding light chain was confirmed to have Ca 2+ binding activity.
HMMの結合活性は劇的に増加した ; HMM binding activity increased dramatically;
最大結合活性は、 2mol/iDol HMMに対して、 Kdが IO Mレベルであった。 組換え HMMに対する Ca2+結合の効果を、 in vitro運動力解析を用いて 調べた。すなわち、 HMM をコーティングしたガラス表面上でァクチンの ATP依存性運動を観察した (図 1 0)。 EGTA存在下での平均速度は 0.61 ±0.16 m/sec (n=25) であるのに対し、 Ca2+存在下では 0.32±0.21 m/sec (n=25) に減少した。 この結果から、 組換え HMMが Ca2+結合活性 を有することと、 Ca2+が組換え HMMの運動機能活性に作用することが確 認された。 産業上の利用可能性 The maximum binding activity was 2 mol / iDol HMM with Kd at the IOM level. The effect of Ca 2+ binding on recombinant HMM was examined using in vitro kinetic analysis. That is, ATP-dependent movement of actin was observed on the HMM-coated glass surface (Fig. 10). The average velocity in the presence of EGTA was 0.61 ± 0.16 m / sec (n = 25), while it decreased to 0.32 ± 0.21 m / sec (n = 25) in the presence of Ca 2+ . From these results, it was confirmed that the recombinant HMM had Ca 2+ binding activity, and that Ca 2+ had an effect on the motor function activity of the recombinant HMM. Industrial applicability
以上詳しく説明したとおり、 この出願の発明によって、 Ca2+結合型の 組換えミ As described in detail above, according to the invention of this application, a Ca 2+ -linked
ォシンが提供される—。 この組換えミオシンは、 マイクロマシンにおける ァクチユエ一夕一や電子回路のスィツチ素子等として有用である。 Is provided. This recombinant myosin is useful as an activator in a micromachine or as a switch element in an electronic circuit.

Claims

請求の範囲 The scope of the claims
1 . Ca2+結合型ミオシンの重鎖、 Ca2+結合軽鎖、 およびリン酸化軽鎖の それぞれをコードするポリヌクレオチドの発現産物であって、 野性型の Ca2+結合型ミオシンと実質的に同一の機能を有することを特徴とする組 換えミオシ 1. The heavy chain of Ca 2+ binding myosin, an expression product of a polynucleotide encoding Ca 2+ binding light chain, and each of phosphorylated light chain, substantially the Ca 2+ binding myosin wild type Recombinant myosi characterized by having the same function
ン。 N.
2 . ミオシン重鎖、 Ca2+結合軽鎖および/またはリン酸化軽鎖のアミノ 酸配列における 1以上のアミノ酸残基が他のアミノ酸残基に置換、 1以 上のアミノ酸残基が欠失、 または 1以上のアミノ酸残基が付加している 請求項 1の組換えミオシン。 2. One or more amino acid residues in the amino acid sequence of myosin heavy chain, Ca 2+ binding light chain and / or phosphorylated light chain are replaced with other amino acid residues, one or more amino acid residues are deleted, Or the recombinant myosin according to claim 1, wherein one or more amino acid residues are added.
3 . 各々のポリヌクレオチドが、 真性粘菌フィザルム由来である請求 項 1または 2の組換えミオシン。 3. The recombinant myosin according to claim 1 or 2, wherein each polynucleotide is derived from Escherichia coli Physalum.
Seauence Listing く 110〉 Kohama, Kazuhiro, Seauence Listing ku 110> Kohama, Kazuhiro,
Nakamura, Akio  Nakamura, Akio
Kawamichi, Hozumi  Kawamichi, Hozumi
Tanaka, Hideyuki  Tanaka, Hideyuki
<120> Recombinant Myosin <120> Recombinant Myosin
〈130〉 NP02332-YS <130> NP02332-YS
<160> <160>
<210> 1 <210> 1
く 211〉 27 C 211> 27
<212> DNA <212> DNA
<213> Artificial sequence  <213> Artificial sequence
<220> <220>
く 223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 1 223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 1
CGGGATCCAT GGCAAGCGAA AGGCAAC 27 く 210〉 2  CGGGATCCAT GGCAAGCGAA AGGCAAC 27 ku 210〉 2
<211> 41 <211> 41
く 212> DNA 212> DNA
く 213〉 Artificial sequence K 213〉 Artificial sequence
く 220> K 220>
く 223> Description of Artificial Sequence: Synthetic oligonucleotide く棚〉 2 223> Description of Artificial Sequence: Synthetic oligonucleotide
ATGGTGCTTG TCGTCGTCGT CGCCAACCAA TAAGGGACGC G 41 <210> 3  ATGGTGCTTG TCGTCGTCGT CGCCAACCAA TAAGGGACGC G 41 <210> 3
く 211〉 46 C 211> 46
く 212〉 DNA K 212> DNA
<213> Artificial sequence  <213> Artificial sequence
く 220〉 K 220>
く 223> Description of Artificial Sequence: Synthetic oligonucleotide 00> 3 223> Description of Artificial Sequence: Synthetic oligonucleotide 00> 3
CCGCGGCCGC ATGATGATGA TGATGGTGCT TGTCGTCGTC GTCGTC 46 <210> 4  CCGCGGCCGC ATGATGATGA TGATGGTGCT TGTCGTCGTC GTCGTC 46 <210> 4
く 211〉 27 K 211> 27
<212> DNA <212> DNA
く 213〉 Artificial sequence K 213〉 Artificial sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide く棚〉 4 <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide
CGGGATCCAT GGCAAGCGAA AGGCAAC 27 < 10> 5  CGGGATCCAT GGCAAGCGAA AGGCAAC 27 <10> 5
く 211〉 19 C 211> 19
<212> DNA <212> DNA
ぐ 213〉 Artificial sequence Gu 213> Artificial sequence
〈220〉 <220>
く 223〉 Description of Artificial Sequence: Synthetic oligonucleotide 〈棚〉 5 223> Description of Artificial Sequence: Synthetic oligonucleotide <Shelf> 5
CAGAAGCCCG GGTACCTTG 19 く 210〉 6  CAGAAGCCCG GGTACCTTG 19 ku 210〉 6
く 211〉 30- く 212〉 DNA K 211〉 30- K 212〉 DNA
<213> Artificial sequence  <213> Artificial sequence
く 220〉 K 220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide く棚〉 6  <223> Description of Artificial Sequence: Synthetic oligonucleotide
ATGATGATGG TGCTTGAGCT CCTCTACCTG 30 く 210〉 7  ATGATGATGG TGCTTGAGCT CCTCTACCTG 30 ku 210〉 7
く 211〉 19 C 211> 19
く 212〉 DNA K 212> DNA
く 213〉 Artificial sequence K 213〉 Artificial sequence
<220> <220>
く 22—3〉 Description of Artificial Sequence: Synthetic oligonucleotide く 400〉 7 Ku 22-3> Description of Artificial Sequence: Synthetic oligonucleotide ku 400> 7
CAGAAGCCCG GGTACCTTG 19 〈210〉 8  CAGAAGCCCG GGTACCTTG 19 <210> 8
く 211> 36 C 211> 36
く 212〉 DNA K 212> DNA
く 213> Artificial sequence 213> Artificial sequence
く 220〉 K 220>
く 223〉 Description of Artificial SeQuence: Synthetic oligonucleotide 〈400〉 8 223> Description of Artificial SeQuence: Synthetic oligonucleotide <400> 8
GGACTAGTGT CGACTTAATG ATGATGATGA TGGTGC 36  GGACTAGTGT CGACTTAATG ATGATGATGA TGGTGC 36
PCT/JP2003/009741 2002-07-31 2003-07-31 Recombined myosin WO2004011649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003254788A AU2003254788A1 (en) 2002-07-31 2003-07-31 Recombined myosin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002223707A JP4367825B2 (en) 2002-07-31 2002-07-31 Recombinant myosin
JP2002/223707 2002-07-31

Publications (1)

Publication Number Publication Date
WO2004011649A1 true WO2004011649A1 (en) 2004-02-05

Family

ID=31184978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009741 WO2004011649A1 (en) 2002-07-31 2003-07-31 Recombined myosin

Country Status (3)

Country Link
JP (1) JP4367825B2 (en)
AU (1) AU2003254788A1 (en)
WO (1) WO2004011649A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507952A (en) * 2004-03-05 2008-03-21 リサーチ ファウンデーション オブ ステイト ユニヴァーシティー オブ ニューヨーク Use of RNA polymerase as an information-dependent molecular motor
JP5364983B2 (en) 2007-07-25 2013-12-11 株式会社ニコン Photometric device

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 11 March 2001 (2001-03-11), NYITRAY L. ET AL.: "Physarum polycephalum major plasmodial myosin heavy chain (mynP1) mRNA, complete cds", XP002974821, Database accession no. (AF335500) *
DATABASE GENBANK [online] 26 December 2001 (2001-12-26), NAKAMURA A. ET AL.: "Physarum polycephalum RMLC mRNA for myosin regulatory light chain, complete cds", XP002974823, Database accession no. (AB076705) *
GOODWIN E.B. ET AL.: "Cloning and characterization of the scallop essential and regulatory myosin light chain cDNAs", J. BIOL. CHEM., vol. 262, no. 23, 1987, pages 11052 - 11056, XP002974826 *
KOBAYASHI T. ET AL.: "Amino acid sequence of the calcium-binding light chain of myosin from the lower eukaryote, physarum polycephalum", J. BIOL. CHEM., vol. 263, no. 1, 1988, pages 305 - 313, XP002974822 *
KOHAMA K. ET AL.: "Isolation and characterization of myosin from amoebae of physarum polycephalum", J. BIOL. CHEM., vol. 261, no. 17, 1986, pages 8022 - 8027, XP002974824 *
NYITRAY L. ET AL.: "Nucleotide sequence of full length cDNA for a scallop striated muscle myosin heavy chain", NUCLEIC ACIDS RES., vol. 18, no. 23, 1990, pages 7158, XP002974825 *

Also Published As

Publication number Publication date
JP4367825B2 (en) 2009-11-18
JP2004057152A (en) 2004-02-26
AU2003254788A1 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
JP5186689B2 (en) Protein immobilization method and immobilizing agent via protein binding to silicon oxide-containing substance
JP6608944B2 (en) Alpha-hemolysin variants with altered characteristics
JP2018529342A (en) Alpha hemolysin variant
CA2474734A1 (en) Thermostable taq polymerase fragment
KR20160074610A (en) Hemoglobin A1c measurement method and measurement kit
US20190055527A1 (en) Dna polymerase variant
KR20220100901A (en) Artificial nanopores and related uses and methods
CN110366592B (en) Limulus factor B modification
Wang et al. Biologically induced transition of bio-silica sol to mesoscopic gelatinous flocs: a biomimetic approach to a controlled fabrication of bio-silica structures
EP2816110B1 (en) Peptide having affinity for silicon nitride (si3n4), and use therefor
WO2004011649A1 (en) Recombined myosin
Nemoto et al. Comparative gene analysis focused on silica cell wall formation: identification of diatom-specific SET domain protein methyltransferases
JP4878152B2 (en) Linked molecular motor and ATP sensor
KR20170116111A (en) Polydimethylsiloxane affinity peptides and uses thereof
KR20220097504A (en) Horseshoe crab-derived recombinant FactorG and method for measuring β-glucan using the same
CN114410602A (en) Mutant of terminal deoxynucleotidyl transferase and application thereof
US7335734B2 (en) Protein polymer having unfold activity on higher-order structure of protein
US20060155118A1 (en) Affinity purification system using troponin molecules as affinity ligands
EP2660320B1 (en) Modified tamavidin
KR101693283B1 (en) Nonylphenol responsive genes in Oryzias javanicus and the method for diagnosing aquatic environment pollution using the same
US7544658B2 (en) Rotary motor molecule V1-ATpase
KR101126674B1 (en) Oligonucleotide Conjugated Peptide for Measuring Activity of Protease and Method for Measuring Activity of Protease Using the Same
WO2003059945A2 (en) Soluble recombinant protein production
WO2016170781A1 (en) Composition and method for producing cellulose
Li Biochemical analysis of the interaction between transfer ribonucleic acid and exportin-t

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase