WO2004005997A1 - Cantilever, light beam control device, variable light attenuator, and variable light attenuating device - Google Patents

Cantilever, light beam control device, variable light attenuator, and variable light attenuating device Download PDF

Info

Publication number
WO2004005997A1
WO2004005997A1 PCT/JP2003/008650 JP0308650W WO2004005997A1 WO 2004005997 A1 WO2004005997 A1 WO 2004005997A1 JP 0308650 W JP0308650 W JP 0308650W WO 2004005997 A1 WO2004005997 A1 WO 2004005997A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
thin film
electric wiring
insulating thin
optical
Prior art date
Application number
PCT/JP2003/008650
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiko Kurumada
Masatoshi Kanaya
Toshiaki Tamamura
Keiichi Akagawa
Yoshihiko Suzuki
Tohru Ishizuya
Junji Suzuki
Original Assignee
Ntt Electronics Corporation
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002200474A external-priority patent/JP3572062B2/en
Priority claimed from JP2002361298A external-priority patent/JP2004191779A/en
Application filed by Ntt Electronics Corporation, Nikon Corporation filed Critical Ntt Electronics Corporation
Priority to AU2003281408A priority Critical patent/AU2003281408A1/en
Publication of WO2004005997A1 publication Critical patent/WO2004005997A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/353Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being a shutter, baffle, beam dump or opaque element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3566Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details involving bending a beam, e.g. with cantilever
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3594Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3596With planar waveguide arrangement, i.e. in a substrate, regardless if actuating mechanism is outside the substrate

Definitions

  • variable optical attenuator variable optical attenuator
  • the present invention relates to a cantilever, a light beam adjusting device, a variable optical attenuator, and a variable optical attenuator, and more particularly, to a cantilever using MEMS (Micro Electro Mechanical Systems) technology, a light beam adjusting device, a variable optical attenuator, and And a variable optical attenuator.
  • MEMS Micro Electro Mechanical Systems
  • variable optical attenuators attenuators
  • optical switches are used in, for example, optical communications.
  • attenuators variable optical attenuators
  • the background art is explained using a variable optical attenuator as an example.
  • variable optical attenuators There are several types of variable optical attenuators.
  • US Pat. No. 6,173,105 discloses a variable optical attenuator of the type using MEMS technology.
  • FIGS. FIG. 15 is a side view showing the main part
  • FIG. 16 is a plan view showing the main part.
  • This variable optical attenuator uses a MEMS device 110 (Fig. 15).
  • the MEMS device 110 has a shirt 114.
  • the shutter 114 can be inserted into the gap 113 between the ends 11A and 11A of the optical fibers 11 and 11 arranged opposite to each other.
  • the shirt 114 is connected to the tip of the cantilever 1 18 (FIGS. 15 and 16).
  • the cantilever 118 is connected to a flexure section 117 that generates a panel force.
  • the flexure section 117 includes flexible arms 122A and 122B (FIG. 16).
  • the enlarged portions 125A and 125B at one ends of the flexible arms 122A and 122B are connected to the columns 12OA and 120B, respectively.
  • the other ends of the flexible arms 122A and 122B are connected to a top plate 116 as a movable electrode.
  • the bottom plate as a fixed electrode is opposed to the top plate 116.
  • Force S located on the substrate 119.
  • a reinforcing portion 123 (FIG. 16) is provided between the flexible arms 122 A and 122 B, and a cantilever 118 extends from the reinforcing portion 123.
  • variable optical attenuator when no voltage is applied between the top plate 116 and the bottom plate 115, as shown in FIG. Since the optical path between the optical fibers 111 and 112 is not blocked, the amount of light transmitted from the optical fiber 111 to the optical fiber 112 becomes maximum.
  • both plates 1 16 and 1 15 are attracted by the electrostatic force generated between them, and the top plate 1 16 moves downward. Move to.
  • the shutter 114 moves upward with the cantilever 118 as the fulcrum of the columns 12 O A and 120 B (lever structure). Then, the shirt 1114 advances into the gap 113 between the optical fibers 111 and 112.
  • the shutter 114 stops at a position where the electrostatic force between the plates 116 and 115 and the panel force of the flexure unit 117 balance.
  • the amount by which the optical path between the optical fibers 1 1 1 and 1 1 2 is blocked depends on the stop position of the shirt 1 1 and the amount of light transmitted from the optical fiber 1 1 to the optical fiber 1 1 Decay.
  • the electrostatic force between the plates 1 16 and 1 15 is used to apply the voltage between the plates 1 16 and 1 15
  • the stop position of the shirt 114 can be changed, thereby controlling the amount of attenuation.
  • An object of the present invention is to provide a cantilever, a light beam adjusting device, a variable optical attenuator, and a variable optical attenuator excellent in controllability.
  • a cantilever according to the present invention is a cantilever for moving an optical member, which can be inserted into a groove provided so as to traverse a part or the whole of an optical path, in a direction perpendicular to the optical path, wherein the optical member is supported by an insulating thin film.
  • the optical member is moved by a voltage or a current applied to the electric wiring provided on the insulating thin film, and is stretched on both surfaces of the insulating thin film using a material having a coefficient of linear expansion equal to that of the electric wiring. It is designed to make no difference.
  • a dummy electric wiring is provided on the surface of the insulating thin film opposite to the surface on which the electric wiring is provided so as to be plane-symmetric with respect to the electric wiring. It is arranged.
  • the cantilever of the present invention is arranged such that, of the two surfaces of the insulating thin film, a dummy electric wiring is provided on a surface opposite to a surface on which the electric wiring is provided so as to be point-symmetric with respect to the electric wiring. Is provided.
  • an insulating material having a linear expansion coefficient equal to that of the electric wiring is laminated on a surface of the insulating thin film opposite to a surface on which the electric wiring is provided, of the two surfaces. is there.
  • An optical beam adjustment device of the present invention includes: an optical waveguide disposed on a substrate; a groove provided so as to traverse part or all of an optical path of the optical waveguide; and an optical member insertable into the groove.
  • a cantilever that supports the optical member with an insulating thin film and moves the optical member in a direction perpendicular to the optical path, wherein the cantilever is a voltage or a current applied to an electric wiring provided on the insulating thin film.
  • the optical member is moved by using the material having the same linear expansion coefficient as that of the electric wiring, and the insulating thin film is used. Are constructed so as not to cause a difference in extension between both sides.
  • Another optical beam adjusting device includes: an optical fiber disposed on a substrate; a slit provided so as to traverse a part or all of an optical path of the optical fiber; and an optical member insertable into the slit.
  • a force cantilever for supporting the optical member with an insulating thin film and moving the optical member in a direction perpendicular to the optical path, wherein the cantilever is applied to electric wiring provided on the insulating thin film.
  • the optical member is moved by a voltage or a current, and is made of a material having a coefficient of linear expansion equal to that of the electric wiring so as not to cause a difference in extension between both surfaces of the insulating thin film.
  • both sides of the insulating thin film of the cantilever extend equally to changes in the ambient temperature, and the cantilever does not distort, so that the adjustment of the light beam across the slit can be performed more stably according to the position of the optical member. And excellent controllability.
  • the cantilever has a surface symmetrical with respect to the electric wiring on a surface of the insulating thin film opposite to a surface on which the electric wiring is provided.
  • dummy electric wiring is provided.
  • the cantilever has a point symmetry with respect to the electric wiring on a surface of the insulating thin film opposite to a surface on which the electric wiring is provided.
  • a dummy electric wiring is provided.
  • the cantilever has a linear expansion coefficient equal to that of the electric wiring on a surface of the insulating thin film opposite to a surface on which the electric wiring is provided.
  • an insulating material is laminated.
  • the variable optical attenuator of the present invention includes: an optical waveguide disposed on a substrate; a groove provided to traverse the optical path of the optical waveguide; an optical member insertable into the groove; and an insulating thin film.
  • a cantilever that supports an optical member moves the optical member in a direction perpendicular to the optical path, and moves the optical member so that an amount of attenuation of light that traverses the groove becomes a desired value.
  • Applied to electrical wiring arranged on insulating thin film The optical member is moved by the applied voltage or current, and the electric wiring has a surface opposite to the insulating thin film covered with a material having a coefficient of linear expansion equal to that of the insulating thin film.
  • variable optical attenuator since both surfaces of the electric wiring of the cantilever extend equally to changes in the ambient temperature and the cantilever does not distort, a desired amount of attenuation can be stably obtained depending on the position of the optical member. It is excellent in controllability.
  • variable optical attenuator the opposite surface of the electric wiring is covered with a material having the same linear expansion coefficient and the same film thickness as the insulating thin film.
  • Another variable optical attenuator of the present invention includes: an optical waveguide disposed on a substrate; a groove provided to traverse an optical path of the optical waveguide; an optical member insertable into the groove; and the optical member.
  • a cantilever that moves the optical member in a direction perpendicular to the optical path, and moves the optical member so that the amount of attenuation of light that traverses the groove becomes a desired value.
  • the electrical wiring is provided such that a panel force acts according to the position of the end, and the electric wiring has a current path arranged in a magnetic field to generate a Lorentz force against the panel force by the voltage or the current. Rumo It is.
  • the optical member can be moved by a low voltage or current, and the relationship between the value of the voltage or current and the position of the optical member becomes linear. Therefore, a desired amount of attenuation can be stably obtained depending on the position of the optical member, and the controllability is excellent.
  • the cantilever supports the optical member by a thin film.
  • the cantilever supports the optical member with an insulating thin film
  • the electric wiring is provided on the insulating thin film
  • the electric wiring and the coefficient of linear expansion are different from each other.
  • the same thin film is used so as not to cause a difference in extension between both surfaces of the insulating thin film.
  • the optical member can be moved by a low voltage or current.
  • both surfaces of the insulating thin film of the cantilever extend equally with respect to the fluctuation of the ambient temperature, and Does not distort. Therefore, the controllability is further improved.
  • the cantilever supports the optical member by an insulating thin film, the electric wiring is provided on the insulating thin film, and the electric wiring is the insulating thin film. The surface opposite to the above is covered with a material having the same coefficient of linear expansion as the insulating thin film.
  • variable optical attenuator the optical member can be moved by a low voltage or current, and the relationship between the value of the voltage or current and the position of the optical member becomes linear. Both sides of the electrical wiring stretch equally with changes in ambient temperature, and the cantilever does not distort. Therefore, the controllability is further improved.
  • the opposite surface of the electric wiring is covered with a material having the same linear expansion coefficient and the same film thickness as the insulating thin film.
  • a variable optical attenuator according to the present invention includes the above variable optical attenuator, and a magnetic field generating unit that generates the magnetic field.
  • variable optical attenuator of the present invention includes a control unit that controls at least one of the current in the current path and the magnetic field.
  • FIG. 1 is a diagram showing a configuration of a light beam adjusting device.
  • FIG. 2 is a diagram illustrating a configuration of the force cantilever of the first embodiment.
  • FIG. 3 is a diagram showing a configuration of the force cantilever of the second embodiment.
  • FIG. 4 is a diagram showing a configuration of the force cantilever of the third embodiment.
  • FIG. 5 is a diagram illustrating a configuration of a cantilever of a comparative example.
  • FIG. 6 is a schematic plan view schematically showing the variable optical attenuator of the fourth embodiment.
  • FIG. 7 is a cross-sectional view along X1-X2 of FIG. 6, showing a predetermined operation state.
  • FIG. 8 is a cross-sectional view along X1-X2 of FIG. 6, showing another operation state.
  • FIG. 9 is a cross-sectional view along X1-X2 of FIG. 6, showing still another operation state.
  • FIG. 10 is a diagram showing a model of the variable optical attenuator shown in FIGS. 6 to 9.
  • FIG. 11 is a diagram showing characteristics calculated based on the model shown in FIG.
  • FIG. 12 is a diagram illustrating a model of a variable optical attenuator according to a comparative example.
  • FIG. 13 is a diagram showing characteristics calculated based on the model shown in FIG.
  • FIG. 14 is a schematic plan view schematically showing a part of the variable optical attenuator of the fifth embodiment.
  • FIG. 15 is a side view showing a main part of a conventional variable optical attenuator.
  • FIG. 16 is a plan view showing a main part of the conventional variable optical attenuator shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a configuration of a waveguide type light beam adjusting device according to a first embodiment of the present invention.
  • FIG. 1A is an enlarged top view showing a groove 53 portion.
  • the groove 53 is provided at the intersection of the two optical waveguides 51 and 52 so as to cross the optical paths of the optical waveguides 51 and 52.
  • a mirror 54 mounted on a cantilever (not shown).
  • optical member can be inserted.
  • FIG. 1 (b) is a cross-sectional view taken along line A- ⁇ of FIG. 1 (a).
  • a lower cladding layer 56 and a core layer 57 are sequentially deposited on a substrate 55, and optical waveguides 51 and 52 are formed by photolithography.
  • the lower clad layer 56 and the core layer 57 are covered with the upper clad layer 58 to complete the optical waveguides 51 and 52.
  • the groove 53 is provided by removing a part of the core layer 57 and the lower clad layer 56.
  • a cantilever 59 is installed above the groove 53.
  • a mirror 54 is attached to the tip of the cantilever 59.
  • the cantilever 59 is made of a silicon nitride thin film (insulating thin film), and the mirror 54 is supported by the silicon nitride thin film.
  • the cantilever 59 is a cantilever having a fixed end (not shown) on the right side in FIG. 1 and a free end on which the mirror 54 is fixed.
  • the power cantilever 59 of the first embodiment is provided with conductive wiring patterns 60a and 60b on both surfaces thereof. The configuration of the wiring patterns 60a and 60b is as shown in FIG.
  • FIG. 2A is a bottom view of the cantilever 59.
  • FIG. 2B is a cross-sectional view along the line X--X '.
  • FIG. 2C is a sectional view taken along the line Y-Y '.
  • a mirror 54 is fixed to the lower surface of the cantilever 59, and the original wiring pattern 6
  • 0a (electrical wiring) is provided on the upper surface of the cantilever 59.
  • a dummy wiring pattern 60b is provided on the upper surface of the cantilever 59.
  • the original wiring pattern 60a and the dummy wiring pattern 60b are made of a material having the same linear expansion coefficient, and are provided so as to have mirror symmetry with respect to the symmetry line Z-Z '.
  • the silicon nitride thin film used as the material of the cantilever 59 has advantages that it has mechanical strength and that the wiring patterns 60a and 60b can be insulated from each other.
  • the wiring patterns 60a and 60b for example, aluminum, which is a highly conductive material, is used as the wiring material.
  • the film has the same linear expansion coefficient on both the upper surface and the lower surface of the silicon nitride thin film. Since the wiring patterns 60a and 60b having the same thickness are provided, the upper surface and the lower surface of the silicon nitride thin film extend equally with respect to the fluctuation of the ambient temperature. For this reason, the upward warpage moment and the downward warpage moment become equal, and no distortion such as warpage or deformation occurs.
  • the film thicknesses were made equal.
  • the present invention is not limited to this. H Even if the thicknesses are not equal, the stress is reduced as compared with the conventional configuration, so that there is an effect that distortion such as warpage or deformation is reduced.
  • the free end of the cantilever 59 is caused by an electrostatic force between a movable electrode and a fixed electrode (not shown).
  • the mirror 54 By moving the mirror up and down, the mirror 54 can be moved in the depth direction of the groove 53 (that is, in the direction perpendicular to the optical paths of the optical waveguides 51 and 52).
  • the applied current or applied voltage
  • both sides of the silicon nitride thin film of cantilever 59 change in ambient temperature.
  • the mirror 54 can be operated stably, and a cantilever 59 with excellent controllability can be obtained. Further, the position of the mirror 54 can stably adjust the light beam that crosses the groove 53, so that a light beam adjusting device with excellent controllability can be obtained.
  • the traveling direction of the light beam may be switched according to the position of the mirror 54 (switching operation). For example, in the case of a light beam incident from the optical waveguide 5 lb (FIG. 1), this light beam is
  • the dimension of the mirror 54 is desirably small from the viewpoint of the time required for entering or retracting the groove 53, that is, the switching speed. On the other hand, a certain size is required to completely block the spread of propagating light seeping into the cladding region. In the quartz-based waveguide described above, the minimum size of the mirror 54 that blocks the light beam is
  • a matrix type optical switch of m X n can be obtained. Can be configured.
  • a light beam adjustment device that can be used. That is, a desired amount of attenuation can be stably obtained by the position of the mirror 54, and an attenuator excellent in controllability can be obtained.
  • the cantilever 69 of the second embodiment is also made of a silicon nitride thin film.
  • FIG. 3A is a bottom view of the cantilever 69.
  • FIG. 3B is a cross-sectional view along the line X--X '.
  • FIG. 3C is a sectional view taken along the line Y—Y ′.
  • a mirror 54 is fixed to the lower surface of the cantilever 69, and an original wiring pattern 70a is provided.
  • an original wiring pattern 70a is provided on the upper surface of the cantilever 69.
  • a dummy wiring pattern 70b is provided on the upper surface of the cantilever 69.
  • the original wiring pattern 70 a and the dummy wiring pattern 70 b are made of a material having the same coefficient of linear expansion and the same film thickness, and are provided so as to be point-symmetric with respect to the point P.
  • the twist occurs in the Y—Y direction with respect to the fluctuation of the ambient temperature, but the upper surface and the lower surface of the silicon nitride thin film extend equally. Therefore, the upward warpage moment and the downward warpage moment become equal in the vertical movement direction of the mirror 54, and no distortion such as warpage or deformation occurs.
  • the film thicknesses were made equal.
  • the present invention is not limited to this. Even if the film thicknesses are not equal, the stress is reduced as compared with the conventional configuration, and thus there is an effect that distortion such as warpage or deformation is reduced.
  • the wiring patterns 60a, 60b are provided on both surfaces of the silicon nitride thin film of the cantilever 59, and the wiring patterns 70a, 70b are provided on both surfaces of the cantilever 69.
  • 0b was provided to prevent a difference in extension.
  • a plurality of layers of insulating materials such as silicon nitride having different hardness and temperature coefficient may be laminated to form a force-chinch lever so that no difference in extension occurs between both surfaces.
  • cantilevers can be made by combining different materials or shapes and can be mirror symmetric about the symmetry line Z-Z 'or point symmetric about the point P.
  • FIG. 4 is a sectional view of the cantilever 79.
  • the mirror 54 is fixed to the tip of the silicon nitride thin film of the cantilever 79.
  • the wiring pattern 80 is provided only on the upper surface of the cantilever 79.
  • a second silicon nitride thin film 81 is provided so as to cover the upper surface of wiring pattern 80 (the surface opposite to cantilever 79).
  • the coefficient of linear expansion of the silicon nitride thin film 81 is equal to the thickness of the silicon nitride thin film of the cantilever 79.
  • both surfaces of the wiring pattern 80 are sandwiched by the silicon nitride thin films having the same linear expansion coefficient, both surfaces of the wiring pattern 80 extend equally with respect to the fluctuation of the ambient temperature. I do. Therefore, the upward warpage moment and the downward warpage moment become equal, and no distortion such as warpage or deformation occurs.
  • the film thicknesses were made equal.
  • the present invention is not limited to this. Even if the film thicknesses are not equal, the stress is reduced as compared with the conventional configuration, and thus there is an effect that distortion such as warpage or deformation is reduced.
  • the wiring pattern 80 is provided only on the upper surface of the cantilever 79, but the present invention is not limited to this. The same effect can be obtained even when the wiring pattern is provided only on the lower surface of the cantilever 79 and the second silicon nitride thin film is provided so as to cover the lower surface of this wiring pattern (the surface opposite to the cantilever 79). be able to.
  • the cantilever 89 of the comparative example is also made of a silicon nitride thin film.
  • FIG. 5 is a sectional view of Cantilever 89.
  • a mirror 84 is fixed to the tip of the silicon nitride thin film of the cantilever 89.
  • the cantilever 89 of the comparative example is provided with a wiring pattern 90 only on the lower surface thereof.
  • the wiring pattern 90 is made of aluminum.
  • the arm length of the cantilever 89 is 500 ⁇ , and the thickness is ⁇ .
  • the thickness of the wiring pattern 90 is also 1 Aim. Due to the difference in the coefficient of linear expansion between the cantilever 89 and the wiring pattern 90, a difference in extension of about 20 X 10-6 / deg occurs near normal temperature.
  • a warp of about 25 m is generated near normal temperature due to a temperature change of 10 ° C.
  • a mirror 84 was inserted into the groove (not shown), and the light beam crossing the groove was cut off. A 3 dB attenuation was caused in the state. At this time, when the set position of the mirror 84 changes by 0.1 mm, the attenuation changes by ⁇ 0.1 dB. Therefore, around room temperature,
  • a temperature change of 1 ° C causes a warpage of about 2.5, so the attenuation changes by approximately ⁇ I dB.
  • the cantilever 59 was made of a silicon nitride thin film, and the wiring patterns 60a and 60b were made of aluminum.
  • the arm length of the cantilever 59 is 500 im and the thickness is 1 ⁇ .
  • the thickness of the wiring patterns 60a and 60b was 1 ⁇ , and the patterns shown in FIG. 3 were provided.
  • the quartz-based waveguide including the core layer and the clad layer is used, but the present invention is not limited to this.
  • the silica-based waveguide for example, a structure in which optical fibers are arranged on a substrate can be used.
  • V-shaped grooves for mounting optical fibers are formed on a silicon substrate by etching or cutting, and optical fibers are arranged. Also, slits are provided so as to cross the optical path of the optical fiber. Glass, ceramics, resin, and the like can be used for the substrate, and a light beam adjusting device can be manufactured at a lower cost than a quartz-based waveguide.
  • the cantilever according to the present embodiment is not limited to a cantilever supported at one end, but may be a two-point support beam supporting both ends or a cross beam supporting four points by fixing a mirror at the center. Can also be applied.
  • the present invention can be applied to a cantilever supporting the mirror 54 on the upper surface.
  • FIG. 6 is a schematic plan view schematically showing a variable optical attenuator according to a fourth embodiment of the present invention. is there.
  • the lines that should be hidden lines are also indicated by solid lines to clarify the positional relationship between the elements in plan view.
  • 7 to 9 show respective operation states, and are schematic cross-sectional views along the line X1-X2 in FIG.
  • X-axis, Y-axis and Z-axis which are orthogonal to each other are defined as shown in Figs.
  • the surface of the substrate 31 of the variable optical attenuator 1 described later is parallel to the XY plane.
  • the direction of the arrow is called + Z direction or + Z side
  • the opposite direction is called one Z direction or one Z side
  • the + side in the Z-axis direction may be referred to as the upper side
  • one side in the Z-axis direction may be referred to as the lower side.
  • the variable optical attenuator according to the fourth embodiment includes a variable optical attenuator 1 and a magnet 2 provided below the variable optical attenuator 1 (shown in FIGS. 7 to 9). ) And a control unit 3 (shown in FIG. 6).
  • the magnet 2 is a magnetic field generation unit that generates a magnetic field for the variable optical attenuator 1.
  • the control unit 3 responds to an external attenuation command signal and supplies a control signal (current signal in this embodiment) for realizing the attenuation indicated by the attenuation command signal to the variable optical attenuator 1. .
  • the variable optical attenuator 1 includes a support 11 made of ceramic or the like, an actuator 13 disposed above the support 11, an optical waveguide substrate 12 disposed above the actuator 13, and an actuator 13 (optical member).
  • the optical waveguide substrate 12 (FIG. 6) is provided so as to traverse the optical waveguide 21 for guiding the incident light, the optical waveguide 22 for guiding the output light after attenuation, and the optical paths of the optical waveguides 21 and 22.
  • the shirt 14 can be inserted into the groove 23.
  • the groove 23 is a recess for receiving the shutter 14 and has a width of, for example, about 10 ⁇ m.
  • the output end of the optical waveguide 21 and the input end of the optical waveguide 22 are exposed on opposing side surfaces of the groove 23 so as to face each other with a space therebetween.
  • the incident end of the optical waveguide 21 is exposed on the end face of the optical waveguide substrate 12.
  • An optical fiber 15 for guiding incident light is connected to the incident end.
  • the emission end of the optical waveguide 22 is exposed on the end face of the optical waveguide substrate 12.
  • An optical fiber 16 for guiding emitted light is connected to this emission end.
  • the actuator 13 enters the input end of the optical waveguide 22 from the output end of the optical waveguide 21.
  • This embodiment includes a cantilever (to be described later) for moving the shirt 14 so that light to be emitted (that is, light crossing the groove 23) is attenuated by a desired amount of attenuation, and is configured as a MEMS in the present embodiment. .
  • the actuator 13 includes a board 31 mounted on the support 11, two legs 3 2 a, 3 2 b, and two strip-shaped beams 3 3 a, 3 3 b, And a rectangular connection part 34.
  • the beam portions 33a and 33b extend in parallel with the X-axis direction in plan view as viewed from the Z-axis direction.
  • the connecting portion 34 is provided at the tip (free end, end in the + X direction) of the beam portions 33a, 33b, and is a portion that mechanically connects the beam portions 33a, 33b. It is.
  • a wiring pattern 35a (see FIGS. 7 to 9) made of, for example, an A1 film is formed on the substrate 31.
  • the substrate 31 is an insulating substrate such as a glass substrate. However, if an insulating film is formed over the substrate 31, any material such as a silicon substrate can be used as the substrate 31.
  • the fixed end (the end in the X direction) of one beam 33 a is mechanically connected to the substrate 31 via the wiring pattern 35 a formed on the substrate 31 and the leg 32 a. It is connected.
  • the fixed end (the end in the X direction) of the other beam portion 33 b is connected to the wiring pattern 35 b (not shown) formed on the substrate 31 and the leg portion 32 b. It is mechanically connected to the substrate 31.
  • the wiring pattern 35b is also made of the A1 film.
  • the legs 32 a and 32 b are rising portions from the substrate 31.
  • the fixed ends of the beams 33a and 33b are mechanically connected to the substrate 31 via the wiring patterns 35a and 35b and the legs 32a and 32b, respectively. Connected. Further, as described above, the free ends of the beam portions 33a and 33b are mechanically connected by the connection portion 34.
  • the beam portions 33a and 33b and the connection portion 34 force S constitute a cantilever (movable portion) having a cantilever structure as a whole.
  • the beam portions 33a and 33b and the connection portion 34 are collectively referred to as "power levers (33, 34)" as appropriate.
  • the substrate 31 constitutes a fixed part.
  • a silicon oxide film is formed on the wiring patterns 35 a and 35 b on the substrate 31, on the region other than the vicinity of the legs 32 a and 32 b, and on other regions on the substrate 31.
  • Protective film 36 is formed.
  • the beam 33a of the cantilever (33, 34) is a thin film in which the lower SiN film 37 and the upper A1 film 38 are laminated, and acts as a leaf spring. It is composed of In other words, a panel force acts on the beam 33a in accordance with the position of the free end.
  • the A1 film 38 in the beam portion 33a is used as a wiring to a current path for driving by Lorentz force described later.
  • the beam portion 33a when the driving signal (current for Lorentz force) described later is not supplied to the A1 film 38, the SiN film 37 and the A1 film 38 Due to this stress, it is curved upward (opposite side of substrate 31, + Z direction).
  • the beam portion 33a is depicted as if it were bent at the root and extended diagonally upward, but actually, the beam portion 33a is entirely curved.
  • Such a curved state can be realized by appropriately setting the film forming conditions of the SiN film 37 and the A1 film 38.
  • the leg 32 a on the fixed end side of the beam 33 a is such that the SiN film 37 and the A1 film 38 constituting the beam 33 a extend continuously as they are. It is composed of The A1 film 38 is electrically connected to the wiring pattern 35a at the leg 32a through an opening formed in the SiN film 37.
  • the other beam portion 33b and leg portion 32b have exactly the same structure as the above-described beam portion 33a and leg portion 32a, respectively.
  • the connecting portion 34 of the cantilever (33, 34) is composed of a SiN film 37 and an A1 film 38 extending continuously from the beam portions 33a, 33b. I have. Further, a shirt 14 is provided on the SIN film 37 of the connection portion 34. As shown in FIG. 6, the A1 film 38 has a portion on the connecting portion 34 extending in the Y-axis direction.
  • the wiring pattern 35 a below the leg 3 2 a, the beam 3 3 a ⁇ the connecting portion 3 4 ⁇ the A 1 film of the beam 3 3 b A current path is formed through 38 (electrical wiring) to the wiring pattern 35b (not shown) below the leg 32b.
  • the portion of the A1 film 38 extending in the Y-axis direction at the connection portion 34 becomes a current path for driving by Lorentz force.
  • the portion of the A1 film 38 extending in the Y-axis direction is abbreviated as “current path 38Y”. I do.
  • the current path 38 Y forms a part of the cantilever (33, 34).
  • the cantilever (33, 3 A Lorentz force (driving force) in the Z-axis direction is generated in the current path 38 Y so as to oppose the spring force of 4).
  • the magnetic field in the X-axis direction is a magnetic field generated by the magnet 2.
  • the direction of the Lorentz force is the + Z direction or the 1Z direction is determined by the direction of the Lorentz force current and the direction of the magnetic field.
  • the beam portions 33a and 33b are curved upward, so that the Lorentz force is
  • the direction of the application current may be determined so that the Lorentz force is generated only in the 1Z direction.
  • the wiring patterns 35a and 35b on the substrate 31 can be connected to the external control unit 3 in the same manner as a normal silicon semiconductor element wiring method. . Then, the control unit 3 supplies a current for Lorentz force as a control signal to the current path 38Y.
  • the actuator 13 can be manufactured by using a semiconductor manufacturing technology such as formation and patterning of a film, etching, formation and removal of a sacrificial layer, and the like. For example, after forming a recess corresponding to the shirt 14 in the resist, the material (Au, Ni, and other metals) to be the shirt 14 is grown by electrolytic plating. Thereafter, the resist can be removed to form the resist. As the shirt 14, a material other than metal may be used.
  • the magnet 2 is attached to the lower surface of the support base 11 as shown in FIGS. 7 to 9. + Provided on the X side.
  • a plate-shaped permanent magnet in which the + side in the X-axis direction is magnetized to the N pole and one side is magnetized to the S pole is used as the magnet 2.
  • a substantially uniform magnetic field is generated by the magnet 2 from the + side to one side along the X-axis direction.
  • a permanent magnet having another shape, an electromagnet, or the like may be used as the magnetic field generation unit.
  • variable optical attenuator of the fourth embodiment has a frame type as shown in FIGS.
  • the spacer 17 is provided.
  • the optical waveguide substrate 12 is bonded to the substrate 31 of the actuator 13 via the spacer 17.
  • the optical waveguide substrates 12 and 31 are aligned so that the shutter 14 of the actuator 13 can be inserted into the groove 23 of the optical waveguide substrate 12.
  • a space between the optical waveguide substrate 12 and the substrate 31 surrounded by the spacer 17 and a space of the groove 23 communicating therewith are filled with a refractive index matching liquid (not shown).
  • a refractive index matching liquid does not necessarily have to be sealed.
  • FIG. 7 shows a state where the current for Lorentz force is not supplied from the control unit 3 to the current path (35a ⁇ 38 ⁇ 35b).
  • the Lorentz force does not act on the current path 38 Y of the connection portion 34 of the cantilever (33, 34), and the shutter 14 completely blocks the emission end of the optical waveguide 21. .
  • the attenuation is 100%.
  • FIG. 8 shows a state where a moderate Lorentz force current is supplied from the control unit 3 to the current path (35a ⁇ 38 ⁇ 35b). In this case, a moderate Lorentz force acts downward on the current path 38Y of the connection portion 34 of the cantilever (33, 34).
  • the shirt 14 stops at a position where the Lorentz force and the spring force of the beam portions 33a and 33b are balanced, and blocks the lower half of the light emitting end of the optical waveguide 21.
  • the attenuation is about 50%.
  • FIG. 9 shows a state where a large Lorentz force current is supplied from the control unit 3 to the current path (35a ⁇ 38 ⁇ 35b).
  • a large Lorentz force acts downward on the current path 38 Y of the connection portion 34 of the cantilever (33, 34).
  • the shirt 14 stops at the position where the Lorentz force and the spring force of the beams 33 a and 33 b are balanced, and does not block the emission end of the optical waveguide 21 at all. In this case, the attenuation is almost 0%.
  • the operating state is not limited to the examples shown in FIGS. 7 to 9.
  • the attenuation can be arbitrarily changed continuously from approximately 0% to 100%.
  • the control unit 3 in response to an external attenuation command signal, transmits a Lorentz force current having a magnitude corresponding to the attenuation indicated by the attenuation command signal to a current path. (35a ⁇ 38 ⁇ 35b).
  • the circuit configuration itself does not require a special one, and can be easily realized by a combination of a DC current source or a DC voltage source and a resistor.
  • control unit 3 may perform open-loop control according to a table indicating the relationship between the current value and the attenuation measured in advance, or may include a detector that monitors the amount of light after attenuation. Based on the detection signal, feedback control may be performed so that the actual attenuation is equal to the attenuation indicated by the attenuation command signal.
  • variable optical attenuator 1 of the fourth embodiment is modeled as shown in FIG. 10, and the following calculation is performed according to this model.
  • the current (wire current) flowing through the straight wire 38 '(modeling the current path Y of the connection 34) (wire current) is 10mA, 20mA, 3 OmA, 4 OmA, 50mA, and the wire 38' and the board 3 Calculate the Lorentz force acting on the wire 38 'when the distance d2 between 1 and 2 is changed. Further, the panel forces of the beam portions 33a and 33b with respect to the interval d2 are also calculated.
  • Figure 11 shows the result of the calculation.
  • the horizontal axis in FIG. 11 represents the interval d2.
  • the vertical axis represents Lorentz force and panel force (N).
  • the solid line indicates the Lorentz force
  • the broken line indicates the spring force.
  • “3.0E—07” means “3.0 X 10—07”.
  • Point S in FIG. 11 corresponds to the beginning of the interval d2.
  • the Lorentz force is constant independently of the distance d2 between the electric wire 38 'and the substrate 31. For this reason, the broken line representing the spring force and the solid line representing the Lorentz force intersect at equally spaced points A to E. For example, if the current value of wire 38 'is 1 OmA, it crosses at point A. In this case, the electric wire 38 'starts from the start point S (the initial value of the interval d2). At point A, the panel force and Lorentz force are balanced, and on the left side, the spring force is stronger than the Lorentz force. It stops at point A and its position is kept stable.
  • the stop position of the wire 38' (point C ⁇ point C%) approaches the board 31 (d 2 ⁇ 0 ).
  • the stopping positions (intersections A to E of the Lorentz force and the panel force) of the wire 38 'at each current value are arranged at equal intervals, and a straight line is drawn between the current value and the interval d2. It is clear that there is a property.
  • variable optical attenuator (see Figs. 15 and 16) was modeled as shown in Fig. 12, and similar calculation was performed according to this model. I do.
  • the reference numerals in the variable optical attenuator of the comparative example correspond to those used in Figs. “1 15” is a bottom plate as a fixed electrode, “1 16” is a top plate as a movable electrode, and “1 17” is a flexure portion.
  • the calculation of the comparative example will be described.
  • the voltage (electrode voltage) between the plates 1 15 and 1 16 is 5 V, 10 V, 15 V, 20 V and 25 V, and the distance between the plates 1 15 and 116 (electrode distance dl) is Calculate the electrostatic force between the plates 115 and 116 when changing. Further, the panel force of the flexure portion 117 with respect to the electrode interval d1 is also calculated.
  • both plates 115 and 1 16 were parallel plates, and the relative permittivity between them was 1. Furthermore, in the calculation, both plates 1 15 and 1 16 are square plates of 50 ⁇ angle, and the initial value of the electrode interval d 1 (interval when the voltage between the electrodes is 0 and the panel force becomes 0) was set to 10 m, and the panel constant of the flexure section 1 17 was set to 3 ⁇ 10-2 (N / m).
  • Figure 13 shows the result of the calculation.
  • the horizontal axis in FIG. 13 represents the interval dl.
  • the vertical axis represents electrostatic force and panel force (N).
  • the solid line indicates the electrostatic force.
  • the dashed line indicates the panel force.
  • “3.0 E—07” means “3.0 X 10—07”.
  • Point S in Fig. 13 corresponds to the initial value of interval d1.
  • the solid line is always above the dashed line, so the top plate 116 starts from the point S at the start position (the initial value of the interval dl) ⁇ ⁇ ⁇ m It starts and the force S keeps the electrode gap d1 narrow. Since the electrostatic force always exceeds the panel force, it does not stop until both plates 115 and 116 come into contact.
  • the operating range as the electrode spacing d1 is only 10 / ⁇ to 7 ⁇ , which is very narrow.
  • the device is operated at a voltage between the electrodes of about 20 V and stops at around 7 ⁇ m, the area around 7 ⁇ m is a very unstable area, and the balance may be lost due to electrical noise or mechanical vibration. May collapse once. Then, when it enters the area to the left of point D in Fig. 13, the electrostatic force is always greater than the panel force, and both plates 115, 116 come into contact (electric short-circuit).
  • the electric wire 38 ′ (that is, the current path 38Y) is disposed above the SiN film 37, which is an insulating film, and the surface of the substrate 31 is formed of a protective film such as a silicon oxide film. Since it is insulated by 36, even if the connecting portion 34 including the current path 38Y contacts the substrate 31 as shown in FIG. 9, for example, an electrical short circuit cannot occur.
  • the Lorentz force is controlled by controlling the current for the oral Lenz force supplied from the control unit 3 to the current path 38Y, but the present invention is not limited to this.
  • the control unit 3 may control only the magnetic field generated by the magnet 2.
  • both the current applied to the current path 38 Y and the magnetic field generated by the magnet 2 may be controlled.
  • the configuration example in which the state shown in FIG. 7 (curved upward) is described when the current for the Lorentz force is not supplied to the current path 38 Y has been described. It is not limited to.
  • the direction of the Lorentz force current can be changed to any direction.
  • the direction of the current for Lorentz force is determined so that the Lorentz force is generated only in the + Z direction. Preferably.
  • the actuator 13 has a cantilever structure manufactured by a surface MEMS process for manufacturing a thin film structure on a substrate, but the present invention is not limited to this.
  • the actuator 13 instead of the actuator 13, other actuators manufactured by a substrate MEMS process for etching a substrate to manufacture a structure, an actuator having a doubly supported structure, or a conventional variable optical attenuation
  • An actuator having a "lever structure" similar to that of the vessel may be used.
  • FIG. 14 shows only a part of the variable optical attenuator of the fifth embodiment.
  • the constituent elements not shown are the same optical waveguide substrate and spacer as in FIGS. 6 to 9.
  • the variable optical attenuator according to the fifth embodiment has the same basic configuration as that shown in FIGS.
  • the second SIN film 39 is formed so as to cover the upper surface of the A1 film 38 of the force fulever (33, 34) constituting the actuator 13 described above. Is provided.
  • the linear expansion coefficient of the SiN film 39 is equal to that of the cantilever (33, 34).
  • both surfaces of the A1 film 38 of the cantilever (33, 34) are sandwiched by the SIN films having the same linear expansion coefficient and the same film thickness.
  • the following effects are obtained.
  • the positions of the cantilever (3 3, 3 4) even if the current supplied to the A 1 film 38 slightly generates heat, the both sides of the A 1 film 38 are equal. To stretch. Therefore, the upward warpage moment and the downward warpage moment become equal, and no distortion such as warpage or deformation occurs. Also, even if the ambient temperature fluctuates, no distortion such as warpage or deformation occurs.
  • the film thicknesses were made equal.
  • the present invention is not limited to this. Even if the film thicknesses are not equal, the stress is reduced compared to the conventional configuration, This has the effect of reducing distortion such as warpage and deformation.
  • variable optical attenuator according to the fifth embodiment is configured such that the cantilever (33, 34) is not distorted in addition to employing the drive by the Lorentz force described above. Therefore, the controllability is further improved.
  • both surfaces of the A1 film 38 are sandwiched between SiN films having the same linear expansion coefficient and the same film thickness.
  • the present invention is not limited to this.
  • a dummy A1 film may be provided on the lower surface of the 3iN film 37 of the cantilever (33, 34), and both surfaces of the SiN film 37 may be sandwiched between A1 films having the same linear expansion coefficient. Good.
  • the shirt 14 is supported on the upper surface of the cantilever (33, 34).
  • the present invention can be applied to a cantilever that supports the shirt 14 on the lower surface. .
  • the cantilever is formed of a silicon nitride thin film (that is, a SiN film), but a thin film such as an oxide film may be used instead.
  • a cantilever a light beam adjusting device, a variable optical attenuator, and a variable optical attenuator excellent in controllability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A cantilever having an excellent controllability, a light beam control device, a variable light attenuator, and a variable light attenuating device, wherein the cantilever (59) moving an optical member (54) in vertical direction relative to the optical paths of light guiding paths (51) and (52) supports the optical member (54) by an insulation film, moves the optical member (54) by a voltage or a current applied to electric wiring (60a) disposed on the insulation film, and prevents a difference in extension from occurring on both surfaces of the insulation film by using a material (60b) having the same coefficient of linear expansion as the electric wiring (60a).

Description

明細書  Specification
カンチレバー、 光ビーム調整装置、 可変光減衰器、 および、 可変光減衰装置 技術分野  Technical field of cantilever, light beam adjusting device, variable optical attenuator, and variable optical attenuator
本発明は、 カンチレバー、 光ビーム調整装置、 可変光減衰器、 および、 可変光 減衰装置に関し、 特に、 MEMS (Micro Electro Mechanical Systems) 技術を 用いたカンチレバー、 光ビーム調整装置、 可変光減衰器、 および、 可変光減衰装 置に関する。 背景技術  The present invention relates to a cantilever, a light beam adjusting device, a variable optical attenuator, and a variable optical attenuator, and more particularly, to a cantilever using MEMS (Micro Electro Mechanical Systems) technology, a light beam adjusting device, a variable optical attenuator, and And a variable optical attenuator. Background art
可変光減衰器 (アツテネータ) や光スィッチなどの光ビーム調整装置は、 例え ば、 光通信などで用いられている。 ここでは、 可変光減衰器を例に背景技術の説 明を行う。 可変光減衰器としてはいくつかの方式があるが、 例えば米国特許第 6 1 73 105号明細書には、 MEMS技術を用いた方式の可変光減衰器が開示さ れている。  Light beam adjusting devices such as variable optical attenuators (attenuators) and optical switches are used in, for example, optical communications. Here, the background art is explained using a variable optical attenuator as an example. There are several types of variable optical attenuators. For example, US Pat. No. 6,173,105 discloses a variable optical attenuator of the type using MEMS technology.
この可変光減衰器を図 15および図 16に示す。 図 15はその要部を示す側面 図、 図 16はその要部を示す平面図である。 この可変光減衰器では、 MEMSデ バイス 1 10 (図 1 5) が用いられている。  This variable optical attenuator is shown in FIGS. FIG. 15 is a side view showing the main part, and FIG. 16 is a plan view showing the main part. This variable optical attenuator uses a MEMS device 110 (Fig. 15).
MEMSデバイス 1 10は、 シャツタ 1 14を有する。 シャッタ 1 14は、 対 向配置された光ファイバ 1 1 1, 1 1 2の端部 1 1 1A, 1 1 2 A間のギャップ 1 13内に挿入可能である。 シャツタ 1 14は、 カンチレバー 1 1 8 (図 15,図 1 6) の先端に接続されている。  The MEMS device 110 has a shirt 114. The shutter 114 can be inserted into the gap 113 between the ends 11A and 11A of the optical fibers 11 and 11 arranged opposite to each other. The shirt 114 is connected to the tip of the cantilever 1 18 (FIGS. 15 and 16).
カンチレバー 1 18は、 パネ力を生ずるフレクチユア部 1 17に接続されてい る。 フレクチユア部 1 17には、 フレキシブルアーム 122A, 122B (図 1 6) が含まれる。 フレキシブルアーム 1 22A, 122Bの一端の拡大部 1 25A, 1 25 Bは、 支柱 1 2 OA, 1 20 Bにそれぞれ接続されている。 フレキシブルァ —ム 1 22A, 1 22 Bの他端は、 可動電極としてのトッププレート 1 16に接続 されている。  The cantilever 118 is connected to a flexure section 117 that generates a panel force. The flexure section 117 includes flexible arms 122A and 122B (FIG. 16). The enlarged portions 125A and 125B at one ends of the flexible arms 122A and 122B are connected to the columns 12OA and 120B, respectively. The other ends of the flexible arms 122A and 122B are connected to a top plate 116 as a movable electrode.
さらに、 このトッププレート 1 16と対向するように、 固定電極としてのボト ムプレート 1 1 5 (図 1 5 ) 力 S、 基板 1 1 9上に配置されている。 また、 フレキ シブルアーム 1 2 2 A, 1 2 2 B間に補強部 1 2 3 (図 1 6 ) が設けられ、 補強部 1 2 3からカンチレバー 1 1 8が延びている。 Further, the bottom plate as a fixed electrode is opposed to the top plate 116. (See FIG. 15) Force S, located on the substrate 119. Further, a reinforcing portion 123 (FIG. 16) is provided between the flexible arms 122 A and 122 B, and a cantilever 118 extends from the reinforcing portion 123.
この可変光減衰器では、 トッププレート 1 1 6とボトムプレート 1 1 5との間 に電圧を印加しない場合には、 図 1 5に示すように、 カンチレバー 1 1 8の先端 のシャツタ 1 1 4が光ファイバ 1 1 1 , 1 1 2間の光路を遮らないため、 光フアイ バ 1 1 1から光ファイバ 1 1 2に伝送される光量は最大となる。  In this variable optical attenuator, when no voltage is applied between the top plate 116 and the bottom plate 115, as shown in FIG. Since the optical path between the optical fibers 111 and 112 is not blocked, the amount of light transmitted from the optical fiber 111 to the optical fiber 112 becomes maximum.
—方、 トッププレート 1 1 6とボトムプレート 1 1 5の間に電圧を印加すると、 両者の間に生ずる静電力により、 両プレート 1 1 6 , 1 1 5が引き合い、 トッププ レート 1 1 6が下方へ移動する。 トッププレート 1 1 6が下降すると、 カンチレ バー 1 1 8により、 支柱 1 2 O A, 1 2 0 Bを支点として、 シャッタ 1 1 4が上方 へ移動する (てこ構造) 。 そして、 シャツタ 1 1 4が光ファイバ 1 1 1 , 1 1 2間 のギャップ 1 1 3内に進出する。  —When a voltage is applied between the top plate 1 16 and the bottom plate 1 15, both plates 1 16 and 1 15 are attracted by the electrostatic force generated between them, and the top plate 1 16 moves downward. Move to. When the top plate 1 16 descends, the shutter 114 moves upward with the cantilever 118 as the fulcrum of the columns 12 O A and 120 B (lever structure). Then, the shirt 1114 advances into the gap 113 between the optical fibers 111 and 112.
このとき、 シャッタ 1 1 4は、 両プレート 1 1 6 , 1 1 5間の静電力とフレクチ ユア部 1 1 7のパネ力が釣り合う位置で停止する。 シャツタ 1 1 4の停止位置に 応じて、 光ファイバ 1 1 1, 1 1 2間の光路が遮られる量が定まり、 その分だけ光 ファイバ 1 1 1から光ファイバ 1 1 2に伝送される光量が減衰する。  At this time, the shutter 114 stops at a position where the electrostatic force between the plates 116 and 115 and the panel force of the flexure unit 117 balance. The amount by which the optical path between the optical fibers 1 1 1 and 1 1 2 is blocked depends on the stop position of the shirt 1 1 and the amount of light transmitted from the optical fiber 1 1 to the optical fiber 1 1 Decay.
このように、 従来の可変光減衰器 (図 1 5 ,図 1 6 ) では、 両プレート 1 1 6, 1 1 5間の静電力を利用し、 両プレート 1 1 6 , 1 1 5間に印加する電圧を変える ことで、 シャツタ 1 1 4の停止位置を変化させ、 これにより減衰量を制御するこ とができる。  Thus, in the conventional variable optical attenuator (Fig. 15 and Fig. 16), the electrostatic force between the plates 1 16 and 1 15 is used to apply the voltage between the plates 1 16 and 1 15 By changing the applied voltage, the stop position of the shirt 114 can be changed, thereby controlling the amount of attenuation.
しかしながら、 上記した従来の可変光減衰器では、 周囲温度の変動によりカン チレバー 1 1 8が歪み、 シャツタ 1 1 4の停止位置が変動するため、 高い精度で 位置制御することが難しかった。  However, in the above-mentioned conventional variable optical attenuator, since the cantilever 118 is distorted due to the fluctuation of the ambient temperature, and the stop position of the shirt 114 is fluctuated, it is difficult to control the position with high accuracy.
また、 上記した従来の可変光減衰器では、 両プレート 1 1 6 , 1 1 5間の静電力 を利用してシャツタ 1 1 4を動かすため、 高い電圧が必要であり、 かつ、 両プレ ート 1 1 6, 1 1 5間の電圧値と間隔 (シャツタ 1 1 4の停止位置) との関係にお いて直線 i生が無く、 制御し難い原因の 1つとなっていた。  Further, in the above-mentioned conventional variable optical attenuator, a high voltage is required because the shutter 114 is moved by using an electrostatic force between the plates 116 and 115, and both plates are required. There was no straight line i in the relationship between the voltage value between 1 16 and 1 15 and the interval (stop position of the shirt 1 114), which was one of the causes of difficulty in control.
さらに、 これらの問題は、 可変光減衰器に限らず、 光スィッチなどの光ビーム 調整装置でも同様に起こりうる。 発明の開示 Furthermore, these problems are not limited to variable optical attenuators, but also light beams such as optical switches. The same can occur with a regulating device. Disclosure of the invention
本発明の目的は、 制御性に優れたカンチレバー、 光ビーム調整装置、 可変光減 衰器、 および、 可変光減衰装置を提供することにある。  An object of the present invention is to provide a cantilever, a light beam adjusting device, a variable optical attenuator, and a variable optical attenuator excellent in controllability.
本発明のカンチレバーは、 光路の一部または全部を横断するように設けられた 溝に挿入可能な光学部材を前記光路に対して垂直方向に移動させるカンチレバー において、 絶縁薄膜によって前記光学部材を支持し、 前記絶縁薄膜に配設された 電気配線に印加される電圧または電流によつて前記光学部材を移動させ、 前記電 気配線と線膨張係数が等しい材料を用いて、 前記絶縁薄膜の両面で伸張差を生じ ないように構成されたものである。  A cantilever according to the present invention is a cantilever for moving an optical member, which can be inserted into a groove provided so as to traverse a part or the whole of an optical path, in a direction perpendicular to the optical path, wherein the optical member is supported by an insulating thin film. The optical member is moved by a voltage or a current applied to the electric wiring provided on the insulating thin film, and is stretched on both surfaces of the insulating thin film using a material having a coefficient of linear expansion equal to that of the electric wiring. It is designed to make no difference.
このカンチレバーでは、 絶縁薄膜の両面が周囲温度の変動に対して等しく伸張 するため、 歪むことがない。 したがって、 光学部材を安定して動作させることが でき、 制御性に優れたものとなる。  In this cantilever, since both surfaces of the insulating thin film extend equally with changes in the ambient temperature, there is no distortion. Therefore, the optical member can be operated stably, and the controllability is excellent.
好ましくは、 本発明のカンチレバーは、 前記絶縁薄膜の前記両面のうち、 前記 電気配線が配設された面と反対の面に、 前記電気配線に対して面対称となるよう にダミーの電気配線が配設されたものである。  Preferably, in the cantilever of the present invention, a dummy electric wiring is provided on the surface of the insulating thin film opposite to the surface on which the electric wiring is provided so as to be plane-symmetric with respect to the electric wiring. It is arranged.
好ましくは、 本発明のカンチレバーは、 前記絶縁薄膜の前記両面のうち、 前記 電気配線が配設された面と反対の面に、 前記電気配線に対して点対称となるよう にダミ一の電気配線が配設されたものである。  Preferably, the cantilever of the present invention is arranged such that, of the two surfaces of the insulating thin film, a dummy electric wiring is provided on a surface opposite to a surface on which the electric wiring is provided so as to be point-symmetric with respect to the electric wiring. Is provided.
好ましくは、 本発明のカンチレバーは、 前記絶縁薄膜の前記両面のうち、 前記 電気配線が配設された面と反対の面に、 前記電気配線と線膨張係数が等しい絶縁 材料が積層されたものである。  Preferably, in the cantilever of the present invention, an insulating material having a linear expansion coefficient equal to that of the electric wiring is laminated on a surface of the insulating thin film opposite to a surface on which the electric wiring is provided, of the two surfaces. is there.
本発明の光ビーム調整装置は、 基板上に配置された光導波路と、 前記光導波路 の光路の一部または全部を横断するように設けられた溝と、 前記溝に挿入可能な 光学部材と、 絶縁薄膜によって前記光学部材を支持し、 該光学部材を前記光路に 対して垂直方向に移動させるカンチレバーとを備え、 前記カンチレバーは、 前記 絶縁薄膜に配設された電気配線に印加される電圧または電流によつて前記光学部 材を移動させ、 前記電気配線と線膨張係数が等しい材料を用いて、 前記絶縁薄膜 の両面で伸張差を生じないように構成されたものである。 An optical beam adjustment device of the present invention includes: an optical waveguide disposed on a substrate; a groove provided so as to traverse part or all of an optical path of the optical waveguide; and an optical member insertable into the groove. A cantilever that supports the optical member with an insulating thin film and moves the optical member in a direction perpendicular to the optical path, wherein the cantilever is a voltage or a current applied to an electric wiring provided on the insulating thin film. The optical member is moved by using the material having the same linear expansion coefficient as that of the electric wiring, and the insulating thin film is used. Are constructed so as not to cause a difference in extension between both sides.
この光ビーム調整装置では、 カンチレバーの絶縁薄膜の両面が周囲温度の変動 に対して等しく伸張し、 カンチレバーが歪まないため、 溝を横切る光ビームの調 整を光学部材の位置により安定して行うことができ、 制御性に優れたものとなる。 本究明の他の光ビーム調整装置は、 基板上に配置された光ファイバと、 前記光 ファイバの光路の一部または全部を横断するように設けられたスリットと、 前記 スリットに挿入可能な光学部材と、 絶縁薄膜によって前記光学部材を支持し、 該 光学部材を前記光路に対して垂直方向に移動させる力ンチレバーとを備え、 前記 カンチレバーは、 前記絶緣薄膜に配設された電気配線に印加される電圧または電 流によって前記光学部材を移動させ、 前記電気配線と線膨張係数が等しい材料を 用いて、 前記絶縁薄膜の両面で伸張差を生じないように構成されたものである。 この光ビーム調整装置では、 カンチレバーの絶縁薄膜の両面が周囲温度の変動 に対して等しく伸張し、 カンチレバーが歪まないため、 スリットを横切る光ビー ムの調整を光学部材の位置により安定して行うことができ、 制御性に優れたもの となる。  In this light beam adjustment device, since the both surfaces of the insulating thin film of the cantilever are equally stretched with respect to the fluctuation of the ambient temperature and the cantilever is not distorted, the adjustment of the light beam crossing the groove can be performed more stably by the position of the optical member. The result is excellent controllability. Another optical beam adjusting device according to the present invention includes: an optical fiber disposed on a substrate; a slit provided so as to traverse a part or all of an optical path of the optical fiber; and an optical member insertable into the slit. And a force cantilever for supporting the optical member with an insulating thin film and moving the optical member in a direction perpendicular to the optical path, wherein the cantilever is applied to electric wiring provided on the insulating thin film. The optical member is moved by a voltage or a current, and is made of a material having a coefficient of linear expansion equal to that of the electric wiring so as not to cause a difference in extension between both surfaces of the insulating thin film. In this light beam adjustment device, both sides of the insulating thin film of the cantilever extend equally to changes in the ambient temperature, and the cantilever does not distort, so that the adjustment of the light beam across the slit can be performed more stably according to the position of the optical member. And excellent controllability.
好ましくは、 本発明の光ビーム調整装置は、 前記カンチレバーが、 前記絶縁薄 膜の前記両面のうち、 前記電気配線が配設された面と反対の面に、 前記電気配線 に対して面対称となるようにダミーの電気配線が配設されたものである。  Preferably, in the light beam adjusting device according to the present invention, the cantilever has a surface symmetrical with respect to the electric wiring on a surface of the insulating thin film opposite to a surface on which the electric wiring is provided. In this case, dummy electric wiring is provided.
好ましくは、 本発明の光ビーム調整装置は、 前記カンチレバーが、 前記絶縁薄 膜の前記両面のうち、 前記電気配線が配設された面と反対の面に、 前記電気配線 に対して点対称となるようにダミ一の電気配線が配設されたものである。  Preferably, in the light beam adjusting device of the present invention, the cantilever has a point symmetry with respect to the electric wiring on a surface of the insulating thin film opposite to a surface on which the electric wiring is provided. In this case, a dummy electric wiring is provided.
好ましくは、 本発明の光ビーム調整装置は、 前記カンチレバーが、 前記絶縁薄 膜の前記両面のうち、 前記電気配線が配設された面と反対の面に、 前記電気配線 と線膨張係数が等し 、絶縁材料が積層されたものである。  Preferably, in the light beam adjusting device according to the present invention, the cantilever has a linear expansion coefficient equal to that of the electric wiring on a surface of the insulating thin film opposite to a surface on which the electric wiring is provided. However, an insulating material is laminated.
本発明の可変光減衰器は、 基板上に配置された光導波路と、 前記光導波路の光 路を横断するように設けられた溝と、 前記溝に挿入可能な光学部材と、 絶縁薄膜 によって前記光学部材を支持し、 該光学部材を前記光路に対して垂直方向に移動 させ、 かつ前記溝を横切る光の減衰量が所望値となるように移動させるカンチレ バーとを備え、 前記カンチレバーは、 前記絶縁薄膜に配設された電気配線に印加 される電圧または電流によって前記光学部材を移動させ、 前記電気配線は、 前記 絶縁薄膜とは反対の面が、 前記絶縁薄膜と線膨張係数が等しい材料により覆われ ているものである。 The variable optical attenuator of the present invention includes: an optical waveguide disposed on a substrate; a groove provided to traverse the optical path of the optical waveguide; an optical member insertable into the groove; and an insulating thin film. A cantilever that supports an optical member, moves the optical member in a direction perpendicular to the optical path, and moves the optical member so that an amount of attenuation of light that traverses the groove becomes a desired value. Applied to electrical wiring arranged on insulating thin film The optical member is moved by the applied voltage or current, and the electric wiring has a surface opposite to the insulating thin film covered with a material having a coefficient of linear expansion equal to that of the insulating thin film.
この可変光減衰器では、 カンチレバーの電気配線の両面が周囲温度の変動に対 して等しく伸張し、 カンチレバーが歪まないため、 光学部材の位置により所望の 減衰量を安定して得ることができ、 制御性に優れたものとなる。  In this variable optical attenuator, since both surfaces of the electric wiring of the cantilever extend equally to changes in the ambient temperature and the cantilever does not distort, a desired amount of attenuation can be stably obtained depending on the position of the optical member. It is excellent in controllability.
好ましくは、 本発明の可変光減衰器は、 前記電気配線の前記反対の面が、 前記 絶縁薄膜と線膨張係数が等しく膜厚が等しい材料により覆われたものである。 本発明の他の可変光減衰器は、 基板上に配置された光導波路と、 前記光導波路 の光路を横断するように設けられた溝と、 前記溝に挿入可能な光学部材と、 前記 光学部材を支持し、 該光学部材を前記光路に対して垂直方向に移動させ、 かつ前 記溝を横切る光の減衰量が所望値となるように移動させるカンチレバーとを備え、 前記カンチレバーは、 固定端に対して移動可能な自由端を有し、 該自由端におい て前記光学部材を支持し、 当該力ンチレバーに配設された電気配線に印加される 電圧または電流によって前記自由端を移動させ、 該自由端の位置に応じてパネ力 が作用するように設けられ、 前記電気配線は、 磁界内に配置されて前記電圧また は前記電流により前記パネ力に抗するローレンツ力を発生させる電流経路を有す るものである。  Preferably, in the variable optical attenuator according to the present invention, the opposite surface of the electric wiring is covered with a material having the same linear expansion coefficient and the same film thickness as the insulating thin film. Another variable optical attenuator of the present invention includes: an optical waveguide disposed on a substrate; a groove provided to traverse an optical path of the optical waveguide; an optical member insertable into the groove; and the optical member. A cantilever that moves the optical member in a direction perpendicular to the optical path, and moves the optical member so that the amount of attenuation of light that traverses the groove becomes a desired value. A free end movable with respect to the optical member, supporting the optical member at the free end, and moving the free end by a voltage or a current applied to electric wiring provided on the force cantilever; The electrical wiring is provided such that a panel force acts according to the position of the end, and the electric wiring has a current path arranged in a magnetic field to generate a Lorentz force against the panel force by the voltage or the current. Rumo It is.
この可変光減衰器では、 低い電圧または電流により光学部材を動かすことがで き、 かつ、 その電圧または電流の値と光学部材の位置との関係が直線的となる。 したがって、 光学部材の位置により所望の減衰量を安定して得ることができ、 制 御性に優れたものとなる。 - 好ましくは、 本発明の可変光減衰器は、 前記カンチレバーが、 薄膜によって前 記光学部材を支持するものである。  In this variable optical attenuator, the optical member can be moved by a low voltage or current, and the relationship between the value of the voltage or current and the position of the optical member becomes linear. Therefore, a desired amount of attenuation can be stably obtained depending on the position of the optical member, and the controllability is excellent. -Preferably, in the variable optical attenuator of the present invention, the cantilever supports the optical member by a thin film.
好ましくは、 本発明の可変光減衰器は、 前記カンチレバーが、 絶縁薄膜によつ て前記光学部材を支持し、 前記絶縁薄膜に前記電気配線が配設され、 前記電気配 線と線膨張係数が等しい材料を用いて、 前記絶縁薄膜の両面で伸張差を生じない ように構成されたものである。  Preferably, in the variable optical attenuator of the present invention, the cantilever supports the optical member with an insulating thin film, the electric wiring is provided on the insulating thin film, and the electric wiring and the coefficient of linear expansion are different from each other. The same thin film is used so as not to cause a difference in extension between both surfaces of the insulating thin film.
この可変光減衰器では、 低い電圧または電流により光学部材を動かすことがで き、 かつ、 その電圧または電流の値と光学部材の位置との関係が直線的となるこ とに加えて、 カンチレバーの絶縁薄膜の両面が周囲温度の変動に対して等しく伸 張し、 カンチレバーが歪まない。 したがって、 さらに制御性に優れたものとなる。 好ましくは、 本発明の可変光減衰器は、 前記カンチレバーが、 絶緣薄膜によつ て前記光学部材を支持し、 前記絶縁薄膜に前記電気配線が配設され、 前記電気配 線は、 前記絶縁薄膜とは反対の面が、 前記絶縁薄膜と線膨張係数が等しい材料に より覆われているものである。 In this variable optical attenuator, the optical member can be moved by a low voltage or current. In addition to the fact that the relationship between the value of the voltage or current and the position of the optical member becomes linear, both surfaces of the insulating thin film of the cantilever extend equally with respect to the fluctuation of the ambient temperature, and Does not distort. Therefore, the controllability is further improved. Preferably, in the variable optical attenuator of the present invention, the cantilever supports the optical member by an insulating thin film, the electric wiring is provided on the insulating thin film, and the electric wiring is the insulating thin film. The surface opposite to the above is covered with a material having the same coefficient of linear expansion as the insulating thin film.
この可変光減衰器では、 低い電圧または電流により光学部材を動かすことがで き、 かつ、 その電圧または電流の値と光学部材の位置との関係が直線的となるこ とに加えて、 カンチレバーの電気配線の両面が周囲温度の変動に対して等しく伸 張し、 カンチレバーが歪まない。 したがって、 さらに制御性に優れたものとなる。 好ましくは、 本発明の可変光減衰器は、 前記電気配線の前記反対の面が、 前記 絶縁薄膜と線膨張係数が等しく膜厚が等しい材料により覆われたものである。 本発明の可変光減衰装置は、 上記の可変光減衰器と、 前記磁界を発生させる磁 界発生部とを備えたものである。  In this variable optical attenuator, the optical member can be moved by a low voltage or current, and the relationship between the value of the voltage or current and the position of the optical member becomes linear. Both sides of the electrical wiring stretch equally with changes in ambient temperature, and the cantilever does not distort. Therefore, the controllability is further improved. Preferably, in the variable optical attenuator according to the present invention, the opposite surface of the electric wiring is covered with a material having the same linear expansion coefficient and the same film thickness as the insulating thin film. A variable optical attenuator according to the present invention includes the above variable optical attenuator, and a magnetic field generating unit that generates the magnetic field.
好ましくは、 本発明の可変光減衰装置は、 前記電流経路の電流および前記磁界 のうちの少なくとも一方を制御する制御部を備えたものである。 図面の簡単な説明  Preferably, the variable optical attenuator of the present invention includes a control unit that controls at least one of the current in the current path and the magnetic field. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 光ビーム調整装置の構成を示す図である。  FIG. 1 is a diagram showing a configuration of a light beam adjusting device.
図 2は、 第 1実施形態の力ンチレバーの構成を示す図である。  FIG. 2 is a diagram illustrating a configuration of the force cantilever of the first embodiment.
図 3は、 第 2実施形態の力ンチレバーの構成を示す図である。  FIG. 3 is a diagram showing a configuration of the force cantilever of the second embodiment.
図 4は、 第 3実施形態の力ンチレバーの構成を示す図である。  FIG. 4 is a diagram showing a configuration of the force cantilever of the third embodiment.
図 5は、 比較例のカンチレバーの構成を示す図である。  FIG. 5 is a diagram illustrating a configuration of a cantilever of a comparative example.
図 6は、 第 4実施形態の可変光減衰装置を模式的に示す概略平面図である。 図 7は、 所定の動作状態を示す、 図 6の X 1— X 2断面図である。  FIG. 6 is a schematic plan view schematically showing the variable optical attenuator of the fourth embodiment. FIG. 7 is a cross-sectional view along X1-X2 of FIG. 6, showing a predetermined operation state.
図 8は、 他の動作状態を示す、 図 6の X 1— X 2断面図である。  FIG. 8 is a cross-sectional view along X1-X2 of FIG. 6, showing another operation state.
図 9は、 さらに他の動作状態を示す、 図 6の X 1—X 2断面図である。  FIG. 9 is a cross-sectional view along X1-X2 of FIG. 6, showing still another operation state.
図 1 0は、 図 6〜図 9に示す可変光減衰器のモデルを示す図である。 図 1 1は、 図 1 0に示すモデ に基づいて計算した特性を示す図である。 FIG. 10 is a diagram showing a model of the variable optical attenuator shown in FIGS. 6 to 9. FIG. 11 is a diagram showing characteristics calculated based on the model shown in FIG.
図 1 2は、 比較例の可変光減衰器のモデ^^を示す図である。  FIG. 12 is a diagram illustrating a model of a variable optical attenuator according to a comparative example.
図 1 3は、 図 1 2に示すモデルに基づいて計算した特性を示す図である。 図 1 4は、 第 5実施形態の可変光減衰装置の一部を模式的に示す概略平面図で ある。  FIG. 13 is a diagram showing characteristics calculated based on the model shown in FIG. FIG. 14 is a schematic plan view schematically showing a part of the variable optical attenuator of the fifth embodiment.
図 1 5は、 従来の可変光減衰器の要部を示す側面図である。  FIG. 15 is a side view showing a main part of a conventional variable optical attenuator.
図 1 6は、 図 1 5に示す従来の可変光減衰器の要部を示す平面図である。 発明を実施するための最良の形態  FIG. 16 is a plan view showing a main part of the conventional variable optical attenuator shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を用いて本発明の実施形態を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(第 1実施形態) (First Embodiment)
図 1に、 本発明の第 1実施形態にかかる導波路型の光ビーム調整装置の構成を 示す。 図 1 ( a )は、 溝 5 3の部分を拡大して示した上面図である。 溝 5 3は、 2 つの光導波路 5 1, 5 2の交点に、 光導波路 5 1, 5 2の光路を横断するように設 けられている。 溝 5 3には、 不図示のカンチレバーに取り付けられたミラー 5 4 FIG. 1 shows a configuration of a waveguide type light beam adjusting device according to a first embodiment of the present invention. FIG. 1A is an enlarged top view showing a groove 53 portion. The groove 53 is provided at the intersection of the two optical waveguides 51 and 52 so as to cross the optical paths of the optical waveguides 51 and 52. In the groove 53, there is a mirror 54 mounted on a cantilever (not shown).
(光学部材) が挿入可能である。 本実施形態では、 光導波路 5 1, 5 2として、 コ ァ /クラッドの比屈折率差 Δ = 0 . 4 5 %、 矩形コアの断面寸法 7 μ πιの石英系導 波路を用いた。 (Optical member) can be inserted. In the present embodiment, as the optical waveguides 51 and 52, quartz-based waveguides having a core / clad relative refractive index difference Δ = 0.45% and a rectangular core having a cross-sectional dimension of 7 μππ were used.
図 1 ( b )は、 図 1 ( a )の A— Α, 断面図である。 基板 5 5上に、 下部クラッド 層 5 6とコア層 5 7とを順次堆積し、 フォ トリソグラフィで光導波路 5 1 , 5 2を 形成する。 下部クラッド層 5 6とコア層 5 7とを上部クラッド層 5 8で覆い、 光 導波路 5 1 , 5 2が完成する。 溝 5 3は、 コア層 5 7と下部クラッド層 5 6の一部 を削除して設けられている。  FIG. 1 (b) is a cross-sectional view taken along line A-Α of FIG. 1 (a). A lower cladding layer 56 and a core layer 57 are sequentially deposited on a substrate 55, and optical waveguides 51 and 52 are formed by photolithography. The lower clad layer 56 and the core layer 57 are covered with the upper clad layer 58 to complete the optical waveguides 51 and 52. The groove 53 is provided by removing a part of the core layer 57 and the lower clad layer 56.
溝 5 3の上部には、 カンチレバー 5 9が設置されている。 カンチレバー 5 9の 先端部には、 ミラー 5 4が取り付けられている。 カンチレバー 5 9は、 窒化シリ コン薄膜 (絶縁薄膜) からなり、 この窒化シリコン薄膜によってミラー 5 4を支 持する。 また、 カンチレバー 5 9は、 図 1の右方を固定端 (図示しない) とし、 ミラー 5 4が固定されている部分を自由端とする片持ち梁となっている。 さらに、 第 1実施形態の力ンチレバー 5 9には、 その両面に導電性の配線パタ ーン 6 0 a , 6 0 bが配設されている。 配線パターン 6 0 a , 6 0 bの構成は、 図 2に示す通りである。 図 2 ( a )は、 カンチレバー 5 9の下面図である。 図 2 ( b ) は、 X— X ' 断面図である。 図 2 ( c )は、 Y— Y ' 断面図である。 Above the groove 53, a cantilever 59 is installed. A mirror 54 is attached to the tip of the cantilever 59. The cantilever 59 is made of a silicon nitride thin film (insulating thin film), and the mirror 54 is supported by the silicon nitride thin film. The cantilever 59 is a cantilever having a fixed end (not shown) on the right side in FIG. 1 and a free end on which the mirror 54 is fixed. Further, the power cantilever 59 of the first embodiment is provided with conductive wiring patterns 60a and 60b on both surfaces thereof. The configuration of the wiring patterns 60a and 60b is as shown in FIG. FIG. 2A is a bottom view of the cantilever 59. FIG. 2B is a cross-sectional view along the line X--X '. FIG. 2C is a sectional view taken along the line Y-Y '.
カンチレバー 5 9の下面には、 ミラー 5 4が固定され、 本来の配線パターン 6 A mirror 54 is fixed to the lower surface of the cantilever 59, and the original wiring pattern 6
0 a (電気配線) が設けられる。 カンチレバー 5 9の上面には、 ダミーの配線パ ターン 6 0 bが設けられる。 本来の配線パターン 6 0 aとダミーの配線パターン 6 0 bとは、 線膨張係数が等しい材料からなり、 対称線 Z— Z ' に対して鏡面対 称となるように設けられている。 0a (electrical wiring) is provided. On the upper surface of the cantilever 59, a dummy wiring pattern 60b is provided. The original wiring pattern 60a and the dummy wiring pattern 60b are made of a material having the same linear expansion coefficient, and are provided so as to have mirror symmetry with respect to the symmetry line Z-Z '.
ここで、 カンチレバー 5 9の材料として用いた窒化シリコン薄膜には、 機械的 強度を有すると共に、 配線パターン 6 0 a , 6 0 bを相互に絶縁できるという利点 がある。 配線パターン 6 0 a , 6 0 bには、 例えば高伝導材料であるアルミニウム が配線材料として用いられる。  Here, the silicon nitride thin film used as the material of the cantilever 59 has advantages that it has mechanical strength and that the wiring patterns 60a and 60b can be insulated from each other. For the wiring patterns 60a and 60b, for example, aluminum, which is a highly conductive material, is used as the wiring material.
このように、 第 1実施形態の力ンチレバー 5 9は、 線膨張係数が異なる 2つの 材料が積層された構造であっても、 窒化シリコン薄膜の上面と下面との両方に線 膨張係数が等しく膜厚の等しい配線パターン 6 0 a , 6 0 bを配設するため、 窒化 シリコン薄膜の上面と下面とが周囲温度の変動に対して等しく伸張する。 このた め、 上反りモーメントと下反りモーメントが等しくなり、 反りや変形などの歪み を生ずることがない。  As described above, even when the power fulcrum 59 of the first embodiment has a structure in which two materials having different linear expansion coefficients are laminated, the film has the same linear expansion coefficient on both the upper surface and the lower surface of the silicon nitride thin film. Since the wiring patterns 60a and 60b having the same thickness are provided, the upper surface and the lower surface of the silicon nitride thin film extend equally with respect to the fluctuation of the ambient temperature. For this reason, the upward warpage moment and the downward warpage moment become equal, and no distortion such as warpage or deformation occurs.
なお、 ここでは膜厚を等しくした。 しかし、 本発明はこれに限定されるもので はない。 H莫厚が等しくなくても、 従来の構成と比較すれば応力が低減されるので、 反りや変形などの歪みが低減される効果がある。  Here, the film thicknesses were made equal. However, the present invention is not limited to this. H Even if the thicknesses are not equal, the stress is reduced as compared with the conventional configuration, so that there is an effect that distortion such as warpage or deformation is reduced.
このカンチレバー 5 9では、 本来の配線パターン 6 0 aに印加電流 (または印 加電圧) を加えることで、 不図示の可動電極と固定電極との間の静電力により、 カンチレバー 5 9の自由端を上下動させ、 ミラー 5 4を溝 5 3の深さ方向 (つま り光導波路 5 1 , 5 2の光路に対して垂直方向) に移動させることができる。 そし て、 印加電流 (または印加電圧) を制御することにより、 ミラ一 5 4の停止位置 を変化させることができる。  In this cantilever 59, by applying an applied current (or an applied voltage) to the original wiring pattern 60a, the free end of the cantilever 59 is caused by an electrostatic force between a movable electrode and a fixed electrode (not shown). By moving the mirror up and down, the mirror 54 can be moved in the depth direction of the groove 53 (that is, in the direction perpendicular to the optical paths of the optical waveguides 51 and 52). By controlling the applied current (or applied voltage), the stop position of the mirror 54 can be changed.
上記のように、 カンチレバー 5 9の窒化シリコン薄膜の両面が周囲温度の変動 に対して等しく伸張し、 歪むことがないため、 ミラー 5 4を安定して動作させる ことができ、 制御性に優れたカンチレバー 5 9を得ることができる。 さらに、 ミ ラー 5 4の位置により、 溝 5 3を横切る光ビームの調整を安定して行うことがで き、 制御性に優れた光ビーム調整装置を得ることができる。 As described above, both sides of the silicon nitride thin film of cantilever 59 change in ambient temperature. , The mirror 54 can be operated stably, and a cantilever 59 with excellent controllability can be obtained. Further, the position of the mirror 54 can stably adjust the light beam that crosses the groove 53, so that a light beam adjusting device with excellent controllability can be obtained.
したがって、 温度制御に要する熱変換素子を光ビーム調整装置に搭載したり、 光ビーム調整装置を設置する室内の温度制御を不要にすることができ、 装置の小 型化、 運用の省力化を図ることができる。  Therefore, it is not necessary to mount the heat conversion element required for temperature control on the light beam adjustment device or to control the temperature in the room where the light beam adjustment device is installed, and to reduce the size of the device and save labor in operation. be able to.
光ビーム調整装置を光スィツチとして動作させる場合には、 ミラー 5 4の位置 により、 光ビームの進行方向を切り替えればよい (スイッチング動作) 。 例えば、 光導波路 5 l b (図 1 ) から入射した光ビームの場合、 この光ビームをミラ一 5 When operating the light beam adjusting device as an optical switch, the traveling direction of the light beam may be switched according to the position of the mirror 54 (switching operation). For example, in the case of a light beam incident from the optical waveguide 5 lb (FIG. 1), this light beam is
4で遮断して光導波路 5 2 bに向けて反射させる遮断状態と、 そのまま光導波路An optical waveguide that is cut off at 4 and is reflected toward 2 b
5 1 aに進行させる透過状態とを実現させればよい。 What is necessary is just to realize the transmission state which advances to 51a.
ミラー 5 4の寸法は、 溝 5 3に進入または退避に要する時間、 すなわちスィッ チング速度の観点から小さい方が望ましい。 一方で、 クラッド領域に染み出した 伝播光の広がりを完全に遮断するために、 ある程度の大きさを必要とする。 上述 した石英系導波路においては、 光ビームを遮断するミラー 5 4の最小サイズは、 The dimension of the mirror 54 is desirably small from the viewpoint of the time required for entering or retracting the groove 53, that is, the switching speed. On the other hand, a certain size is required to completely block the spread of propagating light seeping into the cladding region. In the quartz-based waveguide described above, the minimum size of the mirror 54 that blocks the light beam is
4 0 /i m X 4 0 μ mである。 また、 ミラー 5 4の上下動の移動幅は、 設定誤差を 勘案して 5 0 mである。 このとき、 カンチレバー 5 9の腕の長さは、 ミラー 5It is 40 / im x 40 m. The vertical movement of the mirror 54 is 50 m in consideration of the setting error. At this time, the arm length of cantilever 5 9 is mirror 5
4の移動幅の 1 0倍以上として、 5 0 0 /1 mである。 Assuming that the movement width of 4 is 10 times or more, it is 500 / m.
なお、 互いに平行な m本の光導波路と互いに平行な n本の光導波路とを交差さ せ、 それぞれの交差位置に光ビーム調整装置を配置すれば、 、 m X nのマトリク ス型光スィツチを構成することができる。  If m parallel optical waveguides and n parallel optical waveguides are crossed and a light beam adjusting device is arranged at each crossing position, a matrix type optical switch of m X n can be obtained. Can be configured.
また、 ミラー 5 4の停止位置に応じて、 光導波路 5 1 bから入射した光ビーム の一部を遮断し、 残りを透過させれば、 溝 5 3を横切る光の減衰量を可変するこ とのできる光ビーム調整装置 (アツテネータ) となる。 つまり、 ミラー 5 4の位 置により所望の減衰量を安定して得ることができ、 制御性に優れたアツテネ一タ を得ることができる。  In addition, depending on the stop position of the mirror 54, a part of the light beam incident from the optical waveguide 51b may be cut off, and the remaining light may be transmitted, so that the attenuation of light crossing the groove 53 may be varied. A light beam adjustment device (attenuator) that can be used. That is, a desired amount of attenuation can be stably obtained by the position of the mirror 54, and an attenuator excellent in controllability can be obtained.
(第 2実施形態)  (Second embodiment)
次に、 本発明の第 2実施形態のカンチレバー 6 9 (図 3 ) について説明する。 第 2実施形態のカンチレバー 6 9も、 窒化シリコン薄膜からなる。 Next, a cantilever 69 (FIG. 3) of the second embodiment of the present invention will be described. The cantilever 69 of the second embodiment is also made of a silicon nitride thin film.
第 2実施形態のカンチレバー 6 9には、 図 3に示すような配置で、 その両面に 導電性の配線パターン 7 0 a, 7 0 bが設けられている。 図 3 ( a )は、 カンチレバ 一 6 9の下面図である。 図 3 ( b )は、 X— X ' 断面図である。 図 3 ( c )は、 Y— Y ' 断面図である。  In the cantilever 69 of the second embodiment, conductive wiring patterns 70a and 70b are provided on both surfaces in an arrangement as shown in FIG. FIG. 3A is a bottom view of the cantilever 69. FIG. 3B is a cross-sectional view along the line X--X '. FIG. 3C is a sectional view taken along the line Y—Y ′.
カンチレバー 6 9の下面には、 ミラ一 5 4が固定され、 本来の配線パターン 7 0 aが設けられる。 カンチレバー 6 9の上面には、 ダミーの配線パターン 7 0 b が設けられる。 本来の配線パターン 7 0 aとダミーの配線パターン 7 0 bとは、 線膨張係数が等しく膜厚の等しい材料からなり、 点 Pに対して点対称となるよう に設けられている。  A mirror 54 is fixed to the lower surface of the cantilever 69, and an original wiring pattern 70a is provided. On the upper surface of the cantilever 69, a dummy wiring pattern 70b is provided. The original wiring pattern 70 a and the dummy wiring pattern 70 b are made of a material having the same coefficient of linear expansion and the same film thickness, and are provided so as to be point-symmetric with respect to the point P.
したがって、 第 2実施形態のカンチレバー 6 9は、 周囲温度の変動に対して Y — Y, 方向にねじれが生じるが、 窒化シリコン薄膜の上面と下面とが等しく伸張 する。 このため、 ミラー 5 4の上下動の方向に、 上反りモーメントと下反りモー メントが等しくなり、 反りや変形などの歪みを生ずることがない。  Therefore, in the cantilever 69 of the second embodiment, the twist occurs in the Y—Y direction with respect to the fluctuation of the ambient temperature, but the upper surface and the lower surface of the silicon nitride thin film extend equally. Therefore, the upward warpage moment and the downward warpage moment become equal in the vertical movement direction of the mirror 54, and no distortion such as warpage or deformation occurs.
なお、 ここでは膜厚を等しくした。 し力 し、 本発明はこれに限定されるもので はない。 膜厚が等しくなくても、 従来の構成と比較すれば応力が低減されるので、 反りや変形などの歪みが低減される効果がある。  Here, the film thicknesses were made equal. However, the present invention is not limited to this. Even if the film thicknesses are not equal, the stress is reduced as compared with the conventional configuration, and thus there is an effect that distortion such as warpage or deformation is reduced.
上記した第 1実施形態と第 2実施形態においては、 カンチレバー 5 9の窒化シ リコン薄膜の両面に配線パターン 6 0 a , 6 0 bを設け、 カンチレバー 6 9の両面 に配線パターン 7 0 a , 7 0 bを設けて、 伸張差が生じないようにした。 しかし、 例えば、 硬度や温度係数の異なる窒化シリコンなどの絶縁材料を複数層重ねて力 ンチレバーを作成し、 両面で伸張差が生じないようにしてもよい。 同様に、 異な る材料または形状を組み合わせてカンチレバーを作成し、 対称線 Z— Z ' に対し て鏡面対称としたり、 点 Pに対して点対称とすることもできる。  In the first and second embodiments described above, the wiring patterns 60a, 60b are provided on both surfaces of the silicon nitride thin film of the cantilever 59, and the wiring patterns 70a, 70b are provided on both surfaces of the cantilever 69. 0b was provided to prevent a difference in extension. However, for example, a plurality of layers of insulating materials such as silicon nitride having different hardness and temperature coefficient may be laminated to form a force-chinch lever so that no difference in extension occurs between both surfaces. Similarly, cantilevers can be made by combining different materials or shapes and can be mirror symmetric about the symmetry line Z-Z 'or point symmetric about the point P.
(第 3実施形態)  (Third embodiment)
次に、 本発明の第 3実施形態のカンチレバー 7 9 (図 4 ) について説明する。 第 3実施形態のカンチレバー 7 9も、 窒化シリコン薄膜からなる。 図 4は、 カン チレバー 7 9の断面図である。 ミラー 5 4は、 カンチレバー 7 9の窒化シリコン 薄膜の先端部に固定される。 図 4に示すように、 第 3実施形態では、 カンチレバー 7 9の上面のみに配線パ ターン 8 0が設けられている。 また、 配線パターン 8 0の上面 (カンチレバー 7 9とは反対側の面) を覆うように第 2の窒化シリコン薄膜 8 1が設けられている。 窒化シリコン薄膜 8 1の線膨張係数は、 カンチレバー 7 9の窒化シリコン薄膜と 等しく膜厚も等しい。 Next, a cantilever 79 (FIG. 4) according to a third embodiment of the present invention will be described. The cantilever 79 of the third embodiment is also made of a silicon nitride thin film. FIG. 4 is a sectional view of the cantilever 79. The mirror 54 is fixed to the tip of the silicon nitride thin film of the cantilever 79. As shown in FIG. 4, in the third embodiment, the wiring pattern 80 is provided only on the upper surface of the cantilever 79. Also, a second silicon nitride thin film 81 is provided so as to cover the upper surface of wiring pattern 80 (the surface opposite to cantilever 79). The coefficient of linear expansion of the silicon nitride thin film 81 is equal to the thickness of the silicon nitride thin film of the cantilever 79.
このように、 第 3実施形態のカンチレバー 7 9では、 配線パターン 8 0の両面 が線膨張係数の等しい窒化シリコン薄膜により挟まれるため、 配線パターン 8 0 の両面が周囲温度の変動に対して等しく伸張する。 したがって、 上反りモーメン トと下反りモーメントが等しくなり、 反りや変形などの歪みを生ずることがない。 なお、 ここでは膜厚を等しくした。 しかし、 本発明はこれに限定されるもので はない。 膜厚が等しくなくても、 従来の構成と比較すれば応力が低減されるので、 反りや変形などの歪みが低減される効果がある。  As described above, in the cantilever 79 of the third embodiment, since both surfaces of the wiring pattern 80 are sandwiched by the silicon nitride thin films having the same linear expansion coefficient, both surfaces of the wiring pattern 80 extend equally with respect to the fluctuation of the ambient temperature. I do. Therefore, the upward warpage moment and the downward warpage moment become equal, and no distortion such as warpage or deformation occurs. Here, the film thicknesses were made equal. However, the present invention is not limited to this. Even if the film thicknesses are not equal, the stress is reduced as compared with the conventional configuration, and thus there is an effect that distortion such as warpage or deformation is reduced.
上記の第 3実施形態では、 カンチレバー 7 9の上面のみに配線パターン 8 0を 設けたが、 本発明はこれに限定されない。 配線パターンをカンチレバー 7 9の下 面のみに設け、 この配線パターンの下面 (カンチレバー 7 9とは反対側の面) を 覆うように第 2の窒化シリコン薄膜を設けた場合でも、 同様の効果を得ることが できる。  In the third embodiment, the wiring pattern 80 is provided only on the upper surface of the cantilever 79, but the present invention is not limited to this. The same effect can be obtained even when the wiring pattern is provided only on the lower surface of the cantilever 79 and the second silicon nitride thin film is provided so as to cover the lower surface of this wiring pattern (the surface opposite to the cantilever 79). be able to.
ここで、 図 5に示す比較例のカンチレバー 8 9について簡単に説明し、 本実施 形態との比較結果について説明する。  Here, the cantilever 89 of the comparative example shown in FIG. 5 will be briefly described, and the result of comparison with the present embodiment will be described.
比較例のカンチレバー 8 9も窒化シリコン薄膜からなる。 図 5は、 カンチレバ 一 8 9の断面図である。 カンチレバー 8 9の窒化シリコン薄膜の先端部には、 ミ ラー 8 4が固定されている。 比較例のカンチレバー 8 9には、 その下面のみに配 線パターン 9 0が設けられている。 配線パターン 9 0はアルミニウムからなる。 さらに、 カンチレバー 8 9の腕の長さは 5 0 0 μ πι、 厚さは Ι μ πιである。 配 線パターン 9 0の厚さも 1 Ai mである。 カンチレバー 8 9と配線パターン 9 0と の線膨張係数の違いから、 常温付近で、 約 2 0 X 1 0— 6 / d e gの伸張差が生 じる。 カンチレバー 8 9の先端の反りを計算すると、 常温付近で、 1 0 °Cの温度 変化により、 約 2 5 mの反りが生ずる。  The cantilever 89 of the comparative example is also made of a silicon nitride thin film. FIG. 5 is a sectional view of Cantilever 89. A mirror 84 is fixed to the tip of the silicon nitride thin film of the cantilever 89. The cantilever 89 of the comparative example is provided with a wiring pattern 90 only on the lower surface thereof. The wiring pattern 90 is made of aluminum. Furthermore, the arm length of the cantilever 89 is 500 μπι, and the thickness is Ιμπι. The thickness of the wiring pattern 90 is also 1 Aim. Due to the difference in the coefficient of linear expansion between the cantilever 89 and the wiring pattern 90, a difference in extension of about 20 X 10-6 / deg occurs near normal temperature. When calculating the warpage of the tip of the cantilever 89, a warp of about 25 m is generated near normal temperature due to a temperature change of 10 ° C.
また、 ミラー 8 4が溝 (不図示)に挿入され、 溝を横切る光ビームが遮断された 状態で 3 d Bの減衰が生ずるようにした。 このとき、 ミラー 8 4の設定位置が士 0 . 変化すると、 減衰量は ± 0 . 1 d B変化する。 したがって、 常温付近で、Also, a mirror 84 was inserted into the groove (not shown), and the light beam crossing the groove was cut off. A 3 dB attenuation was caused in the state. At this time, when the set position of the mirror 84 changes by 0.1 mm, the attenuation changes by ± 0.1 dB. Therefore, around room temperature,
1 °Cの温度変化により、 約 2 . 5 の反りが生ずるから、 減衰量はおよそ ± I d B変化することになる。 A temperature change of 1 ° C causes a warpage of about 2.5, so the attenuation changes by approximately ± I dB.
一方、 図 1 ( b )に示した第 1実施形態でも、 カンチレバー 5 9を窒化シリコン 薄膜、 配線パターン 6 0 a , 6 0 bをアルミニウムで作成した。 カンチレバー 5 9 の腕の長さは 5 0 0 i m、 厚さは 1 μ πιである。 配線パターン 6 0 a , 6 0 bの厚 さは 1 πιであり、 図 3に示したパターンを設けた。 このとき常温付近では、 ほ とんど伸張差が生じないので、 減衰量に変化を与えるような反りも生じない。 なお、 上記した第 1実施形態〜第 3実施形態の光ビーム調整装置においては、 コア層とクラッド層とからなる石英系導波路を用いたが、 本発明はこれに限定さ れない。 石英系導波路に代えて、 例えば光ファイバを基板上に配列した構造を用 いることもできる。  On the other hand, also in the first embodiment shown in FIG. 1 (b), the cantilever 59 was made of a silicon nitride thin film, and the wiring patterns 60a and 60b were made of aluminum. The arm length of the cantilever 59 is 500 im and the thickness is 1 μπι. The thickness of the wiring patterns 60a and 60b was 1πι, and the patterns shown in FIG. 3 were provided. At this time, near the room temperature, there is almost no difference in extension, so that there is no warping that changes the attenuation. In the light beam adjusting devices of the first to third embodiments described above, the quartz-based waveguide including the core layer and the clad layer is used, but the present invention is not limited to this. Instead of the silica-based waveguide, for example, a structure in which optical fibers are arranged on a substrate can be used.
具体的には、 エッチングまたは切削加工により、 シリコン基板上に、 光フアイ バを載置する V字溝を形成し、 光ファイバを配列する。 また、 光ファイバの光路 を横断するようにスリットを設ける。 基板には、 ガラス、 セラミックス、 樹脂な どを用いることができ、 石英系導波路に比較して安価に光ビーム調整装置を作製 することができる。  Specifically, V-shaped grooves for mounting optical fibers are formed on a silicon substrate by etching or cutting, and optical fibers are arranged. Also, slits are provided so as to cross the optical path of the optical fiber. Glass, ceramics, resin, and the like can be used for the substrate, and a light beam adjusting device can be manufactured at a lower cost than a quartz-based waveguide.
また、 本実施形態にかかるカンチレバーは、 一端で支持される片持ち梁に限ら れず、 中央部にミラーを固定して、 両端を支持する 2点支持梁、 または 4点を支 持する十字梁などを適用することもできる。  Also, the cantilever according to the present embodiment is not limited to a cantilever supported at one end, but may be a two-point support beam supporting both ends or a cross beam supporting four points by fixing a mirror at the center. Can also be applied.
さらに、 上記した第 1実施形態〜第 3実施形態では、 カンチレバー 5 9 , 6 9 , Furthermore, in the first to third embodiments described above, the cantilevers 59, 69,
7 9の下面でミラー 5 4を支持したが、 上面でミラ一 5 4を支持するカンチレバ 一にも本発明を適用できる。 Although the mirror 54 is supported on the lower surface of the 79, the present invention can be applied to a cantilever supporting the mirror 54 on the upper surface.
また、 上記した第 1実施形態〜第 3実施形態では、 力ンチレバー 5 9 , 6 9, 7 In the first to third embodiments described above, the forceps levers 59, 69, 7
9を静電力で駆動したが、 ローレンツ力で駆動することもできる。 ローレンツ力 による駆動の詳細については、 次の第 4実施形態で説明する。 Although 9 was driven by electrostatic force, it can also be driven by Lorentz force. The details of the drive by the Lorentz force will be described in the following fourth embodiment.
(第 4実施形態)  (Fourth embodiment)
図 6は、 本発明の第 4実施形態の可変光減衰装置を模式的に示す概略平面図で ある。 図 6では、 平面視での各要素の位置関係を明らかにするため、 本来は隠れ 線 (破線) となるべき線も実線で示している。 図 7〜図 9は、 各動作状態をそれ ぞれ示すもので、 図 6の X 1—X 2線に沿った概略断面図である。 FIG. 6 is a schematic plan view schematically showing a variable optical attenuator according to a fourth embodiment of the present invention. is there. In Fig. 6, the lines that should be hidden lines (broken lines) are also indicated by solid lines to clarify the positional relationship between the elements in plan view. 7 to 9 show respective operation states, and are schematic cross-sectional views along the line X1-X2 in FIG.
説明の便宜上、 図 6〜図 9に示すように、 互いに直交する X軸、 Y軸および Z 軸を定義する。 後述の可変光減衰器 1の基板 3 1の面が X Y平面と平行となって いる。 Z軸方向のうち矢印の向きを + Z方向または + Z側、 その反対の向きを一 Z方向または一 Z側と呼び、 X軸方向および Y軸方向についても同様とする。 な お、 Z軸方向の +側を上側、 Z軸方向の一側を下側という場合がある。  For convenience of explanation, X-axis, Y-axis and Z-axis which are orthogonal to each other are defined as shown in Figs. The surface of the substrate 31 of the variable optical attenuator 1 described later is parallel to the XY plane. In the Z-axis direction, the direction of the arrow is called + Z direction or + Z side, and the opposite direction is called one Z direction or one Z side, and the same applies to the X axis direction and the Y axis direction. The + side in the Z-axis direction may be referred to as the upper side, and one side in the Z-axis direction may be referred to as the lower side.
第 4実施形態の可変光減衰装置は、 図 6〜図 9に示すように、 可変光減衰器 1 と、 可変光減衰器 1の下側に設けられた磁石 2 (図 7〜図 9に図示) と、 制御部 3 (図 6に図示) とを備えている。 磁石 2は、 可変光減衰器 1に対して磁界を発 生する磁界発生部である。 制御部 3は、 外部からの減衰量指令信号に応答し、 こ の減衰量指令信号が示す減衰量を実現するための制御信号 (本実施形態では電流 信号) を可変光減衰器 1に供給する。  As shown in FIGS. 6 to 9, the variable optical attenuator according to the fourth embodiment includes a variable optical attenuator 1 and a magnet 2 provided below the variable optical attenuator 1 (shown in FIGS. 7 to 9). ) And a control unit 3 (shown in FIG. 6). The magnet 2 is a magnetic field generation unit that generates a magnetic field for the variable optical attenuator 1. The control unit 3 responds to an external attenuation command signal and supplies a control signal (current signal in this embodiment) for realizing the attenuation indicated by the attenuation command signal to the variable optical attenuator 1. .
可変光減衰器 1は、 セラミックなどからなる支持台 1 1と、 支持台 1 1の上側 に配置されたァクチユエータ 1 3と、 ァクチユエータ 1 3の上側に配置された光 導波路基板 1 2と、 ァクチユエータ 1 3に搭載されたシャツタ 1 4 (光学部材) とを備えている。  The variable optical attenuator 1 includes a support 11 made of ceramic or the like, an actuator 13 disposed above the support 11, an optical waveguide substrate 12 disposed above the actuator 13, and an actuator 13 (optical member).
光導波路基板 1 2 (図 6 ) は、 入射光を導く光導波路 2 1と、 減衰後の出射光 を導く光導波路 2 2と、 光導波路 2 1 , 2 2の光路を横断するように設けられた溝 2 3とを有している。 シャツタ 1 4は、 溝 2 3に挿入可能である。 溝 2 3は、 シ ャッタ 1 4を受け入れる凹部であり、 その幅が例えば 1 0 x m程度である。  The optical waveguide substrate 12 (FIG. 6) is provided so as to traverse the optical waveguide 21 for guiding the incident light, the optical waveguide 22 for guiding the output light after attenuation, and the optical paths of the optical waveguides 21 and 22. Groove 23. The shirt 14 can be inserted into the groove 23. The groove 23 is a recess for receiving the shutter 14 and has a width of, for example, about 10 × m.
図 6に示すように、 光導波路 2 1の出射端および光導波路 2 2の入射端は、 互 いに間隔をあけて対向するように、 溝 2 3の相対する側面に露出されている。 光 導波路 2 1の入射端は光導波路基板 1 2の端面に露出されている。 この入射端に は入射光を導く光ファイバ 1 5が接続される。 同様に、 光導波路 2 2の出射端は 光導波路基板 1 2の端面に露出されている。 この出射端には出射光を導く光ファ ィバ 1 6が接続される。  As shown in FIG. 6, the output end of the optical waveguide 21 and the input end of the optical waveguide 22 are exposed on opposing side surfaces of the groove 23 so as to face each other with a space therebetween. The incident end of the optical waveguide 21 is exposed on the end face of the optical waveguide substrate 12. An optical fiber 15 for guiding incident light is connected to the incident end. Similarly, the emission end of the optical waveguide 22 is exposed on the end face of the optical waveguide substrate 12. An optical fiber 16 for guiding emitted light is connected to this emission end.
ァクチユエータ 1 3は、 光導波路 2 1の出射端から光導波路 2 2の入射端へ入 射する光 (つまり溝 2 3を横切る光) が所望の減衰量で減衰するように、 シャツ タ 1 4を移動させるカンチレバー (後述) を含み、 本実施の形態では M E M Sと して構成されている。 The actuator 13 enters the input end of the optical waveguide 22 from the output end of the optical waveguide 21. This embodiment includes a cantilever (to be described later) for moving the shirt 14 so that light to be emitted (that is, light crossing the groove 23) is attenuated by a desired amount of attenuation, and is configured as a MEMS in the present embodiment. .
ァクチユエータ 1 3は、 支持台 1 1上に搭載された基板 3 1と、 2つの脚部 3 2 a , 3 2 bと、 2本の帯板状の梁部 3 3 a , 3 3 bと、 長方形状の接続部 3 4と を備えている。 梁部 3 3 a , 3 3 bは、 Z軸方向から見た平面視で X軸方向に並行 して延びている。 接続部 3 4は、 梁部 3 3 a, 3 3 bの先端 (自由端、 + X方向の 端部) に設けられ、 梁部 3 3 a, 3 3 bの間を機械的に接続する部位である。  The actuator 13 includes a board 31 mounted on the support 11, two legs 3 2 a, 3 2 b, and two strip-shaped beams 3 3 a, 3 3 b, And a rectangular connection part 34. The beam portions 33a and 33b extend in parallel with the X-axis direction in plan view as viewed from the Z-axis direction. The connecting portion 34 is provided at the tip (free end, end in the + X direction) of the beam portions 33a, 33b, and is a portion that mechanically connects the beam portions 33a, 33b. It is.
基板 3 1には、 例えば A 1膜からなる配線パターン 3 5 a (図 7〜図 9参照) が形成されている。 なお、 基板 3 1はガラス基板などの絶縁基板である。 ただし、 基板 3 1上に絶縁膜を形成すれば、 基板 3 1としてシリコン基板などの任意の材 料を用いることができる。  A wiring pattern 35a (see FIGS. 7 to 9) made of, for example, an A1 film is formed on the substrate 31. The substrate 31 is an insulating substrate such as a glass substrate. However, if an insulating film is formed over the substrate 31, any material such as a silicon substrate can be used as the substrate 31.
一方の梁部 3 3 aの固定端 (一 X方向の端部) は、 基板 3 1に形成された配線 パターン 3 5 aと脚部 3 2 aとを介して、 基板 3 1に機械的に接続されている。 同様に、 他方の梁部 3 3 bの固定端 (一 X方向の端部) は、 基板 3 1に形成され た配線パターン 3 5 b (図示せず) と脚部 3 2 bとを介して、 基板 3 1に機械的 に接続されている。 配線パターン 3 5 bも A 1膜からなる。 脚部 3 2 a , 3 2 bは、 基板 3 1からの立ち上がり部である。  The fixed end (the end in the X direction) of one beam 33 a is mechanically connected to the substrate 31 via the wiring pattern 35 a formed on the substrate 31 and the leg 32 a. It is connected. Similarly, the fixed end (the end in the X direction) of the other beam portion 33 b is connected to the wiring pattern 35 b (not shown) formed on the substrate 31 and the leg portion 32 b. It is mechanically connected to the substrate 31. The wiring pattern 35b is also made of the A1 film. The legs 32 a and 32 b are rising portions from the substrate 31.
このように、 梁部 3 3 a , 3 3 bの固定端の側は、 配線パターン 3 5 a , 3 5 b と脚部 3 2 a, 3 2 bとを介して、 それぞれ基板 3 1に機械的に接続されている。 また、 前述したように、 梁部 3 3 a , 3 3 bの自由端の間は、 接続部 3 4で機械的 に接続されている。  In this way, the fixed ends of the beams 33a and 33b are mechanically connected to the substrate 31 via the wiring patterns 35a and 35b and the legs 32a and 32b, respectively. Connected. Further, as described above, the free ends of the beam portions 33a and 33b are mechanically connected by the connection portion 34.
したがって、 第 4実施形態では、 梁部 3 3 a, 3 3 bおよび接続部 3 4力 S、 全体 として、 片持ち梁構造を持つカンチレバー (可動部) を構成する。 以下の説明で は、 粱部 3 3 a , 3 3 bおよび接続部 3 4を総じて適宜 「力ンチレバー( 3 3 , 3 4 )」 という。 本実施の形態では、 基板 3 1が固定部を構成している。  Therefore, in the fourth embodiment, the beam portions 33a and 33b and the connection portion 34 force S constitute a cantilever (movable portion) having a cantilever structure as a whole. In the following description, the beam portions 33a and 33b and the connection portion 34 are collectively referred to as "power levers (33, 34)" as appropriate. In the present embodiment, the substrate 31 constitutes a fixed part.
なお、 基板 3 1上の配線パターン 3 5 a, 3 5 bにおける脚部 3 2 a , 3 2 b付 近以外の領域の上、 および、 その他の基板 3 1上の領域には、 シリコン酸化膜等 の保護膜 3 6が形成されている。 さらに、 カンチレバ一(3 3 , 3 4 )の梁部 3 3 aは、 下側の S i N膜 3 7と上側 の A 1膜 3 8とが積層された薄膜で、 板バネとして作用するように構成されてい る。 つまり梁部 3 3 aには、 その自由端の位置に応じてパネ力が作用する。 梁部 3 3 aにおける A 1膜 3 8は、 後述するローレンツ力による駆動用の電流経路へ の配線として用いられる。 A silicon oxide film is formed on the wiring patterns 35 a and 35 b on the substrate 31, on the region other than the vicinity of the legs 32 a and 32 b, and on other regions on the substrate 31. Protective film 36 is formed. Furthermore, the beam 33a of the cantilever (33, 34) is a thin film in which the lower SiN film 37 and the upper A1 film 38 are laminated, and acts as a leaf spring. It is composed of In other words, a panel force acts on the beam 33a in accordance with the position of the free end. The A1 film 38 in the beam portion 33a is used as a wiring to a current path for driving by Lorentz force described later.
梁部 3 3 aは、 図 7に示すように、 A 1膜 3 8に後述の駆動信号 (ローレンツ 力用電流) が供給されていない状態において、 S i N膜 3 7 , A 1膜 3 8の応力に よって、 上方 (基板 3 1と反対側、 + Z方向) に湾曲している。  As shown in FIG. 7, the beam portion 33a, when the driving signal (current for Lorentz force) described later is not supplied to the A1 film 38, the SiN film 37 and the A1 film 38 Due to this stress, it is curved upward (opposite side of substrate 31, + Z direction).
なお図 7では、 便宜上、 梁部 3 3 aは根元で折れ曲がって斜め上方へ直線状に 延びるかのように表記しているが、 実際には、 梁部 3 3 aが全体的に湾曲する。 このような湾曲状態は、 S i N膜 3 7, A 1膜 3 8の成膜条件を適宜設定すること により、 実現することができる。  In FIG. 7, for convenience, the beam portion 33a is depicted as if it were bent at the root and extended diagonally upward, but actually, the beam portion 33a is entirely curved. Such a curved state can be realized by appropriately setting the film forming conditions of the SiN film 37 and the A1 film 38.
本実施の形態では、 梁部 3 3 aの固定端側の脚部 3 2 aは、 梁部 3 3 aを構成 する S i N膜 3 7および A 1膜 3 8がそのまま連続して延びることによって構成 されている。 A 1膜 3 8は、 脚部 3 2 aにおいて、 S i N膜 3 7に形成された開 口を介して配線パターン 3 5 aに電気的に接続されている。  In the present embodiment, the leg 32 a on the fixed end side of the beam 33 a is such that the SiN film 37 and the A1 film 38 constituting the beam 33 a extend continuously as they are. It is composed of The A1 film 38 is electrically connected to the wiring pattern 35a at the leg 32a through an opening formed in the SiN film 37.
他方の梁部 3 3 bおよび脚部 3 2 bは、 前述した梁部 3 3 aおよび脚部 3 2 a とそれぞれ全く同一の構造を有している。  The other beam portion 33b and leg portion 32b have exactly the same structure as the above-described beam portion 33a and leg portion 32a, respectively.
また、 カンチレバー(3 3 , 3 4 )の接続部 3 4は、 梁部 3 3 a , 3 3 bからその まま連続して延びた S i N膜 3 7および A 1膜 3 8で構成されている。 そして、 接続部 3 4の S i N膜 3 7に、 シャツタ 1 4が設けられている。 A 1膜 3 8は、 図 6に示すように、 接続部 3 4上の一部分が Y軸方向に延びている。  The connecting portion 34 of the cantilever (33, 34) is composed of a SiN film 37 and an A1 film 38 extending continuously from the beam portions 33a, 33b. I have. Further, a shirt 14 is provided on the SIN film 37 of the connection portion 34. As shown in FIG. 6, the A1 film 38 has a portion on the connecting portion 34 extending in the Y-axis direction.
前述した説明からわかるように、 ァクチユエータ 1 3では、 脚部 3 2 aの下の 配線パターン 3 5 a力ゝら、 梁部 3 3 a→接続部 3 4→梁部 3 3 bの A 1膜 3 8 (電気配線) を経て、 脚部 3 2 bの下の配線パターン 3 5 b (図示せず) へ至る、 電流経路が構成されている。  As can be seen from the above description, in the actuator 13, the wiring pattern 35 a below the leg 3 2 a, the beam 3 3 a → the connecting portion 3 4 → the A 1 film of the beam 3 3 b A current path is formed through 38 (electrical wiring) to the wiring pattern 35b (not shown) below the leg 32b.
そして、 この電流経路のうち、 接続部 3 4における Y軸方向に延びた A 1膜 3 8の部分が、 ローレンツ力による駆動用の電流経路となる。 以下の説明では、 こ の Y軸方向に延びた A 1膜 3 8の部分を略して 「電流経路 3 8 Y」 と呼ぶことに する。 電流経路 3 8 Yは、 カンチレバー(3 3 , 3 4 )の一部分を構成する。 Then, of this current path, the portion of the A1 film 38 extending in the Y-axis direction at the connection portion 34 becomes a current path for driving by Lorentz force. In the following description, the portion of the A1 film 38 extending in the Y-axis direction is abbreviated as “current path 38Y”. I do. The current path 38 Y forms a part of the cantilever (33, 34).
実際には、 この電流経路 3 8 Yが X軸方向の磁界内に置かれ、 かつ、 電流経路 3 8 Yに所定の電流 (ローレンツ力用電流) が供給されると、 カンチレバー(3 3 , 3 4 )のバネ力に抗するように、 Z軸方向のローレンツ力 (駆動力) が電流経路 3 8 Yに発生する。 X軸方向の磁界は、 磁石 2による磁界である。  Actually, when the current path 38 Y is placed in the magnetic field in the X-axis direction, and a predetermined current (current for Lorentz force) is supplied to the current path 38 Y, the cantilever (33, 3 A Lorentz force (driving force) in the Z-axis direction is generated in the current path 38 Y so as to oppose the spring force of 4). The magnetic field in the X-axis direction is a magnetic field generated by the magnet 2.
このローレンツ力の向きが + Z方向であるか一 Z方向であるかは、 ローレンツ 力用電流の向きおよび磁界の向きによって定まる。 本実施の形態では、 前述した ように、 ローレンツ力用電流が供給されていない状態において、 図 7に示すよう に、 粱部 3 3 a , 3 3 bが上方に湾曲しているので、 ローレンツ力用電流の向きは、 ローレンツ力が一 Z方向のみに生ずるように定めておけばよい。  Whether the direction of the Lorentz force is the + Z direction or the 1Z direction is determined by the direction of the Lorentz force current and the direction of the magnetic field. In the present embodiment, as described above, in a state where the current for Lorentz force is not supplied, as shown in FIG. 7, the beam portions 33a and 33b are curved upward, so that the Lorentz force is The direction of the application current may be determined so that the Lorentz force is generated only in the 1Z direction.
図面には示していないが、 基板 3 1上の配線パターン 3 5 a, 3 5 bは、 通常の シリコン半導体素子の配線方法と同様の方法で、 外部の制御部 3に接続可能にな つている。 そして、 制御部 3から電流経路 3 8 Yに制御信号としてのローレンツ 力用電流が供給されるようになっている。  Although not shown in the drawing, the wiring patterns 35a and 35b on the substrate 31 can be connected to the external control unit 3 in the same manner as a normal silicon semiconductor element wiring method. . Then, the control unit 3 supplies a current for Lorentz force as a control signal to the current path 38Y.
なお、 ァクチユエータ 1 3は、 例えば膜の形成およびパターニング、 エツチン グ、 犠牲層の形成■除去などの半導体製造技術を利用して、 製造することができ る。 シャツタ 1 4は、 例えば、 シャツタ 1 4に対応する凹所をレジス トに形成し た後、 電解メツキによりシャツタ 1 4となるべき材料 (A u、 N i、 その他の金 属) を成長させ、 その後にレジストを除去することで、 形成することができる。 シャツタ 1 4としては、 金属以外の材料を用いてもよい。  The actuator 13 can be manufactured by using a semiconductor manufacturing technology such as formation and patterning of a film, etching, formation and removal of a sacrificial layer, and the like. For example, after forming a recess corresponding to the shirt 14 in the resist, the material (Au, Ni, and other metals) to be the shirt 14 is grown by electrolytic plating. Thereafter, the resist can be removed to form the resist. As the shirt 14, a material other than metal may be used.
また、 カンチレバー(3 3 , 3 4 )の接続部 3 4の電流経路 3 8 Yにローレンツ力 を発生させるため、 磁石 2は、 図 7〜図 9に示すように、 支持台 1 1の下面の + X側に設けられている。 第 4実施形態では、 この磁石 2として、 X軸方向の +側 が N極に着磁され、 一側が S極に着磁された板状の永久磁石を用いた。  In order to generate Lorentz force in the current path 38 Y of the connection part 34 of the cantilever (33, 34), the magnet 2 is attached to the lower surface of the support base 11 as shown in FIGS. 7 to 9. + Provided on the X side. In the fourth embodiment, as the magnet 2, a plate-shaped permanent magnet in which the + side in the X-axis direction is magnetized to the N pole and one side is magnetized to the S pole is used.
したがって、 カンチレバー(3 3, 3 4 )の接続部 3 4の電流経路 3 8 Yの付近で は、 磁石 2により、 X軸方向に沿ってその +側から一側へ向かう略均一な磁界が 発生することになる。 なお、 磁界発生部として、 磁石 2に代えて、 例えば、 他の 形状を有する永久磁石や、 電磁石などを用いてもよい。  Therefore, in the vicinity of the current path 38 Y at the connection portion 34 of the cantilever (33, 34), a substantially uniform magnetic field is generated by the magnet 2 from the + side to one side along the X-axis direction. Will do. Note that, instead of the magnet 2, for example, a permanent magnet having another shape, an electromagnet, or the like may be used as the magnetic field generation unit.
さらに、 第 4実施形態の可変光減衰装置には、 図 6〜図 9に示すように、 枠型 のスぺーサ 1 7が設けられている。 そして、 このスぺーサ 1 7を介して、 光導波 路基板 1 2がァクチユエ一タ 1 3の基板 3 1に接合されている。 光導波路基板 1 2と基板 3 1とは、 光導波路基板 1 2の溝 2 3にァクチユエータ 1 3のシャッタ 1 4を挿入できるように位置合わせされている。 Further, the variable optical attenuator of the fourth embodiment has a frame type as shown in FIGS. The spacer 17 is provided. Then, the optical waveguide substrate 12 is bonded to the substrate 31 of the actuator 13 via the spacer 17. The optical waveguide substrates 12 and 31 are aligned so that the shutter 14 of the actuator 13 can be inserted into the groove 23 of the optical waveguide substrate 12.
また、 光導波路基板 1 2と基板 3 1との間においてスぺーサ 1 7に囲まれた空 間およびこれに連通する溝 2 3の空間には、 屈折率整合液 (図示せず) が封入さ れている。 なお、 屈折率整合液は必ずしも封入しなくてもよい。 屈折率整合液を 用いた場合は、 光ビームの損失がより少なくなる。  In addition, a space between the optical waveguide substrate 12 and the substrate 31 surrounded by the spacer 17 and a space of the groove 23 communicating therewith are filled with a refractive index matching liquid (not shown). Has been done. Note that the refractive index matching liquid does not necessarily have to be sealed. When a refractive index matching liquid is used, the loss of the light beam is smaller.
図 7は、 制御部 3から電流経路(3 5 a→3 8→3 5 b )にローレンツ力用電流 が供給されていない状態を示している。 この場合、 カンチレバー(3 3 , 3 4 )の接 続部 3 4の電流経路 3 8 Yには、 ローレンツ力が作用せず、 シャツタ 1 4が光導 波路 2 1の出射端を完全に遮っている。 このため、 減衰量は 1 0 0 %である。 図 8は、 制御部 3から電流経路(3 5 a→3 8→3 5 b )に中程度のローレンツ 力用電流が供給された状態を示している。 この場合、 カンチレバー(3 3, 3 4 )の 接続部 3 4の電流経路 3 8 Yには、 中程度のローレンツ力が下向きに作用する。 このため、 シャツタ 1 4は、 このローレンツ力と梁部 3 3 a , 3 3 bのバネ力とが 釣り合った位置で停止し、 光導波路 2 1の出射端の下半分程度を遮っている。 こ の場合、 減衰量は 5 0 %程度である。  FIG. 7 shows a state where the current for Lorentz force is not supplied from the control unit 3 to the current path (35a → 38 → 35b). In this case, the Lorentz force does not act on the current path 38 Y of the connection portion 34 of the cantilever (33, 34), and the shutter 14 completely blocks the emission end of the optical waveguide 21. . For this reason, the attenuation is 100%. FIG. 8 shows a state where a moderate Lorentz force current is supplied from the control unit 3 to the current path (35a → 38 → 35b). In this case, a moderate Lorentz force acts downward on the current path 38Y of the connection portion 34 of the cantilever (33, 34). For this reason, the shirt 14 stops at a position where the Lorentz force and the spring force of the beam portions 33a and 33b are balanced, and blocks the lower half of the light emitting end of the optical waveguide 21. In this case, the attenuation is about 50%.
図 9は、 制御部 3から電流経路(3 5 a→3 8→3 5 b )に大きなローレンツ力 用電流が供給された状態を示している。 この場合、 カンチレバー(3 3 , 3 4 )の接 続部 3 4の電流経路 3 8 Yには、 大きなローレンツ力が下向きに作用する。 この ため、 シャツタ 1 4は、 このローレンツ力と梁部 3 3 a , 3 3 bのバネ力とが釣り 合った位置で停止し、 光導波路 2 1の出射端を全く遮らない。 この場合、 減衰量 はほぼ 0 %である。  FIG. 9 shows a state where a large Lorentz force current is supplied from the control unit 3 to the current path (35a → 38 → 35b). In this case, a large Lorentz force acts downward on the current path 38 Y of the connection portion 34 of the cantilever (33, 34). For this reason, the shirt 14 stops at the position where the Lorentz force and the spring force of the beams 33 a and 33 b are balanced, and does not block the emission end of the optical waveguide 21 at all. In this case, the attenuation is almost 0%.
動作状態は図 7〜図 9に示す例に限られず、 制御部 3から電流経路(3 5 a→3 8→3 5 b )に流す電流値を変えてローレンツ力の大きさを変えることで、 減衰量 をほぼ 0 %~ 1 0 0 %まで連続的に任意に変えることができる。  The operating state is not limited to the examples shown in FIGS. 7 to 9. By changing the value of the Lorentz force by changing the value of the current flowing from the control unit 3 to the current path (35a → 38 → 35b), The attenuation can be arbitrarily changed continuously from approximately 0% to 100%.
第 4実施形態では、 制御部 3は、 外部からの減衰量指令信号に応答して、 当該 減衰量指令信号が示す減衰量に対応する大きさのローレンツ力用電流を電流経路 (35 a→38→3 5 b)に流すように、 構成されている。 その回路構成自体は、 特別のものは必要ではなく、 直流電流源もしくは直流電圧源と抵抗の組み合わせ で容易に実現できる。 In the fourth embodiment, in response to an external attenuation command signal, the control unit 3 transmits a Lorentz force current having a magnitude corresponding to the attenuation indicated by the attenuation command signal to a current path. (35a → 38 → 35b). The circuit configuration itself does not require a special one, and can be easily realized by a combination of a DC current source or a DC voltage source and a resistor.
また、 制御部 3は、 例えば、 予め測定しておいた電流値と減衰量との関係を示 すテーブルにしたがって、 オープンループ制御を行ってもよいし、 減衰後の光量 をモニタする検出器を用い、 その検出信号に基づいて、 実際の減衰量が、 減衰量 指令信号が示す減衰量となるように、 フィードバック制御を行つてもよレ、。  Further, the control unit 3 may perform open-loop control according to a table indicating the relationship between the current value and the attenuation measured in advance, or may include a detector that monitors the amount of light after attenuation. Based on the detection signal, feedback control may be performed so that the actual attenuation is equal to the attenuation indicated by the attenuation command signal.
ここで、 第 4実施形態の可変光減衰器 1を図 10に示すようにモデル化し、 こ のモデルにしたがって次の計算を行う。 つまり、 直線の電線 38' (接続部 34 の電流経路 Yをモデル化したもの) に流す電流 (電線電流) を 10mA、 20m A、 3 OmA, 4 OmA, 50 mAとして、 電線 38 ' と基板 3 1との間の間隔 d 2を変化させたときの電線 38' に作用するローレンツ力を計算する。 さらに、 間隔 d 2に対する梁部 33 a, 33 bのパネ力も計算する。  Here, the variable optical attenuator 1 of the fourth embodiment is modeled as shown in FIG. 10, and the following calculation is performed according to this model. In other words, the current (wire current) flowing through the straight wire 38 '(modeling the current path Y of the connection 34) (wire current) is 10mA, 20mA, 3 OmA, 4 OmA, 50mA, and the wire 38' and the board 3 Calculate the Lorentz force acting on the wire 38 'when the distance d2 between 1 and 2 is changed. Further, the panel forces of the beam portions 33a and 33b with respect to the interval d2 are also calculated.
なお、 図 10に示すモデルでは、 電線 38' には、 バネ力およびローレンツ力 のみが正反対の方向にかかるものとした。 梁部 33 a, 33 bは、 理想的なパネで あるとした。 さらに、 計算では、 電線 38' の長さを 50 /imとした。 また、 電 線 38' は磁束密度 0. 1 (T) の均一磁界内にあるものとした。 さらに、 間隔 d 2の初期値 (電線電流が 0のときの間隔であり、 パネ力が 0になる間隔) を 10 μ m、 梁部 33 a , 33 bのバネ定数を 3 X 10— 2 (N/m) とした。  In the model shown in Fig. 10, only the spring force and Lorentz force are applied to the wire 38 'in the opposite directions. Beams 33a and 33b are considered to be ideal panels. In the calculation, the length of the wire 38 'was set to 50 / im. The wire 38 'is assumed to be in a uniform magnetic field with a magnetic flux density of 0.1 (T). Furthermore, the initial value of the interval d 2 (the interval when the wire current is 0, that is, the interval at which the panel force becomes 0) is 10 μm, and the spring constant of the beams 33 a and 33 b is 3 X 10— 2 ( N / m).
その計算の結果を図 1 1に示す。 図 1 1の横軸は、 間隔 d 2を表している。 縦 軸は、 ローレンツ力とパネ力 (N) を表している。 図 1 1において、 実線がロー レンツ力を示し、 破線がバネカを示している。 図 1 1の縦軸の数値の表記につい て説明すると、 例えば、 「3.0E— 07」 は 「3.0 X 10— 07」 の意味であ る。 図 1 1の S点は、 間隔 d 2の初期 に相当している。  Figure 11 shows the result of the calculation. The horizontal axis in FIG. 11 represents the interval d2. The vertical axis represents Lorentz force and panel force (N). In FIG. 11, the solid line indicates the Lorentz force, and the broken line indicates the spring force. Explaining the numerical notation on the vertical axis in FIG. 11, for example, “3.0E—07” means “3.0 X 10—07”. Point S in FIG. 11 corresponds to the beginning of the interval d2.
次に、 この計算結果 (図 1 1) に基づいて、 ローレンツ力とバネ力とがどのよ うに釣り合うカゝ (すなわち、 電線 38' の停止位置) について検討する。  Next, based on this calculation result (Fig. 11), we will examine how the Lorentz force and the spring force balance (that is, the stopping position of the electric wire 38 ').
ローレンツ力は、 電線 38' と基板 3 1との間の間隔 d 2に依存せずに一定で ある。 このため、 バネカを表す破線とローレンツ力を表す実線は、 等間隔の A点 〜E点で交差する。 例えば、 電線 38' の電流値が 1 OmAであれば、 A点で交差している。 この 場合、 電線 38' は、 スタート位置の S点 (間隔 d 2の初期値) からスタートし、 点 Aでパネ力とローレンツ力が釣り合い、 その左側ではバネ力の方がローレンツ 力より強くなるため点 Aで停止し、 その位置が安定して保たれる。 The Lorentz force is constant independently of the distance d2 between the electric wire 38 'and the substrate 31. For this reason, the broken line representing the spring force and the solid line representing the Lorentz force intersect at equally spaced points A to E. For example, if the current value of wire 38 'is 1 OmA, it crosses at point A. In this case, the electric wire 38 'starts from the start point S (the initial value of the interval d2). At point A, the panel force and Lorentz force are balanced, and on the left side, the spring force is stronger than the Lorentz force. It stops at point A and its position is kept stable.
また、 電線 38' の電流値を増やしていけば (20mA→3 ΟπιΑ→〜) 、 電 線 38' の停止位置 (Β点→C点一…) は、 基板 31に接近する (d 2→0) 。 図 1 1に示すように、 各電流値の場合の電線 38' の停止位置 (ローレンツ力と パネ力との交点 A〜E) は等間隔で並び、 電流値と間隔 d 2との間に直線性があ ることがわかる。  Also, if the current value of the wire 38 'is increased (20mA → 3Απι〜 → ~), the stop position of the wire 38' (point C → point C…) approaches the board 31 (d 2 → 0 ). As shown in Fig. 11, the stopping positions (intersections A to E of the Lorentz force and the panel force) of the wire 38 'at each current value are arranged at equal intervals, and a straight line is drawn between the current value and the interval d2. It is clear that there is a property.
次に、 図 1 1の計算結果との比較を行うために、 従来の可変光減衰器 (図 1 5, 図 16参照) を図 1 2に示すようにモデル化し、 このモデルにしたがって同様の 計算を行う。 比較例の可変光減衰器 (図 1 2) における符号は、 図 15,図 1 6で 使用したものに対応する。 "1 15" は固定電極としてのボトムプレートであり、 "1 16" は可動電極としてのトッププレートであり、 "1 17" はフレクチュ ァ部である。  Next, in order to compare with the calculation results in Fig. 11, a conventional variable optical attenuator (see Figs. 15 and 16) was modeled as shown in Fig. 12, and similar calculation was performed according to this model. I do. The reference numerals in the variable optical attenuator of the comparative example (Fig. 12) correspond to those used in Figs. “1 15” is a bottom plate as a fixed electrode, “1 16” is a top plate as a movable electrode, and “1 17” is a flexure portion.
比較例の計算について説明する。 両プレート 1 15, 1 16間の電圧 (電極間電 圧) を 5 V、 10 V、 1 5 V、 20 V、 25 Vとして、 両プレート 1 15, 1 16 間の間隔 (電極間隔 d l) を変化させたときの両プレート 1 15, 1 16間の静電 力を計算する。 さらに、 電極間隔 d 1に対するフレクチユア部 1 17のパネ力も 計算する。  The calculation of the comparative example will be described. The voltage (electrode voltage) between the plates 1 15 and 1 16 is 5 V, 10 V, 15 V, 20 V and 25 V, and the distance between the plates 1 15 and 116 (electrode distance dl) is Calculate the electrostatic force between the plates 115 and 116 when changing. Further, the panel force of the flexure portion 117 with respect to the electrode interval d1 is also calculated.
なお、 図 1 2に示すモデルでは、 トッププレート 1 16には、 バネ力および静 電力のみが正反対の方向にかかるものとした。 フレクチユア部 1 17は、 理想的 なパネであるとした。 両プレート 1 15, 1 16を平行平板とし、 その間の比誘電 率は 1とした。 さらに、 計算では、 両プレート 1 15, 1 16を 50 μπι角の正方 形平板とし、 電極間隔 d 1の初期値 (電極間電圧が 0のときの間隔であり、 パネ 力が 0となる間隔) を 10 m、 フレクチユア部 1 1 7のパネ定数を 3 X 10— 2 (N/m) とした。  In the model shown in FIG. 12, only the spring force and the electrostatic force are applied to the top plate 116 in the opposite directions. The flexure section 117 was described as an ideal panel. Both plates 115 and 1 16 were parallel plates, and the relative permittivity between them was 1. Furthermore, in the calculation, both plates 1 15 and 1 16 are square plates of 50 μπι angle, and the initial value of the electrode interval d 1 (interval when the voltage between the electrodes is 0 and the panel force becomes 0) Was set to 10 m, and the panel constant of the flexure section 1 17 was set to 3 × 10-2 (N / m).
その計算の結果を図 1 3に示す。 図 13の横軸は、 間隔 d lを表している。 縦 軸は、 静電力とパネ力 (N) を表している。 図 13において、 実線が静電力を示 し、 破線がパネ力を示している。 図 13の縦軸の数値の表記について説明すると、 例えば、 「 3.0 E— 07」 は 「3.0 X 1 0— 07」 の意味である。 図 1 3の S 点は、 間隔 d 1の初期値に相当している。 Figure 13 shows the result of the calculation. The horizontal axis in FIG. 13 represents the interval dl. The vertical axis represents electrostatic force and panel force (N). In Fig. 13, the solid line indicates the electrostatic force. The dashed line indicates the panel force. Explaining the notation of numerical values on the vertical axis in FIG. 13, for example, “3.0 E—07” means “3.0 X 10—07”. Point S in Fig. 13 corresponds to the initial value of interval d1.
次に、 この計算結果 (図 1 3) に基づいて、 静電力とパネ力とがどのように釣 り合うか (すなわち、 トッププレート 1 1 6の停止位置) について検討する。 実線が破線より上にあれば、 静電力がパネ力よりも強いため、 両プレート 1 1 5, 1 16は引き合って電極間隔 d 1が狭くなる。  Next, based on the calculation results (Fig. 13), we will examine how the electrostatic force and the panel force balance (ie, the stop position of the top plate 116). If the solid line is above the dashed line, the electrostatic force is stronger than the panel force, and both plates 1 15 and 1 16 will attract each other and the electrode gap d 1 will be narrower.
例えば、 電極間電圧が 25 Vの場合は、 常に実線が破線より上にあるので、 ト ッププレート 1 16は、 スタート位置の S点 (間隔 d lの初期値) である Ι Ο μ m間隔の位置からスタートし、 電極間隔 d 1が狭くなつていく力 S、 常に静電力が パネ力を上回るため両プレート 1 15, 1 16が接触するまで止まらない。  For example, when the voltage between the electrodes is 25 V, the solid line is always above the dashed line, so the top plate 116 starts from the point S at the start position (the initial value of the interval dl) Ι Ο μm It starts and the force S keeps the electrode gap d1 narrow. Since the electrostatic force always exceeds the panel force, it does not stop until both plates 115 and 116 come into contact.
一方、 電極間電圧が 1 5 Vの場合は、 電極間隔 d 1が 9 /xmの C点で実線と破 線が交差し、 それ以下ではパネ力が静電力を上回るため、 トッププレート 1 16 は、 10 / in間隔の S点からスタートし、 9 / m間隔の C点で停止する。 図 13 の計算例では、 実線と破線が交差するぎりぎりの電極間電圧が 20 Vであり、 交 差する位置 (D点) は 7 μπ間隔の付近である。  On the other hand, when the voltage between the electrodes is 15 V, the solid line and the broken line intersect at point C where the electrode spacing d1 is 9 / xm, and below that, the panel force exceeds the electrostatic force. Start at point S at 10 / in intervals and stop at point C at 9 / m intervals. In the calculation example in Fig. 13, the voltage between the electrodes at the point where the solid and broken lines intersect is 20 V, and the intersection (point D) is near the 7 µπ interval.
このため、 電極間隔 d 1が 7 /1 m以下で、 静電力とバネカをバランスさせるこ とはできない。 つまり、 電極間隔 d 1としての動作範囲は、 10 /χιη〜7 μιηま でしかなく、 非常に狭い。 また、 電極間電圧を 5 V、 10 V、 1 5 V、 20Vと した場合のバランス点 A, Β, C, Dを見ると、 電極間電圧値と電極間隔との間に直 線性が無いことがわかる。  For this reason, it is impossible to balance the electrostatic force and the spring force when the electrode interval d1 is 7/1 m or less. That is, the operating range as the electrode spacing d1 is only 10 / χιη to 7 μιη, which is very narrow. In addition, looking at the balance points A, ,, C, and D when the inter-electrode voltage is 5 V, 10 V, 15 V, and 20 V, there is no linearity between the inter-electrode voltage value and the electrode interval. I understand.
さらに、 電極間電圧 20 V程度で動作させて、 7 μ m付近で止めようとした場 合、 7 μ m付近は非常に不安定な領域で、 電気的なノイズや機械的な振動により バランスが一旦崩れることがある。 そして、 図 13の D点より左側の領域に入つ てしまうと、 静電力が常にパネ力より大きい状態になり両プレート 1 15, 1 16 が接触してしまう (電気的なショート) 。  In addition, if the device is operated at a voltage between the electrodes of about 20 V and stops at around 7 μm, the area around 7 μm is a very unstable area, and the balance may be lost due to electrical noise or mechanical vibration. May collapse once. Then, when it enters the area to the left of point D in Fig. 13, the electrostatic force is always greater than the panel force, and both plates 115, 116 come into contact (electric short-circuit).
さて、 第 4実施形態のモデル計算 '(図 1 1) を比較例のモデル計算 (図 1 3) と比較する。  Now, the model calculation of the fourth embodiment (FIG. 11) is compared with the model calculation of the comparative example (FIG. 13).
図 1 1の場合、 電線 38' の電流値を変化させることで、 電線 38' を広い範 囲で自由に制御することができる。 したがって、 第 4実施形態によれば、 シャツ タ 1 4を移動させ得る範囲が広くなり、 これにより設計の自由度が高くなる。 また、 第 4実施形態では、 静電力ではなくローレンツ力が用いられているので、 高い電圧が不要である。 さらに、 図 1 1の場合、 電線 3 8 ' の電流値と間隔 d 2 (つまりシャツタ 1 4の位置) との間に直線性がある。 したがって、 第 4実施形 態によれば、 減衰量の制御が容易になる。 つまり、 シャツタ 1 4の位置により所 望の減衰量を安定して得ることができ、 制御性に優れたものとなる。 In the case of Fig. 11, by changing the current value of the wire 38 ', the wire 38' It can be controlled freely with a box. Therefore, according to the fourth embodiment, the range in which the shirt 14 can be moved is widened, thereby increasing the degree of freedom in design. In the fourth embodiment, a Lorentz force is used instead of an electrostatic force, so that a high voltage is not required. Furthermore, in the case of FIG. 11, there is linearity between the current value of the wire 38 'and the distance d2 (that is, the position of the shirt 14). Therefore, according to the fourth embodiment, it is easy to control the amount of attenuation. That is, the desired amount of attenuation can be stably obtained depending on the position of the shirt 14 and the controllability is excellent.
さらに、 図 1 1に示すローレンツ力とパネ力との関係から、 電線 3 8 ' がいず れのバランス点 (A〜E ) に位置していても、 電流値を変えない限り、 当該バラ ンス点に安定して保持されることになる。 このため、 電気的なノイズや機械的な 振動により電線 3 8 ' の位置が一時的にずれても、 電線 3 8 ' が当該バランス点 に自動的に復帰し、 そのバランスが崩れるようなことがない。 したがって、 第 4 実施形態によれば、 所望の減衰量を安定して得ることができる。  Further, from the relationship between the Lorentz force and the panel force shown in Fig. 11, even if the electric wire 38 'is located at any of the balance points (A to E), as long as the current value is not changed, the balance point is not changed. Is stably maintained. For this reason, even if the position of the wire 38 'is temporarily shifted due to electrical noise or mechanical vibration, the wire 38' will automatically return to the balance point and the balance may be lost. Absent. Therefore, according to the fourth embodiment, a desired amount of attenuation can be stably obtained.
勿論、 図 1 3の比較例で生じていたような電気的なショートも起こり得ない。 すなわち、 電線 3 8, の位置を正確に制御できるので、 電線 3 8, が基板 3 1と 接触しないように制御することは極めて容易であり、 電線 3 8 ' が基板 3 1と接 触しなければ電気的なショートは起こり得ない。  Of course, an electrical short as in the comparative example of FIG. 13 cannot occur. That is, since the position of the electric wires 38, can be accurately controlled, it is extremely easy to control the electric wires 38, so that they do not contact the substrate 31, and the electric wires 38 'must be in contact with the substrate 31. No electrical shorts can occur.
また、 実際には、 電線 3 8 ' (つまり電流経路 3 8 Y) が絶縁膜である S i N 膜 3 7の上側に配置され、 かつ、 基板 3 1の表面がシリコン酸化膜等の保護膜 3 6により絶縁されているため、 例えば図 9のように、 電流経路 3 8 Yを含む接続 部 3 4が基板 3 1と接触しても、 電気的なショートは起こり得ない。  Actually, the electric wire 38 ′ (that is, the current path 38Y) is disposed above the SiN film 37, which is an insulating film, and the surface of the substrate 31 is formed of a protective film such as a silicon oxide film. Since it is insulated by 36, even if the connecting portion 34 including the current path 38Y contacts the substrate 31 as shown in FIG. 9, for example, an electrical short circuit cannot occur.
なお、 上記した第 4実施形態では、 制御部 3から電流経路 3 8 Yに供給する口 一レンツ力用電流を制御することによりローレンツ力を制御したが、 本発明はこ れに限定されない。 例えば、 磁石 2として例えば電磁石を用いる場合には、 制御 部 3により、 磁石 2が発生する磁界のみを制御してもよい。 または、 電流経路 3 8 Yへの印加電流と磁石 2による磁界との両方を制御するようにしてもよい。 また、 上記した第 4実施形態では、 電流経路 3 8 Yにローレンツ力用電流が供 給されていないときに図 7の状態 (上方に湾曲) となる構成例を説明したが、 本 発明はこれに限定されない。 例えば、 ローレンツ力用電流が供給されていないと きに、 図 8のように上方にも下方にも湾曲しない場合には、 ローレンツ力用電流 の向きをいずれの向きにも変え得るようにしておくことが好ましい。 また、 ロー レンツ力用電流が供給されていないときに、 図 9のように下方に湾曲している場 合、 ローレンツ力用電流の向きは、 ローレンツ力が + Z方向のみに生ずるように 定めておくことが好ましい。 In the above-described fourth embodiment, the Lorentz force is controlled by controlling the current for the oral Lenz force supplied from the control unit 3 to the current path 38Y, but the present invention is not limited to this. For example, when an electromagnet is used as the magnet 2, the control unit 3 may control only the magnetic field generated by the magnet 2. Alternatively, both the current applied to the current path 38 Y and the magnetic field generated by the magnet 2 may be controlled. Further, in the above-described fourth embodiment, the configuration example in which the state shown in FIG. 7 (curved upward) is described when the current for the Lorentz force is not supplied to the current path 38 Y has been described. It is not limited to. For example, if the current for Lorentz force is not supplied In the case where the current does not curve upward or downward as shown in FIG. 8, it is preferable that the direction of the Lorentz force current can be changed to any direction. Also, when the current for Lorentz force is not supplied and it curves downward as shown in Fig. 9, the direction of the current for Lorentz force is determined so that the Lorentz force is generated only in the + Z direction. Preferably.
さらに、 上記した第 4実施形態において、 ァクチユエータ 1 3は、 基板上に薄 膜構造体を作製する表面 ME M S工程で作製した片持ち梁構造を有していたが、 本発明はこれに限定されない。 例えば、 そのァクチユエータ 1 3の代わりに、 こ れ以外の、 基板をエツチングして構造体を作製する基板 M EM S工程で作製した ァクチユエータや、 両持ち梁構造を有するァクチユエータや、 従来の可変光減衰 器と同様の "てこ構造" を有するァクチユエータを用いてもよい。  Further, in the above-described fourth embodiment, the actuator 13 has a cantilever structure manufactured by a surface MEMS process for manufacturing a thin film structure on a substrate, but the present invention is not limited to this. . For example, instead of the actuator 13, other actuators manufactured by a substrate MEMS process for etching a substrate to manufacture a structure, an actuator having a doubly supported structure, or a conventional variable optical attenuation An actuator having a "lever structure" similar to that of the vessel may be used.
(第 5実施形態) (Fifth embodiment)
最後に、 本発明の第 5実施形態の可変光減衰装置 (図 1 4 ) について説明する。 図 1 4には、 第 5実施形態の可変光減衰装置の一部のみを示した。 図示省略され た構成要素は、 図 6〜図 9と同様の光導波路基板およびスぺーサである。 第 5実 施形態の可変光減衰装置は、 基本構成が図 6〜図 9と同じである。  Finally, a variable optical attenuator (FIG. 14) according to a fifth embodiment of the present invention will be described. FIG. 14 shows only a part of the variable optical attenuator of the fifth embodiment. The constituent elements not shown are the same optical waveguide substrate and spacer as in FIGS. 6 to 9. The variable optical attenuator according to the fifth embodiment has the same basic configuration as that shown in FIGS.
第 5実施形態の可変光減衰装置では、 上記のァクチユエータ 1 3を構成する力 ンチレバー(3 3 , 3 4 )の A 1膜 3 8の上面を覆うように、 第 2の S i N膜 3 9が 設けられている。 S i N膜 3 9の線膨張係数は、 カンチレバー(3 3 , 3 4 )の S i N膜 3 7と等しい。  In the variable optical attenuator of the fifth embodiment, the second SIN film 39 is formed so as to cover the upper surface of the A1 film 38 of the force fulever (33, 34) constituting the actuator 13 described above. Is provided. The linear expansion coefficient of the SiN film 39 is equal to that of the cantilever (33, 34).
このように、 第 5実施形態の可変光減衰装置では、 カンチレバー(3 3 , 3 4 )の A 1膜 3 8の両面が線膨張係数の等しく膜厚の等しい S i N膜により挟まれるた め、 次の効果を奏する。 つまり、 カンチレバー(3 3 , 3 4 )の位置制御の際に、 A 1膜 3 8に供給した電流によって、 A 1膜 3 8が僅かに発熱した場合でも、 A 1 膜 3 8の両面は等しく伸張する。 したがって、 上反りモーメントと下反りモーメ ントが等しくなり、 反りや変形などの歪みを生ずることがない。 また、 周囲温度 が変動しても、 反りや変形などの歪みを生ずることがない。  As described above, in the variable optical attenuator of the fifth embodiment, both surfaces of the A1 film 38 of the cantilever (33, 34) are sandwiched by the SIN films having the same linear expansion coefficient and the same film thickness. The following effects are obtained. In other words, when controlling the position of the cantilever (3 3, 3 4), even if the current supplied to the A 1 film 38 slightly generates heat, the both sides of the A 1 film 38 are equal. To stretch. Therefore, the upward warpage moment and the downward warpage moment become equal, and no distortion such as warpage or deformation occurs. Also, even if the ambient temperature fluctuates, no distortion such as warpage or deformation occurs.
なお、 ここでは膜厚を等しく した。 しかし、 本発明はこれに限定されるもので はない。 膜厚が等しくなくても、 従来の構成と比較すれば応力が低減されるので、 反りや変形などの歪みが低減される効果がある。 Here, the film thicknesses were made equal. However, the present invention is not limited to this. Even if the film thicknesses are not equal, the stress is reduced compared to the conventional configuration, This has the effect of reducing distortion such as warpage and deformation.
第 5実施形態の可変光減衰装置は、 既に説明したローレンツ力による駆動を採 用したことに加えて、 カンチレバー(3 3 , 3 4 )が歪まないように構成したもので ある。 したがって、 さらに制御性に優れたものとなる。  The variable optical attenuator according to the fifth embodiment is configured such that the cantilever (33, 34) is not distorted in addition to employing the drive by the Lorentz force described above. Therefore, the controllability is further improved.
なお、 上記した第 5実施形態では、 カンチレバー(3 3, 3 4 )が歪まないように するために、 A 1膜 3 8の両面を線膨張係数の等しく膜厚の等しい S i N膜で挟 んだが、 本発明はこれに限定されない。 例えば、 カンチレバー(3 3 , 3 4 )の3 i N膜 3 7の下面にダミーの A 1膜を設け、 S i N膜 3 7の両面を線膨張係数の等 しい A 1膜で挟むようにしてもよい。  In the fifth embodiment, in order to prevent the cantilever (33, 34) from being distorted, both surfaces of the A1 film 38 are sandwiched between SiN films having the same linear expansion coefficient and the same film thickness. However, the present invention is not limited to this. For example, a dummy A1 film may be provided on the lower surface of the 3iN film 37 of the cantilever (33, 34), and both surfaces of the SiN film 37 may be sandwiched between A1 films having the same linear expansion coefficient. Good.
また、 上記した第 4実施形態と第 5実施形態では、 カンチレバー(3 3 , 3 4 )の 上面でシャツタ 1 4を支持したが、 下面でシャツタ 1 4を支持するカンチレバー にも本発明を適用できる。  In the above-described fourth and fifth embodiments, the shirt 14 is supported on the upper surface of the cantilever (33, 34). However, the present invention can be applied to a cantilever that supports the shirt 14 on the lower surface. .
さらに、 上記した実施形態では、 カンチレバーを窒化シリコン薄膜 (つまり S i N膜) で構成したが、 これに代えて、 酸化膜などの薄膜を用いても構わない。 産業上の利用の可能性  Further, in the above-described embodiment, the cantilever is formed of a silicon nitride thin film (that is, a SiN film), but a thin film such as an oxide film may be used instead. Industrial potential
本発明によれば、 制御性に優れたカンチレバー、 光ビーム調整装置、 可変光減 衰器、 および、 可変光減衰装置を提供することができる。  According to the present invention, it is possible to provide a cantilever, a light beam adjusting device, a variable optical attenuator, and a variable optical attenuator excellent in controllability.

Claims

請求の範囲 The scope of the claims
( 1 ) 光路の一部または全部を横断するように設けられた溝に挿入可能な光学部 材を前記光路に対して垂直方向に移動させるカンチレバーにおいて、 (1) In a cantilever for moving an optical member insertable into a groove provided so as to traverse a part or all of an optical path in a direction perpendicular to the optical path,
前記カンチレバーは、 絶縁薄膜によって前記光学部材を支持し、 前記絶縁薄膜 に配設された電気配線に印加される電圧または電流によって前記光学部材を移動 させ、 前記電気配線と線膨張係数が等しい材料を用いて、 前記絶縁薄膜の両面で 伸張差を生じないように構成された  The cantilever supports the optical member by an insulating thin film, and moves the optical member by a voltage or a current applied to an electric wiring disposed on the insulating thin film. The insulating thin film is configured so as not to cause a stretching difference on both surfaces.
ことを特徴とするカンチレバー。  A cantilever characterized by the following:
( 2 ) 請求項 1に記載のカンチレバーにおいて、 (2) In the cantilever according to claim 1,
前記絶縁薄膜の前記両面のうち、 前記電気配線が配設された面と反対の面に、 前記電気配線に対して面対称となるようにダミ一の電気配線が配設された ことを特徴,  Dummy electric wiring is disposed on the surface of the insulating thin film opposite to the surface on which the electric wiring is disposed so as to be plane-symmetric with respect to the electric wiring.
( 3 ) 請求項 1に記載のカンチレバーにおいて、 (3) In the cantilever according to claim 1,
前記絶縁薄膜の前記両面のうち、 前記電気配線が配設された面と反対の面! 前記電気配線に対して点対称となるようにダミ一の電気配線が配設された ことを特徴,  Of the two surfaces of the insulating thin film, a surface opposite to the surface on which the electric wiring is provided! Dummy electric wiring is disposed so as to be point-symmetric with respect to the electric wiring.
( 4 ) 請求項 1に記載のカンチレバーにおいて、 (4) In the cantilever according to claim 1,
前記絶縁薄膜の前記両面のうち、 前記電気配線が配設された面と反対の面に、 前記電気配線と線膨張係数が等しい絶縁材料が積層された  Of the two surfaces of the insulating thin film, an insulating material having the same coefficient of linear expansion as the electric wiring was laminated on a surface opposite to the surface on which the electric wiring was provided.
ことを特徴 <  Features <
( 5 ) 基板上に配置された光導波路と、 (5) an optical waveguide disposed on the substrate;
前記光導波路の光路の一部または全部を横断するように設けられた溝と、 前記溝に挿入可能な光学部材と、  A groove provided to traverse part or all of the optical path of the optical waveguide; and an optical member insertable into the groove,
絶縁薄膜によって前記光学部材を支持し、 該光学部材を前記光路に対して垂直 方向に移動させるカンチレバーとを備え、 The optical member is supported by an insulating thin film, and the optical member is perpendicular to the optical path. With a cantilever to move in the direction,
前記力ンチレバーは、 前記絶縁薄膜に配設された電気配線に印加される電圧ま たは電流によつて前記光学部材を移動させ、 前記電気配線と線膨張係数が等しレ、 材料を用いて、 前記絶縁薄膜の両面で伸張差を生じないように構成された ことを特徴とする光ビーム調整装置。  The force cantilever moves the optical member by a voltage or a current applied to electric wiring provided on the insulating thin film, and has a coefficient of linear expansion equal to that of the electric wiring. A light beam adjusting device, which is configured not to cause a difference in extension between both surfaces of the insulating thin film.
( 6 ) 基板上に配置された光: (6) Light placed on the substrate:
前記光ファイバの光路の一部または全部を横断するように設けられたスリット と、  A slit provided so as to traverse part or all of the optical path of the optical fiber;
前記スリットに挿入可能な光学部材と、  An optical member insertable into the slit,
絶縁薄膜によつて前記光学部材を支持し、 該光学部材を前記光路に対して垂直 方向に移動させるカンチレバーとを備え、  A cantilever for supporting the optical member by an insulating thin film and moving the optical member in a direction perpendicular to the optical path;
前記カンチレバーは、 前記絶縁薄膜に配設された電気配線に印加される電圧ま たは電流によつて前記光学部材を移動させ、 前記電気配線と線膨張係数が等しい 材料を用いて、 前記絶縁薄膜の両面で伸張差を生じないように構成された  The cantilever moves the optical member by a voltage or a current applied to electric wiring provided on the insulating thin film, and uses a material having a linear expansion coefficient equal to that of the electric wiring to form the insulating thin film. It is constructed so that there is no difference in extension on both sides of
ことを特徴とする光ビーム調整装置。  A light beam adjusting device characterized by the above-mentioned.
( 7 ) 請求項 5または請求項 6に記載の光ビーム調整装置において、 (7) In the light beam adjusting device according to claim 5 or 6,
前記カンチレバーは、 前記絶縁薄膜の前記両面のうち、 前記電気配線が配設さ れた面と反対の面に、 前記電気配線に対して面対称となるようにダミーの電気配 線が配設された  In the cantilever, a dummy electric wiring is arranged on a surface of the insulating thin film opposite to a surface on which the electric wiring is arranged so as to be plane-symmetric with respect to the electric wiring. Was
ことを特徴とする光ビーム調整装置。  A light beam adjusting device, characterized in that:
( 8 ) 請求項 5または請求項 6に記載の光ビーム調整装置において、 (8) In the light beam adjusting device according to claim 5 or 6,
前記カンチレバーは、 前記絶縁薄膜の前記両面のうち、 前記電気配線が配設さ れた面と反対の面に、 前記電気配線に対して点対称となるようにダミーの電気配 線が配設された  In the cantilever, a dummy electric wiring is disposed on the surface of the insulating thin film opposite to the surface on which the electric wiring is disposed so as to be point-symmetric with respect to the electric wiring. Was
ことを特徴とする光ビーム調整装置。 A light beam adjusting device characterized by the above-mentioned.
( 9 ) 請求項 5または請求項 6に記載の光ビーム調整装置において、 (9) In the light beam adjusting device according to claim 5 or 6,
前記力ンチレバーは、 前記絶縁薄膜の前記両面のうち、 前記電気配線が配設さ れた面と反対の面に、 前記電気配線と線膨張係数が等しい絶縁材料が積層された ことを特徴とする光ビーム調整装置。  The force-chinch lever is characterized in that, of the two surfaces of the insulating thin film, an insulating material having the same linear expansion coefficient as that of the electric wiring is laminated on a surface opposite to a surface on which the electric wiring is provided. Light beam adjustment device.
( 1 0 ) 基板上に配置された光導波路と、 (10) an optical waveguide disposed on a substrate,
前記光導波路の光路を横断するように設けられた溝と、  A groove provided to traverse the optical path of the optical waveguide,
前記溝に挿入可能な光学部材と、  An optical member insertable into the groove,
絶縁薄膜によつて前記光学部材を支持し、 該光学部材を前記光路に対して垂直 方向に移動させ、 かつ前記溝を横切る光の減衰量が所望値となるように移動させ るカンチレバーとを備え、  A cantilever that supports the optical member with an insulating thin film, moves the optical member in a direction perpendicular to the optical path, and moves the optical member so that the amount of attenuation of light traversing the groove becomes a desired value. ,
前記カンチレバーは、 前記絶縁薄膜に配設された電気配線に印加される電圧ま たは電流によって前記光学部材を移動させ、  The cantilever moves the optical member by a voltage or a current applied to an electric wiring provided on the insulating thin film,
前記電気配線は、 前記絶縁薄膜とは反対の面が、 前記絶縁薄膜と線膨張係数が 等しい材料により覆われている  The electric wiring has a surface opposite to the insulating thin film covered with a material having the same linear expansion coefficient as the insulating thin film.
ことを特徴とする可変光減衰器。  A variable optical attenuator characterized in that:
( 1 1 ) 請求項 1 0に記載の可変光減衰器において、 (11) In the variable optical attenuator according to claim 10,
前記電気配線は、 前記反対の面が、 前記絶縁薄膜と線膨張係数が等しく膜厚が 等しい材料により覆われている  In the electric wiring, the opposite surface is covered with a material having the same linear expansion coefficient and the same thickness as the insulating thin film.
ことを特徴とする可変光減衰器。  A variable optical attenuator characterized in that:
( 1 2 ) 基板上に配置された光導波路と、 (1 2) an optical waveguide arranged on a substrate,
前記光導波路の光路を横断するように設けられた溝と、  A groove provided to traverse the optical path of the optical waveguide,
前記溝に挿入可能な光学部材と、  An optical member insertable into the groove,
前記光学部材を支持し、 該光学部材を前記光路に対して垂直方向に移動させ、 前記溝を横切る光の減衰量が所望値となる位置に移動させるカンチレバーとを備 前記カンチレバーは、 固定端に対して移動可能な自由端を有し、 該自由端にお いて前記光学部材を支持し、 当該カンチレバーに配設された電気配線に印加され る電圧または電流によって前記自由端を移動させ、 該自由端の位置に応じてバネ 力が作用するように設けられ、 A cantilever that supports the optical member, moves the optical member in a direction perpendicular to the optical path, and moves the optical member to a position where the amount of attenuation of light traversing the groove becomes a desired value. A free end that is movable with respect to the And supporting the optical member, moving the free end by a voltage or a current applied to electric wiring provided on the cantilever, and providing a spring force according to the position of the free end.
前記電気配線は、 磁界内に配置されて前記電圧または前記電流により前記パネ 力に抗するローレンツ力を発生させる電流経路を有する  The electric wiring has a current path arranged in a magnetic field to generate a Lorentz force against the panel force by the voltage or the current.
ことを特徴とする可変光減衰器。  A variable optical attenuator characterized in that:
( 1 3 ) 請求項 1 2に記載の可変光減衰器において、 (13) In the variable optical attenuator according to claim 12,
前記カンチレバーは、 薄膜によって前記光学部材を支持する  The cantilever supports the optical member by a thin film
ことを特徴とする可変光減衰器。  A variable optical attenuator characterized in that:
( 1 4 ) 請求項 1 3に記載の可変光減衰器において、 (14) In the variable optical attenuator according to claim 13,
前記カンチレバーは、 絶縁薄膜によって前記光学部材を支持し、 前記絶縁薄膜 に前記電気配線が配設され、 前記電気配線と線膨張係数が等しい材料を用いて、 前記絶縁薄膜の両面で伸張差を生じないように構成された  The cantilever supports the optical member with an insulating thin film, the electric wiring is provided on the insulating thin film, and a material having a coefficient of linear expansion equal to that of the electric wiring is used to generate a difference in extension between both surfaces of the insulating thin film. Not configured
ことを特徴とする可変光減衰器。  A variable optical attenuator characterized in that:
( 1 5 ) 請求項 1 3に記載の可変光減衰器において、 (15) The variable optical attenuator according to claim 13,
前記カンチレバーは、 絶縁薄膜によって前記光学部材を支持し、 前記絶縁薄膜 に前記電気配線が配設され、  The cantilever supports the optical member with an insulating thin film, the electrical wiring is disposed on the insulating thin film,
前記電気配線は、 前記絶縁薄膜とは反対の面が、 前記絶縁薄膜と線膨張係数が 等しい材料により覆われている  The electric wiring has a surface opposite to the insulating thin film covered with a material having the same linear expansion coefficient as the insulating thin film.
ことを特徴とする可変光減衰器。  A variable optical attenuator characterized in that:
( 1 6 ) 請求項 1 5に記載の可変光減衰器において、 (16) In the variable optical attenuator according to claim 15,
前記電気配線は、 前記反対の面が、 前記絶縁薄膜と線膨張係数が等しく膜厚が 等しい材料により覆われている  In the electric wiring, the opposite surface is covered with a material having the same linear expansion coefficient and the same thickness as the insulating thin film.
ことを特徴とする可変光減衰器。 A variable optical attenuator characterized in that:
(1 7) 請求項 1 2から請求項 16の何れか 1項に記載の可変光減衰器と、 前記磁界を発生させる磁界発生部とを備えた (17) The variable optical attenuator according to any one of (12) to (16), and a magnetic field generator configured to generate the magnetic field.
ことを特徴とする可変光減衰装置。  A variable optical attenuator characterized by the above-mentioned.
(18) 請求項 1 7に記載の可変光減衰装置において、 (18) In the variable optical attenuator according to claim 17,
前記電流経路の電流および前記磁界のうちの少なくとも一方を制御する制御部 を備えた  A control unit that controls at least one of the current in the current path and the magnetic field.
ことを特徴とする可変光減衰装置。  A variable optical attenuator characterized by the above-mentioned.
PCT/JP2003/008650 2002-07-09 2003-07-08 Cantilever, light beam control device, variable light attenuator, and variable light attenuating device WO2004005997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003281408A AU2003281408A1 (en) 2002-07-09 2003-07-08 Cantilever, light beam control device, variable light attenuator, and variable light attenuating device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002200474A JP3572062B2 (en) 2002-07-09 2002-07-09 Cantilever and light beam adjusting device
JP2002-200474 2002-07-09
JP2002361298A JP2004191779A (en) 2002-12-12 2002-12-12 Variable light attenuator and variable light attenuating device using the same
JP2002-361298 2002-12-12

Publications (1)

Publication Number Publication Date
WO2004005997A1 true WO2004005997A1 (en) 2004-01-15

Family

ID=30117419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008650 WO2004005997A1 (en) 2002-07-09 2003-07-08 Cantilever, light beam control device, variable light attenuator, and variable light attenuating device

Country Status (2)

Country Link
AU (1) AU2003281408A1 (en)
WO (1) WO2004005997A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006110996A1 (en) 2005-04-18 2006-10-26 Research In Motion Limited System and method of device-to-server registration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200317A (en) * 1988-02-05 1989-08-11 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JPH11167078A (en) * 1997-12-05 1999-06-22 Nikon Corp Optical shutter and its manufacture
JPH11231233A (en) * 1997-12-10 1999-08-27 Nikon Corp Micro shutter array and manufacturing method thereof
JP2002023069A (en) * 2000-07-12 2002-01-23 Sumitomo Electric Ind Ltd Optical switch
JP2002214547A (en) * 2001-01-12 2002-07-31 Sumitomo Electric Ind Ltd Optical switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200317A (en) * 1988-02-05 1989-08-11 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JPH11167078A (en) * 1997-12-05 1999-06-22 Nikon Corp Optical shutter and its manufacture
JPH11231233A (en) * 1997-12-10 1999-08-27 Nikon Corp Micro shutter array and manufacturing method thereof
JP2002023069A (en) * 2000-07-12 2002-01-23 Sumitomo Electric Ind Ltd Optical switch
JP2002214547A (en) * 2001-01-12 2002-07-31 Sumitomo Electric Ind Ltd Optical switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006110996A1 (en) 2005-04-18 2006-10-26 Research In Motion Limited System and method of device-to-server registration

Also Published As

Publication number Publication date
AU2003281408A1 (en) 2004-01-23
AU2003281408A8 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
CA2228781C (en) Optical switch, method of manufacturing same, and optical communication equipment using same
KR100908120B1 (en) Electromagnetic micro actuator
US6411754B1 (en) Micromechanical optical switch and method of manufacture
JP2006501518A (en) Variable optical attenuator
JP2004126503A (en) Micro-actuator and optical switch using the same
JP3715611B2 (en) Microactuator device and optical switch system using the same
US20030012545A1 (en) Broad-band variable optical attenuator
WO2004005997A1 (en) Cantilever, light beam control device, variable light attenuator, and variable light attenuating device
US7082251B2 (en) Optical device
US20030103715A1 (en) Optical switch and optical switch array
JP2006194956A (en) Optical switch
JP2004191779A (en) Variable light attenuator and variable light attenuating device using the same
JP3670635B2 (en) Microactuator device and optical switch system using the same
JPH03215812A (en) Matrix optical switch
JP3572062B2 (en) Cantilever and light beam adjusting device
JP2006187060A (en) Micro actuator, manufacturing method thereof, optical device, and optical switch
JP5309297B2 (en) Optical waveguide device and manufacturing method thereof
JP2005037940A (en) Variable optical attenuator
JP2005099678A (en) Light intercepting device and optical switch apparatus
JP3951872B2 (en) Optical switch element and manufacturing method thereof
WO2002103432A1 (en) Optical switch
JP2004338044A (en) Micro-actuator, optical device, variable light attenuator, and optical switch
JP2007075905A (en) Micro-actuator, micro-actuator array, optical switch and optical switch array
JP4144457B2 (en) Device inspection method and device manufacturing method
JP2005279787A (en) Microactuator, optical instrument, and optical switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase