WO2004005899A1 - Method and device for detecting protein association by dispersion constant variation - Google Patents

Method and device for detecting protein association by dispersion constant variation Download PDF

Info

Publication number
WO2004005899A1
WO2004005899A1 PCT/JP2003/008442 JP0308442W WO2004005899A1 WO 2004005899 A1 WO2004005899 A1 WO 2004005899A1 JP 0308442 W JP0308442 W JP 0308442W WO 2004005899 A1 WO2004005899 A1 WO 2004005899A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
laser
probe
excitation pulse
light
Prior art date
Application number
PCT/JP2003/008442
Other languages
French (fr)
Japanese (ja)
Inventor
Masahide Terajima
Original Assignee
Kansai Technology Licensing Organization Co., Ltd.
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co., Ltd., Shimadzu Corporation filed Critical Kansai Technology Licensing Organization Co., Ltd.
Priority to AU2003281304A priority Critical patent/AU2003281304A1/en
Publication of WO2004005899A1 publication Critical patent/WO2004005899A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance

Definitions

  • the present invention relates to a novel protein association detection method and apparatus, and more particularly to an association detection method and apparatus using a change in diffusion constant.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-159319 (refer to the “Summary” column)).
  • a fluorescence polarization measurement system is also used to measure and analyze the interaction between biological substances such as proteins and nucleic acids, but there is a problem that the configuration of the optical system is extremely complicated and large. Therefore, development of a method for simply and accurately measuring the degree of association between substances without using these conventional methods is awaited.
  • One object of the present invention is to provide a method and an apparatus for simply and accurately measuring the degree of protein association by measuring the change in the diffusion constant of a mixed system of a target protein and a test protein. is there.
  • a second object of the present invention is to provide a method for determining the diffusion of a mixture of a target protein and a test protein. It is an object of the present invention to provide a novel method and apparatus suitable for measuring a change in number in a very short time.
  • the present invention firstly comprises adding a test protein to a protein-containing solution in which evening protein is dispersed, and detecting a change in the diffusion constant of the particle-mixing system caused thereby. And a method for measuring the degree of association between the two proteins.
  • the present invention secondly causes a pair of excitation pulse lasers having the same wavelength to enter the particle mixing system so as to cross each other in the mixing system to generate a transient diffraction grating.
  • the method consists of irradiating the probe laser beam at another angle and measuring the transient diffracted wave intensity of the laser beam to measure the change in the diffusion constant.
  • a dye capable of photochemically reacting at an excitation wavelength and binding to a protein is added to the particle mixture system, It constitutes a method of performing laser excitation and probe irradiation.
  • This dye uses a dye that is photoreactive to most of the excitation wavelengths, regardless of whether the protein is photoreactive or not, eliminating the hassle of adjusting the wavelength of the laser.
  • the use of laser light that matches the light absorption of the dye facilitates wavelength adjustment in the measurement of various proteins that originally differ in light absorption and photoreactivity.
  • the present invention provides a light source of an excitation pulse laser, a light source of a probe laser light having a wavelength different from that of the excitation pulse laser, and the excitation pulse laser and one of the probe lasers overlapped on the same optical path.
  • An optical path means a transmission type diffraction grating for making the superposed laser incident from the end of the optical path means, a lens means for focusing a diffraction line of the laser emitted from the transmission type diffraction grating, and
  • a measurement cell for containing a protein-containing liquid in which evening protein is dispersed and comprising a container of a permeable material and for adding a test protein, One of which is arranged to be irradiated with one of the excitation pulse lasers divided by diffraction and at least one probe laser, and the diffraction of the probe laser emitted from the measurement cell.
  • a protein association measurement device includes a photoelectric detector for receiving light and converting the light into an electric signal.
  • the present invention is a measuring cell for containing a dispersion medium in which a target substance is dispersed and comprising a container made of a light-transmitting material and for adding a test substance, the measurement cell being along the same optical axis When placed so as to be irradiated with an excitation pulse laser and a probe laser for exciting a mixed system of the target substance and the test substance.
  • a particle-mixed transient diffraction grating detection device in which a grating pattern that causes diffraction of both the excitation pulse laser and the probe laser is printed or engraved on one surface of a front or back wall to be irradiated. It is what constituted.
  • FIG. 1 is a diagram schematically showing a relationship (A) between a target protein and a test protein (drug) facing each other before or without association, and an associated state (B).
  • Figure 2 schematically shows the state before diffusion of target particles and test particles in a particle mixture system (A), the state where diffusion is progressing (B), and the state where diffusion is slow due to the presence of an inter-particle association phase (C).
  • A the state before diffusion of target particles and test particles in a particle mixture system
  • B the state where diffusion is progressing
  • C an inter-particle association phase
  • FIG. 3 is a schematic diagram showing a state in which a sample including a particle mixing system generates a transient diffraction grating by an excitation pulse laser, and a probe laser emits a transient diffraction light signal.
  • FIG. 4 is a schematic diagram showing a state in which rhodopsin is activated by photoexcitation and associates with G-protein.
  • FIG. 5 is a graph showing changes in the intensity of the transient diffracted light signal with and without protein association.
  • FIG. 6 is a schematic diagram showing a basic device configuration for performing a diffusion constant change measurement by the transient diffraction grating method of the present invention.
  • Fig. 7 shows the configuration of the device shown in Fig. 6 with the addition of a separation column and a sample injection unit
  • a detector 5 is a schematic view showing a configuration in which an oscilloscope is connected to the oscilloscope.
  • FIG. 8 is a perspective view and a partial view of an optical system showing a simplified transient diffraction grating measurement cell in which the sample cell and the transmission diffraction grating in the device configuration shown in FIGS. 6 and 7 are combined.
  • a state in which a protein and a protein or other substance are associated means that a relatively weak binding force such as a hydrogen bond, a charge transfer bond, or a hydrophobic bond acts between the same molecules in the two molecules, and the two molecules or the two molecules have a relatively small binding force. It means that the above molecules combine to form an aggregate with relatively regularity.
  • Fig. 1 is a schematic representation of a simple example of the binding between a certain protein 1 and a drug 2. From the state before the association (A) to the state after the association (B) (aggregate) 3, Since the structures of protein 1 and drug 2 are essentially the same, they are designated as compositions 1 'and 2' after association. If such an association does not occur between the two substances (ie, if they remain in state A), they will diffuse rapidly in the medium.
  • Figure 2 shows that the test protein 12 was added to a protein-containing liquid (usually an aqueous solution) in which the evening protein 11 was dispersed, and the diffusion state of the resulting particle mixture and the presence or absence of association were determined.
  • Unevenly distributed state without diffusion (A) state where diffusion progressed in about 0.1 second after addition due to no association (B), and even about 0.1 second after addition due to association This is shown as a state where diffusion has not progressed (C).
  • the presence and degree of association are closely related to the diffusion speed (diffusion constant) of the particle-mixing system, and the inventor measures the diffusion constant of either one of the particles to obtain a mixture of particles such as protein. It was found that the presence / absence and degree of association in the system could be detected.
  • effective methods for measuring the diffusion state of the mixed particle system include (1) the light scattering method, (2) the tailoring method for observing the distribution state in a capillary, the dispersion method, and (3) the electric method.
  • electrophoresis method and (4) transient diffraction grating method.
  • the target protein or the test protein must have light absorbency. When neither absorbs light, it can be carried out by attaching PYP or another photoreceptor to one of the proteins or the like.
  • FIG. 3 is a schematic diagram illustrating the principle of the transient diffraction grating method.
  • sample 13 in the permeation type cell contains a protein-containing liquid (aqueous solution) and is in a state immediately after addition of the test protein.
  • the axis z passing through sample 13 is the center axis.
  • this transient interference fringe (transient diffraction grating) formation state is irradiated with a probe laser beam 15 (for example, at a wavelength of 633 nm), the diffracted light until the transient diffraction grating disappears due to pulse excitation.
  • the signal 16 is detected, and the relaxation curve of the sample, especially the relaxation phenomenon due to diffusion, is detected from the attenuation curve, and the diffusion constant of the excited species is determined.
  • a strong transient diffraction signal is detected in the skewed distribution state (A) without diffusion, and the transient diffraction signal is detected in the state (B) where diffusion has progressed because there is no protein association.
  • the state (C) in which diffusion has not progressed even after about 0.1 second from the addition due to association a strong transient diffraction signal is detected, and the phase 11 of the target protein and the target protein are not detected.
  • the larger the associating phases 1 1 ′ and 1 2 ′ intervening between the phases 1 and 2 of the test protein the slower the diffusion, and therefore the longer the lifetime of the excited state (transient diffraction grating). Will be.
  • both the target and the test protein are prepared in an aqueous solution, and they do not require complicated operations such as attaching to the measurement substrate.
  • the measurement can be performed in the form of a solution, and the measurement can be performed in a short time within 1 second after adding the test protein to the sample cell.
  • the sample is required to have light absorbency, but does not require a luminescent label from a molecule as in fluorescence analysis.
  • the particle mixing system is used not only in the case where neither one of the sample and the test protein reacts with light, but also in the case where any of the proteins reacts with light.
  • a specific effect can be obtained by adding a dye that binds to these proteins by performing a photochemical reaction at the excitation wavelength and then performing laser excitation and probe irradiation.
  • an effective additive dye is, for example, 2-nitrobenzaldehyde. The dye is photoresponsive to most of the excitation wavelengths, eliminating the hassle of tuning the laser wavelength.
  • FIG. 6 shows an example of a basic apparatus configuration, in which reference numerals in the figure, reference numeral 20 denotes a light source of an excitation pulse laser having a wavelength of 450 nm, for example, and reference numeral 21 denotes another different wavelength such as 6 33
  • the probe is a light source that emits 33 nm of laser light for the probe. The lasers emitted from these are projected from both sides of the half mirror 22 to the beginning of the optical path means 24 consisting of a single optical fiber, and have the same optical path. Layered on.
  • a convex lens 25 is arranged, and the synthetic laser light focused (collimated) by this lens is a transmission type grating.
  • the laser beam incident on the step-convex lens 29 and coming out of the transmission grating 26 immediately before is focused so that the pair of excitation pulse lasers 27 intersect at an appropriate angle 0.
  • the outer pair of probe lasers 28 are focused so as to intersect at a larger angle.
  • the measurement cell 30 is composed of a container made of a light-transmitting material and accommodates a protein-containing liquid in which evening get protein is dispersed, and is used for adding a test substance such as another protein during measurement. It is.
  • the two excitation pulse lasers 27 are made to cross inside the measurement cell 30, and at least one of the probe lasers 28 is also made to enter the sample cell 30.
  • a photoelectric detector 31 for receiving the diffracted light of the probe laser emitted from the cell 30 and converting it into an electric signal is arranged.
  • the detector 31 emits a signal output indicating the presence / absence and degree of the protein association described above.
  • the apparatus configuration shown in Fig. 7 is provided with an additional configuration for the measurement of various types of samples, particularly, multiple components that are sequentially eluted from the column.
  • FIG. 7 portions denoted by the same reference numerals as those in FIG. 6 have the same functions as the corresponding portions in FIG. 6, and further description will be omitted.
  • the measuring cell 30 is of a flow type, and the beginning of the inlet channel 32 is connected to the outlet of the column 33.
  • a test sample injection part 34 such as a microsyringe is connected to the middle of the flow path 32, and a test substance from the test sample injection part 34 is used for components eluted sequentially from the column 33. Each is added, and the transient diffraction grade is sequentially set in the measurement cell 30 *. Child measurements will be taken.
  • a drain tube hangs down and protrudes from the lower end of the measurement cell 30 ′, and faces the collection container 35.
  • the output of the photoelectric detector 31 is connected to the illustrated oscilloscope 36 or a recorder or other data processing device, and an association detection signal corresponding to the component peak is displayed.
  • the structure shown in FIG. 8 shows a cell 37 with a diffraction grating in which a sample cell and a transmission diffraction grating, which are main parts in the measurement apparatus shown in FIGS.
  • the cell 37 is made of a light-transmitting container or a solid, the front is located at the end of the combined optical path of the excitation pulse laser 127 and the probe laser 28, and the back is used for the excitation pulse laser and the probe.
  • a grating pattern 38 that causes both laser diffractions is printed or engraved.
  • the lattice pattern 38 may be formed on the front of the cell 37.
  • the pitch of the grid is one to several wins.
  • the incident excitation pulse laser 27 diffracts and disperses at an angle of 0 in the cell to generate a transient diffraction grating that accompanies the state of the test substance and target substance in the cell.
  • the change in the diffusion constant which is a relaxation phenomenon, is measured by the photoelectric detector 31 as the change in the intensity of the probe laser 28 that has also been diffracted.
  • a slit plate 39 is provided to detect the probe laser 28 at a specific diffraction angle.
  • this cell structure can be used not only for protein association but also for detection of various particle diffusion states as long as a transient diffraction grating is generated in the cell.
  • the degree of protein association can be easily and accurately measured by measuring the change in the diffusion constant of a mixture of a target protein and a test protein.
  • the apparatus configuration of the present invention it is possible to measure the change in the diffusion constant of the mixed system of the target protein and the test protein in a very short time.
  • the method and apparatus of the present invention can be used to search for proteins that bind to drugs.
  • the present invention can be used for searching for a signal transduction system, an immune response, a receptor ligand assay, and the like, and enables easy and accurate detection of association of a protein or the like excellent in portability and mobility.
  • the use of a dye in the method of the present invention exerts an effect that all kinds of proteins can be easily detected.
  • the absorption wavelength and the reactivity of light differ depending on the protein, it is necessary to change the laser wavelength depending on the properties of the protein when the dye is not used.
  • the complicated operation of adjusting is not required.
  • the use of laser light in accordance with the light absorption of the dye makes it easy to measure various proteins that originally have different light absorption and photoreactivity (some of which do not react). This can be performed in wavelength adjustment.

Abstract

A method for detecting protein association by dispersion constant variation. A specimen such as a protein is added to a protein-containing liquid where a target protein is dispersed to produce a particle mixture system (13). A pair of excitation pulse laser beams (14) of the same wavelength are applied to the particle mixture system (13) in such ways that the laser beams intersect in the particle mixture system to form a transient diffraction grating. A probing laser beam (15) of different wavelength is applied to the transient diffraction grating at a different angle. The intensity of the transient diffracted wave of the laser beam is measured to determine the variation of the dispersion constant.

Description

曰月 糸田 β 拡散定数変化による蛋白質の会合検出方法及び装置 技術分野  Satsuki Itoda β Method and apparatus for detecting protein association by change in diffusion constant
本発明は新規の蛋白質会合検出方法と装置、 特に拡散定数変化を用いた会合検 出方法及び装置に関するものである。  The present invention relates to a novel protein association detection method and apparatus, and more particularly to an association detection method and apparatus using a change in diffusion constant.
背景技術  Background art
医学及び薬学分野において、 ある蛋白質と他の蛋白質等の物質が特異的に相互 作用する関係にあるかどうかを見極めることは、 きわめて重要であるが、 その検 出にはかなりの困難を伴うものである。 一つの方法は、 細胞破砕液をイオン交換 カラムでいくつかに分画し、 それぞれを相手の蛋白に固定化したカラムに流して から特定蛋白質との会合実験を行う方法であるが、 これは測定装置の構成が複雑 であり、 操作も面倒で時間がかかる。 別の方法としては、 表面プラズモンを利用 した重量分析を伴う分光分析法があるが、 センサ一チップ(ガラス基板上に金等 の蒸着膜を形成したもの) の表面に被検溶液を付着させる等の面倒な前処理や、 これをプリズムにあてがう場合の慎重な操作を要するなどの問題がある (例えば In the medical and pharmaceutical fields, it is extremely important to determine whether a protein and a substance such as another protein have a specific interacting relationship, but its detection involves considerable difficulty. is there. One method is to fractionate the cell lysate with an ion-exchange column, flow each onto a column immobilized on the partner protein, and then conduct an association experiment with a specific protein. The equipment configuration is complicated, and the operation is cumbersome and time-consuming. Another method is spectroscopic analysis involving weight analysis using surface plasmons. For example, a test solution is attached to the surface of a sensor chip (a glass substrate with a deposited film of gold, etc.). Such as troublesome pre-processing and careful operation when applying this to the prism (for example,
、特許文献 1 :特開平 7— 1 5 9 3 1 1号公報 ( 「要約」 欄) 参照) 。 Patent Document 1: Japanese Patent Application Laid-Open No. 7-159319 (refer to the “Summary” column)).
更に、 蛍光偏光度測定システムも、 蛋白質や核酸などの生体物質間の相互作用 を測定解析するために用いられるが、光学系の構成が極めて複雑で大型化すると いう問題がある。 従って、 これらの従来法によらないで、 物質間会合の度合いを 簡便且つ正確に測定する方法の開発が待たれている。  Furthermore, a fluorescence polarization measurement system is also used to measure and analyze the interaction between biological substances such as proteins and nucleic acids, but there is a problem that the configuration of the optical system is extremely complicated and large. Therefore, development of a method for simply and accurately measuring the degree of association between substances without using these conventional methods is awaited.
本発明の一つの目的は、 夕ーゲット蛋白質と被検査蛋白質との混合系の拡散定 数の変化を測定することにより、 蛋白質会合の度合いを簡便且つ正確に測定する 方法及び装置を提供することである。  One object of the present invention is to provide a method and an apparatus for simply and accurately measuring the degree of protein association by measuring the change in the diffusion constant of a mixed system of a target protein and a test protein. is there.
本発明の第 2の目的は、 ターゲット蛋白質と被検査蛋白質との混合系の拡散定 数の変化を、 極短時間で測定するに適した新規の方法及び装置を提供することで ある。 A second object of the present invention is to provide a method for determining the diffusion of a mixture of a target protein and a test protein. It is an object of the present invention to provide a novel method and apparatus suitable for measuring a change in number in a very short time.
発明の開示  Disclosure of the invention
上記の課題を解決するため、本発明は第 1に、 夕ーゲット蛋白質を分散させた 蛋白質含有液に被検蛋白質を添加し、 それによつて生ずる粒子混合系の拡散定数 の変化を検出することにより、 両蛋白質の会合の度合いを測定する方法を構成し たものである。  In order to solve the above-mentioned problems, the present invention firstly comprises adding a test protein to a protein-containing solution in which evening protein is dispersed, and detecting a change in the diffusion constant of the particle-mixing system caused thereby. And a method for measuring the degree of association between the two proteins.
本発明は第 2に、 前記粒子混合系に同一波長における一対の励起用パルスレ一 ザ一を、 その混合系内で交差するように入射して過渡回折格子を生じさせ、 これ に他の波長及び他の角度でプローブ用レーザー光を照射して、 そのレーザ一光の 過渡回折波強度を測定することにより、 拡散定数の変化を測定する方法を構成し たものである。  Second, the present invention secondly causes a pair of excitation pulse lasers having the same wavelength to enter the particle mixing system so as to cross each other in the mixing system to generate a transient diffraction grating. The method consists of irradiating the probe laser beam at another angle and measuring the transient diffracted wave intensity of the laser beam to measure the change in the diffusion constant.
本発明は第 3に、 前記の過渡回折格子法による拡散定数変化の測定にあたり、 前記粒子混合系に、 励起波長において光化学反応して蛋白質と結合することが可 能な色素を添加してから、 レーザー励起及びプローブ照射を行う方法を構成した ものである。 この色素は蛋白の光反応性の有無に関わらず、 それ自体がほとんど の励起波長に光反応するものを用いるので、 レーザーの波長調整の面倒さが無く なる。 また、 色素の光吸収に合わせたレーザー光を用いることで、 本来は光吸収 や光反応性の異なる種々の蛋白の測定において波長調整が容易となる。  Thirdly, in the present invention, in measuring the diffusion constant change by the transient diffraction grating method, a dye capable of photochemically reacting at an excitation wavelength and binding to a protein is added to the particle mixture system, It constitutes a method of performing laser excitation and probe irradiation. This dye uses a dye that is photoreactive to most of the excitation wavelengths, regardless of whether the protein is photoreactive or not, eliminating the hassle of adjusting the wavelength of the laser. In addition, the use of laser light that matches the light absorption of the dye facilitates wavelength adjustment in the measurement of various proteins that originally differ in light absorption and photoreactivity.
本発明は第 4に、 励起用パルスレーザーの光源と、 前記励起用パルスレーザー とは異なる波長のプローブ用レーザー光の光源と、 前記励起用パルスレーザーと プローブ用レーザ一とを同一光路に重ねるための光路手段と、 前記光路手段の終 端から前記重ねられたレーザーを入射させるための透過型回折格子と、前記透過 型回折格子から出たレーザーの回折線を集束するためのレンズ手段と、光透過性 材料の容器からなり内部に夕ーゲット蛋白質を分散させた蛋白質含有液を収容す るとともに、 被検蛋白質を添加するための測定セルであって、 前記集束されたレ —ザ一のうち回折により 2本に分かれた励起用パルスレーザ一と少なくとも 1本 のプローブ用レーザーとを照射されるように配置されたものと、 前記測定セルか ら出たプローブ用レーザーの回折光を受光して電気信号に変換するための光電検 出器とを備えた蛋白質の会合測定装置を構成したものである。 Fourth, the present invention provides a light source of an excitation pulse laser, a light source of a probe laser light having a wavelength different from that of the excitation pulse laser, and the excitation pulse laser and one of the probe lasers overlapped on the same optical path. An optical path means, a transmission type diffraction grating for making the superposed laser incident from the end of the optical path means, a lens means for focusing a diffraction line of the laser emitted from the transmission type diffraction grating, and A measurement cell for containing a protein-containing liquid in which evening protein is dispersed and comprising a container of a permeable material and for adding a test protein, One of which is arranged to be irradiated with one of the excitation pulse lasers divided by diffraction and at least one probe laser, and the diffraction of the probe laser emitted from the measurement cell. A protein association measurement device includes a photoelectric detector for receiving light and converting the light into an electric signal.
本発明は第 5に、 光透過性材料の容器からなり内部にターゲット物質を分散さ せた分散媒を収容するとともに、 被検物質を添加するための測定セルであって、 同一光軸に沿つて前記ターゲット物質と被検物質との混合系を励起するための励 起用パルスレーザーとプローブ用レーザ一とを照射されるように配置されたとき Fifthly, the present invention is a measuring cell for containing a dispersion medium in which a target substance is dispersed and comprising a container made of a light-transmitting material and for adding a test substance, the measurement cell being along the same optical axis When placed so as to be irradiated with an excitation pulse laser and a probe laser for exciting a mixed system of the target substance and the test substance.
、 照射を受けるべき正面又は背面となる壁体の 1面に前記励起用パルスレーザー とプローブ用レーザーの双方の回折を生ずる格子パターンを印刷又は刻設形成し た粒子混合系の過渡回折格子検出装置を構成したものである。 A particle-mixed transient diffraction grating detection device in which a grating pattern that causes diffraction of both the excitation pulse laser and the probe laser is printed or engraved on one surface of a front or back wall to be irradiated. It is what constituted.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 会合前もしくは会合しないで対向したターゲット蛋白質と被検蛋白質 (薬物) の関係 (A ) 、 及び会合した状態 (B ) を模式的に示す図である。  FIG. 1 is a diagram schematically showing a relationship (A) between a target protein and a test protein (drug) facing each other before or without association, and an associated state (B).
図 2は、 粒子混合系におけるターゲット粒子と被検粒子の拡散前の状態 (A ) 、 拡散が進んでいる状態 (B ) 、 粒子間会合相があるため拡散が遅くなる状態 ( C ) を模式的に示す図である。  Figure 2 schematically shows the state before diffusion of target particles and test particles in a particle mixture system (A), the state where diffusion is progressing (B), and the state where diffusion is slow due to the presence of an inter-particle association phase (C). FIG.
図 3は、 粒子混合系を含むサンプルが励起パルスレーザーにより過渡回折格子 を生じ、 プローブレーザ一が過渡回折光信号を発する状態を示す模式図である。 図 4は、 ロドプシンが光励起を受けて活性化し、 G—プロテインと会合する状 態を示す模式図である。  FIG. 3 is a schematic diagram showing a state in which a sample including a particle mixing system generates a transient diffraction grating by an excitation pulse laser, and a probe laser emits a transient diffraction light signal. FIG. 4 is a schematic diagram showing a state in which rhodopsin is activated by photoexcitation and associates with G-protein.
図 5は、 蛋白質会合が有るときと、 無いときの過渡回折光信号の強度変化を示 すグラフである。  FIG. 5 is a graph showing changes in the intensity of the transient diffracted light signal with and without protein association.
図 6は、 本発明の過渡回折格子法による拡散定数変化測定を行うための基本的 装置構成を示す略図である。  FIG. 6 is a schematic diagram showing a basic device configuration for performing a diffusion constant change measurement by the transient diffraction grating method of the present invention.
図 7は、 図 6に示した装置構成に分離カラムと試料注入部を加え、 且つ検出器 にオシロスコープを接続した構成を示す略図である。 Fig. 7 shows the configuration of the device shown in Fig. 6 with the addition of a separation column and a sample injection unit, and a detector 5 is a schematic view showing a configuration in which an oscilloscope is connected to the oscilloscope.
図 8は、 図 6及び図 7に示した装置構成中の試料セルと透過型回折格子とを合 体させた簡易型過渡回折格子測定セルを示す斜視図及び光学系部分図である。  FIG. 8 is a perspective view and a partial view of an optical system showing a simplified transient diffraction grating measurement cell in which the sample cell and the transmission diffraction grating in the device configuration shown in FIGS. 6 and 7 are combined.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
一般に、蛋白質と蛋白質又はその他の物質とが会合した状態とは、 両者中の同 一分子間に水素結合、 電荷移動結合、疎水結合などのような比較的弱い結合力が 働き、 二分子あるいはそれ以上の分子が結合して比較的規則性のよレ、集合体を形 成することをいう。 図 1は、 ある蛋白質 1と薬物 2との結合を例にとり、 単純に 模式化して示したもので、 会合前 ( A ) の状態から、会合後 (B ) の状態 (集合 体) 3において、 蛋白質 1と薬物 2との構造は本質的に異ならないため、 会合後 は組成 1 ' 及び 2 ' として指示したものである。 二物質間で、 このような会合が 生じない場合 (すなわち、 状態 Aに止まっている場合) 、 両者は媒質中において 速やかに拡散する。  Generally, a state in which a protein and a protein or other substance are associated means that a relatively weak binding force such as a hydrogen bond, a charge transfer bond, or a hydrophobic bond acts between the same molecules in the two molecules, and the two molecules or the two molecules have a relatively small binding force. It means that the above molecules combine to form an aggregate with relatively regularity. Fig. 1 is a schematic representation of a simple example of the binding between a certain protein 1 and a drug 2. From the state before the association (A) to the state after the association (B) (aggregate) 3, Since the structures of protein 1 and drug 2 are essentially the same, they are designated as compositions 1 'and 2' after association. If such an association does not occur between the two substances (ie, if they remain in state A), they will diffuse rapidly in the medium.
図 2は、 夕一ゲッ卜蛋白質 1 1を分散させた蛋白質含有液 (通常は水溶液) に 被検蛋白質 1 2を添加し、 それによつて生ずる粒子混合系の拡散状態と会合の有 無を、 拡散せず偏った分布状態 (A ) 、 会合がないため添加後 0 . 1秒程度にお いて拡散が進んだ状態 ( B ) 、 及び会合が生じたため添加後 0 . 1秒程度経過し ても拡散が進んでいない状態(C ) として示している。 すなわち、 会合の有無及 び度合いは粒子混合系の拡散の速さ (拡散定数) と密接に関連し、 発明者はいず れか一方の粒子の拡散定数を測定することにより、 蛋白質などの粒子混合系にお ける会合の有無及び度合いを検出しうることを見出した。  Figure 2 shows that the test protein 12 was added to a protein-containing liquid (usually an aqueous solution) in which the evening protein 11 was dispersed, and the diffusion state of the resulting particle mixture and the presence or absence of association were determined. Unevenly distributed state without diffusion (A), state where diffusion progressed in about 0.1 second after addition due to no association (B), and even about 0.1 second after addition due to association This is shown as a state where diffusion has not progressed (C). In other words, the presence and degree of association are closely related to the diffusion speed (diffusion constant) of the particle-mixing system, and the inventor measures the diffusion constant of either one of the particles to obtain a mixture of particles such as protein. It was found that the presence / absence and degree of association in the system could be detected.
この場合、 粒子混合系の拡散状態を測定するに有効な方法としては ( 1 )光散 乱法、 (2 ) キヤビラリ一中での分布状態を観察するテーラ一 .デイスパージョ ン法、 ( 3 ) 電気泳動法、 ( 4 )過渡回折格子法があり、 ここでは過渡回折格子 法を適用して測定した例を述べる。 なお、 過渡回折格子法においてはターゲット 蛋白質、 又は被検蛋白質等の何れかが光吸収性を有しなければならないので、 両 方とも光を吸収しない場合には、 一方の蛋白質等に PYP又は他の光レセプター を付して実施することができる。 In this case, effective methods for measuring the diffusion state of the mixed particle system include (1) the light scattering method, (2) the tailoring method for observing the distribution state in a capillary, the dispersion method, and (3) the electric method. There are electrophoresis method and (4) transient diffraction grating method. Here, an example of measurement using the transient diffraction grating method is described. In the transient diffraction grating method, either the target protein or the test protein must have light absorbency. When neither absorbs light, it can be carried out by attaching PYP or another photoreceptor to one of the proteins or the like.
図 3は、 過渡回折格子法の原理を示す模式図である。 図 3において、 透過型セ ル中のサンプル 1 3は蛋白質含有液(水溶液) を収容し、 被検蛋白質を添加した 直後の状態にあり、 ここでサンブル 1 3を貫通する軸 zを中心軸として、 一対の 同一波長; I (例えば 4 50 nm) による励起用パルスレーザー 1 4を、 このサン プル 1 3内において角度 0で交差するように入射させる。 サンプル 1 3で蛋白質 の会合が生じ、 拡散が進んでいない場合には、 この励起により格子間隔 d、 但し 2 d = A/s i η (Θ/2) による干渉縞が過渡的に形成される。 この過渡的な 干渉縞 (過渡回折格子) の形成状態に対してプローブ用レーザ一光 1 5 (例えば 、波長 633 nm) を照射すると、 パルス励起による過渡回折格子の消滅に到る までの回折光信号 1 6が検出され、 その減衰曲線によって試料の緩和現象、 特に 拡散による緩和現象が検出され、 励起種の拡散定数が求められる。  FIG. 3 is a schematic diagram illustrating the principle of the transient diffraction grating method. In Fig. 3, sample 13 in the permeation type cell contains a protein-containing liquid (aqueous solution) and is in a state immediately after addition of the test protein. Here, the axis z passing through sample 13 is the center axis. A pair of the same wavelengths; a pulse laser 14 for excitation by I (for example, 450 nm) is made to enter the sample 13 so as to intersect at an angle of 0. If protein association occurs in sample 13 and diffusion is not progressing, this excitation causes transient formation of interference fringes with lattice spacing d, where 2 d = A / s i η (Θ / 2). When this transient interference fringe (transient diffraction grating) formation state is irradiated with a probe laser beam 15 (for example, at a wavelength of 633 nm), the diffracted light until the transient diffraction grating disappears due to pulse excitation. The signal 16 is detected, and the relaxation curve of the sample, especially the relaxation phenomenon due to diffusion, is detected from the attenuation curve, and the diffusion constant of the excited species is determined.
例えば、 ターゲット蛋白としてロドプシンを用い、 これに G—プロテインが結 合する過程を検出する場合、 図 4に示す通り、 (a) ロドプシンに光 h が当た ると、 (b)活性化ロドプシンとなり、 これは (c) G—プロテインと結合する 。 (d) 結合した G—プロテイン (GTP) は GDPに転換し、 その結果 (e) G—プロテインは分離する。 図 5に実線で描いたグラフは、 プロ一ブレーザ一に よる回折光強度信号のピーク高さと持続状態から、 上のような蛋白質間の会合が あったことを明確に示している。 この場合、 ピークは約 0. 2秒以内に出現し、 0. 8秒位までに拡散が進行した。 破線で描いたグラフは、 蛋白質間の会合がな かった試料のものであり、 0. 1 ~0. 2秒という瞬時に拡散が略完了したこと を示している。 なお、 実線のグラフでピークの前に、 一瞬間急激な立ち下がりを 生ずるのは、光励起に基づく熱によるものである。  For example, when rhodopsin is used as the target protein and the process of G-protein binding is detected, as shown in Figure 4, (a) when light h is applied to rhodopsin, (b) activated rhodopsin is obtained. It binds to (c) G-protein. (D) The bound G-protein (GTP) is converted to GDP, resulting in (e) G-protein separation. The graph drawn with a solid line in FIG. 5 clearly shows that the above-mentioned association between proteins occurred from the peak height and the sustained state of the diffracted light intensity signal by the probe laser. In this case, the peak appeared within about 0.2 seconds, and the diffusion advanced by about 0.8 seconds. The graph drawn by the dashed line is for a sample in which there was no association between proteins, and indicates that diffusion was almost completed in an instant of 0.1 to 0.2 seconds. The sudden fall before the peak in the solid line graph is caused by heat based on photoexcitation.
再び、 図 2を参照して、 拡散せず偏った分布状態 (A) では強い過渡回折信号 が検出され、蛋白質の会合がないため拡散が進んだ状態 (B) では過渡回折信号 が検出されず、 更に会合が有るため添加後 0 . 1秒程度経過しても拡散が進んで いない状態 (C ) では強い過渡回折信号が検出され、 しかもターゲッ卜蛋白質の 相 1 1と、 被検蛋白質の相 1 2間に割り込む形での会合相 1 1 ' 、 1 2 ' が大き いほど拡散が遅くなる、 従って励起状態(過渡回折格子) の寿命が長くなるとい うことが良く理解されるであろう。 Referring again to FIG. 2, a strong transient diffraction signal is detected in the skewed distribution state (A) without diffusion, and the transient diffraction signal is detected in the state (B) where diffusion has progressed because there is no protein association. In the state (C) in which diffusion has not progressed even after about 0.1 second from the addition due to association, a strong transient diffraction signal is detected, and the phase 11 of the target protein and the target protein are not detected. It is well understood that the larger the associating phases 1 1 ′ and 1 2 ′ intervening between the phases 1 and 2 of the test protein, the slower the diffusion, and therefore the longer the lifetime of the excited state (transient diffraction grating). Will be.
以上の通り、 過渡回折格子法により実施する本発明の蛋白質会合検出法では、 ターゲット及び被検蛋白質のいずれも水溶液で用意され、 それらは測定基板への 付着操作等の面倒な操作を要することなく、 溶液のままで測定可能であり、試料 セルに被検蛋白質を添加後、 1秒以内の短時間で測定することができる。 また、 試料に光吸収性は要求されるが、 蛍光分析のように、 分子からの発光ラベルが要 求されることもない。  As described above, in the protein association detection method of the present invention performed by the transient diffraction grating method, both the target and the test protein are prepared in an aqueous solution, and they do not require complicated operations such as attaching to the measurement substrate. The measurement can be performed in the form of a solution, and the measurement can be performed in a short time within 1 second after adding the test protein to the sample cell. In addition, the sample is required to have light absorbency, but does not require a luminescent label from a molecule as in fluorescence analysis.
更に、 過渡回折格子法による拡散定数変化の測定にあたり、 夕一ゲット及び被 検蛋白質のいずれもが光反応しない場合は勿論、 いずれかの蛋白質が光反応する 場合においても、 この粒子混合系に、 励起波長により光化学反応してこれらの蛋 白質と結合する色素を添加してから、 レーザ一励起及びプローブ照射を行うこと により特有の効果が得られることも前述した通りである。 この場合に有効な添加 用色素としては、例えば、 2— ni trobenzaldehyde がある。 この色素はほとんど の励起波長に光反応するので、 レーザーの波長調整の面倒さもなくなる。  Furthermore, in the measurement of the diffusion constant change by the transient diffraction grating method, the particle mixing system is used not only in the case where neither one of the sample and the test protein reacts with light, but also in the case where any of the proteins reacts with light. As described above, a specific effect can be obtained by adding a dye that binds to these proteins by performing a photochemical reaction at the excitation wavelength and then performing laser excitation and probe irradiation. In this case, an effective additive dye is, for example, 2-nitrobenzaldehyde. The dye is photoresponsive to most of the excitation wavelengths, eliminating the hassle of tuning the laser wavelength.
実施例  Example
以下、 本発明による過渡回折格子測定装置の構成例について説明する。 図 6は 、 基本的な装置構成例を示すもので、 図中の参照数字、 2 0は例えば波長 4 5 0 n mの励起用パルスレーザ一の光源、 2 1は別の異なった波長、 たとえば 6 3 3 n mを発するプローブ用レーザ一光の光源であり、 これらから出たレーザーはハ 一フミラー 2 2の両側から、 1本の光ファイバ一からなる光路手段 2 4の始端に 投射され、 同一光路に重ねられる。 光路手段 2 4の終端には凸レンズ 2 5が配置 され、 このレンズで集束(コリメート) された合成レーザー光は透過型グレーテ イング 2 6に入射し、 適当な開き角で回折出射する一対の励起用パルスレーザー 2 7と、 それより大きい開き角で回折出射する一対のプローブ用レーザ一 2 8と に分けられ、 これらは終段凸レンズ 2 9に入射し、 直前の透過型回折格子 2 6か ら出たレーザ一の回折線を、 前記一対の励起用パルスレーザ一 2 7については適 当な角度 0で交差するように集束させ、併せて外側一対のプローブ用レーザ一 2 8をより大きい角度で交差するように集束させる。 Hereinafter, a configuration example of the transient diffraction grating measurement device according to the present invention will be described. FIG. 6 shows an example of a basic apparatus configuration, in which reference numerals in the figure, reference numeral 20 denotes a light source of an excitation pulse laser having a wavelength of 450 nm, for example, and reference numeral 21 denotes another different wavelength such as 6 33 The probe is a light source that emits 33 nm of laser light for the probe.The lasers emitted from these are projected from both sides of the half mirror 22 to the beginning of the optical path means 24 consisting of a single optical fiber, and have the same optical path. Layered on. At the end of the optical path means 24, a convex lens 25 is arranged, and the synthetic laser light focused (collimated) by this lens is a transmission type grating. A pair of excitation pulse lasers 27 incident on the wing 26 and diffracted and emitted at an appropriate opening angle, and a pair of probe lasers 28 diffracted and emitted at a larger opening angle, are terminated. The laser beam incident on the step-convex lens 29 and coming out of the transmission grating 26 immediately before is focused so that the pair of excitation pulse lasers 27 intersect at an appropriate angle 0. In addition, the outer pair of probe lasers 28 are focused so as to intersect at a larger angle.
集束されたこれらのレーザ一光線は、測定セル 3 0に入射される。 測定セル 3 0は光透過性材料の容器からなり内部に夕一ゲット蛋白質を分散させた蛋白質含 有液を収容するとともに、 測定時において別の蛋白質等の被検物質を添加するた めのものである。 この場合、 2本の励起用パルスレーザー 2 7は測定セル 3 0の 内部で交差するようにされ、 プローブ用レーザー項 2 8についても、 その少なく とも 1本が試料セル 3 0内に入射するようにされる。 さらに、 測定セル 3 0の背 後には、 そのセル 3 0から出たプローブ用レーザーの回折光を受光し、 電気信号 に変換するための光電検出器 3 1が配置される。  These focused laser beams are incident on the measuring cell 30. The measurement cell 30 is composed of a container made of a light-transmitting material and accommodates a protein-containing liquid in which evening get protein is dispersed, and is used for adding a test substance such as another protein during measurement. It is. In this case, the two excitation pulse lasers 27 are made to cross inside the measurement cell 30, and at least one of the probe lasers 28 is also made to enter the sample cell 30. To be. Further, behind the measurement cell 30, a photoelectric detector 31 for receiving the diffracted light of the probe laser emitted from the cell 30 and converting it into an electric signal is arranged.
以上の基本的な装置構成により、 検出器 3 1は前述した蛋白質会合の有無及び 程度を表す信号出力を発するものであることが明らかである。 この構成では、試 料セル 3 0は単独容器型であるため、 別の試料を測定する場合には、試料溶液の 置換又は試料セル 3 0自体を交換しなければならない。 そこで、 多種類の試料、 特にカラムより順次溶出されるような複数成分の測定のために、 付加的構成を有 するようにしたのが、 図 7に示す装置構成である。  With the above basic device configuration, it is apparent that the detector 31 emits a signal output indicating the presence / absence and degree of the protein association described above. In this configuration, since the sample cell 30 is a single container type, when measuring another sample, the sample solution must be replaced or the sample cell 30 itself must be replaced. Therefore, the apparatus configuration shown in Fig. 7 is provided with an additional configuration for the measurement of various types of samples, particularly, multiple components that are sequentially eluted from the column.
図 7において、 図 6と同一の参照数字を付した部分は、 図 6の対応する部分と 同一の機能を有するものであり、 更なる説明は省略する。 この構成において異な るのは、 測定セル 3 0, が流通型であり、 その入口流路 3 2の始端はカラム 3 3 の出口に接続される。 流路 3 2の中間にはマイクロシリンジ等の被検試料注入部 3 4が接続され、 カラム 3 3から順次溶出される成分に対しては、 被検試料注入 部 3 4からの被検物質がそれぞれ添加され、 測定セル 3 0 * 内で順次過渡回折格 子測定が行われることになる。 なお、 測定セル 3 0 ' の下端からはドレインチュ ーブが垂下 ·突出し、 回収容器 3 5に対向している。 光電検出器 3 1の出力は、 図示のオシロスコープ 3 6又は記録計その他のデータ処理装置に接続され、 成分 ピークに対応する会合検出信号が表示される。 In FIG. 7, portions denoted by the same reference numerals as those in FIG. 6 have the same functions as the corresponding portions in FIG. 6, and further description will be omitted. The difference in this configuration is that the measuring cell 30 is of a flow type, and the beginning of the inlet channel 32 is connected to the outlet of the column 33. A test sample injection part 34 such as a microsyringe is connected to the middle of the flow path 32, and a test substance from the test sample injection part 34 is used for components eluted sequentially from the column 33. Each is added, and the transient diffraction grade is sequentially set in the measurement cell 30 *. Child measurements will be taken. Note that a drain tube hangs down and protrudes from the lower end of the measurement cell 30 ′, and faces the collection container 35. The output of the photoelectric detector 31 is connected to the illustrated oscilloscope 36 or a recorder or other data processing device, and an association detection signal corresponding to the component peak is displayed.
図 8に示す構造は、 図 6及び図 Ίに示した測定装置中の要部である試料セルと 透過回折格子とを合体させた回折格子付きセル 3 7を示している。 セル 3 7は光 透過性容器又は固体からなり、 正面が励起用パルスレーザ一 2 7及びプローブレ 一ザ一 2 8の合成光路の終端に位置し、 背面には、 前記励起用パルスレーザーと プローブ用レーザーの双方の回折を生ずる格子パターン 3 8を印刷又は刻設形成 したものである。 なお、格子パターン 3 8はセル 3 7の正面に形成してもよい。 格子のピッチは 1〜数 w inである。  The structure shown in FIG. 8 shows a cell 37 with a diffraction grating in which a sample cell and a transmission diffraction grating, which are main parts in the measurement apparatus shown in FIGS. The cell 37 is made of a light-transmitting container or a solid, the front is located at the end of the combined optical path of the excitation pulse laser 127 and the probe laser 28, and the back is used for the excitation pulse laser and the probe. A grating pattern 38 that causes both laser diffractions is printed or engraved. The lattice pattern 38 may be formed on the front of the cell 37. The pitch of the grid is one to several wins.
上記の格子/セル合体構造においては、 入射した励起用パルスレーザー 2 7が セル内において角度 0で回折 ·分光して、 セル内被検物質及びターゲット物質の 状態に伴う過渡回折格子を生じ、 その緩和現象たる拡散定数の変化が同じく回折 したプローブレーザ一 2 8の強度変化として光電検出器 3 1により測定される。 但し、 特有の回折角度においてプローブレーザ一 2 8を検出するため、 スリット 板 3 9が配置される。 なお、 このセル構造は蛋白質会合のみでなく、 セル体内に 過渡回折格子を生じるものである限り、種々の粒子拡散状態の検出に用いること ができる。  In the above grating / cell combined structure, the incident excitation pulse laser 27 diffracts and disperses at an angle of 0 in the cell to generate a transient diffraction grating that accompanies the state of the test substance and target substance in the cell. The change in the diffusion constant, which is a relaxation phenomenon, is measured by the photoelectric detector 31 as the change in the intensity of the probe laser 28 that has also been diffracted. However, a slit plate 39 is provided to detect the probe laser 28 at a specific diffraction angle. In addition, this cell structure can be used not only for protein association but also for detection of various particle diffusion states as long as a transient diffraction grating is generated in the cell.
産業上の利用可能性  Industrial applicability
以上述べたように、 本発明によれば、 ターゲット蛋白質と被検査蛋白質との混 合系の拡散定数の変化を測定することにより、 蛋白質会合の度合いを簡便且つ正 確に測定することができる。 特に、本発明の装置構成によれば、 ターゲッ卜蛋白 質と被検査蛋白質との混合系の拡散定数の変化を、 極短時間で測定することが可 肯 となる。  As described above, according to the present invention, the degree of protein association can be easily and accurately measured by measuring the change in the diffusion constant of a mixture of a target protein and a test protein. In particular, according to the apparatus configuration of the present invention, it is possible to measure the change in the diffusion constant of the mixed system of the target protein and the test protein in a very short time.
従って、 本発明の方法及び装置は、薬品と結合する蛋白質の探索、 生体中の信 号伝達系の探索、 免疫応答及びレセプターリガンドアッセィ等に利用可能であり 、 携帯性及び機動性にも優れた簡便且つ正確な蛋白質等の会合検出を可能にする ものである。 Therefore, the method and apparatus of the present invention can be used to search for proteins that bind to drugs, The present invention can be used for searching for a signal transduction system, an immune response, a receptor ligand assay, and the like, and enables easy and accurate detection of association of a protein or the like excellent in portability and mobility.
また、本発明の方法において色素を利用すると、 あらゆる種類の蛋白を容易に 検出しうるという効果を発揮する。 すなわち、 蛋白によって光の吸収波長も反応 性も異なるため、 色素を用いない場合には蛋白の特性によってレーザーの波長を 変える必要があるが、 幅広い波長に反応する色素を添加すると、 レーザーの波長 を調整するという煩雑な操作さも不要となる。 更に、 色素の光吸収に合わせたレ —ザ一光を用いることで、 本来は光吸収や光反応性の異なる (中には光反応しな いような)種々の蛋白の測定を、容易な波長調整において実施することが可能と なる。  In addition, the use of a dye in the method of the present invention exerts an effect that all kinds of proteins can be easily detected. In other words, since the absorption wavelength and the reactivity of light differ depending on the protein, it is necessary to change the laser wavelength depending on the properties of the protein when the dye is not used. The complicated operation of adjusting is not required. In addition, the use of laser light in accordance with the light absorption of the dye makes it easy to measure various proteins that originally have different light absorption and photoreactivity (some of which do not react). This can be performed in wavelength adjustment.

Claims

言青求の範囲 . ターゲット蛋白質を分散させた蛋白質含有液に別の蛋白質等の被検物質を添 加し、 それによつて生ずる粒子混合系の拡散定数の変化を検出することにより 、 両蛋白質の会合の度合いを測定する方法。The range of the expression. A test substance such as another protein is added to the protein-containing liquid in which the target protein is dispersed, and the resulting change in the diffusion constant of the particle-mixing system is detected. A method of measuring the degree of a meeting.
. 前記粒子混合系に同一波長における一対の励起用パルスレーザ一を、 その混 合系内で交差するように入射して過渡回折格子を生じさせ、 これに他の波長及 び他の角度でプローブ用レーザー光を照射して、 そのレーザ一光の過渡回折光 強度を測定することにより、 拡散定数の変化を測定することを特徴とする請求 項 1に記載の方法。A pair of excitation pulse lasers having the same wavelength are incident on the particle mixing system so as to cross each other in the mixing system to generate a transient diffraction grating, which is then probed at another wavelength and another angle. 2. The method according to claim 1, wherein a change in the diffusion constant is measured by irradiating a laser beam for use and measuring a transient diffraction light intensity of the laser beam.
. 前記粒子混合系に、励起波長において光化学反応して蛋白質と結合すること が可能な色素を添加してから、 レーザー励起及びプローブ照射を行うことを特 徴とする請求項 2に記載の方法。3. The method according to claim 2, wherein a dye capable of undergoing a photochemical reaction at an excitation wavelength and binding to a protein is added to the particle mixture system, and then laser excitation and probe irradiation are performed.
. 励起用パルスレーザーの光源と、 前記励起用パルスレーザ一とは異なる波長 のプローブ用レーザ一光の光源と、前記励起用パルスレーザ一とプローブ用レ —ザ一とを同一光路に重ねるための光路手段と、 前記光路手段の終端から前記 重ねられたレーザーを入射させるための透過型回折格子と、前記透過型回折格 子から出たレーザーの回折線を集束するためのレンズ手段と、 光透過性材料の 容器からなり内部にタ一ゲット蛋白質を分散させた蛋白質含有液を収容すると ともに、 別の蛋白質等の被検物質を添加するための測定セルであって、 前記集 束されたレーザ一のうち回折により 2本に分かれた励起用パルスレーザーと少 なくとも 1本のプローブ用レーザ一とを照射されるように配置されたものと、 前記測定セルから出たプローブ用レーザ一の回折光を受光して電気信号に変換 するための光電検出器とを備えたことを特徴とする蛋白質の会合測定装置。A light source for an excitation pulse laser, a light source for a probe laser light having a wavelength different from that of the excitation pulse laser, and an excitation pulse laser and a probe laser for overlapping the same optical path. Optical path means; a transmission type diffraction grating for inputting the superposed laser beam from the end of the optical path means; lens means for focusing a diffraction line of the laser emitted from the transmission type diffraction grating; A measuring cell for accommodating a protein-containing liquid in which a target protein is dispersed and containing a target protein therein, and for adding a test substance such as another protein, wherein the focused laser beam Of which are arranged so as to be irradiated with two excitation pulse lasers separated by diffraction and at least one probe laser, and a probe out of the measurement cell. Proteins associated measuring device characterized by comprising a photoelectric detector for converting into an electric signal by receiving the laser one diffracted light.
. 光透過性材料の容器からなり内部にターゲット物質を分散させた分散媒を収 容するとともに、 被検物質を添加するための測定セルであって、 同一光軸に沿 つて前記ターゲット物質と被検物質との混合系を励起するための励起用パルス レーザ一とプローブ用レーザ一とを照射されるように配置されたとき、 照射を 受けるべき正面又は背面となる壁体の 1面に前記励起用パルスレーザ一とプロ ーブ用レーザ一の双方の回折を生ずる格子パ夕一ンを印刷又は刻設形成したこ とを特徴とする粒子混合系の過渡回折格子検出装置。 A measurement cell for storing a dispersion medium in which a target substance is dispersed and consisting of a container made of a light-transmitting material, and for adding a test substance, along the same optical axis. When placed so as to be irradiated with an excitation pulse laser and a probe laser to excite a mixed system of the target substance and the test substance, a wall body serving as a front or back surface to be irradiated. A grating pattern for generating diffraction of both the excitation pulse laser and the probe laser printed or engraved on one surface of the particle mixing system; .
PCT/JP2003/008442 2002-07-05 2003-07-02 Method and device for detecting protein association by dispersion constant variation WO2004005899A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003281304A AU2003281304A1 (en) 2002-07-05 2003-07-02 Method and device for detecting protein association by dispersion constant variation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-197171 2002-07-05
JP2002197171 2002-07-05
JP2002354808A JP2004085528A (en) 2002-07-05 2002-12-06 Method and apparatus for detecting protein association by change in diffusion constant
JP2002-354808 2002-12-06

Publications (1)

Publication Number Publication Date
WO2004005899A1 true WO2004005899A1 (en) 2004-01-15

Family

ID=30117392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008442 WO2004005899A1 (en) 2002-07-05 2003-07-02 Method and device for detecting protein association by dispersion constant variation

Country Status (3)

Country Link
JP (1) JP2004085528A (en)
AU (1) AU2003281304A1 (en)
WO (1) WO2004005899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090215079A1 (en) * 2005-12-05 2009-08-27 Technische Universitat Dresden Method and Devices for the Detection of Microorganisms and/or the Activity Thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025158A1 (en) * 2004-08-30 2006-03-09 Shimadzu Corporation Optical measuring device and method, nanoparticle measuring method and device
CN101223433B (en) 2005-07-20 2012-01-25 株式会社岛津制作所 Optical measuring instrument
JP4911964B2 (en) * 2005-12-09 2012-04-04 株式会社アドバンテスト Contained structure, measuring device, method and program
JPWO2008136101A1 (en) * 2007-04-25 2010-07-29 株式会社島津製作所 Nanoparticle measurement method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007179A1 (en) * 1987-03-12 1988-09-22 The Secretary Of State For Defence In Her Britanni Dynamic light scattering apparatus
WO1999067285A1 (en) * 1998-06-24 1999-12-29 Innogenetics N.V. Particles of hcv envelope proteins: use for vaccination
WO2000017221A1 (en) * 1998-09-24 2000-03-30 Duke University Method of measuring protein-protein interactions in living cells
WO2000022434A1 (en) * 1998-10-13 2000-04-20 Astrazeneca Ab Device comprising a microfabricated diffusion chamber
JP2002071555A (en) * 2000-08-25 2002-03-08 Sanyo Electric Co Ltd Chemical substance sensor and detection method of chemical substance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007179A1 (en) * 1987-03-12 1988-09-22 The Secretary Of State For Defence In Her Britanni Dynamic light scattering apparatus
WO1999067285A1 (en) * 1998-06-24 1999-12-29 Innogenetics N.V. Particles of hcv envelope proteins: use for vaccination
WO2000017221A1 (en) * 1998-09-24 2000-03-30 Duke University Method of measuring protein-protein interactions in living cells
WO2000022434A1 (en) * 1998-10-13 2000-04-20 Astrazeneca Ab Device comprising a microfabricated diffusion chamber
JP2002071555A (en) * 2000-08-25 2002-03-08 Sanyo Electric Co Ltd Chemical substance sensor and detection method of chemical substance

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KANNAN R.M. ET AL.: "Effect of composition fluctuation on tracer diffusion in symmetric diblock copolymers.", J. CHEM. PHYS., vol. 108, no. 11, 15 March 1998 (1998-03-15), pages 4634 - 4639, XP002974113 *
MASAHIDE TERASHIMA, DAI 23 KAI YOEKI KAGAKU SYMPOSIUM KOEN YOSHISHU, 12 October 2000 (2000-10-12), pages 19 - 20, XP002974115 *
NELSON K.A. ET AL.: "Laser-induced excited state and ultrasonic wave gratings : amplitude and phase grating contributions to diffraction.", J. CHEM. PHYS., vol. 77, no. 3, 1 August 1982 (1982-08-01), pages 1144 - 1152, XP000653545 *
PHOTOCHEMISTRY, vol. 30, no. 3, 25 December 1999 (1999-12-25), pages 258 - 259, XP002974114 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090215079A1 (en) * 2005-12-05 2009-08-27 Technische Universitat Dresden Method and Devices for the Detection of Microorganisms and/or the Activity Thereof

Also Published As

Publication number Publication date
AU2003281304A8 (en) 2004-01-23
JP2004085528A (en) 2004-03-18
AU2003281304A1 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
Davoust et al. Fringe pattern photobleaching, a new method for the measurement of transport coefficients of biological macromolecules.
Pasteris et al. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions
JP4201058B2 (en) Method for characterizing samples based on intermediate statistical data
US4427889A (en) Method and apparatus for molecular spectroscopy, particularly for the determination of products of metabolism
JP5734091B2 (en) Biomolecule detection apparatus and biomolecule detection method
JPH037270B2 (en)
JP2007538256A (en) Imaging method and apparatus
US4988630A (en) Multiple beam laser instrument for measuring agglutination reactions
EP3236242A1 (en) Surface plasmon-enhanced fluorescence measurement device and surface plasmon-enhanced fluorescence measurement method
EP2180313A1 (en) Method and apparatus for detection of biomicromolecule
JPWO2019092772A1 (en) Accessories for infrared spectrophotometer
JP4584352B1 (en) Biological component concentration measuring method and measuring apparatus
JPH0731112B2 (en) Method and apparatus for detecting particulate matter
Moreno-Bondi et al. Multi-analyte analysis system using an antibody-based biochip
WO2004005899A1 (en) Method and device for detecting protein association by dispersion constant variation
CN105675561A (en) Method for acquiring diffusive and directional movement information of single polymer molecules in shear fields
WO2012042882A1 (en) Biomolecule detection device and biomolecule detection method
Szymaszek et al. Review of quantitative and qualitative methods for monitoring photopolymerization reactions
JP2005515424A (en) Apparatus and method for imaging
FR2503369A1 (en) SPECTROPHOTOMETER WITH FLUORESCENCE
US7427509B2 (en) Method and apparatus for measuring fluorescence polarization in lab-on-a-chip
JPH03154850A (en) Specimen inspecting device
JP2005181216A (en) Method and apparatus for measuring diffusion of biosubstance by transient diffraction grating method
Kötting et al. Monitoring protein-ligand interactions by time-resolved FTIR difference spectroscopy
JP6711285B2 (en) Detection method, detection device and chip

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase