WO2004007724A1 - Method of transporting protein to mitochondria - Google Patents

Method of transporting protein to mitochondria Download PDF

Info

Publication number
WO2004007724A1
WO2004007724A1 PCT/JP2003/007252 JP0307252W WO2004007724A1 WO 2004007724 A1 WO2004007724 A1 WO 2004007724A1 JP 0307252 W JP0307252 W JP 0307252W WO 2004007724 A1 WO2004007724 A1 WO 2004007724A1
Authority
WO
WIPO (PCT)
Prior art keywords
mitochondria
protein
subunit
mitochondrial
dna
Prior art date
Application number
PCT/JP2003/007252
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Yoshikawa
Hideo Shimada
Kunitoshi Shimokata
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2004007724A1 publication Critical patent/WO2004007724A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • C12N15/625DNA sequences coding for fusion proteins containing a sequence coding for a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/07Fusion polypeptide containing a localisation/targetting motif containing a mitochondrial localisation signal

Definitions

  • the present invention relates to a method for transporting a specific protein from the cytoplasm to mitochondria, and more particularly, to transport a protein encoded by mitochondrial DNA from the cytoplasm to mitochondria, and to modify the function of the protein encoded by mitochondrial DNA.
  • Conventional technology Conventional technology
  • Intracellular mitochondria play a role in converting the chemical energy of carbohydrates, lipids, proteins, etc. into the chemical energy of ATP, and are essential for cell survival, but mitochondria contain DNA and contain 20 amino acids. Encodes the genetic information for tRNA and ribosome RNA corresponding to In other words, mitochondria have their own protein synthesis systems.
  • mitochondrial DNA encodes a partial subunit gene of a membrane enzyme that catalyzes the above-mentioned energy conversion reaction (respiration).
  • Methods for modifying mitochondrial DNA include (A) a method in which the gene is applied to metal microparticles and the gene is injected into mitochondria to introduce the gene (Methods in Enzymology, 264, 265-278 (1996), etc.). (B) A method of establishing a cell line in which mt DNA has been eliminated by using a ligature or by using an enzyme and introducing new mt DNA there (Proc. Natl. Acad. Sci. 85, 7288-7292 ( 1988)). (C) Furthermore, a method of modifying the function of mitochondria by incorporating the gene into the nucleus and transporting the protein expressed in the cytoplasm to mitochondria (Cell, 46, 837-844 (1986), etc.) is already known. Have been.
  • An object of the present invention is to develop a method for modifying the function of a multi-transmembrane protein encoded by mt DNA of a higher animal.
  • the conventional method that has been adopted to modify the function of the protein encoded by mt DNA in the case of (A), the frequency at which the shot DNA is stably retained is low, and the mitochondria that are numerous in the cell Is not introduced into the gene. Therefore, this method is unsuitable for altering mitochondrial function, that is, a technique for treating mitochondrial disease.
  • the method for modifying the gene is correct in principle. However, it is necessary to establish a cell line in which mtDNA has been deleted. However, if DNA is lost, respiratory deficiency may occur, which may lead to problems such as slow cell growth, which is also technically difficult.
  • the method (C) requires an operation to change the unique codon used in the mitochondrial protein synthesis system to the cytoplasmic type, but a series of operations is relatively easy and can be achieved in a short time.
  • protein transport is expected to occur equally in all mitochondria, which is desirable as a technique for modifying the function of mitochondria.
  • the method (C) transports a water-soluble protein encoded by mtDNA responsible for the function, and partially recovers the defective function. (Cell, 6, 837-844 (1986)).
  • mitochondrial DNA a unique transport signal (also called the Targeting signal ⁇ Sorting signal) to cross the outer and inner membranes of the mitochondrial lipid bilayer, Transported to mitochondria. After transport, the transport signal is disconnected.
  • Transport signal also called the Targeting signal ⁇ Sorting signal
  • the present inventors paid attention to the orientation (topology) of subunits in the membrane, and found that a desired protein can be transported to mitochondria by using a transport signal specific to a specific subunit.
  • the present invention has been completed.
  • Such a subunit satisfies the following conditions. 1) It is a subunit of the mitochondrial membrane protein encoded by nuclear DNA. Thus, this subunit is expressed in the cytoplasm and transported to mitochondria. 2) When this subunit is transported to the mitochondria and is present on the mitochondrial membrane, the N-terminus of the protein of this subunit, preferably both the N-terminus and the C-terminus, is present on the matrix side of the mitochondria. Subunit It is considered that a transmembrane type of two or more even times is suitable as such a subunit. By using a transport signal unique to such a substance, the above-mentioned problem can be solved. I was able to.
  • the present invention relates to a method for binding a transport signal to the N-terminus of a specific protein to transport the protein from the cytoplasm to mitochondria, wherein the transport signal is a mitochondrial encoded by nuclear DNA.
  • the present effort also provides for mitochondrial membrane proteins having mitochondrial membrane proteins so produced, since subunits of membrane proteins can be transported to mitochondria in this manner to produce mitochondrial membrane proteins. And mitoplast in which the outer membrane has been removed from the mitochondria, and cells containing the mitochondria.
  • FIG. 1 shows the mitochondrial SI gene prepared from the muscle of the mouse heart.
  • TGA single underline
  • AT A double underline
  • FIG. 2 shows a process for preparing a subunit I expression vector of cytochrome c oxidase having a histidine tag at the C-terminus and a transport signal at the N-terminus.
  • FIG. 3 shows SDS-PAGE of purified ⁇ cytochrome c oxidase at the same mobility as SI.
  • Hela cells infected with plasmid (SI wt) shows mitoplast (WT) obtained from cells, and (3) shows mitoplast (D51N) obtained from Hela cells infected with plasmid (pSI51n).
  • FIG. 4 shows an absorption spectrum of cytochrome c.
  • Reduced cytochrome c shows a sharp absorption at 550 nm, but disappears in the oxidized form.
  • FIG. 5 shows cytochrome c oxidation activity.
  • the vertical axis indicates the absorbance at 550 nm, and a decrease (below) indicates that oxidation has occurred.
  • the horizontal axis indicates time. Steep The higher the activity, the higher the activity.
  • Open arrows indicate the addition of reduced cytochrome c.
  • Left (WT) expresses mitoplasts prepared from cells expressing wild-type SI
  • right (D51N) expresses mutant SI (subunit I with amino acid 51 mutated to asparagine) It shows the mitoplasts that do.
  • FIG. 6 shows the active transport activity of hydrogen ions.
  • the vertical axis indicates the hydrogen ion concentration, and the lower the lower, the higher the hydrogen ion concentration.
  • the horizontal axis indicates time.
  • Open arrows indicate the addition of reduced cytochrome c.
  • A) shows WT
  • B) shows WT plus uncoupler
  • C shows D51N.
  • a specific transport signal is first bound to the N-terminal of the protein.
  • nuclear DNA is ligated by linking a nucleotide sequence encoding a transport signal to a gene encoding the protein so as to bind to an end corresponding to the N-terminus of the protein.
  • a fusion protein in which a transport signal is linked to the N-terminal of the protein can be expressed in the cytoplasm.
  • the mitochondria and the nucleus have different genetic codes, it is necessary to appropriately modify the genetic code so that the mitochondrial gene brings about the same protein in the nucleus.
  • the protein to be transported in the present invention may be such a protein, but one of the features of the present invention is that it can be applied to a protein encoded by mitochondrial DNA.
  • Such a protein has the same orientation as the subunit originally having the transport signal employed in the present invention, that is, when the subunit is present in the mitochondrial membrane, both its N-terminal and C-terminal are mitochondrial. Subunits that are present on the side of the matrix are most preferred.
  • Such proteins include the subunits of mitochondrial membrane proteins such as SI of cytochrome b cytochrome oxidase.
  • Such a method can also be applied to proteins encoded by nuclear DNA, particularly membrane proteins.
  • the method of the present invention is not limited by molecular weight
  • One of the features of the present invention is that the present invention can be applied to a protein whose amount is as large as 100,000 to 600,000.
  • the transport signal bound to the protein transported to the mitochondria is cleaved and removed, and the protein remaining as a result of this cleavage may function as it is in the mitochondria. If, for example, one of the subunits of the mitochondrial membrane protein, a mitochondrial membrane protein is formed from this protein and other subunits.
  • the method of the present invention makes it possible to artificially alter various functions dependent on the multi-transmembrane protein encoded by mitochondrial DNA.
  • the success of SI with a transmembrane cytochrome oxidase was demonstrated by the fact that this protein was also used for the 8-transmembrane cytochrome 6, which was previously said to be unable to be transported to mitochondria. Since the protein and the orientation in the membrane are the same, the function can be changed by this method. Both proteins play a central role in mitochondrial respiration, thus enabling the treatment of severe genetic disorders caused by protein mutations.
  • This method is effective not only for treating genetic diseases but also for studying the function of mitochondrial membrane proteins and the relationship between function and structure.
  • membrane proteins encoded by nuclear DNA can be newly transported to mitochondria, and new functions can be imparted to mitochondria.
  • the present invention will be illustrated by way of examples, but these are not intended to limit the present invention.
  • the cytochrome oxidase targeted in this example is composed of three subunits derived from mitochondria (SI-III) and 10 subunits encoded in the nucleus and transported from the cytoplasm to mitochondria.
  • SI is responsible for the active center of this enzyme It is an important subunit.
  • the orientation (topology) in the membrane was the same, and the S-terminal (one-transmembrane type) with the N-terminus on the matrix side was used.
  • the mitochondrial transport signal (SEQ ID NO: 6) bound to the N-terminus was fused to the N-terminus of SI and transported from the cytoplasm to mitochondria.
  • S I of wild-type cytochrome oxidase and two genes obtained by mutating the 51st aspartic acid from N of S I to asparagine were each integrated into the chromosome of a human HeLa cell.
  • a histidine tag amino acid sequence consisting of six consecutive histidines
  • Mitochondria were prepared from the heart muscle of a fresh mouse, and mitochondrial DNA (mt DNA) was obtained by a conventional method. Since the gene sequence has already been determined for the mtDNA of the heart muscle (J. Mol. Biol. 156, 683-717 (1982)), the synthetic DNA shown in SEQ ID NOs: 2 and 3 was utilized using that sequence. Using this method, only the SI gene (FIG. 1, SEQ ID NO: 1) was amplified by PCR to clone the gene and inserted into the multicloning site of plasmid pUC18 (FIG. 2 (A)). This plasmid was named pSIm.
  • the fourth to ninth bases of the synthetic DNA of SEQ ID NO: 2 are restriction enzymes cI, and the fourth to ninth bases of the synthetic DNA of SEQ ID NO: 3 are cleavage sites of PstI.
  • Amplified subunit I gene at both ends The SacI-PstI DNA fragment obtained by cleaving the above-mentioned restriction enzyme cleavage site was inserted into the above plasmid.
  • TGA and ATA encode tributophan and methionine, respectively. When they are incorporated directly into the nucleus, they correspond to translation termination and isoleucine. TGG and ATG were modified to be translated into tryptophan and methionine in the cytoplasm. The modification used the usual site-specific mutagenesis method. The plasmid carrying the modified gene was named psI.
  • the SI gene having a histidine tag at the C-terminal was amplified using the synthetic DNA of SEQ ID NO: 4 and the reverse primer for Takara Biomedical's pUC (SEQ ID NO: 5). (Fig. 2 (B) top).
  • the 3rd to 8th bases of the above primer shown in SEQ ID NO: 4 indicate a restriction enzyme 5 zoII cleavage site, and the 12th to 29th bases indicate a portion complementary to the histidine tag-encoding sequence.
  • the resulting DNA fragment containing the SI gene was cleaved with cI-Bg1II (Fig.
  • the amino acid sequence serving as a transport signal (SEQ ID NO: 6) was linked to the SI gene by the following method.
  • SEQ ID NOS: 7 and 8 Two oligonucleotides (SEQ ID NOS: 7 and 8, 3 to 8 of SEQ ID NO: 7 represent $$ acI, 2 to 7 of SEQ ID NO: 8 represent SjDzoI cleavage sites, SEQ ID NO: 3
  • the 5th to 55th positions and the 20th to 40th positions of SEQ ID NO: 8 show complementary sequences.
  • Were synthesized, the two DNAs were ligated with these complementary sequences, and the complete double-stranded DNA was prepared by PCR.
  • the SI gene of pSI-ht was amplified with the primer of SEQ ID NO: 9 having a zoI site and the universal primer for pUC of Takara Biomedical (SEQ ID NO: 10) (FIG. 2 (C)).
  • the obtained DNA fragment was digested with ⁇ and Pst I (arrows in FIG. 2 (C)), and inserted into pBluescript KS together with the ⁇ col-Sp II DNA fragment described above, and plasmid pB, SIW was obtained (Fig. 2 (C), bottom).
  • the SI gene was excised from plasmid p BZS IW at // ⁇ 11 1 and ⁇ / "0 I and inserted into Invitrogen's plasmid pRc, CMV to obtain an expression vector pSI wt (wild type). .
  • Subunit I (mutant SI) in which the first amino acid was mutated to asparagine was treated in the same manner as above to obtain pSI51n. Incorporation into cultured cells
  • Each of the above two plasmids (SI wt, pSI51n) was infected with HeLa cells using Qiagen's Effectene transfection reagent, and Dulbecco's modified Eagle containing 10% fetal bovine serum. The cells were cultured in a medium, and then colonies that grew in the presence of the antibiotic geneticin were selected. Mitochondrial and activity ⁇ These two types of cultured cells were cultured in the above-mentioned medium containing geneticin, and when the cells became 100% confluent in the dish, the culture was stopped and the cells were collected.
  • the obtained cells were disrupted in a 10 mM HEP ES-KOH (pH 7.4) buffer containing 0.2 M sucrose and 0.5 mM EDTA using a potter-type glass stirrer (fluorine resin whistle). Mitochondria were obtained by a conventional method. Furthermore, mitochondria are treated with hypotonic solution as usual and suspended in lmM HE PES-KOH (pH 7.0) containing 0.2M sucrose and 0.02% bovine serum albumin, and the outer membrane of mitochondria is treated. Were prepared. Mitoplasts obtained from cells that expressed wild-type SI are denoted by “WTJ”, and mutant SI mitoplasts are denoted by “D51N”. Detection of Subunit I by Western blotting
  • the mitoplasts prepared as described above were dissolved in 0.1% SDS, subjected to SDS-PAGE electrophoresis by a conventional method, transferred to a PVDF membrane, and then reacted with a histidine-tagged antibody.
  • Figure 3 shows the results.
  • Fig. 3 (2) shows that of WT
  • Fig. 3 (3) shows that of D51N. In both cases, the presence of the protein was confirmed at the same mobility as that of S I of purified cytochrome c oxidase.
  • Reduced cytochrome c was prepared and reacted with the above mitoplast at 25 ° C. Reduced cytochrome c shows a sharp absorption at 550 nm, but disappears when oxidized to oxidized form (Fig. 4). Therefore, the oxidation activity of reduced cytochrome c was tracked at a wavelength of 55 Onm.
  • the reaction solution (660 ⁇ 1) is as follows. 1 OmM HEPE S-KOH (pH 7.0) buffer solution, 5 OmM KC 1, 0.2 M sucrose, 40 nmolZmg N-ethylmaleimide, 0.2 nmolZmg Antimycin A, 45 pmo ⁇ / mg valinomycin, 2.0 ⁇ rotenone, 11.3 nmol / ml oligomycin, and 1.0 // M myxothiazole. About 5 ⁇ g of mitoplast was added.
  • the reaction was started by adding 8.4 nmol of reduced cytochrome c.
  • cytochrome c becomes an oxidized form and the absorption at 550 nm is reduced.
  • Fig. 5 shows the situation.
  • Mitoplasts prepared from cells expressing wild-type SI show a rapid cytochrome c inhibition activity inhibited by cyanide (Fig. 5, left), and the activity is almost the same as that of mitoplasts obtained from mock cells. It was the same.
  • mitoplasts expressing mutant SI also showed rapid cytochrome c oxidation activity (Fig. 5, right). When compared in terms of specific activity, it was about 30% higher than that of mitoplast containing wild-type SI, but it is considered to be almost the same. Measurement of hydrogen ion active transport activity
  • the active transport activity of hydrogen ions was measured for the same two mitoplasts as described above.
  • the active activity for hydrogen ion transport was the same as above, but the buffer concentration was reduced to 0.5 mM.
  • the change in hydrogen ion concentration in the reaction solution was measured using a Beckman pH meter model ⁇ 660 and a composite electrode (BECKMAN, 51082). In the measurement, the change in hydrogen ion concentration of the reaction solution caused by the addition of reduced cytochrome c was tracked.
  • Fig. 6 shows the results. The lower the lower, the higher the hydrogen ion concentration.
  • mitoplasts (WT) expressing wild-type SI showed significant ⁇ 4 formation of the reaction solution (Fig. 6 (A), the area indicated by a).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

It is intended to provide a means of transporting a protein to mitochondria without restraint of molecular weight, thereby making it possible to arbitrarily modify a protein synthesized in mitochondria and arbitrarily modify its function. Paying attention to the intracellular alignment (topology) of subunits, it is found out that a desired protein can be transported to mitochondria by using a transport signal inherent to a specific subunit. Such a subunit fulfills the following requirements: 1) being a subunit of a mitochondrial membrane protein encoded by nuclear DNA; and 2) in case of existing in a mitochondrial membrane, the N-end (preferably both of the N-end and the C-end) of the protein of the subunit existing in the mitochondrial matrix side.

Description

明 細 書 タンパク質をミトコンドリアへ輸送する方法 技術分野  Description Method for transporting proteins to mitochondria
この発明は、 特定のタンパク質を細胞質からミトコンドリアへ輸送する方法に 関し、 より詳細には、 ミトコンドリア DNAにコードされるタンパク質を細胞質 からミトコンドリアへ輸送し、 ミトコンドリア DNAにコードされるタンパク質 の機能を改変する方法に関する。 従来技術  The present invention relates to a method for transporting a specific protein from the cytoplasm to mitochondria, and more particularly, to transport a protein encoded by mitochondrial DNA from the cytoplasm to mitochondria, and to modify the function of the protein encoded by mitochondrial DNA. About the method. Conventional technology
細胞内のミトコンドリアは、 炭水化物、 脂質、 タンパク質などがもつ化学エネ ルギーを AT Pの化学エネルギーに変換する役割を持ち、 細胞の存続に不可欠で あるが、 ミトコンドリアには DNAがあり、 20種のアミノ酸に対応する t RN A、 そしてリボゾーム RN Aの遺伝子情報をコードする。 すなわちミ トコンドリ ァは独自のタンパク質合成系をもつ。 さらにミトコンドリア DNA (m t DNA) は上述したエネルギー変換反応 (呼吸) を触媒する膜酵素の一部サブユニット遺 伝子をコードする。  Intracellular mitochondria play a role in converting the chemical energy of carbohydrates, lipids, proteins, etc. into the chemical energy of ATP, and are essential for cell survival, but mitochondria contain DNA and contain 20 amino acids. Encodes the genetic information for tRNA and ribosome RNA corresponding to In other words, mitochondria have their own protein synthesis systems. In addition, mitochondrial DNA (mt DNA) encodes a partial subunit gene of a membrane enzyme that catalyzes the above-mentioned energy conversion reaction (respiration).
ミトコンドリア DNAを改変する方法として、 これまで (A) 当該遺伝子を金 属微粒子に塗布して、 ミトコンドリアに撃ち込み遺伝子導入する方法 (Methods in Enzymology, 264, 265-278 (1996)等)。 (B) ィ匕学的にあるいは酵素を 使って m t DNAを消失させた細胞株を樹立し、 そこに新たな m t DNAを導入 する方法 (Proc. Natl. Acad. Sci . 85, 7288 - 7292 (1988)等)。 (C) さらに当該遣伝子を核に取り込ませ、 細胞質で発現されたタンパク質をミトコン ドリアに輸送させミ トコンドリアの機能を改変する方法 (Cell, 46, 837-844 (1986)等) がすでに知られている。 また今回の技術に関連する膜タンパク質の 輸送としては、 48個のアミノ酸残基からなる酵母の mtDNAにコードされる AT P合成酵素のサブユニット 8 (S VIII) がミトコンドリアに輸送されミト コンドリアの機能回復 ίこ成功してレヽる (Proc. Natl. Acad. Sci. USA, 85, 2091-2095 (1988) )o Methods for modifying mitochondrial DNA include (A) a method in which the gene is applied to metal microparticles and the gene is injected into mitochondria to introduce the gene (Methods in Enzymology, 264, 265-278 (1996), etc.). (B) A method of establishing a cell line in which mt DNA has been eliminated by using a ligature or by using an enzyme and introducing new mt DNA there (Proc. Natl. Acad. Sci. 85, 7288-7292 ( 1988)). (C) Furthermore, a method of modifying the function of mitochondria by incorporating the gene into the nucleus and transporting the protein expressed in the cytoplasm to mitochondria (Cell, 46, 837-844 (1986), etc.) is already known. Have been. The transport of membrane proteins related to this technology involves the transport of mitochondria by subunit 8 (SVIII) of ATP synthase encoded by yeast mtDNA consisting of 48 amino acid residues. Recovery Successful review (Proc. Natl. Acad. Sci. USA, 85, 2091-2095 (1988)) o
本発明は、 高等動物の m t DNAにコードされたマルチ膜貫通タンパク質の機 能を改変する方法を開発することを課題とする。 m t DNAにコードされたタン パク質の機能改変に採用されてきた従来の方法では、 (A)の場合、撃ち込まれた DNAが安定に保持される頻度が低く、 また細胞内に数多くあるミトコンドリア 全てに当該遺伝子が導入されることはない。 したがって本方法はミトコンドリア の機能改変、すなわちミトコンドリア病治療技術としては不適切である。 (B)の 場合、 遺伝子の改変方法としては原理的に正しい。 しかし mtDNAを欠失させ た細胞株の樹立が必要であり、 しかし DN Aが消失すると呼吸欠損になるため細 胞の増殖が遅いなど問題が予想され、 この場合も技術的に難しい。  An object of the present invention is to develop a method for modifying the function of a multi-transmembrane protein encoded by mt DNA of a higher animal. In the conventional method that has been adopted to modify the function of the protein encoded by mt DNA, in the case of (A), the frequency at which the shot DNA is stably retained is low, and the mitochondria that are numerous in the cell Is not introduced into the gene. Therefore, this method is unsuitable for altering mitochondrial function, that is, a technique for treating mitochondrial disease. In the case of (B), the method for modifying the gene is correct in principle. However, it is necessary to establish a cell line in which mtDNA has been deleted. However, if DNA is lost, respiratory deficiency may occur, which may lead to problems such as slow cell growth, which is also technically difficult.
一方 (C) の方法であるが、 ミトコンドリアのタンパク質合成系で使われる独 自のコドンを細胞質型に変更させる操作が必要であるが、 一連の操作は比較的容 易で、 短期間で達成可能で、 しかもタンパク質の輸送は、 全てのミトコンドリア に均等に起こると予想されミトコンドリァの機能改変技術としては望ましい。 これまで (C) の方法で、 失われたミトコンドリアの機能を回復するために、 その機能を担う mtDNAにコードされる水溶性のタンパク質を輸送し、 欠損し た機能を部分的にではあるが回復することに成功したことが報告されている (Cell, 6, 837-844 (1986))。  On the other hand, the method (C) requires an operation to change the unique codon used in the mitochondrial protein synthesis system to the cytoplasmic type, but a series of operations is relatively easy and can be achieved in a short time. In addition, protein transport is expected to occur equally in all mitochondria, which is desirable as a technique for modifying the function of mitochondria. In order to restore the function of mitochondria that has been lost, the method (C) transports a water-soluble protein encoded by mtDNA responsible for the function, and partially recovers the defective function. (Cell, 6, 837-844 (1986)).
また m t DNAにコードされた膜タンパク質の場合も、 1回膜貫通型の酵母 A TP合成酵素の S VIIIを同様にミトコンドリアに輸送し機能発現に成功してい る。 しかし 8回膜貫通型のチトクロム 6 (呼吸系の b c 1複合体のサブュニット)、 また 12回膜貫通型のチトク口ム酸化酵素のサブュニット I ( S I ) は、 ミト コンドリアへの輸送は不可能と報告されている (Eur. J. Biochem. 228, 762-771(1995))。 ここでは輸送シグナルとして AT P合成酵素のサブュ-ット 9の輸送シグナルを用いているが、 この AT P合成酵素のサブユニット 9は N及 び C末端の両方がミトコンドリアの膜間空間側に存在している (Science 286, 1700 (1999)、 上記サブユニット 9はこの論文のサブユニット cに相当する。)。 高分子量のタンパク質を輸送することが出来なかった理由は、 この輸送シグナル の選択にあったものと考えられる。 発明が解決しょうとする課題 In the case of the membrane protein encoded by mt DNA, SVIII, a single transmembrane yeast ATP synthase, was similarly transported to mitochondria and successfully expressed its function. However, eight transmembrane cytochromes 6 (subunits of the bc 1 complex in the respiratory system) and twelve transmembrane cytochrome oxidase subunits I (SI) cannot be transported to mitochondria. It has been reported (Eur. J. Biochem. 228, 762-771 (1995)). Here, the transport signal of the ATP synthase Subunit 9 is used as the transport signal, and both the N and C termini of the ATP synthase subunit 9 are located in the transmembrane space of mitochondria. (Science 286, 1700 (1999), subunit 9 above corresponds to subunit c in this paper.) The reason that high-molecular-weight proteins could not be transported may be due to the selection of this transport signal. Problems the invention is trying to solve
上記のように従来技術においては、 8回膜貫通型のチトクロム や 1 2回膜貫 通型のチトクロム酸化酵素の S Iのような分子量の大きいタンパク質をミ トコ ンドリアへ輸送することが出来ないため、 このようなタンパク質が分子量による 制限を受けずにミ トコンドリァへ輸送することのできる技術が求められていた。 このような技術が可能になれば、 ミ トコンドリアで合成されるタンパク質を自由 に改変することが可能になり、 その結果、 ミ トコンドリアの機能を自由に改変す ることが可能になり、 更に、 ミ トコンドリアの特定の機能の欠陥を治療する手段 をもたらすことができる。 課題を解決するための手段  As described above, in the prior art, large-molecular-weight proteins such as eight-transmembrane cytochrome and SI of 12-transmembrane cytochrome oxidase cannot be transported to mitochondria. There has been a need for a technique that enables such proteins to be transported to mitochondria without being restricted by molecular weight. If such a technology becomes possible, it becomes possible to freely modify proteins synthesized in mitochondria, and as a result, it is possible to freely modify the functions of mitochondria. It can provide a means to treat defects in certain functions of tochondria. Means for solving the problem
ミ トコンドリアで合成されるタンパク質のうち、 ミトコンドリア D NAにコー ドされるものは一部であり、 その他は核 D N Aにコードされる。 この核 D NAに コードされれたタンパク質は、 ミ トコンドリアの脂質二重層の外膜と内膜を通過 するために、 固有の輸送シグナノレ (Targeting signal^ Sorting signal と もいう。) を連結して、 ミトコンドリアに輸送される。 輸送後、 輸送シグナルは切 り離さ る。  Of the proteins synthesized in mitochondria, some are encoded by mitochondrial DNA, and others are encoded by nuclear DNA. The protein encoded by this nuclear DNA links a unique transport signal (also called the Targeting signal ^ Sorting signal) to cross the outer and inner membranes of the mitochondrial lipid bilayer, Transported to mitochondria. After transport, the transport signal is disconnected.
本発明者らは、 サブユニットの膜内での配向 (トポロジー) に注目し、 特定の サブユニット固有の輸送シグナルを用いることにより、 所望のタンパク質をミ ト コンドリァに輸送することができることを見出し、 本発明を完成させた。  The present inventors paid attention to the orientation (topology) of subunits in the membrane, and found that a desired protein can be transported to mitochondria by using a transport signal specific to a specific subunit. The present invention has been completed.
このようなサブユニットは次の条件を満たすものである。 1 ) 核 D NAにコー ドされたミ トコンドリアの膜タンパク質のサブユニットである。 従って、 このサ ブユニットは細胞質で発現し、 ミ トコンドリアへ輸送される。 2 ) このサブュニ ットがミ トコンドリアへ輸送され、 ミトコンドリアの膜に存在するときに、 この サブユニットのタンパク質の N末端、 好ましくは N末端と C末端の両方、 がミ ト コンドリアのマトリックス側に存在するサブュニットである。 このようなサブュ ニットとして、 2以上の偶数回膜貫通型が適当であると考えられる。 このような サブュニットに固有の輸送シグナルを用いることにより、 上記課題を解決するこ とができた。 Such a subunit satisfies the following conditions. 1) It is a subunit of the mitochondrial membrane protein encoded by nuclear DNA. Thus, this subunit is expressed in the cytoplasm and transported to mitochondria. 2) When this subunit is transported to the mitochondria and is present on the mitochondrial membrane, the N-terminus of the protein of this subunit, preferably both the N-terminus and the C-terminus, is present on the matrix side of the mitochondria. Subunit It is considered that a transmembrane type of two or more even times is suitable as such a subunit. By using a transport signal unique to such a substance, the above-mentioned problem can be solved. I was able to.
即ち、 本発明は、 特定のタンパク質の N末端に輸送シグナルを結合させて、 こ のタンパク質を細胞質からミ トコンドリアへ輸送する方法であって、 この輸送シ グナルが、 核 DNAにコードされたミ トコンドリアの膜タンパク質のサブュニッ トであって、 そのサブユニットがミ トコンドリアの膜に存在するときにその N末 端、 好ましくは N末端と C末端の両方、 がミ トコンドリアのマトリックス側に存 在するサブュニットの輸送シグナルであることを特徴とする方法である。  That is, the present invention relates to a method for binding a transport signal to the N-terminus of a specific protein to transport the protein from the cytoplasm to mitochondria, wherein the transport signal is a mitochondrial encoded by nuclear DNA. A subunit of a membrane protein of which the N-terminus, preferably both the N-terminus and the C-terminus, are present on the mitochondrial matrix side when the subunit is present in the mitochondrial membrane. A method characterized by being a transport signal.
このようにして膜タンパク質のサブユニットをミ トコンドリアへ輸送してミ ト コンドリア膜タンパク質を製造することができるので、 本努明はまた、 このよう にして製造されたミ トコンドリア膜タンパク質を有するミ トコンドリアであり、 このミ トコンドリアから外膜が除去されたミ トプラストであり、 更に、 このミ ト コンドリアを含む細胞である。 図面の簡単な説明  The present effort also provides for mitochondrial membrane proteins having mitochondrial membrane proteins so produced, since subunits of membrane proteins can be transported to mitochondria in this manner to produce mitochondrial membrane proteins. And mitoplast in which the outer membrane has been removed from the mitochondria, and cells containing the mitochondria. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 ゥシ心臓の筋肉から調製したミ トコンドリアの S I遺伝子を示す。 TGA (一重下線) と AT A (二重下線) は、 それぞれ TGGと ATGに改変し た。  FIG. 1 shows the mitochondrial SI gene prepared from the muscle of the mouse heart. TGA (single underline) and AT A (double underline) were modified to TGG and ATG, respectively.
第 2図は、 C端にヒスチジンタグ及び N端に輸送シグナルを結合させたゥシチ トクロム c酸化酵素のサブュニット Iの発現ベクターを作製する過程を示す。 第 3図は、 精製ゥシチトクロム c酸化酵素の S Iと同じ移動度における SD S— PAGEを示す。 (1) は、 S I遺伝子をもたないプラスミツド pRcZC MVを組み込ませた He L a細胞 (mo c k細胞) 力、ら調製したミトプラストの もの、 (2) はプラスミツド (S I w t) を感染させた Hela細胞から得たミ トプ ラスト (WT)のもの、 (3)はプラスミツド(p S I 51 n) を感染させた Hela 細胞から得たミ トプラスト (D51N) のものを示す。 FIG. 2 shows a process for preparing a subunit I expression vector of cytochrome c oxidase having a histidine tag at the C-terminus and a transport signal at the N-terminus. FIG. 3 shows SDS-PAGE of purified ゥ cytochrome c oxidase at the same mobility as SI. (1) HeLa cells (mock cells) containing plasmid pRcZC MV without SI gene, mitoplasts prepared, and (2) Hela cells infected with plasmid (SI wt) (3) shows mitoplast (WT) obtained from cells, and (3) shows mitoplast (D51N) obtained from Hela cells infected with plasmid (pSI51n).
第 4図は、 ゥマチトクロム cの吸収スぺク トルを示す。 還元型チトクロム cは 550 nmに鋭い吸収示すが、 酸化型ではそれが消失する。  FIG. 4 shows an absorption spectrum of cytochrome c. Reduced cytochrome c shows a sharp absorption at 550 nm, but disappears in the oxidized form.
第 5図は、 チトクロム c酸化活性を示す。 縦軸は 550 nmの吸光度を示し、 減少 (下方) は酸化が起こっていることを示す。 横軸は時間を示す。 傾きが急な ほど活性が強いことを示す。 白抜き矢印は還元型チトクロム cの添加を示す。 左 (WT) は、 野生型 S Iを発現している細胞から調製したミ トプラスト、右 (D 5 1 N) は、 変異 S I ( 5 1番目のアミノ酸をァスパラギンに変異させたサブ ユニット I ) を発現しているミ トプラストのものを示す。 FIG. 5 shows cytochrome c oxidation activity. The vertical axis indicates the absorbance at 550 nm, and a decrease (below) indicates that oxidation has occurred. The horizontal axis indicates time. Steep The higher the activity, the higher the activity. Open arrows indicate the addition of reduced cytochrome c. Left (WT) expresses mitoplasts prepared from cells expressing wild-type SI, right (D51N) expresses mutant SI (subunit I with amino acid 51 mutated to asparagine) It shows the mitoplasts that do.
第 6図は、水素イオンの能動輸送活性を示す。縦軸は、水素イオン濃度を示し、 下方ほど水素イオン濃度は高い。 横軸は時間を示す。 白抜き矢印は還元型チトク ロム cの添加を示す。 (A)は WTのもの、 (B )は WTに脱共役剤を加えたもの、 (C ) は D 5 1 Nのものを示す。 発明の実施の形態  FIG. 6 shows the active transport activity of hydrogen ions. The vertical axis indicates the hydrogen ion concentration, and the lower the lower, the higher the hydrogen ion concentration. The horizontal axis indicates time. Open arrows indicate the addition of reduced cytochrome c. (A) shows WT, (B) shows WT plus uncoupler, and (C) shows D51N. Embodiment of the Invention
本発明においては、 まずタンパク質の N末端に特定の輸送シグナルを結合させ る。 このような結合方法に特に制限はないが、 タンパク質をコードする遺伝子に 輸送シグナルをコ一ドする塩基配列を、 該タンパク質の N末端に相当する端に結 合するように、 連結して核 D N Aに導入すれば、 細胞質でタンパク質の N末端に 輸送シグナルを結合した融合タンパク質を発現させることができる。この場合に、 ミ トコンドリアと核では遺伝コードに異なるものがあるため、 ミ トコンドリア遺 伝子を核で同じタンパク質をもたらすよう適宜遺伝コードを改変する必要がある。 また本発明の輸送の対象となるタンパク質は、レ、かなるタンパク質でもよいが、 ミ トコンドリア D NAにコードされるタンパク質に適用できることが本発明の特 徴の一つである。  In the present invention, a specific transport signal is first bound to the N-terminal of the protein. Although there is no particular limitation on such a binding method, nuclear DNA is ligated by linking a nucleotide sequence encoding a transport signal to a gene encoding the protein so as to bind to an end corresponding to the N-terminus of the protein. In this case, a fusion protein in which a transport signal is linked to the N-terminal of the protein can be expressed in the cytoplasm. In this case, since the mitochondria and the nucleus have different genetic codes, it is necessary to appropriately modify the genetic code so that the mitochondrial gene brings about the same protein in the nucleus. In addition, the protein to be transported in the present invention may be such a protein, but one of the features of the present invention is that it can be applied to a protein encoded by mitochondrial DNA.
このようなタンパク質として、 本発明で採用した輸送シグナルを本来有してい るサブユニットと配向が同じ、 即ち、 サブユニットがミ トコンドリアの膜に存在 するときにその N末端と C末端の両方がミトコンドリアのマトリックス側に存在 するようなサブユニットが最も好ましい。 このようなタンパク質として、 チトク ロム bゃチトクロム酸化酵素の S Iのようなミ トコンドリアの膜タンパク質の サブュニットが挙げられる。  Such a protein has the same orientation as the subunit originally having the transport signal employed in the present invention, that is, when the subunit is present in the mitochondrial membrane, both its N-terminal and C-terminal are mitochondrial. Subunits that are present on the side of the matrix are most preferred. Such proteins include the subunits of mitochondrial membrane proteins such as SI of cytochrome b cytochrome oxidase.
このような方法は、 核 D NAにコードされるタンパク質、 特に膜タンパク質に も適用することができる。  Such a method can also be applied to proteins encoded by nuclear DNA, particularly membrane proteins.
また、 本発明の方法には、 分子量による制限を受けるものではないので、 分子 量が 1 0, 0 0 0〜6 0, 0 0 0のように大きいタンパク質に適用できるのも本 発明の特徴の一つである。 Also, the method of the present invention is not limited by molecular weight, One of the features of the present invention is that the present invention can be applied to a protein whose amount is as large as 100,000 to 600,000.
上記のように、 ミ トコンドリアへ輸送されたタンパク質に結合していた輸送シ グナルは切断除去され、 この切断の結果残ったタンパク質はそのままミ トコンド リア内で機能してもよいし、 またこのタンパク質が、 例えば、 ミ トコンドリア膜 タンパク質のサブュニットの一つであるならば、 このタンパク質とその他のサブ ユニットからミ トコンドリア膜タンパク質が形成される。  As described above, the transport signal bound to the protein transported to the mitochondria is cleaved and removed, and the protein remaining as a result of this cleavage may function as it is in the mitochondria. If, for example, one of the subunits of the mitochondrial membrane protein, a mitochondrial membrane protein is formed from this protein and other subunits.
この方法により、 ミ トコンドリアのタンパク質の機能を改変することができる し、 またこのようなタンパク質に欠陥がある場合には正常のものに直すこともで きる。 発明の効果  By this method, the function of mitochondrial proteins can be altered, and if such proteins are defective, they can be restored to normal ones. The invention's effect
本発明の方法は、 ミ トコンドリア D NAにコードされたマルチ膜貫通タンパク 質に依存した様々な機能を人為的に改変させることを可能にする。 1 2回膜貫通 型のチトクロム酸化酵素の S Iで成功したことは、 これまでミ トコンドリアへ の輸送不可能と言われていた 8回膜貫通型のチトクロム 6についても、 このタン パク質が前者のタンパク質と膜内での配向が同じであるので、 今回の方法で機能 変換が可能である。 両タンパク質ともミ トコンドリアの呼吸で中心的な役割を担 つており、 したがってタンパク質の変異によって惹起される重篤な遺伝子疾患の 治療が可能になる。 また本方法は遺伝病の治療のみならずミ トコンドリアの膜タ ンパク質の機能、機能と構造との関連を研究する際にも有効な方法である。また、 核 D NAにコードされる膜タンパク質を新たにミトコンドリアに輸送させ、 ミ ト コンドリアに新規機能を付与させることも可能となる。 以下、 実施例により本発明を例証するが、 これらは本発明を制限することを意 図したものではない。  The method of the present invention makes it possible to artificially alter various functions dependent on the multi-transmembrane protein encoded by mitochondrial DNA. 1 The success of SI with a transmembrane cytochrome oxidase was demonstrated by the fact that this protein was also used for the 8-transmembrane cytochrome 6, which was previously said to be unable to be transported to mitochondria. Since the protein and the orientation in the membrane are the same, the function can be changed by this method. Both proteins play a central role in mitochondrial respiration, thus enabling the treatment of severe genetic disorders caused by protein mutations. This method is effective not only for treating genetic diseases but also for studying the function of mitochondrial membrane proteins and the relationship between function and structure. In addition, membrane proteins encoded by nuclear DNA can be newly transported to mitochondria, and new functions can be imparted to mitochondria. Hereinafter, the present invention will be illustrated by way of examples, but these are not intended to limit the present invention.
本実施例で対象としたチトクロム酸化酵素は、 ミ トコンドリアに由来する 3つ のサブユニット (S I— III) と核にコードされ細胞質からミ トコンドリアに輸 送される 1 0個のサブュニットからなる。 S Iは本酵素の活性中心を担うもつ とも重要なサブュニットである。 本実施例では、 この S Iをミ トコンドリアに 輸送し機能発現を達成させるため、膜内での配向 (トポロジー) が同じであって、 N末端がマトリックス側にある S I V (1回膜貫通型) に注目して、 その N— 末端に結合していたミ トコンドリア輸送シグナル (配列番号 6) を S Iの N末 端に融合させ細胞質からミ トコンドリアに輸送させた。 The cytochrome oxidase targeted in this example is composed of three subunits derived from mitochondria (SI-III) and 10 subunits encoded in the nucleus and transported from the cytoplasm to mitochondria. SI is responsible for the active center of this enzyme It is an important subunit. In this example, in order to transport this SI to mitochondria and achieve function expression, the orientation (topology) in the membrane was the same, and the S-terminal (one-transmembrane type) with the N-terminus on the matrix side was used. Notably, the mitochondrial transport signal (SEQ ID NO: 6) bound to the N-terminus was fused to the N-terminus of SI and transported from the cytoplasm to mitochondria.
またヒ トの遺伝子治療を考慮してヒ ト培養細胞を選択した。 この S I Vのミ トコンドリァ輸送シグナルを利用して細胞質からミ トコンドリァへタンパク質が 輸送されたことはない。 但し、 酵母のチトクロム酸化酵素の S I Vの輸送シグ ナノレを使った報告(The EMBO J. 4, 2061-2068, 1985)力 Sある力 酵母の S I Vはほ乳類チトクロム酸化酵素の S Vに対応し、 膜貫通部分はなく、 また輸送 シグナルは異なっている。  Human cultured cells were selected in consideration of human gene therapy. No protein has been transported from the cytoplasm to the mitochondria using this mitochondrial transport signal of SIV. However, a report using the transport signal of yeast cytochrome oxidase SIV (The EMBO J. 4, 2061-2068, 1985) Power S Power The yeast SIV corresponds to the mammalian cytochrome oxidase SV, There are no parts and the transport signals are different.
本実施例では、 野生型ゥシチトクロム酸化酵素の S I と、 S Iの N から 5 1番目のァスパラギン酸をァスパラギンに変異させた二つの遺伝子をそれぞれ ヒ トの He L a細胞の染色体に組み込んだ。 ミ トコンドリアに輸送させた S I を検知するため S Iの C末端にヒスチジンタグ (ヒスチジンが 6つ連続したァ ミノ酸配列) を付け加えた。 機能の検討には、 S I遺伝子が染色体に組み込ま れた培養細胞を増殖させ、 そこからミ トコンドリアを調製して、 ミトコンドリア のチトクロム c酸化活性と水素イオン能動輸送活性を測定した。 S I遣伝子のクローニング  In this example, S I of wild-type cytochrome oxidase and two genes obtained by mutating the 51st aspartic acid from N of S I to asparagine were each integrated into the chromosome of a human HeLa cell. To detect SI transported to mitochondria, a histidine tag (amino acid sequence consisting of six consecutive histidines) was added to the C-terminus of SI. To examine the function, cultured cells in which the SI gene had been integrated into the chromosome were grown, mitochondria were prepared therefrom, and the mitochondrial cytochrome c oxidation activity and the hydrogen ion active transport activity were measured. Cloning of S I transgene
新鮮なゥシ心臓の筋肉からミ トコンドリアを調製し、 常法によってミ トコンド リア DNA (m t DNA) を得た。 ゥシ心筋の mtDNAは、 すでに遺伝子配列 が決定されているので (J. Mol. Biol. 156, 683-717 (1982))、 その配列 を利用して、配列番号 2及び 3に示す合成 D N Aを用いて P C R法によって S I 遺伝子 (第 1図、 配列番号 1) のみを増幅させて当該遺伝子をクローン化し、 プ ラスミド pUC 1 8のマルチクローユングサイトに揷入した (第 2図 (A))。 こ のプラスミドを p S I mと名付けた。 なお、 配列番号 2の合成 DNAの 4〜9番 目の塩基は制限酵素 c I、 配列番号 3の合成 DNAの 4〜 9番目の塩基は Ps t Iのそれぞれ切断部位である。 増幅されたサブユニット I遺伝子は両端 に上記の制限酵素切断部位をもっため、 切断し得られた Sa c l -Ps t I D N A断片を上記のプラスミツドに揷入した。 塩基の改変 Mitochondria were prepared from the heart muscle of a fresh mouse, and mitochondrial DNA (mt DNA) was obtained by a conventional method. Since the gene sequence has already been determined for the mtDNA of the heart muscle (J. Mol. Biol. 156, 683-717 (1982)), the synthetic DNA shown in SEQ ID NOs: 2 and 3 was utilized using that sequence. Using this method, only the SI gene (FIG. 1, SEQ ID NO: 1) was amplified by PCR to clone the gene and inserted into the multicloning site of plasmid pUC18 (FIG. 2 (A)). This plasmid was named pSIm. The fourth to ninth bases of the synthetic DNA of SEQ ID NO: 2 are restriction enzymes cI, and the fourth to ninth bases of the synthetic DNA of SEQ ID NO: 3 are cleavage sites of PstI. Amplified subunit I gene at both ends The SacI-PstI DNA fragment obtained by cleaving the above-mentioned restriction enzyme cleavage site was inserted into the above plasmid. Base modification
なお、 ミトコンドリア遺伝子で TGAと ATAは、 それぞれトリブトファンと メチォニンをコードするが、 核にそのまま組み込まれると、 それらは翻訳停止と イソロイシンに対応するので、 S I遺伝子 (第 1図) 上の上記配列をそれぞれ 細胞質でトリプトファンとメチォニンに翻訳されるように TGGと ATGに改変 した。 改変は通常の部位特異的変異方法を用いた。 改変した遺伝子を担うプラス ミツドを p s Iと名付けた。  In the mitochondrial gene, TGA and ATA encode tributophan and methionine, respectively. When they are incorporated directly into the nucleus, they correspond to translation termination and isoleucine. TGG and ATG were modified to be translated into tryptophan and methionine in the cytoplasm. The modification used the usual site-specific mutagenesis method. The plasmid carrying the modified gene was named psI.
また 5 1番目のァスパラギン酸をァスパラギンになるように p S Iの塩基を改 変した。 塩基の配列とその改変は DN A s e q u e n c e rで確認した。 塩基配列ヒスチジンタグの付加と発現べクタ一の調製  In addition, the base of pSI was modified so that the first asppartic acid became asparagine. The nucleotide sequence and its modification were confirmed by DNA Sequencer. Addition of histidine tag and preparation of expression vector
上記プラスミツド p S Iを PCRの铸型として、 配列番号 4の合成 DNAと Takara Biomedical社の pUC用の逆プライマー (配列番号 5) を使用して、 ヒスチジンタグを C末端にもつ S I遺伝子を増幅させた (第 2図 (B) 上)。 配 列番号 4で示す上記プライマーの 3〜8番目の塩基は、 制限酵素 5 ゾ I I切断 部位、 1 2〜29番目の塩基は、 ヒスチジンタグをコードする配列と相補的な部 分をそれぞれ示す。 得られた S I遺伝子を含む DNA断片を c I -Bg 1 I Iで切断後 (第 2図 (B) 中)、 pUC 1 8の Sa c Iと Bam H I部位に 挿入し (切断された後の突出部位が^ ゾ I Iのそれと相補的なので結合が可 能)、 プラスミツド p S I— h tを得た (第 2図 (B) 下)。 輸送シグナルの付加  Using the above plasmid pSI as PCR type II, the SI gene having a histidine tag at the C-terminal was amplified using the synthetic DNA of SEQ ID NO: 4 and the reverse primer for Takara Biomedical's pUC (SEQ ID NO: 5). (Fig. 2 (B) top). The 3rd to 8th bases of the above primer shown in SEQ ID NO: 4 indicate a restriction enzyme 5 zoII cleavage site, and the 12th to 29th bases indicate a portion complementary to the histidine tag-encoding sequence. The resulting DNA fragment containing the SI gene was cleaved with cI-Bg1II (Fig. 2 (B)) and inserted into the SacI and BamHI sites of pUC18 (projection after cleavage). Since the site is complementary to that of ^ ZoII, binding is possible), and plasmid pSI-ht was obtained (Fig. 2 (B), bottom). Addition of transport signal
輸送シグナルとなるアミノ酸配列 (配列番号 6) を以下の方法で S I遺伝子 に結合させた。  The amino acid sequence serving as a transport signal (SEQ ID NO: 6) was linked to the SI gene by the following method.
2つのオリゴヌクレオチド (配列番号 7及び 8、 配列番号 7の 3〜8番目は■$ a c I、 配列番号 8の 2〜7番目は SjD ゾ I切断部位を示し、 配列番号 7の 3 5〜55番目と配列番号 8の 20〜40番目は相補的配列を示す。)を合成し、こ れらの相補的配列で 2つの D N Aを結合させ P C R法で完全な 2本鎖 D N Aを調 製した。 Two oligonucleotides (SEQ ID NOS: 7 and 8, 3 to 8 of SEQ ID NO: 7 represent $$ acI, 2 to 7 of SEQ ID NO: 8 represent SjDzoI cleavage sites, SEQ ID NO: 3 The 5th to 55th positions and the 20th to 40th positions of SEQ ID NO: 8 show complementary sequences. ) Were synthesized, the two DNAs were ligated with these complementary sequences, and the complete double-stranded DNA was prepared by PCR.
続いて、 S a c Iで切断し、 他端は平滑末端のまま pUC 1 9の c Iと Sma i iL {Sma I切断で平滑末端を生じる) に挿入した (第 2図 (C) 上)。 ここから ^ c o l -Sp 1 I DN A断片を切り出した (第 2図 (C) 上の矢印)。 It was subsequently cleaved with S a c I, the other end was inserted into the left pUC 1 9 of c I and Sma i iL blunt {produce blunt ends with Sma I cleavage) (FIG. 2 (C) above) . The ^ col-Sp1 IDNA fragment was excised from here (arrow in FIG. 2 (C)).
一方 p S I— h tの S I遺伝子を ゾ I部位をもつ配列番号 9のプライマ 一と Takara Biomedical社の p UC用ユニバーサルプライマ一 (配列番号 1 0) で増幅し (第 2図 (C) 中)、 得られた DNA断片を ゾ Ϊと Ps t I で切断して (第 2図 (C) 中の矢印)、 上記の^ c o l -Sp I I DNA断片 と併せて pBluescript KSに挿入し、 プラスミツド p B,S I Wを得た (第 2 図 (C) 下)。 発現ベクターの調製  On the other hand, the SI gene of pSI-ht was amplified with the primer of SEQ ID NO: 9 having a zoI site and the universal primer for pUC of Takara Biomedical (SEQ ID NO: 10) (FIG. 2 (C)). The obtained DNA fragment was digested with ゾ and Pst I (arrows in FIG. 2 (C)), and inserted into pBluescript KS together with the ^ col-Sp II DNA fragment described above, and plasmid pB, SIW was obtained (Fig. 2 (C), bottom). Preparation of expression vector
プラスミツド p BZS I Wから// ^ 1 1 1と \/"0 Iで S I遺伝子を 切り出し、 Invitrogen社のプラスミツド p R c,CMVに挿入し、発現べクタ 一 p S I w t (野生型) を得た。  The SI gene was excised from plasmid p BZS IW at // ^ 11 1 and \ / "0 I and inserted into Invitrogen's plasmid pRc, CMV to obtain an expression vector pSI wt (wild type). .
5 1番目のアミノ酸をァスパラギンに変異させたサブユニット I (変異 S I) も上と同様に処理して p S I 5 1 nを得た。 培養細胞への組み込み  5 Subunit I (mutant SI) in which the first amino acid was mutated to asparagine was treated in the same manner as above to obtain pSI51n. Incorporation into cultured cells
上記 2種のプラスミツド (S I w t、 p S I 5 1 n) をそれぞれ H e L a細胞 ίこ Qiagenの Ef fectene transfection reagentを用 ヽて感染させ、 10% の fetal bovine serumを含む Dulbecco' s modified Eagle' s培地で培 養し、 つづいて抗生物質である geneticin存在下で増殖するコロニーを選択し た。 ミトコンドリアの と活性 ϋ≤ これら 2種の培養細胞を、 それぞれ geneticinを含む上記培地で培養し、 シ ヤーレ内で細胞が 100%コンフルェントになると培養を止め、 細胞を集めた。 得られた細胞を 0. 2M ショ糖と 0. 5mM EDTAを含む 10mM HEP ES-KOH (pH7. 4) 緩衝液中でポッター型硝子攪拌装置 (フッ素樹脂ぺ ッスル) を用いて細胞を破壊し、 常法によりミ トコンドリアを得た。 さらに常法 通りにミ トコンドリアを低張液で処理して 0. 2M ショ糖と 0. 02%牛血清 アルブミンを含む lmM HE P E S -KOH (pH7. 0) に懸濁してミ トコ ンドリアの外膜が破壊されたミ トプラストを調製した。 野生型の S Iを発現さ せた細胞から得たミ トプラストを 「WTJ、 変異 S Iのミ トプラストを 「D 51 N」 で表す。 ウェスタンブロット法によるサブュニット Iの検出 Each of the above two plasmids (SI wt, pSI51n) was infected with HeLa cells using Qiagen's Effectene transfection reagent, and Dulbecco's modified Eagle containing 10% fetal bovine serum. The cells were cultured in a medium, and then colonies that grew in the presence of the antibiotic geneticin were selected. Mitochondrial and activity ϋ≤ These two types of cultured cells were cultured in the above-mentioned medium containing geneticin, and when the cells became 100% confluent in the dish, the culture was stopped and the cells were collected. The obtained cells were disrupted in a 10 mM HEP ES-KOH (pH 7.4) buffer containing 0.2 M sucrose and 0.5 mM EDTA using a potter-type glass stirrer (fluorine resin whistle). Mitochondria were obtained by a conventional method. Furthermore, mitochondria are treated with hypotonic solution as usual and suspended in lmM HE PES-KOH (pH 7.0) containing 0.2M sucrose and 0.02% bovine serum albumin, and the outer membrane of mitochondria is treated. Were prepared. Mitoplasts obtained from cells that expressed wild-type SI are denoted by “WTJ”, and mutant SI mitoplasts are denoted by “D51N”. Detection of Subunit I by Western blotting
上記のように調製したミ トプラストを 0. 1%SDSに溶かし常法によって S DS— PAGEの電気泳動を行い、 PVDF膜に転写したのちヒスチジンタグ抗 体と反応させた。 その結果を第 3図に示す。 第 3図 (2) は WTのもの、 第 3図 (3)は D51Nのものを示す。両者とも、精製ゥシチトクロム c酸化酵素の S I と同じ移動度のところにタンパク質の存在を認めた。  The mitoplasts prepared as described above were dissolved in 0.1% SDS, subjected to SDS-PAGE electrophoresis by a conventional method, transferred to a PVDF membrane, and then reacted with a histidine-tagged antibody. Figure 3 shows the results. Fig. 3 (2) shows that of WT, and Fig. 3 (3) shows that of D51N. In both cases, the presence of the protein was confirmed at the same mobility as that of S I of purified cytochrome c oxidase.
—方、 S I遺伝子をもたないプラスミツド pRcZCMVを組み込ませた H e L a細胞 (mo c k細胞) から調製したミ トプラストには、 上記のタンパク質 は認められなかった (第 3図 (1))。 チトクロム c酸化活性の測定  On the other hand, the above proteins were not observed in mitoplasts prepared from HeLa cells (moCK cells) into which plasmid pRcZCMV without the SI gene had been incorporated (Fig. 3 (1)). Measurement of cytochrome c oxidation activity
還元型ゥマチトクロム cを調製して上記ミ トプラストと 25°Cで反応させた。 還元型チトクロム cは 550 nmに鋭い吸収示すが、 酸化され酸化型になると、 その吸収は消失する (第 4図)。そこで還元型チトクロム cの酸化活性を 55 On mの波長で追跡した。  Reduced cytochrome c was prepared and reacted with the above mitoplast at 25 ° C. Reduced cytochrome c shows a sharp absorption at 550 nm, but disappears when oxidized to oxidized form (Fig. 4). Therefore, the oxidation activity of reduced cytochrome c was tracked at a wavelength of 55 Onm.
反応液 (660 μ 1 ) は以下の通り。 1 OmM HEPE S-KOH (pH7. 0) の緩衝液で、 5 OmM KC 1 , 0. 2M ショ糖, 40nmo lZmg N ェチルマレイミ ド、 0. 2 nmo lZmg アンチマイシン A、 45 p m o \ / mg バリノマイシン、 2. 0 μΜ ロテノン、 1 1. 3 nmo l /m l オリゴ マイシン、 と 1. 0 //Mミクソチアゾールを含む。 ミ トプラストは約 5 Ομ gを 加えた。 The reaction solution (660 μ 1) is as follows. 1 OmM HEPE S-KOH (pH 7.0) buffer solution, 5 OmM KC 1, 0.2 M sucrose, 40 nmolZmg N-ethylmaleimide, 0.2 nmolZmg Antimycin A, 45 pmo \ / mg valinomycin, 2.0 μΜ rotenone, 11.3 nmol / ml oligomycin, and 1.0 // M myxothiazole. About 5 μg of mitoplast was added.
反応は 8. 4 nmo 1の還元型チトクロム cを添加して始めた。 チトクロム c によりチトクロム c酸化酵素に電子が送り込まれると、 チトクロム cは酸化型と なり、 550 n mの吸収が减少する。 その様子を第 5図に示す。  The reaction was started by adding 8.4 nmol of reduced cytochrome c. When electrons are sent to cytochrome c oxidase by cytochrome c, cytochrome c becomes an oxidized form and the absorption at 550 nm is reduced. Fig. 5 shows the situation.
野生型 S I (WT) を発現している細胞から調製したミ トプラストはシアン によって阻害される速やかなチトクロム c酸ィ匕活性を示し(第 5図左)、活性は m o c k細胞から得たミトプラストとほぼ同じであった。  Mitoplasts prepared from cells expressing wild-type SI (WT) show a rapid cytochrome c inhibition activity inhibited by cyanide (Fig. 5, left), and the activity is almost the same as that of mitoplasts obtained from mock cells. It was the same.
一方、 変異 S I (D 5 1N : 5 1番目のアミノ酸をァスパラギンに変異させ たサブュニット I) を発現しているミ トプラストも速やかなチトクロム c酸化活 性を示した (第 5図右)。 比活性で比較すると、 むしろ野生型の S Iを含むミ ト プラストより 30%程高かったが、 ほぼ同じと考えられる。 水素イオン能動輸送活性の測定  On the other hand, mitoplasts expressing mutant SI (D51N: subunit I in which the 51st amino acid was mutated to asparagine) also showed rapid cytochrome c oxidation activity (Fig. 5, right). When compared in terms of specific activity, it was about 30% higher than that of mitoplast containing wild-type SI, but it is considered to be almost the same. Measurement of hydrogen ion active transport activity
また上記と同様の 2種のミ トプラストについて水素イオンの能動輸送活性を測 定した。 水素イオンの能動輸送活性は、 上と同じ反応液の条件だが、 緩衝液の濃 度は 0. 5mMに下げた。 反応液中の水素イオン濃度の変化はベックマン社の p Hメーターモデル ψ 660と同社の複合電極 (BECKMAN、 5 1 1082) を使った。 測定は還元型チトクロム cの添加によって起こる反応液の水素イオン 濃度変化を追跡した。その結果を第 6図に示す。下方ほど水素イオン濃度は高い。 還元型チトクロム cの添加後、野生型の S Iを発現しているミ トプラスト (W T) では、 顕著な反応液の^ 4化が起こった (第 6図 (A)、 aで示す領域)。 し かし時間経過とともに反応液はアル力リ化した。 これは還元型チトクロム cが酸 ィヒされると、 同時に酸素は水に還元され水素イオンがミトプラスト内で消費され た結果である。 ミ トプラストの膜は水素イオンを通し難いが完全ではないので非 酵素的に水素イオンが膜を通過する。 これは b a c k f 1 owとしてよく知られ た現象である。 反応開始後の難化 (第 6図 (A)、 aで示す領域) は、 本酵素に よる水素ィオンの能動輸送の結果であり、 膜が水素ィオン通しにくいために過渡 的に観察される。 The active transport activity of hydrogen ions was measured for the same two mitoplasts as described above. The active activity for hydrogen ion transport was the same as above, but the buffer concentration was reduced to 0.5 mM. The change in hydrogen ion concentration in the reaction solution was measured using a Beckman pH meter model ψ660 and a composite electrode (BECKMAN, 51082). In the measurement, the change in hydrogen ion concentration of the reaction solution caused by the addition of reduced cytochrome c was tracked. Fig. 6 shows the results. The lower the lower, the higher the hydrogen ion concentration. After the addition of reduced cytochrome c, mitoplasts (WT) expressing wild-type SI showed significant ^ 4 formation of the reaction solution (Fig. 6 (A), the area indicated by a). However, the reaction solution became more viscous over time. This is a result of oxygen reduction to water at the same time as reduced cytochrome c is oxidized, and hydrogen ions are consumed in mitoplasts. The mitoplast membrane is difficult to pass hydrogen ions but is not perfect, so non-enzymatically hydrogen ions pass through the membrane. This is a phenomenon well known as backf 1 ow. The difficulty after the start of the reaction (the area indicated by a in Fig. 6 (A)) is the result of the active transport of hydrogen ions by this enzyme. Is observed.
し力 >し、反応開女台前に脱共役剤 (p-trifluoromethoxy carboxyl-cyanide phenylhydrazone) を 1 0 /x g加えて、 水素イオンが膜の中を自由に出入りで きるようにすると、 最初の^ 4化は消失した (第 6図 (B ) )。  When the uncoupling agent (p-trifluoromethoxy carboxyl-cyanide phenylhydrazone) is added at 10 / xg before the reaction opening stage to allow hydrogen ions to freely enter and exit the membrane, the first ^ The tetracation disappeared (Fig. 6 (B)).
変異酵素 (D 5 1 N) の場合は、 還元型チトクロム cの添加によって起こる酸 性化が起こらなかった (第 6図 (C) )。 これは水素イオンの能動輸送が顕著に減 少した、 あるいは消失したことを示す。  In the case of the mutant enzyme (D51N), the acidification caused by the addition of reduced cytochrome c did not occur (Fig. 6 (C)). This indicates that active transport of hydrogen ions was significantly reduced or eliminated.
この結果は、 変異によって培養細胞のチトクロム c酸化活性はほとんど影響を 受けなかったものの、 もう一方の機能である水素イオン能動輸送活性が顕著に低 下したことを示す。 この実験事実は、 細胞質からミトコンドリアに輸送されたゥ シ S Iによってミトコンドリアの機能改変が実現したことを示す。  This result indicates that the mutation had little effect on the cytochrome c oxidation activity of the cultured cells, but markedly reduced the other function, the active hydrogen ion transport activity. This experimental fact indicates that the function of mitochondria has been modified by Escherichia coli SI transported from the cytoplasm to mitochondria.

Claims

請 求 の 範 囲 The scope of the claims
1 . 特定のタンパク質の N末端に輸送シグナルを結合させて、 このタンパク質を 細胞質からミ トコンドリアへ輸送する方法であって、 この輸送シグナルが、 核 D NAにコードされたミ トコンドリアの膜タンパク質のサブユニットであって、 そ のサブュニットがミ トコンドリァの膜に存在するときにその N末端がミトコンド リァのマトリックス側に存在するサブュニットの輸送シグナルであることを特徴 とする方法。 1. A method of transporting a protein from the cytoplasm to mitochondria by binding a transport signal to the N-terminus of a specific protein, wherein the transport signal is a subunit of the mitochondrial membrane protein encoded by nuclear DNA. A method comprising: a unit, wherein when the subunit is present in the mitochondrial membrane, the N-terminus is a subunit transport signal present on the matrix side of the mitochondria.
2 . 前記サブユニットがミ トコンドリアの膜に存在するときにその N末端と C末 端の両方がミ トコンドリアのマトリックス側に存在する請求項 1に記載の方法。 2. The method according to claim 1, wherein both the N-terminus and the C-terminus are present on the matrix side of the mitochondria when the subunit is present on the mitochondrial membrane.
3 . 前記特定のタンパク質の分子量が 1 0, 0 0 0〜6 0, 0 0 0である請求項 1又は 2に記載の方法。 3. The method according to claim 1 or 2, wherein the specific protein has a molecular weight of 100,000 to 60,000.
4 . 前記特定のタンパク質がミ トコンドリア D NAにコードされるタンパク質で ある請求項 1〜 3のいずれか一項に記載の方法。  4. The method according to any one of claims 1 to 3, wherein the specific protein is a protein encoded by mitochondrial DNA.
5 . 前記ミ トコンドリア D NAにコードされるタンパク質が、 ミ トコンドリアの 膜タンパク質のサブュニットである請求項 4に記載の方法。  5. The method according to claim 4, wherein the protein encoded by the mitochondrial DNA is a subunit of a mitochondrial membrane protein.
6 .前記タンパク質が改変されたことを特徴とする請求項 4又は 5に記載の方法。6. The method according to claim 4, wherein the protein has been modified.
7 . 請求項 5又は 6に記載の方法によりミ トコンドリァへ輸送された前記タンパ ク質から前記輸送シグナルが切断除去され、 切断の結果残つたタンパク質及びそ の他のサブユニットからミ トコンドリア膜タンパク質が形成されることから成る、 ミ トコンドリァ膜タンパク質の製法。 7. The transport signal is cleaved and removed from the protein transported to the mitochondria by the method according to claim 5 or 6, and the mitochondrial membrane protein is removed from the remaining proteins and other subunits as a result of the cleavage. A method for producing a mitochondrial membrane protein, which comprises being formed.
8 . 請求項 7に記載の方法により、 ミ トコンドリア D NAにコードされるタンパ ク質の機能を改変する方法。  8. A method for altering the function of a protein encoded by mitochondrial DNA by the method according to claim 7.
9 . 請求項 7に記載の方法により製造されたミ トコンドリア膜タンパク質を有す るミ トコンドリア。  9. A mitochondria having a mitochondrial membrane protein produced by the method according to claim 7.
1 0 . 請求項 9に記載のミ トコンドリアから外膜が除去されたミ トプラスト。 10. A mitoplast from which the outer membrane has been removed from the mitochondria according to claim 9.
1 1 . 請求項 9に記載のミ トコンドリアを含む細胞。 11. A cell containing the mitochondria according to claim 9.
PCT/JP2003/007252 2002-07-11 2003-06-09 Method of transporting protein to mitochondria WO2004007724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-202279 2002-07-11
JP2002202279A JP2004041067A (en) 2002-07-11 2002-07-11 Method for transporting protein to mitochondria

Publications (1)

Publication Number Publication Date
WO2004007724A1 true WO2004007724A1 (en) 2004-01-22

Family

ID=30112616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007252 WO2004007724A1 (en) 2002-07-11 2003-06-09 Method of transporting protein to mitochondria

Country Status (2)

Country Link
JP (1) JP2004041067A (en)
WO (1) WO2004007724A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020553A (en) * 2018-04-26 2020-12-01 白雁生物技术公司 Modified mitochondria and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOMAX M.I. ET AL.: "Isolation and characterization of a cDNA clone for bovine cytochrome C oxidase subunit IV", PROC. NATL. ACAD. SCI. USA, vol. 81, no. 20, 1984, pages 6295 - 6299, XP002972385 *
WANG Y. ET AL.: "The presequence of rat liver aldehyde dehydrogenase requires the presence of an alpha-helix at its N-terminal region which is stabilized by the helix at its C termini", J. BIOL. CHEM., vol. 268, no. 7, 1993, pages 4759 - 4765, XP002972386 *

Also Published As

Publication number Publication date
JP2004041067A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
Ehrmann et al. Genetic analysis of membrane protein topology by a sandwich gene fusion approach.
CA1200773A (en) Expression linkers
JP3592326B2 (en) Ubiquitin-specific protease
US5846949A (en) Method for eliciting an immune response using a gene expression system that co-delivers an RNA polymerase with DNA
CN107849574B (en) UTR for increasing translation efficiency of RNA molecules
JP4519318B2 (en) Continuous in vitro evolution
JP6959654B2 (en) New minimum UTR sequence
JP2002542781A (en) P factor-derived vectors and methods of use
Kuhn et al. Recombinant forms of M13 procoat with an OmpA leader sequence or a large carboxy‐terminal extension retain their independence of secY function.
JP2003503005A (en) Expression of functional eukaryotic proteins
JPH0376580A (en) Escherichia coli manifestation vector and production of antiviral protein using the same
US6919198B1 (en) Microbial protein expression system
WO2004007724A1 (en) Method of transporting protein to mitochondria
CN115044583A (en) RNA framework for gene editing and gene editing method
CA3130645A1 (en) Use of an improved sleeping beauty transposase with increased solubility to facilitate and control transfection of a target cell with a transgene
JP2005034025A (en) Plasmid vector for promoting expression of foreign gene in escherichia coli, recombinant escherichia coli, method for producing chemical substance with recombinant escherichia coli, and method for producing recombinant protein
TWI316958B (en)
US6844169B1 (en) Constructs for controlled expression of recombinant proteins in prokaryotic cells
JP2004065147A (en) MODIFIED CYTOCHROME c OXIDASE AND MITOCHONDRIA
KR102067475B1 (en) Gene Circuit for Selecting 3-Hydroxypropionic Acid Using Responding 3-Hydroxypropionic Acid Transcription Factor and Method for Screening of 3-Hydroxypropionic Acid Producing Strain
JP2000507107A (en) Recombinant nucleic acid sequences encoding proteins having at least one hydrophobic domain, and uses thereof
KR20240049267A (en) Novel mutations in Streptococcus pyogenes CAS9 discovered by broad scanning mutagenesis showing enhanced DNA cleavage activity
JP4443822B2 (en) DNA chain linking method and cloning vector
CN117165557A (en) Cas protein, corresponding gene editing system and application thereof
US20020192784A1 (en) Biosynthesis of S-adenosylmethionine in a recombinant yeast strain

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase