WO2004011548A1 - Thermoplastic resin composition and molded object comprising the composition - Google Patents

Thermoplastic resin composition and molded object comprising the composition Download PDF

Info

Publication number
WO2004011548A1
WO2004011548A1 PCT/JP2003/009069 JP0309069W WO2004011548A1 WO 2004011548 A1 WO2004011548 A1 WO 2004011548A1 JP 0309069 W JP0309069 W JP 0309069W WO 2004011548 A1 WO2004011548 A1 WO 2004011548A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
copolymer
resin composition
thermoplastic resin
weight
Prior art date
Application number
PCT/JP2003/009069
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Uehara
Masayoshi Yamaguchi
Hideshi Kawachi
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2004524114A priority Critical patent/JPWO2004011548A1/en
Publication of WO2004011548A1 publication Critical patent/WO2004011548A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded product thereof, and more particularly, to a thermoplastic resin composition and a molded product thereof particularly suitable as a material for an insulator and a sheath of an electric wire.
  • PVC polychlorinated vinyl
  • USP 6, 232, and 377 include specific ethylene copolymers selected from ethylene Z-butyl ester copolymer, ethylene / ⁇ , ⁇ -unsaturated carboxylic acid copolymer, and low-density polyethylene. And a flame-retardant resin composition containing a metal hydroxide, a triazine compound and a specific flame-retardant compound.
  • these ethylene polymers are added with an increased amount of an inorganic compound such as a metal hydroxide in order to enhance the flame retardant effect, the flexibility and the flexibility are reduced. The problem is that you get stiff. Disclosure of the invention
  • An object of the present invention is to provide a resin thread and a molded article thereof, which is excellent in flame retardancy and has good flexibility and flexibility, particularly an insulator and / or sheath of an electric wire. is there.
  • the ethylene resin composition according to the present invention is to provide a resin thread and a molded article thereof, which is excellent in flame retardancy and has good flexibility and flexibility, particularly an insulator and / or sheath of an electric wire. is there.
  • (A-1) an ethylene 'a-olefin copolymer comprising ethylene and ⁇ -olefin having 3 to 10 carbon atoms
  • (A-2) Ethylene copolymer other than (A-1)
  • melt flow rate (MFR2) at 2.16 kg load (ASTM D1238, load 2.16 kg, 190 ° C) is in the range of 0.1 to 100 g / 10 min, and (iii) evaluated by GPC method.
  • the ethylene'hydroolefin copolymer (A) or (A-1) force (i) density is 0.857 to 0.890 g / cm3. In the range,
  • melt flow rate (ii) The melt flow rate (MFR2) (ASTM D1238, load 2.16 kg, 190 ° C) at 190 ° C and 2.16 kg load is in the range of 0.;! to 20 g / 10 minutes,
  • FIG. 1 is a schematic view of a flame retardant test apparatus according to the present invention.
  • 1 indicates an insulated wire
  • 2 indicates a burner.
  • FIG. 2 shows the relationship between the torsional rigidity of the thermoplastic resin composition shown in Table 1 and the flame retardancy test angle.
  • the ethylene copolymer (A) of the present invention is usually an ethylene ' ⁇ -olefin copolymer.
  • the ethylene-olefin copolymer is the following ethylene- ⁇ -olefin copolymer (A-1).
  • the ethylene ' ⁇ -olefin copolymer is the following ethylene' ⁇ It may be a composition of -olefin copolymer (A-1) and an ethylene polymer (A-2) other than (A-1).
  • the ethylene ' ⁇ -olefin copolymer is a composition of the following ethylene-thioolefin copolymer ( ⁇ -1) and an ethylene polymer ( ⁇ -2) other than (A-1), its composition
  • the ethylene'-hore-olefin copolymer (A-1) of the present invention is an ethylene / ⁇ -olefin copolymer comprising ethylene and ⁇ -olefin having 3 to 10 carbon atoms.
  • ⁇ -olefins having 3 to 10 carbon atoms specifically, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methynole 1-pentene, 3-ethyl -1-pentene, 4-methynole-1-pentene, 4-methyl-1-hexene, 4,4-dimethinole-1-pentene, 4-ethyl-1-hexene 1-otaten, 3-ethyl-1- Hexene, 1-otaten, 1-decene, and the like.
  • 1 octene, 1 hexene, and 1 otaten are preferably used.
  • the ethylene ' ⁇ -olefin copolymer ( ⁇ -1) preferably has the following characteristics.
  • the density (ASTM D1505, 23 ° C) is in the range of 0.855 to 0.910 g / cm3, preferably 0.857 to 0.890 gcm3.
  • Mw / Mn is in the range of 1.5 to 3.5, preferably 1.5 to 3.0, particularly preferably 1.8 to 2.5. .
  • the intensity ratio of Ta jS to Ta a in the 13C-NMR spectrum ( ⁇ C ⁇ ) is 0.5 or less, preferably 0.4 or less.
  • ⁇ and ⁇ in the 13C-NMR spectrum are the peak intensities of C ⁇ 2 in the structural unit derived from ⁇ -olefins having 3 or more carbon atoms, and as shown below, Means two types of CH2 with different positions.
  • Such a ⁇ / 3 / ⁇ intensity ratio can be obtained as follows.
  • [PE] is the mole fraction of the structural unit derived from ethylene in the copolymer
  • [PO] is the mole fraction of the structural unit derived from -olefin in the copolymer.
  • [POE] is the ratio of the number of ethylen'-oleophine chains to all dyad chains in the copolymer.
  • This B value is an index representing the distribution state of ethylene and ⁇ -olefin having 3 to 10 carbon atoms in the ethylene ′ ⁇ -olefin copolymer, JCRandall (Macromolecules, 15, 353 (1982)), J It can be determined based on the report by Ray (Macromolecules, 10, 773 (1977)).
  • the ⁇ value becomes smaller than 10 the composition distribution of the ethylene / ⁇ -olefin copolymer becomes broader and blockier, and there is a bad point such that the handleability deteriorates.
  • Such an ethylene' ⁇ -olefin copolymer is obtained by mixing ethylene and a C 3 -C 10 in the presence of a meta-acene catalyst. And ⁇ -olefin.
  • Such a metallocene catalyst comprises a metallocene compound (a) and a compound (c) which reacts with an organoaluminumoxy compound (b) and / or a metallocene compound (a) to form an ion pair. And (a), (b) and Z or (c) together with an organic aluminum compound (d)-.
  • ethylene and ⁇ -olefin having 4 to 6 carbon atoms are usually copolymerized in a liquid phase.
  • a hydrocarbon solvent is generally used, but olefin may be used as the solvent.
  • This copolymerization can be carried out by any of a batch system, a semi-continuous system and a continuous system.
  • the catalyst components are used in the following concentrations.
  • concentration of the metallocene compound (a) in the polymerization system Is usually 0.00005 to 0.1 mmol (polymerization volume), preferably 0.0001 to 0.05 mmol Z liter.
  • the organoaluminoxy compound (b) has a molar ratio (A 1 / transition metal) of an aluminum atom to a transition metal in a metallocene compound in a polymerization system of 1 to 10,000, preferably 10 to 5000. Supplied in quantity.
  • organoaluminum compound When used, it is used in an amount of usually about 0 to 5 mmol Z liter (polymerization volume), preferably about 0 to 2 mmol / liter.
  • the copolymerization reaction is usually carried out at a reaction temperature of 120 to 150 ° C, preferably 0 to 120 ° C, more preferably 0 to 100 ° C, and a pressure exceeding 0 to 7.8 MPa (80 kg ⁇ cm2, Gauge pressure) or less, preferably more than 0 and 4.9 MPa (50 kg £ 1 ⁇ 2n2, gauge pressure) or less.
  • Ethylene and ⁇ -olefin are supplied to the polymerization system in such an amount that an ethylene / ⁇ -olefin copolymer having the above specific composition ( ⁇ -1) is obtained.
  • a molecular weight regulator such as hydrogen may be used.
  • a polymerization liquid containing the ethylene-hydroxy-olefin copolymer (A-1) is usually obtained.
  • This polymerization solution is treated by a conventional method to obtain an ethylene ' ⁇ -olefin copolymer ( ⁇ -1).
  • Examples of the ethylene polymer ( ⁇ -2) used in the present invention include a linear low-density polyethylene, a high-pressure method low-density polyethylene, an ethylene'butyric acid copolymer, an ethylene..ethyl acrylate copolymer , Ethylene methyl methacrylate copolymer, Ethylene 'Athalic acid copolymer, Ethylene' Methacrylic acid copolymer and its iono And ethylene'methacrylate copolymers.
  • the thermoplastic composition of the present invention covers the seven-stranded conductor (outer diameter 1.35 mm) of a soft copper wire having a wire diameter of 0.45 mm to a thickness of 0.8 mm around the thermoplastic resin composition, and has a finished diameter of 3.0 mm.
  • the maximum inclination angle A of the sample is expressed by the following equation (1). To be satisfied.
  • thermoplastic resin composition preferably satisfies the following formula (2).
  • the flame-retardant resin composition is suitable as a material for various molded articles, particularly, a covering material for electric wires and a sheath.
  • the ethylene polymer ( ⁇ ) used in the present invention may be silane-grafted.
  • the silane-grafted ethylene polymer (II) is prepared using a bullsilane compound and a peroxide in combination to promote silane grafting.
  • the silane-grafted ethylene polymer ( ⁇ ) includes an silane-grafted ethylene polymer ( ⁇ ), a metal hydroxide ( ⁇ ), a fluorine compound (C),
  • the silane-grafted ethylene-based polymer (A) is obtained by melt-mixing the product and peroxide by various conventionally known methods into the obtained thermoplastic resin composition according to the present invention. ) including.
  • vinylsilane compounds include ⁇ -methacryloxypropyltrimethoxysilane, burtrimethoxysilane, vinyltriethoxysilane, biertributoxysilane, burtris (J3-methoxetoxysilane), biertriacetoxysilane, and the like.
  • Examples include silane and methyltrimethoxysilane. Among them, ⁇ / -methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, and vinylinoletriethoxysilane are preferred.
  • the vinylsilane compound is (A) + (B) + (C) in total 100% by weight, Usually from 0.5 to 2.5 wt 0/0, preferably used in a ratio of 0.5 to 2 wt%.
  • the bullsilane compound is used in the above ratio, the silane grafting speed is high and an appropriate degree of silane grafting can be obtained.
  • a molded product excellent in balance between tensile elongation and tensile strength at break, for example, a wire coating layer Can be formed.
  • the peroxide is used together with the bursilane compound in order to promote the silane grafting reaction of the ethylene polymer (A).
  • Organic peroxides such as benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-t-butylperoxide, 2,5-dimethyl- 2,5-di (peroxide benzoate) hexine-3,1,4-bis (t-butylperoxyisopropyl) .benzene, lauroyl beloxide, t-butyl peracetate, 2,5 -Dimethyl-2,5-di- (t-butylperoxide) hexine-3,2,5-dimethyl-2,5-di (t-butylperoxide) hexane, t-butyl Benzoate, t-petit / reno.norefeninorea acetate, t-butynolenoleisobutyrate, t-butylper-sec-otatoate, t-butylperpivalate, cumylphenolp
  • dicumylperoxide, di-t-butylperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3,2,5-dimethyl-2,5 -Di (t-butylperoxy) hexane and 1,4-bis (t-butylperoxyisopropyl) benzene peroxide make up a total of 100% by weight of (A) + (B) + (C).
  • normal 0 0 5 to 0.1 5 wt 0/0 preferably used is 0. 0 1 to 0.1 at a ratio of weight 0/0.
  • the reaction of grafting the silane compound to the ethylene polymer (A) can be appropriately promoted.
  • metal hydroxide used in the present invention examples include aluminum hydroxide, magnesium hydroxide, hydroxide hydroxide, barium hydroxide, manganese hydroxide, zinc hydroxide, and hydrotalcite alone or in combination thereof. Mixtures are preferred, with magnesium hydroxide alone and mixtures containing magnesium hydroxide being particularly preferred.
  • fluorine compound used in the present invention examples include fluorine elastomers, fluororubbers, fluororesins, fibrillar polytetrafluoroethylene, and master patches based on thermoplastic resins of these fluorinated compounds. Polytetrafluoroethylene and its masterbatch are particularly preferred.
  • the diameter of the fibril-shaped buibril is 1 zm or less, preferably 0.5 ⁇ or less, the dispersion is excellent.
  • Such fibrils have a fibrous network structure formed by bubbling polytetrafluoroethylen or the like by the shear force.
  • the fluorine compound such as polytetrafluoroethylene is preferably modified with acrylic.
  • One master batch is a composition of a fluorine compound such as polytetrafluoroethylene and an ethylene polymer, and the composition contains 10 to 90% by weight of a fluorine compound such as polytetrafluoroethylene. / 0 , preferably 20 to 50% by weight.
  • a flame retardant auxiliary of a silicone compound may be used.
  • the silicone compound used as a flame retardant aid is a compound having Si—o bonded to an organic group.
  • examples of such a silicone compound include silicone oils such as dimethinole silicone oil and methylphenol silicone oil, and epoxy resins. Modified, alkyl-, amino-, carboxy-, alcohol-, and ether-modified silicone oils, dimethyl polysiloxane rubber, methyl rubber polysiloxane rubber, etc., silicone rubber, methyl silicone resin, ethyl silicone resin, etc. Silicone resin and the like can be mentioned.
  • silicone compounds contain a bond S i-O and generate compounds having a bond S i-C upon combustion. These structures serve as a barrier for heat transfer.
  • a synergistic effect of imparting flame retardancy is obtained by thermal condensation, the amount of the metal hydroxide flame retardant is reduced, the mechanical properties of the composition can be maintained, and the generation of CO during combustion of the composition can be reduced. Can be reduced.
  • the ethylene compound is composed of ethylene and ⁇ -olefin having 3 to 10 carbon atoms.
  • 0 parts by weight of L is added to 100 parts by weight of the olefin copolymer. If the amount is less than 2 parts by weight, the synergistic effect of imparting flame retardancy obtained with the metal hydroxide is not sufficient, and if it exceeds 10 parts by weight, the thermal stability of the composition becomes insufficient.
  • 2 to 8 parts by weight, particularly preferably 3 to 5 parts by weight is added to 100 parts by weight of the polyolefin resin.
  • silicone compound that is solid at room temperature such as silicone rubber or silicone resin
  • a silicone powder an ordinary commercially available silicone powder can be used.
  • the silicone powder may be added to the composition as it is, but a known coupling agent, for example, a silane coupling agent such as butyltriethoxysilane, a-mercaptopropyltriethoxysilane, or isopropyltrisilane.
  • a silane coupling agent such as butyltriethoxysilane, a-mercaptopropyltriethoxysilane, or isopropyltrisilane.
  • titanium coupling agent such as isostear dititanate
  • higher fatty acid coupling agent such as stearic acid, maleic acid, oleic acid, etc.
  • thermoplastic resin composition according to the present invention may further include, if necessary, an antioxidant, an ultraviolet absorber, a weather stabilizer, a heat stabilizer, an antistatic agent, a flame retardant, a pigment, a dye, and a lubricant.
  • an additive such as an agent can be blended.
  • thermoplastic resin composition according to the present invention is obtained by melt-mixing the above-mentioned components (A), (B) and (C) and, if necessary, additives, by various conventionally known methods.
  • the above components are charged simultaneously or sequentially, for example, into a Henschel mixer, a V-type blender, a tumbler mixer, a ribbon blender, etc. and mixed, and then a single-screw extruder, a multi-screw extruder, a kneader, It is obtained by melt-kneading with a bumper mixer.
  • additives for example, an anti-oxidation agent, can be added as necessary.
  • the molded article according to the present invention is obtained by using the polymer composition according to the present invention obtained as described above, using a conventionally known melt molding method, for example, extrusion molding, rotational molding, calendar molding, injection molding, compression molding. It can be formed into various shapes by methods such as molding, transfer molding, powder molding, blow molding, and vacuum molding.
  • the molded article according to the present invention is an electric wire sheath and a z or coating layer, and the electric sheath and the coating layer are: It is formed around the electric wire by a conventionally known method, for example, an extrusion method.
  • the strand after MFR measurement at 190 ° C and a load of 2.16 kg was heat-treated at 120 ° C for 1 hour, gradually cooled to room temperature over 1 hour, and measured by density gradient tube method.
  • the strand after MFR measurement at 190 ° C and a load of 2.16 kg was heat-treated at 120 ° C for 1 hour, gradually cooled to room temperature over 1 hour, and measured by density gradient tube method.
  • the polymer composition of the present invention was extruded using a melt extruder (Toyo Seiki Ne-ring, product name Labo Plast Mill) equipped with a wire coating die, die temperature: 220 ° C, screw rotation: 30 rpm, and extrusion.
  • Amount 1.6 to 1.8 kg / h, an insulated wire with a finished diameter of 3.0 mm covered with a 0.8 mm thick polymer composition around a 7-strand conductor (outer diameter: 1.35 mm) of soft copper wire with a strand diameter of 0.45 mm
  • the flame resistance of the insulation coating of the obtained insulated wire sample is evaluated by the following method. That is, as shown in FIG. 1, a 17-inch long insulated wire 1 as a sample is placed in one chamber (not shown) of the test apparatus. The angle between the bottom surface and the insulated wire 1 is ⁇ (flame retardancy test angle).
  • the burner 2 placed in front of the insulated wire 1 is ignited, and the flame is brought into contact with the flame at an angle of ⁇ 0 ° at a position 3 inches above the lower end of the insulated wire 1 and the ignition is confirmed. After continuing the indirect flame for 2 seconds, gently remove the flame and check for self-extinguishing.
  • A is 0 degree or more and 90 degrees or less.
  • is the torsional stiffness of a 2 mm thick sheet made of the thermoplastic resin composition at 23 ° C.
  • thermoplastic resin composition as used in the flame retardancy test was used at a temperature of 23 according to JIS K6745 using a Crashberg type flexibility tester manufactured by Toyo Seiki Co., Ltd. The torsional stiffness of C was measured.
  • Triphenylcarbamate (tetrakispentafluorophenel)
  • Examples 1 to 3 used the ethylene / 1-butene copolymer A-1 produced by the above-mentioned production method as the thermoplastic resin, and Comparative Examples 1-1, 2-1 and 3-1 used ethylene as the thermoplastic resin.
  • Comparative Example 1-2 2-Ethyl acrylate copolymer (Mitsui 'Dupont Polychemical Co., Ltd .; hM, trade name: EVA LEX-EEA' A-710, hereinafter abbreviated as E EA) 2, 3-2 are ethylene monoacetate butyl copolymer (Mitsui DuPont Polychemical Co., Ltd.) EVAFLEX ⁇ EV 360, abbreviated as EVA.
  • the molded article according to the present invention is an electric wire sheath and / or a coating layer, and the electric wire sheath and the coating layer are conventionally known. For example, it is formed around the electric wire by an extrusion method.
  • thermoplastic resin composition having a high degree of flame retardancy and being flexible, and a molded article thereof.
  • thermoplastic resin composition according to the present invention has the above-described effects, it is suitable for use in various molded articles, for example, wire coating, tape, film, flame-retardant sheet, pipe, blow-molded article, flame-retardant wallpaper, and the like. It is particularly suitable for use in wire sheathing and wire coating.

Abstract

A resin composition which has excellent flame retardancy and satisfactory flexibility. The thermoplastic resin composition is characterized in that in a flame retardance test of an insulating electric wire sample, the largest inclination angle (A) among the sample inclination angles in the flame retardance test at which the fire of the sample is spontaneously extinguished satisfies the following relationship (1): A ≥ 2.3 × σ - 2.8 (1) wherein σ is the torsional rigidity of the thermoplastic resin composition and A is not smaller than 0 degree and not larger than 90 degrees. The thermoplastic resin composition is characterized by comprising: 20 to 64.9 wt.% ethylene/α-olefin copolymer obtained from ethylene and a C3-10 α-olefin, 35 to 70 wt.% metal hydroxide, and 0.1 to 10 wt.% fluorine compound.

Description

明 細 書 熱可塑性樹脂組成物およぴその組成物からなる成形体 技術分野  Description Thermoplastic resin composition and molded article made from the composition
本発明は、 熱可塑性樹脂組成物およびその成形体に関し、 さらに詳しくは、 特 に電線の絶縁体、 シースの素材として好適な熱可塑性樹脂組成物とその成形体に 関する。  The present invention relates to a thermoplastic resin composition and a molded product thereof, and more particularly, to a thermoplastic resin composition and a molded product thereof particularly suitable as a material for an insulator and a sheath of an electric wire.
従来、 電線のシース材および一部絶縁材料は、 ポリ塩化ビュル (P V C) が多 用され、 その柔軟性、 難燃†生、 絶縁性が評価されてきた。 P V Cには一般に可塑 剤が多く含まれるため、 加熱などにより可塑剤がなくなると硬化しやすくなるこ と、 また、 燃焼時に塩素系のガスを発生することから、 近年 P V Cに代わりうる 電線の開発が求められるようになった。 Conventionally, polychlorinated vinyl (PVC) has often been used as the sheath material and partially insulating material of electric wires, and its flexibility, flame retardancy, and insulation properties have been evaluated. In general, PVC contains a large amount of plasticizer, which makes it easier to cure if the plasticizer is removed by heating, etc., and generates chlorine-based gas during combustion. It has become required.
このような状況のもと、 例えばポリェチレン等のエチレン系重合体をベースと した種々の難燃性樹脂組成物が提案されている。  Under these circumstances, for example, various flame-retardant resin compositions based on ethylene polymers such as polyethylene have been proposed.
U S P 6 , 2 3 2 , 3 7 7には、 エチレン Zビュルエステル共重合体、 ェチレ ン / α, β—不飽和カルボン酸共重合体、 低密度ポリエチレンから選ばれる特定 のエチレン系共重合体等を含み、 さらに金属水酸化物、 トリアジン化合物および 特定の難燃性化合物を含む難燃性樹脂組成物が記載されている。 しカゝしながら、 これらのェチレン系重合体は、 難燃効果を高めるために金属水酸化物等の無機ィ匕 合物の添加量を増カ卩した場合、 可撓性、 柔軟性が低下しゃすくなるという問題点 力 Sある。 発明の開示  USP 6, 232, and 377 include specific ethylene copolymers selected from ethylene Z-butyl ester copolymer, ethylene / α, β-unsaturated carboxylic acid copolymer, and low-density polyethylene. And a flame-retardant resin composition containing a metal hydroxide, a triazine compound and a specific flame-retardant compound. However, when these ethylene polymers are added with an increased amount of an inorganic compound such as a metal hydroxide in order to enhance the flame retardant effect, the flexibility and the flexibility are reduced. The problem is that you get stiff. Disclosure of the invention
本発明の目的は、 難燃効果に優れており、 しかも可撓性'柔軟性が良好である 樹脂糸且成物とその成形体、 特に電線の絶縁体および/またはシースを提供するこ とである。 本発明に係るェチレン系樹脂組成物は、 An object of the present invention is to provide a resin thread and a molded article thereof, which is excellent in flame retardancy and has good flexibility and flexibility, particularly an insulator and / or sheath of an electric wire. is there. The ethylene resin composition according to the present invention,
(A) エチレンと炭素数 3〜 1 0の 一ォレフィンとからなるエチレン · ひ一ォ レフイン共重合体 20〜 64. 9重量0 /0 (A) an ethylene-Hiichio Refuin copolymer consisting of one Orefin of ethylene and carbon number 3-1 0 20 to 64.9 weight 0/0
( B )金属水酸化物 3 5〜 70重量%と、 (B) 35-70% by weight of metal hydroxide;
(C)フッ素化合物 0. 1〜1 0重量0 /0 (C) a fluorine compound from 0.1 to 1 0 weight 0/0
力 らなることを特徴とする。 It is characterized by power.
さらに本発明に係るエチレン系樹脂組成物は Furthermore, the ethylene resin composition according to the present invention
(A)次のエチレン系重合体 (A— 1) と (A— 2) を (A_ l) / (A- 2) = 20/8 0-1 0 0/0の重量比で含んでなるェチレン系共重合体組成物 20〜 64. 9重量%  (A) Ethylene comprising the following ethylene polymers (A-1) and (A-2) in a weight ratio of (A_l) / (A-2) = 20/8 0-1 100/0 -Based copolymer composition 20-64.9% by weight
(A— 1):エチレンと炭素数 3〜 1 0の α—ォレフインとからなるエチレン' a —ォレフイン共重合体  (A-1): an ethylene 'a-olefin copolymer comprising ethylene and α-olefin having 3 to 10 carbon atoms
(A- 2): (A- 1) 以外のエチレン系共重合体  (A-2): Ethylene copolymer other than (A-1)
( B )金属水酸化物 3 5〜 70重量%と、  (B) 35-70% by weight of metal hydroxide;
(C)フッ素化合物 0. 1〜1 0重量% (C) Fluorine compound 0.1 to 10% by weight
力^なる事を特徴とする。 It is characterized by power.
更に、 前記エチレン α—ォレフイン共重合体 (Α) または (A— 1) 力 Further, the ethylene α-olefin copolymer (Α) or (A-1)
(i)密度 (ASTM D1505, 23°C) が 0. 8 5 5〜0. 91 0 gZcm3の範囲にあ り (i) The density (ASTM D1505, 23 ° C) is in the range of 0.855 to 0.910 gZcm3
、(ii) 1 90。C、 2.1 6 k g荷重におけるメルトフローレート(MFR2) (ASTM D1238,荷重 2.16kg, 190°C) が 0. l〜 1 00 g/1 0分の範囲にあり、 (iii)GPC法により評価される分子量分布の指数: Mw/Mnが 1. 5〜3. 5の 範囲にあることを特徴とし、 (Ii) 190. C, the melt flow rate (MFR2) at 2.16 kg load (ASTM D1238, load 2.16 kg, 190 ° C) is in the range of 0.1 to 100 g / 10 min, and (iii) evaluated by GPC method. Index of molecular weight distribution: Mw / Mn is in the range of 1.5 to 3.5,
更には、 前記エチレン ' ひ一ォレフィン共重合体 (A) または (A— 1) 力 (i)密度 (ASTM D1505, 23°C) が 0. 8 5 7〜0. 8 9 0 g/cm3の範囲にあ り、 Furthermore, the ethylene'hydroolefin copolymer (A) or (A-1) force (i) density (ASTM D1505, 23 ° C) is 0.857 to 0.890 g / cm3. In the range,
(ii) 1 9 0°C、 2.1 6 k g荷重におけるメルトフローレート (MFR2) (ASTM D1238,荷重 2.16kg, 190°C) が 0.;!〜 2 0 g/10分の範囲にあり、  (ii) The melt flow rate (MFR2) (ASTM D1238, load 2.16 kg, 190 ° C) at 190 ° C and 2.16 kg load is in the range of 0.;! to 20 g / 10 minutes,
(iii) GP C法により評価される分子量分布の指数: Mw/Mnが 1. 5〜3. 5の 範囲にあり、 (iii) Index of molecular weight distribution evaluated by GPC method: Mw / Mn of 1.5 to 3.5 In the range,
(iv) l 90°C、 10 k g荷重におけるメルトフローレート(MFR10)と 1 90°C、 2. 1 6 k g荷重におけるメルトフローレート (MFR2) との比: MFR10/M F R2が次の関係を満たし、  (iv) l Ratio of melt flow rate (MFR10) at 90 ° C and 10 kg load to melt flow rate (MFR2) at 190 ° C and 2.16 kg load: MFR10 / MFR2 indicates the following relationship. Fill,
MFR10/MFR2 ≥ 5. 7  MFR10 / MFR2 ≥ 5.7
Mw/Mn + 4. 7 ≤ MFR10/MFR2,  Mw / Mn + 4.7 ≤ MFR10 / MFR2,
(v) 13C-NMRスぺクトルにおける To; に対する T o; の強度比 (Τα /Τ a a) が 0.5以下であり、  (v) the intensity ratio (Τα / Τaa) of To; to To; in the 13C-NMR spectrum is 0.5 or less;
(vi) 13C-NMRスぺクトルおょぴ下記式から求められる B値が 0.9〜 1.5であ ることを特徴とする。  (vi) The 13C-NMR spectrum is characterized in that the B value obtained from the following formula is 0.9 to 1.5.
B{it= [POE] Z (2 · [PE] [PO])  B {it = [POE] Z (2 · [PE] [PO])
(式中、 [PE]は共重合体中のエチレンから誘導される構成単位の含有モル分率 であり、 [PO] は共重合体中の α-ォレフィンから誘導される構成単位の含有モ ル分率であり、 [ΡΟΕ] は共重合体中の全ダイアド (dyad)連鎖に対するェチレ ン 'ひ-ォレフィン連鎖数の割合である。) 図面の簡単な説明  (Where [PE] is the mole fraction of the structural unit derived from ethylene in the copolymer, and [PO] is the mole fraction of the structural unit derived from α-olefin in the copolymer. And [ΡΟΕ] is the ratio of the number of ethylene-free-olefin chains to all dyad chains in the copolymer.)
第 1図は本発明の難燃試験装置の摸式図である。第 1図において 1は絶縁電線、 2 はバーナーを示す。第 2図は表 1の熱可塑性樹脂組成物のねじり剛性と難燃試 験角度との関係を示す。 発明を実施するための最良の形態  FIG. 1 is a schematic view of a flame retardant test apparatus according to the present invention. In FIG. 1, 1 indicates an insulated wire, and 2 indicates a burner. FIG. 2 shows the relationship between the torsional rigidity of the thermoplastic resin composition shown in Table 1 and the flame retardancy test angle. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明に係るェチレン系共重合体組成物およぴその成形体につき具体的に 説明する。  Hereinafter, the ethylene copolymer composition and the molded article thereof according to the present invention will be specifically described.
まず本努明に係るェチレン系重合体につ!/、て説明する。 First, the ethylene polymer according to this effort! /, I will explain.
(A) エチレン系共重合体  (A) Ethylene copolymer
本発明のエチレン系共重合体(A) は通常エチレン ' α-ォレフィン共重合体で ある。 エチレン ' ォレフィン共重合体は次のエチレン ' α-ォレフィン共重合 体 (A— 1) である。 またエチレン' α-ォレフィン共重合体は次のエチレン' α -ォレフイン共重合体 (A— 1) と (A— 1) 以外のエチレン系重合体 (A— 2) との組成物であってもよい。 エチレン' α-ォレフィン共重合体が次のエチレン · ひ-ォレフィン共重合体(Α— 1) と (A— 1)以外のエチレン系重合体 (Α- 2) との組成物の場合、 その組成比は (Α— 1) / (Α- 2) =20Ζ80〜1 0 0 Ζ0の重量比、 好ましくは 5 0 50〜: L 00Ζ0、 より好ましくは 8 0/2 0 〜1 00/0の重量比よりなる。 The ethylene copolymer (A) of the present invention is usually an ethylene 'α-olefin copolymer. The ethylene-olefin copolymer is the following ethylene-α-olefin copolymer (A-1). The ethylene 'α-olefin copolymer is the following ethylene' α It may be a composition of -olefin copolymer (A-1) and an ethylene polymer (A-2) other than (A-1). When the ethylene 'α-olefin copolymer is a composition of the following ethylene-thioolefin copolymer (Α-1) and an ethylene polymer (Α-2) other than (A-1), its composition The ratio is (Α-1) / (Α-2) = 20Ζ80 to 100 00 by weight, preferably 50 50 to: L00Ζ0, more preferably 80/20 to 100/0 by weight. Consisting of
エチレン ' α-ォレフィン共重合体 (A- 1)  Ethylene 'α-olefin copolymer (A-1)
本発明のエチレン ' ひーォレフィン共重合体 (A- 1) は、 エチレンと炭素原子 数 3〜1 0の α—ォレフインとからなるエチレン · α—ォレフイン共重合体であ る。炭素数 3〜 1 0の α-ォレフィンとしては、具体的に、プロピレン、 1-ブテン、 1-ペンテン、 1-へキセン、 3-メチル -1-ブテン、 3-メチノレ 1-ペンテン、 3-ェチル -1- ペンテン、 4-メチノレ -1-ペンテン、 4-メチル -1-へキセン、 4,4-ジメチノレ- 1-ペンテン、 4-ェチル -1-へキセン 1-オタテン、 3-ェチル -1-へキセン、 1-オタテン、 1-デセン、 などが挙げられる。 これらのうち、 1ープテン、 1一へキセン、 1一オタテンが 好ましく使用される。 The ethylene'-hore-olefin copolymer (A-1) of the present invention is an ethylene / α-olefin copolymer comprising ethylene and α-olefin having 3 to 10 carbon atoms. As α-olefins having 3 to 10 carbon atoms, specifically, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methynole 1-pentene, 3-ethyl -1-pentene, 4-methynole-1-pentene, 4-methyl-1-hexene, 4,4-dimethinole-1-pentene, 4-ethyl-1-hexene 1-otaten, 3-ethyl-1- Hexene, 1-otaten, 1-decene, and the like. Of these, 1 octene, 1 hexene, and 1 otaten are preferably used.
エチレン' ひ-ォレフィン共重合体 (A- 1) 中の各構成単位の含量は、 ェチレ ンから誘導される構成単位の含量が 50〜 98モル0 /0、 好ましくは 75〜 9 5モ ル%であり、炭素数 3〜 1 0の a -ォレフィンから選ばれる少なくとも 1つの化合 物から誘導される構成単位の含量が 2〜 50モル0 /0、 好ましくは 5〜 2 5モル0 /0 である。 さらにエチレン' α-ォレフィン共重合体 (Α— 1) は以下の特徴を有す ることが好ましい。 Ethylene 'Fei - Orefin copolymer content of each structural unit (A- 1) in the content of 50 to 98 mol of a structural unit derived from Echire emissions 0/0, preferably 75-9 5 molar% and a, a carbon number of 3-1 0 - content of constituent units derived from at least one compound selected from Orefin is 2-50 mole 0/0, is preferably 5-2 5 mol 0/0 . Further, the ethylene 'α-olefin copolymer (Α-1) preferably has the following characteristics.
(i)密度(ASTM D1505, 23°C) が 0. 8 55〜0. 9 1 0 g/cm3、好ましく は 0. 8 5 7〜0. 8 9 0g cm3、 の範囲である。  (i) The density (ASTM D1505, 23 ° C) is in the range of 0.855 to 0.910 g / cm3, preferably 0.857 to 0.890 gcm3.
(ii) 1 90。C、 2.1 6 k g荷重におけるメルトフローレート (MFR2) (ASTM D1238,荷重 2.16kg、 190°C) が 0. 1〜: L 0 0 g/ 1 0分、 好ましくは 0.1〜 (ii) 1 90. C, 2. Melt flow rate (MFR2) at load of 16 kg (ASTM D1238, load 2.16 kg, 190 ° C) 0.1 ~: L 0 g / 10 min, preferably 0.1 ~
20 g/10分の範囲にある。 It is in the range of 20 g / 10 minutes.
(iii) GPC法により評価される分子量分布の指数: Mw/Mnが 1. 5〜3. 5、 好ましくは 1. 5〜3. 0、 特に好ましくは 1. 8〜2. 5の範囲にある。  (iii) Index of molecular weight distribution evaluated by the GPC method: Mw / Mn is in the range of 1.5 to 3.5, preferably 1.5 to 3.0, particularly preferably 1.8 to 2.5. .
(iv) l 90。C、 1 0 k g荷重におけるメルトフローレ一ト(MFR10)と 1 9 0。C、 2, 1 6 k g荷重におけるメルトフローレート (MFR2) との比: MFR10/MF R2が次の関係を満たす。 (iv) l90. C, melt flow rate (MFR10) and 190 at 10 kg load. C, Ratio to melt flow rate (MFR2) at 2, 16 kg load: MFR10 / MFR2 satisfies the following relationship.
MFR10/MFR2 ≥ 5. 7  MFR10 / MFR2 ≥ 5.7
Mw/Mn + 4. 7 ≤ MFR10/MFR2  Mw / Mn + 4.7 ≤ MFR10 / MFR2
ここで、 MFR10、 MFR2、 MwZMnが上記の関係を満たさない場合は、 成形性または材料強度若しくはその両者が低下する。  Here, when MFR10, MFR2, and MwZMn do not satisfy the above relationship, the moldability and / or the material strength are reduced.
(V) 13C-NMRスぺクトルにおける Ta aに対する Ta jSの強度比 (Τα Ύα α) が 0.5以下、 好ましくは 0. 4以下。  (V) The intensity ratio of Ta jS to Ta a in the 13C-NMR spectrum (ΤαCαα) is 0.5 or less, preferably 0.4 or less.
ここで 13C-NMRスぺクトルにおける Τひ αおよび Τα は、 炭素数 3以上の α-ォレフィンから誘導される構成単位中の C Η2のピーク強度であり、下記に示 すように第 3級炭素に対する位置が異なる 2種類の CH2を意味している。 Here, Τα and Τα in the 13C-NMR spectrum are the peak intensities of C 中 2 in the structural unit derived from α-olefins having 3 or more carbon atoms, and as shown below, Means two types of CH2 with different positions.
R R R R R R R R
C-CH -CH, C一 -C-CH 2 C C-CH -CH, C- -C-CH 2 C
H H Η Η H H Η Η
Ύ α β 1  Ύ α β 1
このような Τα /3/Τα α強度比は、 下記のようにして求めることができる。 エチレン' α-ォレフィン共重合体の 13C-NMRスぺクトルを、 たとえば日本電 子 (株) 製 JEOL-GX270 NMR測定装置を用いて測定する。 測定は、 試料濃度 5重量%になるように調整されたへキサクロロブタジエン/ d6-ベンゼン =2/1 (体 積比) の混合溶液を用いて、 6 7.8MHz、 25°C、 d6-ベンゼン (128ppm) 基準で行う。 測定された 13C-NMRスペクトルを、 リンデマンアダムスの提案 (Analysis Chemistry43, pl245(1971))、 J.C.Randall (Review Macromolecular Chemistry Physics, C29, 201(1989))に従って解析して T a β/Ύα α強度比を 求める。 (vi)13 C - NMRスぺクトルぉよび下記式から求められる B値が 0.9〜 1.5好 ましくは 1.0〜 1.2の範囲にある。 Such a Τα / 3 / Ταα intensity ratio can be obtained as follows. The 13C-NMR spectrum of the ethylene'α-olefin copolymer is measured using, for example, a JEOL-GX270 NMR measurement device manufactured by Nippon Denshi. The measurement was performed at 6 7.8 MHz, 25 ° C, d6-benzene using a mixed solution of hexachlorobutadiene / d6-benzene = 2/1 (volume ratio) adjusted to a sample concentration of 5% by weight. (128ppm) Standard The measured 13C-NMR spectrum was analyzed according to Lindemann Adams's proposal (Analysis Chemistry43, pl245 (1971)) and JCRandall (Review Macromolecular Chemistry Physics, C29, 201 (1989)) to determine the Ta β / Ύα α intensity ratio. Ask. (vi) The 13 C-NMR spectrum and the B value determined from the following formula are in the range of 0.9 to 1.5, preferably 1.0 to 1.2.
8値= [POE] / (2 · [PE] [PO]) 8 values = [POE] / (2 · [PE] [PO])
(式中、 [PE]は共重合体中のエチレンから誘導される構成単位の含有モル分率 であり、 [PO] は共重合体中の -ォレフィンから誘導される構成単位の含有モ ル分率であり、 [POE] は共重合体中の全ダイアド (dyad)連鎖に対するェチレ ン ' ひ-ォレフィン連鎖数の割合である。)  (Wherein [PE] is the mole fraction of the structural unit derived from ethylene in the copolymer, and [PO] is the mole fraction of the structural unit derived from -olefin in the copolymer. And [POE] is the ratio of the number of ethylen'-oleophine chains to all dyad chains in the copolymer.)
この B値は、エチレン' α-ォレフィン共重合体中のエチレンと炭素数 3〜10 の α-ォレフィンとの分布状態を表す指標であり、 J.C.Randall (Macromolecules, 15, 353(1982)) 、 J.Ray (Macromolecules, 10, 773(1977)) らの報告に基づいて求 めることができる。  This B value is an index representing the distribution state of ethylene and α-olefin having 3 to 10 carbon atoms in the ethylene ′ α-olefin copolymer, JCRandall (Macromolecules, 15, 353 (1982)), J It can be determined based on the report by Ray (Macromolecules, 10, 773 (1977)).
上記 B値が大きいほど、エチレンまたは α -ォレフィン共重合体のブロック的連 鎖が短くなり、エチレンおよび α-ォレフィンの分布が一様であり、共重合ゴムの 組成分布が狭いことを示している。なお Β値が 1 0よりも小さくなるほどェチレ ン · α -ォレフィン共重合体の組成分布は広くブロック的となり、取扱性が悪化す るなどの悪い点がある。  The larger the B value, the shorter the block chain of the ethylene or α-olefin copolymer, the more uniform the distribution of ethylene and α-olefin, and the narrower the composition distribution of the copolymer rubber. . As the Β value becomes smaller than 10, the composition distribution of the ethylene / α-olefin copolymer becomes broader and blockier, and there is a bad point such that the handleability deteriorates.
エチレン ' a -ォレフィン共重合体 (Α) または (A—1) の製造方法 このようなエチレン' α-ォレフィン共重合体は、 メタ口セン系触媒の存在下にェ チレンと炭素数 3〜10の α-ォレフィンとを共重合させることによって製造す ることができる。 Process for Producing Ethylene 'a-olefin Copolymer (Α) or (A-1) Such an ethylene' α-olefin copolymer is obtained by mixing ethylene and a C 3 -C 10 in the presence of a meta-acene catalyst. And α -olefin.
このようなメタ口セン系触媒は、 メタ口セン化合物 (a)と、有機アルミニウムォ キシ化合物 (b)および/またはメタロセン化合物 (a)と反応してィオン対を形成す る化合物 (c)とから形成されていてもよく、 さらに (a)、 (b)および Zまたは (c)とと もに有機アルミエゥム化合物 (d) -とから形成されていてもよい。  Such a metallocene catalyst comprises a metallocene compound (a) and a compound (c) which reacts with an organoaluminumoxy compound (b) and / or a metallocene compound (a) to form an ion pair. And (a), (b) and Z or (c) together with an organic aluminum compound (d)-.
上記触媒の存在下に、エチレンと炭素数 4〜 6の α-ォレフィンとを、通常液相 で共重合させる。 この際、一般に炭ィヒ水素溶媒が用いられるが、 ォレフィンを 溶媒として用いてもよい。  In the presence of the above catalyst, ethylene and α-olefin having 4 to 6 carbon atoms are usually copolymerized in a liquid phase. In this case, a hydrocarbon solvent is generally used, but olefin may be used as the solvent.
この共重合は、 バッチ式、 半連続式、 連続式のいずれの方法においても行うこ とができる。 前記触媒成分は以下のような濃度で用いられる。 メタロセン化合物 (a)と有機アルミニウムォキシ化合物 (b)またはィオン化ィォ ン性化合物 (c)とからなるメタロセン系触媒が用いられる場合には、重合系内のメ タロセン化合物 (a)の濃度は、 通常 0.00005〜 0.1ミリモル リットル (重 合容積)、 好ましくは 0.0001〜0.05ミリモル Zリットルである。 また有機 アルミニウムォキシ化合物 (b)は、重合系内のメタロセン化合物中の遷移金属に対 するアルミニウム原子のモル比 (A 1 /遷移金属) で、 1〜 10000、 好まし くは 10〜 5000の量で供給される。 This copolymerization can be carried out by any of a batch system, a semi-continuous system and a continuous system. The catalyst components are used in the following concentrations. When a metallocene catalyst comprising a metallocene compound (a) and an organoaluminoxy compound (b) or an ionizing compound (c) is used, the concentration of the metallocene compound (a) in the polymerization system Is usually 0.00005 to 0.1 mmol (polymerization volume), preferably 0.0001 to 0.05 mmol Z liter. The organoaluminoxy compound (b) has a molar ratio (A 1 / transition metal) of an aluminum atom to a transition metal in a metallocene compound in a polymerization system of 1 to 10,000, preferably 10 to 5000. Supplied in quantity.
イオン化イオン性化合物 (c)の場合は、重合系内のメタ口セン化合物 (a)に对する ィオン化ィオン性化合物 (c)のモル比(ィオン化ィオン性化合物 (c)/メタロセンィ匕 合物 (a)) で、 0.5〜20、 好ましくは 1〜10の量で供給される。  In the case of the ionized ionic compound (c), the molar ratio of the ionized ionic compound (c) to the meta-mouth compound (a) in the polymerization system (ionized ionic compound (c) / metallocene compound) In (a)), it is supplied in an amount of 0.5 to 20, preferably 1 to 10.
また有機アルミニウム化合物を用いる場合には、 通常約 0~5ミリモル Zリッ トル(重合容積)、好ましくは約 0〜 2ミリモル/リットルとなるような量で用い られる。  When an organoaluminum compound is used, it is used in an amount of usually about 0 to 5 mmol Z liter (polymerization volume), preferably about 0 to 2 mmol / liter.
共重合反応は、通常、反応温度が一 20〜十 150°C、好ましくは 0〜120°C、 さらに好ましくは 0〜100°Cで、圧力が 0を超えて 7.8MP a (80kg^cm2、 ゲージ圧) 以下、 好ましくは 0を超えて 4.9MP a (50kg£½n2、 ゲージ圧) 以下の条件下に行われる。  The copolymerization reaction is usually carried out at a reaction temperature of 120 to 150 ° C, preferably 0 to 120 ° C, more preferably 0 to 100 ° C, and a pressure exceeding 0 to 7.8 MPa (80 kg ^ cm2, Gauge pressure) or less, preferably more than 0 and 4.9 MPa (50 kg £ ½n2, gauge pressure) or less.
エチレンおよび α-ォレフィンは、 上記特定組成のエチレン · α-才レフィン共 重合体(Α— 1)が得られるような量で重合系に供給される。共重合に際しては、 水素などの分子量調節剤を用いることもできる。  Ethylene and α-olefin are supplied to the polymerization system in such an amount that an ethylene / α-olefin copolymer having the above specific composition (Α-1) is obtained. In the copolymerization, a molecular weight regulator such as hydrogen may be used.
上記のようにしてエチレンと ーォレフインとを共重合させると、 通常ェチレ ン ' ひ-ォレフィン共重合体(A— 1) を含む重合液として得られる。 この重合液 は、 常法により処理され、 エチレン' α-ォレフィン共重合体(Α— 1) が得られ る。  When ethylene and o-olefin are copolymerized as described above, a polymerization liquid containing the ethylene-hydroxy-olefin copolymer (A-1) is usually obtained. This polymerization solution is treated by a conventional method to obtain an ethylene 'α-olefin copolymer (Α-1).
エチレン系重合体 (Α— 2)  Ethylene polymer (Α-2)
本発明で用いられるエチレン系重合体 (Α-2) としては、 直鎖低密度ポリェチ レン、 高圧法低密度ポリエチレン、 エチレン'齚酸ビュル共重合体、 エチレン .. ェチルァクリレート共重合体、 エチレン ·メチルメタクリレート共重合体、 ェチ レン 'アタリル酸共重合体、 エチレン 'メタタリル酸共重合体及びそのアイオノ マー、 エチレン 'メタクリレート共重合体があげられる。 Examples of the ethylene polymer (Α-2) used in the present invention include a linear low-density polyethylene, a high-pressure method low-density polyethylene, an ethylene'butyric acid copolymer, an ethylene..ethyl acrylate copolymer , Ethylene methyl methacrylate copolymer, Ethylene 'Athalic acid copolymer, Ethylene' Methacrylic acid copolymer and its iono And ethylene'methacrylate copolymers.
本発明の熱可塑性組成物は、当該熱可塑性樹脂組成物を線径 0.45mmの軟銅線 の 7本撚り導体 (外径 1.35mm)の周囲に 0.8mm厚に被覆し、仕上がり径 3.0mm の絶縁電線のサンプルを用いて難燃試験をした場合に、 着火後 6 0秒以内に自然 に消火するサンプルの難燃試験角度のうち、 該サンプルの最大の傾斜角度 Aが下 記式 (1 ) を満足する。  The thermoplastic composition of the present invention covers the seven-stranded conductor (outer diameter 1.35 mm) of a soft copper wire having a wire diameter of 0.45 mm to a thickness of 0.8 mm around the thermoplastic resin composition, and has a finished diameter of 3.0 mm. When performing a flame retardancy test using a wire sample, of the flame retardancy test angles of the samples that extinguish naturally within 60 seconds after ignition, the maximum inclination angle A of the sample is expressed by the following equation (1). To be satisfied.
A≥ 2 . 3 X σ - 2 . 8 ( 1 ) A≥ 2.3 X σ-2.8 (1)
(式( 1 )中、 σは、該熱可塑性樹脂組成物からなる厚み 2 mmのシートの 2 3 °C におけるねじり剛性であり、 Aは 0度以上 9 0度以下である。)本発明の熱可塑性 樹脂組成物は、 好ましくは下記式 (2 ) を満足する。  (In the formula (1), σ is the torsional rigidity at 23 ° C of a 2 mm thick sheet made of the thermoplastic resin composition, and A is 0 ° or more and 90 ° or less.) The thermoplastic resin composition preferably satisfies the following formula (2).
A≥ 2 . 0 X σ + 1 2 . 5 ( 2 ) A≥ 2.0 X σ + 1 2.5 (2)
(Α、 σは式 (1 ) と同じ意味を表す。)  (Α and σ have the same meaning as in equation (1).)
上記難燃性樹脂組成物は、 各種成形体、 特に電線の被覆材、 シースの素材として 好適である。 The flame-retardant resin composition is suitable as a material for various molded articles, particularly, a covering material for electric wires and a sheath.
本発明で用いられるエチレン系重合体 (Α) は、 シラングラフトされていても よい。 このシラングラフトされたエチレン系重合体 (Α) は、 ビュルシラン化合 物を用いるとともに、 シラングラフトを促進させるために過酸化物を併用して調 製される。本発明においては、 このシラングラフトされたエチレン系重合体(Α) には、シラングラフトされていないエチレン系重合体(Α)、金属水酸化物(Β )、 フッ素化合物(C)、 ビュルシランィ匕合物および過酸化物を、種々の従来公知の方 法で溶融混合することにより、 得られた本発明に係る熱可塑性樹脂組成物中に、 生成しているシラングラフトされたエチレン系重合体 (A) を含む。  The ethylene polymer (重合) used in the present invention may be silane-grafted. The silane-grafted ethylene polymer (II) is prepared using a bullsilane compound and a peroxide in combination to promote silane grafting. In the present invention, the silane-grafted ethylene polymer (Α) includes an silane-grafted ethylene polymer (Α), a metal hydroxide (Β), a fluorine compound (C), The silane-grafted ethylene-based polymer (A) is obtained by melt-mixing the product and peroxide by various conventionally known methods into the obtained thermoplastic resin composition according to the present invention. ) including.
上記ビニルシラン化合物としては、 具体的には、 γ—メタクリロキシプロピ ルトリメ トキシシラン、ビュルトリメトキシシラン、ビニルトリエトキシシラン、 ビエルトリブトキシシラン、 ビュルトリス (J3— メ トキシェトキシシラン)、 ビエ ルトリァセトキシシラン、メチルトリメトキシシランなどが挙げられる。中でも、 τ /ーメタクリロキシプロピルトリメトキシシラン、 .ビニルトリメ トキシシラン、 ビニノレトリエトキシシランが好ましい。 Specific examples of the above-mentioned vinylsilane compounds include γ -methacryloxypropyltrimethoxysilane, burtrimethoxysilane, vinyltriethoxysilane, biertributoxysilane, burtris (J3-methoxetoxysilane), biertriacetoxysilane, and the like. Examples include silane and methyltrimethoxysilane. Among them, τ / -methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, and vinylinoletriethoxysilane are preferred.
ビニルシラン化合物は、 (A) + (B ) + ( C) の合計 1 0 0重量%に対して、 通常 0 . 5〜2 . 5重量0 /0、 好ましくは 0 . 5〜 2重量%の割合で用いられる。 ビュルシランィヒ合物を上記割合で用いると、 シラングラフト速度が早く、 かつ、 適度なシラングラフト度が得られ、 その結果、 引張伸びと引張破断点強度とのパ ランスに優れる成形体、 たとえば電線被覆層を形成することができる。 The vinylsilane compound is (A) + (B) + (C) in total 100% by weight, Usually from 0.5 to 2.5 wt 0/0, preferably used in a ratio of 0.5 to 2 wt%. When the bullsilane compound is used in the above ratio, the silane grafting speed is high and an appropriate degree of silane grafting can be obtained. As a result, a molded product excellent in balance between tensile elongation and tensile strength at break, for example, a wire coating layer Can be formed.
本発明では、 上記したように、 過酸化物は、 エチレン系重合体 (A) のシラン グラフト反応を促すために、 ビュルシランィヒ合物とともに用いられる。  In the present invention, as described above, the peroxide is used together with the bursilane compound in order to promote the silane grafting reaction of the ethylene polymer (A).
このよう過酸ィ匕物としては、 有機ペルォキシド、 具体的には、 ベンゾィルぺ ルォキシド、 ジクロルベンゾィルペルォキシド、 ジクミルペルォキシド、 ジ -t- ブ チルペルォキシド、 2,5-ジメチル -2,5- ジ (ペルォキシドベンゾエート) へキシン -3、 1,4-ビス (t-ブチルペルォキシィソプロピル).ベンゼン、 ラウロイルベルォキ シド、 t-プチルペルアセテート、 2,5-ジメチル -2,5- ジ- (t-プチルペルォキシド) へキシン- 3、 2,5-ジメチル -2,5- ジ (t-ブチルペルォキシド) へキサン、 t-ブチル ぺ /レべンゾエート、 t-プチ/レぺ.ノレフェニノレアセテート、 t-ブチノレぺノレイソブチレ一 ト、 t-ブチルペル- sec- オタトエート、 t-ブチルペルピバレート、 クミルぺノレピバ レート、 t-ブチルぺルジェチルァセテート ;ァゾビスィソブチロニトリル、 ジメ チルァゾィソブチレートなどが挙げられる。  Organic peroxides such as benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide, di-t-butylperoxide, 2,5-dimethyl- 2,5-di (peroxide benzoate) hexine-3,1,4-bis (t-butylperoxyisopropyl) .benzene, lauroyl beloxide, t-butyl peracetate, 2,5 -Dimethyl-2,5-di- (t-butylperoxide) hexine-3,2,5-dimethyl-2,5-di (t-butylperoxide) hexane, t-butyl Benzoate, t-petit / reno.norefeninorea acetate, t-butynolenoleisobutyrate, t-butylper-sec-otatoate, t-butylperpivalate, cumylphenolpivalate, t-butylperjeptyla Acetate; azobisisobutyronite Le, and the like dimethyl chill § zone I isobutyrate.
これらのうちでは、 ジクミルペルォキシド、 ジ -t- ブチルペルォキシド、 2,5- ジメチル -2,5- ジ (t-ブチルペルォキシ) へキシン- 3、 2,5-ジメチル -2,5- ジ (t-ブ チルペルォキシ) へキサン、 1,4-ビス (t-ブチルペルォキシイソプロピル) ベンゼ 過酸化物は、 (A) + (B ) + (C) の合計 1 0 0重量%に対して、通常 0 0 5〜0 . 1 5重量0 /0、好ましくは 0 . 0 1〜0 . 1重量0 /0の割合で用いられる。 過酸ィ匕物を上記割合で用いると、 ビュルシラン化合物をエチレン系重合体 (A) にシラングラフトさせる反応を適度に促すことができる。 Of these, dicumylperoxide, di-t-butylperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3,2,5-dimethyl-2,5 -Di (t-butylperoxy) hexane and 1,4-bis (t-butylperoxyisopropyl) benzene peroxide make up a total of 100% by weight of (A) + (B) + (C). in contrast, normal 0 0 5 to 0.1 5 wt 0/0, preferably used is 0. 0 1 to 0.1 at a ratio of weight 0/0. When the peroxidic acid is used at the above ratio, the reaction of grafting the silane compound to the ethylene polymer (A) can be appropriately promoted.
金属水酸化物 (B )  Metal hydroxide (B)
本発明で用いられる金属水酸ィヒ物としては、 水酸化アルミニウム、 水酸化マグ ネシゥム、 水酸ィ匕カノレシゥム、 水酸化バリウム、 水酸化マンガン、 水酸化亜鉛、 ハイドロタルサイト等の単独もしくはこれらの混合物が挙げられ、 水酸化マグネ シゥム単独及び水酸化マグネシゥムを含む混合物が特に好まし 、。 フッ素化合物 (c) Examples of the metal hydroxide used in the present invention include aluminum hydroxide, magnesium hydroxide, hydroxide hydroxide, barium hydroxide, manganese hydroxide, zinc hydroxide, and hydrotalcite alone or in combination thereof. Mixtures are preferred, with magnesium hydroxide alone and mixtures containing magnesium hydroxide being particularly preferred. Fluorine compound (c)
本発明で用いられるフッ素化合物としてはフッ素エラストマ一、 フッ素ゴム、 フッ素樹脂、 ブイブリル状ポリテトラフルォロエチレン及ぴこれらのフッ素化合 物の熱可塑性樹脂をベースとしたマスターパッチが挙げられ、 中でもフイブリル 状ポリテトラフルォロエチレン及ぴそのマスターバッチが特に好ましい。 フイブ リル状のブイブリルの直径は 1 z m以下、 好ましくは 0 . 5 μ πι以下であると分 散性に優れる。 このようなフイブリルは揃断力によりポリテトラフルォロェチレ ン等をブイブリル化し繊維状のネットワーク構造を採っている。 またポリテトラ フルォロエチレン等のフッ素化合物はアクリル変性したものが好ましい。 マスタ 一バッチはポリテトラフルォロエチレン等のフッ素化合物とエチレン系重合体と の組成物であり、 組成物中のポリテトラフルォロエチレン等のフッ素化合物が 1 0〜 9 0重量。 /0、 好ましくは 2 0〜 5 0重量%である。 Examples of the fluorine compound used in the present invention include fluorine elastomers, fluororubbers, fluororesins, fibrillar polytetrafluoroethylene, and master patches based on thermoplastic resins of these fluorinated compounds. Polytetrafluoroethylene and its masterbatch are particularly preferred. When the diameter of the fibril-shaped buibril is 1 zm or less, preferably 0.5 μπι or less, the dispersion is excellent. Such fibrils have a fibrous network structure formed by bubbling polytetrafluoroethylen or the like by the shear force. The fluorine compound such as polytetrafluoroethylene is preferably modified with acrylic. One master batch is a composition of a fluorine compound such as polytetrafluoroethylene and an ethylene polymer, and the composition contains 10 to 90% by weight of a fluorine compound such as polytetrafluoroethylene. / 0 , preferably 20 to 50% by weight.
難燃助剤  Flame retardant aid
本発明の樹脂組成物においては、上記の以外に、シリコーンィヒ合物難燃助剤 を 使用することもできる。 難燃助剤 として使用されるシリコーン化合物は、 有機 基に結合した S i—oを有する化合物で、このようなシリコーン化合物としては、 ジメチノレシリコーン オイル、 メチルフエ-ルシリコーン オイル等のシリコーン オイル、 エポキシ変性、 アルキル変性、 ァミノ変性、 カルボキシ変性、 アルコ一 ル変性、エーテル変性等の変性シリコーン オイル、ジメチルポリシロキサンゴム、 メチルビ-ルポリシロキサンゴム等のシリコーン ゴム、メチルシリコーン樹脂、 ェチルシリコーン樹脂等のシリコーン樹脂等が挙げられる。  In the resin composition of the present invention, in addition to the above, a flame retardant auxiliary of a silicone compound may be used. The silicone compound used as a flame retardant aid is a compound having Si—o bonded to an organic group. Examples of such a silicone compound include silicone oils such as dimethinole silicone oil and methylphenol silicone oil, and epoxy resins. Modified, alkyl-, amino-, carboxy-, alcohol-, and ether-modified silicone oils, dimethyl polysiloxane rubber, methyl rubber polysiloxane rubber, etc., silicone rubber, methyl silicone resin, ethyl silicone resin, etc. Silicone resin and the like can be mentioned.
これらのシリコーン化合物は、結合 S i一 Oを含み、また燃焼時に結合 S i一 Cを有する化合物を生成し、 これらの構造が熱移動のバリヤ一となり、 このバリ ヤー効果と炭化層形成時の熱凝縮による相乗的な難燃性付与効果が得られ、 上記 の金属水酸化物難燃剤の量を低減して組成物の機械的性質を維持でき、 また組成 物の燃焼時の C Oの発生を減少させることができる。  These silicone compounds contain a bond S i-O and generate compounds having a bond S i-C upon combustion.These structures serve as a barrier for heat transfer. A synergistic effect of imparting flame retardancy is obtained by thermal condensation, the amount of the metal hydroxide flame retardant is reduced, the mechanical properties of the composition can be maintained, and the generation of CO during combustion of the composition can be reduced. Can be reduced.
シリコーン化合物を添加する場合は、エチレンと炭素数 3〜1 0の α—ォレフ インとからなるエチレン ·  When a silicone compound is added, the ethylene compound is composed of ethylene and α-olefin having 3 to 10 carbon atoms.
"ーォレフィン共重合体 1 0 0重量部に対して、 1〜: L 0重量部添加する。 1 重両部未満では前記金属水酸化物とにより得られる相乗的な難燃性付与効果が十 分でなく、 1 0重量部を越えると組成物の熱安定性が不十分になる。好ましくは、 ポリオレフィン樹脂 1 0 0重量部に対して、 2〜 8重量部、 特に好ましくは 3 ~ 5重量部添加する。 1-: 0 parts by weight of L is added to 100 parts by weight of the olefin copolymer. If the amount is less than 2 parts by weight, the synergistic effect of imparting flame retardancy obtained with the metal hydroxide is not sufficient, and if it exceeds 10 parts by weight, the thermal stability of the composition becomes insufficient. Preferably, 2 to 8 parts by weight, particularly preferably 3 to 5 parts by weight, is added to 100 parts by weight of the polyolefin resin.
シリコーン ゴム、シリコーン樹脂等の常温で固体のシリコーン化合物を使用す る場合は、樹脂組成物中への分散性を考慮して微粒子状のシリコーンパウダーを 使用することが好ましい。このようなシリコーンパウダーとしては通常の市販さ れてレ、るシリコンパゥダーを使用することができる。 When a silicone compound that is solid at room temperature, such as silicone rubber or silicone resin, is used, it is preferable to use finely divided silicone powder in consideration of dispersibility in the resin composition. As such a silicone powder, an ordinary commercially available silicone powder can be used.
また、シリコーンパウダーはそのまま組成物に添加してもよレ、が、公知のカツ プリング剤、 例えばビュルトリエトキシシラン、 a—メルカプトプロビルトリエ トキシシランのようなシラン系カップリング剤、 ィソプロピルトリイソステア口 ィルチタネートのようなチタンカップリング剤、 ステアリン酸、 マレイン酸、 ォ レイン酸等の高級脂肪酸カップリング剤等を使用してシリコーンパウダーを予 め表面処理するか、 あるいは力ップリング剤を組成物中に配合することにより、 シリコーンパウダーと熱可塑性樹脂との間の接着を向上させ、得られる熱可塑性 組成物の機械的特性を向上させることができる。  The silicone powder may be added to the composition as it is, but a known coupling agent, for example, a silane coupling agent such as butyltriethoxysilane, a-mercaptopropyltriethoxysilane, or isopropyltrisilane. Preliminary surface treatment of silicone powder using titanium coupling agent such as isostear dititanate, higher fatty acid coupling agent such as stearic acid, maleic acid, oleic acid, etc. By being incorporated therein, the adhesion between the silicone powder and the thermoplastic resin can be improved, and the mechanical properties of the obtained thermoplastic composition can be improved.
その他添加剤  Other additives
本発明に係る熱可塑性樹脂組成物には、上記の他に、必要に応じて、酸化防止剤、 紫外線吸収剤、 耐候安定剤、 耐熱安定剤、 帯電防止剤、 難燃剤、 顔料、 染料、 滑 剤などの添加剤を配合することができる。 In addition to the above, the thermoplastic resin composition according to the present invention may further include, if necessary, an antioxidant, an ultraviolet absorber, a weather stabilizer, a heat stabilizer, an antistatic agent, a flame retardant, a pigment, a dye, and a lubricant. An additive such as an agent can be blended.
本発明の重合体組成物における各成分の含有割合は、 エチレン系重合体 (A) が 2 0〜6 4 . 9重量%、 好ましくは 2 5 〜 6 0 重量%であり、 より好まし くは、 3 0〜 5 5重量%であり、 金属水酸化物 (B) 力 3 5〜 7 0重量%、 好ま しくは 4 0〜 7 0 重量%であり、 フッ素化合物 (C) が 0. 1〜1 0重量%、好 ましくは 0 . 1〜6重量0 /0の割合である。 ( (A) + (B) + (C) = 1 0 0重 量%とした場合。) The content ratio of each component in the polymer composition of the present invention is such that the content of the ethylene polymer (A) is from 20 to 64.9% by weight, preferably from 25 to 60% by weight, and more preferably from 25 to 60% by weight. 30 to 55% by weight, the metal hydroxide (B) force is 35 to 70% by weight, preferably 40 to 70% by weight, and the fluorine compound (C) is 0.1 to 0.1% by weight. 1 0 wt%, is good Mashiku a proportion of 0.1 to 6 wt 0/0. (When (A) + (B) + (C) = 100% by weight)
本発明に係る熱可塑性樹脂組成物は、 上記の (A) (B) および (C) 成分と、 必要に応じて配合される添加剤とを、 種々の従来公知の方法で溶融混合すること により調製される。 例えば、上記各成分を同時に、または逐次的に、たとえばヘンシェルミキサ一、 V型プレンダー、 タンブラ一ミキサー、 リボンプレンダ一等に装入して混合した 後、 単軸押出機、 多軸押出機、 ニーダー、 バンパリ一ミキサー等で溶融混練する ことによって得られる。 The thermoplastic resin composition according to the present invention is obtained by melt-mixing the above-mentioned components (A), (B) and (C) and, if necessary, additives, by various conventionally known methods. Be prepared. For example, the above components are charged simultaneously or sequentially, for example, into a Henschel mixer, a V-type blender, a tumbler mixer, a ribbon blender, etc. and mixed, and then a single-screw extruder, a multi-screw extruder, a kneader, It is obtained by melt-kneading with a bumper mixer.
これらの内でも、 多軸押出機、 ニーダー、 バンバリ一ミキサー等の混練性能に 優れた装置を使用すると、 各成分がより均一に分散された高品質の重合体組成物 が得られる。  Among these, when equipment having excellent kneading performance such as a multi-screw extruder, a kneader, and a Banbury mixer is used, a high-quality polymer composition in which each component is more uniformly dispersed can be obtained.
また、 これらの任意の段階で必要に応じて前記添加剤、 たとえば酸ィ匕防止剤な どを添加することもできる。  In addition, at any of these stages, the above additives, for example, an anti-oxidation agent, can be added as necessary.
成形体  Molded body
本発明に係る成形体は、 上記のようにして得られる、 本発明に係る重合体組成 物を用い、 従来公知の溶融成形法、 たとえば押出成形、 回転成形、 カレンダ一成 形、 射出成形、 圧縮成形、 トランスファー成形、 粉末成形、 ブロー成形、 真空成 形などの方法により、 種々の形状に成形することができる。  The molded article according to the present invention is obtained by using the polymer composition according to the present invention obtained as described above, using a conventionally known melt molding method, for example, extrusion molding, rotational molding, calendar molding, injection molding, compression molding. It can be formed into various shapes by methods such as molding, transfer molding, powder molding, blow molding, and vacuum molding.
本発明に係る重合体組成物を電線シースおよび電線被覆の用途に使用する場合、 本発明に係る成形体は、 電線シースおよび zまたは被覆層であり、 この電綠シ一 スおよび被覆層は、 従来公知の方法たとえば押出方法により電線の周囲に形成さ れる。 【実施例】  When the polymer composition according to the present invention is used for an electric wire sheath and an electric wire covering, the molded article according to the present invention is an electric wire sheath and a z or coating layer, and the electric sheath and the coating layer are: It is formed around the electric wire by a conventionally known method, for example, an extrusion method. 【Example】
以下、 本発明を実施例により更に具体的に説明するが、 本発明はこれら実施例 に何ら限定されるものではない。 なお、 エチレン ' α—ォレフイン共重合体 (Α 一 1 ) の物性は以下のようにして評価した。  Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The physical properties of the ethylene 'α-olefin copolymer (Α1-1) were evaluated as follows.
[密度]  [density]
1 9 0 °C、 2 . 1 6 kg荷重における MF R測定後のストランドを、 1 2 0 °〇で1 時間熱処理し、 1時間かけて室温まで徐冷したのち、 密度勾配管法により測定し た。  The strand after MFR measurement at 190 ° C and a load of 2.16 kg was heat-treated at 120 ° C for 1 hour, gradually cooled to room temperature over 1 hour, and measured by density gradient tube method. Was.
[ α -ォレフィン含量、 Τ α /Τ α α、 Β値]  [α-olefin content, Τ α / Τ α α, Β value]
13C— NMRスぺク トルによって決定した。 [極限粘度 [77]] 13C—determined by NMR spectrum. [Intrinsic viscosity [77]]
1 35°C、 デカリン中で測定した。  1 Measured in decalin at 35 ° C.
[Mw/Mn]  [Mw / Mn]
GPC (ゲルパーミエーシヨンクロマトグラフィー) を用い、 オルトジクロロべ ンゼン溶媒で、 140。Cで測定した。  Using GPC (gel permeation chromatography) with o-dichlorobenzene solvent 140. Measured at C.
[MFR10/MFR2]  [MFR10 / MFR2]
ASTM D-1 238に準拠し、 1 90°Cにおける 1 Okg荷重での MF R10と、 2.1 6:kg荷重でのMFR2とを測定し、比を算出した。 この比が大きいと、ポリ マーの溶融時の流動性が優れていることを示し、 すなわち加工性が高い。  Based on ASTM D-1238, MFR10 under a load of 1 Okg at 190 ° C and MFR2 under a load of 2.16: kg were measured, and the ratio was calculated. When this ratio is large, it indicates that the polymer has excellent fluidity during melting, that is, the workability is high.
絶縁電線のサンプルの作成とその評価は次の方法で行つた。 絶縁電線のサンプノレの作成  Preparation and evaluation of a sample of the insulated wire were performed by the following method. Creation of insulated wires
本発明の重合体組成物を溶融押出機 (東洋精機ネ環、製品名 ラボプラストミル) に電線被覆用ダイスを設置したものを用いて、 ダイス温度: 220°C、 スクリュー回 転: 30rpm、押出量: 1.6〜1.8kg/hで素線径 0.45mmの軟銅線の 7本撚り導体(外 径 1.35mm)の周囲を 0.8mm厚の重合体組成物で被覆して仕上がり径 3.0mmの 絶縁電線のサンプルを得る。 得られた絶縁電線のサンプルの、 絶縁被覆の難燃性を下記方法により評価する。 すなわち図 1に示すように、 試験装置のチャンバ一 (図示せず) 内に、 試料であ る長さ 1 7インチの絶縁電線 1を設置する。 底面と絶縁電線 1とのなす角度を Θ (難燃試験角度) とする。 The polymer composition of the present invention was extruded using a melt extruder (Toyo Seiki Ne-ring, product name Labo Plast Mill) equipped with a wire coating die, die temperature: 220 ° C, screw rotation: 30 rpm, and extrusion. Amount: 1.6 to 1.8 kg / h, an insulated wire with a finished diameter of 3.0 mm covered with a 0.8 mm thick polymer composition around a 7-strand conductor (outer diameter: 1.35 mm) of soft copper wire with a strand diameter of 0.45 mm Obtain a sample. The flame resistance of the insulation coating of the obtained insulated wire sample is evaluated by the following method. That is, as shown in FIG. 1, a 17-inch long insulated wire 1 as a sample is placed in one chamber (not shown) of the test apparatus. The angle between the bottom surface and the insulated wire 1 is Θ (flame retardancy test angle).
つぎに、 絶縁電線 1の前方に配置したバーナー 2に着火して、 その炎を、 絶縁 電線 1の、下端から 3インチ上方の位置に、 Ί 0° の角度で接炎させ着火確認後、 5秒間接炎を続けた後に炎を静かに取り去り、 自己消火するカゝ確認し 0を記録す る。  Next, the burner 2 placed in front of the insulated wire 1 is ignited, and the flame is brought into contact with the flame at an angle of Ί 0 ° at a position 3 inches above the lower end of the insulated wire 1 and the ignition is confirmed. After continuing the indirect flame for 2 seconds, gently remove the flame and check for self-extinguishing.
そして以上の試験を 3回行って、 各試験時に自己消火したものを Θ度傾斜試験 合格とする。 合格する 0が大であるほど、 難燃性が高いことを示す。 そして、 合 格する 0のうち最大の傾斜角度のものを A (式 (1)、 式(2) の左辺に相当) と する。 Perform the above test three times, and the self-extinguishing fire at each test shall be regarded as passing the Θ inclination test. Passing A larger value of 0 indicates higher flame retardancy. Then, A (the equivalent to the left side of Equations (1) and (2)) that has the largest inclination angle among the 0s that pass is defined as I do.
なお、 Aは 0度以上 90度以下である。  A is 0 degree or more and 90 degrees or less.
次に式 (1) の右辺について説明する。 Next, the right side of equation (1) will be described.
σは、 該熱可塑性樹脂組成物からなる厚み 2 mmのシートの 23 °Cにおけるねじ り剛性である。 σ is the torsional stiffness of a 2 mm thick sheet made of the thermoplastic resin composition at 23 ° C.
ねじり剛性  Torsional rigidity
難燃試験に用いたのと同じ熱可塑性樹脂組成物のシートを東洋精機(株) 製クラ ッシュバーグ式柔軟度試験機を用い、 J I S K6745に準拠し、 温度 23。Cのね じり剛性を測定した。 A sheet of the same thermoplastic resin composition as used in the flame retardancy test was used at a temperature of 23 according to JIS K6745 using a Crashberg type flexibility tester manufactured by Toyo Seiki Co., Ltd. The torsional stiffness of C was measured.
[エチレン · 1—ブテン共重合体の調製]  [Preparation of ethylene / 1-butene copolymer]
[製造例]  [Production example]
[触媒溶液の調製]  [Preparation of catalyst solution]
トリフエニルカルべ-ゥム (テトラキスペンタフルオロフェエル) ポレートを Triphenylcarbamate (tetrakispentafluorophenel)
18. 4mgとり、 トルエンを 5m 1加えて溶解させ、 濃度が 0. 004πιΜΖ m 1のトルェン溶液を調製した。 [ジメチル ( t -ブチルァミ ド) (テトラメチル- 7] 5-シクロペンタジェニル) シラン] チタンジクロライドを 1. 8mgとり、 ト ルェンを 5 m 1加えて溶解させ、 濃度が 0. 001 mM/m 1のトルエン溶液を 調製した。 重合開始時においてはトリフエニルカルべニゥム (テトラキスペンタ フノレオロフェニル) ポレートのトルエン溶液を 0. 38m 1、 [ジメチル ( t -ブ チルアミ ド) (テトラメチル- η 5-シク口ペンタジェニル) シラン] チタンジクロ ライドのトルエン溶液を 0. 38mlとり、 さらに希釈用のトルエンを 4. 24 m 1加えて、 トリフエ-ルカルベ-ゥム (テトラキスペンタフルオロフェニル) ボレートが B換算で 0. 002mM,Lに、 [ジメチル (t一ブチルアミド) (テトラ メチルー 775—シク口ペンタジェニル)シラン]チタンジク口リ ドが T i換算で 0. 0005 mM/Lとなるトルエン溶液を 5 m 1調製した。 18.4 mg of toluene was added and dissolved in 5 ml of toluene to prepare a toluene solution having a concentration of 0.004πιΜΖm 1. [Dimethyl (t-butylamide) (tetramethyl-7] 5-cyclopentagenenyl) silane] Take 1.8 mg of titanium dichloride, add 5 ml of toluene and dissolve, and adjust the concentration to 0.001 mM / m A toluene solution of 1 was prepared. At the beginning of the polymerization, 0.38 ml of a toluene solution of triphenylcarbenyl (tetrakispentaphenylenophenyl) porate, [dimethyl (t-butylamide) (tetramethyl-η5-cyclopentagenenyl) silane] 0.38 ml of a toluene solution of titanium dichloride is taken, and 4.24 ml of toluene for dilution is further added, so that tri-carbaldehyde (tetrakispentafluorophenyl) borate is reduced to 0.002 mM, L in terms of B, [ Dimethyl (t-butylamide) (tetramethyl-775-cyclopentapentaenyl) silane] titanium solution was prepared in an amount of 0.0005 mM / L in terms of Ti in a toluene solution of 5 ml.
[エチレン . 1ーブテン共重合体 A— 1の調製]  [Preparation of ethylene / 1-butene copolymer A-1]
充分窒素置換した容量 1. 5リツトルの攪拌翼付 S U S製ォートクレーブに、 2 3 °Cでヘプタン 75 Omlを挿入した。 このオートクレーブに、 攪拌翼を回し、 力つ氷冷しながら 1ーブテン 10 g、 水素 120mlを揷入した。 次にォートク レーブを 1 0 0 °Cまで加熱し、 更に、 全圧が 6 KGとなるようにエチレンで加圧 した。 オートクレーブの内圧が 6 KGになった所で、 トリイソプチルァルミユウ ム (T I B A) の 1 . 0 mM/m 1へキサン溶液 1 , O m lを窒素で圧入した。 続いて、 上記の如く調製した触媒溶液 5 m 1を、 窒素でォートクレーブに圧入し 重合を開始した。 その後、 5分間、 オートクレーブを内温 1 0 0°Cになるように 温度調製し、 かつ圧力が 6 k gとなるように直接的にエチレンの供給を行った。 重合開始 5分後、 オートクレープにポンプでメタノール 5 m 1を挿入し重合を停 止し、 オートクレーブを大気圧まで脱圧した。 反応溶液に 3リツトルのメタノ一 ルを攪拌しながら注いだ。 得られた溶媒を含む重合体を 1 3 0 °C、 1 3時間、 6 0 0 t o r rで乾燥して 1 0 gのエチレン ·ブテン共重合体 A— 1を得た。 得ら れたエチレン · 1一ブテン共重合体の性状を表 1に示す。 75 Oml of heptane was inserted at 23 ° C into a SUS autoclave with a stirring wing of 1.5 liters which had been sufficiently purged with nitrogen. The stirring blade was turned into this autoclave, and 10 g of 1-butene and 120 ml of hydrogen were introduced while cooling with ice. Next The lave was heated to 100 ° C. and further pressurized with ethylene to a total pressure of 6 KG. When the internal pressure of the autoclave reached 6 KG, 1,0 ml of a 1.0 mM / m 1 hexane solution of triisobutyralmium (TIBA) was injected with nitrogen. Subsequently, 5 ml of the catalyst solution prepared as described above was injected into an autoclave with nitrogen to initiate polymerization. Thereafter, the temperature of the autoclave was adjusted to 100 ° C. for 5 minutes, and ethylene was directly supplied so that the pressure became 6 kg. Five minutes after the start of the polymerization, 5 ml of methanol was inserted into the autoclave with a pump to stop the polymerization, and the autoclave was depressurized to atmospheric pressure. Three liters of methanol was poured into the reaction solution with stirring. The obtained polymer containing a solvent was dried at 130 ° C. for 13 hours at 600 torr to obtain 10 g of an ethylene / butene copolymer A-1. Table 1 shows the properties of the obtained ethylene / 1-butene copolymer.
Figure imgf000017_0001
(実施例:!〜 3、 比較例 1一 1〜3— 2 )
Figure imgf000017_0001
(Examples:! ~ 3, Comparative Examples 1-1-1 ~ 3-2)
実施例 1〜 3は熱可塑性樹脂として前記の製造法で作製したエチレン · 1ーブテ ン共重合体 A— 1を用い、 比較例 1-1、 2-1、 3-1は熱可塑性樹脂としてエチレン 一ェチルアタリレート共重合体 (三井'デュポンポリケミカル株式会ネ; hM、 商品 名 EVA LEX-EEA ' A-710、以下 E EAと略する。) を用い、比較例 1-2、 2-2、 3-2 は、 エチレン一酢酸ビュル共重合体 (三井 ·デュポンポリケミカル株式会社 製、 商品名 EVAFLEX · EV 360、 以下 E VAと略する。) を用いて、 金属水酸ィ匕 物として水酸化マグネシゥム、 フッ素化合物としてメタプレン A-300C三菱レイ ヨン製)、 さらにシリコーンレジン: Z-6018(東レ 'ダウコーニング製)を表 1に記載 の重量%で配合して、パンパリーミキサーを用い、樹脂温度 1 9 0 °Cで溶融混練、 造粒を行ない、 熱可塑性樹脂組成物のペレットを得た。 この熱可塑性樹脂組成物 を用いて、 前記の方法により、 Aおよび σを算出して、 式 (1 )、 式 (2 ) を満足 するかどうかを判定した。 結果を表 2に示す。 また、 表 2の熱可塑性樹脂組成物 のねじり剛性 (σ ) と Α (難燃試験合格最大角度) との関係を図 2にプロットし た。 表 2 Examples 1 to 3 used the ethylene / 1-butene copolymer A-1 produced by the above-mentioned production method as the thermoplastic resin, and Comparative Examples 1-1, 2-1 and 3-1 used ethylene as the thermoplastic resin. Comparative Example 1-2, 2-Ethyl acrylate copolymer (Mitsui 'Dupont Polychemical Co., Ltd .; hM, trade name: EVA LEX-EEA' A-710, hereinafter abbreviated as E EA) 2, 3-2 are ethylene monoacetate butyl copolymer (Mitsui DuPont Polychemical Co., Ltd.) EVAFLEX · EV 360, abbreviated as EVA. ), Magnesium hydroxide as a metal hydroxide, metaprene A-300C as a fluorine compound, manufactured by Mitsubishi Rayon Co., Ltd., and a silicone resin: Z-6018 (manufactured by Dow Corning Toray) as listed in Table 1. %, And the mixture was melt-kneaded and granulated at a resin temperature of 190 ° C. using a bread pallet mixer to obtain pellets of a thermoplastic resin composition. Using this thermoplastic resin composition, A and σ were calculated by the method described above, and it was determined whether or not the expressions (1) and (2) were satisfied. Table 2 shows the results. Further, the relationship between the torsional rigidity (σ) of the thermoplastic resin composition shown in Table 2 and Α (the maximum angle at which the flame retardant test passed) was plotted in FIG. Table 2
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0001
Figure imgf000018_0002
Oは式を満足することを、 Xは満足しないことを示す。 O indicates that the equation is satisfied, and X indicates that it is not.
産業上の利用可能性 Industrial applicability
本発明に係る重合体組成物を電線シースおよび電線被覆の用途に使用する場 合、 本発明に係る成形体は、 電線シースおよび/または被覆層であり、 この電線 シースおよび被覆層は、 従来公知の方法たとえば押出方法により電線の周囲に形 成される。  When the polymer composition according to the present invention is used for an electric wire sheath and an electric wire coating, the molded article according to the present invention is an electric wire sheath and / or a coating layer, and the electric wire sheath and the coating layer are conventionally known. For example, it is formed around the electric wire by an extrusion method.
本発明によれば、 高度の難燃効果を有し、 しかも柔軟である熱可塑性樹脂組成 物、 およびその成形体を提供することができる。  According to the present invention, it is possible to provide a thermoplastic resin composition having a high degree of flame retardancy and being flexible, and a molded article thereof.
本発明に係る熱可塑性樹脂組成物は、 上記のような効果を有するので、 各種成 形体、 たとえば電線被覆、 テープ、 フィルム、 難燃シート、 パイプ、 ブロー成形 体、 難燃壁紙などの用途に好適であり、 特に電線シースおょぴ電線被覆の用途に 好適である。  Since the thermoplastic resin composition according to the present invention has the above-described effects, it is suitable for use in various molded articles, for example, wire coating, tape, film, flame-retardant sheet, pipe, blow-molded article, flame-retardant wallpaper, and the like. It is particularly suitable for use in wire sheathing and wire coating.

Claims

請求の範囲 The scope of the claims
1. 次の (A) 〜 (C) カ らなる事を特徴とする熱可塑性樹脂組成物。  1. A thermoplastic resin composition comprising the following (A) to (C).
(A) エチレンと炭素数 3〜1 0の α—ォレフインとからなるエチレン · α—ォ レフィン共重合体 20〜 64. 9重量0 /0 (A) and ethylene · alpha-O olefin copolymer 20 composed of a number 3 to 0 of the alpha-Orefuin carbon 64.9 wt 0/0
( Β )金属水酸化物 3 5〜 70重量%と、 (Iii) 35-70% by weight of metal hydroxide;
( C)フッ素化合物 0. 1〜 1 0重量% (C) Fluorine compound 0.1 to 10% by weight
2. 次の (Α) 〜 (C) 力 らなる事を特徴とする熱可塑性樹脂組成物。 2. A thermoplastic resin composition comprising the following (i) to (c) forces.
(Α)次のエチレン系重合体 (Α— 1) と (Α— 2) を (Α— 1) / (Α— 2) = 20/8 0~1 00/0の重量比で含んでなるェチレン系共重合体組成物 20〜 64. 9重量00 (Α) Ethylene comprising the following ethylene polymers (Α-1) and (Α-2) in a weight ratio of (Α-1) / (Α-2) = 20/8 0 ~ 100/0 system copolymer composition from 20 to 64.9 weight 0 main 0
(A— 1):エチレンと炭素数 3〜 1 0の α—ォレフインとからなるエチレン.ひ ーォレフィン共重合体  (A-1): Ethylene. Olefin copolymer consisting of ethylene and α-olefin having 3 to 10 carbon atoms
(Α- 2) : (Α— 1) 以外のエチレン系共重合体  (Α-2): Ethylene copolymer other than (Α-1)
( Β )金属水酸化物 3 5〜 70重量%と、 (Iii) 35-70% by weight of metal hydroxide;
(C)フッ素化合物 0. 1〜1 0重量% (C) Fluorine compound 0.1 to 10% by weight
3. 前記エチレン α—ォレフィン共重合体 (Α) または (Α— 1) ヽ3. The ethylene α-olefin copolymer (Α) or (Α-1) ヽ
(i) 密度 (ASTM D1505, 23°C) が 0. 8 5 5〜0. 9 1 0 g/cm3の範囲に あり、 (i) the density (ASTM D1505, 23 ° C) is in the range of 0.855 to 0.910 g / cm3,
(ii) 1 90°C、 2.1 6 k g荷重におけるメルトフローレート(MFR2) (ASTM D1238,荷重 2.16kg, 190°C) が 0. l〜 1 0 0 gZl O分の範囲にあり、 (ii) Melt flow rate (MFR2) at 1.90 ° C and 2.16 kg load (ASTM D1238, load 2.16 kg, 190 ° C) is in the range of 0.1 to 100 gZl O,
(iii) G P C法により評価される分子量分布の指数: Mw/Mnが 1. 5〜 3. 5の 範囲にあることを特徴とする請求項 1乃至 2に記載の熱可塑性樹脂組成物。 (iii) The thermoplastic resin composition according to any one of claims 1 to 2, wherein Mw / Mn is in the range of 1.5 to 3.5, as measured by the GPC method.
4. 前記エチレン . ーォレフイン共重合体 (A) または (A— 1) 力4. The ethylene-olefin copolymer (A) or (A-1) force
(i)密度 (ASTM D1505, 23°C) が 0. 8 5 7〜0, 8 90 g/cm3の範囲にあ り、 (i) The density (ASTM D1505, 23 ° C) is in the range of 0.857 to 0,890 g / cm3,
(ii) 1 9 0 °C、 2. 1 6 k g荷重におけるメルトフローレート (MF R2) (ASTMD1238,荷重 2.16kg、 190°C) 力 S 0 · 1〜 20 g/10分の範囲にあり、(ii) Melt flow rate (MF R2) at 190 ° C and 2.16 kg load (ASTMD1238, load 2.16 kg, 190 ° C) Force S 0
(iii) GPC法により評価される分子量分布の指数: Mw/Mnが 1. 5〜3. 5の 範囲にあり、 (iii) Index of molecular weight distribution evaluated by GPC method: Mw / Mn is in the range of 1.5 to 3.5,
(iv) l 90。C、 1 0 k g荷重におけるメルトフローレート(MFR10)と 1 90°C、 2. 1 6 k g荷重におけるメルトフローレート (MFR2) との比: MFR10/M (iv) l90. C, ratio of melt flow rate (MFR10) at 10 kg load to melt flow rate (MFR2) at 190 ° C and 2.16 kg load: MFR10 / M
F R2が次の関係を満たし、 F R2 satisfies the following relationship,
MFR10/MFR2 ≥ 5. 7  MFR10 / MFR2 ≥ 5.7
Mw/Mn + 4. 7 ≤ MFR10/MFR2  Mw / Mn + 4.7 ≤ MFR10 / MFR2
(V) 13C-NMRスぺクトルにおける T a aに対する Τ α の強度比 (Τ α β/Τ a c ) が 0,5以下であり、 (V) the intensity ratio of Τα to T aa in the 13C-NMR spectrum (Ταβ / Τac) is 0.5 or less;
(vi)13C-NMRスぺクトルおょぴ下記式から求められる B値が 0.9〜: 1 , 5であ ることを特徴とする請求項 3に記載の熱可塑性樹脂組成物。  (vi) The 13C-NMR spectrum of the thermoplastic resin composition according to claim 3, wherein the B value obtained from the following formula is 0.9 to: 1,5.
B it= [POE] / (2 · [PE] [PO]) B it = [POE] / (2 · [PE] [PO])
(式中、 [PE]は共重合体中のエチレンから誘導される構成単位の含有モル分率 であり、 [PO] は共重合体中の α-ォレフィンから誘導される構成単位の含有モ ル分率であり、 [ΡΟΕ] は共重合体中の全ダイアド (dyad)連鎖に対するェチレ ン ' α -ォレフィン連鎖数の割合である。)  (Where [PE] is the mole fraction of the structural unit derived from ethylene in the copolymer, and [PO] is the mole fraction of the structural unit derived from α-olefin in the copolymer. ([ΡΟΕ] is the ratio of the number of ethylene-α-olefin chains to the total dyad chains in the copolymer.)
5. 請求項 1〜 4のいずれかに記載の熱可塑性樹脂組成物からなることを特徴 とする成形体。 5. A molded article comprising the thermoplastic resin composition according to any one of claims 1 to 4.
6. 請求項 5に記載の成形体が電線の絶縁体および/またはシースであることを 特徴とする成形体。 6. A molded article according to claim 5, wherein the molded article is an insulator and / or a sheath of an electric wire.
PCT/JP2003/009069 2002-07-25 2003-07-17 Thermoplastic resin composition and molded object comprising the composition WO2004011548A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004524114A JPWO2004011548A1 (en) 2002-07-25 2003-07-17 Thermoplastic resin composition and molded article comprising the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-216656 2002-07-25
JP2002216656 2002-07-25

Publications (1)

Publication Number Publication Date
WO2004011548A1 true WO2004011548A1 (en) 2004-02-05

Family

ID=31184582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009069 WO2004011548A1 (en) 2002-07-25 2003-07-17 Thermoplastic resin composition and molded object comprising the composition

Country Status (2)

Country Link
JP (1) JPWO2004011548A1 (en)
WO (1) WO2004011548A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324783A (en) * 1997-05-23 1998-12-08 Nippon Unicar Co Ltd Composition for flame resistant insulation cover
JP2000265011A (en) * 1999-03-17 2000-09-26 Yazaki Corp Flame-retarded resin composition
JP2000290440A (en) * 1999-04-06 2000-10-17 Japan Polychem Corp Composition for blown bottle and blown bottle therefrom
JP2002146119A (en) * 2000-11-08 2002-05-22 Grand Polymer Co Ltd Flame-retardant polyolefin resin composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ235032A (en) * 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
JPH0925318A (en) * 1995-07-10 1997-01-28 Nippon Petrochem Co Ltd New ethylene/alpha-olefin copolymer
EP0868440B1 (en) * 1995-10-14 2001-12-12 Basell Polyolefine GmbH Process for producing ethylene copolymers under high pressure
JPH09309926A (en) * 1996-05-17 1997-12-02 Dow Chem Co:The Production of ethylene copolymer
JP3344918B2 (en) * 1997-03-06 2002-11-18 昭和電線電纜株式会社 Flame retardant polyolefin composition and power cable using the composition
JP2000313775A (en) * 1999-04-28 2000-11-14 Mitsubishi Rayon Co Ltd Low-halogen flame-retardant resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324783A (en) * 1997-05-23 1998-12-08 Nippon Unicar Co Ltd Composition for flame resistant insulation cover
JP2000265011A (en) * 1999-03-17 2000-09-26 Yazaki Corp Flame-retarded resin composition
JP2000290440A (en) * 1999-04-06 2000-10-17 Japan Polychem Corp Composition for blown bottle and blown bottle therefrom
JP2002146119A (en) * 2000-11-08 2002-05-22 Grand Polymer Co Ltd Flame-retardant polyolefin resin composition

Also Published As

Publication number Publication date
JPWO2004011548A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP5843427B2 (en) Thermoplastic resin composition, polymer composition, and molded article comprising the composition
EP1252233B1 (en) Crosslinked compositions containing silane-modified polyolefins and polypropylenes
JP6523407B2 (en) Heat resistant silane cross-linked resin molded article and method for producing the same, heat resistant silane cross-linkable resin composition and method for producing the same, silane master batch, and heat resistant product using heat resistant silane cross-linked resin molded article
US20100209705A1 (en) Moisture-Curable Compositions, and a Process for Making the Compositions
JP2013177610A (en) Non-halogen flame-retardant resin composition, and non-halogen flame-retardant electric wire and cable
JP2013216866A (en) Phosphorus-free based halogen-free flame-retardant resin composition, phosphorus-free based halogen-free flame-retardant insulated electric wire and phosphorus-free based halogen-free flame-retardant cable
JPWO2015046478A1 (en) Heat-resistant silane cross-linked resin molded body and production method thereof, heat-resistant silane cross-linkable resin composition and production method thereof, silane masterbatch, and heat-resistant product using heat-resistant silane cross-linked resin molded body
US20030207979A1 (en) Wear resistant, flame-retardant composition and electric cable covered with said composition
WO2018180689A1 (en) Flame-retardant crosslinked resin molded article, production method therefor, silane masterbatch, masterbatch mixture, molded article thereof, and flame-retardant product
JP2020502302A (en) Crosslinkable polyolefin composition
JP5325364B2 (en) Molded article
JP2005239997A (en) Flame-retardant resin composition and molded product given by using the same
JP2005146152A (en) Thermoplastic resin composition and molded product composed of the same composition
JP2004323699A (en) Flame-retardant composition
JP5937459B2 (en) Flame retardant resin composition and method for producing the same for use as a conductor, or an outer coating layer of an optical fiber and / or an optical fiber core
JP2006244894A (en) Nonhalogen flame-retardant electric wire and cable
WO2004011548A1 (en) Thermoplastic resin composition and molded object comprising the composition
JP2011057989A (en) Flame-retardant resin composition and molded article using the same
JP5216175B2 (en) Flame retardant resin composition and wiring material using the same
JP4968618B2 (en) Method for producing non-halogen flame retardant silane crosslinked insulated wire
US11603460B2 (en) Thermoset insulation composition
JP6744762B2 (en) Method for manufacturing coating material for electric wire or cable and method for manufacturing electric wire or cable
KR100807764B1 (en) Flame-retardant ethylene resin composition and use thereof
JP6490618B2 (en) Flame-retardant crosslinked resin molded body, flame-retardant crosslinked resin composition and production method thereof, flame-retardant silane masterbatch, and flame-retardant molded article
JPH0977917A (en) Flame-retardant resin composition and electric wire using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004524114

Country of ref document: JP

122 Ep: pct application non-entry in european phase