WO2004007146A1 - Polishing apparatus and method of dressing polishing tool - Google Patents
Polishing apparatus and method of dressing polishing tool Download PDFInfo
- Publication number
- WO2004007146A1 WO2004007146A1 PCT/JP2003/008766 JP0308766W WO2004007146A1 WO 2004007146 A1 WO2004007146 A1 WO 2004007146A1 JP 0308766 W JP0308766 W JP 0308766W WO 2004007146 A1 WO2004007146 A1 WO 2004007146A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- dressing
- foreign matter
- light
- abrasive
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
- B24B37/245—Pads with fixed abrasives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B53/00—Devices or means for dressing or conditioning abrasive surfaces
- B24B53/017—Devices or means for dressing, cleaning or otherwise conditioning lapping tools
Definitions
- a light source for dressing for irradiating a beam of light
- a polishing apparatus equipped with a foreign matter removing device for removing foreign substances generated by the dressing and the like, and polishing by irradiating a beam of light.
- the present invention relates to a dressing process (a light beam irradiation process) for dressing a tool, and a dressing method for an abrasive tool including a foreign matter removal process for removing foreign matter generated by the dressing and the like.
- polishing is performed by equipment.
- This type of chemical mechanical polishing (CMP) apparatus has a turntable with a polishing pad (pad) and a top ring, and a substrate to be polished is interposed between the turntable and the top ring, and the top ring is While applying a constant pressure to the polishing target substrate to the polishing pad (pad) pasted on the turntable, both rotate and the abrasive fluid (slurry) is supplied to the sliding surface of both while the surface of the polishing target substrate Is polished flat and mirror-like.
- CMP chemical mechanical polishing
- polishing of semiconductor wafer W or the like using a polishing tool containing so-called fixed abrasive is obtained by fixing abrasive grains such as cerium oxide (C e 0 2) using a binder such as phenol resin, for example. It is being studied.
- polishing with such a polishing tool unlike the conventional chemical mechanical polishing, since the polishing surface is hard, the convex portion of the asperity is preferentially polished and the concave portion is hard to be polished, so that absolute flatness is obtained. It has the advantage of being easy.
- the surface of the polishing tool is regenerated and dressed (dressing) using a dresser to which diamond particles and the like are fixed.
- the fixed abrasive grains are allowed to self-generate loose abrasive grains that serve to polish the substrate and semi-free abrasive grains that partially adhere to the polishing surface.
- the polishing rate is high immediately after dressing but gradually decreases, so that the polishing rate is not stable.
- a dresser with diamond particles fixed which is used for general chemical mechanical polishing, has a problem that the diamond particles fall off to the polishing surface. This may cause scratches on the surface to be polished of the substrate to be polished.
- a dressing method by light irradiation has been devised as one of the means for solving the above-mentioned problems, but a product which is generated when the polishing tool is irradiated, a product which is mainly denatured by the binder etc., and a polishing which is generated when the substrate is polished. If a substance (foreign substance) unrelated to so-called polishing, such as a product or an inactive abrasive that has reacted in polishing, intervenes on the actual polishing surface, the polishing speed will be sufficient even if the loose abrasive is allowed to stand on its own. It is difficult to secure the speed and stability of the
- the present invention has been made in view of the above-described circumstances, and in a polishing apparatus for polishing a substrate using a polishing tool containing abrasive grains such as diamond particles and a binder, there is a problem that abrasive grains fall off to the polishing surface.
- Dressing with small light stably supplying abrasive grains to the polishing surface of the polishing tool, removing foreign substances generated by the dressing, and a polishing apparatus capable of polishing the substrate at a stable high polishing rate.
- a polishing apparatus comprises: a polishing tool having a polishing surface including an abrasive and a binder for fixing the abrasive; a movement mechanism for pressing the substrate against the polishing surface to move the substrate relative to the polishing surface; A light source for irradiating the polished surface with a light beam which weakens the adhesion of the binder, And a foreign matter removing mechanism for removing foreign matters generated by the irradiation of light from the polishing surface.
- the moving mechanism includes a top ring for holding the substrate, a turntable for supporting the polishing tool, and a motor for rotating or swinging them as needed.
- the foreign matter removing mechanism forcibly removes the foreign matter generated by the polishing process and the foreign matter generated by the irradiation from the polishing surface.
- the polishing apparatus comprises a light source and a foreign matter removing mechanism, so that the light source irradiates a light beam on the polishing surface of the polishing tool to weaken the adhesion of the binder to the abrasive grains.
- Abrasive grains are produced so that the grains can not be held, and foreign substances produced by polishing that inhibit uniform production of abrasive grains by the foreign substance removing mechanism, large particles in the natural abrasive grains, and the polishing surface of the polishing tool By removing large particles remaining on the surface and foreign substances generated by irradiation, it is possible to remove a factor that causes unstable polishing and enable stable abrasive particle supply during polishing.
- Abrasive tools are typically separate from the debris removal mechanism.
- the polishing apparatus 2 0 3 has the first feature, and the foreign matter removing mechanism further comprises a dresser 3 2 A that is formed so as to be pressed against the polishing surface 15 including.
- This dresser 32 A contains diamond particles and is preferably used at a relatively low pressure, for example 0.5 psi, which prevents the detachment of the diamond particles. In general, dressing is performed, for example, at 0.5 p s i. With this configuration, the foreign matter can be reliably removed by the dresser 32A.
- the polishing apparatus 2 0 4 (FIG. 5) has the first feature, and the foreign matter removing mechanism 3 2 B is a brush formed to be able to be rubbed against the polishing surface 1 5 (Nylon brush) 3 7 has.
- the foreign matter on the polishing surface 15 can be reliably removed by the brush 37, and the foreign matter on the polishing surface 15 can be reliably removed without causing the scratch on the polishing surface with a simple configuration. be able to.
- the polishing apparatus 2 0 5 (FIG. 6) has the first aspect, and the foreign matter removing mechanism generates a pressure-controlled mixed fluid of gas and liquid.
- a mixed fluid generator 32 C that jets toward the polishing surface 15.
- the polishing apparatus 2 0 6 has the first feature, and the foreign matter removing mechanism further comprises ultrasonic wave generation for generating ultrasonic waves toward the polishing surface 15 Vessel 3 2 D.
- the output of the ultrasonic wave or the distance between the ultrasonic generator 32 D and the polishing surface 15 is adjusted according to the size, properties, etc. of the foreign matter, and the polishing surface is polished without contacting the solid. Foreign matter on the surface can be reliably removed.
- a polishing apparatus 2 0 5 (FIG. 6) has the first feature and further provides a first liquid on the polishing surface when the irradiation is performed.
- 1 Liquid supply device 3 2 C is provided, and the foreign matter removal mechanism is a second liquid supply device 3 2 C that supplies a second liquid for removing foreign matter onto the polishing surface 15.
- the first liquid and the second liquid are different.
- the first liquid for example, photosensitizer
- the second liquid for example, for oxidation of the binder
- An oxidizing agent having a decomposition action can be supplied at the time of removal of foreign matter to accelerate the removal of foreign matter that inhibits the abrasive grains from being produced.
- the polishing apparatus 2 0 7 has the first feature, and the foreign matter removing mechanism is a vacuum suction apparatus 3 2 E for sucking the foreign substance with vacuum. .
- the foreign matter removing mechanism is a vacuum suction apparatus 3 2 E for sucking the foreign substance with vacuum.
- the polishing surface in the method for dosing a polishing surface of a polishing tool, includes an abrasive and a binder for fixing the abrasive, and is pressed against the substrate and moved relative to the substrate to polish the substrate. It is used for a grinding
- This dressing method includes a light beam irradiating step of irradiating a light beam which weakens the adhesive force of the binder to the polishing surface, and a foreign matter removing step of forcibly removing the foreign matter generated on the polishing surface.
- the foreign matter removing step includes the foreign matter removing step for forcibly removing the foreign matter generated on the polishing surface in the polishing step and the foreign matter generated on the polishing surface in the light irradiation step.
- the dressing method has the eighth aspect, and the foreign substance removing step further includes the step of pressing a dresser formed of diamond particles against the polishing surface.
- the dressing method comprises the eighth aspect and
- the foreign substance removing step includes the step of rubbing a brush (nylon brush) onto the polishing surface.
- the dressing method has the eighth feature, and the foreign substance removing step further comprises gas and liquid And b) spraying the pressure-controlled mixed fluid onto the polishing surface.
- the dressing method has an eighth feature, and the foreign matter removing step further includes the step of irradiating the polished surface with an ultrasonic wave.
- the dressing method has the eighth feature, and the light irradiation step further includes the step of supplying the first liquid to the polishing surface; Supplying a second liquid different from the liquid to the polishing surface.
- the first liquid for example, a photosensitizer
- the second liquid for example, oxidation of the binder
- An oxidizing agent having a decomposition action can be supplied to remove foreign substances that inhibit the self-generation of abrasive grains.
- the dressing method has the eighth feature, and the foreign matter removing step further includes a step of suctioning the foreign matter under vacuum.
- the polishing surface includes an abrasive and a binder for fixing the abrasive, and is pressed against the substrate and moved relative to the substrate.
- the dressing method is used in a polishing process for polishing a substrate, and the dressing method includes a beam irradiation process for irradiating a beam of light which weakens the adhesion of the binder to the polishing surface of the polishing tool. It is performed between the polishing steps to be polished, and between one polishing step and the next polishing step. With this configuration, the light irradiation step is performed simultaneously with the polishing step, and is also performed between the polishing step and the next polishing step. Therefore, even if the progress of dressing on the polishing surface is slow, Sufficient dressing can be performed.
- the dressing method has the fifteenth feature, and the polishing process is further performed by rotating the polishing tool, and the polishing process is not performed during the polishing process.
- the rotation speed is less than 10 rotations per minute. According to this structure, while the polishing process is not performed, the rotational speed of the polishing tool can be determined by preventing the dressing accelerator and the like supplied to the polishing surface during dressing from being easily scattered from the polishing surface.
- the dressing method has the fifteenth or sixteenth features, and further, in the light irradiation process, When the dressing speed is high, the light irradiation step performed simultaneously with the polishing step is performed intermittently, and when the dressing speed is low, the light irradiation step is further performed between the polishing step and the next polishing step.
- the dressing time can be adjusted to an appropriate value by shortening or increasing the dressing time depending on the dressing speed.
- FIG. 1 is a schematic front view of a polishing apparatus according to a first embodiment of the present invention.
- FIG. 2 is a schematic plan view of the polishing apparatus of FIG.
- FIG. 3 is a schematic front view of a polishing apparatus according to a second embodiment of the present invention.
- FIG. 4 is a schematic front view of a polishing apparatus according to a third embodiment of the present invention.
- FIG. 5 is a schematic front view of a polishing apparatus according to a fourth embodiment of the present invention.
- FIG. 6 is a schematic front view of a polishing apparatus according to a fifth embodiment of the present invention.
- FIG. 7 is a schematic front view of a polishing apparatus according to a sixth embodiment of the present invention.
- FIG. 8 is a schematic front view of a polishing apparatus according to a seventh embodiment of the present invention.
- FIG. 9 is a plan view showing the overall configuration of a polishing apparatus according to an embodiment of the present invention. 10 is a front view of the polishing chamber (areas C and D of FIG. 9) of the polishing apparatus of FIG. '
- FIG. 11 is a perspective view of an optical dressing mechanism of the polishing apparatus of FIG.
- FIG. 12 is a front view around the turntable of the polishing apparatus of FIG.
- Fig. 13 is a timing chart showing an example of a series of operation of dressing according to the second method of the polishing apparatus of Fig. 9.
- Fig. 14 is a timing chart showing an example of a series of operation of dressing according to the first method of the polishing apparatus of Fig. 9.
- Fig.15 is a timing chart showing an example of a series of operation of dressing according to the third method of the polishing apparatus of Fig.9.
- Fig. 16 is a timing chart showing a series of operation examples of dressing according to the fourth method of the polishing apparatus of Fig. 9;
- Fig. 17 is a timing chart showing a series of operation examples of dressing according to the fifth method of the polishing apparatus of Fig. 9.
- 1 1 Turntable, 13: Fixed abrasive (abrasive tool), 15: Abrasive surface, 2 1: Topping, 31: Light source, 32: Foreign matter removal device (foreign matter removal mechanism), 32 A: Dresser, 32 B: foreign matter removal device (foreign matter removal mechanism), 32 C: atomizer, 32 D: ultrasonic wave generator, 32 E: vacuum suction device (vacuum suction mechanism), 34: laser light emission port,
- FIG. 1 is a schematic front view showing a polishing apparatus 201 according to a first embodiment of the present invention.
- the polishing apparatus 201 includes a rotating turntable 11 and a fixed abrasive 13 provided on a cooling table 11.
- the fixed abrasive 13 which is a polishing tool is formed including an abrasive (not shown) and a binder (not shown) for fixing (adhering) the abrasive.
- the binder material is thermosetting (epoxy (EP), phenol (PF), urea (UF), melamine (MF), unsaturated polyester (UP), silicon (S 1), polyurethane (PUR), etc.) Resins, polyvinyl chloride (PVC), polyethylene (PC), polycarbonate (PC), polypropylene (PP), polystyrene (PS), acrylonitrile butadiene styrene (ABS), acrylonitrile styrene (AS) known as general-purpose plastics , Butadiene ⁇ Styrene ⁇ Methyl methacrylate (MBS), Polymethyl methacrylate (PMMA), Polyvinyl alcohol (PVA), Polyvinylidene chloride (PVDC), Polyethylene terephthalate (PET), Polyamide known as general-purpose engineering plastics (PA), Polyacetal (POM), Polyphenylene Ether (PPE) ), Polybutylene terephthalate (PBT), ultra-high mole
- materials suitable for use as flexible resins are polyvinyl fluoride, polyvinylidene fluoride, polyvinyl trifluoride ethylene, Biel fluoride, vinylidene fluoride, dichlorofluoroethylene, vinyl chloride , Vinylidene chloride, perfluoro-one-year refines (eg, hexafluoropropylene, perfluorobutene-1), perfluoropente Perfluoro-Hexene-1 etc.), Perfluorobutadiene, Chloro-Trifluoroethylene, Trichloroethylene, Tetrafluoroethylene, Perfluoro-Alkylperfluorovinylethers (eg, Perfluoro) Methylperfluorovinylether, Perfluoroethylperfluorovinylether, perfluoropropylperfluorovinylether, etc., C 1 to C 6 alkyl vinyl ethers, C 6 to C 8 ary
- polyvinylidene fluoride polychlorotrifluorethylene
- polyvinylidene fluoride hexafluoropropylene copolymer ethylene-tetratetrachloride
- Fluoroethylene copolymers Ethylene-monochlorotrifluoroethylene copolymer, Tetrafluoroethylene-perfluoroalkylperfluorovinyl ether copolymers, Tetrafluoroethylene-hexafluoropropylene copolymer It is.
- polyvinylidene fluoride as a partially fluorinated resin, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroboron as a perfluoro resin Ethylene / perfluoro alkyl perfluoro vinyl ether copolymers. Since the binder described above is an organic substance, when a predetermined light is irradiated to the polishing surface 15 of the fixed abrasive 13, the molecular bond is broken by the irradiation energy of the light beam, and the holding power to hold the abrasive of the binder weakens.
- polishing involves both abrasive grains released from the fixed abrasive 13 and abrasive grains fixed to the fixed abrasive 13 but exposed to the polishing surface 15 of the fixed abrasive 13. Do.
- the light dressing of the polishing surface 15 can promote the self-generation of abrasive grains having a polishing action.
- the polishing apparatus 201 further includes a light source 31 such as a mercury lamp or a low pressure mercury lamp, and irradiates a predetermined light beam from the light source 31 to cut off the molecular bond of the binder material of the fixed abrasive 13.
- the self-production of free abrasive grains is as described above.
- the polishing apparatus 201 further includes a supply device 41 for supplying a first chemical solution (including a drug) as a first fluid onto the polishing surface 15. By supplying an appropriate first chemical solution and combining it with appropriate light irradiation, the spontaneous production of free abrasive grains can be promoted, thereby promoting and maintaining the dressing.
- the first chemical solution to be supplied is preferably a boron-containing substance such as a borate.
- the first chemical solution may be a chemical solution containing an oxidizing agent such as O 3 or H 2 O 2 .
- the oxidizing agent may be a ⁇ 3 generated by the UV light.
- the polishing apparatus 201 comprises a top ring 21.
- the top ring 21 holds the substrate W which is the object to be polished, and slides while pressing the substrate W against the polishing surface 15 of the fixed abrasive 13.
- the top ring 21 and the turntable 11 form a motion mechanism 21 1 that presses the substrate against the polishing surface and causes the two to move relative to each other.
- the polishing apparatus 201 polishes a substrate W such as a semiconductor wafer to be polished by the fixed abrasive 13 on the rotating turntable 11 on one side, while using the light source 31 on the other side. By irradiating a light beam onto the polished surface 15 of the fixed abrasive 13, dressing of the polished surface 15 can be performed. As shown in FIG.
- the polishing apparatus 201 includes a foreign matter removing apparatus 32.
- the foreign matter removing device 32 removes foreign matter generated on the polishing surface 15 by mechanical or light dressing of the fixed abrasive 13 and polishing of the substrate W by the fixed abrasive 13.
- Examples of the foreign matter removing device 32 include a dresser, one having a nylon brush as described later, a 7-tonizer, an ultrasonic wave generator, a vacuum suction device and the like.
- FIG. 3 is a schematic front view showing a polishing apparatus 202 according to a second embodiment of the present invention.
- a laser beam is irradiated to the fixed abrasive 13 using a laser source 33 as a light source.
- the laser source 33 is provided with a large number of laser light emission ports 34, and uniformly irradiates the laser beam 35 to the irradiation site (abrasive surface 15) of the fixed abrasive 13 (round shape).
- the laser source 33 can be swung in the direction shown by the arrow 36 (in the direction parallel to the radial direction of the polishing surface 15).
- the polishing apparatus 202 has a supply apparatus 41 for supplying the first chemical solution onto the polishing surface 15 when light irradiation is performed, and as the first chemical solution, the homing apparatus is used.
- Good dressing can be performed by supplying a boron-containing substance such as an acid salt and combining it with appropriate laser beam irradiation.
- Laser light may be scanned using a laser one-scanning method such as a galvano mirror.
- a galvano- mer By using a galvano- mer, it is possible to irradiate a single laser beam over a wide range.
- a plurality of combined units of a laser light source and scanning means may be used, and a plurality of laser beams may be applied to one or more scanning means to simultaneously scan a plurality of lasers.
- these materials are compounds having a C 1 H or C_C bond.
- the abrasive grains can be released on the surface of 5, that is, the spontaneous generation of the free abrasive grains can be promoted, whereby dressing of the fixed abrasive grains 13 is possible. That is, the same effect as in the case of dressing using a diamond tool or the like can be obtained.
- resin C 1 H, C- The binding energy of C is 98 kcal / mol and 80.6 kcal / mol, respectively. Therefore, when a light beam having photon energy equal to or higher than this energy is irradiated, and the light beam is absorbed by the material to be irradiated to reach the binding energy or more, the molecular bond can be broken.
- the above-mentioned molecular bond can be broken by irradiating light having a wavelength of 35 I nm or less.
- the above-mentioned light dressing using the photon energy breaks the binding of the binder in the fixed abrasive by the photochemical reaction, so that the fixed abrasive can not be held and the abrasive grains are generated c.
- the binding of the binder cut by the photochemical reaction If the arm is held as it is, it recombines with the abrasive and the abrasive is fixed again to the binder. For this reason, it is important to prevent the recombination between the binder and the abrasive grains which are cut by the photochemical reaction, and this can stabilize and increase the amount of free abrasive grains.
- Table 1 shows the experimental results in the case of supplying the first chemical solution in the optical dressing of the fixed abrasive using an epoxy resin as a binder.
- This experiment was performed using cerium oxide particles as abrasive grains, using an epoxy resin as a binder, and using a low pressure mercury lamp 31 (see FIG. 1) as a light source.
- mechanical dressing of the polishing surface 15 (see Fig. 1 and Fig. 3) of the fixed abrasive 13 is performed by a diamond dresser (not shown in Fig. 1 and Fig. 3) as a dresser.
- the semiconductor wafer W as the first substrate is polished for 10 minutes, and continuously, that is, the second semiconductor wafer W is continuously subjected to the polishing for 10 minutes without applying mechanical dripping to the polished surface 15. Grind.
- the first chemical solution is supplied to the polishing surface 15 of the fixed abrasive 13 and irradiated with ultraviolet light for 30 minutes, and after leaving for 30 minutes without irradiation with ultraviolet light, the third semiconductor wafer W ( Polish (see Figure 1 and Figure 3).
- Table 1 shows the polishing rates of the respective semiconductor wafers W in the combinations according to the respective conditions.
- the first chemical solution to be supplied is pure water only, and Test Nos. 1 and 2 are different in the presence or absence of light irradiation.
- polishing speeds 2 6 (A min) and 2 7 (A / min) are obtained, respectively, and in the subsequent polishing of the second sheet, The respective polishing rates were significantly reduced to 3 (A / min) and 5 (A / min), and it was shown that the number of free abrasive grains was extremely small especially in the second polishing. ing.
- the polishing speed is slightly increased to 12 (A / min), but the polishing speed is extremely high.
- the value is low, and the polishing rate is about 3 (A / min) in the absence of light irradiation, and it has been shown that there is no effect of the increase of the natural abrasive grains by the dressing.
- the polishing rate of the wafer W in the first and second polishing is the same as described above.
- the polishing speed was slightly improved to 18 (A / min), but light was not irradiated.
- the polishing rate is 8 (A / min), and it is shown that almost no free abrasive grains are produced, that is, the effect of dressing is almost complete.
- Tests No. 5 and 6 are the cases where a borate pH standard solution was used as the first chemical solution to be supplied, and the cases with and without light irradiation were compared as described above.
- the polishing results of the first and second semiconductor wafers W are the same as described above.
- the polishing result of the third semiconductor wafer W is that in the test No. 5 with light irradiation, it is noted that a high polishing rate of 94 A / min is obtained.
- the combination of the standard buffer and the light irradiation breaks the molecular bond of the resin by light irradiation, and the effect of the standard buffer terminates the cut portion of this molecular bond, so that the free abrasive grains are produced spontaneously. It is considered to have been done surely.
- the polishing rate of 21 (A / min) was obtained by using the borate pH standard solution, which is a large value compared to Test No. 1-4. .
- the MBS resin is a copolymer mainly composed of methyl methacrylate butadiene styrene, and is mainly used as a modifier to improve the impact resistance of a vinyl chloride resin or an acrylic resin.
- the amount of addition is about several to 20% in a general case, and it is a design that places importance on the characteristics of vinyl chloride.
- the proportion of MB S resin in the resin is 20% or more, 50% or more, and 1 more.
- Elastomer EPR, butadiene rubber, ethylene-propylene rubber, etc.
- MBS Elastomer
- Elastomer butadiene rubber, ethylene-propylene rubber, etc.
- PP block polymer I immediate act copolymer
- PMMA PMMA
- TPE HI PS
- ABS ABS
- AES SBS
- SEBS SEBS
- EVA EVA
- CPE MBS
- PET PET
- PBT, TPU etc.
- the MBS resin As a binder material and combining it with the seri-abrasive particles, fixed-abrasive particles with very low occurrence of scratches during polishing can be obtained.
- epoxy resin and MBS resin can be mixed and used as a binder material. That is, since the fixed abrasive is a MBS resin which is a thermoplastic resin, it can be easily molded and the strength of the molded body is also high. And, when the MBS resin is used as a binder material, there is an autogenous action of the abrasive grains, and thereby a high polishing rate can be obtained.
- a polishing rate of about twice that of fixed abrasive using a conventional epoxy resin (without MBS resin) as a binder material can be obtained. Furthermore, since the resin itself has impact resistance, the force acting on the abrasive grains at the time of polishing is relaxed (suppressed), and scratching does not occur on the substrate, that is, polishing with less defects becomes possible. It is considered that the structure of the MBS resin-bound fixed abrasive spreads due to the water absorption effect, and the ability to hold the abrasive by light irradiation decreases to make the abrasive self-generating easy.
- This fixed abrasive is characterized by a faster processing speed and less scratching on the substrate as described above, as compared to fixed abrasives using a general phenol or epoxy resin, and it is possible to manufacture a semiconductor in which the occurrence of scratches is not preferable. It is also possible to apply to the process. In contrast to processes requiring high polishing rates where fixed abrasives with common phenol or epoxy resin require dressing at the same time during polishing, required high polishing rates can be obtained without dressing during polishing. Be In addition, since there is no concern about the falling off of the diamond abrasive when dressing, the scratch by the diamond particles does not occur.
- Table 2 shows the experimental results of dressing on the fixed abrasive when the MBS resin is used as the binder, and the other experimental conditions are the same as Table 1. That is, using cerium oxide particles as abrasive grains, using MBS resin as a binder, as a light source for use It uses a low pressure mercury lamp.
- the first semiconductor wafer w is one that has been subjected to mechanical dressing processing with a diamond tool and then polished.
- the polishing of the second semiconductor wafer W is performed subsequent to the polishing of the first wafer. After that, the first chemical solution is supplied, and the first chemical solution is supplied for dressing with and without light irradiation, and the third semiconductor wafer W is polished.
- the comparison results of the polishing rates shown in Table 2 are as follows. First, in Test Nos. 1 and 2, only pure water was used as the first chemical solution to be supplied, and the polishing rates were compared according to the presence or absence of light irradiation. As shown in Table 2, the polishing rate for the first sheet, the polishing rate for the second sheet, and the polishing rate for the third sheet are all the same. In the case of the fixed abrasive using the M 3 B S resin, as described above, the decreasing rate of the polishing rate by the continuous polishing is smaller than that of the fixed abrasive using the epoxy resin as the binder. Then, when pure water is supplied as the first chemical solution and light irradiation is not performed, the polishing rate tends to gradually decrease.
- oxidizing agents include ozone water, hydrogen peroxide water, peracetic acid, perbenzoic acid, organic peroxides such as tert-butyl hydroperoxide, permanganate compounds such as potassium permanganate, and heavy chromium Acid dichromic acid compounds such as potassium iodate, octagenic acid compounds such as potassium iodate, nitric acid compounds such as nitric acid and iron nitrate, peroxylogous acid compounds such as perchloric acid, transition metal salts such as potassium ferricyanide, ammonium persulfate And other persulfates, heteropolyacids and the like.
- hydrogen peroxide water and organic peroxides which do not contain metal elements and whose decomposition products are harmless are preferred in practice. Because of the instability, the above peroxides form radicals and their unpaired electrons easily oxidize binder.
- hydrogen peroxide solution is decomposed by ultraviolet light to generate hydroxyl radical.
- the bond dissociation of H-OH of this hydroxy radical is about 120 kca 1 / mol, which is larger than the bond dissociation energy of R-H of any resin. Accordingly, R—H of the binder resin is converted to R radicals by hydroxy radicals, and the generated R radicals further react with hydroxyl radicals and the like to be oxidatively decomposed.
- the hydrogen peroxide concentration is 0.010 wt% to 6 wt%
- pH is 1 to 14, preferably 8 to 10
- the wavelength of ultraviolet light is preferably 450 nm or less .
- the oxidizing agent that exhibits these oxidative decomposition actions oxidizes and degrades the polymer resin that is the binder, breaks the main chain, breaks it down, and lowers the molecular weight to mechanically weaken the surface layer of the fixed abrasive, and the surface layer thereof.
- Promote the self-generation of abrasive grains by removing A dressing using an oxidizing agent that exhibits this oxidative decomposition action can be given a synergistic effect on the optical dressing that promotes the self-generation of the abrasive grains from the fixed abrasive grains by irradiating the aforementioned light beam.
- a photoinitiator photosensitizer
- photosensitizer a photoinitiator
- the photoinitiator absorbs the ultraviolet light and generates radicals or ions by cleavage or hydrogen abstraction to form a fixed abrasive.
- the surface layer of the binder resin is decomposed to promote the self-generation of the abrasive grains.
- photo initiators photosensitizers
- acetophenone diacetyl, 2,2'-azobisisobutyronitrile, anthraquinone, iron chloride, 1,1-diphenyl-1-dihydrazine (DPPH), iron dimethylcarbamate, thioxanthone , Tetramethylthiuram sulfide, 1, 4-naphthoquinone, p-nitroadiline, phenanthrene, benzyl, 1, 2 _ benzoanthraquinone, p-benzoquinone, benzophenone, Michler's ketone, 2-methyl anthraquinone, 2-methyl One 1, 1
- the concentration of the photoinitiator (photosensitizer) in the fixed abrasive is preferably about 0.5 to 10%, and more preferably 0.1 to 10%.
- the effective excitation wavelength of UV light compatible with the photoinitiator Is, for example, about 257 nm in the case of thioxanthone, and 251 nm in the case of 1,4-naphthoquinone.
- a photosensitive resin is used for part or all of the resin constituting the fixed abrasive, and a solution capable of dissolving the resin after exposure is used as a first chemical solution supplied at the time of light dressing. It is preferable to supply.
- Particularly positive photosensitive resins which react with light irradiation to change their properties, are dissolved or depolymerized in the portion to which light is irradiated during light dressing, so that they can be dissolved after exposure to light. It becomes easier to dissolve in liquid (organic solvent, alkaline aqueous solution, pure water).
- the positive photosensitive resin, the abrasive grains, and, if necessary, another binder resin are mixed to form fixed abrasive grains, thereby irradiating light such as ultraviolet rays, and further, the resin is exposed after exposure.
- the positive photosensitive resin By bringing a soluble solution into contact with the surface of the fixed abrasive, the positive photosensitive resin can be dissolved together with other binder resins to promote the self-generation of the abrasive.
- the organic solvent used for the solution capable of dissolving the resin after exposure is selected according to the dissolution characteristics of the photosensitive resin after exposure. In the case of using an alkaline or acidic aqueous solution, the dissolution can be promoted by the neutralization reaction of acid and alkali.
- the resin used as the positive type photosensitive resin is preferably one (CH 2 -CR 1 R 2)-in which R 1 is CH 3, R 2 is-H, _CH 3, one CO O H,
- the polishing can be stably performed under sufficient abrasive grain self-generation.
- the uniformity of the processed surface will gradually be lost, and the polishing performance will be affected. Furthermore, the surface layer of the fixed abrasive is scraped off by mechanical dressing, and when the residue remains on the surface of the fixed abrasive or when the film on the surface to be polished of the substrate is removed by polishing, the removed film is removed. In some cases, the particles may stay on the fixed abrasive.
- the polishing apparatus 202 also includes the foreign matter removing apparatus 32 (see FIG. 2) described in the first embodiment.
- the foreign matter removing apparatus there are a dresser and a nylon brush as described later, an atomizer, an ultrasonic wave generator, a vacuum suction apparatus and the like.
- FIG. 4 shows a polishing apparatus 203 equipped with a dresser 32 A including diamond particles as a foreign matter removing apparatus according to a third embodiment of the present invention.
- the polishing apparatus 203 includes a dressing mechanism 38 by light irradiation having a light source 31.
- foreign matter unrelated to polishing including the above-mentioned incompletely dissolved resin is pressed against the polishing surface 15 of the fixed abrasive 13 by pressing the dresser 32A onto the polishing surface 15 of the fixed abrasive 13. It becomes possible to expose the abrasive grains more effectively, and efficient polishing can be realized.
- FIG. 5 is a schematic elevation view showing a polishing apparatus 24 provided with a foreign matter removing apparatus 32 B having a nylon brush 37 according to a fourth embodiment of the present invention.
- This polishing machine The fixture 24 includes a light dressing mechanism 38 having a light source 31.
- the foreign matter unrelated to the polishing including the above-mentioned incompletely dissolved resin is scraped by pressing the nylon brush 3 7 against the polishing surface 15 of the fixed abrasive 13 and rubbing it.
- the foreign substance removal device 32 B can also be controlled independently of the light dressing mechanism 3 8 that emits light from the light source 31, and the brushing strength of the nylon brush 3 7 can be controlled by the thickness of the brush, It is also possible to adjust by the number. For example, if fine-grained nylon brush 37 is used, the abrasive grains are much smaller (0.2 m or less) compared to nylon brush 37, so they are not scraped off by nylon brush 37. Although it is possible to stagnate, the product etc. is much larger than the abrasive grains, so it is pulled by the brush and is selectively scraped off.
- the nylon brush 37 is, for example, generally made of nylon 66, manufactured by Toray, model number 2 0 0 T 0.
- FIG. 6 shows a fifth embodiment of the present invention, in which the N 2 gas and a second liquid or a second chemical solution as pure liquid (pure water or a chemical solution other than pure water) are ejected in a mist form.
- a polishing apparatus 250 equipped with an atomizer 32 C as a liquid supply device is shown.
- the N 2 gas for the foreign matter removal and the first chemical solution for dosing by light irradiation may be sprayed.
- the atomizer 32 C also acts as a first liquid feeder of the present invention.
- the atomizer 32 C supplies N 2 gas and a second chemical solution to remove foreign matter, and performs dressing by light irradiation, when used for the dressing.
- a chemical solution (different from the second chemical solution for removing foreign matter) may be supplied.
- the atomizer 32 C also acts as a first liquid feeder of the present invention.
- the atomizer 32 C can be supplied from each spray nozzle 39 at the tip with uniform fluid flow rate and uniform concentration distribution.
- a photoinitiator photosensitizer
- a first chemical solution which is used to improve the dressing action by the above-described light irradiation
- uniform light irradiation can be realized, uniform surface processing can be performed on the fixed abrasive 13.
- the atomizer 32 C is connected to a first chemical solution supply source 44 for supplying a photoinitiator, and the atomizer 32 C also works as a first liquid supplier of the present invention.
- the atomizer 32 C is connected to a gas supply source 42 and a second chemical solution supply source 43.
- the atomizer 32 C changes the pressure of the purge gas (N 2 gas etc.) supplied from the gas supply source 42 and the second chemical solution supply source 43, the flow rate of the second chemical solution, and the pressure, thereby changing from atomized to granular It is possible to realize all spraying conditions up to. In addition, uniform application can be realized regardless of the particle size because the application is by spraying with a purge pressure, and since multiple fluids are used, it is possible to change the concentration itself of the supplied fluid.
- the purge gas N 2 gas etc.
- the concentration distribution of the application to the fixed abrasive 13 is strongly and weakly finished to be processed into fine unevenness after light irradiation, and the unevenness of the unevenness is sprayed It can be controlled by adjusting the degree of As an example, in the case of atomized spray, the machined surface of fixed abrasive 13 13 forms a surface state without fine irregularities or unevenness, and in the case of granular spray, it is tailored to a relatively undulated uneven surface state, etc.
- the unevenness on the surface can be changed according to the film type of the substrate to be polished, and the polishing according to the purpose can be realized.
- supply of atomizer 32 C to spray nozzle 39 C is made independent for each spray nozzle unit, and each spray can be provided by providing a flow control mechanism (not shown) and a pressure control mechanism (not shown).
- a flow control mechanism not shown
- a pressure control mechanism not shown
- the polishing apparatus 205 may be equipped with a liquid spray (not shown) as an alternative to the atomizer 32C.
- the liquid sprayer is arranged in a row facing the polishing surface 15 of the fixed abrasive 13. It has a plurality of spray nozzles (not shown), and high pressure (for example, 5 MP) of pure water supplied from pure water supply source with uniform liquid flow rate and uniform concentration distribution from each spray nozzle.
- a) Pressure control is performed by a pressure control mechanism (not shown) and supplied onto the polishing surface 15 so that foreign substances such as debris can be removed and washed away.
- the polishing apparatus 205 may also be equipped with a gas spray that ejects a gas to the fixed abrasive and removes it with the air pressure as an alternative to the liquid spray.
- FIG. 7 shows a polishing apparatus 206 for removing foreign matter by ultrasonic vibration according to a sixth embodiment of the present invention.
- the polishing apparatus 2006 includes an ultrasonic generator 32 D, and the ultrasonic generator 32 D is usually disposed above the fixed abrasive 13. By interposing pure water between the ultrasonic generator 32 D and the fixed abrasive 13, ultrasonic waves transmitted from the ultrasonic generator 32 D are fixed abrasive 13 via the pure water. The foreign matter retained on the polishing surface 15 of the fixed abrasive 13 can be removed by being transmitted to the polishing surface 15 of the fixed abrasive 13 by the ultrasonic vibration.
- the polishing apparatus 2006 includes an optical dressing mechanism 38.
- the ultrasonic generator 32 D can be controlled independently of the optical dressing mechanism 38 performing dressing by light irradiation. By adjusting the output of ultrasonic waves and the distance to the fixed abrasive 13, it is possible to improve the strength of foreign substance removal. In addition, when the resin used for the fixed abrasive 13 is very brittle (the glass transition degree is low), the abrasive abrasive can be generated only by the ultrasonic action. In this case, it is possible to supply a chemical solution or a mixture of these in addition to pure water as a liquid that is interposed between the ultrasonic generator 32 D and the fixed abrasive 13 and serves to transmit ultrasonic waves.
- FIG. 8 shows a polishing apparatus for removing foreign matter by vacuum suction according to a seventh embodiment of the present invention.
- the polishing device 2 07 has a vacuum suction device 3 2 E connected to a vacuum source 4 5 and a vacuum suction device 3 2 E is usually arranged above the fixed particles 1 3 It is done.
- the polishing apparatus 2 0 7 includes an optical dressing mechanism 3 8 having a light source 3 1.
- the vacuum suction device 32 E also sucks up foreign substances not related to the above-mentioned polishing, and a drain (not shown) or a filter (not shown) provided between the vacuum supply source 45 and the vacuum suction device 3 2 E Collect the foreign matter according to the illustration).
- FIG. 9 is a plan view showing the overall configuration of a polishing apparatus 20 according to an embodiment of the present invention.
- the polishing apparatus 2 0 8 is equipped with the polishing apparatus of the fifth embodiment.
- the polishing apparatus of the fifth embodiment can be replaced by the polishing apparatus according to the first to fourth and sixth to seventh embodiments.
- the polishing apparatus 2 0 8 is equipped with 4 loading / unloading stages 1 0 2 for placing wafer cassettes 1 0 1 for stocking a large number of semiconductor wafers W (see FIG. 1). ing.
- the loading Z unloading stage 102 may have a mechanism that can move up and down.
- a transport logo 104 is disposed on the traveling mechanism 103.
- the transfer robot 104 has two hands at the top and the bottom.
- the lower hand of the two hands of the transfer robot 104 is an adsorption type hand for vacuum-adhering the semiconductor wafer W (see FIG. 1), and is only when the semiconductor wafer W is received from the wafer cassette 101. Used for The suction type hand can accurately transfer the wafer W regardless of the deviation of the wafer W in the cassette.
- the upper hand of the transfer port pot 104 is a drop-in type hand that holds the peripheral portion of the wafer W, and is used only when the semiconductor wafer W is returned to the wafer cassette 101.
- the wafer w can be transferred while maintaining the clean degree of the back surface of the wafer W. By placing the clean wafer W after cleaning in this manner on the upper side, the wafer W is not further contaminated.
- the two cleaning machines 1 0 5 and 1 0 6 for cleaning the semiconductor wafer W are arranged on the opposite side of the transport robot 1 0 4 with the traveling mechanism 1 0 3 as the axis of symmetry.
- Each washing machine 105, 106 is disposed at a position where the hand of the transport robot 104 can reach. Also, these cleaning machines 105, 106 are high on the wafer W It has a spin-dry function that allows it to be rapidly rotated and dried, which makes it possible to cope with two-stage cleaning and three-stage cleaning of wafers W without replacing modules.
- the loading table 107 is used to mutually transfer the semiconductor wafer W between the transfer robot 104 and the transfer robot 114, and the loading table 108 is between the transfer robot 104 and the transfer robot 115. Used to transport the semiconductor wafer W in On these mounting tables 107 and 108, detection sensors 116 and 117 for detecting the presence or absence of the semiconductor wafer W are provided, respectively.
- the mounting table 109 is used to transfer the semiconductor wafer W from the transfer robot 155 to the transfer robot 114, and the transfer table 110 transfers the semiconductor wafer W from the transfer robot 114 to the transfer port bot 115.
- These mounting tables 1 09 and 1 10 include detection sensors 1 18 1 and 1 1 9 that detect the presence or absence of a semiconductor wafer W, and rinse nozzles 1 for preventing the semiconductor wafer W from drying or cleaning the wafer W 1 20 and 1 2 1 are provided respectively.
- These mounting tables 1 09 and 1 10 are disposed in a common waterproof cover, and a shutter 1 22 is provided in the transport opening provided on the cover.
- the mounting table 109 is positioned vertically above the mounting table 110, and the wafer W after cleaning is mounted on the mounting table 1 09 and the wafer W before cleaning is mounted on the mounting table 110. .
- Such a configuration prevents contamination of the wafer W due to the drop of rinse water.
- the positions 0, 1 2 1 and 10 12 22 are shown schematically and their positions and shapes are not shown exactly.
- cleaning machine 105 It is adjacent to the cleaning machine 105 at a position where the hand of the transfer robot 1 14 can reach. As such the washer 124 is arranged. In addition, the cleaning machine 125 is disposed adjacent to the cleaning machine 106 at a position where the hand of the transfer robot 115 can reach. These cleaning machines 124 and 125 are cleaning machines capable of cleaning both sides of the wafer W.
- the upper hand of the transfer robot 114 and the transfer robot 115 is used to transfer the semiconductor wafer W, which has been cleaned once, to the mounting table of the cleaning machine or wafer station 112.
- the lower hand is used to transport the semiconductor wafer W which has not been cleaned and the semiconductor wafer W before being polished.
- the upper hand is not contaminated by the rinse water droplets from the upper wall of the reversing device.
- shutters 105a, 106a, 124a, and 125a are attached to the wafer W inlets of the cleaning machines 105, 106, 124, and 125, respectively, and the wafer W is carried in. It can be opened only when it is
- the polishing apparatus 208 is provided with a housing 126 so as to surround each device, and the inside of the housing 126 is divided into a plurality of areas by partition walls 128, partition walls 130, partition walls 132, partition walls 134 and partitions 136. , And region B).
- the area A and A partition wall 128 is disposed to separate the degree of cleanliness with the region B.
- the partition wall 128 is provided with an opening for transporting the semiconductor wafer W between the area A and the area B, and a shirt 138 is provided in the opening.
- the above-mentioned cleaning machines 105, 106, 124, 125, the mounting tables 107, 108, 109, 110 of the wafer station 1 12, and the transfer bumps 114, 115 are all arranged in the area B,
- the pressure in B is adjusted to a pressure lower than the pressure in area A.
- the reversing machine 140 for reversing the semiconductor wafer W is disposed at a position where the hand of the transfer robot 1 14 can reach within the area C divided from the area B by the partition wall 134. , Inverting machine 140 by the transfer robot 1 14 Then, the semiconductor wafer w is transferred. Also, at the position where the hand of the transfer port pot 115 can reach inside the area C, the reversing unit 14 1 that reverses the semiconductor wafer W is disposed. The semiconductor wafer W is transported by the robot pot 115.
- Inverting machine 140 and inverting machine 14 1 are chuck mechanism for chucking semiconductor wafer W, reversing mechanism for reversing the front and back of semiconductor wafer W, and semiconductor wafer W chucked by the above chuck mechanism? It has a detection sensor (not shown) to check whether it is.
- a polishing chamber separated from the area B is formed by the partition walls 134, and the polishing chamber is further divided into two areas C and D by the partition walls 136.
- an opening for transporting a semiconductor wafer is provided in the partition wall 134 which separates the region B and the regions C and D.
- the reversing unit 140 and the reversing unit 141 are provided.
- the shirts Yui 1 4 2, 1 4 3 will be provided.
- turntables 1 4 6 and 1 4 7, turntables 1 4 8 and 1 4 9, and one semiconductor wafer are held and a semiconductor wafer
- One top ring 1 4 4 1 4 5 is placed to polish while pressing against the turntable 1 4 7 1 4 8.
- the atomizer 1 52 with a plurality of injection nozzles (not shown) connected to the supply source (not shown) and the second chemical solution supply source (not shown), and the turntable 1 46
- the dresser 1 5 4 and the dresser 1 5 6 for performing mechanical dressing of the set table 1 4 8 are arranged.
- a dresser 1 5 5 for performing the dynamic dressing and a dresser 1 5 7 for performing the mechanical dressing of the turntable 1 4 9 are disposed.
- Polishing fluid supply nozzle 1 5 0 1 5 1 is a polishing fluid used for polishing or mechanical dret Dressing fluid (for example, water) to be used for shinging is supplied onto turntables 1 46 and 147, respectively. Also, a mixed fluid in which nitrogen gas and a second chemical solution (pure water or a chemical solution other than pure water) are mixed is sprayed onto the turntables 1 46, 1 4 7 from the atomizers 1 52, 1 53. .
- the nitrogen gas from the nitrogen gas supply source and the second chemical solution from the second chemical solution supply source are adjusted to a predetermined pressure by a regu- lator, not shown, or an air operator valve, and the atomizer is in a state where both are mixed 1 It is supplied to 52, 15 3 injection nozzles not shown.
- the spray nozzles of the atomizers 1 52 and 1 5 3 jet fluid toward the outer peripheral side of the turntables 1 4 6 and 1 4 7.
- other inert gases can be used instead of nitrogen gas.
- only the second chemical solution may be injected from the atomizers 15 2 and 15 3.
- An atomizer may be provided on the turntables 1 4 8 and 1 4 9. By providing an atomizer on the evening tables 1 4 8 and 1 4 9, the surfaces of the turntables 1 4 8 and 1 4 9 can be kept cleaner.
- the mixed nitrogen gas and the second chemical solution are: (1) liquid particleization, (2) liquid particle solidification, (3) liquid evaporation and gasification (these 1, 2 and 3 In the state of being atomized or atomized, the spray nozzles of the atomizers 1 52, 1 5 3 are sprayed toward the turntables 1 4 6, 1 4 7).
- the pressure, temperature, or pressure of the nitrogen gas and / or the second chemical solution determines whether the mixed fluid is jetted in the state of liquid fine particleization, fine particle solidification, or gasification. It is determined by the shape of the puzzle. Therefore, change the condition of the fluid to be injected by changing the pressure, temperature, nozzle shape, etc.
- a wet type wafer film thickness measuring machine may be installed in place of the turntables 1 4 8 and 1 4 9. In that case, it is possible to measure the film thickness of the wafer W immediately after polishing, and it is also possible to control the polishing process to the next wafer W by increasing the amount of shaving of the wafer W or using measured values.
- the reactor 10 is disposed to transport the wafer W between B) and the polishing chamber (areas C and D). Wichi Tari Transporter 1 6 0, Wafer There are four stages at which W is to be placed at equal intervals, so that multiple wafers W can be loaded at the same time.
- the wafer W transferred to the reversing machine 140, 1 4 1 has a phase difference between the center of the stage of the rotary transport 1 600 and the center of the wafer W chucked by the reversing machine 1 40, 1 4 1
- the lifts 16 2 and 16 3 installed below the rotary transport 160 move up and down and are transported onto the rotary transport 160.
- the wafer W placed on the stage of the rotary transporter 160 is transferred downward of the top rings 1 44 and 1 45 by changing the position of the opening-tari transport 160 by 90 °. Be done.
- the top rings 1 4 4 and 4 5 have been rocked in advance to the positions of 1 o'clock 1 o'clock 1 o'clock.
- the polishing apparatus 2008 is a light source such as a mercury lamp that irradiates light onto the areas C and D and the polished surfaces of the fixed abrasives 1 4 6 A and 1 4 7 A 1 4 6 B and 1 4 7 B 1 9 4 (refer to FIG. 11 below) and a first chemical solution supply nozzle 1 as a first liquid supply machine for supplying a first chemical solution as a first liquid onto the polishing surface 14 46 B, 14 7 B.
- a light dressing mechanism 192 is provided having (see FIG. 11 below).
- the polishing chamber (areas C and D in FIG. 9) of the present polishing apparatus 2 0 8 will be described in more detail.
- basin D can be considered the same as basin C.
- the figure also shows the relationship between the top ring 1444 of the basin C and the turntables 1446 and 14.8.
- the top ring 14 4 is suspended from the top ring head 1 72 by the rotatable top ring drive shaft 1 70.
- the dresser 1 5 4 is suspended from the dresser head 1 7 8 by a rotatable dresser drive shaft 1 7 6.
- Dresser head 1 7 8 is a positionable rocking shaft It is supported by 180 which allows the dresser 15 to move between a standby position to stand by and a dressing position to perform mechanical dressing on the turntable 146.
- the dresser 1 56 is suspended from the dresser head 1 84 by a rotatable dresser drive shaft 1 82.
- the dresser head 1 8 4 is supported by a positionable swing shaft 1 8 6 so that the dresser 1 5 6 is in a standby position to stand by and a dressing position to perform mechanical dressing on the turntable 1 4 8 It is possible to move between.
- the upper surface of the turntable 146 is constituted by fixed abrasives 1 46 A in which abrasive grains and pores or a pore agent are bonded by a binder (predetermined resin), and the fixed abrasives 1 46 A
- the polishing surface 1 46 B is configured to polish the semiconductor wafer W (see FIG. 1) held by the top ring 14 4.
- Such fixed abrasives 1 46 A are obtained, for example, by spray-drying a mixed liquid of a slurry-like abrasive (in which abrasive grains are dispersed in a liquid) and an emulsion-like resin mixed and dispersed, and this mixed powder It is obtained by filling a forming jig and applying pressure and heat treatment.
- abrasive preferably, ceria (C eO 2) or silica (S i 0 2) having an average particle size of 0.5 m or less is preferably used.
- a thermoplastic resin or a thermosetting resin can be used, and in particular, a thermoplastic resin is preferable.
- the upper surface of the cooling table 148 is formed of a soft non-woven fabric (not shown), and this non-woven fabric constitutes a cleaning surface for cleaning the abrasive particles attached to the surface of the semiconductor wafer W after polishing. Ru. The non-woven fabric constitutes a cleaning surface for cleaning the abrasive particles attached to the surface of the semiconductor wafer W after polishing.
- the semiconductor wafer W polished by the fixed abrasives 1 46 A as described above is moved to the small-diameter turntable 14 8, where buff cleaning is performed. That is, while rotating the top ring 1 4 4 and the turntable 1 4 8 independently of each other, the polished semiconductor wafer W held by the top ring 1 4 4 is subjected to a spring table.
- FIG. 11 is a perspective view showing an overall configuration of a light dressing mechanism 92 for dressing by light irradiation.
- the light dressing mechanism 192 includes: a light source lamp 194 for irradiating light onto the polishing surface 1 4 6 B of the fixed abrasive 14 6 A; and a first chemical solution for supplying the first chemical solution onto the polishing surface 1 4 6 B 1)
- An optical dresser 198 comprising the chemical solution nozzle 196 and an arm 188 for driving.
- the light dresser unit 1 9 8 is connected and fixed to a driving arm 1 8 8 via a cylinder (not shown) for up and down movement.
- the light dresser unit 1 9 8 moves up and down with the vertical movement cylinder to adjust the distance between the light source lamp 1 9 4 and the polishing surface 1 4 6 B of the fixed abrasive 1 4 6 A to be subjected to the light dressing.
- the driving arm 1 88 moves in the horizontal plane to position the light dresser unit 1 9 8 on the polishing surface 1 4 6 B of the fixed abrasive 1 14 6 A to be subjected to the light dressing.
- FIG. 12 shows a front elevational view around the turntable 146 of the polishing apparatus 2008 of the present invention.
- the turntable 1 4 6 is provided with fixed abrasive 1 4 6 A as a polishing tool, and the wafer W to be polished held by the top ring 1 4 4 is placed on the top ring head 1 7 2 by the swing shaft 1 7 0
- the sliding surface of the fixed abrasive 1 4 6 A is pressed by the descent of the top head 1 72 2 by the swinging of the cylinder and the cylinder for vertical movement (not shown), and it is pressed against the polished surface 1 4 6 B to rotate the semiconductor wafer W Polishing progresses.
- the polishing apparatus 2 0 8 is provided with a mechanical dressing mechanism 1 6 8 and an optical dressing mechanism 1 9 2.
- the mechanical dressing mechanism 1 6 8 has a dresser 1 54 which is, for example, a diamond dresser, which makes dressing by mechanically contacting the polishing surface 1 4 6 B of the fixed abrasive 1 4 6 A.
- the light dressing mechanism 192 has a light source 194 such as a mercury lamp and a first chemical solution supply nozzle 196, and performs light dressing by light irradiation.
- the usual dressing is performed by light irradiation using the light dressing mechanism 192 and is performed before or during the polishing of the wafer W.
- a mechanical dressing mechanism 1 6 8 is used to remove the large irregularities formed on the fixed abrasive surface and to planarize the entire polishing surface. Usually, polishing of a plurality of wafers W is performed. It will be done later if necessary. In addition, while monitoring the flatness of the polishing surface 1 46 B of the fixed abrasive 1 146 A using a fixed abrasive surface measuring device (not shown), for example, mechanical contact when changing to irregularities of 1 m or more Do dressing by It is also good.
- the first method I n-S i t u method
- the binder resin of the fixed abrasive which is the counterpart of the dressing according to the light irradiation of the present invention
- the self-generating amount of the abrasive can not be sufficiently secured, and the first method (In-S itu method) is used. If the fixed abrasive should be placed on a turntable of about the same size as the wafer diameter, dressing can not be performed during polishing, so dressing is performed only with the second method (Ex-S in-situ method).
- 13 to 17 show examples of the operation sequence of the polishing apparatus 208 (see FIG. 9) according to the present invention.
- the abscissa represents the passage of time T, and the ordinate represents the dresser 154 (or 155), the top ring 144 (or 145), the light dressing mechanism 192 (or 193), and the foreign matter removing device 152 (or 153).
- OFF indicates that operation is stopped
- ON indicates operation.
- the dressing by the dresser 154 is a mechanical dressing of the polishing surface of the fixed abrasive
- the dressing by the optical dressing mechanism 192 is a dressing by irradiating the polishing surface of the fixed abrasive with light.
- Foreign matter removal is performed using an atomizer 1 52 as a foreign matter removal device.
- Figure 13 shows the case of dressing by the second method (Ex- Situ method).
- mechanical dressing for shape correction is performed by the dresser 154 (see FIG. 9) (0 to t 1), and light dressing by light irradiation is performed after the mechanical dressing is completed (tl to!: 2 ),
- Light dressing (OD) at regular intervals (t 2— Intermittently at t 1) (tl to!: 2, t 3 to t 4, t 5 to t 6, '') (light irradiation step of the present invention).
- polishing (P) (Polishing step of the present invention) is performed on the semiconductor wafer placed on the top ring 144 (see FIG.
- Policing is performed between light dressing and the next light dressing, and light dressing and polishing are alternately performed. Removal of foreign matter by the atomizer 152 is performed at the same time as the light dressing, and is performed intermittently (t1 to t2, t3 to t4) at the same fixed interval (t2 ⁇ t1) as the light dressing. , T5 to t6,, (foreign substance removing step of the present invention).
- FIG. 14 shows the case of dressing according to the first method (I n-S i t u method).
- first perform mechanical dressing for shape correction by the dresser 154 (see Fig. 9) (0 to! 1), and after the mechanical dressing is completed, the light dressing by light irradiation before polishing is compared to the one before polishing.
- a predetermined interval t2-t1 (t1 to t2). Policing is performed after a predetermined interval (t2 ⁇ t1), and poling is performed intermittently at fixed intervals (t3 ⁇ t2) (t2 to t3, t4 to t5, t6 to t7 , * ⁇ ).
- the light dressing is continued without interruption for a predetermined interval (t 3- t 2), and then performed at the same timing as the polishing (t 2 to t 3, t 4-t5, t6-t7, ⁇ ⁇ ⁇ . That is, after the first predetermined interval (t2-t1), the light dressing is intermittently performed at the same fixed interval (t3-t2) as the polishing. Foreign substance removal is started at the same time as light dressing (t1) and is continued continuously thereafter.
- FIG. 15 shows the case of dressing by the third method (In-S intermittent intermittent dressing method).
- the third method is the first method (In_S itu method) (Fig. 14) with intermittent dressing added as follows. The differences from FIG. 14 will be mainly described below.
- the light dressing by light irradiation is performed intermittently after the light dressing (t1 to t2) before poling, intermittently for 2 times of the duration tX, and including the rest time ty.
- Intermittent operation is performed intermittently at a predetermined cycle (t4-t2).
- the timing of start is the top ring 144 (Fig. 9).
- Refer to the timing of the start of the poling by The foreign substance removal operation is performed at the same timing as the light dressing.
- Mechanical dressing and polishing are performed as in Figure 14.
- Figure 16 shows the case of dressing by the fourth method (continuous light dressing).
- the differences from FIG. 14 will be mainly described below.
- the light dressing by light irradiation is performed before the start of polishing for a predetermined time (t 1 to t 2), and then the continuous operation is continued. That is, while dressing is being performed, light dressing is performed, and while dressing is interrupted, light dressing is also performed.
- the foreign substance removal operation is performed at the same timing as the light dressing.
- Mechanical dressing and poling are performed as in Figure 14.
- Figure 17 shows the case of dressing according to the fifth method (In_Sitte method with advance dressing).
- the method shown in this figure is an extension of the first method in Figure 14.
- the polishing and the optical dressing are performed at the same timing in each polishing step, but in the fifth method, the timing of the start of the light dressing is earlier by the time tz than the timing of the start of the poling
- the setting and the advance light dressing of the interval tz are performed.
- the foreign substance removal operation is performed at the same timing as the light dressing.
- Mechanical dressing and polishing are performed as in Figure 14.
- the effect of this method is that sufficient polishing abrasive grain self-generation is carried out before starting polishing, and polishing processing is performed with a predetermined polishing efficiency from the beginning without worrying about the rising of polishing immediately after the start of polishing. Is possible. As a result, efficient and stable polishing can be realized.
- the light dressing may be performed only during or after the polishing, or intermittently during the polishing, but if the light dressing effect is weak, the polishing may be performed. Not only inside but also between polishing and the next polishing, it is necessary to carry out light writing. In the meantime, a form in which light dressing is constantly performed is preferable.
- the mechanical dressing is dressing by a mechanical dresser (for example, a diamond dresser as described above) mainly contributing to the shape correction of the polishing surface.
- Light dressing is dressing by light irradiation Ru. At the time of light dressing by light irradiation, it is preferable to simultaneously operate the foreign matter removal apparatus of the present invention.
- light dressing is performed after shape correction of the polished surface by mechanical dressing.
- first wafer W after the shape correction for example, also the 10th wafer W under the same conditions
- light draining with light is performed after the shape correction.
- the surface of the polishing surface may be too rough, so polishing the semiconductor wafer with few scratches by making the abrasive particles spontaneously from the polishing surface softly by light dressing by light irradiation. be able to.
- the optical dressing mechanism 132 for performing the optical dressing by the light irradiation is the substrate polishing means. It can also be placed in a position different from the top ring 1 4 4 as the cover in advance so as to cover the evening table 1 4 6 so that it can be constantly drained with or without polishing. .
- the same general CMP polishing pad is also used, but the upper surface of the pad must always be kept wet, in order to efficiently supply pure water or chemical solution for wetting over the entire surface of the pad. It is preferable to keep the rotating table 1 46 rotate, and the fixed abrasive should be kept wet as well, and when supplying a liquid for wet storage even during continuous polishing, It is good to rotate the turntable 1 46.
- the light source and the foreign matter removing device are provided, the light source irradiates a light beam on the polishing surface of the polishing tool, and the binder is polished Weakening the adhesion of the particles, making it impossible to hold the abrasive particles in the binder, causing the abrasive particles to grow spontaneously, and further preventing the abrasive particles from being produced uniformly by the foreign matter removing device, foreign matter produced by polishing, or Since foreign substances generated by irradiation can be forcibly removed, factors that cause unstable polishing can be removed, and stable abrasive grains can be supplied at the time of polishing, good polishing performance can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
In a polishing apparatus (201), a polishing tool including abrasive and binder for binding the abrasive is pressed to a substrate (W) held by a top ring (21) and polishes the substrate (W). The polishing apparatus (201) comprises a light source (31) for radiating light rays to a polishing face (15) so as to reduce binding force of the binder that binds abrasive, and a foreign object removing mechanism (32) for forcibly removing foreign objects produced in polishing or foreign objects produced by the radiation. With the structure above, dressing of the polishing face (15) is performed by radiating light rays to the polishing face, and products etc. produced by the dressing are removed. The dressing enables the polishing apparatus (201) to stably supply abrasive to the polishing face and high-speed polishing of the substrate (W).
Description
明 細 書 Specification
研磨装置及び研磨工具のドレッシング方法 Polishing apparatus and dressing method for polishing tool
技 術 分 野 Technical field
本発明は、 光線を照射して研磨工具のドレッシング (目立て,再生) を行う光 源及びこのドレッシング等で生じた異物を除去する異物除去装置を備えた研磨装 置、 並びに光線を照射して研磨工具のドレッシングを行うドレッシング工程 (光 線照射工程) 及びこのドレッシング等で生じた異物を除去する異物除去工程を備 えた研磨工具のドレツシング方法に関する。 According to the present invention, there is provided a light source for dressing (graining and regenerating) a polishing tool by irradiating a beam of light, a polishing apparatus equipped with a foreign matter removing device for removing foreign substances generated by the dressing and the like, and polishing by irradiating a beam of light. The present invention relates to a dressing process (a light beam irradiation process) for dressing a tool, and a dressing method for an abrasive tool including a foreign matter removal process for removing foreign matter generated by the dressing and the like.
背 景 技 術 Background technology
近年、 半導体デバイスの高集積化が進むにつれて、 回路の配線が微細化し、 集 積されるデバイスの寸法もより微細化されつつある。 そこで、 半導体ウェハ等の 基板の表面に形成された被膜を研磨により除去して、 表面を平坦化する工程が必 要となる場合があるが、 この平坦化法の手段として、 化学機械研磨 (C M P ) 装 置により研磨することが行われている。 この種の化学機械研磨 (C M P ) 装置は、 研磨布 (パッド) を貼ったターンテーブルとトップリングとを有し、 ターンテー ブルとトツプリングとの間に研磨対象基板を介在させて、 トツプリングが研磨対 象基板に対して一定の圧力をターンテーブルに貼設した研磨布 (パッド) に与え つつ両者が回転し、 両者の摺動面に砥液 (スラリ) を供給しつつ研磨対象基板の 表面を平坦且つ鏡面状に研磨している。 In recent years, with the progress of high integration of semiconductor devices, the wiring of circuits has been miniaturized, and the dimensions of integrated devices have been further miniaturized. Therefore, it may be necessary to planarize the surface by removing the film formed on the surface of a substrate such as a semiconductor wafer by polishing, and chemical mechanical polishing (CMP) may be used as a method of this planarization method. Polishing is performed by equipment. This type of chemical mechanical polishing (CMP) apparatus has a turntable with a polishing pad (pad) and a top ring, and a substrate to be polished is interposed between the turntable and the top ring, and the top ring is While applying a constant pressure to the polishing target substrate to the polishing pad (pad) pasted on the turntable, both rotate and the abrasive fluid (slurry) is supplied to the sliding surface of both while the surface of the polishing target substrate Is polished flat and mirror-like.
一方で、 酸化セリウム (C e 0 2 ) 等の砥粒を、 例えばフエノール樹脂等のバ インダを用いて固定した、 いわゆる固定砥粒を含む研磨工具を用いた半導体ゥェ ハ W等の研磨が研究されている。 このような研磨工具による研磨では、 研磨面が 従来の化学機械研磨と異なり硬質であるため、 凹凸の凸部を優先的に研磨し、 凹 部は研磨され難いため、 絶対的な平坦性が得やすいという利点がある。 又、 研磨 工具の組成によっては、 凸部の研磨が終了し平坦面となると研磨速度が著しく低 下し、 研磨が事実上進行しなくなるいわゆるセルフストップ機能が現れる。 又、 研磨工具を用いた研磨では砥粒を多量に含む懸濁液 (スラリ) を使用しないため、 環境問題の負荷が低減するという利点もある。
発 明 の 開 示 On the other hand, polishing of semiconductor wafer W or the like using a polishing tool containing so-called fixed abrasive is obtained by fixing abrasive grains such as cerium oxide (C e 0 2) using a binder such as phenol resin, for example. It is being studied. In the case of polishing with such a polishing tool, unlike the conventional chemical mechanical polishing, since the polishing surface is hard, the convex portion of the asperity is preferentially polished and the concave portion is hard to be polished, so that absolute flatness is obtained. It has the advantage of being easy. In addition, depending on the composition of the polishing tool, when the polishing of the convex portion is finished and becomes a flat surface, the polishing speed is significantly reduced, and a so-called self-stop function appears that the polishing does not progress practically. In addition, since polishing using a polishing tool does not use a suspension (slurry) containing a large amount of abrasive grains, there is also an advantage that the load on environmental problems is reduced. Disclosure of invention
一般に、 研磨工具 (固定砥粒又は固着砥粒) を用いた基板の研磨では、 ダイヤ モンド粒子等を固着したドレッサを用いて、 研磨工具の表面の再生 · 目立て (ド レッシング) を行うことで、 基板の研磨に役立つ遊離砥粒及び研磨面に部分的に 付着する半遊離砥粒を固定砥粒から自生させる。 しかしながら、 このような研磨 工具を用いた半導体ウェハの研磨の場合は、 研磨速度はドレッシング直後におい ては速いが、 次第に低下してくるため、 研磨速度が安定しない。 研磨速度を安定 させるためには、 研磨前に毎回ドレッシングを行ない遊離砥粒を十分に自生させ る必要があるが、 ドレッシングを毎回の研磨前に行うと、 ドレッシングに一定の 時間を必要とすることから、 実用上スループットが低下し、 生産性を低下させる という問題もある。 Generally, in the polishing of a substrate using a polishing tool (fixed abrasive or fixed abrasive), the surface of the polishing tool is regenerated and dressed (dressing) using a dresser to which diamond particles and the like are fixed. The fixed abrasive grains are allowed to self-generate loose abrasive grains that serve to polish the substrate and semi-free abrasive grains that partially adhere to the polishing surface. However, in the case of polishing a semiconductor wafer using such a polishing tool, the polishing rate is high immediately after dressing but gradually decreases, so that the polishing rate is not stable. In order to stabilize the polishing rate, it is necessary to dress each time before polishing to allow the free abrasive grains to be sufficiently generated, but if dressing is performed before each polishing, it takes a certain time for dressing. Therefore, there is a problem that throughput is practically reduced and productivity is reduced.
また一般的な化学機械研磨に用いられるダイヤモンド粒子を固定したドレッサ は、 ダイヤモンド粒子の研磨面への脱落という問題がある。 これにより、 研磨対 象基板の被研磨面にスクラッチが生じる場合がある。 In addition, a dresser with diamond particles fixed, which is used for general chemical mechanical polishing, has a problem that the diamond particles fall off to the polishing surface. This may cause scratches on the surface to be polished of the substrate to be polished.
上述の問題解決手段の一つとして、 光照射によるドレッシング方法が考案され ているが、 研磨工具に照射した際に発生する主にバインダ等が変質した生成物、 基板を研磨した際に生成する研磨生成物、 研磨にて反応し終えた不活性な砥粒等、 いわゆる研磨とは関係ない物質 (異物) が実際の研磨面に介在すると、 十分に遊 離砥粒を自立させても、 研磨速度の高速化や安定性が確保しづらい。 A dressing method by light irradiation has been devised as one of the means for solving the above-mentioned problems, but a product which is generated when the polishing tool is irradiated, a product which is mainly denatured by the binder etc., and a polishing which is generated when the substrate is polished. If a substance (foreign substance) unrelated to so-called polishing, such as a product or an inactive abrasive that has reacted in polishing, intervenes on the actual polishing surface, the polishing speed will be sufficient even if the loose abrasive is allowed to stand on its own. It is difficult to secure the speed and stability of the
本発明は、 上述した事情に鑑みてなされたものであり、 ダイヤモンド粒子等の 砥粒及びバインダを含む研磨工具を用いて基板を研磨する研磨装置において、 研 磨面へ砥粒の脱落という問題が小さい光によるドレッシングを行い、 安定的に研 磨工具の研磨面に砥粒を供給し、 またドレッシングにより生じる異物を排除し、 これにより安定した高い研磨速度で基板の研磨を行うことができる研磨装置を提 供することを目的とする。 また本発明は砥粒及びバインダを含む研磨工具のドレ ッシング方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and in a polishing apparatus for polishing a substrate using a polishing tool containing abrasive grains such as diamond particles and a binder, there is a problem that abrasive grains fall off to the polishing surface. Dressing with small light, stably supplying abrasive grains to the polishing surface of the polishing tool, removing foreign substances generated by the dressing, and a polishing apparatus capable of polishing the substrate at a stable high polishing rate. The purpose is to provide Another object of the present invention is to provide a method for draining a polishing tool containing abrasive grains and a binder.
本発明の第 1の特徴によると、 研磨装置は、 砥粒及び砥粒を固着するバインダ を含む研磨面を有する研磨工具、 基板を研磨するため基板を研磨面に押圧し相対 運動させる運動機構、 バインダの固着力を弱める光線を研磨面へ照射する光源、
及び光線の照射により生ずる異物を研磨面から除去する異物除去機構を含む。 運 動機構は、 基板を保持するトップリング、 研磨工具を支持するターンテーブル及 びそれらを回転又は必要に応じ揺動させるモー夕等を含む。 異物除去機構は、 研 磨工程により生ずる異物及び前記照射により生ずる異物を研磨面から強制的に除 去する。 According to a first aspect of the present invention, a polishing apparatus comprises: a polishing tool having a polishing surface including an abrasive and a binder for fixing the abrasive; a movement mechanism for pressing the substrate against the polishing surface to move the substrate relative to the polishing surface; A light source for irradiating the polished surface with a light beam which weakens the adhesion of the binder, And a foreign matter removing mechanism for removing foreign matters generated by the irradiation of light from the polishing surface. The moving mechanism includes a top ring for holding the substrate, a turntable for supporting the polishing tool, and a motor for rotating or swinging them as needed. The foreign matter removing mechanism forcibly removes the foreign matter generated by the polishing process and the foreign matter generated by the irradiation from the polishing surface.
本発明の第 1の特徴の研磨装置は、 光源及び異物除去機構を備えるので、 光源 により研磨工具の研磨面上に光線を照射し、 バインダの砥粒を固着する固着力を 弱め、 バインダが砥粒を保持できないようにして砥粒を自生させ、 さらに異物除 去機構により、 一様な砥粒の自生を阻害するような研磨により生ずる異物、 自生 砥粒中の大粒子、 研磨工具の研磨面に残留する大粒子、 及び照射により生ずる異 物を強制的に除去し、 不安定な研磨を引き起こす要因を取り除き、 研磨時の安定 した砥粒の供給を可能とすることができる。 研磨工具は、 典型的には、 異物除去 機構とは別体である。 The polishing apparatus according to the first aspect of the present invention comprises a light source and a foreign matter removing mechanism, so that the light source irradiates a light beam on the polishing surface of the polishing tool to weaken the adhesion of the binder to the abrasive grains. Abrasive grains are produced so that the grains can not be held, and foreign substances produced by polishing that inhibit uniform production of abrasive grains by the foreign substance removing mechanism, large particles in the natural abrasive grains, and the polishing surface of the polishing tool By removing large particles remaining on the surface and foreign substances generated by irradiation, it is possible to remove a factor that causes unstable polishing and enable stable abrasive particle supply during polishing. Abrasive tools are typically separate from the debris removal mechanism.
本発明の第 2の特徴によると、 研磨装置 2 0 3 (図 4 ) は、 第 1の特徴を有し、 更に異物除去機構は、 研磨面 1 5に押圧可能に形成されたドレッサ 3 2 Aを含む。 このドレッサ 3 2 Aは、 ダイアモンド粒子を含み、 好ましくは、 ダイアモンド粒 子の脱落を防ぐ比較的小さな圧力、 例えば 0 . 5 p s iで使用される。 一般的に は、 ドレッシングは、 例えば 0 . 5 p s iで行われる。 このように構成すること により、 ドレッサ 3 2 Aによって異物を確実に除去することができる。 According to a second aspect of the present invention, the polishing apparatus 2 0 3 (FIG. 4) has the first feature, and the foreign matter removing mechanism further comprises a dresser 3 2 A that is formed so as to be pressed against the polishing surface 15 including. This dresser 32 A contains diamond particles and is preferably used at a relatively low pressure, for example 0.5 psi, which prevents the detachment of the diamond particles. In general, dressing is performed, for example, at 0.5 p s i. With this configuration, the foreign matter can be reliably removed by the dresser 32A.
本発明の第 3の特徴によると、 研磨装置 2 0 4 (図 5 ) は、 第 1の特徴を有し、 更に異物除去機構 3 2 Bは、 研磨面 1 5に擦り付け可能に形成されたブラシ (ナ ィロンブラシ) 3 7を有する。 このように構成すると、 ブラシ 3 7によって研磨 面 1 5上の異物を確実に除去することができ、 簡易な構成で研磨面にスクラッチ を生じることなく研磨面 1 5上の異物を確実に除去することができる。 According to the third aspect of the present invention, the polishing apparatus 2 0 4 (FIG. 5) has the first feature, and the foreign matter removing mechanism 3 2 B is a brush formed to be able to be rubbed against the polishing surface 1 5 (Nylon brush) 3 7 has. According to this structure, the foreign matter on the polishing surface 15 can be reliably removed by the brush 37, and the foreign matter on the polishing surface 15 can be reliably removed without causing the scratch on the polishing surface with a simple configuration. be able to.
本発明の第 4の特徴によると、 研磨装置 2 0 5 (図 6 ) は、 第 1の特徴を有し、 更に異物除去機構は、 気体と液体とからなる圧力調整された混合流体を発生させ、 研磨面 1 5に向けて噴射する混合流体発生器 3 2 Cである。 このように構成する と、 異物の寸法、 性状等に応じて混合流体の噴射圧、 噴射量を調節し、 研磨面 1 According to a fourth aspect of the present invention, the polishing apparatus 2 0 5 (FIG. 6) has the first aspect, and the foreign matter removing mechanism generates a pressure-controlled mixed fluid of gas and liquid. A mixed fluid generator 32 C that jets toward the polishing surface 15. With this configuration, the injection pressure and injection amount of the mixed fluid are adjusted according to the size and properties of the foreign matter, and the polishing surface 1
5を固体に接触させずに研磨面 1 5上の異物を確実に除去することができる。
本発明の第 5の特徴によると、 研磨装置 2 0 6 (図 7 ) は、 第 1の特徴を有し、 更に異物除去機構は、 超音波を研磨面 1 5に向けて発生させる超音波発生器 3 2 Dである。 このように構成すると、 異物の寸法、 性状等に応じて超音波の出力又 は超音波発生器 3 2 Dと研磨面 1 5との距離を調節し、 研磨面を固体に接触させ ずに研磨面上の異物を確実に除去することができる。 Foreign matter on the polishing surface 15 can be reliably removed without bringing 5 into contact with solids. According to the fifth aspect of the present invention, the polishing apparatus 2 0 6 (FIG. 7) has the first feature, and the foreign matter removing mechanism further comprises ultrasonic wave generation for generating ultrasonic waves toward the polishing surface 15 Vessel 3 2 D. According to this configuration, the output of the ultrasonic wave or the distance between the ultrasonic generator 32 D and the polishing surface 15 is adjusted according to the size, properties, etc. of the foreign matter, and the polishing surface is polished without contacting the solid. Foreign matter on the surface can be reliably removed.
本発明の第 6の特徴によると、 研磨装置 2 0 5 (図 6 ) は、 第 1の特徴を有し、 更に前記照射が行われるときに、 第 1液体を前記研磨面上に供給する第 1液体供 給機 3 2 Cを備え、 異物除去機構は、 異物を除去する第 2液体を研磨面 1 5上に 供給する第 2液体供給機 3 2 Cである。 第 1液体と第 2液体は異なるものである。 このように構成すると、 照射に最も適した第 1液体 (例えば、 光増感剤) を照射 に際して供給し砥粒の自生を促進させ、 異物除去に最も適した第 2液体 (例えば、 バインダの酸化分解作用を有する酸化剤) を異物除去に際して供給し、 砥粒の自 生を阻害する異物の除去を促進させることができる。 According to a sixth aspect of the present invention, a polishing apparatus 2 0 5 (FIG. 6) has the first feature and further provides a first liquid on the polishing surface when the irradiation is performed. 1 Liquid supply device 3 2 C is provided, and the foreign matter removal mechanism is a second liquid supply device 3 2 C that supplies a second liquid for removing foreign matter onto the polishing surface 15. The first liquid and the second liquid are different. According to this structure, the first liquid (for example, photosensitizer) most suitable for irradiation is supplied at the time of irradiation to promote the spontaneous generation of the abrasive grains, and the second liquid (for example, for oxidation of the binder) most suitable for foreign matter removal. An oxidizing agent having a decomposition action can be supplied at the time of removal of foreign matter to accelerate the removal of foreign matter that inhibits the abrasive grains from being produced.
本発明の第 7の特徴によると、 研磨装置 2 0 7 (図 8 ) は、 第 1の特徴を有し、 更に異物除去機構は、 異物を真空にて吸引する真空吸引装置 3 2 Eである。 この ように構成すると、 異物除去装置を研磨面 1 5に接触させることなく、 あるいは 処理が必要な第 2液体等を使用することなく異物を除去することができ、 研磨作 業をより効率化することができる。 According to a seventh aspect of the present invention, the polishing apparatus 2 0 7 (FIG. 8) has the first feature, and the foreign matter removing mechanism is a vacuum suction apparatus 3 2 E for sucking the foreign substance with vacuum. . With this configuration, foreign matter can be removed without contacting the foreign matter removal apparatus with the polishing surface 15 or using a second liquid or the like that requires treatment, which makes the polishing work more efficient. be able to.
本発明の第 8の特徴によると、 研磨工具の研磨面のドレツシング方法において、 研磨面は、 砥粒及び砥粒を固着するバインダを含み、 基板に押圧され基板に相対 運動されて基板を研磨する研磨工程に用いられるものである。 このドレッシング 方法は、 研磨面へバインダの固着力を弱める光線を照射する光線照射工程、 及び 前記研磨面に生ずる異物を強制的に除去する異物除去工程を含む。 異物除去工程 は、 研磨工程で研磨面上に生ずる異物及び光線照射工程で研磨面上に生ずる異物 を強制的に除去する異物除去工程を含む。 According to an eighth aspect of the present invention, in the method for dosing a polishing surface of a polishing tool, the polishing surface includes an abrasive and a binder for fixing the abrasive, and is pressed against the substrate and moved relative to the substrate to polish the substrate. It is used for a grinding | polishing process. This dressing method includes a light beam irradiating step of irradiating a light beam which weakens the adhesive force of the binder to the polishing surface, and a foreign matter removing step of forcibly removing the foreign matter generated on the polishing surface. The foreign matter removing step includes the foreign matter removing step for forcibly removing the foreign matter generated on the polishing surface in the polishing step and the foreign matter generated on the polishing surface in the light irradiation step.
本発明の第 9の特徴によると、 ドレッシング方法は、 第 8特徴を有し、 更に異 物除去工程は、 ダイヤモンド粒子を含んで形成されたドレッサを研磨面に押圧す る工程を含む。 According to a ninth aspect of the present invention, the dressing method has the eighth aspect, and the foreign substance removing step further includes the step of pressing a dresser formed of diamond particles against the polishing surface.
本発明の第 1 0の特徴によると、 ドレッシング方法は、 第 8特徴を有し、 更に
異物除去工程は、 ブラシ (ナイロンブラシ) を研磨面上に擦り付ける工程を含む 本発明の第 1 1の特徴によると、 ドレッシング方法は、 第 8特徴を有し、 更に 異物除去工程は、 気体と液体とからなる圧力調整された混合流体を研磨面に吹き 付ける工程を含む。 According to a tenth aspect of the invention, the dressing method comprises the eighth aspect and According to the first feature of the present invention, the foreign substance removing step includes the step of rubbing a brush (nylon brush) onto the polishing surface. The dressing method has the eighth feature, and the foreign substance removing step further comprises gas and liquid And b) spraying the pressure-controlled mixed fluid onto the polishing surface.
本発明の第 1 2の特徴によると、 ドレッシング方法は、 第 8特徴を有し、 更に 異物除去工程は、 超音波を前記研磨面に照射する工程を含む。 According to a twelfth feature of the present invention, the dressing method has an eighth feature, and the foreign matter removing step further includes the step of irradiating the polished surface with an ultrasonic wave.
本発明の第 1 3の特徴によると、 ドレッシング方法は、 第 8特徴を有し、 更に 光線照射工程は、 研磨面に第 1液体を供給する工程を含み、 異物除去工程は、 前 記第 1液体とは異なる第 2液体を研磨面に供給する工程を含む。 このように構成 すると、 研磨面に第 1液体 (例えば、 光増感剤) を供給し、 光によるドレッシン グ効果を促進又は維持することができ、 研磨面に第 2液体 (例えば、 バインダの 酸化分解作用を有する酸化剤) を供給し、 砥粒の自生を阻害する異物を除去する ことができる。 According to a thirteenth feature of the present invention, the dressing method has the eighth feature, and the light irradiation step further includes the step of supplying the first liquid to the polishing surface; Supplying a second liquid different from the liquid to the polishing surface. According to this structure, the first liquid (for example, a photosensitizer) can be supplied to the polishing surface, and the light drawing effect can be promoted or maintained, and the second liquid (for example, oxidation of the binder) can be performed on the polishing surface. An oxidizing agent having a decomposition action can be supplied to remove foreign substances that inhibit the self-generation of abrasive grains.
本発明の第 1 4の特徴によると、 ドレッシング方法は、 第 8特徴を有し、 更に 異物除去工程は、 異物を真空にて吸引する工程を含む。 According to a fourteenth feature of the present invention, the dressing method has the eighth feature, and the foreign matter removing step further includes a step of suctioning the foreign matter under vacuum.
本発明の第 1 5の特徴によると、 研磨工具の研磨面のドレッシング方法におい て、 前記研磨面は、 砥粒及び砥粒を固着するバインダを含み、 基板に押圧され基 板に相対運動されて基板を研磨する研磨工程に用いられるものであり、 ドレッシ ング方法は、 研磨工具の研磨面へバインダの固着力を弱める光線を照射する光線 照射工程を含み、 光線照射工程は、 研磨工具により基板を研磨する研磨工程の間、 及び 1つの研磨工程と次の研磨工程との間に行われる。 このように構成すると、 光線照射工程を、 研磨工程と同時に行い、 さらに研磨工程と次の研磨工程との間. にも行うので、 仮に、 研磨面のドレッシングの進行が遅い場合でも、 研磨面の十 分なドレッシングを行うことができる。 According to a fifteenth feature of the present invention, in the dressing method for the polishing surface of a polishing tool, the polishing surface includes an abrasive and a binder for fixing the abrasive, and is pressed against the substrate and moved relative to the substrate. The dressing method is used in a polishing process for polishing a substrate, and the dressing method includes a beam irradiation process for irradiating a beam of light which weakens the adhesion of the binder to the polishing surface of the polishing tool. It is performed between the polishing steps to be polished, and between one polishing step and the next polishing step. With this configuration, the light irradiation step is performed simultaneously with the polishing step, and is also performed between the polishing step and the next polishing step. Therefore, even if the progress of dressing on the polishing surface is slow, Sufficient dressing can be performed.
本発明の第 1 6の特徴によると、 ドレッシング方法は、 第 1 5の特徴を有し、 更に研磨工程が研磨工具を回転させることにより行われ、 研磨工程が行われてい ない間の研磨工具の回転数が 1分間当り 1 0回転以下である。 このように構成す ると、 研磨工程が行われていない間は、 研磨工具の回転速度を、 ドレッシング中 に研磨面に供給されるドレツシング促進剤等が研磨面から飛散しにくいドレッシ
ングにより適した低回転速度とし、 ドレッシングの効果を促進することができる 本発明の第 1 7の特徴によると、 ドレッシング方法は、 第 1 5又は 1 6の特徴 を有し、 更に光線照射工程におけるドレッシング速度が大きいときには、 研磨ェ 程と同時に行われる光線照射工程を間欠的に行ない、 ドレッシング速度が小さい ときには、 さらに研磨工程と次の研磨工程との間にも光線照射工程を行う。 この ように構成すると、 ドレッシング速度の大小により、 ドレッシング時間を短く、 あるいは長くし、 ドレッシング量を適切な値に調整することができる。 According to a sixteenth feature of the present invention, the dressing method has the fifteenth feature, and the polishing process is further performed by rotating the polishing tool, and the polishing process is not performed during the polishing process. The rotation speed is less than 10 rotations per minute. According to this structure, while the polishing process is not performed, the rotational speed of the polishing tool can be determined by preventing the dressing accelerator and the like supplied to the polishing surface during dressing from being easily scattered from the polishing surface. According to a seventeenth aspect of the present invention, the dressing method has the fifteenth or sixteenth features, and further, in the light irradiation process, When the dressing speed is high, the light irradiation step performed simultaneously with the polishing step is performed intermittently, and when the dressing speed is low, the light irradiation step is further performed between the polishing step and the next polishing step. With this configuration, the dressing time can be adjusted to an appropriate value by shortening or increasing the dressing time depending on the dressing speed.
図 面 の 簡 単 な 説 明 Brief description of the drawing
図 1は、 本発明の第 1の実施の形態の研磨装置の模式的正面図。 FIG. 1 is a schematic front view of a polishing apparatus according to a first embodiment of the present invention.
図 2は、 図 1の研磨装置の模式的平面図。 FIG. 2 is a schematic plan view of the polishing apparatus of FIG.
図 3は、 本発明の第 2の実施の形態の研磨装置の模式的正面図。 FIG. 3 is a schematic front view of a polishing apparatus according to a second embodiment of the present invention.
図 4は、 本発明の第 3の実施の形態の研磨装置の模式的正面図。 FIG. 4 is a schematic front view of a polishing apparatus according to a third embodiment of the present invention.
図 5は、 本発明の第 4の実施の形態の研磨装置の模式的正面図。 FIG. 5 is a schematic front view of a polishing apparatus according to a fourth embodiment of the present invention.
図 6は、 本発明の第 5の実施の形態の研磨装置の模式的正面図。 FIG. 6 is a schematic front view of a polishing apparatus according to a fifth embodiment of the present invention.
図 7は、 本発明の第 6の実施の形態の研磨装置の模式的正面図。 FIG. 7 is a schematic front view of a polishing apparatus according to a sixth embodiment of the present invention.
図 8は、 本発明の第 7の実施の形態の研磨装置の模式的正面図。 FIG. 8 is a schematic front view of a polishing apparatus according to a seventh embodiment of the present invention.
図 9は、 本発明の実施形態のポリッシング装置の全体構成を示す平面図。 図 1 0は、 図 9のポリツシング装置のポリッシング室 (図 9の領域 C及び D ) の正面図。 ' FIG. 9 is a plan view showing the overall configuration of a polishing apparatus according to an embodiment of the present invention. 10 is a front view of the polishing chamber (areas C and D of FIG. 9) of the polishing apparatus of FIG. '
図 1 1は、 図 9のポリツシング装置の光ドレッシング機構の斜視図。 11 is a perspective view of an optical dressing mechanism of the polishing apparatus of FIG.
図 1 2は、 図 9のポリツシング装置のターンテーブル周りの正面図。 12 is a front view around the turntable of the polishing apparatus of FIG.
図 1 3は、 図 9のポリツシング装置の第 2手法によるドレッシングの一連の動 作例を示すタイミングチヤ一ト。 Fig. 13 is a timing chart showing an example of a series of operation of dressing according to the second method of the polishing apparatus of Fig. 9.
図 1 4は、 図 9のポリッシング装置の第 1手法によるドレッシングの一連の動 作例を示すタイミングチヤ一ト。 Fig. 14 is a timing chart showing an example of a series of operation of dressing according to the first method of the polishing apparatus of Fig. 9.
図 1 5は、 図 9のポリツシング装置の第 3手法によるドレッシングの一連の動 作例を示すタイミングチャート。 Fig.15 is a timing chart showing an example of a series of operation of dressing according to the third method of the polishing apparatus of Fig.9.
図 1 6は、 図 9のポリツシング装置の第 4手法によるドレッシングの一連の動 作例を示すタイミングチャート。
図 17は、 図 9のポリツシング装置の第 5手法によるドレッシングの一連の動 作例を示すタイミングチヤ一ト。 Fig. 16 is a timing chart showing a series of operation examples of dressing according to the fourth method of the polishing apparatus of Fig. 9; Fig. 17 is a timing chart showing a series of operation examples of dressing according to the fifth method of the polishing apparatus of Fig. 9.
(符号の説明) (Explanation of the code)
1 1 : ターンテーブル、 13 :固定砥粒 (研磨工具)、 15 :研磨面、 2 1 : ト ップリング、 3 1 :光源、 32 :異物除去装置 (異物除去機構)、 32 A: ドレ ッサ、 32 B :異物除去装置 (異物除去機構)、 32 C :アトマイザ、 32D : 超音波発生器、 32 E :真空吸引装置 (真空吸引機構)、 34 : レーザ光放出口、 1 1: Turntable, 13: Fixed abrasive (abrasive tool), 15: Abrasive surface, 2 1: Topping, 31: Light source, 32: Foreign matter removal device (foreign matter removal mechanism), 32 A: Dresser, 32 B: foreign matter removal device (foreign matter removal mechanism), 32 C: atomizer, 32 D: ultrasonic wave generator, 32 E: vacuum suction device (vacuum suction mechanism), 34: laser light emission port,
35 : レーザ光線、 37 :ナイロンブラシ (ブラシ)、 38 : ドレッシング機構、35: Laser beam, 37: Nylon brush (brush), 38: Dressing mechanism,
40 :純水供給源、 41 :供給装置、 42 :気体供給源、 43 :第 2薬液供給源、 44 :第 1薬液供給源、 45 :真空供給源、 144、 145 : トップリング、 140: pure water supply source 41: supply device 42: gas supply source 43: second chemical liquid supply source 44: first chemical liquid supply source 45: vacuum supply source 144, 145: top ring, 1
46、 147 : ターンテーブル: 146 A、 147 A: 固定砥粒 (研磨工具)、 146B、 147 B :研磨面、 148、 149 :ターンテ一ブル、 150、 15 1 :研磨液供給ノズル、 152、 153 :アトマイザ、 154、 155、 1 56、 157 : ドレッサ、 160 : ロータリ トランスポ一夕、 164、 165 :プッシ ヤー、 168 :機械的ドレッシング機構、 192、 193 :光ドレッシング機構、 201〜 208 :研磨装置、 21 1 :運動機構、 W:基板 (半導体ウェハ)。 46, 147: Turntable: 146 A, 147 A: Fixed abrasive (abrasive tool), 146 B, 147 B: Abrasive surface, 148, 149: Turntable, 150, 15 1: Polishing liquid supply nozzle, 152, 153 : Atomizer, 154, 155, 156, 157: Dresser, 160: Rotary transfer tube, 164, 165: Pusher, 168: Mechanical dressing mechanism, 192, 193: Optical dressing mechanism, 201 to 208: Polishing device, 21 1: motion mechanism, W: substrate (semiconductor wafer).
発 明 の 実 施 の 形 態 Form of implementation of the invention
以下、 本発明の実施の形態について、 図面を参照して説明する。 なお、 各図に おいて互いに同一あるいは相当する部材には同一符号を付し、 重複した説明は省 略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, members identical or corresponding to each other are denoted by the same reference numerals, and redundant description will be omitted.
図 1は、 本発明の第 1の実施の形態に係る研磨装置 201を示す模式的正面図 である。 研磨装置 201は、 回転するターンテーブル 1 1と、 夕一ンテーブル 1 1上に設けられた固定砥粒 13とを備える。 本実施の形態では、 研磨工具である 固定砥粒 1 3は、 砥粒 (不図示) と、 砥粒を固定 (固着) するバインダ (不図 示) を含んで形成される。 FIG. 1 is a schematic front view showing a polishing apparatus 201 according to a first embodiment of the present invention. The polishing apparatus 201 includes a rotating turntable 11 and a fixed abrasive 13 provided on a cooling table 11. In the present embodiment, the fixed abrasive 13 which is a polishing tool is formed including an abrasive (not shown) and a binder (not shown) for fixing (adhering) the abrasive.
固定砥粒 1 3の砥粒としては、 酸化珪素 (S i O 2)、 アルミナ (A 1 2〇 As the abrasive grains of the fixed abrasive grain 13, silicon oxide (S i O 2), alumina (A 120)
3)、 酸化セリウム (C e〇2)、 炭化珪素 '(S i C)、 ジルコニァ (Z r〇)、 酸 化鉄 (F e〇、 F e 3〇4)、 酸化マンガン (Mn〇2、 Mn 203)、 酸化マグ ネシゥム (Mg〇)、 酸化カルシウム (C aO)、 酸化バリウム (Ba〇)、 酸化
亜鉛 (Z n〇)、 炭酸バリウム (B aC〇3)、 ダイヤモンド (C)、 酸化チタン (T i〇 2) などが用いられる。 3), cerium oxide (C e 2 2), silicon carbide (S i C), zirconia (Z r 鉄), iron oxide (F e 〇, F e 34), manganese oxide (Mn 〇 2, Mn 203), magnesium oxide (Mg)), calcium oxide (C aO), barium oxide (Ba)), oxidation Zinc (ZnO), barium carbonate (BaC03), diamond (C), titanium oxide (Ti02) and the like are used.
バインダの材料としてはエポキシ (EP)、 フエノール (PF)、 ユリア (U F)、 メラミン (MF)、 不飽和ポリエステル (UP)、 シリコン (S 1)、 ポリウ レ夕ン (PUR) などの熱硬化性樹脂や、 汎用プラスチックとして知られるポリ 塩化ビニル (PVC)、 ポリエチレン (PC)、 ポリカーボネート (PC)、 ポリ プロピレン (PP)、 ポリスチレン (PS)、 アクリロニトリルブタジエンスチレ ン (ABS;)、 アクリロニトリルスチレン (AS)、 ブタジエン ·スチレン ·メチ ルメ夕クリレート (MBS)、 ポリメチルメタアクリル (PMMA)、 ポリビニル アルコール (PVA)、 ポリ塩化ビニリデン (PVDC)、 ポリエチレンテレフタ レート (PET)、 汎用エンジニアリングプラスチックとして知られるポリアミ ド (PA)、 ポリアセ夕一ル (POM)、 ポリフエ二レンエーテル (PPE (変性 PP〇))、 ポリブチレンテレフタレート (PBT)、 超高分子基ポリエチレン (UHMW_PE)、 ポリフッ化ビニリデン (PVDF)、 ス一パーエンジニアリ ングプラスチックとして知られるポリサルホン (P SF)、 ポリエーテルサルホ ン (PES)、 ポリフエ二レンサルファイド (PP S)、 ポリアリレート (PA R)、 ポリアミドイミド (PA I )、 ポリエーテルイミド (PE I)、 ポリエーテ ルェ一テルケトン (PEEK)、 ポリイミド (P I)、 液晶ポリマー (LCP)、 ポリテトラフロロエチレン (PTFE)、 ポリスチレンメタアクリル樹脂、 ポリ カーボネート酢酸セルロース、 ポリアセタールポリアミド、 ポリプロピレンポリ エチレン、 3フッ化工チレン樹脂、 フッ化ビニリデン樹脂、 ポリエステル樹脂、 ジァリルフタレートなどの熱可塑性樹脂が挙げられる。 これらの樹脂を 2種類以 上混合して用いてもよい。 また、 これらの樹脂の単量体成分を共重合させること も可能である。 The binder material is thermosetting (epoxy (EP), phenol (PF), urea (UF), melamine (MF), unsaturated polyester (UP), silicon (S 1), polyurethane (PUR), etc.) Resins, polyvinyl chloride (PVC), polyethylene (PC), polycarbonate (PC), polypropylene (PP), polystyrene (PS), acrylonitrile butadiene styrene (ABS), acrylonitrile styrene (AS) known as general-purpose plastics , Butadiene · Styrene · Methyl methacrylate (MBS), Polymethyl methacrylate (PMMA), Polyvinyl alcohol (PVA), Polyvinylidene chloride (PVDC), Polyethylene terephthalate (PET), Polyamide known as general-purpose engineering plastics (PA), Polyacetal (POM), Polyphenylene Ether (PPE) ), Polybutylene terephthalate (PBT), ultra-high molecular weight polyethylene (UHMW_PE), polyvinylidene fluoride (PVDF), polysulfone (PSF) known as spar engineering plastic, polyether sulfone PES), polyphenylene sulfide (PPS), polyarylate (PAR), polyamideimide (PA I), polyetherimide (PE I), polyetheretherketone (PEEK), polyimide (PI), liquid crystal polymer ( Thermoplastics such as LCP), polytetrafluoroethylene (PTFE), polystyrene methacrylate resin, polycarbonate cellulose acetate, polyacetal polyamide, polypropylene polyethylene, trifluorinated ethylene resin, vinylidene fluoride resin, polyester resin, and aryl phthalate Resin is mentioned. These resins may be used as a mixture of two or more. It is also possible to copolymerize the monomer components of these resins.
また、 軟質な工具を利用したい場合の樹脂として好適な材質は、 ポリビニルフ ルォライド、 ポリビニリデンフルオライド、 ポリクロ口トリフルォロエチレンや ビエルフルオライド、 ビニリデンフルオライド、 ジクロロフルォロエチレン、 ビ ニルクロライド、 ビニリデンク口ライド、 パーフルオローひ一才レフイン類 (例 えばへキサフルォロプロピレン、 パーフルォロブテン— 1、 パーフルォロペンテ
ンー 1、 パーフルォ口へキセン— 1等)、 パ一フルォロブタジエン、 クロ口トリ フルォロエチレン、 トリクロロエチレン、 テトラフルォロエチレン、 パ一フルォ 口アルキルパーフルォロビニルエーテル類 (例えば、 パーフルォロメチルパーフ ルォロビニルエーテル、 パーフルォロェチルパーフルォロビニルエーテル、 パ一 フルォロプロピルパーフルォロビニルエーテル等)、 炭素数 1〜 6個のアルキル ビニルエーテル、 炭素数 6〜 8個のァリールビニルエーテル、 炭素数 1〜 6個の アルキル又は炭素数 6〜 8個のァリールパーフルォロビニルエーテル、 エチレン、 プロピレン、 スチレン等であり、 又はポリビニリデンフルオライド、 ポリビニル フルオライド、 ビニリデンフルオライドーテトラフルォロエチレン共重合体、 ビ 二リデンフルオライド—へキサフルォロプロピレン共重合体、 テトラフルォロェ チレン一エチレン共重合体、 テトラフルォロエチレン一プロピレン共重合体、 ェ チレン—クロ口トリフルォロエチレン共重合体、 テトラフルォロエチレン—クロ 口トリフルォロエチレン共重合体、 テトラフルォロエチレン一へキサフルォロプ ロピレン共重合体、 テトラフルォロエチレン一パ一フルォロメチルパーフルォロ ビニルェ一テル共重合体、 テトラフルォロエチレン一パーフルォロェチルバ一フ ルォロビニルエーテル共重合体、 テトラフルォロエチレン一パーフルォロプロピ ルパーフルォロビニルエーテル共重合体、 テトラフルォロエチレン一へキサフル ォロプロピレン一パーフルォ口メチルバ一フルォ口ビニルエーテル共重合体、 テ トラフルォロエチレン一へキサフルォロプロピレン—パーフルォロェチルパーフ ルォロビニルエーテル共重合体、 テトラフルォロエチレン一へキサフルォロプロ ピレン—パーフルォ口プロピルパーフルォ口ビニルエーテル共重合体等である。 発泡特性や経済性、 入手の容易さ等を勘案すれば、 好ましくは上述したポリビ 二リデンフルオライド、 ポリクロ口トリフルォロエチレン、 ビニリデンフルオラ ィドーへキサフルォロプロピレン共重合体、 エチレンーテトラフルォロエチレン 共重合体、 エチレン一クロ口トリフルォロエチレン共重合体、 テトラフルォロェ チレン—パーフルォロアルキルパーフルォロビニルエーテル共重合体類、 テトラ フルォロエチレン一へキサフルォロプロピレン共重合体である。 更に好ましくは、 部分フッ素化樹脂としてポリビニリデンフルオラィド、 ビニリデンフルオラィド 一へキサフルォロプロピレン共重合体、 パーフルォロ樹脂としてテトラフルォロ
エチレン一パーフルォ口アルキルパーフルォ口ビニルエーテル共重合体類である。 上述したバインダは有機物であるため、 所定の光を固定砥粒 1 3の研磨面 1 5 に照射すると光線の照射エネルギーによって分子結合が切られ、 バインダの砥粒 を保持する保持力が弱まり、 これにより砥粒が自生し、 研磨面 1 5の光ドレッシ ングがなされる。 光触媒物質である前述の T i〇 2、 又は Z n〇などを混合した 光反応性の固定砥粒 1 3を用いることで、 より低エネルギーの光線 (波長、 光 量) で砥粒の自生を促進することができる。 研磨には、 固定砥粒 1 3から遊離し た砥粒と、 固定砥粒 1 3に固定されているが固定砥粒 1 3の研磨面 1 5に露出し た状態の砥粒の両方が関与する。 研磨面 1 5の光ドレッシングにより、 研磨作用 を有する砥粒の自生を促進させることができる。 Also, materials suitable for use as flexible resins are polyvinyl fluoride, polyvinylidene fluoride, polyvinyl trifluoride ethylene, Biel fluoride, vinylidene fluoride, dichlorofluoroethylene, vinyl chloride , Vinylidene chloride, perfluoro-one-year refines (eg, hexafluoropropylene, perfluorobutene-1), perfluoropente Perfluoro-Hexene-1 etc.), Perfluorobutadiene, Chloro-Trifluoroethylene, Trichloroethylene, Tetrafluoroethylene, Perfluoro-Alkylperfluorovinylethers (eg, Perfluoro) Methylperfluorovinylether, Perfluoroethylperfluorovinylether, perfluoropropylperfluorovinylether, etc., C 1 to C 6 alkyl vinyl ethers, C 6 to C 8 aryl Vinyl ether, alkyl having 1 to 6 carbons, aryl having 6 to 8 carbons, arylperfluorovinyl ether, ethylene, propylene, styrene or the like, or polyvinylidene fluoride, polyvinyl fluoride, vinylidene fluoride-tetraful Foreethylene copolymer, vinyl Fluorene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene-ethylene copolymer, tetrafluoroethylene-propylene-copolymer, ethylene-croro-trifluoroethylene copolymer, tetrafluoroethylene- Close-up trifluoroethylene copolymer, tetrafluoroethylene-ethylenehexafluoropropyrene copolymer, tetrafluoroethylene-perfluoromethylperfluorovinylether copolymer, tetrafluoro-ethylene copolymer Ethylene-perfluoroethylene-fluorovinylether copolymer, tetrafluoroethylene-perfluoropropylperfluorovinylether copolymer, tetrafluoroethylene-hexafluoropropylene-perfluoromethylborohydride Fluo-vinyl ether copolymer, Tetrafluo To ethylene one hexa full O b propylene - a Pafuruo port propyl Per full O port vinyl ether copolymer, - per full O Roe chill perf Ruo Russia ether copolymer, tetrafurfuryl O b ethylene into single Kisafuruoropuro pyrene. In view of foaming properties, economy, availability and the like, preferably, the above-described polyvinylidene fluoride, polychlorotrifluorethylene, polyvinylidene fluoride hexafluoropropylene copolymer, ethylene-tetratetrachloride are preferable. Fluoroethylene copolymers, Ethylene-monochlorotrifluoroethylene copolymer, Tetrafluoroethylene-perfluoroalkylperfluorovinyl ether copolymers, Tetrafluoroethylene-hexafluoropropylene copolymer It is. More preferably, polyvinylidene fluoride as a partially fluorinated resin, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroboron as a perfluoro resin Ethylene / perfluoro alkyl perfluoro vinyl ether copolymers. Since the binder described above is an organic substance, when a predetermined light is irradiated to the polishing surface 15 of the fixed abrasive 13, the molecular bond is broken by the irradiation energy of the light beam, and the holding power to hold the abrasive of the binder weakens. As a result, abrasive grains are produced spontaneously, and light grinding of the polishing surface 15 is performed. By using light reactive fixed abrasive 13 in which the above-mentioned T i 02 or Z n o, etc., which is a photocatalytic substance, is mixed, the self-production of the abrasive can be performed with a lower energy beam (wavelength, light amount) Can be promoted. Polishing involves both abrasive grains released from the fixed abrasive 13 and abrasive grains fixed to the fixed abrasive 13 but exposed to the polishing surface 15 of the fixed abrasive 13. Do. The light dressing of the polishing surface 15 can promote the self-generation of abrasive grains having a polishing action.
研磨装置 2 0 1は、 更に、 水銀ランプ又は低圧水銀ランプ等の光源 3 1を備え、 光源 3 1から所定の光線を照射することで、 固定砥粒 1 3のバインダ材の分子結 合を切り、 遊離砥粒を自生することは上述したとおりである。 研磨装置 2 0 1は、 更に、 第 1流体としての第 1薬液 (薬剤を含む) を研磨面 1 5上に供給する供給 装置 4 1を備えている。 適当な第 1薬液を供給することにより、 適当な光線の照 射と組合わせることで、 遊離砥粒の自生を促進し、 これによりドレッシングを促 進し、 又維持することができる。 ここで、 供給する第 1薬液は、 ホウ酸塩等のホ ゥ素含有物が好ましい。 ホウ素含有物を供給することにより、 固定砥粒の光線照 射と組み合わせて、 十分な自生砥粒を得ることができ、 ドレッシングを安定して 行うことができる。 第 1薬液は、 03や H 202などの酸化剤を含む薬液であって もよい。 この酸化剤は、 U V光によって発生する〇3とすることができる。 The polishing apparatus 201 further includes a light source 31 such as a mercury lamp or a low pressure mercury lamp, and irradiates a predetermined light beam from the light source 31 to cut off the molecular bond of the binder material of the fixed abrasive 13. The self-production of free abrasive grains is as described above. The polishing apparatus 201 further includes a supply device 41 for supplying a first chemical solution (including a drug) as a first fluid onto the polishing surface 15. By supplying an appropriate first chemical solution and combining it with appropriate light irradiation, the spontaneous production of free abrasive grains can be promoted, thereby promoting and maintaining the dressing. Here, the first chemical solution to be supplied is preferably a boron-containing substance such as a borate. By supplying the boron-containing substance, sufficient natural abrasive grains can be obtained in combination with the light irradiation of the fixed abrasive grains, and the dressing can be performed stably. The first chemical solution may be a chemical solution containing an oxidizing agent such as O 3 or H 2 O 2 . The oxidizing agent may be a 〇 3 generated by the UV light.
研磨装置 2 0 1は、 トップリング 2 1を備える。 トップリング 2 1は、 研磨対 象物である基板 Wを保持し、 固定砥粒 1 3の研磨面 1 5に基板 Wを押圧しつつ摺 動する。 トップリング 2 1及びターンテーブル 1 1は基板を研磨面に押圧し両者 を相対運動させる運動機構 2 1 1を形成する。 研磨装置 2 0 1は、 一方で回転す るターンテーブル 1 1上の固定砥粒 1 3により、 研磨対象物である半導体ウェハ 等の基板 Wの研磨を行いつつ、 他方で光源 3 1を用いて光線を固定砥粒 1 3の研 磨面 1 5上に照射することにより研磨面 1 5のドレッシングを行なうことができ る。
図 2に示すように、 研磨装置 2 0 1は、 異物除去装置 3 2を備える。 異物除去 装置 3 2は、 固定砥粒 1 3の機械的もしくは光によるドレッシング、 固定砥粒 1 3による基板 Wの研磨により研磨面 1 5上に生じる異物を除去する。 前記異物除 去装置 3 2としては、 後述のようにドレッサ、 ナイロンブラシを備えたもの、 7 トマィザ、 超音波発生器、 真空吸引装置等がある。 The polishing apparatus 201 comprises a top ring 21. The top ring 21 holds the substrate W which is the object to be polished, and slides while pressing the substrate W against the polishing surface 15 of the fixed abrasive 13. The top ring 21 and the turntable 11 form a motion mechanism 21 1 that presses the substrate against the polishing surface and causes the two to move relative to each other. The polishing apparatus 201 polishes a substrate W such as a semiconductor wafer to be polished by the fixed abrasive 13 on the rotating turntable 11 on one side, while using the light source 31 on the other side. By irradiating a light beam onto the polished surface 15 of the fixed abrasive 13, dressing of the polished surface 15 can be performed. As shown in FIG. 2, the polishing apparatus 201 includes a foreign matter removing apparatus 32. The foreign matter removing device 32 removes foreign matter generated on the polishing surface 15 by mechanical or light dressing of the fixed abrasive 13 and polishing of the substrate W by the fixed abrasive 13. Examples of the foreign matter removing device 32 include a dresser, one having a nylon brush as described later, a 7-tonizer, an ultrasonic wave generator, a vacuum suction device and the like.
図 3は、 本発明の第 2の実施の形態の研磨装置 2 0 2を示す模式的正面図であ る。 研磨装置 2 0 2においては、 光源としてレーザ源 3 3を用い、 レーザ光線を 固定砥粒 1 3に照射する。 レーザ源 3 3は、 多数のレーザ光放出口 3 4を備え、 レーザ光線 3 5を万遍なく固定砥粒 1 3 (平面形状が円形) の照射部位 (研磨面 1 5 ) に照射する。 そして、 レーザ源 3 3は図中矢印 3 6で示す方向 (研磨面 1 5の径方向に対して水平かつ平行な方向) に揺動可能となっている。 これにより、 レーザ光線 3 5の局部への集中を避けることができ、 且つ強力なレーザ光線 3 5 の照射により高いエネルギー密度を固定砥粒 1 3の表面 (研磨面 1 5 ) に与える ことができ、 効率的に遊離砥粒の自生、 即ち、 ドレッシング効果を与えることが できる。 本実施の形態においても、 研磨装置 2 0 2は、 光照射が行われていると きに第 1薬液を研磨面 1 5上に供給する供給装置 4 1を有し、 第 1薬液としてホ ゥ酸塩等のホウ素含有物を供給し、 適当なレーザ光線の照射と組合わせることで 良好なドレッシングを行うことができる。 FIG. 3 is a schematic front view showing a polishing apparatus 202 according to a second embodiment of the present invention. In the polishing apparatus 202, a laser beam is irradiated to the fixed abrasive 13 using a laser source 33 as a light source. The laser source 33 is provided with a large number of laser light emission ports 34, and uniformly irradiates the laser beam 35 to the irradiation site (abrasive surface 15) of the fixed abrasive 13 (round shape). The laser source 33 can be swung in the direction shown by the arrow 36 (in the direction parallel to the radial direction of the polishing surface 15). As a result, it is possible to avoid the concentration of the laser beam 35 locally, and to give a high energy density to the surface (the polishing surface 15) of the fixed abrasive 13 by the irradiation of the strong laser beam 35. The efficient production of free abrasive grains, that is, the dressing effect can be provided. Also in the present embodiment, the polishing apparatus 202 has a supply apparatus 41 for supplying the first chemical solution onto the polishing surface 15 when light irradiation is performed, and as the first chemical solution, the homing apparatus is used. Good dressing can be performed by supplying a boron-containing substance such as an acid salt and combining it with appropriate laser beam irradiation.
ガルバノミラー等のレーザ一走査方法を用い、 レーザー光をスキャンしても良 い。 ガルバノミラ一を用いることにより、 1つのレーザー光を広範囲へ照射する ことが可能である。 また、 レーザ一光源とスキャン手段の組合せユニットを複数 個用いても良く、 複数のレーザー光を 1つ又は複数のスキャン手段に作用させ、 複数のレーザーを同時に走査しても良い。 Laser light may be scanned using a laser one-scanning method such as a galvano mirror. By using a galvano- mer, it is possible to irradiate a single laser beam over a wide range. Also, a plurality of combined units of a laser light source and scanning means may be used, and a plurality of laser beams may be applied to one or more scanning means to simultaneously scan a plurality of lasers.
一般に前述のような樹脂材料をバインダとして用いる場合に、 これらの材料は C一 H又は C _ C結合を有する化合物である。 この表面の末端基 (― H) や C— In general, when a resin material as described above is used as a binder, these materials are compounds having a C 1 H or C_C bond. The terminal group (-H) or C- on this surface
C結合を切り、 この余った結合腕に所望の官能基を置換することで、 固定砥粒 1By cutting C bond and substituting a desired functional group on this surplus bonding arm, fixed abrasive 1
5の表面で砥粒を開放する、 即ち遊離砥粒の自生を促進することができ、 これに より固定砥粒 1 3のドレッシングが可能である。 即ち、 ダイヤモンド工具等を用 いてドレッシングした場合と同様な効果が得られる。 一般に樹脂の C一 H、 C -
Cの結合エネルギーは、 それぞれ 98kcal/mol、 80. 6kcal/mol である。 し たがって、 このエネルギー以上の光子エネルギーを有する光線を照射し、 且つこ の光線が被照射材料に吸収されて上記結合エネルギー以上となれば、 その分子結 合を切断することができる。 The abrasive grains can be released on the surface of 5, that is, the spontaneous generation of the free abrasive grains can be promoted, whereby dressing of the fixed abrasive grains 13 is possible. That is, the same effect as in the case of dressing using a diamond tool or the like can be obtained. Generally resin C 1 H, C- The binding energy of C is 98 kcal / mol and 80.6 kcal / mol, respectively. Therefore, when a light beam having photon energy equal to or higher than this energy is irradiated, and the light beam is absorbed by the material to be irradiated to reach the binding energy or more, the molecular bond can be broken.
この条件を満たす光源として、 波長 248 nm、 光子エネルギー 1 14 kcal の K r Fエキシマレーザ光、 波長 193 nm、 光子エネルギー 147 Kcal の A r Fエキシマレーザ光、 波長 1 72 nm、 光子エネルギー 162 kcal の X eェ キシマランプ光などがある。 これらの光源は狭い波長分布を有し、 高エネルギー の光線の照射が可能であるがコスト高となる問題がある。 このため、 広い波長分 布を有するが水銀の共鳴線である 253. 7 nmと 184. 9 nmが強力に放射 される低圧水銀ランプを使用することができ、 これにより低コス卜の光ドレッシ ング用光源が得られる。 As a light source satisfying this condition, a 248 nm wavelength, 14 kcal photon energy Kr F excimer laser light, a 193 nm wavelength, 147 Kcal photon energy A r F excimer laser light, a 172 nm wavelength, photon energy 162 kcal There are X e Xeshima lamp light etc. These light sources have narrow wavelength distribution, and can emit high energy rays, but there is a problem of high cost. For this reason, it is possible to use a low-pressure mercury lamp having a broad wavelength distribution but emitting intensely the resonance lines of mercury, 253.7 nm and 184.9 nm. A light source is obtained.
樹脂分子中の例えば C—H結合は、 上述したように 80. 6kcal/mol である ので、 結合を切断することで遊離砥粒を自生させるのに必要なエネルギーを試算 する。 エネルギーと波長の関係式、 For example, since the C—H bond in the resin molecule is 80.6 kcal / mol as described above, the energy necessary for causing free abrasive grains to self-generate is calculated by breaking the bond. Energy and wavelength relation,
E = h/v 但し、 h :ブランクの定数、 V :速度 E = h / v where h: blank constant, V: speed
から、 光子エネルギーを照射面で全て吸収できると仮定した場合、 波長 35 I n m以下の波長の光を照射すれば上記分子結合の切断が可能となる。 From the above, assuming that all photon energy can be absorbed on the irradiation surface, the above-mentioned molecular bond can be broken by irradiating light having a wavelength of 35 I nm or less.
上述した光子エネルギーを用いた光ドレッシングは、 光化学反応により固定砥 粒中のバインダの結合を切るため、 固定砥粒が保持できなくなり砥粒が自生する c しかしながら、 光化学反応により切断されたバインダの結合腕は、 そのままの状 態で保持しておくと砥粒と再結合し、 再び砥粒がバインダに固定される。 このた め、 光化学反応により切断されたバインダと砥粒との再結合を防ぐことが重要で あり、 これにより遊離砥粒の自生量を安定化し、 また増加させることができる。 本発明者等の実験によれば、 固定砥粒のバインダとしてエポキシ樹脂又は MB S 樹脂を用いた場合に、 ホウ素を含むホウ酸塩であるイオンホウ酸ナトリゥム水溶 液を加えて紫外線を照射した場合に、 大きな光ドレッシング効果が得られること が判明した。 この第 1薬液は、 一般に標準緩衝液 (ホウ酸塩 pH標準液、 pH =The above-mentioned light dressing using the photon energy breaks the binding of the binder in the fixed abrasive by the photochemical reaction, so that the fixed abrasive can not be held and the abrasive grains are generated c. However, the binding of the binder cut by the photochemical reaction If the arm is held as it is, it recombines with the abrasive and the abrasive is fixed again to the binder. For this reason, it is important to prevent the recombination between the binder and the abrasive grains which are cut by the photochemical reaction, and this can stabilize and increase the amount of free abrasive grains. According to the experiments of the present inventors, when an epoxy resin or MB S resin is used as a binder for fixed abrasives, an aqueous solution of sodium borate ion, which is a boron-containing borate, is added and irradiated with ultraviolet light. It turned out that a large light dressing effect could be obtained. This first drug solution is generally a standard buffer (borate pH standard solution, pH =
9. 18 (25°0) として知られている。
バインダとしてエポキシ樹脂を用いた固定砥粒の光ドレッシングに際し、 この 第 1薬液を供給した場合の実験結果を表 1に示す。 9. Known as 18 (25 ° 0). Table 1 shows the experimental results in the case of supplying the first chemical solution in the optical dressing of the fixed abrasive using an epoxy resin as a binder.
本実験は、 砥粒として酸化セリウム粒子を用い、 バインダとしてエポキシ樹脂 を用い、 光源として低圧水銀ランプ 3 1 (図 1参照) を用いて行われた。 本実験 では、 まずドレッサとしてのダイヤモンドドレッサ (図 1、 図 3に、 不図示) に よって、 固定砥粒 1 3の研磨面 1 5 (図 1、 図 3参照) の機械的ドレッシングを 行う。 そして、 1枚目の基板としての半導体ウェハ Wを 1 0分間研磨し、 連続し て、 即ち研磨面 1 5に機械的ドレツシングを施すことなく引き続き 2枚目の半導 体ウェハ Wを 1 0分間研磨する。 その後、 固定砥粒 1 3の研磨面 1 5に第 1薬液 を供給して紫外線を 3 0分照射した後、 及び紫外線を照射しないで 3 0分放置し た後に 3枚目の半導体ウェハ W (図 1、 図 3参照) の研磨を行う。 供給する第 1 薬液は、 純水、 アルカリ溶液 (K O H)、 標準緩衝液 (ホウ酸塩 p H標準液、 p H = 9 . 1 8 ( 2 5 °0 ) の 3種類を用いた。 これらの各条件による組合せにお けるそれぞれの半導体ウェハ Wの研磨速度を示したのが表 1である。 This experiment was performed using cerium oxide particles as abrasive grains, using an epoxy resin as a binder, and using a low pressure mercury lamp 31 (see FIG. 1) as a light source. In this experiment, first, mechanical dressing of the polishing surface 15 (see Fig. 1 and Fig. 3) of the fixed abrasive 13 is performed by a diamond dresser (not shown in Fig. 1 and Fig. 3) as a dresser. Then, the semiconductor wafer W as the first substrate is polished for 10 minutes, and continuously, that is, the second semiconductor wafer W is continuously subjected to the polishing for 10 minutes without applying mechanical dripping to the polished surface 15. Grind. Thereafter, the first chemical solution is supplied to the polishing surface 15 of the fixed abrasive 13 and irradiated with ultraviolet light for 30 minutes, and after leaving for 30 minutes without irradiation with ultraviolet light, the third semiconductor wafer W ( Polish (see Figure 1 and Figure 3). As the first chemical solution to be supplied, three kinds of pure water, alkaline solution (KOH) and standard buffer solution (borate pH standard solution, pH = 91.8 (25 ° 0) were used. Table 1 shows the polishing rates of the respective semiconductor wafers W in the combinations according to the respective conditions.
即ち、 テスト No. 1と 2では、 供給する第 1薬液は純水のみで、 テスト No. 1 と 2は光照射の有無という点で相違する。 この結果として、 ダイヤモンド工具に よる機械的ドレッシング直後の研磨においては、 それぞれ研磨速度 2 6 ( Aノ min)、 2 7 (A/min) が得られ、 これに引き続く 2枚目の研磨においては、 そ れぞれの研磨速度は 3 (A/min) , 5 (A/mi n) と大幅に低下し、 特に 2枚目の 研磨においては遊離砥粒の自生量が極めて少なかったことが示されている。 そし て、 3枚目の研磨においても、 純水を供給して光照射を行った場合には、 研磨速 度は 1 2 (A/min) と少し増大しているが、 研磨速度としては極めて低い値であ り、 光照射なしの場合には研磨速度は 3 (A/min) 程度であり、 ドレッシングに よる自生砥粒の増大という効果は全くないことが示されている。 That is, in Test Nos. 1 and 2, the first chemical solution to be supplied is pure water only, and Test Nos. 1 and 2 are different in the presence or absence of light irradiation. As a result, in the polishing immediately after mechanical dressing using a diamond tool, polishing speeds 2 6 (A min) and 2 7 (A / min) are obtained, respectively, and in the subsequent polishing of the second sheet, The respective polishing rates were significantly reduced to 3 (A / min) and 5 (A / min), and it was shown that the number of free abrasive grains was extremely small especially in the second polishing. ing. And even in the case of the third polishing, when light irradiation is performed by supplying pure water, the polishing speed is slightly increased to 12 (A / min), but the polishing speed is extremely high. The value is low, and the polishing rate is about 3 (A / min) in the absence of light irradiation, and it has been shown that there is no effect of the increase of the natural abrasive grains by the dressing.
次に、 テスト No. 3と 4では、 3枚目の研磨の前にアルカリ溶液を供給すると 共に光照射を行った場合と行わなかった場合とが示されている。 1枚目及び 2枚 目の研磨におけるウェハ Wの研磨速度は上述と同様である。 3枚目の研磨に先立 つドレッシングにおいて、 アルカリ溶液を供給し光照射を行った場合には、 研磨 速度は 1 8 (A/min) と若干向上しているが、 光照射を行わなかった場合には研
磨速度は 8 (A/min) であり、 殆ど遊離砥粒の自生がなされていない、 即ち、 ド レツシングの効果が殆どなかつたことが示されている。 Next, in Test Nos. 3 and 4, the case where the alkali solution was supplied before the third polishing and the case where the light irradiation was performed and the case where it was not performed are shown. The polishing rate of the wafer W in the first and second polishing is the same as described above. In the dressing prior to the third polishing, when an alkaline solution was supplied and light was irradiated, the polishing speed was slightly improved to 18 (A / min), but light was not irradiated. In the case The polishing rate is 8 (A / min), and it is shown that almost no free abrasive grains are produced, that is, the effect of dressing is almost complete.
テスト No.5と 6は、 供給する第 1薬液としてホウ酸塩 pH標準液を用いた場 合であり、 上述と同様に光照射ありとなしの場合を比較している。 1枚目及び 2 枚目の半導体ウェハ Wの研磨結果は上述と同様である。 そして、 3枚目の半導体 ウェハ Wの研磨結果は、 テスト No.5では、 光照射有りの場合であり、 94A /min の高い研磨速度が得られていることが注目される。 この場合には、 標準緩 衝液と光照射との組合せにより、 光照射による樹脂の分子結合が切断され、 標準 緩衝液の影響によりこの分子結合の切断部が終端されて、 遊離砥粒の自生が確実 に行われたものと考えられる。 そして、 光照射なしの場合でも、 ホウ酸塩 pH標 準液を用いることで、 21 (A/min) の研磨速度が得られ、 テスト No. 1— 4と 比較して大きな値となっている。 Tests No. 5 and 6 are the cases where a borate pH standard solution was used as the first chemical solution to be supplied, and the cases with and without light irradiation were compared as described above. The polishing results of the first and second semiconductor wafers W are the same as described above. And, the polishing result of the third semiconductor wafer W is that in the test No. 5 with light irradiation, it is noted that a high polishing rate of 94 A / min is obtained. In this case, the combination of the standard buffer and the light irradiation breaks the molecular bond of the resin by light irradiation, and the effect of the standard buffer terminates the cut portion of this molecular bond, so that the free abrasive grains are produced spontaneously. It is considered to have been done surely. And even in the absence of light irradiation, the polishing rate of 21 (A / min) was obtained by using the borate pH standard solution, which is a large value compared to Test No. 1-4. .
この結果から、 ホウ酸塩 pH標準液を供給して、 光照射することにより遊離砥 粒の自生量が極めて増大し、 良好なドレッシング結果が得られたことが示されて いる。 第 1薬液としてアルカリ液を供給した場合には、 多少研磨速度の向上が認 められるが、 これは固定砥粒 13に染み込んだアルカリ砥粒が研磨に影響したも のと考えられる。 同様に標準緩衝液 (ホウ酸塩 pH標準液、 pH=9. 18 (2 5t:)) を使用した、 光照射なしの場合にも研磨速度の向上が認められた。 これ はアルカリ溶液の影響以上に、 標準緩衝液 (ホウ酸塩 pH標準液) の供給の効果 があったことによるものと考えられる。 From this result, it is shown that the self-generation amount of free abrasive grains is extremely increased by supplying a borate pH standard solution and irradiating light, and a good dressing result is obtained. In the case where an alkaline solution is supplied as the first chemical solution, the polishing rate is somewhat improved, but it is considered that the alkaline abrasive that has penetrated into the fixed abrasive 13 has affected the polishing. Similarly, an improvement in the polishing rate was also observed without light irradiation using a standard buffer solution (borate pH standard solution, pH = 9. 18 (25 t :)). This is considered to be due to the fact that the supply of standard buffer solution (borate pH standard solution) was more effective than the effect of alkaline solution.
次に、 メチルメタクリレートブタジエンスチレン (MBS) 樹脂を用いた固定 砥粒について説明する。 MB S樹脂は、 メチルメタクリレートブタジエンスチレ ンを主原料とする共重合体であり、 主に塩化ビニル樹脂又はアクリル樹脂の耐衝 撃性を改良する改質剤として使用されている。 塩化ビニル又はアクリル樹脂に M BSを添加したものをバインダとして用いた固定砥粒については、 一般的な場合、 添加量は数〜 20%程度であり、 塩化ビニルの特性を重視した設計である。 これ に対し、 樹脂中の MB S榭脂の割合を 20%以上、 更に 50%以上、 また更に 1 Next, fixed abrasive using methyl methacrylate butadiene styrene (MBS) resin will be described. The MBS resin is a copolymer mainly composed of methyl methacrylate butadiene styrene, and is mainly used as a modifier to improve the impact resistance of a vinyl chloride resin or an acrylic resin. In the case of a fixed abrasive using a polyvinyl chloride or acrylic resin to which MBS is added as a binder, the amount of addition is about several to 20% in a general case, and it is a design that places importance on the characteristics of vinyl chloride. On the other hand, the proportion of MB S resin in the resin is 20% or more, 50% or more, and 1 more.
00%にした場合には、 衝撃吸収効果の高い工具となる。 また、 MBSの他にェ ラストマー (EPR、 ブタジエンゴム、 エチレン—プロピレンゴム等) を分散さ
せた樹脂、 エラストマ一をコアとしたコアシェルタイプの樹脂なども同様の効果 がある。 例として P Pブロックポリマー (I即 act copolymer), PMMA、 TP E、 H I PS, ABS、 AES、 SBS、 SEBS、 SEPS、 EVA、 CPE、 MBS、 PET, PBT、 TPUなども単体、 添加剤として同様の効果を期待で きる。 When it is set to 00%, it becomes a tool with a high shock absorption effect. In addition to MBS, Elastomer (EPR, butadiene rubber, ethylene-propylene rubber, etc.) is dispersed. The same effect can also be achieved by using a resin that has been added or a core-shell resin that has an elastomer core as its core. For example, PP block polymer (I immediate act copolymer), PMMA, TPE, HI PS, ABS, AES, SBS, SEBS, SEBS, EVA, CPE, MBS, PET, PBT, TPU, etc. are also simple substances and similar additives. You can expect the effect.
MB S樹脂をバインダ材として用い、 セリァ砥粒と組み合わせることにより、 研磨時のスクラッチの発生が非常に少ない固定砥粒が得られる。 他の樹脂と MB S樹脂と混合して用いてもよい。 例えば、 エポキシ樹脂と MB S樹脂を混合して バインダ材として用いることができる。 即ち、 この固定砥粒は MB S樹脂が熱可 塑性樹脂であるため、 成形が容易であり、 且つ成形体の強度も高い。 そして、 M B S樹脂をバインダ材として用いた場合には砥粒の自生作用があり、 これにより 高い研磨速度が得られる。 例えば、 従来のエポキシ樹脂 (MB S樹脂を含まず) をバインダ材として用いた固定砥粒と比較して、 約 2倍の研磨速度が得られる。 更に、 樹脂自体が耐衝撃性を有するため、 研磨時に砥粒に作用する力が緩和 (抑 制) され、 基板にスクラッチが生じることのない、 即ち欠陥の少ない研磨が可能 となる。 MB S樹脂ポンド固定砥粒は、 その構造体が吸水効果により広がり、 光 照射により砥粒を保持する能力が低下して砥粒の自生が容易となるものと考えら れる。 By using the MBS resin as a binder material and combining it with the seri-abrasive particles, fixed-abrasive particles with very low occurrence of scratches during polishing can be obtained. You may mix and use other resin and MB S resin. For example, epoxy resin and MBS resin can be mixed and used as a binder material. That is, since the fixed abrasive is a MBS resin which is a thermoplastic resin, it can be easily molded and the strength of the molded body is also high. And, when the MBS resin is used as a binder material, there is an autogenous action of the abrasive grains, and thereby a high polishing rate can be obtained. For example, a polishing rate of about twice that of fixed abrasive using a conventional epoxy resin (without MBS resin) as a binder material can be obtained. Furthermore, since the resin itself has impact resistance, the force acting on the abrasive grains at the time of polishing is relaxed (suppressed), and scratching does not occur on the substrate, that is, polishing with less defects becomes possible. It is considered that the structure of the MBS resin-bound fixed abrasive spreads due to the water absorption effect, and the ability to hold the abrasive by light irradiation decreases to make the abrasive self-generating easy.
この固定砥粒は、 一般的なフエノール、 エポキシ樹脂による固定砥粒と比較し、 上述したように加工速度が速く、 基板に生じるスクラッチが少ないという特徴が あり、 スクラツチの発生が好ましくない半導体の製造工程においても適用するこ とが可能である。 一般的なフエノールやエポキシ樹脂による固定砥粒が、 研磨中 に同時にドレッシングを行う必要があるような高い研磨速度が必要な工程に対し て、 研磨中にドレッシングすることなく所要の高い研磨速度が得られる。 また、 ドレッシングに際してダイヤモンド砥粒の脱落の心配がないため、 ダイヤモンド 粒子によるスクラッチも発生しない。 This fixed abrasive is characterized by a faster processing speed and less scratching on the substrate as described above, as compared to fixed abrasives using a general phenol or epoxy resin, and it is possible to manufacture a semiconductor in which the occurrence of scratches is not preferable. It is also possible to apply to the process. In contrast to processes requiring high polishing rates where fixed abrasives with common phenol or epoxy resin require dressing at the same time during polishing, required high polishing rates can be obtained without dressing during polishing. Be In addition, since there is no concern about the falling off of the diamond abrasive when dressing, the scratch by the diamond particles does not occur.
表 2は、 バインダとして MB S樹脂を用いた場合の固定砥粒に対するドレッシ ングの実験結果であり、 その他の実験条件は表 1と同様である。 即ち、 砥粒とし て酸化セリウム粒子を用い、 バインダとして MBS樹脂を用い、 使用光源として
低圧水銀ランプを用いている。 また研磨条件として、 1枚目の半導体ウェハ wは、 ダイアモンドエ具による機械的ドレッシング処理をした後に研磨したものであり、Table 2 shows the experimental results of dressing on the fixed abrasive when the MBS resin is used as the binder, and the other experimental conditions are the same as Table 1. That is, using cerium oxide particles as abrasive grains, using MBS resin as a binder, as a light source for use It uses a low pressure mercury lamp. In addition, as the polishing conditions, the first semiconductor wafer w is one that has been subjected to mechanical dressing processing with a diamond tool and then polished.
2枚目の半導体ウェハ Wの研磨は 1枚目の研磨に引き続いて行ったものである。 そして、 その後に第 1薬液を供給し、 光照射のある場合とない場合に、 共に第 1 薬液を供給してドレッシングを行い、 3枚目の半導体ウェハ Wの研磨を行ってい る。 The polishing of the second semiconductor wafer W is performed subsequent to the polishing of the first wafer. After that, the first chemical solution is supplied, and the first chemical solution is supplied for dressing with and without light irradiation, and the third semiconductor wafer W is polished.
表 2に示す研磨速度の比較結果は以下の通りである。 まず、 テスト No. 1と 2 は、 供給する第 1薬液として純水のみを用い、 光照射の有無による研磨速度を比 較したものである。 表 2に示すように、 1枚目の研磨速度、 2枚目の研磨速度、 3枚目の研磨速度はいずれも大差がない。 M B S樹脂を用いた固定砥粒の場合、 連続研磨による研磨速度の低下率がエポキシ樹脂をバインダとして用いた固定砥 粒と比較して少ない特徴が上述したように存在する。 そして、 第 1薬液として純 水を供給し、 光照射を行わない場合には、 徐々に研磨速度が低下していく傾向が ある。 しかしながら、 光照射を行った場合には、 研磨速度の低下が起こらず安定 している。 更に、 第 1薬液として標準緩衝液 (ホウ酸塩 P H標準液、 p H = 9 . 1 8 ( 2 5 )) を供給して光照射を行った場合には、 初期の研磨速度程度まで 研磨性能の向上が認められた。 即ち、 M B S樹脂を用いた固定砥粒においても、 ホウ酸塩溶液を組合わせた光ドレッシングにより、 ダイアモンドドレッサによる 機械的ドレッシングに近い研磨速度が得られる。 The comparison results of the polishing rates shown in Table 2 are as follows. First, in Test Nos. 1 and 2, only pure water was used as the first chemical solution to be supplied, and the polishing rates were compared according to the presence or absence of light irradiation. As shown in Table 2, the polishing rate for the first sheet, the polishing rate for the second sheet, and the polishing rate for the third sheet are all the same. In the case of the fixed abrasive using the M 3 B S resin, as described above, the decreasing rate of the polishing rate by the continuous polishing is smaller than that of the fixed abrasive using the epoxy resin as the binder. Then, when pure water is supplied as the first chemical solution and light irradiation is not performed, the polishing rate tends to gradually decrease. However, in the case of light irradiation, the polishing rate does not decrease and is stable. Furthermore, when the standard buffer solution (borate PH standard solution, pH = 9.18 (25)) is supplied as the first chemical solution and light irradiation is performed, the polishing performance up to the initial polishing rate or so is obtained. Improvement was observed. That is, even in the fixed abrasive using the M 3 B S resin, the polishing speed similar to that of the mechanical dressing by the diamond dresser can be obtained by the light dressing combined with the borate solution.
固定砥粒のドレッシングとして、 砥粒を固定するバインダとしての高分子樹脂 に対して、 酸化分解作用を示す酸化剤を光照射と共に供給することも有効である。 酸化剤としては、 オゾン水、 過酸化水素水、 過酢酸、 過安息香酸、 ter t -ブチル ハイドロパーォキサイド等の有機過酸化物、 過マンガン酸カリウム等の過マンガ ン酸化合物、 重クロム酸カリウム等の重クロム酸化合物、 ヨウ素酸カリウム等の 八ロゲン酸化合物、 硝酸及び硝酸鉄等の硝酸化合物、 過塩素酸等の過八ロゲン酸 化合物、 フェリシアン化カリウム等の遷移金属塩、 過硫酸アンモニゥム等の過硫 酸塩、 ならびにヘテロポリ酸塩等があげられる。 これらのうちでは金属元素を含 有せず、 分解生成物が無害である過酸化水素水及び有機過酸化物が実用上好まし い。
上記過酸化物は不安定のためラジカルを生成してその不対電子が容易にバイン ダ榭脂を酸化させる。 また、 過酸化水素水に関しては紫外線により分解され、 ヒ ロキシラジカルを生成する。 このヒドロキシラジカルの H— O Hの結合解離ェ ネルギ一は約 1 2 0 k c a 1 /mo l で、 あらゆる樹脂の R— Hの結合解離エネル ギ一よりも大きい。 従って、 バインダ樹脂の R— Hはヒドロキシラジカルにより Rラジカルとなり、 生成した Rラジカルは更にヒドロキシラジカルなどと反応し て酸化分解する。 上記過酸化水素濃度は 0 . 0 0 l w t %〜6 O w t %、 p Hは 1〜1 4、 好ましくは 8〜 1 0であり、 紫外線の波長は 4 5 0 n m以下とするこ とが好ましい。 It is also effective to supply an oxidizing agent having an oxidative decomposition action together with light irradiation to the polymer resin as a binder for fixing the abrasive grains as a dressing for the fixed abrasive grains. Examples of oxidizing agents include ozone water, hydrogen peroxide water, peracetic acid, perbenzoic acid, organic peroxides such as tert-butyl hydroperoxide, permanganate compounds such as potassium permanganate, and heavy chromium Acid dichromic acid compounds such as potassium iodate, octagenic acid compounds such as potassium iodate, nitric acid compounds such as nitric acid and iron nitrate, peroxylogous acid compounds such as perchloric acid, transition metal salts such as potassium ferricyanide, ammonium persulfate And other persulfates, heteropolyacids and the like. Among these, hydrogen peroxide water and organic peroxides which do not contain metal elements and whose decomposition products are harmless are preferred in practice. Because of the instability, the above peroxides form radicals and their unpaired electrons easily oxidize binder. In addition, hydrogen peroxide solution is decomposed by ultraviolet light to generate hydroxyl radical. The bond dissociation of H-OH of this hydroxy radical is about 120 kca 1 / mol, which is larger than the bond dissociation energy of R-H of any resin. Accordingly, R—H of the binder resin is converted to R radicals by hydroxy radicals, and the generated R radicals further react with hydroxyl radicals and the like to be oxidatively decomposed. The hydrogen peroxide concentration is 0.010 wt% to 6 wt%, pH is 1 to 14, preferably 8 to 10, and the wavelength of ultraviolet light is preferably 450 nm or less .
これらの酸化分解作用を示す酸化剤は、 バインダである高分子樹脂を酸化劣化 させ、 主鎖切断、 分解、 低分子化させることで固定砥粒の表層を機械的に脆弱化 させ、 その表面層を除去することで砥粒の自生を促進する。 この酸化分解作用を 示す酸化剤を用いたドレッシングで、 上述した光線を照射することにより、 固定 砥粒から砥粒の自生を促進する光ドレッシングに対して相乗的な効果を与えるこ とができる。 The oxidizing agent that exhibits these oxidative decomposition actions oxidizes and degrades the polymer resin that is the binder, breaks the main chain, breaks it down, and lowers the molecular weight to mechanically weaken the surface layer of the fixed abrasive, and the surface layer thereof. Promote the self-generation of abrasive grains by removing A dressing using an oxidizing agent that exhibits this oxidative decomposition action can be given a synergistic effect on the optical dressing that promotes the self-generation of the abrasive grains from the fixed abrasive grains by irradiating the aforementioned light beam.
また、 光開始剤 (光増感剤) を固定砥粒中に混入し、 又は光ドレッシング中に 固定砥粒に供給する第 1薬液中に含ませることも、 光ドレツシングに有効である。 これらの状態で、 紫外線等の光線を固定砥粒表面に照射すると、 光開始剤 (光増 感剤) は紫外線を吸収して開裂又は水素引抜によるラジカルやイオンを生じ、 固 定砥粒を構成するバインダ樹脂の表層を分解して砥粒の自生を促進する。 光開始 剤 (光増感剤) としては、 ァセトフエノン、 ジァセチル、 2, 2 '—ァゾビスィ ソブチロニトリル、 アントラキノン、 塩化鉄、 1, 1—ジフエニル一 2—ピクリ ルヒドラジン (D P P H)、 ジメチルカルバミン酸鉄、 チォキサントン、 テトラ メチルチウラムスルフイ ド、 1, 4—ナフトキノン、 p—二トロア二リン、 フエ ナントレン、 ベンジル、 1, 2 _ベンゾアントラキノン、 p—ベンゾキノン、 ベ ンゾフエノン、 ミヒラーケトン、 2—メチルアントラキノン、 2—メチル一 1, In addition, it is also effective for photodressing to incorporate a photoinitiator (photosensitizer) into the fixed abrasive or to be contained in the first chemical solution supplied to the fixed abrasive during the light dressing. Under these conditions, when the surface of the fixed abrasive is irradiated with a light beam such as ultraviolet light, the photoinitiator (photosensitizer) absorbs the ultraviolet light and generates radicals or ions by cleavage or hydrogen abstraction to form a fixed abrasive. The surface layer of the binder resin is decomposed to promote the self-generation of the abrasive grains. As photo initiators (photosensitizers), there may be mentioned acetophenone, diacetyl, 2,2'-azobisisobutyronitrile, anthraquinone, iron chloride, 1,1-diphenyl-1-dihydrazine (DPPH), iron dimethylcarbamate, thioxanthone , Tetramethylthiuram sulfide, 1, 4-naphthoquinone, p-nitroadiline, phenanthrene, benzyl, 1, 2 _ benzoanthraquinone, p-benzoquinone, benzophenone, Michler's ketone, 2-methyl anthraquinone, 2-methyl One 1, 1
4一ナフトキノン (ビタミン K 3 ) 等がある。 固定砥粒に占める光開始剤 (光増 感剤) の濃度は、 0 . 0 5〜1 0 %程度が好ましく、 より好ましくは 0 . 1〜4 One is naphthoquinone (vitamin K 3) and so on. The concentration of the photoinitiator (photosensitizer) in the fixed abrasive is preferably about 0.5 to 10%, and more preferably 0.1 to 10%.
5 %程度である。 また、 光開始剤 (光増感剤) に適合する紫外線の有効励起波長
は一例としてチォキサントンの場合には 257 nm程度であり、 1, 4一ナフト キノンでは 251 nmである。 It is around 5%. In addition, the effective excitation wavelength of UV light compatible with the photoinitiator (photosensitizer) Is, for example, about 257 nm in the case of thioxanthone, and 251 nm in the case of 1,4-naphthoquinone.
また、 光ドレッシングを促進するためには、 固定砥粒を構成する樹脂の一部ま たは全部に感光性樹脂を用い、 光ドレツシング時に供給する第 1薬液として露光 後に樹脂を溶解しうる溶液を供給することが好ましい。 光照射により反応して物 性が変化する特にポジ型の感光性樹脂は、 光ドレッシング中に光が照射される部 分において変性もしくは分解 ·解重合することで、 露光後に樹脂を溶解しうる溶 液 (有機溶媒、 アルカリ水溶液、 純水) に対してより溶解しやすくなる。 従って、 ポジ型感光性樹脂と砥粒と、 必要に応じて他のバインダ樹脂とを混合して、 固定 砥粒を形成することで、 紫外線等の光線を照射して、 更に露光後に当該樹脂を溶 解しうる溶液を固定砥粒表面に接触させることにより、 ポジ型の感光性樹脂を他 のバインダ樹脂とともに溶解させて砥粒の自生を促進することができる。 露光後 に樹脂を溶解しうる溶液に用いる有機溶剤は、 露光後の感光性樹脂の溶解特性に 対応して選択する。 アルカリ又は酸性水溶液を用いる場合には、 酸アルカリの中 和反応で溶解を促進することができる。 Also, in order to promote the light dressing, a photosensitive resin is used for part or all of the resin constituting the fixed abrasive, and a solution capable of dissolving the resin after exposure is used as a first chemical solution supplied at the time of light dressing. It is preferable to supply. Particularly positive photosensitive resins, which react with light irradiation to change their properties, are dissolved or depolymerized in the portion to which light is irradiated during light dressing, so that they can be dissolved after exposure to light. It becomes easier to dissolve in liquid (organic solvent, alkaline aqueous solution, pure water). Therefore, the positive photosensitive resin, the abrasive grains, and, if necessary, another binder resin are mixed to form fixed abrasive grains, thereby irradiating light such as ultraviolet rays, and further, the resin is exposed after exposure. By bringing a soluble solution into contact with the surface of the fixed abrasive, the positive photosensitive resin can be dissolved together with other binder resins to promote the self-generation of the abrasive. The organic solvent used for the solution capable of dissolving the resin after exposure is selected according to the dissolution characteristics of the photosensitive resin after exposure. In the case of using an alkaline or acidic aqueous solution, the dissolution can be promoted by the neutralization reaction of acid and alkali.
ポジ型感光性樹脂として、 例えば光崩壊型である PMMA (ポリメチルメ夕ク リレート) や PM I PK (ポリメチルイソプロぺニルケトン) を用いる場合には 露光により分子量の低下が生じ、 露光後に樹脂を溶解しうる溶液として有機溶剤 である例えばメチルイソブチルケトンとィソプロピノアルコールの混合液を用い ることで溶解する。 また、 溶解抑止型であるノポラック樹脂と o_ジァゾナフト キノン系化合物を用いる場合には露光によりインデンカルボン酸が生じ、 これが アルカリ溶液に溶解する。 また、 水溶性樹脂であるポリビニルアルコールと感光 性組成物を混合させた場合には、 露光後に樹脂を溶解しうる溶液として水を用い 溶解することができる。 ポジ型感光性樹脂として用いる樹脂は、 好ましくは一 (CH2 -CR 1 R 2) —の R 1は CH3、 R 2は— H、 _CH3、 一 CO〇H、 When using, for example, photo-degradable PMMA (polymethyl methacrylate) or PMI PK (polymethyl isopropenyl ketone) as a positive photosensitive resin, the molecular weight decreases due to exposure, and the resin is dissolved after exposure. It is dissolved by using a mixture of an organic solvent such as methyl isobutyl ketone and isopropino alcohol as a possible solution. In addition, in the case of using the nopolak resin and the o_diazonaphthoquinone compound which are the dissolution inhibiting type, indene carboxylic acid is generated by exposure to light, and this is dissolved in the alkaline solution. When a photosensitive composition is mixed with polyvinyl alcohol which is a water-soluble resin, it can be dissolved using water as a solution capable of dissolving the resin after exposure. The resin used as the positive type photosensitive resin is preferably one (CH 2 -CR 1 R 2)-in which R 1 is CH 3, R 2 is-H, _CH 3, one CO O H,
— COOCH3、 一 COOC 2H5、 _COOC 3H7、 一 C〇〇C4H9、 -— COOCH 3, 1 COOC 2H 5, _COOC 3H 7, 1 C C C 4 H 9, −
C〇OC 5H l l、 — COOCH2 CF 2 CHF— CF 3、 — C 6H5、 一 COC〇OC 5H l l, — COOCH 2 CF 2 CHF — CF 3, — C 6H 5, 1 CO
NH2、 CN、 一 COCH3、 又はこれらの共重合体である。 NH2, CN, one COCH3, or a copolymer of these.
なお、 感光性樹脂を固定砥粒に含ませて光ドレッシングを促進するためには、
一般のバインダ材である樹脂に含まれている酸化防止剤、 紫外線吸収剤、 光安定 剤、 ラジカル禁止剤、 金属不活性化剤、 過酸化物分解剤等をなるベく添加しない 状態で用いることが好ましい。 以上述べたドレッシングにより十分な砥粒の自生 のもとで研磨を安定に行うことができる。 In addition, in order to promote the light dressing by including the photosensitive resin in the fixed abrasive, Do not add antioxidants, UV absorbers, light stabilizers, radical inhibitors, metal deactivators, peroxide decomposers, etc. contained in resin that is a general binder material. Is preferred. By the dressing described above, the polishing can be stably performed under sufficient abrasive grain self-generation.
光照射によるドレッシングを行った際、 照射後の固定砥粒の表面に、 一部溶解 不完全な樹脂が滞留する可能性がある。 この樹脂は照射することにより溶解した 樹脂に変質した部分であり、 本来の樹脂の物性とは異なった物性を有している。 よって、 この変質した樹脂は、 本来の樹脂が有している、 基板の被研磨面への対 攻撃性緩和の効果や、 スクラッチ発生防止などの効果が得られない。 また、 照射 された固定砥粒の表面は、 基板を研磨することにより均一に加工が施されている はずであるが、 細かく見ると前述したような溶解不完全な樹脂が滞留し、 実際は 加工が不均一になっている可能性がある。 したがって、 そのまま加工を繰り返せ ば加工面の均一性は徐々に失われていき、 研磨性能にも影響を与える。 更に、 機 械的ドレッシングにより、 固定砥粒の表層が削り取られ、 そのカスが固定砥粒の 表面に残る場合や、 基板の被研磨面の被膜を研磨により除去した際に、 除去され た被膜が前記固定砥粒上に滞留する場合もある。 When dressing by light irradiation, partially dissolved and incomplete resin may be retained on the surface of the fixed abrasive after irradiation. This resin is a portion which has been denatured into a resin dissolved by irradiation, and has physical properties different from those of the original resin. Therefore, this denatured resin does not have the effect of alleviating the aggression against the surface to be polished of the substrate and the effect of preventing the occurrence of scratches, etc., which the original resin has. In addition, the surface of the fixed abrasive that has been irradiated should be processed uniformly by polishing the substrate. However, when it is finely observed, the incompletely dissolved resin as described above remains, and in fact the processing is It may be uneven. Therefore, if the processing is repeated as it is, the uniformity of the processed surface will gradually be lost, and the polishing performance will be affected. Furthermore, the surface layer of the fixed abrasive is scraped off by mechanical dressing, and when the residue remains on the surface of the fixed abrasive or when the film on the surface to be polished of the substrate is removed by polishing, the removed film is removed. In some cases, the particles may stay on the fixed abrasive.
研磨装置 2 0 2も、 第 1の実施の形態で説明した異物除去装置 3 2 (図 2参 照) を備える。 異物除去装置としては、 後述のようにドレッサ、 ナイロンブラシ を備えたもの、 アトマイザ、 超音波発生器、 真空吸引装置等がある。 The polishing apparatus 202 also includes the foreign matter removing apparatus 32 (see FIG. 2) described in the first embodiment. As the foreign matter removing apparatus, there are a dresser and a nylon brush as described later, an atomizer, an ultrasonic wave generator, a vacuum suction apparatus and the like.
図 4は、 本発明の第 3の実施の形態にかかる、 異物除去装置としての、 ダイヤ モンド粒子を含むドレッサ 3 2 Aを備えた研磨装置 2 0 3を示す。 本研磨装置 2 0 3は、 光源 3 1を有する光照射によるドレッシング機構 3 8を備える。 本研磨 装置 2 0 3では、 上述の溶解不完全な樹脂を含む研磨とは無関係の異物を、 ドレ ッサ 3 2 Aを固定砥粒 1 3の研磨面 1 5に押しつけ、 削り落とすこともしくは排 出させることが可能となり、 より効果的に研磨砥粒を露出させ、 効率のよい研磨 が実現可能となる。 また、 溶解不完全な樹脂を削り落とば少なくとも均質な表面 状態が研磨面 1 5上に再現でき、 均一な表面状態を維持することが可能である。 図 5は、 本発明の第 4の実施の形態にかかる、 ナイロンブラシ 3 7を有する異 物除去装置 3 2 Bを備えた研磨装置 2 0 4を示す模式的立面図である。 本研磨装
置 2 0 4は、 光源 3 1を有する光ドレッシング機構 3 8を備える。 本研磨装置 2 0 4では、 上述の溶解不完全な樹脂を含む研磨とは無関係の異物を、 ナイロンブ ラシ 3 7を固定砥粒 1 3の研磨面 1 5に押しつけ、 擦り付けることによりそぎ落 とすこと、 もしくは排出させることが可能になり、 より効果的に研磨砥粒を露出 させ、 効率のよい研磨が実現可能となる。 また、 溶解不完全な樹脂をそぎ落とせ ば少なくとも均質な表面状態が研磨面 1 5上に再現でき、 均一な表面状態を維持 することが可能である。 FIG. 4 shows a polishing apparatus 203 equipped with a dresser 32 A including diamond particles as a foreign matter removing apparatus according to a third embodiment of the present invention. The polishing apparatus 203 includes a dressing mechanism 38 by light irradiation having a light source 31. In the present polishing apparatus 203, foreign matter unrelated to polishing including the above-mentioned incompletely dissolved resin is pressed against the polishing surface 15 of the fixed abrasive 13 by pressing the dresser 32A onto the polishing surface 15 of the fixed abrasive 13. It becomes possible to expose the abrasive grains more effectively, and efficient polishing can be realized. In addition, if the incompletely dissolved resin is scraped off, it is possible to reproduce at least a homogeneous surface condition on the polishing surface 15 and maintain a uniform surface condition. FIG. 5 is a schematic elevation view showing a polishing apparatus 24 provided with a foreign matter removing apparatus 32 B having a nylon brush 37 according to a fourth embodiment of the present invention. This polishing machine The fixture 24 includes a light dressing mechanism 38 having a light source 31. In the present polishing apparatus 204, the foreign matter unrelated to the polishing including the above-mentioned incompletely dissolved resin is scraped by pressing the nylon brush 3 7 against the polishing surface 15 of the fixed abrasive 13 and rubbing it. It is possible to discharge the abrasive grains more effectively, and to realize efficient polishing. In addition, if the incompletely dissolved resin is scraped off, at least a homogeneous surface condition can be reproduced on the polished surface 15 and a uniform surface condition can be maintained.
異物除去装置 3 2 Bは、 光源 3 1からの光照射を行う光ドレッシング機構 3 8 とは独立して制御することも可能で、 ナイロンブラシ 3 7のかき出しの強さをブ ラシの太さ、 本数により加減することも可能である。 例として、 目の細かいナイ ロンブラシ 3 7を使用すれば、 研磨砥粒はナイロンブラシ 3 7に比べてはるかに 小さい (0 . 2 m以下) のでナイロンブラシ 3 7によってかき出されることな く表面に滞留可能であるが、 生成物等は砥粒に比べてはるかに大きいのでナイ口 ンブラシ 3 7に引つかかり選択的にかき出される。 また、 ナイロンブラシ 3 7は 例えば材質が一般的なナイロン 6 6や東レ製型番 2 0 0 T _ 0 . 1 3 2等で、 一 本の線径が Ψ 0 . 0 5〜 1 . 0 mm、 長さが 5〜1 0 mm、 断面形状が丸いのも のを直径 3〜 5 mm位の円形状の束にして複数個配置したものもしくは全面に一 様に配置したものから構成される。 実用上は特に一般的な歯ブラシのような目の 細かいブラシが望ましく、 更に低い押しつけ圧にて作用させることが望ましい。 図 6は、 本発明の第 5の実施の形態にかかる、 N 2ガスと第 2液体あるいは液 体としての第 2薬液 (純水又は純水以外の薬液) とをミスト状に噴出する第 2液 体供給機としてのアトマイザ 3 2 Cを備えた研磨装置 2 0 5を示す。 アトマイザ 3 2 Cから異物除去用の N 2ガスと第 2薬液を噴霧する代わりに、 異物除去用の N 2ガスと光照射によるドレツシング用の第 1薬液 (異物除去のための第 2薬液 とは異なる) を噴霧するようにしてもよい。 この場合、 アトマイザ 3 2 Cは、 本 発明の第 1液体供給機としても働く。 The foreign substance removal device 32 B can also be controlled independently of the light dressing mechanism 3 8 that emits light from the light source 31, and the brushing strength of the nylon brush 3 7 can be controlled by the thickness of the brush, It is also possible to adjust by the number. For example, if fine-grained nylon brush 37 is used, the abrasive grains are much smaller (0.2 m or less) compared to nylon brush 37, so they are not scraped off by nylon brush 37. Although it is possible to stagnate, the product etc. is much larger than the abrasive grains, so it is pulled by the brush and is selectively scraped off. The nylon brush 37 is, for example, generally made of nylon 66, manufactured by Toray, model number 2 0 0 T 0. 0 1 2 3 or the like, and one wire diameter is 0.50 to 1 .0 mm, A round bundle of 5 to 10 mm in length and round in cross-sectional shape is made up of a plurality of circular bundles approximately 3 to 5 mm in diameter, or those arranged uniformly over the entire surface. In practice, a fine brush such as a general toothbrush is particularly desirable, and it is desirable to operate at a low pressing pressure. FIG. 6 shows a fifth embodiment of the present invention, in which the N 2 gas and a second liquid or a second chemical solution as pure liquid (pure water or a chemical solution other than pure water) are ejected in a mist form. A polishing apparatus 250 equipped with an atomizer 32 C as a liquid supply device is shown. Instead of spraying the N 2 gas and the second chemical solution for foreign matter removal from the atomizer 32 C, the N 2 gas for the foreign matter removal and the first chemical solution for dosing by light irradiation (the second chemical solution for foreign matter removal Different) may be sprayed. In this case, the atomizer 32 C also acts as a first liquid feeder of the present invention.
アトマイザ 3 2 Cは、 異物を除去する場合には、 N 2ガスと第 2薬液とを供給 し、 光照射によるドレッシングを行う場合には、 当該ドレッシングに使用する第 The atomizer 32 C supplies N 2 gas and a second chemical solution to remove foreign matter, and performs dressing by light irradiation, when used for the dressing.
1薬液 (異物除去のための第 2薬液とは異なる) を供給するようにしてもよい。
この場合、 アトマイザ 3 2 Cは、 本発明の第 1液体供給機としても働く。 (1) A chemical solution (different from the second chemical solution for removing foreign matter) may be supplied. In this case, the atomizer 32 C also acts as a first liquid feeder of the present invention.
アトマイザ 3 2 Cは、 先端の各スプレーノズル 3 9じから、 均一な流体流量且 つ均一な濃度分布にて供給が可能である。 この特性を利用して例えば上述の光照 射によるドレッシング作用向上に用いられる、 第 1薬液としての光開始剤 (光増 感剤) を固定砥粒 1 3上に散布してもよい。 この際均一な光照射が実現できれば 固定砥粒 1 3に対して均一な表面加工が可能になる。 この場合、 光開始剤を供給 する第 1薬液供給源 4 4にアトマイザ 3 2 Cが接続され、 アトマイザ 3 2 Cは、 本発明の第 1液体供給機としても働く。 The atomizer 32 C can be supplied from each spray nozzle 39 at the tip with uniform fluid flow rate and uniform concentration distribution. For example, a photoinitiator (photosensitizer) as a first chemical solution, which is used to improve the dressing action by the above-described light irradiation, may be dispersed on the fixed abrasive 13 by utilizing this characteristic. At this time, if uniform light irradiation can be realized, uniform surface processing can be performed on the fixed abrasive 13. In this case, the atomizer 32 C is connected to a first chemical solution supply source 44 for supplying a photoinitiator, and the atomizer 32 C also works as a first liquid supplier of the present invention.
更にアトマイザ 3 2 Cは、 気体供給源 4 2、 第 2薬液供給源 4 3に接続される。 アトマイザ 3 2 Cは、 気体供給源 4 2、 第 2薬液供給源 4 3から供給するパージ 気体 (N 2ガスなど) の圧力、 第 2薬液の流量、 圧力、 を変化させることで霧状 から粒状までのあらゆる散布状態を実現可能である。 また、 パージ圧による噴霧 での塗布であるため粒径に関わらず均一な塗布が実現でき、 複数の流体を用いた ので、 供給流体の濃度自身を変化させるのが可能である。 これにより、 液体の粒 径、 分布に依存して固定砥粒 1 3への塗布の濃度分布に強弱をつけ光照射後のき め細かい凹凸の加工状態に仕上げられ、 その凹凸の粗さを噴霧の度合いを調節す ることで制御可能である。 一例として、 霧状噴霧の塲合は、 固定砥粒 1 3の加工 面が細かい凹凸もしくは凹凸なしの表面状態を形成し、 粒状噴霧の場合は比較的 うねりのある凹凸の表面状態に仕立てられる等、 表面上の凹凸は研磨対象基板の 構成膜種に応じて変化させられ、 目的に応じた研磨が実現できる。 Furthermore, the atomizer 32 C is connected to a gas supply source 42 and a second chemical solution supply source 43. The atomizer 32 C changes the pressure of the purge gas (N 2 gas etc.) supplied from the gas supply source 42 and the second chemical solution supply source 43, the flow rate of the second chemical solution, and the pressure, thereby changing from atomized to granular It is possible to realize all spraying conditions up to. In addition, uniform application can be realized regardless of the particle size because the application is by spraying with a purge pressure, and since multiple fluids are used, it is possible to change the concentration itself of the supplied fluid. As a result, depending on the particle size and distribution of the liquid, the concentration distribution of the application to the fixed abrasive 13 is strongly and weakly finished to be processed into fine unevenness after light irradiation, and the unevenness of the unevenness is sprayed It can be controlled by adjusting the degree of As an example, in the case of atomized spray, the machined surface of fixed abrasive 13 13 forms a surface state without fine irregularities or unevenness, and in the case of granular spray, it is tailored to a relatively undulated uneven surface state, etc. The unevenness on the surface can be changed according to the film type of the substrate to be polished, and the polishing according to the purpose can be realized.
また、 アトマイザ 3 2 Cのスプレーノズル 3 9 Cへの供給を各々スプレーノズ ル単位毎に独立させ、 それぞれに流量調整機構 (不図示)、 圧力調整機構 (不図 示) を設けることで各々のスプレーノズル 3 9 Cからの散布量を変化させれば、 固定砥粒 1 3の径方向に対する濃度分布に変化を持たせられ、 光照射後の径方向 へのプロファイルに変化をつけることが出来る。 これにより、 固定砥粒 1 3の加 工面の該プロファイルに応じて基板 W (図 1参照) の研磨させたい所だけを選択 的に研磨させることが可能となる。 In addition, supply of atomizer 32 C to spray nozzle 39 C is made independent for each spray nozzle unit, and each spray can be provided by providing a flow control mechanism (not shown) and a pressure control mechanism (not shown). By changing the spray amount from the nozzle 39 C, the concentration distribution of the fixed abrasive 13 in the radial direction can be changed, and the profile in the radial direction after light irradiation can be changed. This makes it possible to selectively polish only the portion where the substrate W (see FIG. 1) is desired to be polished according to the profile of the processing surface of the fixed abrasive 13.
研磨装置 2 0 5は、 アトマイザ 3 2 Cの代替として液体スプレー (不図示) を 備えてもよい。 液体スプレーは、 固定砥粒 1 3の研磨面 1 5に対向して一列に配
置された複数のスプレーノズル (不図示) を有し、 各スプレーノズルから、 均一 な液体流量且つ均一な濃度分布にて、 純水供給源から供給された純水を高圧 (例 えば、 5 M P a以上) に圧力制御機構 (不図示) により圧力制御し研磨面 1 5上 に供給し、 カス等の異物を除去し洗い流すことができる。 研磨装置 2 0 5は、 液 体スプレーの代替として、 気体を固定砥粒に噴出してその風圧で除去する気体ス プレーを同様に備えるようにしてもよい。 The polishing apparatus 205 may be equipped with a liquid spray (not shown) as an alternative to the atomizer 32C. The liquid sprayer is arranged in a row facing the polishing surface 15 of the fixed abrasive 13. It has a plurality of spray nozzles (not shown), and high pressure (for example, 5 MP) of pure water supplied from pure water supply source with uniform liquid flow rate and uniform concentration distribution from each spray nozzle. a) Pressure control is performed by a pressure control mechanism (not shown) and supplied onto the polishing surface 15 so that foreign substances such as debris can be removed and washed away. The polishing apparatus 205 may also be equipped with a gas spray that ejects a gas to the fixed abrasive and removes it with the air pressure as an alternative to the liquid spray.
また、 固定砥粒 1 3に使用される樹脂の種類によっては光照射によるドレッシ ング時に使用される第 1薬液とは別の第 2薬液を用いることで上述の研磨に関係 のない樹脂を溶融し除去可能である。 第 2薬液には酸化分解作用を示す酸化剤等 も用いられる。 なお、 アトマイザ 3 2 Cを用いることで第 2薬液を均一に固定砥 粒 1 3の研磨面 1 5に散布でき、 均一な光ドレッシングを可能としている。 なお、 アトマイザ 3 2 Cの替わりに前記液体スプレーを用いてもよい。 In addition, depending on the type of resin used for fixed abrasive 13, using a second chemical solution different from the first chemical solution used during dressing by light irradiation melts the resin unrelated to the above-mentioned polishing. It is removable. For the second chemical solution, an oxidant or the like exhibiting an oxidative decomposition action is also used. Note that, by using the atomizer 32 C, the second chemical solution can be dispersed uniformly on the polishing surface 15 of the fixed abrasive 13, and uniform light dressing can be performed. The liquid spray may be used instead of the atomizer 32 C.
図 7は、 本発明の第 6の実施の形態にかかる、 超音波振動による異物除去を行 う研磨装置 2 0 6を示す。 研磨装置 2 0 6は、 超音波発生器 3 2 Dを備え、 超音 波発生器 3 2 Dは、 通常、 固定砥粒 1 3の上方に配置されている。 超音波発生器 3 2 Dと固定砥粒 1 3との間に純水を介在させることにより、 超音波発生器 3 2 Dから発信された超音波が該純水を介して固定砥粒 1 3の研磨面 1 5に伝えられ、 その超音波振動により固定砥粒 1 3の研磨面 1 5上に滞留した異物をはがすこと が出来る。 なお、 研磨装置 2 0 6は、 光ドレッシング機構 3 8を備え、 超音波発 生器 3 2 Dは、 光照射によるドレッシングを行う光ドレッシング機構 3 8とは独 立して制御可能であり、 該超音波の出力及び固定砥粒 1 3への距離を調節するこ とで異物除去の強弱をつけることが出来る。 また、 固定砥粒 1 3に使用される樹 脂が非常に脆い (ガラス転移度が低い) 場合には超音波作用だけで研磨砥粒の自 生が可能である。 この場合、 超音波発生器 3 2 Dと固定砥粒 1 3との間に介在し 超音波を伝える役目を果たす液体として純水のほかに薬液もしくはこれらを混合 したものを供給してもよい。 FIG. 7 shows a polishing apparatus 206 for removing foreign matter by ultrasonic vibration according to a sixth embodiment of the present invention. The polishing apparatus 2006 includes an ultrasonic generator 32 D, and the ultrasonic generator 32 D is usually disposed above the fixed abrasive 13. By interposing pure water between the ultrasonic generator 32 D and the fixed abrasive 13, ultrasonic waves transmitted from the ultrasonic generator 32 D are fixed abrasive 13 via the pure water. The foreign matter retained on the polishing surface 15 of the fixed abrasive 13 can be removed by being transmitted to the polishing surface 15 of the fixed abrasive 13 by the ultrasonic vibration. The polishing apparatus 2006 includes an optical dressing mechanism 38. The ultrasonic generator 32 D can be controlled independently of the optical dressing mechanism 38 performing dressing by light irradiation. By adjusting the output of ultrasonic waves and the distance to the fixed abrasive 13, it is possible to improve the strength of foreign substance removal. In addition, when the resin used for the fixed abrasive 13 is very brittle (the glass transition degree is low), the abrasive abrasive can be generated only by the ultrasonic action. In this case, it is possible to supply a chemical solution or a mixture of these in addition to pure water as a liquid that is interposed between the ultrasonic generator 32 D and the fixed abrasive 13 and serves to transmit ultrasonic waves.
図 8は、 本発明の第 7の実施の形態にかかる、 真空吸引にて異物除去を行う研 磨装置 2 0 7を示す。 研磨装置 2 0 7は、 真空供給源 4 5に接続された真空吸引 装置 3 2 Eを備え、 真空吸引装置 3 2 Eは、 通常、 固定粒子 1 3の上方に配置さ
れている。 なお、 研磨装置 2 0 7は、 光源 3 1を有する光ドレッシング機構 3 8 を備える。 また、 真空吸引装置 3 2 Eは上述の研磨に関係にない異物も吸い上げ て、 真空供給源 4 5と真空吸引装置 3 2 Eとの間に設けたドレン (不図示) もし くはフィルタ (不図示) にて異物を回収する。 FIG. 8 shows a polishing apparatus for removing foreign matter by vacuum suction according to a seventh embodiment of the present invention. The polishing device 2 07 has a vacuum suction device 3 2 E connected to a vacuum source 4 5 and a vacuum suction device 3 2 E is usually arranged above the fixed particles 1 3 It is done. The polishing apparatus 2 0 7 includes an optical dressing mechanism 3 8 having a light source 3 1. In addition, the vacuum suction device 32 E also sucks up foreign substances not related to the above-mentioned polishing, and a drain (not shown) or a filter (not shown) provided between the vacuum supply source 45 and the vacuum suction device 3 2 E Collect the foreign matter according to the illustration).
図 9は、 本発明の実施形態におけるポリッシング装置 2 0 8の全体構成を示す 平面図である。 なお、 本ポリツシング装置 2 0 8は、 第 5の実施の形態の研磨装 置を備える。 ポリツシング装置 2 0 8は、 第 5の実施の形態の研磨装置に替えて 第 1〜第 4、 及び第 6〜第 7の実施の形態にかかる研磨装置を適用することも可 能である。 この図で示すように、 ポリツシング装置 2 0 8は、 多数の半導体ゥェ ハ W (図 1参照) をストックするウェハカセット 1 0 1を載置する 4つのロード /アンロードステージ 1 0 2を備えている。 ロード Zアンロードステージ 1 0 2 は昇降可能な機構を有していてもよい。 口一ドノアンロードステージ 2上の各ゥ ェハカセット 1 0 1に到達可能となるように、 走行機構 1 0 3の上に搬送ロポッ ト 1 0 4が配置されている。 FIG. 9 is a plan view showing the overall configuration of a polishing apparatus 20 according to an embodiment of the present invention. The polishing apparatus 2 0 8 is equipped with the polishing apparatus of the fifth embodiment. The polishing apparatus of the fifth embodiment can be replaced by the polishing apparatus according to the first to fourth and sixth to seventh embodiments. As shown in this figure, the polishing apparatus 2 0 8 is equipped with 4 loading / unloading stages 1 0 2 for placing wafer cassettes 1 0 1 for stocking a large number of semiconductor wafers W (see FIG. 1). ing. The loading Z unloading stage 102 may have a mechanism that can move up and down. In order to be able to reach each wafer cassette 101 on the Dono Unloading stage 2, a transport logo 104 is disposed on the traveling mechanism 103.
搬送ロボット 1 0 4は、 上下に 2つのハンドを備えている。 搬送ロボット 1 0 4の 2つのハンドのうち下側のハンドは、 半導体ウェハ W (図 1参照) を真空吸 着する吸着型ハンドであり、 ウェハカセット 1 0 1から半導体ウェハ Wを受け取 るときのみに使用される。 この吸着型ハンドは、 カセット内のウェハ Wのずれに 関係なく正確にウェハ Wを搬送することができる。 一方、 搬送口ポット 1 0 4の 上側のハンドは、 ウェハ Wの周縁部を保持する落し込み型ハンドであり、 ウェハ カセット 1 0 1に半導体ウェハ Wを戻すときのみに使用される。 この落し込み型 ハンドは、 吸着型ハンドのようにゴミを集めてこないので、 ウェハ Wの裏面のク リーン度を保ちながらウェハ wを搬送することができる。 このように洗浄した後 のクリーンなウェハ Wを上側に配置することとして、 それ以上ウェハ Wを汚さな いようにしている。 The transfer robot 104 has two hands at the top and the bottom. The lower hand of the two hands of the transfer robot 104 is an adsorption type hand for vacuum-adhering the semiconductor wafer W (see FIG. 1), and is only when the semiconductor wafer W is received from the wafer cassette 101. Used for The suction type hand can accurately transfer the wafer W regardless of the deviation of the wafer W in the cassette. On the other hand, the upper hand of the transfer port pot 104 is a drop-in type hand that holds the peripheral portion of the wafer W, and is used only when the semiconductor wafer W is returned to the wafer cassette 101. Since the drop-in type hand does not collect dust as in the suction type hand, the wafer w can be transferred while maintaining the clean degree of the back surface of the wafer W. By placing the clean wafer W after cleaning in this manner on the upper side, the wafer W is not further contaminated.
搬送ロボット 1 0 4の走行機構 1 0 3を対称軸としてウェハカセット 1 0 1と は反対側には、 半導体ウェハ Wを洗浄する 2台の洗浄機 1 0 5、 1 0 6が配置さ れている。 各洗浄機 1 0 5、 1 0 6は搬送ロポット 1 0 4のハンドが到達可能な 位置に配置されている。 また、 これらの洗浄機 1 0 5、 1 0 6は、 ウェハ Wを高
速回転させて乾燥させるスピンドライ機能を有しており、 これによりウェハ Wの 2段洗浄及び 3段洗浄の際にモジュール交換することなく対応することができる。 On the opposite side of the transport robot 1 0 4 with the traveling mechanism 1 0 3 as the axis of symmetry, the two cleaning machines 1 0 5 and 1 0 6 for cleaning the semiconductor wafer W are arranged. There is. Each washing machine 105, 106 is disposed at a position where the hand of the transport robot 104 can reach. Also, these cleaning machines 105, 106 are high on the wafer W It has a spin-dry function that allows it to be rapidly rotated and dried, which makes it possible to cope with two-stage cleaning and three-stage cleaning of wafers W without replacing modules.
2台の洗浄機 1 0 5、 1 06の間には、 搬送ロポット 1 04が到達可能な位置 に、 半導体ウェハ Wの載置台 1 07、 1 08、 1 09、 1 1 0を 4つ備えたゥェ 八ステーション 1 1 2が配置されている。 洗浄機 1 05と 3つの載置台 1 07、 1 09、 1 1 0に到達可能な位置には、 2つのハンドを有する搬送ロポット 1 1 4が配置されている。 また、 洗浄機 6と 3つの載置台 1 08、 1 09、 1 10に 到達可能な位置には、 2つのハンドを有する搬送ロポット 1 1 5が配置されてい る。 Between the two cleaning machines 1 0 5 and 1 0 6, there are provided four semiconductor wafer W mounting tables 1 07 1 08 1 10 9 1 10 1 at a position where the transfer robot 1 04 can reach. 8 Stations 1 1 2 are arranged. At positions where it is possible to reach the washing machine 1 05 and the three mounting tables 1 07, 1 09, 1 1 0, there is arranged a transport robot 1 1 4 having two hands. In addition, at positions where the washing machine 6 and the three mounting tables 108, 1 09, and 1 10 can be reached, the transport robot 1 15 having two hands is disposed.
載置台 107は、 搬送ロボット 104と搬送ロボット 1 14との間で半導体ゥ ェハ Wを互いに受渡すために使用され、 載置台 1 08は、 搬送ロポット 1 04と 搬送ロポット 1 1 5との間で半導体ウェハ Wを搬送するために使用される。 これ らの載置台 1 07、 108には半導体ウェハ Wの有無を検知する検知センサ 1 1 6、 1 1 7がそれぞれ設けられている。 The loading table 107 is used to mutually transfer the semiconductor wafer W between the transfer robot 104 and the transfer robot 114, and the loading table 108 is between the transfer robot 104 and the transfer robot 115. Used to transport the semiconductor wafer W in On these mounting tables 107 and 108, detection sensors 116 and 117 for detecting the presence or absence of the semiconductor wafer W are provided, respectively.
載置台 109は、 搬送ロポット 1 1 5から搬送ロボット 1 14へ半導体ウェハ Wを搬送するために使用され、 載置台 1 1 0は、 搬送ロボット 1 14から搬送口 ボット 1 15へ半導体ウェハ Wを搬送するために使用される。 これらの載置台 1 09、 1 10には、 半導体ウェハ Wの有無を検知する検知センサ 1 1 8、 1 1 9 と、 半導体ウェハ Wの乾燥を防止する又はウェハ Wを洗浄するためのリンスノズ ル 1 20、 1 2 1とがそれぞれ設けられている。 The mounting table 109 is used to transfer the semiconductor wafer W from the transfer robot 155 to the transfer robot 114, and the transfer table 110 transfers the semiconductor wafer W from the transfer robot 114 to the transfer port bot 115. Used to These mounting tables 1 09 and 1 10 include detection sensors 1 18 1 and 1 1 9 that detect the presence or absence of a semiconductor wafer W, and rinse nozzles 1 for preventing the semiconductor wafer W from drying or cleaning the wafer W 1 20 and 1 2 1 are provided respectively.
これらの載置台 1 09、 1 1 0は共通の防水カバーの中に配置されており、 こ のカバーに設けられた搬送用の開口部にはシャッター 1 22が設けられている。 また、 載置台 109は載置台 1 10の鉛直方向上方に位置しており、 洗浄後のゥ ェハ Wは載置台 1 09に、 洗净前のウェハ Wは載置台 1 10に載置される。 この ような構成とすることで、 リンス水の落下によるウェハ Wの汚染を防止している。 なお、 図において、 センサ 1 1 6、 1 1 7、 1 1 8、 1 1 9、 リンスノズル 1 2 These mounting tables 1 09 and 1 10 are disposed in a common waterproof cover, and a shutter 1 22 is provided in the transport opening provided on the cover. The mounting table 109 is positioned vertically above the mounting table 110, and the wafer W after cleaning is mounted on the mounting table 1 09 and the wafer W before cleaning is mounted on the mounting table 110. . Such a configuration prevents contamination of the wafer W due to the drop of rinse water. In the figure, sensors 1 1 6 1 1 7 1 1 8 1 1 9 and rinse nozzle 1 2
0、 1 2 1、 及びシャツ夕一 1 22は模式的に示されており、 これらの位置及び 形状は正確に図示されていない。 The positions 0, 1 2 1 and 10 12 22 are shown schematically and their positions and shapes are not shown exactly.
搬送ロボット 1 14のハンドが到達可能な位置には、 洗浄機 1 05と隣接する
ように洗浄機 124が配置されている。 また、 搬送ロボット 1 1 5のハンドが到 達可能な位置には、 洗浄機 106と隣接するように洗浄機 125が配置されてい る。 これらの洗浄機 124、 125は、 ウェハ Wの両面を洗浄することができる 洗浄機である。 It is adjacent to the cleaning machine 105 at a position where the hand of the transfer robot 1 14 can reach. As such the washer 124 is arranged. In addition, the cleaning machine 125 is disposed adjacent to the cleaning machine 106 at a position where the hand of the transfer robot 115 can reach. These cleaning machines 124 and 125 are cleaning machines capable of cleaning both sides of the wafer W.
搬送ロボット 1 14及び搬送ロポット 1 15の上側のハンドは、 一度洗浄され た半導体ウェハ Wを洗浄機又はウェハステーション 1 12の載置台へ搬送するの に使用される。 一方、 下側のハンドは、 一度も洗浄されていない半導体ウェハ W 及び研磨される前の半導体ウェハ Wを搬送するために使用される。 下側のハンド を用いて後述する反転機 140へのウェハ Wの出し入れを行うことにより、 反転 機上部の壁からのリンス水の滴により上側のハンドが汚染されることがない。 上記洗浄機 105、 106、 124、 125のウェハ W搬入口には、 図 9に示 すように、 それぞれシャッター 105 a、 106 a, 124 a, 125 aが取付 けられており、 ウェハ Wが搬入されるときのみ開口可能となっている。 The upper hand of the transfer robot 114 and the transfer robot 115 is used to transfer the semiconductor wafer W, which has been cleaned once, to the mounting table of the cleaning machine or wafer station 112. On the other hand, the lower hand is used to transport the semiconductor wafer W which has not been cleaned and the semiconductor wafer W before being polished. By using the lower hand to transfer the wafer W to and from the reversing device 140 described later, the upper hand is not contaminated by the rinse water droplets from the upper wall of the reversing device. As shown in FIG. 9, shutters 105a, 106a, 124a, and 125a are attached to the wafer W inlets of the cleaning machines 105, 106, 124, and 125, respectively, and the wafer W is carried in. It can be opened only when it is
ポリッシング装置 208は、 各機器を囲むようにハウジング 126を備えてお り、 八ウジング 126の内部は、 隔壁 128、 隔壁 1 30、 隔壁 132、 隔壁 1 34、 及び隔壁 136により複数の領域 (領域 A、 領域 Bを含む) に区画されて いる。 The polishing apparatus 208 is provided with a housing 126 so as to surround each device, and the inside of the housing 126 is divided into a plurality of areas by partition walls 128, partition walls 130, partition walls 132, partition walls 134 and partitions 136. , And region B).
ウェハカセット 101と搬送ロボット 104が配置されている領域 Aと、 洗净 機 105、 106と載置台 107、 108、 109、 1 10が配置されている領 域 Bとの間には、 領域 Aと領域 Bとのクリーン度を分けるために隔壁 128が配 置されている。 この隔壁 128には、 領域 Aと領域 Bとの間で半導体ウェハ Wを 搬送するための開口部が設けられており、 この開口部にはシャツ夕一 138が設 けられている。 上記洗浄機 105、 106、 124、 125、 ウェハステーショ ン 1 12の載置台 107、 108、 109、 1 10、 及び搬送ロポッ卜 1 14、 115は、 すべて領域 Bの中に配置されており、 領域 Bの圧力は領域 A内の気圧 よりも低い気圧に調整されている。 Between the area A in which the wafer cassette 101 and the transfer robot 104 are arranged and the area B in which the cleaning machines 105 and 106 and the mounting tables 107, 108, 109 and 110 are arranged, the area A and A partition wall 128 is disposed to separate the degree of cleanliness with the region B. The partition wall 128 is provided with an opening for transporting the semiconductor wafer W between the area A and the area B, and a shirt 138 is provided in the opening. The above-mentioned cleaning machines 105, 106, 124, 125, the mounting tables 107, 108, 109, 110 of the wafer station 1 12, and the transfer bumps 114, 115 are all arranged in the area B, The pressure in B is adjusted to a pressure lower than the pressure in area A.
図に示すように、 隔壁 134によって領域 Bと区分された領域 Cの内部におい て搬送ロポット 1 14のハンドが到達可能な位置には、 半導体ウェハ Wを反転さ せる反転機 140が配置されており、 反転機 140には搬送ロボット 1 14によ
つて半導体ウェハ wが搬送される。 また、 領域 Cの内部において搬送口ポット 1 1 5のハンドが到達可能な位置には、 半導体ゥェ八 Wを反転させる反転機 1 4 1 が配置されており、 反転機 1 4 1には搬送ロポット 1 1 5によって半導体ウェハ Wが搬送される。 反転機 1 4 0及び反転機 1 4 1は、 半導体ウェハ Wをチャック するチャック機構と、 半導体ウェハ Wの表面と裏面を反転させる反転機構と、 半 導体ウェハ Wを上記チヤック機構によりチャックしているかどうかを確認する検 知センサ (不図示) とを備える。 As shown in the figure, the reversing machine 140 for reversing the semiconductor wafer W is disposed at a position where the hand of the transfer robot 1 14 can reach within the area C divided from the area B by the partition wall 134. , Inverting machine 140 by the transfer robot 1 14 Then, the semiconductor wafer w is transferred. Also, at the position where the hand of the transfer port pot 115 can reach inside the area C, the reversing unit 14 1 that reverses the semiconductor wafer W is disposed. The semiconductor wafer W is transported by the robot pot 115. Inverting machine 140 and inverting machine 14 1 are chuck mechanism for chucking semiconductor wafer W, reversing mechanism for reversing the front and back of semiconductor wafer W, and semiconductor wafer W chucked by the above chuck mechanism? It has a detection sensor (not shown) to check whether it is.
隔壁 1 3 4によって領域 Bと区分されたポリッシング室が形成されており、 こ のポリッシング室は更に隔壁 1 3 6によって 2つの領域 C及び領域 Dに区分され ている。 なお、 領域 Bと領域 C及び Dとを区切る隔壁 1 3 4には、 半導体ウェハ 搬送用の開口部が設けられ、 この開口部には、 反転機 1 4 0と反転機 1 4 1のた めのシャツ夕一 1 4 2、 1 4 3が設けられる。 A polishing chamber separated from the area B is formed by the partition walls 134, and the polishing chamber is further divided into two areas C and D by the partition walls 136. In addition, an opening for transporting a semiconductor wafer is provided in the partition wall 134 which separates the region B and the regions C and D. In this opening, the reversing unit 140 and the reversing unit 141 are provided. The shirts Yui 1 4 2, 1 4 3 will be provided.
図 9に示すように、 2つの領域 C、 Dには、 それぞれターンテーブル 1 4 6、 1 4 7と、 ターンテーブル 1 4 8、 1 4 9と、 1枚の半導体ウェハを保持し且つ 半導体ウェハをターンテーブル 1 4 7、 1 4 8に対して押し付けながら研磨する ための 1つのトップリング 1 4 4、 1 4 5が配置される。 As shown in FIG. 9, in the two areas C and D, turntables 1 4 6 and 1 4 7, turntables 1 4 8 and 1 4 9, and one semiconductor wafer are held and a semiconductor wafer One top ring 1 4 4 1 4 5 is placed to polish while pressing against the turntable 1 4 7 1 4 8.
即ち、 領域 Cには、 トップリング 1 4 4と、 ターンテーブル 1 4 6、 1 4 8と、 ターンテーブル 1 4 6に研磨液を供給するための研磨液供給ノズル 1 5 0と、 窒 素ガス供給源 (不図示) 及び第 2薬液供給源 (不図示) に接続される複数の噴射 ノズル (不図示) を備えたアトマイザ 1 5 2と、 ターンテ一ブル 1 4 6の機械的 ドレッシングを行うためのドレッサ 1 5 4と、 夕一ンテーブル 1 4 8の機械的ド レッシングを行うためのドレッサ 1 5 6とが配置されている。 That is, in the region C, the top ring 14 4, the turntables 1 4 6 and 1 4 8, the polishing liquid supply nozzle 1 5 0 for supplying the polishing liquid to the turntable 1 4 6, and the nitrogen gas To perform mechanical dressing of the atomizer 1 52 with a plurality of injection nozzles (not shown) connected to the supply source (not shown) and the second chemical solution supply source (not shown), and the turntable 1 46 The dresser 1 5 4 and the dresser 1 5 6 for performing mechanical dressing of the set table 1 4 8 are arranged.
同様に、 領域 Dには、 トップリング 1 4 5と、 夕一ンテ一ブル 1 4 7、 ターン テーブル 1 4 9と、 ターンテーブル 1 4 7に研磨液を供給するための研磨液供給 ノズル 1 5 1と、 窒素ガス供給源 (不図示) 及び第 2薬液供給源 (不図示) に接 続される複数の噴射ノズル (不図示) を備えたアトマイザ 1 5 3と、 ターンテー ブル 1 4 7の機械的ドレッシングを行うためのドレッサ 1 5 5と、 ターンテ一ブ ル 1 4 9の機械的ドレッシングを行うためのドレッサ 1 5 7とが配置される。 研磨液供給ノズル 1 5 0、 1 5 1からは研磨に使用する研磨液や機械的ドレツ
シングに使用するドレッシング液 (例えば、 水) がそれぞれターンテーブル 1 4 6、 1 4 7上に供給される。 また、 アトマイザ 1 5 2、 1 5 3からは窒素ガスと 第 2薬液 (純水又は純水以外の薬液) とが混合された混合流体がターンテーブル 1 4 6、 1 4 7上に噴射される。 窒素ガス供給源からの窒素ガス及び第 2薬液供 給源からの第 2薬液は、 図示しないレギユレ一夕やエアオペレータバルブによつ て所定の圧力に調整され、 両者が混合された状態でアトマイザ 1 5 2、 1 5 3の 図示しない噴射ノズルに供給される。 この場合において、 アトマイザ 1 5 2、 1 5 3の噴射ノズルはターンテーブル 1 4 6、 1 4 7の外周側に向けて流体を噴射 するのが好ましい。 なお、 窒素ガスに代えて他の不活性ガスを用いることもでき る。 また、 第 2薬液のみをアトマイザ 1 5 2、 1 5 3から噴射することとしても よい。 なお、 ターンテーブル 1 4 8、 1 4 9にもアトマイザを設けてもよい。 夕 ーンテーブル 1 4 8、 1 4 9にアトマイザを設けることで、 ターンテーブル 1 4 8、 1 4 9の表面をより清浄に保つことができる。 Similarly, in the area D, the top ring 1 4 5, the setting table 1 4 7, the turntable 1 4 9, and the polishing liquid supply nozzle 1 5 for supplying the polishing liquid to the turntable 1 4 7 1 and an atomizer 1 53 having a plurality of injection nozzles (not shown) connected to a nitrogen gas supply source (not shown) and a second chemical solution supply source (not shown), and a machine of the turn table 1 4 7 A dresser 1 5 5 for performing the dynamic dressing and a dresser 1 5 7 for performing the mechanical dressing of the turntable 1 4 9 are disposed. Polishing fluid supply nozzle 1 5 0 1 5 1 is a polishing fluid used for polishing or mechanical dret Dressing fluid (for example, water) to be used for shinging is supplied onto turntables 1 46 and 147, respectively. Also, a mixed fluid in which nitrogen gas and a second chemical solution (pure water or a chemical solution other than pure water) are mixed is sprayed onto the turntables 1 46, 1 4 7 from the atomizers 1 52, 1 53. . The nitrogen gas from the nitrogen gas supply source and the second chemical solution from the second chemical solution supply source are adjusted to a predetermined pressure by a regu- lator, not shown, or an air operator valve, and the atomizer is in a state where both are mixed 1 It is supplied to 52, 15 3 injection nozzles not shown. In this case, it is preferable that the spray nozzles of the atomizers 1 52 and 1 5 3 jet fluid toward the outer peripheral side of the turntables 1 4 6 and 1 4 7. Note that other inert gases can be used instead of nitrogen gas. Alternatively, only the second chemical solution may be injected from the atomizers 15 2 and 15 3. An atomizer may be provided on the turntables 1 4 8 and 1 4 9. By providing an atomizer on the evening tables 1 4 8 and 1 4 9, the surfaces of the turntables 1 4 8 and 1 4 9 can be kept cleaner.
混合された窒素ガスと第 2薬液 (純水又は純水以外の薬液) は、 ①液体微粒子 化、 ②液体が凝固した微粒子固体化、 ③液体が蒸発した気体化 (これら①、 ②、 ③を霧状化又はアトマイズという) された状態で、 アトマイザ 1 5 2、 1 5 3の 噴射ノズルからターンテーブル 1 4 6、 1 4 7に向けて噴射される。 混合された 流体が液体微粒子化、 微粒子固体化、 気体化のいずれの状態で噴射されるかは、 窒素ガス及び 又は第 2薬液 (純水又は純水以外の薬液) の圧力、 温度、 又はノ ズル形状などによって決定される。 従って、 レギユレ一夕などによって窒素ガス 及び Z又は第 2薬液 (純水又は純水以外の薬液) の圧力、 温度、 又はノズル形状 などを適宜変更することによって噴射される流体の状態を変更することができる。 なお、 ターンテーブル 1 4 8、 1 4 9の代わりに、 湿式タイプのウェハ膜厚測 定機を設置してもよい。 その場合は、 研磨直後のウェハ Wの膜厚を測定すること ができ、 ウェハ Wの削り増しや、 測定値を利用して次のウェハ Wへの研磨プロセ スの制御を行うこともできる。 The mixed nitrogen gas and the second chemical solution (pure water or a chemical solution other than pure water) are: (1) liquid particleization, (2) liquid particle solidification, (3) liquid evaporation and gasification (these 1, 2 and 3 In the state of being atomized or atomized, the spray nozzles of the atomizers 1 52, 1 5 3 are sprayed toward the turntables 1 4 6, 1 4 7). The pressure, temperature, or pressure of the nitrogen gas and / or the second chemical solution (pure water or a chemical solution other than pure water) determines whether the mixed fluid is jetted in the state of liquid fine particleization, fine particle solidification, or gasification. It is determined by the shape of the puzzle. Therefore, change the condition of the fluid to be injected by changing the pressure, temperature, nozzle shape, etc. of nitrogen gas and Z or the second chemical solution (pure water or a chemical solution other than pure water) appropriately by means of a constant temperature. Can. A wet type wafer film thickness measuring machine may be installed in place of the turntables 1 4 8 and 1 4 9. In that case, it is possible to measure the film thickness of the wafer W immediately after polishing, and it is also possible to control the polishing process to the next wafer W by increasing the amount of shaving of the wafer W or using measured values.
反転機 1 4 0、 1 4 1とトップリング 1 4 4、 1 4 5の下方に、 洗浄室 (領域 Reversing machine 1 4 0, 1 4 1 and top ring 1 4 4, 1 4 5 below the cleaning room (area
B ) とポリツシング室 (領域 C、 D) の間でウェハ Wを搬送するロー夕リトラン スポータ 1 6 0が配置されている。 口一タリ トランスポー夕 1 6 0には、 ウェハ
Wを載せるステージが 4ケ所等配に設けてあり、 同時に複数のウェハ Wを搭載で きるようになつている。 The reactor 10 is disposed to transport the wafer W between B) and the polishing chamber (areas C and D). Wichi Tari Transporter 1 6 0, Wafer There are four stages at which W is to be placed at equal intervals, so that multiple wafers W can be loaded at the same time.
反転機 1 4 0、 1 4 1に搬送されたウェハ Wは、 ロータリ トランスポー夕 1 6 0のステージの中心が、 反転機 1 4 0、 1 4 1でチャックされたウェハ Wの中心 と位相が合ったときに、 ロータリ トランスポー夕 1 6 0の下方に設置されたリフ 夕 1 6 2、 1 6 3が昇降することで、 ロータリ トランスポー夕 1 6 0上に搬送さ れる。 ロータリ トランスポー夕 1 6 0のステージ上に載せられたウェハ Wは、 口 —タリ トランスポ一夕 1 6 0の位置を 9 0 ° 変えることで、 トップリング 1 4 4、 1 4 5の下方へ搬送される。 トップリング 1 4 4、 4 5は、 予め口一夕リ トラン スポ一夕 1 6 0の位置に揺動している。 トップリング 1 4 4、 1 4 5の中心が上 記ロータリ トランスポー夕 1 6 0に搭載されたウェハ Wの中心と位相が合ったと きに、 それらの下方に配置されたプッシャ一 1 6 4、 1 6 5が昇降することで 、 ウェハ Wは口一タリ トランスポー夕 1 6 0からトップリング 1 4 4、 1 4 5へ 移送される。 The wafer W transferred to the reversing machine 140, 1 4 1 has a phase difference between the center of the stage of the rotary transport 1 600 and the center of the wafer W chucked by the reversing machine 1 40, 1 4 1 At the same time, the lifts 16 2 and 16 3 installed below the rotary transport 160 move up and down and are transported onto the rotary transport 160. The wafer W placed on the stage of the rotary transporter 160 is transferred downward of the top rings 1 44 and 1 45 by changing the position of the opening-tari transport 160 by 90 °. Be done. The top rings 1 4 4 and 4 5 have been rocked in advance to the positions of 1 o'clock 1 o'clock 1 o'clock. When the centers of the top rings 1 4 4 and 1 4 5 are in phase with the centers of the wafers W mounted on the rotary conveyer 1 6 0 as described above, pushers 1 6 4 and 1 6 4 disposed below them. The wafer W is transferred from the Tari Transporter 160 to the top rings 14 4 and 1 4 5 by lifting and lowering of the 1 6 5.
本ポリツシング装置 2 0 8は、 領域 C、 Dに、 固定砥粒 1 4 6 A、 1 4 7 Aの 研磨面 1 4 6 B、 1 4 7 B上に光線を照射する水銀ランプ等の光源 1 9 4 (後述 の図 1 1参照) と、 第 1液体としての第 1薬液を研磨面 1 4 6 B、 1 4 7 B上に 供給する第 1液体供給機としての第 1薬液供給ノズル 1 9 6 (後述の図 1 1参 照) とを有する光ドレッシング機構 1 9 2を備える。 The polishing apparatus 2008 is a light source such as a mercury lamp that irradiates light onto the areas C and D and the polished surfaces of the fixed abrasives 1 4 6 A and 1 4 7 A 1 4 6 B and 1 4 7 B 1 9 4 (refer to FIG. 11 below) and a first chemical solution supply nozzle 1 as a first liquid supply machine for supplying a first chemical solution as a first liquid onto the polishing surface 14 46 B, 14 7 B. 6 A light dressing mechanism 192 is provided having (see FIG. 11 below).
次に、 図 1 0を参照して、 本ポリツシング装置 2 0 8のポリツシング室 (図 9 の領域 C、 D ) をより詳細に説明する。 なお、 以下では、 領域 Cについてのみ説 明するが、 流域 Dについても流域 Cと同様に考えることができる。 また、 図は、 流域 Cのトップリング 1 4 4とターンテーブル 1 4 6、 1 4 8の関係を示す図で もある。 図に示すように、 トップリング 1 4 4は回転可能なトップリング駆動軸 1 7 0によってトップリングヘッド 1 7 2から吊下される。 トップリングヘッド Next, with reference to FIG. 10, the polishing chamber (areas C and D in FIG. 9) of the present polishing apparatus 2 0 8 will be described in more detail. In the following, only area C will be described, but basin D can be considered the same as basin C. The figure also shows the relationship between the top ring 1444 of the basin C and the turntables 1446 and 14.8. As shown, the top ring 14 4 is suspended from the top ring head 1 72 by the rotatable top ring drive shaft 1 70. Top ring head
1 7 2は位置決め可能な揺動軸 1 7 4によって支持されており、 トツプリング 11 2 2 is supported by a positionable rocking shaft 1 7 4 and the top ring 1
4 4は夕一ンテーブル 1 4 6、 1 4 8の双方にアクセス可能になっている。 4 4 is accessible to both evening tables 1 4 6 and 1 4 8.
また、 ドレッサ 1 5 4は回転可能なドレッサ駆動軸 1 7 6によってドレッサへ ッド 1 7 8から吊下されている。 ドレッサへッド 1 7 8は位置決め可能な揺動軸
1 8 0によって支持されており、 これによりドレッサ 1 5 4は待機する待機位置 とターンテーブル 1 4 6上の機械的ドレッシングを行うドレッシング位置との間 を移動可能になっている。 同様に、 ドレッサ 1 5 6は回転可能なドレッサ駆動軸 1 8 2によってドレッサへッド 1 8 4から吊下されている。 ドレッサへッド 1 8 4は位置決め可能な揺動軸 1 8 6によって支持されており、 これによりドレッサ 1 5 6は待機する待機位置とターンテーブル 1 4 8上の機械的ドレッシングを行 うドレッシング位置との間を移動可能になっている。 Also, the dresser 1 5 4 is suspended from the dresser head 1 7 8 by a rotatable dresser drive shaft 1 7 6. Dresser head 1 7 8 is a positionable rocking shaft It is supported by 180 which allows the dresser 15 to move between a standby position to stand by and a dressing position to perform mechanical dressing on the turntable 146. Similarly, the dresser 1 56 is suspended from the dresser head 1 84 by a rotatable dresser drive shaft 1 82. The dresser head 1 8 4 is supported by a positionable swing shaft 1 8 6 so that the dresser 1 5 6 is in a standby position to stand by and a dressing position to perform mechanical dressing on the turntable 1 4 8 It is possible to move between.
ターンテーブル 1 4 6の上面は、 砥粒と気孔又は気孔剤とがバインダ (所定の 樹脂) により結合された固定砥粒 1 4 6 Aによって構成されており、 この固定砥 粒 1 4 6 Aによってトップリング 1 4 4に保持された半導体ウェハ W (図 1参 照) を研磨する研磨面 1 4 6 Bが構成される。 このような固定砥粒 1 4 6 Aは、 例えば、 スラリ状の研磨剤 (液体中に砥粒を分散させたもの) とェマルジヨン状 樹脂を混合分散した混合液を噴霧乾燥させ、 この混合粉を成形治具に充填し、 加 圧,加熱処理して得られる。 砥粒としては、 好ましくは、 平均粒子径が 0 . 5 m以下のセリア (C e〇2 ) 又はシリカ (S i 0 2 ) を用いるとよい。 また、 バ インダとして前述のように熱可塑性樹脂や熱硬化性樹脂を用いることができるが、 特に熱可塑性樹脂が好適である。 The upper surface of the turntable 146 is constituted by fixed abrasives 1 46 A in which abrasive grains and pores or a pore agent are bonded by a binder (predetermined resin), and the fixed abrasives 1 46 A The polishing surface 1 46 B is configured to polish the semiconductor wafer W (see FIG. 1) held by the top ring 14 4. Such fixed abrasives 1 46 A are obtained, for example, by spray-drying a mixed liquid of a slurry-like abrasive (in which abrasive grains are dispersed in a liquid) and an emulsion-like resin mixed and dispersed, and this mixed powder It is obtained by filling a forming jig and applying pressure and heat treatment. As the abrasive, preferably, ceria (C eO 2) or silica (S i 0 2) having an average particle size of 0.5 m or less is preferably used. Further, as the binder, as described above, a thermoplastic resin or a thermosetting resin can be used, and in particular, a thermoplastic resin is preferable.
また、 夕一ンテーブル 1 4 8の上面は、 軟質の不織布 (不図示) によって構成 されており、 この不織布により研磨後の半導体ウェハ Wの表面に付着した砥粒を 洗浄する洗浄面が構成される。 この不織布により研磨後の半導体ウェハ Wの表面 に付着した砥粒を洗浄する洗浄面が構成される。 In addition, the upper surface of the cooling table 148 is formed of a soft non-woven fabric (not shown), and this non-woven fabric constitutes a cleaning surface for cleaning the abrasive particles attached to the surface of the semiconductor wafer W after polishing. Ru. The non-woven fabric constitutes a cleaning surface for cleaning the abrasive particles attached to the surface of the semiconductor wafer W after polishing.
上述のようにして固定砥粒 1 4 6 Aにより研磨された半導体ウェハ Wは、 小径 のターンテーブル 1 4 8に移動されて、 ここでバフクリーニングが行われる。 即 ち、 トップリング 1 4 4とターンテーブル 1 4 8とをそれぞれ独立に回転させつ つ、 トップリング 1 4 4に保持された研磨後の半導体ウェハ Wを夕一ンテーブル The semiconductor wafer W polished by the fixed abrasives 1 46 A as described above is moved to the small-diameter turntable 14 8, where buff cleaning is performed. That is, while rotating the top ring 1 4 4 and the turntable 1 4 8 independently of each other, the polished semiconductor wafer W held by the top ring 1 4 4 is subjected to a spring table.
1 4 8上の軟質の不織布に押圧する。 このとき、 図示しない洗浄液供給ノズルか ら砥粒を含まない液体、 例えば純水又はアルカリ液、 好ましくは p H 9以上のァ ルカリ液ゃ T MAHを含むアルカリ液を不織布に供給する。 これにより、 研磨後 の半導体ウェハ Wの表面に付着した砥粒を効果的に除去することができる。
図 1 1は、 光照射によるドレッシングを行う光ドレッシング機構 1 9 2の全体 的な構成を示す斜視図である。 光ドレッシング機構 1 9 2は、 光を固定砥粒 1 4 6 Aの研磨面 1 4 6 B上に照射する光源ランプ 1 9 4、 及び第 1薬液を研磨面 1 4 6 B上に供給する第 1薬液ノズル 1 9 6を含んで構成された光ドレッサュニッ ト 1 9 8と、 駆動用のアーム 1 8 8とを有する。 光ドレッサュニット 1 9 8は上 下動用のシリンダ (不図示) を介して駆動用のアーム 1 8 8に接続固定されてい る。 上下動用シリンダにより、 光ドレッサユニット 1 9 8は上下動して、 光源ラ ンプ 1 9 4と光ドレッシング対象の固定砥粒 1 4 6 Aの研磨面 1 4 6 Bとの間の 間隔を調整する。 駆動用アーム 1 8 8は水平面内において揺動することで、 光ド レッシング対象の固定砥粒 1 4 6 Aの研磨面 1 4 6 B上での光ドレッサュニット 1 9 8の位置決めを行う。 Press the soft non-woven fabric on top of the sheet. At this time, a liquid not containing abrasive grains, for example, pure water or an alkaline solution, preferably an alkaline solution containing alkaline liquid or PHA 9 or more, is supplied to the non-woven fabric from a cleaning solution supply nozzle (not shown). Thereby, the abrasive grains attached to the surface of the semiconductor wafer W after polishing can be effectively removed. FIG. 11 is a perspective view showing an overall configuration of a light dressing mechanism 92 for dressing by light irradiation. The light dressing mechanism 192 includes: a light source lamp 194 for irradiating light onto the polishing surface 1 4 6 B of the fixed abrasive 14 6 A; and a first chemical solution for supplying the first chemical solution onto the polishing surface 1 4 6 B 1) An optical dresser 198 comprising the chemical solution nozzle 196 and an arm 188 for driving. The light dresser unit 1 9 8 is connected and fixed to a driving arm 1 8 8 via a cylinder (not shown) for up and down movement. The light dresser unit 1 9 8 moves up and down with the vertical movement cylinder to adjust the distance between the light source lamp 1 9 4 and the polishing surface 1 4 6 B of the fixed abrasive 1 4 6 A to be subjected to the light dressing. . The driving arm 1 88 moves in the horizontal plane to position the light dresser unit 1 9 8 on the polishing surface 1 4 6 B of the fixed abrasive 1 14 6 A to be subjected to the light dressing.
図 1 2は、 本発明のポリッシング装置 2 0 8のターンテーブル 1 4 6周りの正 面図を示す。 ターンテーブル 1 4 6には研磨工具としての固定砥粒 1 4 6 Aを備 え、 トップリング 1 4 4に保持した研磨対象のウェハ Wを、 揺動軸 1 7 0による トップリングヘッド 1 7 2の揺動、 不図示の上下動用のシリンダによるトツプリ ングへッド 1 7 2の下降により固定砥粒 1 4 6 Aの研磨面 1 4 6 Bに押付け、 回 転摺動することで半導体ゥェハ Wの研磨が進行する。 FIG. 12 shows a front elevational view around the turntable 146 of the polishing apparatus 2008 of the present invention. The turntable 1 4 6 is provided with fixed abrasive 1 4 6 A as a polishing tool, and the wafer W to be polished held by the top ring 1 4 4 is placed on the top ring head 1 7 2 by the swing shaft 1 7 0 The sliding surface of the fixed abrasive 1 4 6 A is pressed by the descent of the top head 1 72 2 by the swinging of the cylinder and the cylinder for vertical movement (not shown), and it is pressed against the polished surface 1 4 6 B to rotate the semiconductor wafer W Polishing progresses.
更に、 ポリツシング装置 2 0 8は、 機械的ドレッシング機構 1 6 8と、 光ドレ ッシング機構 1 9 2とを備える。 機械的ドレッシング機構 1 6 8は、 固定砥粒 1 4 6 Aの研磨面 1 4 6 Bに機械的に接触して目立て (ドレッシング) を行う、 例 えばダイヤモンドドレッサであるドレッサ 1 5 4を有する。 光ドレッシング機構 1 9 2は、 水銀ランプ等の光源 1 9 4及び第 1薬液供給ノズル 1 9 6を有し、 光 線照射により光ドレッシングを行う。 ここで、 通常のドレッシングは光線照射に より光ドレッシング機構 1 9 2を用いて行い、 ウェハ Wの研磨前、 又は研磨中に 行われる。 固定砥粒面に形成された大きな凹凸を除去して、 全体的な研磨面の平 坦化を図るのには、 機械的ドレッシング機構 1 6 8が用いられ、 通常、 複数枚の ウェハ Wの研磨後に必要に応じて行われる。 また、 固定砥粒面測定器 (不図示) を用いて固定砥粒 1 4 6 Aの研磨面 1 4 6 Bの平面度をモニタリングしながら、 例えば 1 m以上の凹凸に変化した時に機械的接触によるドレッシングを行って
もよい。 Further, the polishing apparatus 2 0 8 is provided with a mechanical dressing mechanism 1 6 8 and an optical dressing mechanism 1 9 2. The mechanical dressing mechanism 1 6 8 has a dresser 1 54 which is, for example, a diamond dresser, which makes dressing by mechanically contacting the polishing surface 1 4 6 B of the fixed abrasive 1 4 6 A. The light dressing mechanism 192 has a light source 194 such as a mercury lamp and a first chemical solution supply nozzle 196, and performs light dressing by light irradiation. Here, the usual dressing is performed by light irradiation using the light dressing mechanism 192 and is performed before or during the polishing of the wafer W. A mechanical dressing mechanism 1 6 8 is used to remove the large irregularities formed on the fixed abrasive surface and to planarize the entire polishing surface. Usually, polishing of a plurality of wafers W is performed. It will be done later if necessary. In addition, while monitoring the flatness of the polishing surface 1 46 B of the fixed abrasive 1 146 A using a fixed abrasive surface measuring device (not shown), for example, mechanical contact when changing to irregularities of 1 m or more Do dressing by It is also good.
次に、 研磨工具としての固定砥粒のドレッシング方法について説明する。 ドレ ッシングを実施するタイミングとしては、 基板研磨時に同時にドレッシングを実 施する第 1手法 (I n— S i t u手法) と、 基板研磨後に次の研磨が始まるまで の間にドレッシングを実施する第 2手法 (Ex— S i t u手法) とがある。 今ま での固定砥粒において、 次の研磨までの間のコンディショニングでは次の基板研 磨に耐えうるほどの十分な研磨砥粒が自生出来ておらず、 経時的に研磨レートが 減少するなど研磨の安定性が得られなかった。 そのため、 研磨中に絶えず研磨砥 粒をかき出して、 砥粒供給量の安定化を図られる第 1手法 ( I n— S i t u手 法) に頼っていた。 本発明の光照射によるドレッシングも相手となる固定砥粒の バインダ樹脂によっては砥粒の自生量が十分に確保出来ないため第 1手法 (I n -S i t u手法) で行ったり、 例えばスクロール型などの、 ウェハ径とほぼ同じ 大きさのターンテーブル上に固定砥粒を配置しなければならない場合には研磨中 はドレッシングが出来ないので第 2手法 (Ex— S i t u手法) だけでドレッシ ングをしたりする。 Next, a dressing method of fixed abrasive as a polishing tool will be described. As the timing for carrying out the dressing, the first method (In-S in-situ method) in which dressing is carried out simultaneously with substrate polishing and the second method in which dressing is carried out between substrate polishing and the start of the next polishing (Ex—Situ method). In the fixed abrasives until now, in the conditioning before the next polishing, sufficient polishing abrasives enough to withstand the next substrate polishing can not be produced by itself, and the polishing rate decreases with time, etc. Stability was not obtained. Therefore, it relied on the first method (I n-S i t u method) in which abrasive grains are constantly scraped out during polishing to stabilize the abrasive grain supply amount. Depending on the binder resin of the fixed abrasive, which is the counterpart of the dressing according to the light irradiation of the present invention, the self-generating amount of the abrasive can not be sufficiently secured, and the first method (In-S itu method) is used. If the fixed abrasive should be placed on a turntable of about the same size as the wafer diameter, dressing can not be performed during polishing, so dressing is performed only with the second method (Ex-S in-situ method). To
図 1 3から図 17では、 本発明のポリッシング装置 208 (図 9参照) の運転 順序を示す例である。 横軸は、 時間 Tの経過を表し、 縦軸は、 それぞれドレッサ 1 54 (又は 155)、 トップリング 144 (又は 145 )、 光ドレッシング機構 192 (又は 193)、 異物除去装置 1 52 (又は 153) (以上、 図 9参照) の 運転の有無を表し、 OFFが運転休止、 ONが運転中を表す。 図 13から図 17 では、 ドレッサ 1 54によるドレシングは、 固定砥粒の研磨面の機械的ドレッシ ングであり、 光ドレッシング機構 192によるドレッシングは、 固定砥粒の研磨 面の光照射によるドレッシングを、 第 1薬液を研磨面へ供給しながら行う光 ドレシングである。 異物除去は、 異物除去装置としてのアトマイザ 1 52を用い て行う。 13 to 17 show examples of the operation sequence of the polishing apparatus 208 (see FIG. 9) according to the present invention. The abscissa represents the passage of time T, and the ordinate represents the dresser 154 (or 155), the top ring 144 (or 145), the light dressing mechanism 192 (or 193), and the foreign matter removing device 152 (or 153). (Refer to Fig. 9 above.) OFF indicates that operation is stopped, and ON indicates operation. 13 to 17, the dressing by the dresser 154 is a mechanical dressing of the polishing surface of the fixed abrasive, and the dressing by the optical dressing mechanism 192 is a dressing by irradiating the polishing surface of the fixed abrasive with light. (1) It is light dressing performed while supplying the chemical solution to the polishing surface. Foreign matter removal is performed using an atomizer 1 52 as a foreign matter removal device.
図 1 3は、 第 2手法 (Ex— S i t u手法) によるドレッシングの場合を示す。 この場合、 まずドレッサ 154 (図 9参照) による形状修正のための機械的ドレ ッシングを行い (0〜 t 1)、 機械的ドレッシングの終了後に光照射による光ド レッシングを行い ( t l〜!: 2)、 光ドレッシング (OD) は一定間隔 ( t 2—
t 1) で断続的に行う (t l〜!: 2、 t 3〜 t 4、 t 5〜 t 6、 ' ') (本発明の 光線照射工程)。 最初の光ドレッシングが終了した時点 ( t 2 ) で、 トップリン グ 144 (図 9.参照) に載置された半導体ゥェ八のポリッシング (P) (本発明 の研磨工程) を行い、 ポリツシングは一定間隔 ( t 3 _ t 2) で断続的に行う (t 2〜 t 3、 t 4〜!: 5、 t 6〜 t 7、 · ·)。 ポリツシングは、 光ドレツシン グとその次の光ドレツシングの間に行われ、 光ドレッシングとポリッシングは交 互に行われる。 アトマイザ 152による異物の除去は、 光ドレッシングと同時期 に行われ、 光ドレッシングと同一の一定間隔 (t 2— t 1) で、 断続的に行われ る (t l〜 t 2、 t 3〜 t 4、 t 5〜 t 6、 , (本発明の異物除去工程)。 Figure 13 shows the case of dressing by the second method (Ex- Situ method). In this case, first, mechanical dressing for shape correction is performed by the dresser 154 (see FIG. 9) (0 to t 1), and light dressing by light irradiation is performed after the mechanical dressing is completed (tl to!: 2 ), Light dressing (OD) at regular intervals (t 2— Intermittently at t 1) (tl to!: 2, t 3 to t 4, t 5 to t 6, '') (light irradiation step of the present invention). At the end of the first light dressing (t 2), polishing (P) (Polishing step of the present invention) is performed on the semiconductor wafer placed on the top ring 144 (see FIG. 9), and Intermittently at regular intervals (t 3 _ t 2) (t 2 to t 3, t 4 to!: 5, t 6 to t 7, · ·). Policing is performed between light dressing and the next light dressing, and light dressing and polishing are alternately performed. Removal of foreign matter by the atomizer 152 is performed at the same time as the light dressing, and is performed intermittently (t1 to t2, t3 to t4) at the same fixed interval (t2−t1) as the light dressing. , T5 to t6,, (foreign substance removing step of the present invention).
図 14は、 第 1手法 ( I n— S i t u手法) によるドレッシングの場合を示す。 この場合、 まずドレッサ 154 (図 9参照) による形状修正のための機械的ドレ ッシングを行い (0〜!; 1)、 機械的ドレッシングの終了後にポリツシング前の 光照射による光ドレッシングを、 ポリツシング前の光ドレッシングとして、 所定 間隔 ( t 2— t 1) だけ行う ( t 1〜 t 2)。 所定間隔 ( t 2— t 1) 経過後に、 ポリツシングを行い、 ポリツシングは一定間隔 ( t 3— t 2) で断続的に行う (t 2〜 t 3、 t 4〜t 5、 t 6〜t 7、 * · )。 また、 所定間隔 (t 2_ t 1) 経過後は、 光ドレッシングを中断せずに、 そのまま所定間隔 (t 3- t 2) 継続 し、 その後ポリツシングと同じタイミングで行う (t 2〜t 3、 t 4〜 t 5、 t 6〜 t 7、 · ·)。 すなわち、 光ドレッシングは、 最初の所定間隔 (t 2— t 1) の実施後は、 ポリツシングと同一の一定間隔 (t 3— t 2) で断続的に行われる。 異物除去は、 光ドレッシングと同じ時期 ( t 1) に開始され、 その後は連続的に 継続される。 FIG. 14 shows the case of dressing according to the first method (I n-S i t u method). In this case, first perform mechanical dressing for shape correction by the dresser 154 (see Fig. 9) (0 to! 1), and after the mechanical dressing is completed, the light dressing by light irradiation before polishing is compared to the one before polishing. As a light dressing, perform a predetermined interval (t2-t1) (t1 to t2). Policing is performed after a predetermined interval (t2−t1), and poling is performed intermittently at fixed intervals (t3−t2) (t2 to t3, t4 to t5, t6 to t7 , * ·). In addition, after the predetermined interval (t 2 _ t 1) has elapsed, the light dressing is continued without interruption for a predetermined interval (t 3- t 2), and then performed at the same timing as the polishing (t 2 to t 3, t 4-t5, t6-t7, · · ·. That is, after the first predetermined interval (t2-t1), the light dressing is intermittently performed at the same fixed interval (t3-t2) as the polishing. Foreign substance removal is started at the same time as light dressing (t1) and is continued continuously thereafter.
図 15は、 第 3手法 ( I n— S i t u間欠ドレッシング手法) によるドレッシ ングの場合を示す。 第 3手法は、 第 1手法 (I n_S i t u手法) (図 14) に 以下のように間欠ドレッシングを追加したものである。 以下図 14との相違を主 として説明する。 光照射による光ドレッシングは、 ポリツシング前の光ドレッシ ング ( t l〜 t 2) の後に続けて断続的に、 持続時間 t Xの間欠運転を 2回、 休 止時間 t yを含んで行う。 間欠運転は、 所定周期 ( t 4— t 2) で断続的に行う。 光ドレッシングの間欠運転は、 開始のタイミングが、 トップリング 144 (図 9
参照) によるポリツシングの開始のタイミングと同じである。 異物除去運転は、 光ドレッシングと同じタイミングで行われる。 機械的ドレッシングと、 ポリッシ ングは、 図 1 4と同様に行われる。 Figure 15 shows the case of dressing by the third method (In-S intermittent intermittent dressing method). The third method is the first method (In_S itu method) (Fig. 14) with intermittent dressing added as follows. The differences from FIG. 14 will be mainly described below. The light dressing by light irradiation is performed intermittently after the light dressing (t1 to t2) before poling, intermittently for 2 times of the duration tX, and including the rest time ty. Intermittent operation is performed intermittently at a predetermined cycle (t4-t2). In the intermittent operation of the light dressing, the timing of start is the top ring 144 (Fig. 9). Refer to the timing of the start of the poling by The foreign substance removal operation is performed at the same timing as the light dressing. Mechanical dressing and polishing are performed as in Figure 14.
図 1 6は、 第 4手法 (連続光ドレッシング) によるドレッシングの場合を示す。 以下図 1 4との相違を主として説明する。 光照射による光ドレッシングは、 所定 時間 (t l〜 t 2 ) だけポリッシング開始前に行った後、 更にそのまま続けて連 続運転を行う。 すなわち、 ポリツシングが行われている間に、 光ドレッシングが 行われ、 更にポリッシングが中断されている間にも光ドレッシングが行われる。 異物除去運転は、 光ドレッシングと同じタイミングで行われる。 機械的ドレッシ ングと、 ポリツシングは、 図 1 4と同様に行われる。 Figure 16 shows the case of dressing by the fourth method (continuous light dressing). The differences from FIG. 14 will be mainly described below. The light dressing by light irradiation is performed before the start of polishing for a predetermined time (t 1 to t 2), and then the continuous operation is continued. That is, while dressing is being performed, light dressing is performed, and while dressing is interrupted, light dressing is also performed. The foreign substance removal operation is performed at the same timing as the light dressing. Mechanical dressing and poling are performed as in Figure 14.
図 1 7は、 第 5手法 (先出し光ドレッシングのある I n _ S i t e手法) によ るドレッシングの場合を示す。 本図に示す手法は、 図 1 4の第 1手法を発展させ た手法である。 第 1手法では、 各ポリツシングステップにおいて、 ポリツシング と光ドレッシングを同じタイミングで行っているが、 第 5手法では、 光ドレッシ ングの開始のタイミングをポリツシングの開始のタイミングより時間 t zだけ早 めに設定し、 間隔 t zの先出し光ドレッシングを行っている。 異物除去運転は、 光ドレッシングと同じタイミングで行われる。 機械的ドレッシングと、 ポリッシ ングは、 図 1 4と同様に行われる。 Figure 17 shows the case of dressing according to the fifth method (In_Sitte method with advance dressing). The method shown in this figure is an extension of the first method in Figure 14. In the first method, the polishing and the optical dressing are performed at the same timing in each polishing step, but in the fifth method, the timing of the start of the light dressing is earlier by the time tz than the timing of the start of the poling The setting and the advance light dressing of the interval tz are performed. The foreign substance removal operation is performed at the same timing as the light dressing. Mechanical dressing and polishing are performed as in Figure 14.
本手法の効果としては、 ポリツシングを開始する前までに、 十分な研磨砥粒の 自生が行われ、 ポリッシング開始直後の研磨の立ち上がりを気にすることなく、 最初から所定の研磨効率にて研磨処理が可能となる。 その結果、 効率よく安定し た研磨が実現できる。 The effect of this method is that sufficient polishing abrasive grain self-generation is carried out before starting polishing, and polishing processing is performed with a predetermined polishing efficiency from the beginning without worrying about the rising of polishing immediately after the start of polishing. Is possible. As a result, efficient and stable polishing can be realized.
光照射による光ドレッシングの効果が強い場合は、 研磨後から次の研磨までの 間のみもしくは研磨中に間欠的に光ドレツシングを実施すればよいが、 光ドレツ シングの効果が弱い場合には、 研磨中のみならず研磨と次の研磨の間においても 光ドレツシングを実施しなくてはならない。 その間絶えず光ドレッシングを実施 している形態が好ましい。 ここで、 機械的ドレッシングとは、 主に研磨面の形状 修正に寄与する機械的ドレッサ (例えば、 前述のようにダイヤモンドドレッサ) によるドレッシングである。 光ドレッシングは、 光照射によるドレッシングであ
る。 光照射による光ドレッシングの際には、 同時に本発明の異物除去装置も作用 させるとよい。 If the light dressing effect by the light irradiation is strong, the light dressing may be performed only during or after the polishing, or intermittently during the polishing, but if the light dressing effect is weak, the polishing may be performed. Not only inside but also between polishing and the next polishing, it is necessary to carry out light writing. In the meantime, a form in which light dressing is constantly performed is preferable. Here, the mechanical dressing is dressing by a mechanical dresser (for example, a diamond dresser as described above) mainly contributing to the shape correction of the polishing surface. Light dressing is dressing by light irradiation Ru. At the time of light dressing by light irradiation, it is preferable to simultaneously operate the foreign matter removal apparatus of the present invention.
図 1 3〜図 1 7において、 機械的ドレッシングによる研磨面の形状修正の後に、 光ドレッシングを行っている。 形状修正後の 1枚目のウェハ Wも、 例えば、 1 0 枚目のウェハ Wも同じ条件で研磨するために、 形状修正の後に、 光による光ドレ ッシングを行う。 また、 機械的ドレッシングによる形状修正後では、 研磨面表面 が粗すぎることがあるため、 光照射による光ドレッシングでソフトに研磨面から 砥粒を自生させることにより、 スクラッチの少ない半導体ウェハの研磨を行うこ とができる。 In Figures 13 to 17, light dressing is performed after shape correction of the polished surface by mechanical dressing. In order to polish the first wafer W after the shape correction, for example, also the 10th wafer W under the same conditions, light draining with light is performed after the shape correction. In addition, after shape correction by mechanical dressing, the surface of the polishing surface may be too rough, so polishing the semiconductor wafer with few scratches by making the abrasive particles spontaneously from the polishing surface softly by light dressing by light irradiation. be able to.
図 1 6では、 光照射による光ドレツシングをポリッシング時、 非ポリッシング 時の両方に、 連続して行っている。 光による光ドレッシングは、 研磨面表面をソ フ卜にドレッシングすることができるため、 大粒径の異物や大きな凹凸が生成し ないため、 ウェハ Wへのスクラッチ防止に効果的であるが、 その分、 ドレツシン グ速度 (ドレッシング能力) が遅い場合がある。 その場合、 光による光ドレッシ ングを、 ポリツシング時及び非ポリッシング時の両方に連続して行うことで、 常 に研磨面に新しい砥粒を自生させることができる。 なお、 図 1 6、 図 1 7で示す 光による光ドレッシングは、 常時当て続けることなく、 間欠的に行ってもよい。 また、 上述の図 1 2に示すようにターンテーブル 1 4 6に固定砥粒 1 4 6 Aが 配置されている場合に、 光照射により光ドレッシングを行う光ドレッシング機構 1 9 2が、 基板研磨手段としてのトップリング 1 4 4とは別の位置に、 予め夕一 ンテーブル 1 4 6上に覆い被さるように配置することもでき、 研磨の有無に関わ らず絶えずドレツシングが出来るようになつている。 In Figure 16, light exposure by light irradiation is performed continuously both during polishing and during non-polishing. The light dressing by light can effectively dress the polishing surface surface so that it does not generate large particle size foreign matter and large unevenness, and therefore it is effective in preventing scratches on the wafer W. , Dressing speed (dressing ability) may be slow. In such a case, it is always possible to cause new abrasive grains to spontaneously grow on the polished surface by performing light-dressing with light continuously both at the time of polishing and at the time of non-polishing. The light dressing with light shown in Fig. 16 and Fig. 17 may be performed intermittently without being constantly applied. Also, as shown in FIG. 12 described above, when the fixed abrasive 14A is placed on the turntable 146, the optical dressing mechanism 132 for performing the optical dressing by the light irradiation is the substrate polishing means. It can also be placed in a position different from the top ring 1 4 4 as the cover in advance so as to cover the evening table 1 4 6 so that it can be constantly drained with or without polishing. .
但しこの場合、 固定砥粒全面にドレッシングを施すにはターンテーブル 1 4 6 回転させなくてはならない。 しかし、 あまりにも回転が速いと光照射によるドレ ッシング作用を促進させる第 1薬液等が遠心力により、 ターンテーブル 1 4 6外 に流れ出してしまう。 そうすると、 その分だけコンディショニング効果が薄れる ことになり、 必要な砥粒自生量を確保出来なくなってしまう。 このような事態を さけるには、 基板を研磨していない間は、 例えばターンテーブル 1 4 6を 1分間 当たり 1 0回転以下の低回転数で回転させておくのが望ましい。 そうすれば不必
要な第 1薬液等の流失は抑えられることになり、 十分なコンディショニング効果 を得ることが出来る。 However, in this case, to apply dressing to the entire surface of the fixed abrasive, it is necessary to rotate the turntable 14 6. However, if the rotation is too fast, the first chemical solution or the like that promotes the dressing action by the light irradiation will flow out of the turntable 14 due to the centrifugal force. As a result, the conditioning effect is diminished by that amount, and the necessary amount of abrasive grains can not be secured. In order to avoid such a situation, it is desirable to rotate, for example, the turntable 1 46 at a low rotational speed of 10 or less per minute while the substrate is not polished. If it does so, it is not necessary The loss of the essential first chemical solution and the like can be suppressed, and a sufficient conditioning effect can be obtained.
また、 同時に通常の一般的な C M Pの研磨パッドも同様だがパッド上面は常に 湿潤状態が保たれなくてはならず、 パッド全面に効率よく湿潤用の純水もしくは 薬液を供給するにはその際に夕一ンテーブル 1 4 6を回転させておくのが好まし レ 固定砥粒も同様に湿潤状態を保たなければならず、 連続研磨中以外の場合で も湿潤保管用の液体を供給するときにはターンテーブル 1 4 6を回転させておく とよい。 Also, at the same time, the same general CMP polishing pad is also used, but the upper surface of the pad must always be kept wet, in order to efficiently supply pure water or chemical solution for wetting over the entire surface of the pad. It is preferable to keep the rotating table 1 46 rotate, and the fixed abrasive should be kept wet as well, and when supplying a liquid for wet storage even during continuous polishing, It is good to rotate the turntable 1 46.
産 業 上 の 禾 IJ 用 の 可 能 性 以上のように本発明によれば、 光源と、 異物除去装置とを備えるので、 光源に より研磨工具の研磨面上に光線を照射し、 バインダの砥粒を固着する固着力を弱 め、 バインダ中に砥粒が保持できなくさせて砥粒を自生させ、 更に異物除去装置 により、 一様な砥粒の自生を阻害する、 研磨により生ずる異物、 又は照射により 生ずる異物を強制的に除去し、 不安定な研磨を引き起こす要因を取り除き、 研磨 時の安定した砥粒の供給を可能とすることができるので、 良好な研磨性能が得ら れる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, since the light source and the foreign matter removing device are provided, the light source irradiates a light beam on the polishing surface of the polishing tool, and the binder is polished Weakening the adhesion of the particles, making it impossible to hold the abrasive particles in the binder, causing the abrasive particles to grow spontaneously, and further preventing the abrasive particles from being produced uniformly by the foreign matter removing device, foreign matter produced by polishing, or Since foreign substances generated by irradiation can be forcibly removed, factors that cause unstable polishing can be removed, and stable abrasive grains can be supplied at the time of polishing, good polishing performance can be obtained.
【表 1】 【table 1】
【表 2】 【Table 2】
1枚目 2枚目 3枚目 テスト No. 供給薬液 光照射 [k/ min] [Ά/ min] [k/ min] 1st 2nd 3rd Test No. Supply chemical solution Light irradiation [k / min] [Ά / min] [k / min]
1 純水のみ 有り 119. 2 102. 2 102. 5 1 Pure water only 119. 2 102. 2 102. 5
2 純水のみ 無し 119. 2 101. 8 93. 7 標準緩衝液 2 Pure water only 119. 2 101. 8 93. 7 Standard buffer solution
3 有り 126. 0 100. 8 117. 8 3 Yes 126. 0 100. 8 117. 8
(ホウ酸塩 PH標準液)
(Borate PH standard solution)
Claims
1 . 研磨装置であって、 1. A polishing device,
砥粒及び砥粒を固着するバインダを含む研磨面を有する研磨工具、 Abrasive tool having a polishing surface comprising abrasive grains and a binder for fixing the abrasive grains,
基板を研磨するため基板を研磨面に押圧し相対運動させる運動機構、 バインダの固着力を弱める光線を研磨面へ照射する光源、 及び A moving mechanism for pressing the substrate against the polishing surface and moving the substrate relative to polish the substrate, a light source for irradiating the polishing surface with a light beam that weakens the adhesion of the binder, and
光線の照射により生ずる異物を研磨面から除去する異物除去機構を含む研磨装 置。 A polishing apparatus that includes a foreign matter removal mechanism that removes foreign matter generated by light irradiation from the polished surface.
2 . 前記異物除去機構は研磨面に押圧可能に形成されたドレッサを含み、 該ド レッサはダイヤモンド粒子を含む請求項 1に記載の研磨装置。 2. The polishing apparatus according to claim 1, wherein the foreign matter removing mechanism includes a dresser formed to be able to be pressed against the polishing surface, and the dresser includes diamond particles.
3 . 前記異物除去機構は研磨面に擦り付け可能に形成されたブラシを含む請求 項 1に記載の研磨装置。 3. The polishing apparatus according to claim 1, wherein the foreign matter removing mechanism includes a brush formed to be able to be rubbed on the polishing surface.
4 . 前記異物除去機構は気体と液体の混合流体を研磨面に向けて噴射する混合 流体発生器を含む請求項 1に記載の研磨装置。 4. The polishing apparatus according to claim 1, wherein the foreign matter removing mechanism includes a mixed fluid generator which jets a mixed fluid of gas and liquid toward the polishing surface.
5 . 前記異物除去機構は超音波を研磨面に向けて発生させる超音波発生器を含 む請求項 1に記載の研磨装置。 5. The polishing apparatus according to claim 1, wherein the foreign matter removing mechanism includes an ultrasonic generator that generates ultrasonic waves toward the polishing surface.
6 . 請求項 1の研磨装置であって、 第 1液体を研磨面上に供給する第 1液体供 給機を更に含み、 前記異物除去機構は前記異物を除去するための第 2液体を研磨 面上に供給する第 2液体供給機を含み、 前記第 1液体と第 2液体は異なる請求項 1に記載の研磨装置。 6. The polishing apparatus according to claim 1, further comprising a first liquid supply that supplies the first liquid onto the polishing surface, wherein the foreign matter removing mechanism polishes the second liquid for removing the foreign matter. The polishing apparatus according to claim 1, further comprising: a second liquid feeder configured to supply the first liquid, wherein the first liquid and the second liquid are different.
7 . 前記異物除去機構は異物を真空により吸引する真空吸引機構を含む請求項 1に記載の研磨装置。 7. The polishing apparatus according to claim 1, wherein the foreign matter removing mechanism includes a vacuum suction mechanism for sucking foreign matter by vacuum.
8 . 研磨工具の研磨面のドレッシング方法であって、 8. A method of dressing the polishing surface of the polishing tool,
前記研磨面は、 砥粒及び砥粒を固着するバインダを含み、 基板に押圧され基板 に相対運動されて基板を研磨する研磨工程に用いられるものであり、 The polishing surface includes an abrasive and a binder for fixing the abrasive, and is used in a polishing process that is pressed against the substrate and moved relative to the substrate to polish the substrate.
前記方法は、 前記研磨面へバインダの固着力を弱める光線を照射する光線照 射工程、 及び前記研磨面に生ずる異物を強制的に除去する異物除去工程を含む方 法。 The method includes a light irradiation step of irradiating a light beam which weakens the adhesion of the binder to the polishing surface, and a foreign matter removing step of forcibly removing foreign matter generated on the polishing surface.
9 . 前記異物除去工程はダイヤモンド粒子を含むドレッサを研磨面に押圧する 工程を含む請求項 8に記載の方法。
9. The method according to claim 8, wherein the foreign matter removing step includes the step of pressing a dresser containing diamond particles against the polishing surface.
1 0 . 前記異物除去工程はブラシを研磨面上に擦り付ける工程を含む請求項 8 に記載の方法。 10. The method according to claim 10, wherein the foreign matter removing step includes the step of rubbing a brush on a polishing surface.
1 1 . 前記異物除去工程は気体と液体とからなる圧力調整された混合流体を研 磨面に吹き付ける工程を含む請求項 8に記載の方法。 The method according to claim 8, wherein the foreign matter removing step comprises the step of spraying a pressure-controlled mixed fluid consisting of gas and liquid onto the polishing surface.
1 2 . 前記異物除去工程は超音波を前記研磨面に照射する工程を含む請求項 8 に記載の方法。 The method according to claim 10, wherein the foreign matter removing step includes the step of irradiating the polished surface with an ultrasonic wave.
1 3 . 請求項 8に記載の方法であって、 更に前記光線照射工程の間に研磨面に 第 1液体を供給する工程、 及び前記異物除去工程の間に研磨面に第 2液体を供給 する工程を含み、 前記第 1液体と前記第 2液体は異なるものである請求項 8に記 載の方法。 The method according to claim 8, further comprising: supplying a first liquid to the polishing surface during the light beam irradiation step; and supplying a second liquid to the polishing surface during the foreign matter removing step. The method according to claim 8, further comprising a step, wherein the first liquid and the second liquid are different.
1 4 . 前記異物除去工程は異物を真空にて吸引する工程を含む請求項 8に記載 の方法。 The method according to claim 8, wherein the foreign matter removing step includes a step of suctioning the foreign matter under vacuum.
1 5 . 研磨工具の研磨面のドレッシング方法であって、 Dressing method of the polishing surface of the polishing tool
前記研磨面は、 砥粒及び砥粒を固着するバインダを含み、 基板に押圧され基板 に相対運動されて基板を研磨する研磨工程に用いられるものであり、 The polishing surface includes an abrasive and a binder for fixing the abrasive, and is used in a polishing process that is pressed against the substrate and moved relative to the substrate to polish the substrate.
前記方法は、 研磨工具の研磨面へ前記バインダの固着力を弱める光線を照射す る光線照射工程を含み、 光線照射工程は、 研磨工具により基板を研磨する研磨ェ 程の間、 及び 1つの研磨工程と次の研磨工程との間に行われるドレッシング方法。 The method includes the step of irradiating the polishing surface of the polishing tool with a beam of light that weakens the adhesion of the binder, wherein the beam of irradiation comprises: during the polishing process of polishing the substrate with the polishing tool; A dressing method performed between the step and the next polishing step.
1 6 . 前記研磨工程は、 前記研磨工具を回転させることにより行われ、 前記研 磨工程が行われていない間の前記研磨工具の回転数が 1分間当り 1 0回転以下で ある請求項 1 5に記載のドレッシング方法。 The polishing process is performed by rotating the polishing tool, and the number of revolutions of the polishing tool is 10 or less per minute while the polishing process is not performed. The dressing method described in.
1 7 . 前記光線照射工程におけるドレッシング速度が大きいときには前記研磨 工程と同時に行われる光線照射工程を間欠的に行ない、 前記ドレツシング速度が 小さいときには更に前記研磨工程と次の研磨工程との間にも前記光線照射工程を 行う請求項 1 5に記載のドレツシング方法。
The light irradiation step performed simultaneously with the polishing step is intermittently performed when the dressing speed in the light irradiation step is large, and when the dressing speed is small, the light irradiation step is further performed between the polishing step and the next polishing step. The method according to claim 15, wherein the light irradiation step is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/636,915 US6899592B1 (en) | 2002-07-12 | 2003-08-08 | Polishing apparatus and dressing method for polishing tool |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002204498A JP2004042213A (en) | 2002-07-12 | 2002-07-12 | Polishing device and dressing method of polishing tool |
JP2002-204498 | 2002-07-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/636,915 Continuation US6899592B1 (en) | 2002-07-12 | 2003-08-08 | Polishing apparatus and dressing method for polishing tool |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004007146A1 true WO2004007146A1 (en) | 2004-01-22 |
Family
ID=30112719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/008766 WO2004007146A1 (en) | 2002-07-12 | 2003-07-10 | Polishing apparatus and method of dressing polishing tool |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2004042213A (en) |
WO (1) | WO2004007146A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5424188B2 (en) * | 2008-08-28 | 2014-02-26 | 株式会社クリスタル光学 | Grindability adjustment method of resinoid grinding wheel |
DE102010052698A1 (en) * | 2010-11-26 | 2012-05-31 | Dürr Systems GmbH | Cleaning device and cleaning brush for a nebulizer and corresponding cleaning method |
JP5500313B2 (en) * | 2012-01-13 | 2014-05-21 | 旭硝子株式会社 | Method for dressing a grinding wheel for end grinding of a glass substrate and method for producing a glass substrate using the dressing method |
JP7181818B2 (en) * | 2019-03-08 | 2022-12-01 | 株式会社荏原製作所 | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD USING PHOTOCATALYST |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58132462A (en) * | 1982-01-28 | 1983-08-06 | カツプ・ウント・カンパニ−・ヴエルクツオイクマシ−ネンフアブリ−ク | Method and device for forming precise contour of tool covered with cemented material |
JPS58191956U (en) * | 1982-06-18 | 1983-12-20 | 株式会社井上ジャパックス研究所 | Grinder |
JPS62136370A (en) * | 1985-12-11 | 1987-06-19 | Hitachi Seiko Ltd | Dressing device for grinding wheel |
JPH09323259A (en) * | 1996-05-31 | 1997-12-16 | Sony Corp | Automatic buff polishing device |
WO1999012705A1 (en) * | 1997-09-08 | 1999-03-18 | The Institute Of Physical And Chemical Research | Optical dressing method, machining device based on this method, grindstone and polishing cloth |
WO2000024548A1 (en) * | 1998-10-28 | 2000-05-04 | Hitachi, Ltd. | Polishing apparatus and a semiconductor manufacturing method using the same |
JP2000254855A (en) * | 1999-03-11 | 2000-09-19 | Nikon Corp | Conditioning apparatus and method of abrasive pad |
JP2000311876A (en) * | 1999-04-27 | 2000-11-07 | Hitachi Ltd | Method and device for manufacturing wiring board |
US6217422B1 (en) * | 1999-01-20 | 2001-04-17 | International Business Machines Corporation | Light energy cleaning of polishing pads |
JP2001129755A (en) * | 1999-08-20 | 2001-05-15 | Ebara Corp | Grinding device and dressing method |
JP2001237208A (en) * | 2000-02-24 | 2001-08-31 | Ebara Corp | Cleaning method of cleaning surface of polishing device and cleaning device |
JP2002103201A (en) * | 2000-09-27 | 2002-04-09 | Ebara Corp | Polishing device |
WO2002034467A1 (en) * | 2000-10-24 | 2002-05-02 | Ebara Corporation | Polisher |
JP2002324771A (en) * | 2001-02-20 | 2002-11-08 | Ebara Corp | Polishing apparatus and dressing method |
-
2002
- 2002-07-12 JP JP2002204498A patent/JP2004042213A/en not_active Withdrawn
-
2003
- 2003-07-10 WO PCT/JP2003/008766 patent/WO2004007146A1/en active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58132462A (en) * | 1982-01-28 | 1983-08-06 | カツプ・ウント・カンパニ−・ヴエルクツオイクマシ−ネンフアブリ−ク | Method and device for forming precise contour of tool covered with cemented material |
JPS58191956U (en) * | 1982-06-18 | 1983-12-20 | 株式会社井上ジャパックス研究所 | Grinder |
JPS62136370A (en) * | 1985-12-11 | 1987-06-19 | Hitachi Seiko Ltd | Dressing device for grinding wheel |
JPH09323259A (en) * | 1996-05-31 | 1997-12-16 | Sony Corp | Automatic buff polishing device |
WO1999012705A1 (en) * | 1997-09-08 | 1999-03-18 | The Institute Of Physical And Chemical Research | Optical dressing method, machining device based on this method, grindstone and polishing cloth |
WO2000024548A1 (en) * | 1998-10-28 | 2000-05-04 | Hitachi, Ltd. | Polishing apparatus and a semiconductor manufacturing method using the same |
US6217422B1 (en) * | 1999-01-20 | 2001-04-17 | International Business Machines Corporation | Light energy cleaning of polishing pads |
JP2000254855A (en) * | 1999-03-11 | 2000-09-19 | Nikon Corp | Conditioning apparatus and method of abrasive pad |
JP2000311876A (en) * | 1999-04-27 | 2000-11-07 | Hitachi Ltd | Method and device for manufacturing wiring board |
JP2001129755A (en) * | 1999-08-20 | 2001-05-15 | Ebara Corp | Grinding device and dressing method |
JP2001237208A (en) * | 2000-02-24 | 2001-08-31 | Ebara Corp | Cleaning method of cleaning surface of polishing device and cleaning device |
JP2002103201A (en) * | 2000-09-27 | 2002-04-09 | Ebara Corp | Polishing device |
WO2002034467A1 (en) * | 2000-10-24 | 2002-05-02 | Ebara Corporation | Polisher |
JP2002324771A (en) * | 2001-02-20 | 2002-11-08 | Ebara Corp | Polishing apparatus and dressing method |
Also Published As
Publication number | Publication date |
---|---|
JP2004042213A (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6899592B1 (en) | Polishing apparatus and dressing method for polishing tool | |
KR100412542B1 (en) | Method and device for cleaning work | |
US6669538B2 (en) | Pad cleaning for a CMP system | |
US8550878B2 (en) | Method of manufacture of constant groove depth pads | |
WO2018092440A1 (en) | Wafer edge polishing device and method | |
JP5145328B2 (en) | Apparatus for cleaning part of edge of semiconductor substrate, cleaning system and method | |
US20020007840A1 (en) | Substrate cleaning apparatus, substrate cleaning method and substrate processing apparatus | |
CN103894919B (en) | Milling apparatus and grinding method | |
US20130210323A1 (en) | CMP Pad Cleaning Apparatus | |
CN110828334A (en) | Cleaning material for substrate, substrate cleaning apparatus, substrate processing method, and method for manufacturing cleaning material for substrate | |
JP4412192B2 (en) | Polishing pad dressing method | |
TW474852B (en) | Method and apparatus for polishing workpieces | |
WO2004007146A1 (en) | Polishing apparatus and method of dressing polishing tool | |
US6634934B1 (en) | Method for cleaning polishing tool, polishing method polishing apparatus | |
TW202216363A (en) | Washing device for polishing head | |
KR20030022105A (en) | Polishing apparatus and dressing method | |
JP2020184581A (en) | Substrate processing apparatus and substrate processing method | |
JP2003022993A (en) | Wafer washing method | |
CN1472017A (en) | Method and device for removing stains from glass surface | |
JPH10244458A (en) | Grinding pad dressing device | |
JPH10256199A (en) | Cleaning system for chucking surface | |
JP2017222015A (en) | Processing device | |
JP2006159317A (en) | Dressing method of grinding pad | |
JP2002324771A (en) | Polishing apparatus and dressing method | |
JP2003251555A (en) | Polishing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 10636915 Country of ref document: US |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR IT |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |