WO2004008648A2 - Road curvature estimation and automotive target state estimation system - Google Patents

Road curvature estimation and automotive target state estimation system Download PDF

Info

Publication number
WO2004008648A2
WO2004008648A2 PCT/US2003/022182 US0322182W WO2004008648A2 WO 2004008648 A2 WO2004008648 A2 WO 2004008648A2 US 0322182 W US0322182 W US 0322182W WO 2004008648 A2 WO2004008648 A2 WO 2004008648A2
Authority
WO
WIPO (PCT)
Prior art keywords
state
roadway
target vehicle
estimating
target
Prior art date
Application number
PCT/US2003/022182
Other languages
French (fr)
Other versions
WO2004008648A3 (en
Inventor
Shan Cong
Shi Shen
Lang Hong
Original Assignee
Automotive Systems Laboratory, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Systems Laboratory, Inc. filed Critical Automotive Systems Laboratory, Inc.
Priority to AU2003251943A priority Critical patent/AU2003251943A1/en
Priority to JP2004521888A priority patent/JP4823520B2/en
Priority to EP03764720.3A priority patent/EP1537440B1/en
Publication of WO2004008648A2 publication Critical patent/WO2004008648A2/en
Publication of WO2004008648A3 publication Critical patent/WO2004008648A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0066Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to vehicle path curvature
    • B60K31/0083Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to vehicle path curvature responsive to centrifugal force acting on vehicle due to the path it is following
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/20Road shapes
    • B60T2210/24Curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/08Coordination of integrated systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4043Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/803Relative lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • FIG. 1 illustrates a block diagram of hardware associated with a predictive collision sensing system
  • FIG. 2 illustrates a coverage pattern of a radar beam used by the predictive collision sensing system
  • Fig. 3 depicts a driving scenario for purposes of illustrating the operation of the predictive collision sensing system
  • Fig. 4 illustrates a block diagram of the hardware and an associated signal processing algorithm of the predictive collision sensing system
  • Fig. 5 illustrates a flow chart of an associated signal processing algorithm of the predictive collision sensing system
  • Fig. 6 illustrates a geometry used for determining curvature parameters of a roadway
  • Fig. 7 illustrates the geometry of an arc
  • Figs. 8a-d illustrates an example of the estimation of target position, lateral velocity, and road curvature parameters for a straight roadway
  • Figs. 9a-b illustrate an example of the target state RMS errors from unconstrained and constrained filtering on the straight roadway, corresponding to Figs. 8a-d;
  • Figs. lOa-d illustrate an example of the estimation of target position, lateral velocity, and road curvature parameters for a curved roadway
  • Figs, lla-b illustrate an example of the target state RMS errors from unconstrained and constrained filtering for the curved roadway, corresponding to Figs. lOa-d;
  • Figs. 12a-d illustrate an example of the estimation of target position, lateral velocity, and associated RMS errors for a straight roadway involving a lane change;
  • Figs. 13a-d illustrates an example of the estimation of target position, lateral velocity, and their RMS errors for a curved roadway involving a lane change.
  • a predictive collision sensing system 10 incorporated in a host vehicle 12, comprises a radar system 14 for sensing objects external to the host vehicle 12, and a set of sensors, including a yaw rate sensor 16, e.g. a gyroscopic sensor, and a speed sensor 18, for sensing motion of the host vehicle 12.
  • the yaw rate sensor 16 and speed sensor 18 respectively provide measurements of the yaw rate and speed of the host vehicle 12.
  • the radar system 14, e.g. a Doppler radar system comprises an antenna 20 and a radar processor 22, wherein the radar processor 22 generates the RF signal which is transmitted by the antenna 20 and which is reflected by objects in view thereof.
  • the radar processor 22 demodulates the associated reflected RF signal that is received by the antenna 20, and detects a signal that is responsive to one or more objects that are irradiated by the RF signal transmitted by the antenna 20.
  • the radar system 14 provides target range, range rate and azimuth angle measurements in host vehicle 12 fixed coordinates.
  • the antenna 20 is adapted to generate a radar beam 23 of RF energy that is, for example, either electronically or mechanically scanned across an azimuth range, e.g. +/- ⁇ , e.g. +/- 50 degrees, responsive to a beam control element 24, and which has a distance range, e.g.
  • the radar processor 22, yaw rate sensor 16, and speed sensor 18 are operatively connected to a signal processor 26 that operates in accordance with an associated predictive collision sensing algorithm to determine whether or not a collision with an object, e.g. a target vehicle 36 (illustrated in Fig. 3), is likely, and if so, to also determine an action to be taken responsive thereto, for example, one or more of activating an associated warning system 28 or safety system 30 (e.g. frontal air bag system), or using a vehicle control system 32 (e.g. an associated braking or steering system) to take evasive action so as to either avoid the prospective collision or to reduce the consequences thereof.
  • a target vehicle 36 illustrated in Fig. 3
  • the host vehicle 12 is shown moving along a multiple lane roadway 34, either straight or curved, and there is also shown a target vehicle 36 moving in an opposite direction, towards the host vehicle 12.
  • a target vehicle 36 moving in an opposite direction, towards the host vehicle 12.
  • target vehicles 36 can either be in the host lane 38 or in a neighboring lane 40 either adjacent to or separated from the host lane 38, but generally parallel thereto.
  • the host vehicle 12 moves along the center line 41 of its lane 38 steadily without in-lane wandering, and the road curvatures of all the parallel lanes 38, 40 are the same. Road curvature is assumed small such that the differences between the heading angles of the host vehicle 12 and any detectable target vehicles 36 are smaller than 15 degrees.
  • the predictive collision sensing system 10 uses the measurements of speed If and yaw rate a of the host vehicle 12 from the speed sensor 18 and the yaw rate sensor 16 respectively therein; and the measurements of target range r, range rate r and azimuth angle ⁇ for all target vehicles 36 from the radar system 14 mounted on the host vehicle 12; along with the corresponding error covariance matrices of all these measurements, to estimate each target's two dimensional position, velocity and acceleration [x, ,i ,j/, >,j>] in the host fixed coordinate system at every sampling instance, preferably with an error as small as possible.
  • the predictive collision sensing system 10 comprises 1) a road curvature estimation subsystem 42 for estimating the curvature of the roadway 34 using measurements from the host vehicle motion sensors, i.e. the yaw rate sensor 16 and speed sensor 18; 2) an unconstrained target state estimation subsystem 44 for estimating the state of a target illuminated by the radar beam 23 and detected by the radar processor 22; 3) a constrained target state estimation subsystem 46 for estimating the state of the constraint on the target, assuming that the target is constrained to be on the roadway 34, either in the host lane 38 or in a neighboring lane 40, for each possible lane 38, 40; 4) a target state decision subsystem 48 for determining whether the best estimate of the target state is either the unconstrained target state, or a target state constrained by one of the constraints; and 5) a target state fusion subsystem 50 for fusing the unconstrained target state estimate with the appropriate constraint identified by the target state decision subsystem 48 so as to generate a fused target state.
  • the best estimate of target state - either the unconstrained target state or the fused target state ⁇ is then used by a decision or control subsystem for determining whether or not the host vehicle 12 is at risk of collision with the target, and if so, for determining and effecting what the best course of action is to mitigate the consequences thereof, e.g. by action of either the warning system 28, the safety system 30, or the vehicle control system 32, or some combination thereof.
  • a decision or control subsystem for determining whether or not the host vehicle 12 is at risk of collision with the target, and if so, for determining and effecting what the best course of action is to mitigate the consequences thereof, e.g. by action of either the warning system 28, the safety system 30, or the vehicle control system 32, or some combination thereof.
  • the use of the geometric structure of the roadway 34 as a constraint to the target kinematics provides for a more accurate estimate of the target state, which thereby improves the reliability of any actions taken responsive thereto.
  • Fig. 5 illustrating a method 500 of detecting the state, i.e. kinematic state variables, of a target in view of the host vehicle 12, the steps of which are, for example, carried out by the signal processor 26, in steps (502) and (504), the speed if and yaw rate ⁇ 1 of the host vehicle 12 relative to the roadway 34 are respectively read from the speed sensor 18 and the yaw rate sensor 16 respectively. Then, in step (506), the curvature parameters and associated covariance thereof of the roadway 34 are estimated using first 52 and second 54 Kalman filters that respectively estimate the state (i.e.
  • kinematic state variables of the host vehicle 12 and associated covariance thereof of the host vehicle 12, and then the curvature parameters and associated covariance thereof of the roadway 34, as described hereinbelow, wherein the curvature parameters and associated covariance thereof of the roadway 34 are then subsequently used by the constrained target state estimation subsystem 46 to generate associated constraints on the possible location of a prospective target vehicle 36.
  • a well-designed and constructed roadway 34 can be described by a set of parameters, including curvature, wherein the curvature of a segment of the roadway 34 is defined as:
  • R is the radius of the segment.
  • the curvature variation can be described as a function of a distance / along the roadway 34 by a so-called clothoid model, i.e.:
  • the heading angle # defining the heading direction is given by:
  • equations (5) and (6) can be approximated by:
  • the roadway 34 is modeled by an incremental road equation in terms of curvature coefficients: Co and C ⁇ .
  • the road curvature parameters C 0 and C are estimated using data from motion sensors (yaw rate sensor 16 and speed sensor 18) in the host vehicle 12, based upon the assumption that the host vehicle 12 moves along the center line 41 of the roadway 34 or associated host lane 38.
  • the road curvature parameters 0 and C can be calculated from data of ⁇ , ⁇ , U, l) responsive to measurements of yaw rate aJ 1 and speed if of the host vehicle 12 from the available host vehicle 12 motion sensors.
  • the measurements of yaw rate oP and speed if, from the yaw rate sensor 16 and speed sensor 18 respectively, are noisy.
  • a host state filter implemented by a first Kalman filter 52 is beneficial to generate estimates of ⁇ , ⁇ , U, l) from the associated noisy measurements of yaw rate oP and speed if; after which a curvature filter implemented by a second Kalman filter 54 is used to generate smoothed estimates of the curvature parameters C 0 and C .
  • Kalman filter 52 is implemented to estimate the host state x ⁇ A k , k and its error covariance F k , k , as illustrated in Fig. 4.
  • the estimate of the host state from the first Kalman filter 52 i.e. the host state filter
  • the relationship between the road curvature parameters C 0 , C, and the host state variables ⁇ , ⁇ , U, l) is derived as follows:
  • the radius R of road curvature is expressed generally as a function R(l) of the distance / along the roadway, as is illustrated in Fig. 7. Taking the time derivative on both sides of equation (4) yields:
  • C ⁇ may be expressed in terms of the host state as follows:
  • ⁇ t is the update time period of the second Kalman filter 54, and the values of the elements of the measurement vector z k are given by the corresponding values of the state variables ⁇ i.e. the clothoid parameters C 0 and Ci ⁇ of the curvature filter.
  • the measurement, z k is transformed from the estimated state [ U , ⁇ , ⁇ , ⁇ as follows:
  • the curvature parameters of the roadway 34 may be substituted in the road curvature estimation subsystem 42 for that described above.
  • the curvature parameters of the roadway may also be estimated from images of the roadway 34 by a vision system, either instead of or in conjunction with the above described system based upon measurements of speed if and yaw rate a? from associated motion sensors.
  • yaw rate can be either measured or determined in a variety of ways, or using a variety of means, for example, but not limited to, using a yaw gyro sensor, a steering angle sensor, a differential wheel speed sensor, or a GPS-based sensor; a combination thereof; or functions of measurements therefrom (e.g. a function of, inter alia, steering angle rate).
  • step (508) the measurements of target range r, range rate r , and azimuth angle ⁇ are read from the radar processor 22, and are used as inputs to an extended Kalman filter 56, i.e. the main filter, which, in step (510), generates estimates of the unconstrained target state ⁇ i.e. the kinematic state variables of the target - which estimates are relative values in the local coordinate system of the host vehicle 12 (i.e. the host-fixed coordinate system) which moves with therewith.
  • the unconstrained target state i.e. the target velocity and acceleration, is transformed to absolute coordinates of the absolute coordinate system fixed on the host vehicle 12 at the current instant of time as illustrated in Fig.
  • step (512) is realized by adding the velocities and accelerations of the host vehicle 12 to the corresponding target estimates, in both x and y directions.
  • step (512) of the output from the extended Kalman filter 56 is then partitioned into the following parts, corresponding respectively to the x and y position of the target vehicle 36 relative to the host vehicle 12, wherein the superscript 1 refers to the unconstrained target state of the target vehicle 36:
  • steps (506) and (512) in steps (514) through (524) described more fully hereinbelow, various constraints on the possible trajectory of the target vehicle 36 are applied and tested to determine if the target vehicle 36 is likely traveling in accordance with one of the possible constraints.
  • the constraints are assumed to be from a set of lanes that includes the host lane 38 and possible neighboring lanes 40, and a target vehicle 36 that is likely traveling in accordance with one of the possible constraints would likely be traveling on either the host lane 38 or one of the possible neighboring lanes 40.
  • step (524) the hypothesis that the target vehicle 36 is traveling on either the host lane 38 or one of the possible neighboring lanes 40 is tested for each possible lane.
  • step (526) the state of the target is assumed to be the unconstrained target state, which is then used for subsequent predictive crash sensing analysis and control responsive thereto. Otherwise, from step (524), in step (528), the target state is calculated by the target state fusion subsystem 50 as the fusion of the unconstrained target state with the associated state of the constraint that was identified in step (524) as being most likely.
  • step (514) Prior to discussing the process of steps (514) through (524) for determining whether the target is likely constrained by a constraint, and if so, what is the most likely constraint, the process of fusing the unconstrained target state with state of a constraint will first be described for the case of a target vehicle 36 moving in the same lane as the host vehicle 12.
  • the constraints are assumed to be active in y-direction only, consistent with the assumptions that the host vehicle 12 moves along the center line 41 of its lane 38 steadily without in-lane wandering and that the road curvatures of all the parallel lanes 38, 40 are the same, and given that the absolute coordinate system is fixed on the host vehicle 12 at the current instant of time.
  • the constraint state variables are then given in terms of the lateral kinematic variable as:
  • step (528) the two v-coordinate estimates, one from the main filter and the other from the road constraint, are then fused as follows:
  • step (530) this composed estimate would then be output as the estimate of the target state if the target vehicle 36 were to be determined from steps (514) through (524) to be traveling in the host lane 38.
  • the knowledge of which lane the target vehicle 36 is current in is generally not available, especially when the target is moving on a curved roadway 34. Since the road equation (8) is only for the host lane 38 in the host-centered coordinate system, constrained filtering would require knowing which lane the target is in, and different constraint equations would be needed for different lanes. Ignoring the difference of road curvature parameters among these parallel lanes, i.e. assuming the curvature of each lane to be the same, the road equation for an arbitrary lane can be written as:
  • each of the multiple constraints forming a multiple constraint system (analogous to the so-called multiple model system) is tested to determine identify which, if any, of the constraints are active.
  • a multiple constraint (MC) system is subjected to one of a finite number N° of constraints. Only one constraint can be in effect at any given time.
  • Such systems are referred to as hybrid — they have both contmuous (noise) state variables as well as discrete number of constraints.
  • Constraint jump process is a Markov chain with known transition probabilities
  • the constrained target state estimation subsystem 46 provides for determining whether the target state corresponds to a possible constrained state, and if so, then provides for determining the most likely constrained state.
  • the constrained state estimate output is a composite combination of all of the constraint-conditioned state estimates. If this constrained state estimate is valid, i.e. if the constrained state estimate corresponds to the unconstrained state estimate, then the target state is given by fusing the constrained and unconstrained state estimates; otherwise the target state is given by the unconstrained state estimate.
  • This embodiment of the multiple constraint (MC) estimation algorithm comprises the following steps:
  • step (514) using the multiple lane road equation (33) to replace the first row in equation (24), the multiple constraint state estimates are given by:
  • constraint state estimates correspond to the y locations of the centerlines of each possible lane in which the target vehicle 36 could be located.
  • the updated state estimate and covariances corresponding to constraint y are obtained using measurement y , as follows:
  • Gaussian distribution ⁇ ( ; , ) has a mean value of y and an associated
  • step (522) the combination of the latest constraint-conditioned state estimates and covariances is given by:
  • the threshold is chosen such that
  • a is a predefined error tolerance value.
  • p has a chi-square distribution with n y degrees of freedom.
  • the choice of this threshold is a significant design factor and should be based on specific application need.
  • a target in the host lane 38 is regarded to be on a collision course and is considered more dangerous than a target in one of the neighboring lanes 40.
  • a high threshold a low error tolerance value for a target in host lane 38 since constrained filtering can provide accurate target state estimates while a "changing lane" maneuver of such a target will not pose a threat to the host vehicle 12.
  • targets in neighboring lanes 40 are usually regarded as passing-by vehicles. Though constrained filtering may further reduce false alarm rate, a "changing lane" maneuver of such a target (into the host lane 38) would pose a real threat to the host vehicle 12. Thus it is desirable to have a low threshold (a high error tolerance value) for a target in a neighboring lane if false alarm rate is already low enough.
  • the hypothesis testing scheme efficiently uses different threshold values for targets in different lanes, with the multiple constraint filtering algorithm providing the knowledge of which lane the target is most likely in currently. Assuming that there are if possible lanes on the roadway 34, and each lane is described by a constraint equation, the constraint equation with the highest probability ⁇ j for a target corresponds to the lane that this target in most likely in at time t k (the current time). Denoting this most likely lane as /, then
  • the constrained estimation error is given by:
  • Such a lane adaptive hypothesis testing scheme provides for a prompt switch of the target state estimation output to the unconstrained estimate when the target vehicle 36 leaves its current lane, while the estimation accuracy of a target in host lane 38 is substantially improved by constrained filtering.
  • the constrained state estimate used for the hypothesis testing is the most likely of the separate constrained target state estimates (i.e. in accordance with a "winner take all" strategy), rather than a composite combination of all of the constrained target state estimates. If this most likely constrained state estimate is valid, i.e. if the most likely constrained state estimate corresponds to the unconstrained state estimate, then the target state is given by fusing the most likely constrained state estimate and the unconstrained state estimate; otherwise the target state is given by the unconstrained state estimate.
  • hypothesis tests are made for each of the constrained state estimates. If none of the hypotheses are satisfied, then the target state is given by the unconstrained state estimate. If one of the hypotheses is satisfied, then the target state is given by fusing the corresponding constrained state estimate and the unconstrained state estimate. If more than one hypotheses are satisfied, then the most likely constrained state may be identified by voting results from a plurality of approaches, or by repeating the hypothesis tests with different associated thresholds.
  • the number of constraints can vary with respect to time, as can associated parameters therewith, for example, the width of the lanes of the roadway, so as to accommodate changes in the environment of the host vehicle 12.
  • the host vehicle 12 in one trip could travel on a one-lane road, a two-lane road with opposing traffic, a three-lane road with a center turn lane, a four line road two lanes of opposing traffic, or on a multi-lane divided freeway.
  • Road vehicle tracking simulations using constrained and unconstrained filtering were carried out for four scenarios.
  • the host vehicle 12 was moving at 15.5 m/s and a target vehicle 36 is approaching on the same roadway 34 at a speed of 15.5 m/s.
  • the initial position of the target was 125 meters away from the host in the x direction, and the lane width for all lanes was assumed to be 3.6 meters.
  • the measurement variance of the vehicle speed sensor was 0.02 m/s and the variance of the gyroscope yaw rate measurement was 0.0063 rad/s.
  • the variances of radar range, range rate and azimuth angle measurements were 0.5 m, 1 m/s, and 1.5° respectively. Simulation results were then generated from 100 Monte-Carlo runs of the associated tracking filters.
  • Figs. 8a-d illustrate the target state estimation and road curvature estimation results of the unconstrained and constrained filtering schemes
  • Fig. 9a-b illustrate the average target vehicle 36 lateral position, velocity and acceleration RMS errors of the unconstrained and constrained filtering schemes. The estimation errors from constrained filtering were substantially reduced.
  • lOa-d illustrate the target state estimation and curvature estimation results of the unconstrained and constrained filtering schemes
  • Figs, lla-b illustrate the average target vehicle 36 lateral position, velocity and acceleration RMS errors of the unconstrained and constrained filtering schemes.
  • the estimation errors from constrained filtering were substantially reduced after about 48 radar scans, when the target vehicle 36 was less than 65 meters away from the host vehicle 12.
  • Estimation errors were the same for constrained and unconstrained filtering before 20 radar scans, when the target vehicle 36 was about 100 meters away from the host vehicle 12.
  • constrained filtering resulted in about a 30 percent reduction in errors of lateral velocity and acceleration estimation, and when the target vehicle 36 was less than 65 meters away from the host vehicle 12, more than 50 percent of lateral position estimation error and more than 90 percent of lateral velocity and acceleration estimation errors were reduced by constrained filtering.
  • the lack of improvement for constrained filtering when the target vehicle 36 was far away resulted from estimation errors of road curvature parameters, which caused constraint errors proportional to the distance between host vehicle 12 and the target vehicle 36. This is more evident in the curved roadway 34 case, where curvature estimation error was larger and caused more lane position ambiguity of a distant target vehicle 36.
  • Figs. 12a-d illustrate the target state estimation results and the lateral position and velocity RMS errors of the unconstrained and constrained filtering schemes.
  • the performance of constrained filtering with validation was substantially close to that of unconstrained filtering, producing slightly lower estimation errors before the target vehicle 36 turns away, and exhibiting target state estimation results and RMS errors that were the same as unconstrained filtering after the target vehicle 36 began to turn away from its lane, implying that road constraints were promptly lifted off after the target vehicle 36 began to diverge from its lane.
  • Figs. 13a-d illustrate the target state estimation results and the lateral position and velocity RMS errors of the unconstrained and constrained filtering schemes.
  • the error tolerance levels were the same as in the third scenario, and the results and observations were also similar to that of the third scenario.
  • Road constraints were promptly lifted off by the proposed constraint validation after the target vehicle 36 began to diverge from its lane.
  • the predictive collision sensing system 10 has provided for a substantial improvement in estimation accuracy of target vehicle 36 lateral kinematics, which is beneficial for an early and reliable road vehicle collision prediction.
  • a Kalman filter is used to estimate, from a set of noisy measurements, the state and associated measurements of a dynamic system subject to noise.
  • the system dynamics are defined by:
  • z k n k -x k +v k , v ⁇ -N ⁇ R,) (A-2)
  • H k is the measurement matrix
  • v an associated vector of noise variables corresponding to each measurement variable, each noise variable having a mean value of zero, and a variance given by the corresponding element of the associated variance vector, R k .
  • the values of the elements of the associated covariance matrix R ⁇ can be determined a priori from analysis of the representative measurements of the associated system for associated representative sets of operating conditions.
  • the values of the elements of the associated covariance matrix Q ⁇ account for modeling errors.
  • the associated matrices F k , Q k , H k , ⁇ L k can vary over time.
  • the Kalman filter Given a measurement z k at time k, and initial values of the state x k _ k _ ⁇ and associated covariance P ⁇ . ⁇ . , at time k-1, the Kalman filter is used to to estimate the associated state i
  • the first step in the filtering process is to calculate estimates of the state x ⁇ .. , and associated covariance P ⁇
  • the next step is to predict the measurement z k and associated covariance matrix S A at time k, as follows:
  • the next step is to calculate a gain matrix G k used for updating the state vector x i
  • state vector x k ⁇ k and associated covariance matrix P ⁇ are estimated at time k, responsive to the associated measurement z k , as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

A first Kalman filter (52) estimates true measures of yaw rate (ω) and vehicle speed (U) from associated noisy measures thereof generated by respective sensors (16, 18) in a host vehicle (12), and a second Kalman filter (54) estimates therefrom parameters (C0, C1) of a clothoid model of road curvature. Measures of range ( r ), range rate (S) and azimuth angle (ŋ) from a target state estimation subsystem (44), e.g. a radar system (14), are processed by an extended Kalman filter (56) to provide an unconstrained estimate of the state of a target vehicle (36). Associated road constrained target state estimates are generated for one or more roadway lanes (38, 40), and are compared- either individually or in combination- with the unconstrained estimate. If a constrained target state estimate corresponds to the unconstrained estimate, then the state of the target vehicle is generated by fusing the unconstrained and constrained estimates; and otherwise is given by the unconstrained estimate alone.

Description

ROAD CURVATURE ESTIMATION AND AUTOMOTIVE TARGET STATE
ESTIMATION SYSTEM
BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings: FIG. 1 illustrates a block diagram of hardware associated with a predictive collision sensing system;
FIG. 2 illustrates a coverage pattern of a radar beam used by the predictive collision sensing system;
Fig. 3 depicts a driving scenario for purposes of illustrating the operation of the predictive collision sensing system;
Fig. 4 illustrates a block diagram of the hardware and an associated signal processing algorithm of the predictive collision sensing system;
Fig. 5 illustrates a flow chart of an associated signal processing algorithm of the predictive collision sensing system; Fig. 6 illustrates a geometry used for determining curvature parameters of a roadway;
Fig. 7 illustrates the geometry of an arc;
Figs. 8a-d illustrates an example of the estimation of target position, lateral velocity, and road curvature parameters for a straight roadway;
Figs. 9a-b illustrate an example of the target state RMS errors from unconstrained and constrained filtering on the straight roadway, corresponding to Figs. 8a-d;
Figs. lOa-d illustrate an example of the estimation of target position, lateral velocity, and road curvature parameters for a curved roadway;
Figs, lla-b illustrate an example of the target state RMS errors from unconstrained and constrained filtering for the curved roadway, corresponding to Figs. lOa-d; Figs. 12a-d illustrate an example of the estimation of target position, lateral velocity, and associated RMS errors for a straight roadway involving a lane change; and Figs. 13a-d illustrates an example of the estimation of target position, lateral velocity, and their RMS errors for a curved roadway involving a lane change.
DESCRIPTION OF EMBODIMENT(S) Referring to Fig. 1, a predictive collision sensing system 10 incorporated in a host vehicle 12, comprises a radar system 14 for sensing objects external to the host vehicle 12, and a set of sensors, including a yaw rate sensor 16, e.g. a gyroscopic sensor, and a speed sensor 18, for sensing motion of the host vehicle 12. The yaw rate sensor 16 and speed sensor 18 respectively provide measurements of the yaw rate and speed of the host vehicle 12. The radar system 14, e.g. a Doppler radar system, comprises an antenna 20 and a radar processor 22, wherein the radar processor 22 generates the RF signal which is transmitted by the antenna 20 and which is reflected by objects in view thereof. The radar processor 22 demodulates the associated reflected RF signal that is received by the antenna 20, and detects a signal that is responsive to one or more objects that are irradiated by the RF signal transmitted by the antenna 20. For example, the radar system 14 provides target range, range rate and azimuth angle measurements in host vehicle 12 fixed coordinates. Referring to Fig. 2, the antenna 20 is adapted to generate a radar beam 23 of RF energy that is, for example, either electronically or mechanically scanned across an azimuth range, e.g. +/- γ, e.g. +/- 50 degrees, responsive to a beam control element 24, and which has a distance range, e.g. about 100 meters, from the host vehicle 12 that is sufficiently far to enable a target to be detected sufficiently far in advance of a prospective collision with the host vehicle 12 so as to enable a potentially mitigating action to be taken by the host vehicle 12 so as to either avoid the prospective collision or mitigate damage or injury as a result thereof. The radar processor 22, yaw rate sensor 16, and speed sensor 18 are operatively connected to a signal processor 26 that operates in accordance with an associated predictive collision sensing algorithm to determine whether or not a collision with an object, e.g. a target vehicle 36 (illustrated in Fig. 3), is likely, and if so, to also determine an action to be taken responsive thereto, for example, one or more of activating an associated warning system 28 or safety system 30 (e.g. frontal air bag system), or using a vehicle control system 32 (e.g. an associated braking or steering system) to take evasive action so as to either avoid the prospective collision or to reduce the consequences thereof.
Referring to Fig. 3, the host vehicle 12 is shown moving along a multiple lane roadway 34, either straight or curved, and there is also shown a target vehicle 36 moving in an opposite direction, towards the host vehicle 12. Generally, there can be any number of target vehicles 36 that can fit on the roadway 34, each moving in the same or opposite direction as the host vehicle 12. These target vehicles 36 can either be in the host lane 38 or in a neighboring lane 40 either adjacent to or separated from the host lane 38, but generally parallel thereto. For purposes of analysis, it is assumed that the host vehicle 12 moves along the center line 41 of its lane 38 steadily without in-lane wandering, and the road curvatures of all the parallel lanes 38, 40 are the same. Road curvature is assumed small such that the differences between the heading angles of the host vehicle 12 and any detectable target vehicles 36 are smaller than 15 degrees.
Referring to Fig. 4, the predictive collision sensing system 10 uses the measurements of speed If and yaw rate a of the host vehicle 12 from the speed sensor 18 and the yaw rate sensor 16 respectively therein; and the measurements of target range r, range rate r and azimuth angle η for all target vehicles 36 from the radar system 14 mounted on the host vehicle 12; along with the corresponding error covariance matrices of all these measurements, to estimate each target's two dimensional position, velocity and acceleration [x, ,i ,j/, >,j>] in the host fixed coordinate system at every sampling instance, preferably with an error as small as possible. The predictive collision sensing system 10 comprises 1) a road curvature estimation subsystem 42 for estimating the curvature of the roadway 34 using measurements from the host vehicle motion sensors, i.e. the yaw rate sensor 16 and speed sensor 18; 2) an unconstrained target state estimation subsystem 44 for estimating the state of a target illuminated by the radar beam 23 and detected by the radar processor 22; 3) a constrained target state estimation subsystem 46 for estimating the state of the constraint on the target, assuming that the target is constrained to be on the roadway 34, either in the host lane 38 or in a neighboring lane 40, for each possible lane 38, 40; 4) a target state decision subsystem 48 for determining whether the best estimate of the target state is either the unconstrained target state, or a target state constrained by one of the constraints; and 5) a target state fusion subsystem 50 for fusing the unconstrained target state estimate with the appropriate constraint identified by the target state decision subsystem 48 so as to generate a fused target state. The best estimate of target state - either the unconstrained target state or the fused target state ~ is then used by a decision or control subsystem for determining whether or not the host vehicle 12 is at risk of collision with the target, and if so, for determining and effecting what the best course of action is to mitigate the consequences thereof, e.g. by action of either the warning system 28, the safety system 30, or the vehicle control system 32, or some combination thereof. When possible, the use of the geometric structure of the roadway 34 as a constraint to the target kinematics provides for a more accurate estimate of the target state, which thereby improves the reliability of any actions taken responsive thereto.
Referring also to Fig. 5, illustrating a method 500 of detecting the state, i.e. kinematic state variables, of a target in view of the host vehicle 12, the steps of which are, for example, carried out by the signal processor 26, in steps (502) and (504), the speed if and yaw rate β 1 of the host vehicle 12 relative to the roadway 34 are respectively read from the speed sensor 18 and the yaw rate sensor 16 respectively. Then, in step (506), the curvature parameters and associated covariance thereof of the roadway 34 are estimated using first 52 and second 54 Kalman filters that respectively estimate the state (i.e. kinematic state variables of the host vehicle 12) and associated covariance thereof of the host vehicle 12, and then the curvature parameters and associated covariance thereof of the roadway 34, as described hereinbelow, wherein the curvature parameters and associated covariance thereof of the roadway 34 are then subsequently used by the constrained target state estimation subsystem 46 to generate associated constraints on the possible location of a prospective target vehicle 36.
A well-designed and constructed roadway 34 can be described by a set of parameters, including curvature, wherein the curvature of a segment of the roadway 34 is defined as:
R 0) where R is the radius of the segment. In general, for a piece of smooth roadway 34, the curvature variation can be described as a function of a distance / along the roadway 34 by a so-called clothoid model, i.e.:
C = C0 +^-l = C0 + C (2) dl where i = and A is referred to as the clothoid parameter.
Referring to Fig. 6, the heading angle # defining the heading direction is given by:
Figure imgf000006_0001
Substituting equation (2) into equation (3) gives
Aθ = θ -Θn C0l + C 2 /2 Referring to Fig. 6, the equation of the roadway 34, i.e. the road equation, in x-y coordinates is given by:
χ = χ 0 + cosθ(τ)dτ (5) and
Figure imgf000007_0001
Assuming the heading angle θto be within 15 degrees, i.e. |#|<15°, equations (5) and (6) can be approximated by:
Δx = x - x0 « / (7)
y = y- 0 « 0 2 /2 +c1/3 6 « c0 ^+ c1 ^
2 6 (8) Accordingly, the roadway 34 is modeled by an incremental road equation in terms of curvature coefficients: Co and C\. This incremental road equation describes a broad range of road shapes as follows: 1) Straight roadway 34: Co=0 and C\=0; 2) circular roadway 34: Cι-0; and 3) a general roadway 34 with an arbitrary shape for which the change in heading angle #is less than 15 degrees: C0>0. The road curvature parameters C0 and C, are estimated using data from motion sensors (yaw rate sensor 16 and speed sensor 18) in the host vehicle 12, based upon the assumption that the host vehicle 12 moves along the center line 41 of the roadway 34 or associated host lane 38.
The road curvature parameters 0 and C, can be calculated from data of ω, ώ , U, l) responsive to measurements of yaw rate aJ1 and speed if of the host vehicle 12 from the available host vehicle 12 motion sensors. However, generally the measurements of yaw rate oP and speed if, from the yaw rate sensor 16 and speed sensor 18 respectively, are noisy. A host state filter implemented by a first Kalman filter 52 is beneficial to generate estimates of ω, ώ , U, l) from the associated noisy measurements of yaw rate oP and speed if; after which a curvature filter implemented by a second Kalman filter 54 is used to generate smoothed estimates of the curvature parameters C0 and C . The dynamics of the host vehicle 12 for the host state filter follows a predefined set of kinematic equations (constant velocity in this case) given by: -.*+! = F* Xk + k, w"k ~N(0,Qh k) (9)
Λ 1 Hj -aS +vJ, v* ~N(0 ,< ) (10) where
Figure imgf000008_0001
and where T is the sampling period, superscript (•) h i •s used to indicate that the filter is the host filter, and if and a? are host vehicle 12 speed and yaw rate measurements. The first
Kalman filter 52 is implemented to estimate the host state x ~Ak,k and its error covariance Fk,k , as illustrated in Fig. 4.
The estimate of the host state from the first Kalman filter 52, i.e. the host state filter, is then used to generate a synthetic measurement that is input to the second Kalman filter 54, i.e. curvature coefficient filter, wherein the associated Kalman filters 52, 54 operate in accordance with the Kalman filtering process described more fully in the Appendix hereinbelow. The relationship between the road curvature parameters C0 , C, and the host state variables ω, ώ , U, l) is derived as follows:
From equation (4), the radius R of road curvature is expressed generally as a function R(l) of the distance / along the roadway, as is illustrated in Fig. 7. Taking the time derivative on both sides of equation (4) yields:
θ = c0 -i+cl -ι-i = (c0 +cl -i)-i . (12)
Noting that θ- ω, the yaw rate of the host vehicle 12, and that / =U, the speed of the host vehicle 12, and substituting the clothoid model of equation (2) in equation (12), yields: ω = C -U (13) or ω
C = ϋ (14)
Clothoid parameter C0 is given as the value of curvature C at /=0, or
C = C \ = — (15) Taking the derivative on both sides of equation (14) yields
, _ ό> 0 -U (16)
U U2
Using the definition of C\, from equation (2), Cι may be expressed in terms of the host state as follows:
_ dC_ _ dC_ d_t _ C_ , ω ω-U
(17) 1 ~ dl ~ dt dl ~ U ' 17 U3
The system equations for the second Kalman filter 54, i.e. the curvature filter, that generates curvature estimates Cn and C, , are given by
(18)
Figure imgf000009_0001
where
Figure imgf000009_0002
Δt is the update time period of the second Kalman filter 54, and the values of the elements of the measurement vector zk are given by the corresponding values of the state variables ~ i.e. the clothoid parameters C0 and Ci ~ of the curvature filter.
The measurement, zk , is transformed from the estimated state [ U , ύ , ώ , ώ as follows:
Figure imgf000009_0003
and the associated covariance of the measurements is given by:
Figure imgf000009_0004
where
Figure imgf000009_0005
It should be understood that other systems and methods for estimating the curvature parameters of the roadway 34 may be substituted in the road curvature estimation subsystem 42 for that described above. For example, the curvature parameters of the roadway may also be estimated from images of the roadway 34 by a vision system, either instead of or in conjunction with the above described system based upon measurements of speed if and yaw rate a? from associated motion sensors. Furthermore, it should be understood that yaw rate can be either measured or determined in a variety of ways, or using a variety of means, for example, but not limited to, using a yaw gyro sensor, a steering angle sensor, a differential wheel speed sensor, or a GPS-based sensor; a combination thereof; or functions of measurements therefrom (e.g. a function of, inter alia, steering angle rate).
Referring again to Fig. 5, in step (508), the measurements of target range r, range rate r , and azimuth angle η are read from the radar processor 22, and are used as inputs to an extended Kalman filter 56, i.e. the main filter, which, in step (510), generates estimates of the unconstrained target state ~ i.e. the kinematic state variables of the target - which estimates are relative values in the local coordinate system of the host vehicle 12 (i.e. the host-fixed coordinate system) which moves with therewith. In step (512), the unconstrained target state, i.e. the target velocity and acceleration, is transformed to absolute coordinates of the absolute coordinate system fixed on the host vehicle 12 at the current instant of time as illustrated in Fig. 3, so as to be consistent with the absolute coordinate system in which the road constraint equations are derived and for which the associated curvature parameters are assumed to be constant, when used in the associated constraint equations described hereinbelow in order to generate estimates of the constrained target state. The absolute coordinate system superimposes the moving coordinate system in space at the current instant, so that the transformation in step (512) is realized by adding the velocities and accelerations of the host vehicle 12 to the corresponding target estimates, in both x and y directions.
The result from the coordinate transformation in step (512) of the output from the extended Kalman filter 56 is then partitioned into the following parts, corresponding respectively to the x and y position of the target vehicle 36 relative to the host vehicle 12, wherein the superscript 1 refers to the unconstrained target state of the target vehicle 36:
Figure imgf000010_0001
Referring again to Fig. 5, following steps (506) and (512), in steps (514) through (524) described more fully hereinbelow, various constraints on the possible trajectory of the target vehicle 36 are applied and tested to determine if the target vehicle 36 is likely traveling in accordance with one of the possible constraints. For example, the constraints are assumed to be from a set of lanes that includes the host lane 38 and possible neighboring lanes 40, and a target vehicle 36 that is likely traveling in accordance with one of the possible constraints would likely be traveling on either the host lane 38 or one of the possible neighboring lanes 40. In step (524), the hypothesis that the target vehicle 36 is traveling on either the host lane 38 or one of the possible neighboring lanes 40 is tested for each possible lane. If the hypothesis is not satisfied for one of the possible lanes, then, in step (526), the state of the target is assumed to be the unconstrained target state, which is then used for subsequent predictive crash sensing analysis and control responsive thereto. Otherwise, from step (524), in step (528), the target state is calculated by the target state fusion subsystem 50 as the fusion of the unconstrained target state with the associated state of the constraint that was identified in step (524) as being most likely.
Prior to discussing the process of steps (514) through (524) for determining whether the target is likely constrained by a constraint, and if so, what is the most likely constraint, the process of fusing the unconstrained target state with state of a constraint will first be described for the case of a target vehicle 36 moving in the same lane as the host vehicle 12. The constraints are assumed to be active in y-direction only, consistent with the assumptions that the host vehicle 12 moves along the center line 41 of its lane 38 steadily without in-lane wandering and that the road curvatures of all the parallel lanes 38, 40 are the same, and given that the absolute coordinate system is fixed on the host vehicle 12 at the current instant of time. Assuming the target vehicle 36 is moving in the same lane 38 as the host vehicle 12, and using the road constraint equation with the estimated coefficients, in step (514), the constraint state variables are then given in terms of the lateral kinematic variable as:
Figure imgf000011_0001
C0xxxx + C,{xλ )2xxl2 (24)
C0(x')2 + C0 1 1 + Clx1(xl)2 + Ci(xl)2xl/2
Figure imgf000011_0003
and
Figure imgf000011_0002
where
Figure imgf000012_0001
and
Figure imgf000012_0002
-1 - 1 ^ = X - X (x1)2 -*1^ (27)
Figure imgf000012_0003
In step (528), the two v-coordinate estimates, one from the main filter and the other from the road constraint, are then fused as follows:
Py Λit )" + (p;.u )' (28)
**| .. - fc
^ P
'*|* >**μ c >% + (*; >% (29)
Finally, the composed estimate of the target state is
Figure imgf000012_0004
and
Figure imgf000012_0005
where
*Λ -'-,(A. (32)
In step (530), this composed estimate would then be output as the estimate of the target state if the target vehicle 36 were to be determined from steps (514) through (524) to be traveling in the host lane 38.
Returning to the process of steps (514) through (524) for determining whether the target is likely constrained by a constraint, and if so, what is the most likely constraint; according to the assumption that targets follow the same roadway 34, if the target vehicle 36 were known to travel in a particular lane, it would desirable to use estimated road parameters for that lane as a constraint in the main filter of estimating target kinematics. However, the knowledge of which lane the target vehicle 36 is current in is generally not available, especially when the target is moving on a curved roadway 34. Since the road equation (8) is only for the host lane 38 in the host-centered coordinate system, constrained filtering would require knowing which lane the target is in, and different constraint equations would be needed for different lanes. Ignoring the difference of road curvature parameters among these parallel lanes, i.e. assuming the curvature of each lane to be the same, the road equation for an arbitrary lane can be written as:
y = mB -r C0 ^- + Cl ^-, m = 0, ±1, ±2, .... (33)
2 6 where B is the width of the lanes and m represents the lane to be described (m = 0 corresponds the host lane 38, m = 1 corresponds the right neighboring lane 40, m = -1 corresponds the left neighboring lane 40, and so on). Without the prior knowledge of the target lane position, each of the multiple constraints forming a multiple constraint system (analogous to the so-called multiple model system) is tested to determine identify which, if any, of the constraints are active. A multiple constraint (MC) system is subjected to one of a finite number N° of constraints. Only one constraint can be in effect at any given time. Such systems are referred to as hybrid — they have both contmuous (noise) state variables as well as discrete number of constraints.
The following definitions and modeling assumptions are made to facilitate the solution of this problem:
Constraint equations:
y, = /, (*,. ) (34) where / denotes the constraint at time in effect during the sampling period ending
— '* at t*.
Constraint: among the possible l\r constraints
LAf- (35) v : state estimate at time t* using constraint
—'tit — 'ι
Yi' μ : covariance matrix at time t* * under constraint f -_J/t
μj : probability that the target is following constraint y at time t*. Constraint jump process: is a Markov chain with known transition probabilities
Figure imgf000014_0001
To implement the Markov model - for systems with more than one possible constraint state — it is assumed that at each scan time there is a probability ptJ that the target will make the transition from constraint state to state j. These probabilities are assumed to be known a priori and can be expressed in the probability transition matrix as shown below.
New State 1 2 3
(37)
Figure imgf000014_0002
The prior probability that fJ is correct (/J is in effect) is
Figure imgf000014_0003
where Z° is the prior information and
∑K = l (39) since the correct constraint is among the assumed r possible constraints. The constrained target state estimation subsystem 46 provides for determining whether the target state corresponds to a possible constrained state, and if so, then provides for determining the most likely constrained state.
One way of determining this is the multiple model filtering algorithm proposed by Bar-Shalom, wherein J\r parallel filters are run simultaneously in parallel. In another way, a multiple constraint (MC) estimation algorithm mixes and updates
N"7 constraint-conditioned state estimates using the unconstrained state estimate y as a
— 't|* measurement, along with the calculation of the likelihood function and probability associated with each constraint. In one embodiment of the multiple constraint (MC) estimation algorithm, the constrained state estimate output is a composite combination of all of the constraint-conditioned state estimates. If this constrained state estimate is valid, i.e. if the constrained state estimate corresponds to the unconstrained state estimate, then the target state is given by fusing the constrained and unconstrained state estimates; otherwise the target state is given by the unconstrained state estimate. This embodiment of the multiple constraint (MC) estimation algorithm comprises the following steps:
1. Estimation of state variables from multiple constraints: In step (514), using the multiple lane road equation (33) to replace the first row in equation (24), the multiple constraint state estimates are given by:
y ^ + C0 -(x1)2/2 + C1 -(x1)3/6 )y —
~ , = C0 -xx -x +Cx -(xx)2x/2 (40)
V C0 -( 1)2 +C0 -x1 -x1 + C, -x1 -(x1)2 +C, - (x1)2 -X /2
Nc -1 where Bt = 0, ±5, B , and B is the width of a lane. Stated in another way, the
constraint state estimates correspond to the y locations of the centerlines of each possible lane in which the target vehicle 36 could be located.
The associated covariance is given by:
Figure imgf000015_0001
(A (41) where A* and A2, are given by equation (26) and equation (27), P , is from equation (23)
and P A is from the curvature filter.
2. Constraint-conditioned updating: In step (516), the state estimates and covariance conditioned on a constraint being in effect are updated, as well as the constraint likelihood function, for each of the constraints j = 1, ... N°. The updated state estimate and covariances corresponding to constraint y are obtained using measurement y , as follows:
Figure imgf000015_0002
3. Likelihood calculation: In step (518), the likelihood function corresponding to constraint / is evaluated at the value y of the unconstrained target state estimate, assuming a Gaussian distribution of the measurement around the constraint-conditioned state estimate for each of the constraints j = \, ... N°, as follows:
Figure imgf000016_0001
wherein the Gaussian distribution Ν( ; , ) has a mean value of y and an associated
-'ψ covariance of .
Figure imgf000016_0002
4. Constraint probability evaluations: In step (520), the updated constraint probabilities are calculated for each of the constraints j = 1, ... N°, as follows:
μit = -Mt ά] (46)
where d} , the probability after transition that constraint y is in effect, is given by
Figure imgf000016_0003
and the normalizing constant is
Figure imgf000016_0004
5. Overall state estimate and covariance: In step (522), the combination of the latest constraint-conditioned state estimates and covariances is given by:
,, (49)
'*ι* = ~Ε ' - —y t 'Jψl
Figure imgf000016_0005
N"-
P^ = ∑/ - p^t (SD y=ι
The output of the estimator from step (522) in the above algorithm is then used as the constrained estimates in the fusion process described by equations (28) and (29), and the result of equation (51), instead of the result of equation (32), is used in equation (31).
When the target vehicle 36 is not following the roadway 34 or is changing lanes, imposing the road constraint on target kinematic state variables will result in incorrect estimates that would be worse than using the associated unconstrained estimates. However, noise related estimation errors might cause a correct road constraint to appear invalid. Accordingly, it is beneficial to incorporate a means that can keep the constraints in effect when they are valid, e.g. when the target vehicle 36 follows a particular lane; and lift them off promptly when they are invalid, e.g. when the target vehicle 36 departs from its lane. The unconstrained target state estimate plays a useful role in road constraint validation, since it provides independent target state estimates.
One approach is to test the hypothesis that the unconstrained target state estimate satisfies the road constraint equation, or equivalently, that the constrained estimate and the unconstrained estimate each correspond to the same target. The optimal test would require using all available target state estimates in history through time tk and is generally not practical. A practical approach is the sequential hypothesis testing in which the test is carried out based on the most recent state estimates only. In accordance with the notation used hereinabove, the difference between the constrained and unconstrained target state estimates (y direction only) is denoted:
Figure imgf000017_0001
as the estimate of
Figure imgf000017_0002
where y is the true target state and y is the true state of a target moving along the
— 't — '* roadway 34 (or a lane). In step (524), the "same target" hypothesis is tested, i.e. H0 : δlt = 0 (54) vs.
H, : δlk ≠ 0 (55)
The main filter error
'"-'1 1 Λ l /cs\ y —, 't = —y, 'ι ~ —y, 'tμ (56) is assumed independent of the error
y —,<k = —y,<k - —y,'tμ (57)
which is from the constraints. The covariance of the difference δ, is, under hypothesis Ho, given by:
Figure imgf000018_0001
Assuming that the estimation errors are Gaussian, the test of H0 vs. Hi is as follows:
Accept Ho if p = ,t (vk Yllt ≤ γ (59)
The threshold is chosen such that
Figure imgf000018_0002
where a is a predefined error tolerance value. Note that based on the above Gaussian error assumption, p, has a chi-square distribution with ny degrees of freedom. The choice of this threshold is a significant design factor and should be based on specific application need. In road vehicle collision prediction, a target in the host lane 38 is regarded to be on a collision course and is considered more dangerous than a target in one of the neighboring lanes 40. Thus it is desirable to have a high threshold (a low error tolerance value) for a target in host lane 38 since constrained filtering can provide accurate target state estimates while a "changing lane" maneuver of such a target will not pose a threat to the host vehicle 12. On the other hand, targets in neighboring lanes 40 are usually regarded as passing-by vehicles. Though constrained filtering may further reduce false alarm rate, a "changing lane" maneuver of such a target (into the host lane 38) would pose a real threat to the host vehicle 12. Thus it is desirable to have a low threshold (a high error tolerance value) for a target in a neighboring lane if false alarm rate is already low enough.
Based on the above analysis, the hypothesis testing scheme efficiently uses different threshold values for targets in different lanes, with the multiple constraint filtering algorithm providing the knowledge of which lane the target is most likely in currently. Assuming that there are if possible lanes on the roadway 34, and each lane is described by a constraint equation, the constraint equation with the highest probability μj for a target corresponds to the lane that this target in most likely in at time tk (the current time). Denoting this most likely lane as /,, then
μ/'k = max = l,-,r}. (61)
The difference between the unconstrained state estimates and lane /, constrained state estimates (y direction only), denoted as: δ-,t , (62)
* = —y, '*μ - —y 'tμ is the estimate of
' = y, (63)
* — 'k ~y — 't where y is the true target state and v ' is the true state of a target moving along lane /,.
— 't — 'l
The test for the "same target" hypothesis is then given by:
Hn δ' = 0 (64) vs.
H, : δ'l ≠ 0 (65)
The constrained estimation error is given by:
Figure imgf000019_0001
Assuming that the estimation errors are independent and Gaussian, the test of Ho vs.
Hi becomes:
Accept Ho if p^' i i Y^' Yδi ≤ r,, (67) where
Figure imgf000019_0002
and the threshold is such that
Figure imgf000019_0003
where
Figure imgf000019_0004
Such a lane adaptive hypothesis testing scheme provides for a prompt switch of the target state estimation output to the unconstrained estimate when the target vehicle 36 leaves its current lane, while the estimation accuracy of a target in host lane 38 is substantially improved by constrained filtering. In another embodiment of the multiple constraint (MC) estimation algorithm, the constrained state estimate used for the hypothesis testing is the most likely of the separate constrained target state estimates (i.e. in accordance with a "winner take all" strategy), rather than a composite combination of all of the constrained target state estimates. If this most likely constrained state estimate is valid, i.e. if the most likely constrained state estimate corresponds to the unconstrained state estimate, then the target state is given by fusing the most likely constrained state estimate and the unconstrained state estimate; otherwise the target state is given by the unconstrained state estimate.
In yet another embodiment of the multiple constraint (MC) estimation algorithm, hypothesis tests are made for each of the constrained state estimates. If none of the hypotheses are satisfied, then the target state is given by the unconstrained state estimate. If one of the hypotheses is satisfied, then the target state is given by fusing the corresponding constrained state estimate and the unconstrained state estimate. If more than one hypotheses are satisfied, then the most likely constrained state may be identified by voting results from a plurality of approaches, or by repeating the hypothesis tests with different associated thresholds.
Generally, the number of constraints (i.e. the number of roadway lanes) can vary with respect to time, as can associated parameters therewith, for example, the width of the lanes of the roadway, so as to accommodate changes in the environment of the host vehicle 12. For example, the host vehicle 12 in one trip could travel on a one-lane road, a two-lane road with opposing traffic, a three-lane road with a center turn lane, a four line road two lanes of opposing traffic, or on a multi-lane divided freeway.
Road vehicle tracking simulations using constrained and unconstrained filtering were carried out for four scenarios. In all scenarios, the host vehicle 12 was moving at 15.5 m/s and a target vehicle 36 is approaching on the same roadway 34 at a speed of 15.5 m/s. The initial position of the target was 125 meters away from the host in the x direction, and the lane width for all lanes was assumed to be 3.6 meters. The measurement variance of the vehicle speed sensor was 0.02 m/s and the variance of the gyroscope yaw rate measurement was 0.0063 rad/s. The variances of radar range, range rate and azimuth angle measurements were 0.5 m, 1 m/s, and 1.5° respectively. Simulation results were then generated from 100 Monte-Carlo runs of the associated tracking filters. In the first scenario, the host vehicle 12 and the target vehicle 36 were moving on a straight roadway 34 (Co = 0 and C\ = 0) and the target vehicle 36 was moving toward the host vehicle 12 in the same lane. Figs. 8a-d illustrate the target state estimation and road curvature estimation results of the unconstrained and constrained filtering schemes, and Fig. 9a-b illustrate the average target vehicle 36 lateral position, velocity and acceleration RMS errors of the unconstrained and constrained filtering schemes. The estimation errors from constrained filtering were substantially reduced. Before 48 radar scans, when the target vehicle 36 was farther than 65 meters away from the host vehicle 12, constrained filtering resulted in a more than 40 percent reduction of error in target lateral velocity estimation, and a more than 60 percent reduction of error in lateral acceleration estimation. When the target vehicle 36 was less than 65 meters away from the host vehicle 12, which is a more relevant condition for collision prediction, more than 50 percent of lateral position estimation error, and more than 90 percent of lateral velocity and acceleration estimation errors, were reduced by constrained filtering. In the second scenario, the host vehicle 12 and the target vehicle 36 were moving on a curved roadway 34 (Co = -10"5 and C\ = -3xl0"5) and the target vehicle 36 was moving toward the host vehicle 12 in the same lane. Figs. lOa-d illustrate the target state estimation and curvature estimation results of the unconstrained and constrained filtering schemes, and Figs, lla-b illustrate the average target vehicle 36 lateral position, velocity and acceleration RMS errors of the unconstrained and constrained filtering schemes. The estimation errors from constrained filtering were substantially reduced after about 48 radar scans, when the target vehicle 36 was less than 65 meters away from the host vehicle 12. Estimation errors were the same for constrained and unconstrained filtering before 20 radar scans, when the target vehicle 36 was about 100 meters away from the host vehicle 12. For the target vehicle 36 located between 100 and 65 meters away from the host vehicle 12, constrained filtering resulted in about a 30 percent reduction in errors of lateral velocity and acceleration estimation, and when the target vehicle 36 was less than 65 meters away from the host vehicle 12, more than 50 percent of lateral position estimation error and more than 90 percent of lateral velocity and acceleration estimation errors were reduced by constrained filtering. The lack of improvement for constrained filtering when the target vehicle 36 was far away resulted from estimation errors of road curvature parameters, which caused constraint errors proportional to the distance between host vehicle 12 and the target vehicle 36. This is more evident in the curved roadway 34 case, where curvature estimation error was larger and caused more lane position ambiguity of a distant target vehicle 36.
In the third scenario, the host vehicle 12 and the target vehicle 36 were moving on a straight roadway 34 (Co = 0 and i = 0) and the target vehicle 36 was initially approaching in the left neighboring lane. At / = 2.2 second (55 radar scans), the target vehicle 36 began to diverge from its lane and turns toward the host lane 38, which resulted in a collision at t = 4 seconds (100 radar scans). Figs. 12a-d illustrate the target state estimation results and the lateral position and velocity RMS errors of the unconstrained and constrained filtering schemes. The error tolerance levels for constraint validity hypothesis testing (equation (69)) were chosen as α« 1 for the host lane 38 and a= 0.5 for all neighboring lanes 40. Whereas constrained filtering without validation produces substantially lower estimation errors before the target vehicle 36 turns away, the associated target state estimation result was incorrect and its RMS errors were much larger than that of unconstrained filtering after the target vehicle 36 began to turn away from its lane (the left neighboring lane), implying that the road constraints, which become invalid after the target vehicle 36 began to diverge from its lane, were not promptly lifted off. On the other hand, the performance of constrained filtering with validation was substantially close to that of unconstrained filtering, producing slightly lower estimation errors before the target vehicle 36 turns away, and exhibiting target state estimation results and RMS errors that were the same as unconstrained filtering after the target vehicle 36 began to turn away from its lane, implying that road constraints were promptly lifted off after the target vehicle 36 began to diverge from its lane.
The fourth scenario was similar to the third scenario, the only difference being that the vehicles were on a curved roadway 34 (Co = -10"5 and C\ = -3xl0"5) instead of a straight one. The target vehicle 36 began to diverge at t = 2.2 s and results in a collision at t = 4 s. Figs. 13a-d illustrate the target state estimation results and the lateral position and velocity RMS errors of the unconstrained and constrained filtering schemes. The error tolerance levels were the same as in the third scenario, and the results and observations were also similar to that of the third scenario. Road constraints were promptly lifted off by the proposed constraint validation after the target vehicle 36 began to diverge from its lane. In general, the overall improvement by constrained filtering in estimation accuracy of target vehicle 36 lateral kinematics was substantial, given the fact that estimation accuracy of target vehicle 36 lateral kinematics was often limited by poor radar angular resolution. Accordingly, simulation results of road vehicle tracking on both straight and curved roadways 34 show that the predictive collision sensing system 10 could substantially reduce the estimation errors in target vehicle 36 lateral kinematics when the target vehicles 36 were in the host lane 38. When a target vehicle 36 maneuvers from a neighboring lane into the host lane 38, the predictive collision sensing system 10 promptly detects this maneuver and lifts off the road constraint to avoid an otherwise incorrect constrained result. In view of the fact that poor radar angular resolution often results in poor lateral kinematics estimation, the predictive collision sensing system 10 has provided for a substantial improvement in estimation accuracy of target vehicle 36 lateral kinematics, which is beneficial for an early and reliable road vehicle collision prediction.
While specific embodiments have been described in detail in the foregoing detailed description and illustrated in the accompanying drawings, those with ordinary skill in the art will appreciate that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention, which is to be given the full breadth of the appended claims and any and all equivalents thereof.
APPENDIX - DESCRIPTION OF KALMAN FILTERING
A Kalman filter is used to estimate, from a set of noisy measurements, the state and associated measurements of a dynamic system subject to noise.
The system dynamics are defined by:
*t+ι = * ' * + **» w*~N(0,Q*) (A-l) where xk is the system state vector, Εk is the system matrix and wk an associated vector of noise variables corresponding to each state variable, each noise variable having a mean value of zero, and a variance given by the corresponding element of the associated variance vector,
Q*
The dynamics of the associated system measurements are given by:
zk = nk -xk +vk, v^ -N^R,) (A-2) where zk is the system measurement vector, Hk is the measurement matrix and v an associated vector of noise variables corresponding to each measurement variable, each noise variable having a mean value of zero, and a variance given by the corresponding element of the associated variance vector, Rk . The values of the elements of the associated covariance matrix R^ can be determined a priori from analysis of the representative measurements of the associated system for associated representative sets of operating conditions. The values of the elements of the associated covariance matrix Q^ account for modeling errors.
Generally, the associated matrices Fk , Qk , Hk , ΕLk can vary over time.
Given a measurement zk at time k, and initial values of the state xk_ k_{ and associated covariance P^.^., at time k-1, the Kalman filter is used to to estimate the associated state i|t and associated covariance PA|i at time k.
The first step in the filtering process is to calculate estimates of the state x^.., and associated covariance Pλ|jt_, at time k based upon estimates at time k-1, as follows:
*k\k-\ = F* ' ϊ*-p-ι (A-3) ι = F* -p*-.|*-. -F*T +Q* (A"4)
The next step is to predict the measurement zk and associated covariance matrix SA at time k, as follows:
a. = Ht -x4|έ_I (A-5)
S^ cov^ H. - . -Hj +R, (A-6)
The next step is to calculate a gain matrix Gk used for updating the state vector xi|A and associated covariance matrix Pλ|A. , as follows:
Figure imgf000024_0001
Finally, the state vector xk^k and associated covariance matrix P^ are estimated at time k, responsive to the associated measurement zk , as follows:
Xk\ = x. \ -ι +Gk -(zk -zk) (A-8)
Figure imgf000024_0002
We claim:

Claims

1. A method of estimating a curvature of a roadway, comprising: a. generating a speed measurement by measuring a longitudinal speed of a host vehicle traveling on the roadway; b. generating a yaw rate measurement by measuring or determining a yaw rate of said host vehicle; and c. estimating at least one curvature parameter, wherein said at least one curvature parameter is representative of a curvature of the roadway, and the operation of estimating at least one curvature parameter is responsive to said speed measurement and is responsive to said yaw rate measurement.
2. A method of estimating a curvature of a roadway as recited in claim 1, wherein said at least one curvature parameter comprises at least one parameter of a clothoid model of curvature, and said clothoid model of curvature is referenced to a coordinate system of said host vehicle.
3. A method of estimating a curvature of a roadway as recited in claim 2, wherein said at least one curvature parameter comprises first and second parameters of a clothoid model, wherein said first parameter is a constant, and said second parameter is a sensitivity of curvature to a distance along the roadway.
4. A method of estimating a curvature of a roadway as recited in claim 1, wherein the operation of estimating at least one curvature parameter comprises processing said measurements of speed and angular rate with at least one Kalman filter.
5. A method of estimating a curvature of a roadway as recited in claim 1, wherein said at least one Kalman filter comprises first and second Kalman filters, said first Kalman filter is adapted to estimate a first set of state variables from said speed measurement and from said yaw rate measurement, and said second Kalman filter is adapted to estimate said at least one curvature parameter from said estimate of said first set of state variables.
6. A method of estimating a curvature of a roadway as recited in claim 5, wherein said first set of state variables comprises vehicle velocity, vehicle acceleration, vehicle yaw rate and vehicle yaw acceleration.
. A method of estimating a state of a target vehicle on a roadway, comprising:: a. generating an estimate of a curvature of the roadway; b. estimating an unconstrained state and associated covariance thereof of the target vehicle; c. establishing at least one prospective constraint of the target vehicle, wherein at least one prospective constraint is responsive to said estimate of the curvature of the roadway; d. estimating at least one constrained state and associated covariance thereof of the target vehicle corresponding to said at least one prospective constraint of the target vehicle; e. determining a most likely state of the target vehicle, wherein said most likely state of the target vehicle is selected from said unconstrained state of the target vehicle and said at least one constrained state of the target vehicle; and f. if said at least one constrained state of the target vehicle is the most likely state, then fusing the unconstrained state and covariance thereof of the target vehicle with the associated constrained state and covariance of said most likely state and outputting at least one of the fused state and the associated fused covariance thereof of the target as the estimated state or covariance of the target; otherwise outputting at least one of the unconstrained state and the associated unconstrained covariance thereof of the target as the estimated state or covariance of the target.
8. A method of estimating a state of a target vehicle on a roadway as recited in claim 7, wherein the operation of estimating the curvature of the roadway comprises: a. generating a speed measurement by measuring a longitudinal speed of a host vehicle traveling on the roadway; b. generating a yaw rate measurement by measuring or determining a yaw rate of said host vehicle; and c. estimating at least one curvature parameter, wherein said at least one curvature parameter is representative of a curvature of the roadway, and the operation of estimating at least one curvature parameter is responsive to said speed measurement and is responsive to said yaw rate measurement.
9. A method of estimating a state of a target vehicle on a roadway as recited in claim 8, wherein said at least one curvature parameter comprises at least one parameter of a clothoid model of curvature, and said Clothoid model of curvature is referenced to a coordinate system of said host vehicle.
10. A method of estimating a state of a target vehicle on a roadway as recited in claim 9, wherein said at least one curvature parameter comprises first and second parameters of a clothoid model, wherein said first parameter is a constant, and said second parameter is a sensitivity of curvature to a distance along the roadway.
11. A method of estimating a state of a target vehicle on a roadway as recited in claim 8, wherein the operation of estimating at least one curvature parameter comprises processing said measurements of speed and yaw rate with at least one Kalman filter.
12. A method of estimating a state of a target vehicle on a roadway as recited in claim 11, wherein said at least one Kalman filter comprises first and second Kalman filters, said first Kalman filter is adapted to estimate a first set of state variables from said speed measurement and from said yaw rate measurement, and said second Kalman filter is adapted to estimate said at least one curvature parameter from said estimate of said first set of state variables.
13. A method of estimating a state of a target vehicle on a roadway as recited in claim 12, wherein said first set of state variables comprises vehicle velocity, vehicle acceleration, vehicle yaw rate and vehicle yaw acceleration.
14. A method of estimating a state of a target vehicle on a roadway as recited in claim 7, wherein the operation of estimating an unconstrained state and associated covariance of the target vehicle comprise: a. measuring a range, a range rate and an azimuth of the target vehicle relative to a host vehicle; and b. estimating said unconstrained state of the target vehicle from said measurements of the range, range rate and azimuth of the target vehicle relative to the host vehicle.
15. A method of estimating a state of a target vehicle on a roadway as recited in claim 7, further comprising the operation of transforming said unconstrained state of the target vehicle to a coordinate system corresponding to said estimate of the curvature of the roadway.
16. A method of estimating a state of a target vehicle on a roadway as recited in claim 7, wherein said at least one prospective constraint of the target vehicle is applied to a lateral position of the target vehicle, and a longitudinal position of the target vehicle is unconstrained.
17. A method of estimating a state of a target vehicle on a roadway as recited in claim 7, wherein said at least one prospective constraint of the target vehicle comprises a plurality of prospective constraints, and at least two different prospective constraints correspond to different lanes of the roadway.
18. A method of estimating a state of a target vehicle on a roadway as recited in claim 7, wherein the operation of determining the most likely state of the target vehicle comprises: a. determining at least one likelihood value, wherein said a least one likelihood value corresponds to said at least one prospective constraint of the target vehicle being active and said at least one likelihood value is responsive to a corresponding at least one distribution function evaluated at a value corresponding to said unconstrained state of the target vehicle; b. determining a probability of a first constrained state of the target vehicle, wherein said probability is responsive to said at least one likelihood value; c. testing at least one hypothesis that said unconstrained state of the target vehicle corresponds to said first constrained state, and d. identifying a most likely state of the target vehicle responsive to the operation of testing said at least one hypothesis.
19. A method of estimating a state of a target vehicle on a roadway as recited in claim 18, wherein the operation of determining the most likely state of the target vehicle comprises establishing at least one a priori probability of a transition from a first state to a second state of the target vehicle, wherein said first and second states can be either the same or different states, and said probability of said first constrained state of the target vehicle is responsive to said at least one a priori probability.
20. A method of estimating a state of a target vehicle on a roadway as recited in claim 18, wherein said at least one distribution function is responsive to said covariance of the particular constrained state of the target vehicle.
21. A method of estimating a state of a target vehicle on a roadway as recited in claim 18, wherein said at least one constrained state comprises a plurality of constrained states, and said first constrained state comprises a combination of said plurality of constrained states.
22. A method of estimating a state of a target vehicle on a roadway as recited in claim 18, wherein said first constrained state comprises a most likely of said at least one constrained state of the target vehicle.
23. A method of estimating a state of a target vehicle on a roadway as recited in claim 18, wherein said first constrained state comprises one of said at least one constrained state of the target vehicle.
24. A method of estimating a state of a target vehicle on a roadway as recited in claim 18, wherein the operation of testing at least one hypothesis is responsive to the most recent estimates of said state of the target vehicle.
25. A method of estimating a state of a target vehicle on a roadway as recited in claim 18, wherein the operation of testing at least one hypothesis comprises identifying a particular constrained state of the target vehicle corresponding to a most likely of said at least one constrained state of the target vehicle, calculating a value of a function responsive to a difference between said unconstrained state and said particular constrained state, and comparing said value of said function with a threshold, whereby said hypothesis is satisfied if said value of said function is less than said threshold.
26. A method of estimating a state of a target vehicle on a roadway as recited in claim 25, wherein said threshold is responsive to the particular constraint associated with said particular constrained state of the target vehicle.
27. A method of estimating a state of a target vehicle on a roadway as recited in claim 26, wherein said threshold is relatively lower for said particular constrained state corresponding to an increased threat by the target vehicle to host vehicle.
28. A method of estimating a state of a target vehicle on a roadway as recited in claim 27, wherein said particular constrained state corresponding to an increased threat by the target vehicle to the host vehicle is selected from the target vehicle moving in the same lane as the host vehicle, and the target vehicle changing lanes to said same lane as the host vehicle.
29. A system for estimating a curvature of a roadway, comprising: a. a speed sensor adapted to measure a longitudinal speed of a vehicle on the roadway; b. a yaw rate sensor adapted to measure a yaw rate of said vehicle; and c. a processor operatively coupled to said speed sensor and to said yaw rate sensor, wherein said processor is adapted to estimate a curvature of the roadway responsive to measurements from said speed sensor and from said yaw rate sensor.
30. A system for estimating a curvature of a roadway as recited in claim 29, wherein said processor comprises at least one Kalman filter, and said at least one Kalman filter is adapted to generate an estimate of at least one curvature parameter responsive to said measure of longitudinal speed and responsive to said measure of yaw rate, wherein said at least one curvature parameter is representative of a curvature of the roadway.
31. A system for estimating a curvature of a roadway as recited in claim 30, wherein said at least one Kalman filter comprises first and second Kalman filters, said first Kalman filter is adapted generate an output comprising estimates of yaw rate, yaw acceleration, longitudinal speed and longitudinal acceleration, responsive to said measures of longitudinal speed and yaw rate; and said second Kalman filter is adapted to generate said estimate of said at least one curvature parameter responsive to said output from said first Kalman filter.
32. A system for estimating a state of a target vehicle on a roadway, comprising: a. a road curvature estimation subsystem for estimating a curvature of a roadway upon which a host vehicle is traveling; b. a target state estimation subsystem operatively coupled to said host vehicle, wherein said target state estimation subsystem is adapted to track the target vehicle on the roadway; and c. at least one processor operatively coupled to or a part of said road curvature estimation subsystem and said target state estimation subsystem, wherein said processor is adapted to determine if the target vehicle is likely traveling in a particular lane of the roadway, responsive to said curvature estimated by said road curvature estimation subsystem, and responsive to a measure of target kinematics from said target state estimation subsystem.
33. A system for estimating a state of a target vehicle on a roadway as recited in claim 32, wherein said road curvature estimation subsystem for estimating the curvature of the roadway comprises: a. a speed sensor adapted to measure a longitudinal speed of said host vehicle on the roadway; and b. a yaw rate sensor adapted to measure a yaw rate of said host vehicle on the roadway, wherein said at least one processor is operatively coupled to said speed sensor and to said yaw rate sensor, and said processor is adapted to estimate a curvature of the roadway responsive to measurements from said speed sensor and from said yaw rate sensor.
34. A system for estimating a state of a target vehicle on a roadway as recited in claim 32, wherein said target state estimation subsystem comprises a radar system operatively coupled to said host vehicle.
35. A system for estimating a state of a target vehicle on a roadway as recited in claim 32, wherein said processor comprises an extended Kalman filter adapted to estimate a measure of target kinematics responsive to measures of range, range rate and azimuth angle of said target state estimation subsystem.
36. A system for estimating a state of a target vehicle on a roadway as recited in claim 35, wherein said measure of target kinematics comprises a measure of target position relative to a coordinate system of the host vehicle.
37. A system for estimating a state of a target vehicle on a roadway as recited in claim 36, wherein said measure of target kinematic further comprises a measure of target velocity relative to said coordinate system of the host vehicle.
PCT/US2003/022182 2002-07-15 2003-07-15 Road curvature estimation and automotive target state estimation system WO2004008648A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003251943A AU2003251943A1 (en) 2002-07-15 2003-07-15 Road curvature estimation and automotive target state estimation system
JP2004521888A JP4823520B2 (en) 2002-07-15 2003-07-15 How to estimate the state of a target vehicle on the road
EP03764720.3A EP1537440B1 (en) 2002-07-15 2003-07-15 Road curvature estimation and automotive target state estimation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39621102P 2002-07-15 2002-07-15
US60/396,211 2002-07-15

Publications (2)

Publication Number Publication Date
WO2004008648A2 true WO2004008648A2 (en) 2004-01-22
WO2004008648A3 WO2004008648A3 (en) 2004-09-02

Family

ID=30115986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/022182 WO2004008648A2 (en) 2002-07-15 2003-07-15 Road curvature estimation and automotive target state estimation system

Country Status (6)

Country Link
US (1) US7034742B2 (en)
EP (1) EP1537440B1 (en)
JP (3) JP4823520B2 (en)
CN (1) CN100365430C (en)
AU (1) AU2003251943A1 (en)
WO (1) WO2004008648A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094585A1 (en) * 2005-03-08 2006-09-14 Daimlerchrysler Ag Method for estimating the course of a lane
EP1688295A3 (en) * 2005-02-07 2006-10-25 Nissan Motor Co., Ltd. Driving intention estimation system, vehicle operation assistance system and vehicle equipped therewith
US7826926B2 (en) 2005-11-07 2010-11-02 Samsung Electronics Co., Ltd. Robot and method of localizing the same
CN1940591B (en) * 2005-09-26 2011-04-13 通用汽车环球科技运作公司 System and method of target tracking using sensor fusion
EP2525303A1 (en) * 2011-05-17 2012-11-21 Harman Becker Automotive Systems GmbH Lane tracking
KR101848198B1 (en) * 2017-02-06 2018-05-24 한양대학교 산학협력단 Apparatus and method for estimating a lane
US10407065B2 (en) 2016-12-30 2019-09-10 Neusoft Corporation Method, device and apparatus for planning vehicle speed
US10737665B2 (en) 2012-08-28 2020-08-11 Ford Global Technologies, Llc Vehicle braking based on external object communications
CN111736486A (en) * 2020-05-01 2020-10-02 东风汽车集团有限公司 Sensor simulation modeling method and device for L2 intelligent driving controller

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522091B2 (en) * 2002-07-15 2009-04-21 Automotive Systems Laboratory, Inc. Road curvature estimation system
JP2004226158A (en) * 2003-01-21 2004-08-12 Fujitsu Ten Ltd Fm-cw radar device
US7113079B2 (en) * 2003-10-28 2006-09-26 Oakland University System and method for detecting a collision using a continuous mode hidden Markov model
US8031112B2 (en) * 2004-03-19 2011-10-04 Purdue Research Foundation, Office Of Technology Commercialization System and method for high dynamic acquisition and tracking of signals from the global positioning system
US7409295B2 (en) * 2004-08-09 2008-08-05 M/A-Com, Inc. Imminent-collision detection system and process
DE102004047087A1 (en) * 2004-09-29 2006-03-30 Robert Bosch Gmbh Method for object verifaction in radar systems for motor vehicles
DE102004057604B4 (en) * 2004-11-29 2014-04-30 Daimler Ag Method for a safety system in a vehicle
DE102004058663A1 (en) * 2004-12-06 2006-06-14 Robert Bosch Gmbh Method and device for controlling an automatic emergency braking
US7639841B2 (en) * 2004-12-20 2009-12-29 Siemens Corporation System and method for on-road detection of a vehicle using knowledge fusion
US7180443B1 (en) * 2005-03-16 2007-02-20 Lockheed Martin Corporation Reduced state estimator for systems with physically bounded parameters
US7009554B1 (en) * 2005-03-30 2006-03-07 Lockheed Martin Corporation Reduced state estimation with multisensor fusion and out-of-sequence measurements
JP4754856B2 (en) * 2005-03-31 2011-08-24 株式会社デンソーアイティーラボラトリ Automotive radar equipment
US7301497B2 (en) * 2005-04-05 2007-11-27 Eastman Kodak Company Stereo display for position sensing systems
US7375679B1 (en) * 2005-08-16 2008-05-20 Lockheed Martin Corporation Reduced state estimation with biased and out-of-sequence measurements from multiple sensors
WO2007074717A1 (en) * 2005-12-27 2007-07-05 Honda Motor Co., Ltd. Vehicle control device
US7277047B1 (en) * 2006-02-06 2007-10-02 Lockheed Martin Corporation Reduced state estimation with biased measurements
JP4906398B2 (en) * 2006-05-15 2012-03-28 アルパイン株式会社 In-vehicle road shape identification device, in-vehicle system, road shape identification method and periphery monitoring method
JP4793094B2 (en) * 2006-05-17 2011-10-12 株式会社デンソー Driving environment recognition device
US20070282558A1 (en) * 2006-06-01 2007-12-06 Denso Corporation Abnormal condition determining system for steering angle sensor
US7876926B2 (en) * 2006-11-03 2011-01-25 Delphi Technologies, Inc. Lane marker detection and fitting methods
DE102006057276B4 (en) * 2006-12-05 2023-09-28 Robert Bosch Gmbh Method and device for object tracking in a driver assistance system of a motor vehicle
JP4967806B2 (en) * 2007-05-22 2012-07-04 株式会社日立製作所 Vehicle speed control device according to path curvature
JP2009042181A (en) * 2007-08-10 2009-02-26 Denso Corp Estimating apparatus
KR101071732B1 (en) * 2007-12-17 2011-10-11 현대자동차주식회사 Apparatus and method for controlling the velocity of vehicle
JP5078637B2 (en) * 2008-01-29 2012-11-21 富士通テン株式会社 Radar apparatus and target detection method
US8825399B2 (en) * 2008-07-24 2014-09-02 Raytheon Company System and method of passive and autonomous navigation of space vehicles using an extended Kalman filter
US8055445B2 (en) * 2008-09-24 2011-11-08 Delphi Technologies, Inc. Probabilistic lane assignment method
US8581776B2 (en) * 2008-12-18 2013-11-12 Toyota Jidosha Kabushiki Kaisha Radar system
DE112008004200B4 (en) * 2008-12-26 2023-02-09 Toyota Jidosha Kabushiki Kaisha Driving route estimating device and driving route estimating method used in this device
US8155807B2 (en) * 2009-03-04 2012-04-10 Raytheon Company Fusion for automated target recognition
JP5618744B2 (en) * 2010-05-26 2014-11-05 三菱電機株式会社 Road shape estimation apparatus, computer program, and road shape estimation method
US8515712B1 (en) 2010-08-26 2013-08-20 Lockheed Martin Corporation Information based optimal reduced state estimator for poorly conditioned estimation problems
DE102010054066A1 (en) * 2010-12-10 2012-06-14 GM Global Technology Operations LLC Method for operating a sensor of a vehicle and driver assistance system for a vehicle
KR101789073B1 (en) * 2011-08-24 2017-10-23 현대모비스 주식회사 Method and apparatus for estimating radius of curvature of vehicle
CN102706291B (en) * 2012-05-18 2014-12-24 长安大学 Method for automatically measuring road curvature radius
TWI438434B (en) * 2012-06-11 2014-05-21 Wistron Corp Method of detecting a vehicle speed and related electronic device
DE102012020906A1 (en) * 2012-10-24 2014-04-24 Audi Ag Method and system for operating a powertrain of a motor vehicle
US9349058B2 (en) 2012-10-31 2016-05-24 Tk Holdings, Inc. Vehicular path sensing system and method
EP2762834B1 (en) * 2013-02-01 2017-03-22 Intel Corporation An integrated global navigation satellite system and inertial navigation system
JP5739465B2 (en) * 2013-02-14 2015-06-24 本田技研工業株式会社 Vehicle steering control device
US9274222B1 (en) * 2013-03-04 2016-03-01 Toyota Motor Engineering & Manufacturing North America, Inc. Dynamic allocation of radar beams in automotive environments with phased array radar
WO2014152470A2 (en) 2013-03-15 2014-09-25 Tk Holdings, Inc. Path sensing using structured lighting
KR102037036B1 (en) * 2013-04-11 2019-10-28 현대모비스 주식회사 System for controlling an automated drive of a vehicle
CA2824704A1 (en) 2013-08-26 2015-02-26 Alastair Malarky Methods and systems for determining a range rate for a backscatter transponder
CA2824703C (en) 2013-08-26 2021-03-16 Alastair Malarky Methods and systems for determining vehicle position in an automatic vehicle identification system
DE102014200687A1 (en) * 2014-01-16 2015-07-16 Robert Bosch Gmbh Method for operating a vehicle
CN104101878B (en) * 2014-06-23 2017-02-15 北京智行者科技有限公司 Vehicle front target recognition system and recognition method
CN104359492B (en) * 2014-11-03 2017-03-01 中国科学院合肥物质科学研究院 Inertial navigation and the reckoning Positioning System Error estimating algorithm of wheel speed meter composition
CN104401328A (en) * 2014-11-14 2015-03-11 江苏省交通科学研究院股份有限公司 Automotive curve speed limit identifier and identification method for same
JP6425130B2 (en) * 2014-12-18 2018-11-21 パナソニックIpマネジメント株式会社 Radar apparatus and radar state estimation method
US9562779B2 (en) * 2014-12-23 2017-02-07 Here Global B.V. Method and apparatus for providing a steering reliability map based on driven curvatures and geometry curvature
CN104615889B (en) * 2015-02-09 2017-12-26 武汉大学 The intelligent vehicle path following method and system followed based on clothoid
CN104635233B (en) * 2015-02-17 2017-12-26 苏州安智汽车零部件有限公司 Objects in front state estimation and sorting technique based on vehicle-mounted millimeter wave radar
JP6421935B2 (en) * 2015-03-31 2018-11-14 パナソニックIpマネジメント株式会社 Vehicle movement estimation apparatus and vehicle movement estimation method
US9815462B2 (en) * 2015-08-27 2017-11-14 Toyota Motor Engineering & Manufacturing North America, Inc. Path determination for automated vehicles
KR101714250B1 (en) 2015-10-28 2017-03-08 현대자동차주식회사 Method for predicting driving path around the vehicle
US10025319B2 (en) 2016-08-31 2018-07-17 Ford Global Technologies, Llc Collision-warning system
JP6643215B2 (en) 2016-09-29 2020-02-12 株式会社デンソー Other lane monitoring device
DE102016220581A1 (en) * 2016-10-20 2018-04-26 Continental Teves Ag & Co. Ohg METHOD AND DEVICE FOR DETERMINING A ENVIRONMENTAL MODEL
JP6649865B2 (en) * 2016-10-27 2020-02-19 株式会社Soken Object detection device
CN106515740B (en) * 2016-11-14 2018-10-09 江苏大学 Distributed electrical based on ICDKF drives vehicle driving state parameter estimation algorithm
JP6592423B2 (en) * 2016-11-25 2019-10-16 株式会社デンソー Vehicle control device
CN108569289A (en) * 2017-05-19 2018-09-25 浙江工业职业技术学院 A kind of trailer-mounted radar and its approach detection and target-recognition method
JP6856496B2 (en) * 2017-11-07 2021-04-07 株式会社デンソーアイティーラボラトリ Orientation error function acquisition device, method and program
US10737693B2 (en) 2018-01-04 2020-08-11 Ford Global Technologies, Llc Autonomous steering control
US10605897B2 (en) * 2018-03-06 2020-03-31 Veoneer Us, Inc. Vehicle lane alignment correction improvements
US10775494B2 (en) * 2018-03-07 2020-09-15 Aptiv Technologies Limited Method and system for determining the pointing angle of a moving object
DE102018203802A1 (en) * 2018-03-13 2019-09-19 Bayerische Motoren Werke Aktiengesellschaft Method, device and means of transport for multi-stage filtering of a signal in the electrical system of a means of transport
US10906536B2 (en) * 2018-04-11 2021-02-02 Aurora Innovation, Inc. Control of autonomous vehicle based on determined yaw parameter(s) of additional vehicle
DE112018007261B4 (en) * 2018-04-20 2021-11-04 Mitsubishi Electric Corporation DRIVE MONITORING DEVICE
CN110487288B (en) * 2018-05-14 2024-03-01 华为技术有限公司 Road estimation method and road estimation system
US10914813B2 (en) * 2018-08-21 2021-02-09 Aptiv Technologies Limited Classifying potentially stationary objects tracked by radar
US10933880B2 (en) 2019-01-17 2021-03-02 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for providing lane curvature estimates
US11216000B2 (en) 2019-01-17 2022-01-04 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for estimating lane prediction errors for lane segments
JP7260416B2 (en) * 2019-06-25 2023-04-18 株式会社Soken tracking device
US11327492B2 (en) * 2019-12-03 2022-05-10 Mitsubishi Electric Research Laboratories, Inc. Adaptive control of autonomous or semi-autonomous vehicle
KR102283237B1 (en) * 2020-05-29 2021-07-29 서울대학교산학협력단 Apparatus and method for real-time identificating vehicle steering-yawrate model using data-driven online machine learning
CN111737633B (en) * 2020-06-23 2024-07-16 上海汽车集团股份有限公司 Calculation method and device for curvature radius of road in front of vehicle
US11702106B1 (en) * 2020-11-19 2023-07-18 Zoox, Inc. Tuning a safety system based on near-miss events

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637245A1 (en) 1996-09-13 1998-03-26 Bosch Gmbh Robert Adaptive vehicle speed regulating method for road system
EP0915350A2 (en) 1997-11-06 1999-05-12 DaimlerChrysler AG Apparatus for determining data indicating traffic lane evolution
DE19855400A1 (en) 1998-12-01 2000-06-15 Bosch Gmbh Robert Method and device for determining a future course range of a vehicle
DE10118265A1 (en) 2001-04-12 2002-10-17 Bosch Gmbh Robert Detecting vehicle lane change, involves forming track change indicating signal by comparing measured angular rate of preceding vehicle(s) with vehicle's own yaw rate

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2709804A (en) * 1945-09-14 1955-05-31 Chance Britton Automatic range and azimuth tracking system
US3177485A (en) * 1960-03-02 1965-04-06 Jr John W Taylor Automatic radar target tracking system
US3603994A (en) * 1966-04-26 1971-09-07 Hughes Aircraft Co System for automatically generating smoothing parameters in an automatic track-while-scan radar system
US3699573A (en) * 1966-05-05 1972-10-17 Hughes Aircraft Co System for automatic initiation of target tracking in track-while-scan radar
US3725918A (en) * 1970-11-18 1973-04-03 Sperry Rand Corp Collision avoidance display apparatus for maneuverable craft
GB1430389A (en) * 1972-06-21 1976-03-31 Solartron Electronic Group Computing apparatus for tracking movinb objects
US3971018A (en) * 1974-06-24 1976-07-20 Sperry Rand Corporation Marine traffic conflict assessment system
GB8304686D0 (en) * 1983-02-19 1983-03-23 Sperry Ltd Collision avoidance apparatus
IT1240974B (en) * 1990-07-05 1993-12-27 Fiat Ricerche METHOD AND EQUIPMENT TO AVOID THE COLLISION OF A VEHICLE AGAINST OBSTACLES.
US5170440A (en) * 1991-01-30 1992-12-08 Nec Research Institute, Inc. Perceptual grouping by multiple hypothesis probabilistic data association
US5051751A (en) * 1991-02-12 1991-09-24 The United States Of America As Represented By The Secretary Of The Navy Method of Kalman filtering for estimating the position and velocity of a tracked object
US5307289A (en) * 1991-09-12 1994-04-26 Sesco Corporation Method and system for relative geometry tracking utilizing multiple distributed emitter/detector local nodes and mutual local node tracking
US5138321A (en) * 1991-10-15 1992-08-11 International Business Machines Corporation Method for distributed data association and multi-target tracking
IL100175A (en) * 1991-11-27 1994-11-11 State Of Isreal Ministry Of De Collision warning apparatus for a vehicle
US5202691A (en) * 1992-04-28 1993-04-13 The United States Of America As Represented By The Secretary Of The Air Force Hick's probabilistic data association method
DE4326051A1 (en) * 1992-08-03 1994-02-10 Mazda Motor Safety system for autonomous motor vehicle - contains detector of changes in detection region of obstruction detector eg ultrasound radar
US5598164A (en) * 1992-08-10 1997-01-28 Reppas; George S. Vehicle obstacle avoidance system
JPH06144076A (en) * 1992-11-10 1994-05-24 Toyota Motor Corp Traveling controller of vehicle
US5314037A (en) * 1993-01-22 1994-05-24 Shaw David C H Automobile collision avoidance system
DE4407757A1 (en) * 1993-03-08 1994-09-15 Mazda Motor Device for detecting obstacles for a vehicle
US5406289A (en) * 1993-05-18 1995-04-11 International Business Machines Corporation Method and system for tracking multiple regional objects
US5402129A (en) * 1993-08-04 1995-03-28 Vorad Safety Systems, Inc. Monopulse azimuth radar system for automotive vehicle tracking
US6553130B1 (en) * 1993-08-11 2003-04-22 Jerome H. Lemelson Motor vehicle warning and control system and method
US5983161A (en) 1993-08-11 1999-11-09 Lemelson; Jerome H. GPS vehicle collision avoidance warning and control system and method
US5633642A (en) * 1993-11-23 1997-05-27 Siemens Aktiengesellschaft Radar method and device for carrying out the method
US5959574A (en) * 1993-12-21 1999-09-28 Colorado State University Research Foundation Method and system for tracking multiple regional objects by multi-dimensional relaxation
US5537119A (en) * 1993-12-21 1996-07-16 Colorado State University Research Foundation Method and system for tracking multiple regional objects by multi-dimensional relaxation
JP3189560B2 (en) * 1994-03-25 2001-07-16 株式会社デンソー Inter-vehicle distance detection device and inter-vehicle distance alarm device
DE19514654B4 (en) * 1994-04-20 2009-07-09 Denso Corporation, Kariya Collision alarm system for a motor vehicle
US5594414A (en) * 1994-08-02 1997-01-14 Namngani; Abdulatif Collision probability detection system
GB9417170D0 (en) * 1994-08-25 1994-10-12 Isis Innovation Non-linear filtering
US5587929A (en) * 1994-09-02 1996-12-24 Caterpillar Inc. System and method for tracking objects using a detection system
DE19537129A1 (en) * 1994-10-05 1996-04-11 Mazda Motor Obstacle detecting system for cars
JPH08160132A (en) * 1994-12-09 1996-06-21 Nikon Corp Radar detecting device for vehicle
JP3470453B2 (en) * 1995-04-06 2003-11-25 株式会社デンソー Inter-vehicle distance control device
US6405132B1 (en) * 1997-10-22 2002-06-11 Intelligent Technologies International, Inc. Accident avoidance system
US6370475B1 (en) * 1997-10-22 2002-04-09 Intelligent Technologies International Inc. Accident avoidance system
US5667251A (en) * 1995-09-14 1997-09-16 Prest; J. David Universal waste water outlet coupling
US5657251A (en) 1995-10-02 1997-08-12 Rockwell International Corporation System and process for performing optimal target tracking
JP3257410B2 (en) * 1995-11-24 2002-02-18 トヨタ自動車株式会社 In-vehicle scanning radar
US5703593A (en) * 1995-12-12 1997-12-30 Northrop Grumman Corporation Adaptive DPCA subsystem
JP3656301B2 (en) * 1995-12-28 2005-06-08 株式会社デンソー Obstacle warning device for vehicles
EP0897545B1 (en) * 1996-05-08 2001-08-16 DaimlerChrysler AG Process for detecting the road conditions ahead for motor vehicles
US5646613A (en) * 1996-05-20 1997-07-08 Cho; Myungeun System for minimizing automobile collision damage
US5948043A (en) * 1996-11-08 1999-09-07 Etak, Inc. Navigation system using GPS data
US6085151A (en) * 1998-01-20 2000-07-04 Automotive Systems Laboratory, Inc. Predictive collision sensing system
JP3430832B2 (en) * 1997-01-27 2003-07-28 日産自動車株式会社 Road curvature estimator
JP3366220B2 (en) * 1997-05-26 2003-01-14 本田技研工業株式会社 Road shape determination device and vehicle control device
US6282478B1 (en) * 1997-07-10 2001-08-28 Aisin Seiki Kabushiki Kaisha Travelling direction correction apparatus
US6275231B1 (en) * 1997-08-01 2001-08-14 American Calcar Inc. Centralized control and management system for automobiles
US5964822A (en) * 1997-08-27 1999-10-12 Delco Electronics Corp. Automatic sensor azimuth alignment
US5926126A (en) * 1997-09-08 1999-07-20 Ford Global Technologies, Inc. Method and system for detecting an in-path target obstacle in front of a vehicle
JPH11139396A (en) * 1997-11-10 1999-05-25 Makoto Toyama Formation flying control device
JPH11345394A (en) * 1998-06-03 1999-12-14 Mitsubishi Electric Corp Ambient monitoring device for vehicle
JP2000002535A (en) * 1998-06-15 2000-01-07 Daihatsu Motor Co Ltd Method for detecting curvature of curve road and detector used therefor
DE59914189D1 (en) * 1998-08-08 2007-03-29 Volkswagen Ag Method for determining the curve radius of a roadway
JP3371854B2 (en) * 1998-09-07 2003-01-27 株式会社デンソー Ambient situation detection device and recording medium
US6161071A (en) * 1999-03-12 2000-12-12 Navigation Technologies Corporation Method and system for an in-vehicle computing architecture
JP3167993B2 (en) * 1999-09-21 2001-05-21 富士重工業株式会社 Road shape estimation device and curve entry control device using the same
JP4066573B2 (en) * 1999-09-22 2008-03-26 株式会社デンソー Preceding vehicle selection device, inter-vehicle control device, and recording medium
JP3822770B2 (en) * 1999-12-10 2006-09-20 三菱電機株式会社 Vehicle front monitoring device
JP3427815B2 (en) * 2000-03-30 2003-07-22 株式会社デンソー Method and apparatus for selecting preceding vehicle, recording medium
DE10018556A1 (en) * 2000-04-14 2001-10-18 Bosch Gmbh Robert Regulating vehicle speed involves determining course offsets of preceding vehicle in cycles, delaying by defined time, deriving historical course offset from curvature of vehicle trajectory
JP2001319299A (en) * 2000-05-12 2001-11-16 Denso Corp Road curvature estimating device for vehicle and preceding vehicle selecting device
JP3417381B2 (en) * 2000-05-25 2003-06-16 株式会社デンソー Road shape recognition device, preceding vehicle specifying device, and recording medium
US6420997B1 (en) * 2000-06-08 2002-07-16 Automotive Systems Laboratory, Inc. Track map generator
WO2001095141A1 (en) * 2000-06-09 2001-12-13 Automotive Systems Laboratory, Inc. Situation awareness processor
JP2002008189A (en) * 2000-06-22 2002-01-11 Matsushita Electric Ind Co Ltd Vehicle detector and vehicle detection method
WO2002021156A2 (en) * 2000-09-08 2002-03-14 Raytheon Company Path prediction system and method
US6643588B1 (en) * 2002-04-11 2003-11-04 Visteon Global Technologies, Inc. Geometric based path prediction method using moving and stop objects
US6753804B2 (en) * 2002-05-21 2004-06-22 Visteon Global Technologies, Inc. Target vehicle identification based on the theoretical relationship between the azimuth angle and relative velocity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637245A1 (en) 1996-09-13 1998-03-26 Bosch Gmbh Robert Adaptive vehicle speed regulating method for road system
EP0915350A2 (en) 1997-11-06 1999-05-12 DaimlerChrysler AG Apparatus for determining data indicating traffic lane evolution
DE19855400A1 (en) 1998-12-01 2000-06-15 Bosch Gmbh Robert Method and device for determining a future course range of a vehicle
DE10118265A1 (en) 2001-04-12 2002-10-17 Bosch Gmbh Robert Detecting vehicle lane change, involves forming track change indicating signal by comparing measured angular rate of preceding vehicle(s) with vehicle's own yaw rate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1537440A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688295A3 (en) * 2005-02-07 2006-10-25 Nissan Motor Co., Ltd. Driving intention estimation system, vehicle operation assistance system and vehicle equipped therewith
EP1977925A3 (en) * 2005-02-07 2008-10-15 Nissan Motor Co., Ltd. Driving Intention Estimation System, Vehicle Operation Assistance System and Vehicle Equipped Therewith
US7634331B2 (en) 2005-02-07 2009-12-15 Nissan Motor Co., Ltd. Driving intention estimation system, vehicle operation assistance system, and vehicle equipped therewith
WO2006094585A1 (en) * 2005-03-08 2006-09-14 Daimlerchrysler Ag Method for estimating the course of a lane
CN1940591B (en) * 2005-09-26 2011-04-13 通用汽车环球科技运作公司 System and method of target tracking using sensor fusion
US7826926B2 (en) 2005-11-07 2010-11-02 Samsung Electronics Co., Ltd. Robot and method of localizing the same
EP2525303A1 (en) * 2011-05-17 2012-11-21 Harman Becker Automotive Systems GmbH Lane tracking
US10737665B2 (en) 2012-08-28 2020-08-11 Ford Global Technologies, Llc Vehicle braking based on external object communications
US10407065B2 (en) 2016-12-30 2019-09-10 Neusoft Corporation Method, device and apparatus for planning vehicle speed
KR101848198B1 (en) * 2017-02-06 2018-05-24 한양대학교 산학협력단 Apparatus and method for estimating a lane
CN111736486A (en) * 2020-05-01 2020-10-02 东风汽车集团有限公司 Sensor simulation modeling method and device for L2 intelligent driving controller

Also Published As

Publication number Publication date
US20050179580A1 (en) 2005-08-18
EP1537440A4 (en) 2012-03-28
JP5323766B2 (en) 2013-10-23
JP4823520B2 (en) 2011-11-24
JP2010280378A (en) 2010-12-16
JP2005539288A (en) 2005-12-22
AU2003251943A1 (en) 2004-02-02
JP5864473B2 (en) 2016-02-17
WO2004008648A3 (en) 2004-09-02
US7034742B2 (en) 2006-04-25
CN100365430C (en) 2008-01-30
CN1668938A (en) 2005-09-14
JP2013209085A (en) 2013-10-10
EP1537440A2 (en) 2005-06-08
EP1537440B1 (en) 2016-04-06
AU2003251943A8 (en) 2004-02-02

Similar Documents

Publication Publication Date Title
US7034742B2 (en) Road curvature estimation and automotive target state estimation system
US7522091B2 (en) Road curvature estimation system
JP5848137B2 (en) Road curvature estimation system
US8775063B2 (en) System and method of lane path estimation using sensor fusion
CN102288148B (en) Road configuration estimation apparatus and road configuration estimation method
KR100776860B1 (en) Path prediction system and method
Deusch et al. A random finite set approach to multiple lane detection
WO2018221453A1 (en) Output device, control method, program, and storage medium
JP6696593B2 (en) Travel history storage method, travel locus model generation method, self-position estimation method, and travel history storage device
CN107646114A (en) Method for estimating lane
EP3301474A1 (en) State calculation apparatus, state calculation method, and recording medium storing program for moving object
JP2003536096A (en) Tracking map generator
García-Fernández et al. Bayesian road estimation using onboard sensors
Adam et al. Probabilistic road estimation and lane association using radar detections
Heirich et al. Probabilistic localization method for trains
EP3605500B1 (en) Output device, control method, program, and storage medium
KR20180056322A (en) Method for producing virtual lane based on short-range radar sensor
CN110678778B (en) Vehicle system for detecting an oncoming vehicle
Polychronopoulos et al. Extended path prediction using camera and map data for lane keeping support
Yoon et al. High-definition map based motion planning, and control for urban autonomous driving
Shen et al. Reliable road vehicle collision prediction with constrained filtering
CN110709727B (en) Vehicle system for detecting oncoming vehicles
Yang et al. Closet In-Path Vehicle Detection and Recognition Algorithm Based on Camera and Millimeter-Wave Radar Fusion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004521888

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038169673

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003764720

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003764720

Country of ref document: EP