WO2004005798A1 - Method and device for generating superheated steam and superheated steam processing device - Google Patents

Method and device for generating superheated steam and superheated steam processing device Download PDF

Info

Publication number
WO2004005798A1
WO2004005798A1 PCT/JP2003/005536 JP0305536W WO2004005798A1 WO 2004005798 A1 WO2004005798 A1 WO 2004005798A1 JP 0305536 W JP0305536 W JP 0305536W WO 2004005798 A1 WO2004005798 A1 WO 2004005798A1
Authority
WO
WIPO (PCT)
Prior art keywords
superheated steam
steam
water
chamber
heating
Prior art date
Application number
PCT/JP2003/005536
Other languages
French (fr)
Japanese (ja)
Inventor
Naoto Masuda
Original Assignee
Thermo.Electron Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermo.Electron Co.,Ltd. filed Critical Thermo.Electron Co.,Ltd.
Priority to JP2004519200A priority Critical patent/JP3980595B2/en
Priority to AU2003234776A priority patent/AU2003234776A1/en
Publication of WO2004005798A1 publication Critical patent/WO2004005798A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/16Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil
    • F22G1/165Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil by electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/26Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent helically, i.e. coiled

Definitions

  • the present invention relates to a superheated steam generation method and apparatus for heating a saturated steam to obtain superheated steam, and a superheated steam processing apparatus for performing a necessary process on a processing object using the superheated steam.
  • the present invention relates to a superheated steam generation method and apparatus suitable for generating and utilizing low-pressure superheated steam, and a superheated steam processing apparatus.
  • Such superheated steam is preferable to the environment because it does not pollute the air, and has the characteristic of having an extremely large heat capacity because it has the effect of transmitting heat not only by convection but also by radiation. Attention has been drawn from various directions.
  • a conventional superheated steam generator generates water vapor at 100 ° C (at 1 atm) by boiling water in advance, and then forcibly passes it between heat media such as electric heaters.
  • a method of reheating by passing through is known. Then, the obtained super-steam is sprayed on the object to be treated and subjected to various treatments such as heating, drying, cooling, washing, thawing, dehumidifying, sterilizing and sterilizing.
  • various treatments such as heating, drying, cooling, washing, thawing, dehumidifying, sterilizing and sterilizing.
  • the temperature fluctuates while steam is being sent from the poirer that boils water to the heating section, so that once the heating apparatus is separated from the heating environment, the temperature rapidly decreases.
  • the temperature cannot be controlled with high precision.
  • heat loss occurs while steam is being sent, and the used steam is discharged as it is, which is wasteful.
  • the present invention focuses on the above points, and its purpose is to maintain the high temperature state of the generated superheated steam by heating the saturated steam. Another objective is to improve the accuracy of temperature control of superheated steam and to reduce waste and improve efficiency.
  • a superheated steam generation method includes: a superheated steam generation step of generating superheated steam by heating water, hot water or steam by a heating unit; and a superheated steam generated by the superheated steam generation unit.
  • the superheated steam generator comprises: a superheated steam generation means for generating superheated steam by heating water, hot water or steam by a heating means; and only fine steam particles out of superheated steam generated by the superheated steam generation means.
  • Steam / water separating means for passing the gas; and reheating means for heating the superheated steam passed through the gas / water separating means.
  • the superheated steam processing device of the present invention includes the superheated steam generation device, and the superheated steam generated by the superheated steam generation device is used for a target to be processed. And at least one processing means for performing processing.
  • FIG. 1 is a diagram showing an overall configuration of Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing an example of a detailed configuration of the above embodiment.
  • FIG. 3 is a diagram showing a main part related to the temperature control of the above embodiment.
  • FIG. 4 is a diagram showing Embodiment 2 and Embodiment 3 of the present invention.
  • FIGS. 5A and 5B are diagrams showing Embodiment 4 of the present invention, in which FIG. 5A is a diagram showing the entire configuration, and FIG. 5B is a diagram showing a temperature change of generated steam or superheated steam.
  • FIG. 6 is a diagram showing an example of a detailed configuration of the above embodiment.
  • FIG. 7 is a diagram showing an overall configuration of Embodiment 5 of the present invention.
  • FIG. 8 is a diagram showing an overall configuration of Embodiment 6 of the present invention.
  • FIGS. 9A and 9B are diagrams showing Embodiment 7 of the present invention, in which FIG. 9A is a diagram showing a state of water / water separation, and FIG. 9B is a diagram showing the relationship between the temperature of superheated steam generated by the present invention and the amount of heat. is there.
  • a superheated steam processing apparatus of the present invention includes a superheated steam generator 10 for generating superheated steam, and performs a desired process on a processing target by using the superheated steam obtained thereby. Processing room
  • a cooling device for cooling the collected steam after processing the processing target in the processing chamber 90 130, an oil / water separation tank 160 for separating oil components from the recovered water cooled and liquefied by the cooling device 130. Further, an air supply device 120 for supplying oxygen as needed and a gas supply device 180 for supplying nitrogen or carbon dioxide gas are connected to the processing chamber 90.
  • the superheated steam generator 10 has a three-part configuration.
  • a primary heating chamber 12 for generating superheated steam, and the superheated steam obtained in the primary heating chamber 12 is subjected to steam-water separation to be finely divided.
  • a steam / water separation chamber 50 for obtaining only steam particles is provided, and a secondary heating chamber 70 for reheating the superheated steam, which has passed through the steam / water separation chamber 50 and has been lowered in temperature, to a desired temperature.
  • the primary heating chamber 12 is provided with a poirer section 16 for generating water vapor by heating water or hot water, and for generating superheated steam for further heating the steam obtained by the poirer section 16 to generate superheated steam.
  • Part 18 is divided.
  • the cooling device 130 is provided with a cooling chamber 132 for pre-cooling the high-temperature recovered steam, and a cooling device for further cooling the recovered steam pre-cooled in the cooling chamber 132 with cooling water to be liquefied. ⁇ It is composed of 150.
  • the air supply device 120 includes a compression device 122 for compressing air and a drying device 124 for drying air
  • the gas supply device 180 includes a processing chamber 90. Includes a nitrogen gas cylinder 18 2 and a carbon dioxide gas cylinder 18 4 for sending gas to
  • FIG. 2 is a diagram showing a detailed configuration example of the present embodiment
  • FIG. 3 is a diagram showing a main part related to temperature control of the present embodiment.
  • the superheated steam generator 10 includes a primary heating chamber 12 for generating superheated steam as described above, a steam-water separation chamber 50 for passing only fine superheated steam particles, and a secondary heating chamber for reheating superheated steam. 70.
  • the primary heating chamber 12 is divided into a poiling section 16 and a superheated steam generating section 18 by a partition plate 14, and the entire outside is covered with a heat insulating material 36.
  • the poiler section 16 is provided with a tank 20 for storing water or hot water.
  • the tank 20 has water (or hot water) and steam passages along its outer periphery.
  • a heat-conductive heating tube 22 is wound, and a scale removing drip 26 is provided.
  • One end of the spiral heating pipe 22 is connected to the lower part of the tank 20, and is connected to a water supply pipe 21 or a circulation pipe 60 provided at an upper part of the primary heating chamber 12 or a circulation pipe 60 to the tank 20.
  • the stored water or hot water is supplied into the heating pipe 22.
  • a water supply pipe for directly supplying water or hot water to the heating pipe 22 may be provided separately.
  • a drain trap 28 for discharging the scale in the tube and preventing its deposition is provided in a part of the heating tube 22.
  • a gas burner 24 is provided as a heat source at the bottom of such a poiler section 16, and heats a heating pipe 22 wound around the side of the tank 20 to supply water or water supplied to the inside. Heat the hot water to generate steam.
  • a superheated steam generator 18 is provided above the poirer section 16 with a partition plate 14 as a boundary for good temperature control of the superheated steam.
  • the superheated steam generation section 18 is provided with a heater 30 for further heating the steam in the heating pipe 22 generated in the poiler section 16. Further, a temperature sensor 32 and a pressure sensor 34 for detecting the temperature and pressure of the generated superheated steam are provided at appropriate positions of the heating pipe 22 in the superheated steam generation section 18.
  • the inner diameter of the heating pipe 22 increases from the inflow side of water or hot water (the bottom side of the tank 20 in the illustrated example) to the outflow side of the superheated steam.
  • the pipe diameter increases from the inflow side of water or hot water (the bottom side of the tank 20 in the illustrated example) to the outflow side of the superheated steam.
  • the expansion of the pipe diameter may be performed stepwise or continuously.
  • the pipe diameter on the connection side with the tank 20 that is, the water inflow side
  • the pipe diameter increases toward the upper part of the tank 20 and the superheated steam generator 18. That is, at the outlet 38 of the primary heating chamber 12, the pipe diameter is the largest.
  • the heating tube 22 as described above is connected to a steam-water separation chamber 50 described later through an outlet 38. Sent.
  • a branch pipe 42 is connected to the heating pipe 22 between the outlet 38 and the steam-water separation chamber 50, and the branch pipe 42 is provided with a check valve 1 46.
  • a cooling device 130 described later is connected to the branch pipe 42.
  • the steam-water separation chamber 50 separates only fine steam particles from the superheated steam generated in the primary heating chamber 12, and is a thin tube 5 4 serving as a passage for the superheated steam introduced from the inlet 52.
  • the periphery of the thin tube 54 is filled with cooling water 56.
  • the cooling water 56 is supplied from a water supply port 58 and discharged from a drain port 59.
  • the superheated steam at the time of being introduced from the inlet 52 includes coarse to fine steam particles, and is sent into the cooled narrow tube 54 so that only fine steam particles are sent. Pass through the narrow tube 54.
  • superheated steam has particularly good heat transfer, but also has a high degree of cooling, and when cooled in the capillary 54, large particles of the steam can be liquefied and removed. That is, gas-liquid separation can be performed by the fill effect of the thin tube 54.
  • the temperature of the cooling water 56 that has cooled the thin tubes 54 increases due to heat exchange with superheated steam passing through the inside of the thin tubes 54.
  • Such hot water is sent to the tank 20 of the primary heating chamber 12 by a circulation pipe 60 connected to the drain port 59.
  • the steam-water separation chamber 50 is provided with an outlet 62 for fine superheated steam that has passed through the thin tube 54, and a connection tube 64 is connected to the outlet 62.
  • a branch pipe 66 is connected to the connection pipe 64, and the branch pipe 66 is connected to a cooling device 130 described later.
  • the secondary heating chamber 70 is for reheating the superheated steam whose temperature has been lowered by passing through the above-mentioned steam-water separation chamber 50 to a desired temperature, and is an inlet 72 and an outlet for the superheated steam. In addition to 7.6, there is also a heating facility for reheating.
  • the entire outside of the secondary heating chamber 70 may be covered with a heat insulating material or the like.
  • the superheated steam inlet pipe 78 connected to the outlet 76 of the secondary heating chamber 70 is A pass valve 80 is provided.
  • This bypass valve 80 is also connected to the bypass 82.
  • superheated steam generated by the superheated steam generator 10 is sent to a processing chamber 90 described later by a bypass valve 80.
  • the superheated steam is sent to the bypass 82 by the bypass valve 80.
  • Such a bypass valve 80 may be automatically driven according to the open / closed state of a door (not shown) of the processing chamber 90.
  • the processing chamber 90 is provided with a superheated steam introduction port 92 and an exhaust port 104, and the superheated steam generated by the superheated steam generation device 10 is supplied through the introduction pipe. It is connected to the injection pipe 96 through 78 and the inlet 92.
  • the injection pipe 96 is provided with a plurality of injection ports 98, from which the superheated steam is injected toward the processing object 94.
  • the entire processing chamber 90 is covered with a heat insulating material 102 as necessary.
  • a first temperature sensor 32 is provided on the outlet side of the heating pipe 22 of the superheated steam generator 18, and the injection pipe 9 of the processing chamber 90 is provided.
  • a second temperature sensor 100 is provided in the vicinity of the sixth injection port 98.
  • These two temperature sensors 32, 100 are both connected to the temperature control unit 110.
  • the temperature control unit 110 is also connected to the heater 30 of the primary heating chamber 12. That is, the temperature control unit 110 controls the heater 30 based on the detected temperatures of the temperature sensors 32 and 100 to keep the temperature of the superheated steam emitted into the processing chamber 90 constant. It is configured to perform control.
  • the temperature control section 110 may be connected to the heater 74 of the secondary heating chamber 70 so that the heating control in the secondary heating chamber 70 is performed as necessary.
  • an air supply device 120 for supplying air into the processing chamber 90 is connected to the processing chamber 90 via an air supply pipe 126.
  • the air supply device 120 is composed of a compression device 122 and a drying device 124, and the dry air compressed by these components is supplied into the processing chamber 90 via an air supply pipe 126. It is. It is not necessary to provide such an air supply device 120, but depending on the processing object 94, the processing level can be adjusted. For example, in the case of baking bread in the processing room 90, by supplying an appropriate amount of oxygen contained in the air, it is possible to obtain bread with a suitable degree of brown and good baking.
  • a gas supply device 180 for supplying nitrogen gas or carbon dioxide gas is connected to the processing chamber 90 via a pipe 186.
  • the gas supply device 180 includes a nitrogen gas cylinder 182 and a carbon dioxide gas cylinder 184. Such a gas supply device 180 does not necessarily need to be provided like the air supply device 120 described above. However, when it is not necessary to brown the object to be treated 94 or when oxygen is not necessary (for example, in the case of the air-conditioning system). ( ⁇ treatment, safety explosion-proof treatment), etc., the desired treatment can be performed by supplying nitrogen gas or carbon dioxide gas.
  • the exhaust port 104 of the processing chamber 90 as described above is provided with an exhaust pipe 106 for collecting the superheated steam after the treatment, and the exhaust side of the exhaust pipe 106 is cooled. Connected to device '130.
  • the cooling device 130 is composed of a cooling chamber 132 for pre-cooling the recovered steam and a cooling tank 150 for further cooling the pre-cooled recovered steam with water to liquefy it.
  • the cooling chamber 13 2 is provided with a pre-heating chamber 1 36 in addition to an inlet 1 34 and an outlet 1 40.
  • the preheating chamber 1336 has a heater 1338 for reheating superheated steam supplied through a branch pipe 66 provided on the outlet 62 side of the steam separation chamber 50. Is provided. If the recovered steam is very hot (for example, 150 ° C or higher), it is effective to mix the superheated steam with a lower temperature for pre-cooling.
  • the preheating chamber 1336 is for obtaining a relatively low-temperature superheated steam for the precooling, and sends the heated superheated steam to the cooling chamber 1332 to be mixed with the high-temperature recovered steam. For example, the superheated steam heated to about 120 ° C. in the preheating chamber 1336 is mixed with the high temperature recovered steam of about 150 to 250 in the cooling chamber 132.
  • the recovered steam pre-cooled in the cooling chamber 132 is sent to the cooling pipe 150 of the cooling tank 150 via the outlet 140 and the connecting pipe 142.
  • connecting pipe 1 4 2 Is connected to a branch pipe 42 provided with a check valve 1 46.
  • the check valve 146 is provided so that the steam can be sent only from the connecting pipe 142 to the branch pipe 422 on the superheated steam generator 100 side, and the collected steam is supplied to the check valve 146. If the recycled steam can be used, the recovered steam is sent to the superheated steam generator 10 side.
  • the cooling tank 150 is provided with a cooling pipe 154 serving as a passage for the recovered steam precooled in the cooling chamber 132, and cooling water 155 for cooling the cooling pipe 154. Is filled with two.
  • the cooling pipe 154 is formed by forming a heat conductive thin tube into a stub shape, and is formed by connecting, for example, a U-shaped tube.
  • the recovered steam introduced from the connecting pipe 14 2 through the inlet 1 56 is supplied to the cooling pipe 1
  • cooling water 15 2 While passing through 54, it is cooled and liquefied by the cooling water 152, and is sent to an oil-water separation tank 160 described later as recovered water. It should be noted that the cooling water 15 2, which has been heated and used for cooling, may be sent to the tank 20 of the primary heating chamber 12 by a circulation pipe (not shown) or the like to reuse the cooling water. Good.
  • the oil / water separation layer 160 separates oil mixed in the recovered steam or recovered water after the processing of the object 94 in the processing room 90.
  • the oil / water separation tank 160 includes a water storage chamber 164 and a separation chamber 166 separated by a partition wall 162. These reservoirs 1
  • the recovered water liquefied in the cooling tank 150 is first collected in the separation chamber 166 via the inlet 168.
  • the separation chamber 166 separates the oil component by specific gravity, and the upper oil component is discharged to the outside from the discharge pipe 170.
  • the oil-water separation tank 160 as described above is also provided with an exhaust blower 1702.
  • Water (or hot water) is supplied to the water tank 20 from the water supply pipe 21 or the circulation pipe 60.
  • a required amount of descaling agent is injected.
  • the descaling agent for example, sodium carbonate is used, and the type and injection amount of the agent may be appropriately determined according to the water quality.
  • the heating pipe 22 is heated by the gas burner 24. As a result, the temperature of the water in the heating tube 22 rises, and eventually becomes water vapor.
  • the mud in the heating pipe 22 is discharged from the drain trap 28.
  • the steam rising in the heating pipe 22 is further heated by the heater 30 in the superheated steam generator 18 to be, for example, a high-temperature, low-pressure superheated steam of about 250.
  • a high-temperature, low-pressure superheated steam of about 250.
  • the temperature and pressure of the superheated steam are detected by a temperature sensor 32 and a pressure sensor 34.
  • the superheated steam obtained in the primary heating chamber 12 passes through the thin tube 54 cooled in the steam-water separation chamber 50, so that only fine steam particles are sorted out.
  • the cooling water 56 used at this time is sent to the tank 20 by the circulation pipe 60 and reused. Since the temperature of the fine superheated steam that has passed through the steam-water separation chamber 50 is reduced by the cooling water 56, the desired temperature, for example, 1 It is reheated to about 100 to 200 ° C.
  • the superheated steam obtained in the secondary heating chamber 70 is supplied to the processing chamber 90 via the bypass valve 80 during the processing.
  • superheated steam is blown from the injection pipe 96 to the processing object 94, and a desired processing such as heating, drying, and sterilization is performed.
  • compressed air is supplied from the air supply device 120 into the processing chamber 90 as necessary to adjust the processing level, and the gas supply device is used. It is also possible to supply nitrogen gas or carbon dioxide gas from 180.
  • the temperature of the superheated steam in the superheated steam generator 18 of the primary heating chamber 12 is detected by the temperature sensor 32. Further, the temperature of the superheated steam near the injection port 98 of the processing chamber 90 is detected by the temperature sensor 100.
  • the temperature control unit 110 controls the temperature of the superheated steam with reference to the detection results of the temperature sensors 32 and 100. More specifically, when the temperature of the superheated steam in the processing chamber 90 is determined, the temperature of the superheated steam at the output of the superheated steam generator 18 is also determined. Accordingly, the temperature of the superheated steam at the output section of the superheated steam generation section 18 is measured by the temperature sensor 32, and the amount of heating by the heater 30 is controlled based on the measurement result.
  • the amount of current is controlled. Specifically, when the temperature of the temperature sensor 32 is lower than the desired value, the amount of energization is increased to increase the temperature of the superheated steam, and conversely, when the temperature of the temperature sensor 32 is higher than the desired value, the amount of energization is decreased to reduce the superheated steam. Lower the temperature of However, what finally requires a predetermined temperature is the superheated steam in the processing chamber 90. Therefore, in this example, temperature control by another temperature sensor 100 is performed. That is, correction of the temperature control based on the detection result of the other temperature sensor 32 is performed based on the detection result of the temperature sensor 100. The temperature of superheated steam drops rapidly when it leaves the heating environment.
  • the temperature is significantly reduced because the superheated steam generated in the primary heating chamber 12 is cooled in the steam-water separation chamber 50 to pass only fine steam particles. Therefore, when the temperature control of the superheated steam is performed only by referring to the detection result of the temperature sensor 32, it is not possible to properly follow the temperature fluctuation.
  • the temperature of the superheated steam in the superheated steam generator 18 is detected by the temperature sensor 32, and the heater 30 is controlled.
  • a temperature sensor 100 is installed in the processing chamber 90, the temperature of the superheated steam in the processing chamber 90 is detected, and the heater 30 is controlled so that the temperature also becomes a target value. To correct the temperature.
  • the treated steam is sent to the cooling device 130 via the exhaust port 104 and the exhaust pipe 106.
  • the recovered steam is first pre-cooled in a cooling chamber 132, and then sent to a cooling tank 150 where it is cooled and liquefied, for example, into 8 Ot or less of recovered water.
  • a cooling tank 150 where it is cooled and liquefied, for example, into 8 Ot or less of recovered water.
  • the relatively low-temperature (for example, about 120 ° C) superheated steam for cooling generated by the preheating chamber 1336 is used for the cooling chamber 1332 Where it is mixed with the recovered steam, for example, at 150 ° C or less.
  • Pre-cooling is performed as follows.
  • the recovered water liquefied by the cooling device 130 is sent to the separation chamber 166 of the oil-water separation tank 160.
  • the separation chamber 166 the upper oil component is discharged from the discharge pipe 170.
  • the water from which the oil component has been removed is sent from the water storage chamber 164 to a tank 20 of the primary heating chamber 12 via a pipe (not shown) or the like, and is circulated for use. Degradation is reduced. Of course, the water remaining in the water storage chambers 16 4 may be discharged as it is.
  • the superheated steam is sent to the bypass 82 by the bypass valve 80.
  • a part of the bypassed steam is sent to the cooling device 130, where it is cooled and liquefied.
  • the superheated steam generator 10 is used to re-heat the superheated steam that has passed through the primary heating chamber 12 that generates the superheated steam, the steam-water separation chamber 50 that allows only the fine superheated steam to pass, and the steam-water separation chamber 50. Since the secondary heating chamber 70 to be heated is used, fine and high-temperature superheated steam can be stably supplied.
  • the desired treatment can be performed on the object to be treated 94 in a short time.
  • functions such as an oven, a range, and rice cooking can be provided.
  • bread can be manufactured in 10 minutes and amppan in 3 minutes, which conventionally required 65 minutes, and cooking time can be greatly reduced.
  • Temperature sensors 32 Since 100 is provided and the heater 30 is controlled by the temperature control unit 110 based on these detection results, highly accurate temperature control can be performed.
  • the processing rate can be adjusted by the supply amount of air.
  • the object to be processed 94 is bread, cookies, castella, gratin, grilled fish, grilled meat, etc.
  • the degree of treatment can be adjusted by the way air is introduced.
  • nitrogen gas or carbon dioxide gas is supplied to the processing chamber 90 by the gas supply device 180, when the processing object 94 is food, oxidation prevention by nitrogen gas, semi-living food by carbon dioxide gas, etc. Bacteria can be controlled.
  • the superheated steam processing apparatus has one processing chamber 90, but the present embodiment is an example including a plurality of processing chambers.
  • the same reference numerals are used for components that are the same as or correspond to the above-described embodiments (the same applies to the following embodiments).
  • a plurality of processing chambers are provided for performing a desired process on a processing target with the superheated steam generated by the superheated steam generator 10.
  • the first processing chamber 200A, the second processing chamber 200B, and the third processing chamber 200C are configured.
  • These processing chambers 200 A to 200 C are provided with preheating chambers 202 A to 202 C for further heating the superheated steam generated by the superheated steam generator 10.
  • the preheating chambers 202A to 202C are provided with heaters 204A to 204C, respectively.
  • These preheating chambers 202A to 202C are particularly effective when the distance from the superheated steam generator 10 to the processing chamber is long, and the temperature decreases when passing through pipes and the like. Excessive The hot steam can be heated again to the desired temperature.
  • Each of the preheating chambers 202A to 202C is also provided with a temperature sensor connected to the temperature control unit 110 as in the above-described embodiment.
  • the temperature of the superheated steam heated at 2 C may be controlled. By doing so, it becomes possible to set the processing temperatures in the processing chambers 200 A to 200 C to different temperatures. For example, 120 ° C in the first processing chamber 200 A, 200 ° C in the second processing chamber 200 B, and 300 ° C in the third processing chamber 200 C. .
  • a plurality of processing chambers are provided, and a preliminary heating chamber for reheating the superheated steam supplied to each of the processing chambers is provided. Temperature control becomes possible.
  • the energy of the superheated steam can be used efficiently.
  • the processing target may be configured to pass through the first processing chambers 200 A to 200 C in order and be processed, or to be processed in any one of the processing chambers. It may be.
  • the superheated steam after subjecting the object to be treated in each of the treatment chambers 200 A to 200 C to a desired treatment is discharged to the cooling device 130, the oil-water separation tank via the exhaust pipe in the same manner as in the above-described embodiment.
  • Sent to 160 also, in the present embodiment, an air supply device 120 and a gas supply device 180 are provided as necessary, and each of the first to third processing chambers 200 A to 200 C is provided. Alternatively, a desired gas may be supplied to the air conditioner.
  • FIG. 1 shows another example of the processing chamber.
  • the processing is performed by directly blowing superheated steam on the processing target 94 using the injection pipe 96 provided in the processing chamber 90.
  • the processing chamber 210 of the present embodiment is provided with a frame 2 12 for preventing the superheated steam (or the wind of the superheated steam) injected from the injection pipe 96 from directly hitting the processing object 94. Is provided You.
  • the frame 212 surrounds the entire object 94 to be treated, and is made of a porous plate or the like in which many holes 214 are formed. Providing such a frame 2 12 is effective when it is necessary to prevent the superheated steam from directly hitting the object 94 to be treated. Also, for example, when the processing chamber 210 is a conveyor furnace that transports the processing object 94 by a conveyor, by providing such a frame 2 12, for example, at the processing object 94, for example, The wind speed can be about 0. S mZ sec.
  • FIG. 5 (A) is a diagram showing the overall configuration of the present embodiment
  • FIG. 5 (B) is a diagram showing temperature changes of steam and superheated steam generated by the present embodiment
  • FIG. 6 is a diagram showing a detailed configuration example of the present embodiment.
  • the superheated steam generated in the primary heating chamber 12 is passed through the steam-water separation chamber 50 and the secondary heating chamber 70 in this order. It was done.
  • the superheated steam processing apparatus of the present embodiment is composed of a superheated steam generator 300, a processing chamber 350, and a recovery tank 370. ing.
  • the superheated steam generator 300 includes a poirer chamber 302 that heats water or hot water to generate steam, a steam-water separation chamber that cools steam or superheated steam and allows only fine vapor particles to pass through and separates.
  • the water vapor generated in the poirer chamber 302 is sent to the steam-water separation chamber 310, where only fine water vapor particles are sorted out and sent to the primary heating chamber 324 of the superheated steam generator 320.
  • the steam is heated here to become superheated steam.
  • the superheated steam generated in the primary heating chamber 3 2 4 is sent again to the steam-water separation chamber 3 10, where only fine particles are sorted out and sent to the secondary heating chamber 3 3 4.
  • Reheating of the superheated steam is performed to a temperature suitable for treatment at 350.
  • the recovered steam after the processing target is processed in the processing chamber 350 is sent to the recovery tank 370, where it is cooled and liquefied, and is reused in the boiler chamber 302.
  • the superheated steam generator 300 has a three-part configuration including a poirer chamber 302, a steam-water separation chamber 310, and a superheated steam generator 320.
  • the poiler chamber 302 is provided with a heater 304 for heating water or hot water to generate steam, and is separated from the steam / water separation chamber 310 by a partition plate 36.
  • the poirer chamber 302 has an outlet for generated steam 308 and is connected to the recovery tank 370 by connecting pipes 372 and 374.
  • the steam-water separation chamber 310 separates only fine steam particles from the superheated steam generated in the superheated steam generation section 320 in addition to the steam generated in the poiler chamber 302.
  • the narrow tube 3 1 6 connecting the outlet 3 0 8 with the inlet 3 2 4 of the primary heating chamber 3 2 6, the outlet 3 3 2 of the primary heating chamber 3 2 4 and the inlet of the secondary heating chamber 3 3 4
  • a thin tube 3 18 connecting the 3 3 6 is provided.
  • the steam-water separation chamber 310 is filled with the cooling water 312 as in the first embodiment described above, and cools the steam or superheated steam passing through the narrow tube 316 or 318. It plays the role of a filter that passes only fine vapor particles.
  • the primary heating chamber 3 2 4 and the secondary heating chamber 3 3 4 of the superheated steam generating section 3 0 2 are separated by a heat insulating partition plate 3 2 2.
  • the primary heating chamber 3 2 4 is a chamber for heating the fine steam passing through the steam separation chamber 3 10 to generate superheated steam.
  • a plurality of thermally conductive partitions 3330 are provided alternately at predetermined intervals, thereby forming a zigzag passageway 331.
  • a heater 3288 for heating the steam is provided so as to penetrate the partition wall 330 and cross the passage 331. The distance between the partition walls 330 is wider as going from the steam introduction side (inlet 3236 side) to the superheated steam discharge side (outlet 3332 side).
  • a combination of the boiler room 302 and the primary heating room 3 2 4 corresponds to the primary heating room 12 of the first embodiment described above, and furthermore, a space between the boiler room 302 and the primary heating room 3 2 4 Has a configuration in which a steam-water separation chamber 310 is interposed.
  • the secondary heating chamber 3 3 4 generates superheated steam that has been generated in the primary heating chamber 3 2 4 and sent to the steam-water separation chamber 3 10, and the temperature of which has dropped sharply. For reheating to a suitable desired temperature. Its configuration is basically the same as that of the primary heating chamber 3 2 4, and includes a plurality of partition walls 3 4 0, a serpentine passage 3 4 1 formed thereby, and a heater 3 3 8 for heating. Have. In addition, an outlet 342 for sending superheated steam to the processing chamber 350 is provided. Actually, similarly to Embodiment 1 described above, a temperature sensor or the like is provided to control the temperature of the superheated steam.
  • the processing chamber 350 performs a desired processing on the processing target 360 by using superheated steam introduced through the outlet 342 of the secondary heating chamber 334. However, if necessary, the whole is covered with thermal insulation material.
  • the superheated steam supplied from the secondary heating chamber 334 is sent into the processing chamber 350 by the introduction pipe 352.
  • the introduction pipe 352 includes a stagnant portion 354 having a large diameter for retaining the superheated steam, and a nozzle portion 356 provided continuously at one end of the stagnant portion 354. It is composed of The nozzle portion 356 has an abruptly smaller pipe diameter than the stagnant portion 354, and the injection ports 358 are formed at appropriate intervals.
  • the superheated steam introduced from the secondary heating chamber 334 temporarily stays in the stagnant section 354, and then is directed from the nozzle section 356 having a small diameter to the processing object 360. It is spouted vigorously. That is, it can be considered that the provision of the staying portion 354 pressurizes the superheated steam.
  • the processing chamber 350 is provided with an exhaust port 364 for collecting the superheated steam after the processing, and the exhaust port 364 is provided with an exhaust pipe 3 connected to the recovery tank 370. 6 6 is connected.
  • the recovered steam recovered through the exhaust pipe 366 is cooled while passing through the exhaust pipe 366 or in the recovery tank 370 to become hot water, and stored in the recovery tank 370.
  • the exhaust Although the exhaust port 364 of the processing chamber 350 is directly connected to the collection tank 370 by the pipe 366, if necessary, the cooling device 130 of Embodiment 1 described above and the oil water A device similar to the separation tank 160 may be provided to cool the recovered steam or the recovered water, separate the oil, and then send it to the recovery tank 370.
  • the recovery tank 370 is connected to the poiler chamber 302 by connecting pipes 372 and 374, and the water or hot water stored in both is communicated via the lower connecting pipe 372. are doing. As a result, the water or hot water in the poiler room 302 cools the recovery tank 370 and absorbs its heat to increase the temperature, so that the heat of the recovered steam or recovered water can be used effectively. .
  • the steam introduced into the primary heating chamber 3 24 after passing through the steam / water separation chamber 3 10 is heated by the heat exchanger 3 2 8 and rapidly rises in temperature, for example, to about 300 ° C. It becomes superheated steam (P2-P3).
  • the generated superheated steam keeps a high temperature while passing through the primary superheater chamber 3 2 4 (P 3 to P 4), but the steam-water separation chamber 3 10 through the outlet 3 3 2 and the thin tube 3 18 The temperature drops sharply when sent to (P4 ⁇ P5). This is because superheated steam has particularly good heat transfer, but also has a high degree of cooling, whereby gas-liquid separation can be performed by the filter effect of the thin tubes 318.
  • the superheated steam (P5 to P6) which has passed through the capillary tube 318 and whose temperature has dropped, is sent to the secondary heating chamber 334, where it is used in the processing chamber 350 by the HI-HIGA 338. It is heated to a suitable temperature, for example, about 120 ° C (P6 to P7), and sent to the inlet pipe 352 of the processing chamber 350 while maintaining that temperature (P7 to P7). . Introductory pipe 3 5 2
  • the superheated steam sent to the storage portion 354 is temporarily stored in the storage portion 354, then sent to the nozzle portion 356, and injected from the injection port 358 toward the processing target 360. At this time, after being once stored in a wide place, it is sent to the nozzle portion 356 having a small pipe diameter, whereby the effect of pressurizing the superheated steam can be obtained.
  • the superheated steam is blown from the injection port 358 to the processing object 360, and desired processing such as heating, drying, and sterilization is performed.
  • desired processing such as heating, drying, and sterilization is performed.
  • an air supply device and a gas supply device are provided as necessary in the same manner as in the first embodiment, and adjustment of the processing is performed. You may do so.
  • the treated steam is sent to the recovery tank 370 through the exhaust port 364 and the exhaust pipe 366, and is cooled and liquefied in the recovery tank 370 or the exhaust pipe 366.
  • the collection tank 370 and the poirer chamber 302 communicate with each other, the collected steam (or collected water) is cooled by the water or hot water in the poirer chamber 302, and at that time, Due to the heat exchange, the temperature of the water or hot water in the boiler chamber 302 rises. That is, the calorie of the recovered steam can be effectively used.
  • the effects of the present embodiment are basically the same as those of the above-described first embodiment.
  • the steam-water separation chamber 3 10 Before the steam is heated to generate the superheated steam, the steam-water separation chamber 3 10 Pass it through and send only water vapor with fine particles to the primary heating chamber 3 2 4. Further, since the superheated steam generated in the primary heating chamber 324 is separated into steam and water in the steam-water separation chamber 310, and reheated in the secondary heating chamber 334, the structure is further improved. Fine, high-temperature superheated steam can be supplied stably. In addition, since the steam recovery tank 170 and the poirer chamber 302 are connected, the calorie of the recovered steam can be reused.
  • FIG. 1 is a diagram illustrating an overall configuration of the present embodiment.
  • This embodiment is a modification of the fourth embodiment, in which the superheated steam generator 300 and the processing chamber 350 are separated. Therefore, in order to prevent the temperature of the superheated steam generated by the superheated steam generator 300 from suddenly decreasing before reaching the processing chamber 350 through a pipe (not shown) or the like, the processing chamber At 350, a tertiary heating chamber 400 is provided. The superheated steam sent from the superheated steam generator 300 is first reheated to a desired temperature in the tertiary heating chamber 400 and then sent to the processing chamber 350.
  • the treated steam is recovered in the recovery tank 370 in the same manner as in the above-mentioned Embodiment 4, but the longer the recovery pipe, the lower the temperature is. And then sent to the steam-water separation chamber 310.
  • a heating unit may be used in the same manner as in the fourth embodiment, or another heating unit such as a gas panner may be used.
  • a gas panner may be used.
  • FIG. 8 is a diagram showing the overall configuration of the present embodiment.
  • the steam generated in the boiler chamber 302 and the superheated steam generated in the primary heating chamber 324 are passed through one steam-water separation chamber 310.
  • the present embodiment is an example in which a plurality of steam separation chambers are provided.
  • the superheated steam generator 410 of the present embodiment is composed of a boiler room 4 11, three heating rooms 4 12, 4 16, 4 20 and two steam-water separation chambers 4 1 4 , 4 18.
  • the steam generated in the poiling chamber 411 is first sent to the primary heating chamber 412 to be reheated, and becomes superheated steam.
  • the superheated steam is sent to the first steam / water separation chamber 414, where only the fine steam particles are sorted out and sent to the secondary heating chamber 416.
  • the superheated steam whose temperature has been lowered by the gas / water separation is heated again, and further cooled in the second gas / water separation chamber 418 to sort fine particles.
  • a heat exchanger 424 is further provided in order to reuse the calorific value of the steam after performing the desired processing on the object to be processed in the processing chamber 422.
  • the heat exchanger 4 2 4 is filled with cooling water 4 2 6, and the recovered steam exhausted from the processing chamber 4 2 2 is supplied to the cooling pipe 4 2 8 in the cooling water 4 2 6.
  • the cooling of the recovered steam and the generation of water vapor by heating the cooling water 426 can be simultaneously realized by heat exchange.
  • the recovered steam cooled and liquefied is discharged, and the generated steam is sent to the primary heating chamber 412 to be reused.
  • a valve 4330 is provided at a position closer to the poirer chamber 411 than the confluence of the water vapor generated from the poiler chamber 411 and the heat exchanger 4 2 4, the heat exchanger 4 2 When a sufficient amount of steam is supplied from 4, the supply of steam from the poiler chamber 4 11 can be cut off.
  • the two steam-water separation chambers 4 14 and 4 18 are provided to select the particle size of the superheated steam. Stable supply is possible. Furthermore, it is also possible to reuse the calorific value of the recovered steam after using it for processing.
  • FIG. 2A shows the state of steam-water separation according to the present embodiment.
  • the steam-water separation chamber 450 of the present embodiment includes a cooling chamber 452 for cooling the superheated steam, and a cooling tank 4554 for cooling the entire cooling chamber 452.
  • the cooling tank 454 is filled with a cooling medium such as water.
  • the superheated steam generator 460 is composed of a primary heating chamber 462 and a secondary heating chamber 470.
  • the primary heating chamber 4 62 is provided with an inlet 4 6 4 for steam or superheated steam, an outlet 4 6 8, and a heating heater 4 6 6.
  • the secondary heating chamber 4 A superheated steam inlet 474, outlet 476, and heater 472 are provided. Further, the cooling chamber 4 5 2 is provided at an outlet 4 6 8 of the primary heating chamber 4 6 2. A nozzle 456 for injecting superheated steam vigorously is provided inside. The superheated steam injected into the cooling chamber 452 is cooled by the air in the room, and only fine steam particles are sorted out, and then, to the secondary heating chamber 470 through the large-diameter inlet 474. Sent. That is, in the present embodiment, the air itself in the cooling chamber 452 is used as a direct cooling medium. The effects and operations of the present embodiment are the same as those of the above-described embodiment.
  • FIG. 9 shows the calorific characteristics of the superheated steam generated in the present invention.
  • the figure shows the relationship between the temperature of steam and the amount of heat, with the horizontal axis representing temperature (° C) and the vertical axis representing energy (heat) (k ca l Z c c).
  • line A shows the characteristics of the saturated steam
  • line B shows the characteristics of the low-pressure superheated steam generated by the conventional method
  • line C shows the characteristics of the superheated steam generated by the present invention.
  • these three lines intersect at around 11 °, and the ⁇ ⁇ line of the saturated steam reaches a critical state at around 374 ° C, and at around 1 ° C until then.
  • the rate of increase in the amount of energy is about 1 ca1 / ° C ⁇ cc.
  • the energy increase rate of the low pressure superheated steam for the B line is about 7 ca 1 / ° C ⁇ cc, and the energy increase rate for the C line of the superheated steam of the present invention is about 12 ° C until it reaches 120 ° C. 1 3 3 ca 1 Z ° C ⁇ cc.
  • the superheated steam of the present invention can obtain a remarkably large amount of energy and an evaporation rate even at a low temperature of about 120 ° C to 200 ° C, as compared with the saturated steam and the low-pressure superheated steam. .
  • the superheated steam according to the present invention has only 120 heats equivalent to the heat that normal low-pressure superheated steam can have near 300.
  • the molecular structure of the steam changes (miniaturization).
  • the water content in the gas is reduced to about 0.1% or less, it is possible to realize a heat transfer power and an evaporation rate several times higher than that of saturated steam or ordinary low-pressure superheated steam.
  • the superheated steam of the present invention the same degree of heat transfer is possible in substantially the same time as when a sample is placed in a liquid at a certain temperature.
  • the present invention has many embodiments, and can be variously modified based on the above disclosure. For example, the following are included.
  • the primary heating chamber 12 in Embodiment 1 is an example, and may have any configuration as long as it can generate superheated steam.
  • the heating pipe 22 is wound around the outer periphery of the tank 20, the gas parner 24 is provided below the tank 20, and the heater 30 is provided above the tank 20.
  • a plurality of heating means may be provided, such as providing gas burners at the top, bottom, left, and right.
  • various known heating means may be used.
  • the tank may be formed in a cylindrical shape, and a spiral heating tube 22 may be provided inside the tank, or a structure in which the spiral heating tube is sandwiched between the inner and outer tanks may be employed.
  • Steam-water separation by the steam-water separation chambers 50, 310, 414, 418 is also an example, and the design can be changed as appropriate to achieve the same effect.
  • steam-water separation is performed using cooling water.
  • air may be used as a cooling medium, Other gases may be used.
  • a trap or the like for discharging or reusing the drain water separated from water and water may be provided.
  • the steam and the superheated steam are separated into steam and water once each.
  • another heating chamber is provided, and the steam and the heated steam are reciprocated a plurality of times. Is also good.
  • the gas may be passed through one gas / water separation chamber, or the same number of steam / water separation chambers as the heating chamber may be provided, and the gas may be passed in order. This makes it possible to supply stable superheated steam with small steam particles.
  • the processing chambers 90, 210, 350, 422, and the like in the above embodiment are also examples, and may be appropriately changed as necessary.
  • processing inside 90 A conveyor or the like on which the object 94 is placed may be provided to perform various processes.
  • three processing chambers are provided.
  • the number of processing chambers can be increased or decreased according to the capacity of the superheated steam generator 10.
  • the plurality of processing chambers are arranged in series in the above embodiment, they may be arranged in parallel if necessary.
  • the staying portion 354 is formed in the superheated steam introduction pipe 352 so as to pressurize the superheated steam to be injected.
  • Various pressurizing mechanisms may be used.
  • the temperature control of the superheated steam is performed using the two temperature sensors 32 and 100. However, this does not prevent the use of more temperature sensors.
  • the method is not limited to the above-described temperature control method as long as superheated steam at a desired temperature can be finally obtained in the processing chamber 90.
  • the superheated steam after the treatment is recovered, but this recovery processing may be performed as needed.
  • the oil / water separation chamber 160 for removing the oil component contained in the recovered steam is provided.
  • the separation chamber 1 is not necessarily provided. It is not necessary to provide 6 and only the water storage chambers 16 need to be provided.
  • the objects to be treated 94 and 360 are, in addition to the food products such as bread mentioned above, for example, wastewater, industrial products, their parts, clothing, chemicals, various raw materials, waste, medical supplies and medical supplies. Various materials such as waste can be applied, and solids and liquids as well as powders may be used.
  • various forms of processing such as drying, cooling, washing, sintering, thawing, dehumidifying, steaming, cooking, sterilizing, and heating are possible.
  • air is used at the time of the superheat treatment.
  • oxygen may be used.
  • oxygen it is possible to efficiently perform processes such as browning food, incinerating the object to be treated, and sterilizing the object to be treated.
  • the gas supplied by the gas supply device 180 is also an example, and a gas other than nitrogen or carbon dioxide may be supplied at the time of processing.
  • the above embodiments may be combined. For example, instead of generating steam in the boiler chamber 302 of the fourth embodiment, a superheated steam is generated using the same one as the primary heating chamber 12 of the first embodiment, so that the steam-water separation chamber 31 The steam-water separation of superheated steam by zero may be performed twice.
  • superheated steam generated by heating water, hot water or steam is separated into steam and water, and only the fine steam particles obtained thereby are reheated.
  • the temperature of the superheated steam is measured and controlled at a plurality of locations, the temperature of the superheated steam can be satisfactorily maintained at a desired value.
  • any one of oxygen, nitrogen, and carbon dioxide gas is supplied at the time of processing as required, so that the processing rate can be adjusted by the supply amount of these gases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A method and a device for generating superheated steam capable of stably supplying fine superheated steam without lowering a temperature and increasing the accuracy of temperature control, the method comprising the steps of feeding water to a heating tube (22) in a primary heating chamber (12), heating the water by a gas burner (24) in a boiler part (16) to generate steam, heating the steam by heaters (30) in a superheated steam generating part (18) to generate superheated steam, allowing only fine steam particles among the superheated steam to pass through a steam separating chamber (50), and re-heating the particles to a specified temperature in a secondary superheating chamber (70) and feeding to a processing chamber (90) to apply a necessary processing to a processed object (94), while either of compressed air, nitrogen gas, and carbon dioxide gas is fed, as necessary, from an air feeding device (120) or a gas feeding device (180) to the processing chamber (90), wherein the heaters (30) are controlled by a temperature control part (110) based on the detected results of temperature sensors (32) and (100) installed on the output side of the heating tube (22) and inside the processing chamber (90), whereby an accurate temperature control can be performed.

Description

過熱蒸気発生方法及びその装置, 過熱蒸気処理装置  Superheated steam generation method and device, superheated steam treatment device
「技術分野」 "Technical field"
本発明は、 飽和蒸気を加熱して過熱蒸気を得る過熱蒸気発生方法及びその 装置, 過熱蒸気を利用して処理対象に必要な処理を行う過熱蒸気処理装置に 関し、 更に具体的には、 高温低圧の過熱蒸気の生成及び利用に好適な過熱蒸 気発生方法及びその装置, 過熱蒸気処理装置に関するものである。  The present invention relates to a superheated steam generation method and apparatus for heating a saturated steam to obtain superheated steam, and a superheated steam processing apparatus for performing a necessary process on a processing object using the superheated steam. The present invention relates to a superheated steam generation method and apparatus suitable for generating and utilizing low-pressure superheated steam, and a superheated steam processing apparatus.
「背景技術」 "Background technology"
一般に、 空気中には、 飽和蒸気圧を限度とする水蒸気が浮遊することが可 能であるが、 逆に、 その限度以上に水蒸気を蒸発させることは困難である。 これは、 雨天のときに洗濯物が乾きにくいことなどからも、 容易に理解でき る。 一方、 水を沸騰させて水蒸気を発生させ、 この水蒸気を更に加熱して過 熱蒸気とすると、 温度とともに蒸発速度が直線的に大きくなる。 これは、 洗 濯物の現象とは相反する現象である。  Generally, water vapor with a limit of saturated vapor pressure can float in the air, but it is difficult to evaporate water vapor beyond that limit. This can be easily understood from the fact that laundry does not dry easily in rainy weather. On the other hand, when water is boiled to generate steam, and this steam is further heated to superheated steam, the evaporation rate increases linearly with the temperature. This is a phenomenon that is inconsistent with the washing phenomenon.
通常であれば、 空気中の水蒸気が増加すると水の蒸発速度は低下し飽和状 態.を呈するのであるが、 1 0 ο を越えた逆転点と呼ばれる温度以上になる と、 蒸発速度が直線的に増加し、 いわゆる飽和状態を呈することなく、 容器 内に充満するようになる。 その結果、 容器内の気体においては、 全体として 高い熱容量と熱伝導性を有する水蒸気の性質が、 熱容量が低く断熱性を有す る空気を凌駕する性質を帯びるようになる。  Normally, as the amount of water vapor in the air increases, the evaporation rate of water decreases and becomes saturated.However, when the temperature rises above a temperature called the reversal point exceeding 10 ο, the evaporation rate becomes linear. To fill the container without exhibiting the so-called saturation state. As a result, in the gas in the container, the properties of water vapor having a high heat capacity and thermal conductivity as a whole take on the properties of air having a low heat capacity and adiabatic properties.
このような過熱蒸気は、 空気を汚さないため環境に好ましく、 対流のみな らず放射によっても熱を伝達する作用があるために熱容量が非常に大きいと いう特徴があり、 従来にない加熱媒体として各方面から注目されている。 従 来の過熱蒸気発生装置としては、 予め水を沸騰させて 1 0 0 °C ( 1気圧の場 合) の水蒸気を生成した後、 これを電気ヒー夕などの熱媒体の間を強制的に 揷通することによって再加熱させる方法が知られている。 そして、 こうして 得られた過 蒸気は処理対象に吹き付けられて、 加熱, 乾燥, 冷却, 洗浄, 解凍, 除湿, 殺菌 ·滅菌などの種々の処理を対象物に施す。 例えば、 特開平Such superheated steam is preferable to the environment because it does not pollute the air, and has the characteristic of having an extremely large heat capacity because it has the effect of transmitting heat not only by convection but also by radiation. Attention has been drawn from various directions. A conventional superheated steam generator generates water vapor at 100 ° C (at 1 atm) by boiling water in advance, and then forcibly passes it between heat media such as electric heaters. A method of reheating by passing through is known. Then, the obtained super-steam is sprayed on the object to be treated and subjected to various treatments such as heating, drying, cooling, washing, thawing, dehumidifying, sterilizing and sterilizing. For example,
3— 2 6 2 4 4 5号では、 過熱蒸気を利用して食品のフライ加工を行ってお り、 特開平 4— 1 3 8 2 0号では、 金属の溶解を行っている。 In Japanese Patent No. 3-262445, food is fried using superheated steam, and in Japanese Patent Application Laid-Open No. 4-138020, metal is dissolved.
しかしながら、 以上のような背景技術では、 水を沸縢させるポイラからヒ 一夕加 部に蒸気を送る途中で温度の変動が生じるため、 いったん加熱環境 から離れると急激に温度が低下する性質を有する過熱蒸気においては、 高精 度で温度を制御することができない。 また、 蒸気を送る途中で熱損失が生じ るとともに、 使用した蒸気をそのまま排出しており、 無駄が大きい。  However, in the above background art, the temperature fluctuates while steam is being sent from the poirer that boils water to the heating section, so that once the heating apparatus is separated from the heating environment, the temperature rapidly decreases. In superheated steam, the temperature cannot be controlled with high precision. In addition, heat loss occurs while steam is being sent, and the used steam is discharged as it is, which is wasteful.
この発明は, 以上の点に着目したもので、 その目的は、 飽和蒸気の加熱に よ,、り生成した過熱蒸気の高温状態を維持することである。 他の目的は過熱蒸 気の温度制御の高精度化を図るとともに、 無駄を低減して効率の向上を図る ことである。  The present invention focuses on the above points, and its purpose is to maintain the high temperature state of the generated superheated steam by heating the saturated steam. Another objective is to improve the accuracy of temperature control of superheated steam and to reduce waste and improve efficiency.
「発明の開示」 、 "Disclosure of invention",
前記目的を達成するため、 本発明の過熱蒸気発生方法は、 水, 温水または 水蒸気を加熱手段で加熱して過熱蒸気を生成する過熱蒸気生成工程, 該過熱 蒸気生成手段によって生成した過熱蒸気のうち、 微細な蒸気粒子のみを通過 さ る気水分離工程, 該気水分離手段を通過した過熱蒸気を加熱する再加熱 工程, を備えたことを特徴とする。  In order to achieve the above object, a superheated steam generation method according to the present invention includes: a superheated steam generation step of generating superheated steam by heating water, hot water or steam by a heating unit; and a superheated steam generated by the superheated steam generation unit. A steam / water separation step for passing only fine vapor particles, and a reheating step for heating the superheated steam passed through the steam / water separation means.
本発明の過熱蒸気発生装置は、 水, 温水または水蒸気を加熱手段で加熱し て過熱蒸気を生成する過熱蒸気生成手段, 該過熱蒸気生成手段によって生成 した過熱蒸気のうち、 微細な蒸気粒子のみを通過させる気水分離手段, 該気 水分離手段を通過した過熱蒸気を加熱する再加熱手段, を備えたことを特徴 とする。  The superheated steam generator according to the present invention comprises: a superheated steam generation means for generating superheated steam by heating water, hot water or steam by a heating means; and only fine steam particles out of superheated steam generated by the superheated steam generation means. Steam / water separating means for passing the gas; and reheating means for heating the superheated steam passed through the gas / water separating means.
本発明の過熱蒸気処理装置は、 前記過熱蒸気発生装置を備えており、 前記 過熱蒸気発生装置によって生成された過熱蒸気によって、 処理対象に必要な 処理を行う処理手段, を少なくとも一つ備えたことを特徴とする。 The superheated steam processing device of the present invention includes the superheated steam generation device, and the superheated steam generated by the superheated steam generation device is used for a target to be processed. And at least one processing means for performing processing.
本発明の前記及び他の目的, 特徴, 利点は、 以下の詳細な説明及び添付図 面から明瞭になろう。 「図面の簡単な説明」  The above and other objects, features, and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings. "Brief description of the drawings"
図 1は、 本発明の実施形態 1の全体構成を示す図である。  FIG. 1 is a diagram showing an overall configuration of Embodiment 1 of the present invention.
図 2は、 前記形態の詳細な構成の一例を示す図である。  FIG. 2 is a diagram showing an example of a detailed configuration of the above embodiment.
図 3は、 前記形態の温度制御にかかる主要部を示す図である。  FIG. 3 is a diagram showing a main part related to the temperature control of the above embodiment.
図 4は、 本発明の実施形態 2及び実施形態 3を示す図である。  FIG. 4 is a diagram showing Embodiment 2 and Embodiment 3 of the present invention.
図 5は、 本発明の実施形態 4を示す図であり、 (A) は全体の構成を示す 図, (B ) は生成した蒸気又は過熱蒸気の温度変化を示す図である。  5A and 5B are diagrams showing Embodiment 4 of the present invention, in which FIG. 5A is a diagram showing the entire configuration, and FIG. 5B is a diagram showing a temperature change of generated steam or superheated steam.
図 6は、 前記形態の詳細な構成の一例を示す図である。  FIG. 6 is a diagram showing an example of a detailed configuration of the above embodiment.
図 7は、 本発明の実施形態 5の全体構成を示す図である。  FIG. 7 is a diagram showing an overall configuration of Embodiment 5 of the present invention.
図 8は、 本発明の実施形態 6の全体構成を示す図である。  FIG. 8 is a diagram showing an overall configuration of Embodiment 6 of the present invention.
図 9は、 本発明の実施形態 7を示す図であり、 (A) は気水分離の様子を 示す図, (B ) は本発明により生成した過熱蒸気の温度と熱量の関係を示す 図である。  FIGS. 9A and 9B are diagrams showing Embodiment 7 of the present invention, in which FIG. 9A is a diagram showing a state of water / water separation, and FIG. 9B is a diagram showing the relationship between the temperature of superheated steam generated by the present invention and the amount of heat. is there.
「発明を実施するための最良の形態」 "Best mode for carrying out the invention"
この発明には数多くの実施形態が有り得るが、 ここでは適切な数の実施形 態を示し、 詳細に説明する。  While there may be many embodiments of the present invention, an appropriate number of embodiments will now be shown and described in detail.
<実施形態 1 > <First embodiment>
( 1 ) 全体構成……以下、 本発明の実施の形態について詳細に説明する。 最 初に、 図 1を参照しながら、 本発明の実施形態 1の概略を説明する。 図 1に は、 本実施形態の全体構成が示されている。 同図に示すように、 本発明の過 熱蒸気処理装置は、 過熱蒸気を発生させるための過熱蒸気発生装置 1 0, こ れによって得られた過熱蒸気を利用して処理対象に所望の処理を施す処理室 (1) Overall Configuration An embodiment of the present invention will be described in detail below. First, an outline of Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 shows the overall configuration of the present embodiment. As shown in the figure, a superheated steam processing apparatus of the present invention includes a superheated steam generator 10 for generating superheated steam, and performs a desired process on a processing target by using the superheated steam obtained thereby. Processing room
9 0 , 該処理室 9 0で処理対象を処理した後の回収蒸気を冷却する冷却装置 1 3 0, 該冷却装置 1 3 0で冷却されて液化した回収水から油成分を分離す るための油水分離槽 1 6 0により構成されている。 また、 前記処理室 9 0に は、 要に応じて酸素を供給するための空気供給装置 1 2 0や窒素や炭酸ガ スな を供給するためのガス供給装置 1 8 0が接続されている。 9 0, a cooling device for cooling the collected steam after processing the processing target in the processing chamber 90 130, an oil / water separation tank 160 for separating oil components from the recovered water cooled and liquefied by the cooling device 130. Further, an air supply device 120 for supplying oxygen as needed and a gas supply device 180 for supplying nitrogen or carbon dioxide gas are connected to the processing chamber 90.
前記過熱蒸気発生装置 1 0は、 3部構成となっており、 過熱蒸気を生成す る一次加熱室 1 2 , 該一次加熱室 1 2で得られた過熱蒸気を気水分離して微 細な蒸気粒子のみを得る気水分離室 5 0 , 該気水分離室 5 0を通過して温度 が低下した過熱蒸気を所望の温度に再度加熱する二次加熱室 7 0により構成 されている。 更に、 前記一次加熱室 1 2は、 水または温水を加熱して水蒸気 を生成するポイラ部 1 6と、 該ポイラ部 1 6によって得られた水蒸気を更に 加熱して過熱蒸気を生成する過熱蒸気発生部 1 8に分かれている。  The superheated steam generator 10 has a three-part configuration. A primary heating chamber 12 for generating superheated steam, and the superheated steam obtained in the primary heating chamber 12 is subjected to steam-water separation to be finely divided. A steam / water separation chamber 50 for obtaining only steam particles is provided, and a secondary heating chamber 70 for reheating the superheated steam, which has passed through the steam / water separation chamber 50 and has been lowered in temperature, to a desired temperature. Further, the primary heating chamber 12 is provided with a poirer section 16 for generating water vapor by heating water or hot water, and for generating superheated steam for further heating the steam obtained by the poirer section 16 to generate superheated steam. Part 18 is divided.
また、 前記冷却装置 1 3 0は、 高温の回収蒸気を予備冷却するための冷却 室 1 3 2, 該冷却室 1 3 2で予備冷却された回収蒸気を更に冷却水で冷却し て液化する冷却橹 1 5 0により構成されている。 また、 空気供給装置 1 2 0 は、 空気を圧縮するための圧縮装置 1 2 2及び空気を乾燥させるための乾燥 装置 1 2 4を含んでおり、 ガス供給装置 1 8 0は、 処理室 9 0へガスを送る ための窒素ガスボンベ 1 8 2及び炭酸ガスボンベ 1 8 4を含んでいる。  Further, the cooling device 130 is provided with a cooling chamber 132 for pre-cooling the high-temperature recovered steam, and a cooling device for further cooling the recovered steam pre-cooled in the cooling chamber 132 with cooling water to be liquefied.橹 It is composed of 150. Further, the air supply device 120 includes a compression device 122 for compressing air and a drying device 124 for drying air, and the gas supply device 180 includes a processing chamber 90. Includes a nitrogen gas cylinder 18 2 and a carbon dioxide gas cylinder 18 4 for sending gas to
( 2 ) 詳細な構成……次に、 図 2及び図 3も参照しながら本実施形態の詳細 な構成について説明する。 図 2は、 本実施形態の詳細な構成例を示す図であ り、 図 3は、 本実施形態の温度制御にかかる主要部を示す図である。  (2) Detailed Configuration Next, a detailed configuration of the present embodiment will be described with reference to FIGS. FIG. 2 is a diagram showing a detailed configuration example of the present embodiment, and FIG. 3 is a diagram showing a main part related to temperature control of the present embodiment.
最初に、 過熱蒸気発生装置 1 0について説明する。 過熱蒸気発生装置 1 0 は、 上述したように過熱蒸気を生成する一次加熱室 1 2 , 微細な過熱蒸気の 粒子のみを通過させる気水分離室 5 0, 過熱蒸気を再加熱する二次加熱室 7 0から構成されている。 前記一次加熱室 1 2は、 仕切板 1 4によってポイラ 部 1 6と過熱蒸気発生部 1 8に分けられており、 外側全体が断熱材 3 6で覆 われている。  First, the superheated steam generator 10 will be described. The superheated steam generator 10 includes a primary heating chamber 12 for generating superheated steam as described above, a steam-water separation chamber 50 for passing only fine superheated steam particles, and a secondary heating chamber for reheating superheated steam. 70. The primary heating chamber 12 is divided into a poiling section 16 and a superheated steam generating section 18 by a partition plate 14, and the entire outside is covered with a heat insulating material 36.
ポイラ部 1 6には、水または温水を貯留するタンク 2 0が設けられている。 該タンク 2 0には、 その外周に沿って、 水 (または温水) 及び蒸気の通路と なる熱伝導性の加熱管 2 2が巻回されており、 更に、 スケール除去点滴 2 6 が設けられている。 スパイラル状の加熱管 2 2の一端は、 前記タンク 2 0の 下方に 続されており、 一次加熱室 1 2の上部に設けられた給水管 2 1ある いは循環パイプ 6 0からタンク 2 0に貯留された水または温水が加熱管 2 2 内に供給される。 このほかにも、 加熱管 2 2に直接水又は温水を供給する給 水管を別に設けるようにしてもよい。 更に、 加熱管 2 2の一部には、 管内の スケ ルを排出してその堆積を防止するためのドレーントラップ 2 8が設け られている。 このようなポイラ部 1 6の底部には、 熱源としてガスバ一ナ 2 4が設けられており、 タンク 2 0の側面に巻回された加熱管 2 2を加熱して 内部に供給された水または温水を加熱して水蒸気を生成させる。 The poiler section 16 is provided with a tank 20 for storing water or hot water. The tank 20 has water (or hot water) and steam passages along its outer periphery. A heat-conductive heating tube 22 is wound, and a scale removing drip 26 is provided. One end of the spiral heating pipe 22 is connected to the lower part of the tank 20, and is connected to a water supply pipe 21 or a circulation pipe 60 provided at an upper part of the primary heating chamber 12 or a circulation pipe 60 to the tank 20. The stored water or hot water is supplied into the heating pipe 22. In addition, a water supply pipe for directly supplying water or hot water to the heating pipe 22 may be provided separately. Furthermore, a drain trap 28 for discharging the scale in the tube and preventing its deposition is provided in a part of the heating tube 22. A gas burner 24 is provided as a heat source at the bottom of such a poiler section 16, and heats a heating pipe 22 wound around the side of the tank 20 to supply water or water supplied to the inside. Heat the hot water to generate steam.
ポイラ部 1 6の上部には、 過熱蒸気の温度制御を良好に行うための仕切板 1 4を境にして過熱蒸気発生部 1 8が設けられている。 該過熱蒸気発生部 1 8には、 前記ポイラ部 1 6で生成した加熱管 2 2中の水蒸気を更に加熱する ためのヒータ 3 0が設けられている。 また、 過熱蒸気発生部 1 8内の加熱管 2 2の適宜位置には、 生成した過熱蒸気の温度及び圧力を検知するための温 度センサ 3 2及び圧力センサ 3 4が設けられている。  A superheated steam generator 18 is provided above the poirer section 16 with a partition plate 14 as a boundary for good temperature control of the superheated steam. The superheated steam generation section 18 is provided with a heater 30 for further heating the steam in the heating pipe 22 generated in the poiler section 16. Further, a temperature sensor 32 and a pressure sensor 34 for detecting the temperature and pressure of the generated superheated steam are provided at appropriate positions of the heating pipe 22 in the superheated steam generation section 18.
本実施形態では、 加熱管 2 2の管内径が、 水または温水の流入側 (図示の 例ではタンク 2 0の底部側) から過熱蒸気の流出側に行くに従って大きくな つている。 このように、 管径を徐々に太くすることで、 加熱による気化に伴 う体積膨張に基づく水蒸気の圧力上昇を抑制することができる。 過熱蒸気の 圧力を抑制することで、'気水分離室 5 0内に過熱蒸気が一気に噴き出すとい つた不都合を防止することができる。  In the present embodiment, the inner diameter of the heating pipe 22 increases from the inflow side of water or hot water (the bottom side of the tank 20 in the illustrated example) to the outflow side of the superheated steam. Thus, by gradually increasing the pipe diameter, it is possible to suppress an increase in the pressure of water vapor due to volume expansion accompanying vaporization due to heating. By suppressing the pressure of the superheated steam, it is possible to prevent the disadvantage that the superheated steam is blown into the steam-water separation chamber 50 at once.
なお、 管径の拡大は、 段階的に行ってもよいし、 連続的に行ってもよい。 図示の例では、 タンク 2 0との接続側 (すなわち水の流入側) の管径が最も 小さく、 タンク 2 0の上部及び過熱蒸気発生部 1 8に行くに従って管径は拡 大している。 すなわち、 一次加熱室 1 2の出口 3 8において、.管径が最も大 きくなつている。  The expansion of the pipe diameter may be performed stepwise or continuously. In the illustrated example, the pipe diameter on the connection side with the tank 20 (that is, the water inflow side) is the smallest, and the pipe diameter increases toward the upper part of the tank 20 and the superheated steam generator 18. That is, at the outlet 38 of the primary heating chamber 12, the pipe diameter is the largest.
以上のような加熱管 2 2は、 出口 3 8を介して後述する気水分離室 5 0へ 送られる。 加熱管 2 2には、 出口 3 8と気水分離室 5 0の間に分岐管 4 2が 接続されており、 該分岐管 4 2には逆止弁 1 4 6が設けられている。 この分 岐管 4 2には、 後述する冷却装置 1 3 0が接続されている。 The heating tube 22 as described above is connected to a steam-water separation chamber 50 described later through an outlet 38. Sent. A branch pipe 42 is connected to the heating pipe 22 between the outlet 38 and the steam-water separation chamber 50, and the branch pipe 42 is provided with a check valve 1 46. A cooling device 130 described later is connected to the branch pipe 42.
次に、 気水分離室 5 0について説明する。 気水分離室 5 0は、 前記一次加 熱室 1 2で生成した過熱蒸気のうち、微細な蒸気粒子のみを分離するもので、 入口 5 2から導入された過熱蒸気の通路となる細管 5 4が複数設けられてお り、 該細管 5 4の周囲は冷却水 5 6で満たされている。 該冷却水 5 6は、 給 水口 5 8から供給され、 排水口 5 9から排出される。  Next, the steam separator 50 will be described. The steam-water separation chamber 50 separates only fine steam particles from the superheated steam generated in the primary heating chamber 12, and is a thin tube 5 4 serving as a passage for the superheated steam introduced from the inlet 52. The periphery of the thin tube 54 is filled with cooling water 56. The cooling water 56 is supplied from a water supply port 58 and discharged from a drain port 59.
入口 5 2から導入された時点での過熱蒸気は、 蒸気粒の粗いものから細か いものまでが含まれており、周囲が冷却された細管 5 4内に送られることで、 微細な蒸気粒のみが細管 5 4内を通過するようになる。 これは、 過熱蒸気は、 特に熱伝達が良い反面、 冷却する度合いも大きく、 細管 5 4内で冷却される と蒸気の大きい粒が液化して除去することができるためである。 すなわち、 細管 5 4によるフィル夕効果により気液分離を行うことができる。  The superheated steam at the time of being introduced from the inlet 52 includes coarse to fine steam particles, and is sent into the cooled narrow tube 54 so that only fine steam particles are sent. Pass through the narrow tube 54. This is because superheated steam has particularly good heat transfer, but also has a high degree of cooling, and when cooled in the capillary 54, large particles of the steam can be liquefied and removed. That is, gas-liquid separation can be performed by the fill effect of the thin tube 54.
一方、 細管 5 4を冷却した冷却水 5 6は、 細管 5 4を介してその内部を通 過する過熱蒸気と熱交換することにより温度が上昇する。 このような温水は、 前記排水口 5 9に接続された循環パイプ 6 0により、 前記一次加熱室 1 2の タンク 2 0へ送られる。 これによつて、 タンク 2 0内の水の温度が上昇し、 熱量の有効活用をすることができる。 また、 気水分離室 5 0には、 細管 5 4 を通過した微細な過熱蒸気の出口 6 2が設けられており、 該出口 6 2には連 結管 6 4が接続されている。 更に、 該連結管 6 4には、 分岐管 6 6が接続さ れており、 該分岐管 6 6は後述する冷却装置 1 3 0に接続されている。  On the other hand, the temperature of the cooling water 56 that has cooled the thin tubes 54 increases due to heat exchange with superheated steam passing through the inside of the thin tubes 54. Such hot water is sent to the tank 20 of the primary heating chamber 12 by a circulation pipe 60 connected to the drain port 59. As a result, the temperature of the water in the tank 20 increases, and the amount of heat can be effectively used. Further, the steam-water separation chamber 50 is provided with an outlet 62 for fine superheated steam that has passed through the thin tube 54, and a connection tube 64 is connected to the outlet 62. Further, a branch pipe 66 is connected to the connection pipe 64, and the branch pipe 66 is connected to a cooling device 130 described later.
二次加熱室 7 0は、 上述した気水分離室 5 0を通過することにより温度が 低下した過熱蒸気を、 所望の温度に再加熱するためのもので、 過熱蒸気の入 口 7 2及び出口 7 6のほかに、 再加熱用のヒ一夕 7 4が設けられている。 な お、 ここでも、 前記一次加熱室 1 2と同様に、 二次加熱室 7 0の外側全体を 断熱材などで覆うようにしてもよい。  The secondary heating chamber 70 is for reheating the superheated steam whose temperature has been lowered by passing through the above-mentioned steam-water separation chamber 50 to a desired temperature, and is an inlet 72 and an outlet for the superheated steam. In addition to 7.6, there is also a heating facility for reheating. Here, as in the case of the primary heating chamber 12, the entire outside of the secondary heating chamber 70 may be covered with a heat insulating material or the like.
二次加熱室 7 0の出口 7 6に接続された過熱蒸気の導入管 7 8には、 バイ パス弁 8 0が設けられている。 このバイパス弁 8 0は、 バイパス 8 2にも接 続している。 加熱, 乾燥などの処理を行うときには、 バイパス弁 8 0によつ て、過熱蒸気発生装置 1 0で生成した過熱蒸気を後述する処理室 9 0へ送る。 しかし、 処理対象 9 4の交換など一時的に過熱蒸気の処理室 9 0への供給を 停止したいときは、バイパス弁 8 0によって過熱蒸気をバイパス 8 2に送る。 このようなバイパス弁 8 0は、 処理室 9 0の図示しないドアないし扉の開閉 状態に応じて自動的に駆動するようにしてもよい。 The superheated steam inlet pipe 78 connected to the outlet 76 of the secondary heating chamber 70 is A pass valve 80 is provided. This bypass valve 80 is also connected to the bypass 82. When processing such as heating and drying is performed, superheated steam generated by the superheated steam generator 10 is sent to a processing chamber 90 described later by a bypass valve 80. However, when the supply of the superheated steam to the processing chamber 90 is to be temporarily stopped, for example, when the processing object 94 is exchanged, the superheated steam is sent to the bypass 82 by the bypass valve 80. Such a bypass valve 80 may be automatically driven according to the open / closed state of a door (not shown) of the processing chamber 90.
次に、 処理室 9 0について説明する。 図 3に示すように、 処理室 9 0には 過熱蒸気の導入口 9 2及び排気口 1 0 4が設けられており、 前記過熱蒸気発 生装置 1 0で生成した過熱蒸気は、 前記導入管 7 8及び導入口 9 2を介して 射出パイプ 9 6に接続されている。 この射出パイプ 9 6には、 複数の射出口 9 8が設けられており、 ここから過熱蒸気が処理対象 9 4に向かって射出さ れる構成となっている。 処理室 9 0全体は、 必要に応じて断熱材 1 0 2で覆 われる。  Next, the processing chamber 90 will be described. As shown in FIG. 3, the processing chamber 90 is provided with a superheated steam introduction port 92 and an exhaust port 104, and the superheated steam generated by the superheated steam generation device 10 is supplied through the introduction pipe. It is connected to the injection pipe 96 through 78 and the inlet 92. The injection pipe 96 is provided with a plurality of injection ports 98, from which the superheated steam is injected toward the processing object 94. The entire processing chamber 90 is covered with a heat insulating material 102 as necessary.
ところで、 本実施形態では、 図 3に示すように、 過熱蒸気発生部 1 8の加 熱管 2 2の出口側に第 1の温度センサ 3 2が設けられており、 処理室 9 0の 射出パイプ 9 6の射出口 9 8近傍に第 2の温度センサ 1 0 0が設けられてい る。 これら 2つの温度センサ 3 2 , 1 0 0は、 いずれも温度制御部 1 1 0に 接続されている。 また、 温度制御部 1 1 0は、 前記一次加熱室 1 2のヒータ 3 0にも接続されている。 すなわち、 温度制御部 1 1 0は、 前記温度センサ 3 2, 1 0 0の検知温度に基づいてヒー夕 3 0を制御し、 処理室 9 0内に射 出される過熱蒸気の温度を一定に保つ制御を行うように構成されている。 ま た、 温度制御部 1 1 0を二次加熱室 7 0のヒー夕 7 4にも接続し、 必要に応 じて二次加熱室 7 0における加熱制御を行うようにしてもよい。  By the way, in the present embodiment, as shown in FIG. 3, a first temperature sensor 32 is provided on the outlet side of the heating pipe 22 of the superheated steam generator 18, and the injection pipe 9 of the processing chamber 90 is provided. A second temperature sensor 100 is provided in the vicinity of the sixth injection port 98. These two temperature sensors 32, 100 are both connected to the temperature control unit 110. Further, the temperature control unit 110 is also connected to the heater 30 of the primary heating chamber 12. That is, the temperature control unit 110 controls the heater 30 based on the detected temperatures of the temperature sensors 32 and 100 to keep the temperature of the superheated steam emitted into the processing chamber 90 constant. It is configured to perform control. Further, the temperature control section 110 may be connected to the heater 74 of the secondary heating chamber 70 so that the heating control in the secondary heating chamber 70 is performed as necessary.
更に、 前記処理室 9 0には、 給気管 1 2 6を介して、 処理室 9 0内に空気 を供給するための空気供給装置 1 2 0が接続されている。 空気供給装置 1 2 0は、 圧縮装置 1 2 2と乾燥装置 1 2 4により構成されており、 これら各部 によって圧縮された乾燥空気が給気管 1 2 6を介して処理室 9 0内に供給さ れる。 このような空気供給装置 1 2 0は必ずしも設ける必要はないが、 処理 対象 9 4によっては、 その処理加減を調整することができる。 例えば、 処理 室 9 0でパンを焼くような場合には、 空気に含まれる酸素を適量供給するこ とで、 適度な焦げ目がついた焼き上がりの良好なパンを得ることができる。 この他に、 前記処理室 9 0には、 配管 1 8 6を介して、 窒素ガスや炭酸ガ スを供給するためのガス供給装置 1 8 0が接続されている。 ガス供給装置 1 8 0は、 窒素ガスボンベ 1 8 2と炭酸ガスボンベ 1 8 4を含んでいる。 この ようなガス供給装置 1 8 0も上述した空気供給装置 1 2 0と同様に必ずしも 設ける必要はないが、 処理対象 9 4に焦げ目をつける必要がないときや酸素 が不要なとき (例えば、 防鲭処理, 安全防爆処理時) などには、 窒素ガスや 炭酸ガスを供給することで所望の処理を行うことができる。 Further, an air supply device 120 for supplying air into the processing chamber 90 is connected to the processing chamber 90 via an air supply pipe 126. The air supply device 120 is composed of a compression device 122 and a drying device 124, and the dry air compressed by these components is supplied into the processing chamber 90 via an air supply pipe 126. It is. It is not necessary to provide such an air supply device 120, but depending on the processing object 94, the processing level can be adjusted. For example, in the case of baking bread in the processing room 90, by supplying an appropriate amount of oxygen contained in the air, it is possible to obtain bread with a suitable degree of brown and good baking. In addition, a gas supply device 180 for supplying nitrogen gas or carbon dioxide gas is connected to the processing chamber 90 via a pipe 186. The gas supply device 180 includes a nitrogen gas cylinder 182 and a carbon dioxide gas cylinder 184. Such a gas supply device 180 does not necessarily need to be provided like the air supply device 120 described above. However, when it is not necessary to brown the object to be treated 94 or when oxygen is not necessary (for example, in the case of the air-conditioning system). (鲭 treatment, safety explosion-proof treatment), etc., the desired treatment can be performed by supplying nitrogen gas or carbon dioxide gas.
以上のような処理室 9 0の排気口 1 0 4には、 処理後の過熱蒸気を回収す るための排気管 1 0 6が設けられており、 該排気管 1 0 6の排出側は冷却装 置' 1 3 0に接続している。 冷却装置 1 3 0は、 回収した蒸気を予備冷却する ための冷却室 1 3 2と、 予備冷却した回収蒸気を更に水で冷却して液化する 冷却槽 1 5 0により構成されている。  The exhaust port 104 of the processing chamber 90 as described above is provided with an exhaust pipe 106 for collecting the superheated steam after the treatment, and the exhaust side of the exhaust pipe 106 is cooled. Connected to device '130. The cooling device 130 is composed of a cooling chamber 132 for pre-cooling the recovered steam and a cooling tank 150 for further cooling the pre-cooled recovered steam with water to liquefy it.
冷却室 1 3 2には、 入口 1 3 4及び出口 1 4 0のほか、 予備加熱室 1 3 6 が設けられている。 この予備加熱室 1 3 6には、 前記気水分離室 5 0の出口 6 2側に設けられた分岐管 6 6を介して供給された過熱蒸気を再加熱するた めのヒータ 1 3 8が設けられている。 回収蒸気が非常に高温 (例えば 1 5 0 °C以上) である場合には、 それよりも温度の低い過熱蒸気を混入させて予備 冷却することが有効的である。 前記予備加熱室 1 3 6は、 その予備冷却用の 比較的低温の過熱蒸気を得るためのものであり、 加熱した過熱蒸気を冷却室 1 3 2へ送って高温の回収蒸気と混合させる。 例えば、 予備加熱室 1 3 6で 1 2 0 °C程度まで加熱された過熱蒸気は、 冷却室 1 3 2において、 1 5 0〜 2 5 0 程度の高温の回収蒸気に対して混合される。  The cooling chamber 13 2 is provided with a pre-heating chamber 1 36 in addition to an inlet 1 34 and an outlet 1 40. The preheating chamber 1336 has a heater 1338 for reheating superheated steam supplied through a branch pipe 66 provided on the outlet 62 side of the steam separation chamber 50. Is provided. If the recovered steam is very hot (for example, 150 ° C or higher), it is effective to mix the superheated steam with a lower temperature for pre-cooling. The preheating chamber 1336 is for obtaining a relatively low-temperature superheated steam for the precooling, and sends the heated superheated steam to the cooling chamber 1332 to be mixed with the high-temperature recovered steam. For example, the superheated steam heated to about 120 ° C. in the preheating chamber 1336 is mixed with the high temperature recovered steam of about 150 to 250 in the cooling chamber 132.
前記冷却室 1 3 2で予備冷却された回収蒸気は、 出口 1 4 0, 連結管 1 4 2を介して冷却槽 1 5 0の冷却管 1 5 4に送られる。 ここで、 連結管 1 4 2 には、 逆止弁 1 4 6が設けられた分岐管 4 2が接続されている。 前記逆止弁 1 4 6は、 連結管 1 4 2側から過熱蒸気発生装置 1 0側の分岐管 4 2に向か つてのみ蒸気を送ることができるように設けられており、 回収蒸気をそのま ま循環利用してもよい場合には、 回収蒸気を過熱蒸気発生装置 1 0側へ送る こととなっている。 The recovered steam pre-cooled in the cooling chamber 132 is sent to the cooling pipe 150 of the cooling tank 150 via the outlet 140 and the connecting pipe 142. Here, connecting pipe 1 4 2 Is connected to a branch pipe 42 provided with a check valve 1 46. The check valve 146 is provided so that the steam can be sent only from the connecting pipe 142 to the branch pipe 422 on the superheated steam generator 100 side, and the collected steam is supplied to the check valve 146. If the recycled steam can be used, the recovered steam is sent to the superheated steam generator 10 side.
冷却槽 1 5 0は、 前記冷却室 1 3 2で予備冷却された回収蒸気の通路とな る冷却管 1 5 4を備えており、 該冷却管 1 5 4を冷却するための冷却水 1 5 2で満たされている。 前記冷却管 1 5 4は、 熱伝導性の細管をつづら折り状 に形成したもので、例えば U字管などを接続することにより形成されている。 前記連結管 1 4 2から入口 1 5 6を介して導入された回収蒸気は、 冷却管 1 The cooling tank 150 is provided with a cooling pipe 154 serving as a passage for the recovered steam precooled in the cooling chamber 132, and cooling water 155 for cooling the cooling pipe 154. Is filled with two. The cooling pipe 154 is formed by forming a heat conductive thin tube into a stub shape, and is formed by connecting, for example, a U-shaped tube. The recovered steam introduced from the connecting pipe 14 2 through the inlet 1 56 is supplied to the cooling pipe 1
5 4内を通過しながら冷却水 1 5 2によって冷却されて液化し、 回収水とな つて後述する油水分離槽 1 6 0に送られる。 なお、 冷却に使用して温度が上 がった冷却水 1 5 2を、 図示しない循環パイプなどによって前記一次加熱室 1 2のタンク 2 0に送り、 冷却水の再利用をするようにしてもよい。 While passing through 54, it is cooled and liquefied by the cooling water 152, and is sent to an oil-water separation tank 160 described later as recovered water. It should be noted that the cooling water 15 2, which has been heated and used for cooling, may be sent to the tank 20 of the primary heating chamber 12 by a circulation pipe (not shown) or the like to reuse the cooling water. Good.
次に、 油水分離槽 1 6 0について説明する。 油水分離層 1 6 0は、 処理室 9 0において処理対象 9 4に処理を施した後の回収蒸気ないし回収水に混入 した油分を分離するものである。 油水分離槽 1 6 0は、 隔壁 1 6 2によって 分離されている貯水室 1 6 4と分離室 1 6 6を備えている。 これら貯水室 1 Next, the oil-water separation tank 160 will be described. The oil / water separation layer 160 separates oil mixed in the recovered steam or recovered water after the processing of the object 94 in the processing room 90. The oil / water separation tank 160 includes a water storage chamber 164 and a separation chamber 166 separated by a partition wall 162. These reservoirs 1
6 4及び分離室 1 6 6は、 隔壁 1 6 2の底部で連通している。 前記冷却槽 1 5 0で液化した回収水は、 まず入口 1 6 8を介して分離室 1 6 6に回収され る。 分離室 1 6 6は、 油成分を比重により分離するもので、 上層の油成分は 排出管 1 7 0から外部に排出される。 以上のような油水分離槽 1 6 0には、 排気ブロア 1 7 2も設けられている。 64 and the separation chamber 166 communicate with each other at the bottom of the partition wall 162. The recovered water liquefied in the cooling tank 150 is first collected in the separation chamber 166 via the inlet 168. The separation chamber 166 separates the oil component by specific gravity, and the upper oil component is discharged to the outside from the discharge pipe 170. The oil-water separation tank 160 as described above is also provided with an exhaust blower 1702.
( 3 )作用……次に、 以上のように構成された本実施形態の作用を説明する。 水タンク 2 0には給水管 2 1又は循環パイプ 6 0から水 (または温水) が供 給される。 また、 スケール除去点滴 2 6からは必要量のスケール除去剤が注 入される。 スケール除去剤としては、 例えば炭酸ナトリウムが使用されるが、 薬剤の種類及び注入量は水質に応じて適宜決定すればよい。 一次加熱室 1 2のポイラ部 1 6では、 ガスバ一ナ 2 4によって加熱管 2 2 が加熱される。 これにより、 加熱管 2 2内の水は温度が上昇し、 やがて水蒸 気になる。 なお、 加熱管 2 2内の泥などは、 ドレーントラップ 2 8から排出 される。 加熱管 2 2内を上昇する水蒸気は、 過熱蒸気発生部 1 8においてヒ 一夕 3 0によって更に加熱され、 例えば、 2 5 0 程度の高温, 低圧の過熱 蒸気となる。 このとき、 加熱管 2 2の管径を、 水の供給側から過熱蒸気の流 出側にいくに従つて拡大することとしたので、 加熱による気化に伴う体積膨 張に基づく水蒸気の圧力上昇を抑制することができる。 なお、 過熱蒸気の温 度及び圧力は、 温度センサ 3 2, 圧力センサ 3 4により検知されている。 一次加熱室 1 2で得られた過熱蒸気は、 気水分離室 5 0で冷却された細管 5 4を通過することによって、 微細な蒸気粒のみが選別される。 なお、 この とき利用された冷却水 5 6は、 循環パイプ 6 0によってタンク 2 0に送られ 再利用される。 気水分離室 5 0を通過した微細な過熱蒸気は、 冷却水 5 6に より温度が低下した状態となっているため、 二次加熱室 7 0においてヒータ 7 4により所望の温度, 例えば、 1 1 0〜 2 0 0 °C程度となるように再加熱 される。 (3) Operation ... Next, the operation of the present embodiment configured as described above will be described. Water (or hot water) is supplied to the water tank 20 from the water supply pipe 21 or the circulation pipe 60. From the descaling drip 26, a required amount of descaling agent is injected. As the descaling agent, for example, sodium carbonate is used, and the type and injection amount of the agent may be appropriately determined according to the water quality. In the poiling section 16 of the primary heating chamber 12, the heating pipe 22 is heated by the gas burner 24. As a result, the temperature of the water in the heating tube 22 rises, and eventually becomes water vapor. The mud in the heating pipe 22 is discharged from the drain trap 28. The steam rising in the heating pipe 22 is further heated by the heater 30 in the superheated steam generator 18 to be, for example, a high-temperature, low-pressure superheated steam of about 250. At this time, since the diameter of the heating pipe 22 was increased from the water supply side to the superheated steam discharge side, the pressure increase of steam based on the volume expansion due to vaporization due to heating was reduced. Can be suppressed. The temperature and pressure of the superheated steam are detected by a temperature sensor 32 and a pressure sensor 34. The superheated steam obtained in the primary heating chamber 12 passes through the thin tube 54 cooled in the steam-water separation chamber 50, so that only fine steam particles are sorted out. The cooling water 56 used at this time is sent to the tank 20 by the circulation pipe 60 and reused. Since the temperature of the fine superheated steam that has passed through the steam-water separation chamber 50 is reduced by the cooling water 56, the desired temperature, for example, 1 It is reheated to about 100 to 200 ° C.
二次加熱室 7 0で得られた過熱蒸気は、 処理時は、 バイパス弁 8 0を介し て処理室 9 0に供給される。 処理室 9 0では、 射出パイプ 9 6から過熱蒸気 が処理対象 9 4に吹き付けられ、 加熱, 乾燥, 殺菌などの所望の処理が施さ れる。 なお、 処理対象 9 4及び処理の内容によっては、 必要に応じて空気供 給装置 1 2 0から圧縮した乾燥空気を処理室 9 0内に供給し、 その処理加減 を調整したり、 ガス供給装置 1 8 0から窒素ガスや炭酸ガスを供給したりす るようにしてもよい。  The superheated steam obtained in the secondary heating chamber 70 is supplied to the processing chamber 90 via the bypass valve 80 during the processing. In the processing chamber 90, superheated steam is blown from the injection pipe 96 to the processing object 94, and a desired processing such as heating, drying, and sterilization is performed. In addition, depending on the processing object 94 and the content of the processing, compressed air is supplied from the air supply device 120 into the processing chamber 90 as necessary to adjust the processing level, and the gas supply device is used. It is also possible to supply nitrogen gas or carbon dioxide gas from 180.
この場合において、 一次加熱室 1 2の過熱蒸気発生部 1 8における過熱蒸 気の温度は、 温度センサ 3 2によって検知されている。 また、 処理室 9 0の 射出口 9 8付近における過熱蒸気の温度は、 温度センサ 1 0 0によって検知 されている。 温度制御部 1 1 0は、 これらの温度センサ 3 2 , 1 0 0の検知 結果を参照し、 過熱蒸気の温度を制御する。 詳述すると、 処理室 9 0内の過熱蒸気温度を決定すると、 過熱蒸気発生部 1 8の出力部における過熱蒸気の温度も決まる。 従って、 温度センサ 3 2に よって過熱蒸気発生部 1 8の出力部における過熱蒸気の温度を計測し、 その 計測結果に基づいてヒ一夕 3 0による加熱量を制御する。 例えば、 電気ヒー タを利用する場合には、 その通電量を制御する。 具体的には、 温度センサ 3 2の温度が所望値よりも低いときは通電量を増大して過熱蒸気の温度を上 げ、 逆に、 所望値より高いときは通電量を減少して過熱蒸気の温度を下げる。 しかし、 最終的に所定の温度が要求されるのは、 処理室 9 0内の過熱蒸気 である。 そこで、 本例では、 もう一つの温度センサ 1 0 0による温度制御が 行われる。 すなわち、 温度センサ 1 0 0による検知結果に基づいて、 他方の 温度センサ 3 2の検知結果に基づく温度制御の修正が行われる。過熱蒸気は、 加熱環境から離れると急激に温度が低下する。 特に、 本実施形態の場合は、 一次加熱室 1 2で生成した過熱蒸気を気水分離室 5 0において冷却して微細 な蒸気粒子のみを通過させることとしているので、 著しく温度が低下する。 従って、 温度センサ 3 2の検知結果のみを参照して過熱蒸気の温度制御を行 つた場合、 温度の変動に良好に追従することができない。 In this case, the temperature of the superheated steam in the superheated steam generator 18 of the primary heating chamber 12 is detected by the temperature sensor 32. Further, the temperature of the superheated steam near the injection port 98 of the processing chamber 90 is detected by the temperature sensor 100. The temperature control unit 110 controls the temperature of the superheated steam with reference to the detection results of the temperature sensors 32 and 100. More specifically, when the temperature of the superheated steam in the processing chamber 90 is determined, the temperature of the superheated steam at the output of the superheated steam generator 18 is also determined. Accordingly, the temperature of the superheated steam at the output section of the superheated steam generation section 18 is measured by the temperature sensor 32, and the amount of heating by the heater 30 is controlled based on the measurement result. For example, when an electric heater is used, the amount of current is controlled. Specifically, when the temperature of the temperature sensor 32 is lower than the desired value, the amount of energization is increased to increase the temperature of the superheated steam, and conversely, when the temperature of the temperature sensor 32 is higher than the desired value, the amount of energization is decreased to reduce the superheated steam. Lower the temperature of However, what finally requires a predetermined temperature is the superheated steam in the processing chamber 90. Therefore, in this example, temperature control by another temperature sensor 100 is performed. That is, correction of the temperature control based on the detection result of the other temperature sensor 32 is performed based on the detection result of the temperature sensor 100. The temperature of superheated steam drops rapidly when it leaves the heating environment. In particular, in the case of the present embodiment, the temperature is significantly reduced because the superheated steam generated in the primary heating chamber 12 is cooled in the steam-water separation chamber 50 to pass only fine steam particles. Therefore, when the temperature control of the superheated steam is performed only by referring to the detection result of the temperature sensor 32, it is not possible to properly follow the temperature fluctuation.
そこで、 過熱蒸気発生部 1 8における過熱蒸気の温度を温度センサ 3 2で 検知し、 ヒータ 3 0を制御する。 その上で、 処理室 9 0内に温度センサ 1 0 0を設置して、 処理室 9 0内の過熱蒸気の温度を検知し、 これも目標値とな るようにヒータ 3 0の制御を行って温度の修正を行う。 このように、 温度セ ンサ 3 2, 1 0 0を併設して自動二次制御を行うことにより、 良好に過熱蒸 気の温度変動に追従し、 安定した温度の過熱蒸気を供給することができる。 処理後の蒸気は、 排気口 1 0 4及び排気管 1 0 6を介して冷却装置 1 3 0 に送られる。 回収蒸気は、 まず冷却室 1 3 2で予備冷却が行われ、 次いで、 冷却槽 1 5 0に送られて冷却されて液化し、 例えば 8 O t以下の回収水とな る。 このとき、 回収蒸気が非常に高温である場合には、 予備加熱室 1 3 6に よって生成された冷却用の比較的低温 (例えば 1 2 0 °C程度) の過熱蒸気が 冷却室 1 3 2に送られ、 ここで回収蒸気と混合し、 例えば、 1 5 0 °C以下と なるように予備冷却が行われる。 Therefore, the temperature of the superheated steam in the superheated steam generator 18 is detected by the temperature sensor 32, and the heater 30 is controlled. Then, a temperature sensor 100 is installed in the processing chamber 90, the temperature of the superheated steam in the processing chamber 90 is detected, and the heater 30 is controlled so that the temperature also becomes a target value. To correct the temperature. As described above, by performing the automatic secondary control with the temperature sensors 32, 100 provided side by side, it is possible to supply the superheated steam having a stable temperature in accordance with the temperature fluctuation of the superheated steam. . The treated steam is sent to the cooling device 130 via the exhaust port 104 and the exhaust pipe 106. The recovered steam is first pre-cooled in a cooling chamber 132, and then sent to a cooling tank 150 where it is cooled and liquefied, for example, into 8 Ot or less of recovered water. At this time, if the recovered steam is extremely high temperature, the relatively low-temperature (for example, about 120 ° C) superheated steam for cooling generated by the preheating chamber 1336 is used for the cooling chamber 1332 Where it is mixed with the recovered steam, for example, at 150 ° C or less. Pre-cooling is performed as follows.
冷却装置 1 3 0によって液化した回収水は、 油水分離槽 1 6 0の分離室 1 6 6に送られる。 分離室 1 6 6では、 上層部の油成分が排出管 1 7 0から排 出される。 そして、 油成分が除去された水を貯水室 1 6 4から図示しないパ ィプなどを介して一次加熱室 1 2のタンク 2 0に送つて循環使用することに より、 水の再利用による水質の劣化が低減される。 もちろん、 貯水室 1 6 4 に滞留する水をそのまま排出するようにしてもよい。  The recovered water liquefied by the cooling device 130 is sent to the separation chamber 166 of the oil-water separation tank 160. In the separation chamber 166, the upper oil component is discharged from the discharge pipe 170. Then, the water from which the oil component has been removed is sent from the water storage chamber 164 to a tank 20 of the primary heating chamber 12 via a pipe (not shown) or the like, and is circulated for use. Degradation is reduced. Of course, the water remaining in the water storage chambers 16 4 may be discharged as it is.
一方、 処理対象 9 4の交換などのときは、 バイパス弁 8 0によって過熱蒸 気がバイパス 8 2側に送られる。 バイパスされた蒸気の一部は、 冷却装置 1 3 0に送られ、 ここで冷却されて液ィ匕する。  On the other hand, when the processing object 94 is exchanged, the superheated steam is sent to the bypass 82 by the bypass valve 80. A part of the bypassed steam is sent to the cooling device 130, where it is cooled and liquefied.
( 4 ) 効果……このように、 本実施形態によれば、 次のような効果が得られ る。  (4) Effect As described above, according to the present embodiment, the following effects can be obtained.
①過熱蒸気発生装置 1 0を、 過熱蒸気を生成する一次加熱室 1 2 , 微細な過 熱蒸気のみを通過させる気水分離室 5 0 , 該気水分離室 5 0を通過した過熱 蒸気を再加熱する二次加熱室 7 0により構成することとしたので、 微細で高 温な過熱蒸気を安定して供給することができる。  (1) The superheated steam generator 10 is used to re-heat the superheated steam that has passed through the primary heating chamber 12 that generates the superheated steam, the steam-water separation chamber 50 that allows only the fine superheated steam to pass, and the steam-water separation chamber 50. Since the secondary heating chamber 70 to be heated is used, fine and high-temperature superheated steam can be stably supplied.
②過熱蒸気を利用することにより、 短時間で処理対象 9 4に所望の処理を施 すことができる。 例えば、 本実施形態の過熱蒸気処理装置を調理用に利用す ることにより、 オーブン, レンジ, 炊飯などの機能を持たせることができる。 これにより、 例えば、 従来は 6 5分を要した食パンの製造が 1 0分, アンパ ンの製造が 3分で可能になるなど、 調理に費やす時間を大幅に短縮させるこ とができる。  (2) By using superheated steam, the desired treatment can be performed on the object to be treated 94 in a short time. For example, by using the superheated steam processing apparatus of the present embodiment for cooking, functions such as an oven, a range, and rice cooking can be provided. As a result, for example, bread can be manufactured in 10 minutes and amppan in 3 minutes, which conventionally required 65 minutes, and cooking time can be greatly reduced.
③タンク 2 0の外周に巻回した加熱管 2 2の管径を、 水または温水の流入側 から過熱蒸気の流出側に行くに従つて拡大することとしたので、 加熱による 気化に伴う体積膨張に基づく水蒸気の圧力上昇を抑制することができる。 こ れにより、 気水分離室 5 0内に過熱蒸気が一気に噴出するといつた不都合を 回避することができる。  ③ Since the diameter of the heating pipe 22 wound around the outer periphery of the tank 20 is increased from the water or hot water inflow side to the superheated steam outflow side, volume expansion accompanying vaporization due to heating The increase in the pressure of water vapor based on the pressure can be suppressed. As a result, it is possible to avoid the inconvenience that occurs when the superheated steam blows out into the steam-water separation chamber 50 at a stretch.
④過熱蒸気発生部 1 8の出力側と処理室 9 0内にそれぞれ温度センサ 3 2, 1 0 0を設け、 これらの検知結果に基づいて温度制御部 1 1 0でヒータ 3 0 を制御することとしたので、 高精度な温度制御を行うことができる。 に Temperature sensors 32, Since 100 is provided and the heater 30 is controlled by the temperature control unit 110 based on these detection results, highly accurate temperature control can be performed.
⑤空気供給装置 1 2 0によって処理室 9 0内に空気を供給することとしたの で、 空気の供給量により処理加減を調節することができる。 例えば、 処理対 象 9 4が、 パン, クッキー, カステラ, グラタン, 焼き魚, 焼肉などの場合 にはその焼き加減や焦げ目の付け具合、 ォムッや汚泥などの場合にはその焼 却加減 (更には殺菌処理の程度) を、 空気の入れ方で調整することが可能で ある。 また、 ガス供給装置 1 8 0によって処理室 9 0に窒素ガス又は炭酸ガ スを供給することとしたので、 処理対象 9 4が食品である場合には窒素ガス による酸化防止, 炭酸ガスによる半生食品に制菌などを行うことができる。 (4) Since air is supplied into the processing chamber 90 by the air supply device 120, the processing rate can be adjusted by the supply amount of air. For example, if the object to be processed 94 is bread, cookies, castella, gratin, grilled fish, grilled meat, etc., the degree of burning and scorching is required. The degree of treatment can be adjusted by the way air is introduced. In addition, since nitrogen gas or carbon dioxide gas is supplied to the processing chamber 90 by the gas supply device 180, when the processing object 94 is food, oxidation prevention by nitrogen gas, semi-living food by carbon dioxide gas, etc. Bacteria can be controlled.
⑥気水分離室 5 0で利用した冷却水 5 6をタンク 2 0へ送ることにより、 水 と熱量のいずれも再利用される。 また、 油水分離槽 1 6 0で油成分を除去し た水を再利用することにより、 水の再利用による水質の劣化が低減される。 <実施形態 2 > 冷却 By sending the cooling water 56 used in the air / water separation chamber 50 to the tank 20, both water and heat are reused. Further, by reusing the water from which the oil component has been removed in the oil / water separation tank 160, deterioration of water quality due to reuse of the water is reduced. <Embodiment 2>
次に、 図 4 (A) を参照して、 本発明の実施形態 2について説明する。 上 述した実施形態では、 過熱蒸気処理装置は、 一つの処理室 9 0を有すること としたが、 本実施形態は、 複数の処理室を備えた例である。 図中、 上述した 実施形態と同一又は対応する構成要素には同一の符号を用いることとする ( 以下の実施形態でも同様) 。  Next, a second embodiment of the present invention will be described with reference to FIG. In the above-described embodiment, the superheated steam processing apparatus has one processing chamber 90, but the present embodiment is an example including a plurality of processing chambers. In the drawing, the same reference numerals are used for components that are the same as or correspond to the above-described embodiments (the same applies to the following embodiments).
本実施形態では、 過熱蒸気発生装置 1 0で生成された過熱蒸気によって処 理対象に所望の処理を行うための処理室が複数設けられている。 図示の例で は、 第一処理室 2 0 O A, 第二処理室 2 0 0 B, 第三処理室 2 0 0 Cにより 構成されている。 これらの処理室 2 0 0 A〜2 0 0 Cには、 過熱蒸気発生装 置 1 0で生成された過熱蒸気を更に加熱するための予備加熱室 2 0 2 A〜2 0 2 Cがそれぞれ設けられており、 該予備加熱室 2 0 2 A〜2 0 2 Cには、 それぞれヒータ 2 0 4 A〜2 0 4 Cが備えられている。 これら予備加熱室 2 0 2 A〜2 0 2 Cは、 過熱蒸気発生装置 1 0から処理室までの距離が長い場 合に特に有効的で、 配管などの中を通過することによって温度が低下した過 熱蒸気を、 再度所望の温度にまで加熱することができる。 In the present embodiment, a plurality of processing chambers are provided for performing a desired process on a processing target with the superheated steam generated by the superheated steam generator 10. In the illustrated example, the first processing chamber 200A, the second processing chamber 200B, and the third processing chamber 200C are configured. These processing chambers 200 A to 200 C are provided with preheating chambers 202 A to 202 C for further heating the superheated steam generated by the superheated steam generator 10. The preheating chambers 202A to 202C are provided with heaters 204A to 204C, respectively. These preheating chambers 202A to 202C are particularly effective when the distance from the superheated steam generator 10 to the processing chamber is long, and the temperature decreases when passing through pipes and the like. Excessive The hot steam can be heated again to the desired temperature.
これら予備加熱室 2 0 2 A〜2 0 2 Cにも、 上述した実施形態と同様に、 温度制御部 1 1 0に接続される温度センサを設け、 各予備加熱室 2 0 2 A〜 2 0 2 Cで加熱される過熱蒸気の温度を制御するようにしてもよい。 このよ うにすることにより、 処理室 2 0 0 A〜2 0 0 Cでの処理温度をそれぞれ異 なった温度に設定することが可能となる。 例えば、 第一処理室 2 0 0 Aでは 1 2 0 °C, 第二処理室 2 0 0 Bでは 2 0 0 °C, 第三処理室 2 0 0 Cでは 3 0 0 °Cという具合である。 このように、 本実施形態によれば、 処理室を複数設 けるとともに、 これら各処理室に供給される過熱蒸気を再加熱するための予 備加熱室を設けることとしたので、 各処理室ごとの温度コントロールが可能 になる。 また、 処理室の温度を第一処理室 2 0 O A〜第三処理室 2 0 0じへ 行くにつれて高温になるように設定することにより、 過熱蒸気のエネルギー を効率よく利用することができる。  Each of the preheating chambers 202A to 202C is also provided with a temperature sensor connected to the temperature control unit 110 as in the above-described embodiment. The temperature of the superheated steam heated at 2 C may be controlled. By doing so, it becomes possible to set the processing temperatures in the processing chambers 200 A to 200 C to different temperatures. For example, 120 ° C in the first processing chamber 200 A, 200 ° C in the second processing chamber 200 B, and 300 ° C in the third processing chamber 200 C. . As described above, according to the present embodiment, a plurality of processing chambers are provided, and a preliminary heating chamber for reheating the superheated steam supplied to each of the processing chambers is provided. Temperature control becomes possible. In addition, by setting the temperature of the processing chamber to be higher as it goes from the first processing chamber 200A to the third processing chamber 200, the energy of the superheated steam can be used efficiently.
なお、 処理対象は、 前記第一処理室 2 0 0 A〜2 0 0 Cを順に通過して処 理が施されるようにしてもよいし、 いずれか一つの処理室において処理を行 うようにしてもよい。 これら各処理室 2 0 0 A〜2 0 0 Cで処理対象に所望 の処理を施したあとの過熱蒸気は、 排気管を介して上述した実施形態と同様 に冷却装置 1 3 0, 油水分離槽 1 6 0へ送られる。 また、 本実施形態におい ても、 必要に応じて空気供給装置 1 2 0やガス供給装置 1 8 0を設け、 第一 処理室 2 0 0 A〜第三処理室 2 0 0 Cの各処理室に所望の気体を供給するよ うにしてもよい。  The processing target may be configured to pass through the first processing chambers 200 A to 200 C in order and be processed, or to be processed in any one of the processing chambers. It may be. The superheated steam after subjecting the object to be treated in each of the treatment chambers 200 A to 200 C to a desired treatment is discharged to the cooling device 130, the oil-water separation tank via the exhaust pipe in the same manner as in the above-described embodiment. Sent to 160. Also, in the present embodiment, an air supply device 120 and a gas supply device 180 are provided as necessary, and each of the first to third processing chambers 200 A to 200 C is provided. Alternatively, a desired gas may be supplied to the air conditioner.
<実施形態 3 > <Embodiment 3>
次に、 図 4 (B ) を参照して、 本発明の実施形態 3について説明する。 本 実施形態は、 処理室の他の例を示すものである。 上述した実施形態 1では、 処理室 9 0内に設けられた射出パイプ 9 6により、 処理対象 9 4に直接過熱 蒸気を吹き付けて処理を施すこととした。 これに対し、 本実施形態の処理室 2 1 0は、 射出パイプ 9 6から射出された過熱蒸気 (ないし過熱蒸気の風) が処理対象 9 4へ直接あたるのを防止するための枠 2 1 2が設けられてい る。 Next, a third embodiment of the present invention will be described with reference to FIG. This embodiment shows another example of the processing chamber. In the first embodiment described above, the processing is performed by directly blowing superheated steam on the processing target 94 using the injection pipe 96 provided in the processing chamber 90. On the other hand, the processing chamber 210 of the present embodiment is provided with a frame 2 12 for preventing the superheated steam (or the wind of the superheated steam) injected from the injection pipe 96 from directly hitting the processing object 94. Is provided You.
枠 2 1 2は、 処理対象 9 4全体を囲むものであり、 多数の孔 2 1 4が形成 された多孔性の板材などにより構成されている。 このような枠 2 1 2を設け ることにより、 処理対象 9 4に直接過熱蒸気があたるのを避ける必要がある ときに効果的である。 また、 例えば、 処理室 2 1 0がコンベアによって処理 対象 9 4の搬送を行うコンペァ炉である場合も、 このような枠 2 1 2を設け ることにより、 処理対象 9 4のところでは、 例えば、 0 . S mZ s e c程度 の風速とすることができる。  The frame 212 surrounds the entire object 94 to be treated, and is made of a porous plate or the like in which many holes 214 are formed. Providing such a frame 2 12 is effective when it is necessary to prevent the superheated steam from directly hitting the object 94 to be treated. Also, for example, when the processing chamber 210 is a conveyor furnace that transports the processing object 94 by a conveyor, by providing such a frame 2 12, for example, at the processing object 94, for example, The wind speed can be about 0. S mZ sec.
<実施形態 4 > <Embodiment 4>
次に、 図 5及び図 6を参照して、 本発明の実施形態 4について説明する。 図 5 (A) は、 本実施形態の全体構成を示す図, 同図 (B ) は、 本実施形態 によって発生した水蒸気及び過熱蒸気の温度変化を示す図である。 図 6は、 本形態の詳細な構成例を示す図である。 上述した実施形態では、 一次加熱室 1 2において生成した過熱蒸気を、 気水分離室 5 0 , 二次加熱室 7 0を順に 通過させることとしたが、 本実施形態は、 その装置構成を変更したものであ る。  Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 5 (A) is a diagram showing the overall configuration of the present embodiment, and FIG. 5 (B) is a diagram showing temperature changes of steam and superheated steam generated by the present embodiment. FIG. 6 is a diagram showing a detailed configuration example of the present embodiment. In the above-described embodiment, the superheated steam generated in the primary heating chamber 12 is passed through the steam-water separation chamber 50 and the secondary heating chamber 70 in this order. It was done.
最初に、 図 5 (A) を参照して概略を説明すると、 本実施形態の過熱蒸気 処理装置は、 過熱蒸気発生装置 3 0 0 , 処理室 3 5 0, 回収タンク 3 7 0に より構成されている。 前記過熱蒸気発生装置 3 0 0は、 水または温水を加熱 して水蒸気を発生させるポイラ室 3 0 2, 水蒸気又は過熱蒸気を冷却して微 細な蒸気粒子のみ通過させて分離する気水分離室 3 1 0 , 過熱蒸気の生成と その温度調整を行う過熱蒸気発生部 3 2 0を備えており、 前記過熱蒸気発生 部 3 2 0は、 一次加熱室 3 2 4及び二次加熱室 3 3 4を含んでいる。  First, the outline will be described with reference to FIG. 5 (A). The superheated steam processing apparatus of the present embodiment is composed of a superheated steam generator 300, a processing chamber 350, and a recovery tank 370. ing. The superheated steam generator 300 includes a poirer chamber 302 that heats water or hot water to generate steam, a steam-water separation chamber that cools steam or superheated steam and allows only fine vapor particles to pass through and separates. 3 10, a superheated steam generation section 320 for generating superheated steam and adjusting the temperature thereof is provided, and the superheated steam generation section 320 is provided with a primary heating chamber 3 2 4 and a secondary heating chamber 3 3 4 Includes
前記ポイラ室 3 0 2で発生した水蒸気は、 気水分離室 3 1 0に送られ微細 な水蒸気粒子のみが選別されて過熱蒸気発生部 3 2 0の一次加熱室 3 2 4へ 送られる。 水蒸気は、 ここで加熱されて過熱蒸気となる。 一次加熱室 3 2 4 で生成した過熱蒸気は、 再度、 気水分離室 3 1 0へ送られ、 微細な粒子のみ が選別されて二次加熱室 3 3 4へ送られる。 二次加熱室 3 3 4では、 処理室 3 5 0での処理に適した温度まで過熱蒸気の再加熱が行われる。 処理室 3 5 0で処理対象を処理したあとの回収蒸気は回収タンク 3 7 0へ送られ、 冷却 して液化するとともに、 ポイラ室 3 0 2で再利用される。 The water vapor generated in the poirer chamber 302 is sent to the steam-water separation chamber 310, where only fine water vapor particles are sorted out and sent to the primary heating chamber 324 of the superheated steam generator 320. The steam is heated here to become superheated steam. The superheated steam generated in the primary heating chamber 3 2 4 is sent again to the steam-water separation chamber 3 10, where only fine particles are sorted out and sent to the secondary heating chamber 3 3 4. In the secondary heating chamber 3 3 4 Reheating of the superheated steam is performed to a temperature suitable for treatment at 350. The recovered steam after the processing target is processed in the processing chamber 350 is sent to the recovery tank 370, where it is cooled and liquefied, and is reused in the boiler chamber 302.
次に、 図 6も参照して、 本形態の詳細な構成について説明する。 上述した ように、 過熱蒸気発生装置 3 0 0は、 ポイラ室 3 0 2 , 気水分離室 3 1 0 , 過熱蒸気発生部 3 2 0の 3部構成となっている。 ポイラ室 3 0 2は、 水また は温水を加熱して水蒸気を発生させるためのヒータ 3 0 4を備えており、 気 水分離室 3 1 0とは仕切板 3 0 6で仕切られている。 また、 ポイラ室 3 0 2 は発生した水蒸気の出口 3 0 8を備えているほか、 連結管 3 7 2 , 3 7 4に より回収タンク 3 7 0と連結されている。  Next, a detailed configuration of the present embodiment will be described with reference to FIG. As described above, the superheated steam generator 300 has a three-part configuration including a poirer chamber 302, a steam-water separation chamber 310, and a superheated steam generator 320. The poiler chamber 302 is provided with a heater 304 for heating water or hot water to generate steam, and is separated from the steam / water separation chamber 310 by a partition plate 36. In addition, the poirer chamber 302 has an outlet for generated steam 308 and is connected to the recovery tank 370 by connecting pipes 372 and 374.
気水分離室 3 1 0は、 ポイラ室 3 0 2で発生した水蒸気のほか、 過熱蒸気 発生部 3 2 0で生成した過熱蒸気のうち、 微細な蒸気粒子のみを分離するも ので、 前記ポイラ室 3 0 2の出口 3 0 8と一次加熱室 3 2 4の入口 3 2 6を 連結する細管 3 1 6と、 一次加熱室 3 2 4の出口 3 3 2と二次加熱室 3 3 4 の入口 3 3 6を連結する細管 3 1 8を備えている。 このような気水分離室 3 1 0は、 上述した実施形態 1と同様に冷却水 3 1 2で満たされており、 細管 3 1 6又は 3 1 8内を通過する水蒸気又は過熱蒸気を冷却して微細な蒸気粒 子のみを通過させるフィル夕の役割を果たしている。  The steam-water separation chamber 310 separates only fine steam particles from the superheated steam generated in the superheated steam generation section 320 in addition to the steam generated in the poiler chamber 302. The narrow tube 3 1 6 connecting the outlet 3 0 8 with the inlet 3 2 4 of the primary heating chamber 3 2 6, the outlet 3 3 2 of the primary heating chamber 3 2 4 and the inlet of the secondary heating chamber 3 3 4 A thin tube 3 18 connecting the 3 3 6 is provided. The steam-water separation chamber 310 is filled with the cooling water 312 as in the first embodiment described above, and cools the steam or superheated steam passing through the narrow tube 316 or 318. It plays the role of a filter that passes only fine vapor particles.
過熱蒸気発生部 3 2 0の一次加熱室 3 2 4と二次加熱室 3 3 4は、 断熱性 の仕切板 3 2 2によって仕切られている。 一次加熱室 3 2 4は、 気水分離室 3 1 0を通過した微細な水蒸気を加熱して過熱蒸気を生成するための部屋で ある。 そして、 熱伝導性の複数の隔壁 3 3 0が交互に所定の間隔で設けられ ており、 これによつてつづら折り状の通路 3 3 1が形成されている。 また、 隔壁 3 3 0を貫通して前記通路 3 3 1を横切るように、 水蒸気を加熱するた めのヒー夕 3 2 8が設けられている。 前記隔壁 3 3 0の間隔は、 水蒸気の導 入側 (入口 3 2 6側) から過熱蒸気の排出側 (出口 3 3 2側) に行くに従つ て広くなつており、 これによつて、 加熱による体積膨張に基づく水蒸気や過 熱蒸気の圧力上昇を抑制することができる。 このように、 本実施形態では、 ポイラ室 3 0 2と一次加熱室 3 2 4を合わせたものが、 上述した実施形態 1 の一次加熱室 1 2に該当し、 更に、 前記ボイラ室 3 0 2と一次加熱室 3 2 4 の間には、 気水分離室 3 1 0が介在する構成となっている。 The primary heating chamber 3 2 4 and the secondary heating chamber 3 3 4 of the superheated steam generating section 3 0 2 are separated by a heat insulating partition plate 3 2 2. The primary heating chamber 3 2 4 is a chamber for heating the fine steam passing through the steam separation chamber 3 10 to generate superheated steam. A plurality of thermally conductive partitions 3330 are provided alternately at predetermined intervals, thereby forming a zigzag passageway 331. Further, a heater 3288 for heating the steam is provided so as to penetrate the partition wall 330 and cross the passage 331. The distance between the partition walls 330 is wider as going from the steam introduction side (inlet 3236 side) to the superheated steam discharge side (outlet 3332 side). It is possible to suppress an increase in pressure of steam or superheated steam due to volume expansion due to heating. Thus, in the present embodiment, A combination of the boiler room 302 and the primary heating room 3 2 4 corresponds to the primary heating room 12 of the first embodiment described above, and furthermore, a space between the boiler room 302 and the primary heating room 3 2 4 Has a configuration in which a steam-water separation chamber 310 is interposed.
二次加熱室 3 3 4は、 前記一次加熱室 3 2 4で生成し、 気水分離室 3 1 0 へ送られて温度が急激に低下した過熱蒸気を、 処理室 3 5 0での使用に適し た所望の温度まで再加熱するためのものである。 その構成は、 基本的には一 次加熱室 3 2 4と同様となっており、 複数の隔壁 3 4 0とそれによって形成 されたつづら折り状の通路 3 4 1 , 加熱用のヒータ 3 3 8を備えている。 ま た、 処理室 3 5 0へ過熱蒸気を送るための出口 3 4 2が設けられている。 実 際には、 上述した実施形態 1と同様に、 温度センサなどを設けて過熱蒸気の 温度を制御することとなる。  The secondary heating chamber 3 3 4 generates superheated steam that has been generated in the primary heating chamber 3 2 4 and sent to the steam-water separation chamber 3 10, and the temperature of which has dropped sharply. For reheating to a suitable desired temperature. Its configuration is basically the same as that of the primary heating chamber 3 2 4, and includes a plurality of partition walls 3 4 0, a serpentine passage 3 4 1 formed thereby, and a heater 3 3 8 for heating. Have. In addition, an outlet 342 for sending superheated steam to the processing chamber 350 is provided. Actually, similarly to Embodiment 1 described above, a temperature sensor or the like is provided to control the temperature of the superheated steam.
次に、 処理室 3 5 0は、 前記二次加熱室 3 3 4の出口 3 4 2を介して導入 された過熱蒸気を利用して、処理対象 3 6 0に所望の処理を行うものであり、 必要に応じて、 全体が断熱材 3 6 2で覆われる。 二次加熱室 3 3 4から供給 された過熱蒸気は、 導入管 3 5 2によって処理室 3 5 0内へ送られる。 該導 入管 3 5 2は、 過熱蒸気を滞留させるために管径が大きく形成された滞留部 3 5 4»と、 該滞留部 3 5 4の一端に連続して設けられたノズル部 3 5 6によ り構成されている。 ノズル部 3 5 6は、 滞留部 3 5 4と比較して管径が急激 に小さくなつており、 適宜間隔で射出口 3 5 8が形成されている。 このよう な構造により、 二次加熱室 3 3 4から導入された過熱蒸気は、 滞留部 3 5 4 にいつたん滞留したのち、 管径の小さいノズル部 3 5 6から処理対象 3 6 0 に向けて勢いよく噴出される。 すなわち、 滞留部 3 5 4を設けることにより、 過熱蒸気を加圧していると考えることができる。  Next, the processing chamber 350 performs a desired processing on the processing target 360 by using superheated steam introduced through the outlet 342 of the secondary heating chamber 334. However, if necessary, the whole is covered with thermal insulation material. The superheated steam supplied from the secondary heating chamber 334 is sent into the processing chamber 350 by the introduction pipe 352. The introduction pipe 352 includes a stagnant portion 354 having a large diameter for retaining the superheated steam, and a nozzle portion 356 provided continuously at one end of the stagnant portion 354. It is composed of The nozzle portion 356 has an abruptly smaller pipe diameter than the stagnant portion 354, and the injection ports 358 are formed at appropriate intervals. With such a structure, the superheated steam introduced from the secondary heating chamber 334 temporarily stays in the stagnant section 354, and then is directed from the nozzle section 356 having a small diameter to the processing object 360. It is spouted vigorously. That is, it can be considered that the provision of the staying portion 354 pressurizes the superheated steam.
前記処理室 3 5 0には、 処理後の過熱蒸気を回収するための排気口 3 6 4 が設けられており、 該排気口 3 6 4には、 回収タンク 3 7 0と接続する排気 管 3 6 6が接続されている。 排気管 3 6 6を介して回収された回収蒸気は、 排気管 3 6 6を通過しながら, あるいは、 回収タンク 3 7 0内で冷却されて 温水となり、 回収タンク 3 7 0に貯留される。 なお、 本実施形態では、 排気 管 3 6 6によって処理室 3 5 0の排気口 3 6 4と回収タンク 3 7 0を直接連 結することとしたが、 必要に応じて、 上述した実施形態 1の冷却装置 1 3 0 や油水分離槽 1 6 0と同様のものを設け、 回収蒸気ないし回収水の冷却や油 分の分離などを行ってから回収タンク 3 7 0に送るようにしてもよい。 The processing chamber 350 is provided with an exhaust port 364 for collecting the superheated steam after the processing, and the exhaust port 364 is provided with an exhaust pipe 3 connected to the recovery tank 370. 6 6 is connected. The recovered steam recovered through the exhaust pipe 366 is cooled while passing through the exhaust pipe 366 or in the recovery tank 370 to become hot water, and stored in the recovery tank 370. In this embodiment, the exhaust Although the exhaust port 364 of the processing chamber 350 is directly connected to the collection tank 370 by the pipe 366, if necessary, the cooling device 130 of Embodiment 1 described above and the oil water A device similar to the separation tank 160 may be provided to cool the recovered steam or the recovered water, separate the oil, and then send it to the recovery tank 370.
回収タンク 3 7 0は、 連結管 3 7 2及び 3 7 4により前記ポイラ室 3 0 2 と接続しており、 下方の連結管 3 7 2を介して、 双方に貯留された水または 温水が連通している。 これにより、 ポイラ室 3 0 2の水または温水は回収タ ンク 3 7 0を冷却するとともに、 その熱量を吸収して温度が上がるため、 回 収蒸気ないし回収水の熱量を有効利用することができる。  The recovery tank 370 is connected to the poiler chamber 302 by connecting pipes 372 and 374, and the water or hot water stored in both is communicated via the lower connecting pipe 372. are doing. As a result, the water or hot water in the poiler room 302 cools the recovery tank 370 and absorbs its heat to increase the temperature, so that the heat of the recovered steam or recovered water can be used effectively. .
次に、 図 5 (B) も参照して、 本実施形態の作用を説明する。 ポイラ室 3 0 2では、 ヒータ 3 0 4により水または温水が加熱されて水蒸気を生成する (図 5 (B ) の P 0〜P 1に該当) 。 生成した水蒸気は、 細管 3 1 6を介し て気水分離室 3 1 0に送られ、 ここで微細な蒸気粒子のみが選別される。 こ の状態は、 図 5 (B) の P 1〜P 2に該当する。 なお、 水蒸気の場合は、 過 熱蒸気と異なり、 冷却する度合いがそれほど大きくないので、 短時間の通過 では、 温度はほとんど変化しないと考えられる。  Next, the operation of the present embodiment will be described with reference to FIG. In the boiler chamber 302, water or hot water is heated by the heater 304 to generate steam (corresponding to P0 to P1 in FIG. 5B). The generated water vapor is sent to the steam-water separation chamber 310 via the thin tube 316, where only fine vapor particles are sorted out. This state corresponds to P1 to P2 in FIG. 5 (B). In the case of steam, unlike superheated steam, the degree of cooling is not so large, so it is considered that the temperature hardly changes during a short passage.
気水分離室 3 1 0を通過して一次加熱室 3 2 4に導入された水蒸気は、 ヒ 一夕 3 2 8により加熱されて急激に温度が上昇し、 例えば、 3 0 0 °C程度の 過熱蒸気となる (P 2〜P 3 ) 。 生成した過熱蒸気は、 一次過熱室 3 2 4内 を通過する間、 高温を保ち続けるが (P 3〜P 4 ) 、 出口 3 3 2及び細管 3 1 8を介して気水分離室 3 1 0へ送られると急激に温度が低下する (P 4〜 P 5 ) 。 これは、 過熱蒸気は、 特に熱伝達が良い反面、 冷却する度合いも大 きいためであり、 これによつて細管 3 1 8によるフィルタ効果により気液分 離を行うことができる。  The steam introduced into the primary heating chamber 3 24 after passing through the steam / water separation chamber 3 10 is heated by the heat exchanger 3 2 8 and rapidly rises in temperature, for example, to about 300 ° C. It becomes superheated steam (P2-P3). The generated superheated steam keeps a high temperature while passing through the primary superheater chamber 3 2 4 (P 3 to P 4), but the steam-water separation chamber 3 10 through the outlet 3 3 2 and the thin tube 3 18 The temperature drops sharply when sent to (P4 ~ P5). This is because superheated steam has particularly good heat transfer, but also has a high degree of cooling, whereby gas-liquid separation can be performed by the filter effect of the thin tubes 318.
細管 3 1 8を通過し温度が低下した過熱蒸気 (P 5〜P 6 ) は、 二次加熱 室 3 3 4へ送られ、 ヒ一夕 3 3 8により、 処理室 3 5 0での使用に適した温 度, 例えば、 1 2 0 °C程度まで加熱され (P 6〜P 7 ) 、 その温度を保った まま (P 7以降) 、 処理室 3 5 0の導入管 3 5 2に送られる。 導入管 3 5 2 へ送られた過熱蒸気は、 滞留部 3 5 4でいつたん滞留したのち、 ノズル部 3 5 6へ送られ、 射出口 3 5 8から処理対象 3 6 0へ向けて噴射される。 この とき、 一度広い場所へ滞留させたのち、 管径の細いノズル部 3 5 6へ送るこ とにより、 過熱蒸気を加圧する効果を得ることができる。 The superheated steam (P5 to P6), which has passed through the capillary tube 318 and whose temperature has dropped, is sent to the secondary heating chamber 334, where it is used in the processing chamber 350 by the HI-HIGA 338. It is heated to a suitable temperature, for example, about 120 ° C (P6 to P7), and sent to the inlet pipe 352 of the processing chamber 350 while maintaining that temperature (P7 to P7). . Introductory pipe 3 5 2 The superheated steam sent to the storage portion 354 is temporarily stored in the storage portion 354, then sent to the nozzle portion 356, and injected from the injection port 358 toward the processing target 360. At this time, after being once stored in a wide place, it is sent to the nozzle portion 356 having a small pipe diameter, whereby the effect of pressurizing the superheated steam can be obtained.
このように、 処理室 3 5 0で、 射出口 3 5 8から過熱蒸気が処理対象 3 6 0に吹き付けられ、 加熱, 乾燥, 殺菌などの所望の処理が施される。 なお、 本実施形態においても、 処理対象 3 6 0及び処理の内容によっては、 必要に 応じて上述した実施形態 1と同様に空気供給装置やガス供給装置を設け、 処 理加減の調整などを行うようにしてもよい。  As described above, in the processing chamber 350, the superheated steam is blown from the injection port 358 to the processing object 360, and desired processing such as heating, drying, and sterilization is performed. Also in this embodiment, depending on the processing object 360 and the content of the processing, an air supply device and a gas supply device are provided as necessary in the same manner as in the first embodiment, and adjustment of the processing is performed. You may do so.
処理後の蒸気は、 排気口 3 6 4及び排気管 3 6 6を介して回収タンク 3 7 0へ送られ、回収タンク 3 7 0内または排気管 3 6 6内で冷却されて液化し、 例えば、 1 0 0 °C未満の温水として回収タンク 3 7 0内に貯留される。 ここ で、 回収タンク 3 7 0と前記ポイラ室 3 0 2が連通しているため、 ポイラ室 3 0 2内の水または温水によって回収蒸気 (ないし回収水) の冷却が行われ るとともに、 その時の熱交換によって、 ポイラ室 3 0 2内の水または温水の 温度が上昇する。 すなわち、 回収蒸気の熱量を有効利用することができる。 本実施形態の効果は、 基本的には上述した実施形態 1と同様であるが、 本 実施形態によれば、 水蒸気を加熱して過熱蒸気を生成する前に、 気水分離室 3 1 0を通過させて粒子の細かい水蒸気のみを一次加熱室 3 2 4へ送る。 そ して、 更に、 一次加熱室 3 2 4で生成した過熱蒸気を気水分離室 3 1 0にお いて気水分離し、 二次加熱室 3 3 4で再加熱する構成としたので、 より微細 で高温な過熱蒸気を安定して供耠することができる。 また、 処理後の蒸気の 回収タンク 1 7 0とポイラ室 3 0 2を連結することとしたので、 回収蒸気の 熱量の再利用が可能である。 更に、 一次加熱室 3 2 4 , 二次加熱室 3 3 4の 隔壁 3 3 0 , 3 4 0の間隔を、 蒸気の流入側から排出側に行くに従って大き くすることとしたので、加熱に伴う蒸気の圧力上昇を抑制することができる。 <実施形態 5 >  The treated steam is sent to the recovery tank 370 through the exhaust port 364 and the exhaust pipe 366, and is cooled and liquefied in the recovery tank 370 or the exhaust pipe 366. , Is stored in the recovery tank 370 as warm water of less than 100 ° C. Here, since the collection tank 370 and the poirer chamber 302 communicate with each other, the collected steam (or collected water) is cooled by the water or hot water in the poirer chamber 302, and at that time, Due to the heat exchange, the temperature of the water or hot water in the boiler chamber 302 rises. That is, the calorie of the recovered steam can be effectively used. The effects of the present embodiment are basically the same as those of the above-described first embodiment. However, according to the present embodiment, before the steam is heated to generate the superheated steam, the steam-water separation chamber 3 10 Pass it through and send only water vapor with fine particles to the primary heating chamber 3 2 4. Further, since the superheated steam generated in the primary heating chamber 324 is separated into steam and water in the steam-water separation chamber 310, and reheated in the secondary heating chamber 334, the structure is further improved. Fine, high-temperature superheated steam can be supplied stably. In addition, since the steam recovery tank 170 and the poirer chamber 302 are connected, the calorie of the recovered steam can be reused. Furthermore, the spacing between the partition walls 330 and 340 of the primary heating chamber 3 2 4 and the secondary heating chamber 3 3 4 was increased from the inflow side to the outflow side of the steam, so the heating The increase in steam pressure can be suppressed. <Embodiment 5>
次に、 本発明の実施形態 5について、 図 7を参照して説明する。 図 7は、 本実施形態の全体構成を示す図である。 本形態は、 前記実施形態 4の変形例 であり、過熱蒸気発生装置 3 0 0と処理室 3 5 0が離れた構成となっている。 このため、 過熱蒸気発生装置 3 0 0で生成した過熱蒸気が、 図示しないパイ プなどを通って処理室 3 5 0に到達する前に急激に温度が低下するのを防止 するために、 処理室 3 5 0には、 三次加熱室 4 0 0が設けられている。 過熱 蒸気発生装置 3 0 0から送られた過熱蒸気は、 まず三次加熱室 4 0 0で所望 の温度になるように再加熱されてから処理室 3 5 0に送られる。 Next, a fifth embodiment of the present invention will be described with reference to FIG. Figure 7 shows FIG. 1 is a diagram illustrating an overall configuration of the present embodiment. This embodiment is a modification of the fourth embodiment, in which the superheated steam generator 300 and the processing chamber 350 are separated. Therefore, in order to prevent the temperature of the superheated steam generated by the superheated steam generator 300 from suddenly decreasing before reaching the processing chamber 350 through a pipe (not shown) or the like, the processing chamber At 350, a tertiary heating chamber 400 is provided. The superheated steam sent from the superheated steam generator 300 is first reheated to a desired temperature in the tertiary heating chamber 400 and then sent to the processing chamber 350.
処理後の蒸気は、 前記形態 4と同様に回収タンク 3 7 0に回収されるが、 回収用の管が長くなるほど温度の低下が見られるため、 併設された加熱部 4 0 2で再加熱してから気水分離室 3 1 0へ送られる。 なお、 加熱部 4 0 2と しては、 前記形態 4と同様にヒ一夕を用いてもよいし、 ガスパーナなどの他 の加熱手段であってもよい。 このように、 処理室 3 5 0に再加熱用の三次加 熱室 4 0 0を設けることにより、 過熱蒸気発生装置 3 0 0と処理室 3 5 0が 離れて設置されている場合でも、 高温の過熱蒸気を安定して供給することが 可能となる。  The treated steam is recovered in the recovery tank 370 in the same manner as in the above-mentioned Embodiment 4, but the longer the recovery pipe, the lower the temperature is. And then sent to the steam-water separation chamber 310. As the heating unit 402, a heating unit may be used in the same manner as in the fourth embodiment, or another heating unit such as a gas panner may be used. As described above, by providing the tertiary heating chamber 400 for reheating in the processing chamber 350, even when the superheated steam generator 300 and the processing chamber 350 are set apart from each other, high temperature can be obtained. It is possible to supply superheated steam stably.
<実施形態 6 > <Embodiment 6>
次に、 本発明の実施形態 6について、 図 8を参照して説明する。 図 8は、 本実施形態の全体構成を示す図である。 上述した実施形態 4及び 5では、 ポ イラ室 3 0 2で発生した水蒸気及び一次加熱室 3 2 4で発生した過熱蒸気 を、 一つの気水分離室 3 1 0を通過させることとしたが、 本実施形態は、 気 水分離室を複数設けた例である。 同図に示すように、 本形態の過熱蒸気発生 装置 4 1 0は、 ポイラ室 4 1 1と 3つの加熱室 4 1 2 , 4 1 6, 4 2 0及び 2つの気水分離室 4 1 4 , 4 1 8により構成されている。 前記ポイラ室 4 1 1で発生した水蒸気は、 まず、 一次加熱室 4 1 2に送られて再加熱され、 過 熱蒸気となる。 過熱蒸気は第一気水分離室 4 1 4へ送られて微細な蒸気粒子 のみが選別されて二次加熱室 4 1 6へ送られる。 ここで、 気水分離により温 度低下した過熱蒸気を再度加熱し、 更に、 第二気水分離室 4 1 8で冷却して 微細粒子の選別を行う。 該第二気水分離室 4 1 8を通過した微細な過熱蒸気 粒子は温度が低下しているため、 最後に三次加熱室 4 2 0へ送られて、 処理 室 4 2 2での処理に必要な所望温度に再加熱される。 Next, a sixth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a diagram showing the overall configuration of the present embodiment. In Embodiments 4 and 5 described above, the steam generated in the boiler chamber 302 and the superheated steam generated in the primary heating chamber 324 are passed through one steam-water separation chamber 310. The present embodiment is an example in which a plurality of steam separation chambers are provided. As shown in the figure, the superheated steam generator 410 of the present embodiment is composed of a boiler room 4 11, three heating rooms 4 12, 4 16, 4 20 and two steam-water separation chambers 4 1 4 , 4 18. The steam generated in the poiling chamber 411 is first sent to the primary heating chamber 412 to be reheated, and becomes superheated steam. The superheated steam is sent to the first steam / water separation chamber 414, where only the fine steam particles are sorted out and sent to the secondary heating chamber 416. Here, the superheated steam whose temperature has been lowered by the gas / water separation is heated again, and further cooled in the second gas / water separation chamber 418 to sort fine particles. Fine superheated steam that has passed through the second steam-water separation chamber 4 18 Since the temperature of the particles has decreased, the particles are finally sent to the tertiary heating chamber 420 and reheated to a desired temperature required for processing in the processing chamber 422.
本形態では、 更に、 処理室 4 2 2で処理対象に所望の処理を行ったあとの 蒸気の熱量を再利用するために、 熱交換器 4 2 4が設けられている。 該熱交 換器 4 2 4には、 冷却水が 4 2 6が満たされており、 前記処理室 4 2 2から 排気された回収蒸気を、 前記冷却水 4 2 6中の冷却管 4 2 8を通過させるこ とにより、 熱交換によって、 回収蒸気の冷却と冷却水 4 2 6の加熱による水 蒸気の発生を同時に実現することができる。 そして、 冷却されて液化した回 収蒸気は排出され、 発生した水蒸気は前記一次加熱室 4 1 2に送られて再利 用される。 このとき、 ポイラ室 4 1 1及び熱交換器 4 2 4から発生した水蒸 気の合流地点よりもポイラ室 4 1 1寄りの位置にバルブ 4 3 0を設けておく と、 熱交換器 4 2 4から十分な量の水蒸気が供給される場合に、 ポイラ室 4 1 1からの水蒸気の供給を遮断することができる。 このように、 本実施形態 によれば、 2つの気水分離室 4 1 4, 4 1 8を設けて過熱蒸気の粒径の選別 を行うこととしたので、 高温で微細な過熱蒸気を、 より安定して供給するこ とが可能となる。 更に、 処理に利用した後の回収蒸気の熱量を再利用するこ とも可能である。  In the present embodiment, a heat exchanger 424 is further provided in order to reuse the calorific value of the steam after performing the desired processing on the object to be processed in the processing chamber 422. The heat exchanger 4 2 4 is filled with cooling water 4 2 6, and the recovered steam exhausted from the processing chamber 4 2 2 is supplied to the cooling pipe 4 2 8 in the cooling water 4 2 6. Thus, the cooling of the recovered steam and the generation of water vapor by heating the cooling water 426 can be simultaneously realized by heat exchange. Then, the recovered steam cooled and liquefied is discharged, and the generated steam is sent to the primary heating chamber 412 to be reused. At this time, if a valve 4330 is provided at a position closer to the poirer chamber 411 than the confluence of the water vapor generated from the poiler chamber 411 and the heat exchanger 4 2 4, the heat exchanger 4 2 When a sufficient amount of steam is supplied from 4, the supply of steam from the poiler chamber 4 11 can be cut off. As described above, according to the present embodiment, the two steam-water separation chambers 4 14 and 4 18 are provided to select the particle size of the superheated steam. Stable supply is possible. Furthermore, it is also possible to reuse the calorific value of the recovered steam after using it for processing.
<実施形態 7 > <Embodiment 7>
次に、 図 9 (A) を参照して、 本発明の実施形態 7について説明する。 本 形態は、 気水分離室の変形例である。 同図 (A) は、 本形態による気水分離 の様子を示している。 本形態の気水分離室 4 5 0は、 過熱蒸気を冷却するた めの冷却室 4 5 2と、 該冷却室 4 5 2全体を冷却する冷却槽 4 5 4により構 成されている。 冷却槽 4 5 4には、 水などの冷却媒体が充填されている。 また、 過熱蒸気発生部 4 6 0は、 一次加熱室 4 6 2と二次加熱室 4 7 0に より構成されている。 前記一次加熱室 4 6 2は、 水蒸気または過熱蒸気の入 口 4 6 4 , 出口 4 6 8, 加熱用のヒー夕 4 6 6を備えており、 同様に、 二次 加熱室 4 7 0も、 過熱蒸気の入口 4 7 4, 出口 4 7 6 , ヒータ 4 7 2を備え ている。 また、 前記一次加熱室 4 6 2の出口 4 6 8には、 前記冷却室 4 5 2 内に過熱蒸気を勢いよく噴射させるためのノズル 4 5 6が設けられている。 該冷却室 4 5 2に噴射された過熱蒸気は、 室内の空気によって冷却され、 微 細な蒸気粒子のみが選別されて、 大口径の入口 4 7 4を介して二次加熱室 4 7 0へ送られる。 すなわち、 本実施形態では、 冷却室 4 5 2内の空気自体を 直接の冷却媒体として利用した構成となっている。 本実施形態の効果 ·作用 は上述した実施形態と同様である。 Next, a seventh embodiment of the present invention will be described with reference to FIG. This embodiment is a modification of the steam separator. FIG. 2A shows the state of steam-water separation according to the present embodiment. The steam-water separation chamber 450 of the present embodiment includes a cooling chamber 452 for cooling the superheated steam, and a cooling tank 4554 for cooling the entire cooling chamber 452. The cooling tank 454 is filled with a cooling medium such as water. The superheated steam generator 460 is composed of a primary heating chamber 462 and a secondary heating chamber 470. The primary heating chamber 4 62 is provided with an inlet 4 6 4 for steam or superheated steam, an outlet 4 6 8, and a heating heater 4 6 6. Similarly, the secondary heating chamber 4 A superheated steam inlet 474, outlet 476, and heater 472 are provided. Further, the cooling chamber 4 5 2 is provided at an outlet 4 6 8 of the primary heating chamber 4 6 2. A nozzle 456 for injecting superheated steam vigorously is provided inside. The superheated steam injected into the cooling chamber 452 is cooled by the air in the room, and only fine steam particles are sorted out, and then, to the secondary heating chamber 470 through the large-diameter inlet 474. Sent. That is, in the present embodiment, the air itself in the cooling chamber 452 is used as a direct cooling medium. The effects and operations of the present embodiment are the same as those of the above-described embodiment.
次に図 9 (B ) を参照して、 本発明で生成した過熱蒸気の熱量特性につい て説明する。 同図は、 蒸気の温度と熱量の関係を示す図であり、 横軸が温度 (°C) , 縦軸がエネルギー量 (熱量) (k c a l Z c c ) となっている。 同 図中、 A線は飽和蒸気の特性を示し、 B線は従来の手法で生成された低圧過 熱蒸気の特性を示し、 C線は本発明により生成した過熱蒸気の特性を示して いる。 同図から分かるように、 これら三つの線は 1 1 ο 付近で交わってお り、 飽和蒸気の Α線は、 3 7 4 °C付近で臨界状態に達し、 それまでの 1 °C当 りのエネルギー量の増加率は、 約 1 c a 1 /°C · c cとなっている。 また、 低圧過熱蒸気の B線のエネルギー量増加率は、 約 7 c a 1 /°C · c c, 本発 明の過熱蒸気の C線のエネルギー量増加率は、 1 2 0 °Cに達するまで約 1 3 3 c a 1 Z°C · c cとなっている。 このように、 本発明の過熱蒸気は、 1 2 0 °C〜2 0 0 °C程度の低温でも、 飽和蒸気, 低圧過熱蒸気と比較して飛躍的 に大きいエネルギ一量と蒸発速度を得られる。 例えば、 通常の低圧過熱蒸気 が 3 0 0 付近で持ち得る熱量と同等の熱量を、 本発明による過熱蒸気はわ ずか 1 2 0 で備えている。  Next, with reference to FIG. 9 (B), the calorific characteristics of the superheated steam generated in the present invention will be described. The figure shows the relationship between the temperature of steam and the amount of heat, with the horizontal axis representing temperature (° C) and the vertical axis representing energy (heat) (k ca l Z c c). In the figure, line A shows the characteristics of the saturated steam, line B shows the characteristics of the low-pressure superheated steam generated by the conventional method, and line C shows the characteristics of the superheated steam generated by the present invention. As can be seen from the figure, these three lines intersect at around 11 °, and the 蒸 気 line of the saturated steam reaches a critical state at around 374 ° C, and at around 1 ° C until then. The rate of increase in the amount of energy is about 1 ca1 / ° C · cc. The energy increase rate of the low pressure superheated steam for the B line is about 7 ca 1 / ° C · cc, and the energy increase rate for the C line of the superheated steam of the present invention is about 12 ° C until it reaches 120 ° C. 1 3 3 ca 1 Z ° C · cc. As described above, the superheated steam of the present invention can obtain a remarkably large amount of energy and an evaporation rate even at a low temperature of about 120 ° C to 200 ° C, as compared with the saturated steam and the low-pressure superheated steam. . For example, the superheated steam according to the present invention has only 120 heats equivalent to the heat that normal low-pressure superheated steam can have near 300.
このように、 本発明によれば、 上述した実施形態で説明したように、 生成 した過熱蒸気の冷却と加熱を繰り返す特殊な加熱処理を施しているため蒸気 の分子構造が変化 (微細化) し、 気体に含まれる水分含有量が 0 . 1 %以下 程度と少なくなるため、 飽和蒸気や通常の低圧過熱蒸気と比べて数倍以上の 熱伝達力と蒸発速度を実現することが可能となる。 本発明の過熱蒸気によれ ば、 ある温度の液体の中に試料を入れたときとほぼ同等の時間で同程度の熱 伝達が可能である。 <他の実施形態 > As described above, according to the present invention, as described in the above-described embodiment, since the special heating treatment for repeating the cooling and heating of the generated superheated steam is performed, the molecular structure of the steam changes (miniaturization). However, since the water content in the gas is reduced to about 0.1% or less, it is possible to realize a heat transfer power and an evaporation rate several times higher than that of saturated steam or ordinary low-pressure superheated steam. According to the superheated steam of the present invention, the same degree of heat transfer is possible in substantially the same time as when a sample is placed in a liquid at a certain temperature. <Other embodiments>
本発明には数多くの実施形態があり、 以上の開示に基づいて多様に改変す ることが可能である。 例えば、 次のようなものも含まれる。  The present invention has many embodiments, and can be variously modified based on the above disclosure. For example, the following are included.
( 1 ) 前記形態における大きさ ·形状は一例であり、 必要に応じて適宜変更 可能である。  (1) The size and shape in the above-described embodiment are merely examples, and can be appropriately changed as needed.
( 2 ) 前記形態 1における一次加熱室 1 2は一例であり、 過熱蒸気を生成す ることができれば、 どのような構成のものであってもよい。 例えば、 前記形 態 1では、 タンク 2 0の外周にそって加熱管 2 2を巻回し、 ガスパーナ 2 4 をタンク 2 0の下側に設け、 タンク 2 0の上方にヒータ 3 0を設けたが、 例 えば、 上下左右にガスバーナゃヒー夕を設けるなど、 加熱手段を更に多数設 けるようにしてもよい。 また、 加熱手段も各種の公知のものを用いてもよい。 あるいは、 タンクを円筒状に形成し、 その内側にスパイラル状の加熱管 2 2 を設けるようにしてもよいし、 内側及び外側のタンクでスパイラル状の加熱 管を挟む構造としてもよい。  (2) The primary heating chamber 12 in Embodiment 1 is an example, and may have any configuration as long as it can generate superheated steam. For example, in the embodiment 1, the heating pipe 22 is wound around the outer periphery of the tank 20, the gas parner 24 is provided below the tank 20, and the heater 30 is provided above the tank 20. For example, a plurality of heating means may be provided, such as providing gas burners at the top, bottom, left, and right. Also, various known heating means may be used. Alternatively, the tank may be formed in a cylindrical shape, and a spiral heating tube 22 may be provided inside the tank, or a structure in which the spiral heating tube is sandwiched between the inner and outer tanks may be employed.
( 3 ) 気水分離室 5 0 , 3 1 0, 4 1 4 , 4 1 8による気水分離も一例であ り、 同様の効果を奏するように適宜設計変更可能である。 例えば、 前記形態 では、 冷却水を利用して気水分離を行うこととしたが、 実施形態 7の気水分 離室 4 5 0のように空気を冷却媒体として利用するようにしてもよいし、 他 のガスなどを利用してもよい。 また、 気水分離されたドレン水を排出ないし 再利用するためのトラップなどを設けるようにしてもよい。 また、 前記実施 形態 4では、 水蒸気及び過熱蒸気をそれぞれ一回ずつ気水分離することとし たが、 更に他の加熱室を設け、 気水分離室と加熱室の往復を複数回行うよう にしてもよい。 もちろん、 このとき 1つの気水分離室を通過させるようにし てもよいし、 加熱室と同数程度の気水分離室を設けて、 順番に通過させるよ うにしてもよい。 これにより、 蒸気粒子の小さい安定した過熱蒸気を供給す ることが可能である。  (3) Steam-water separation by the steam-water separation chambers 50, 310, 414, 418 is also an example, and the design can be changed as appropriate to achieve the same effect. For example, in the above-described embodiment, steam-water separation is performed using cooling water.However, as in the steam-water separation chamber 450 of the seventh embodiment, air may be used as a cooling medium, Other gases may be used. Further, a trap or the like for discharging or reusing the drain water separated from water and water may be provided. In the fourth embodiment, the steam and the superheated steam are separated into steam and water once each. However, another heating chamber is provided, and the steam and the heated steam are reciprocated a plurality of times. Is also good. Of course, at this time, the gas may be passed through one gas / water separation chamber, or the same number of steam / water separation chambers as the heating chamber may be provided, and the gas may be passed in order. This makes it possible to supply stable superheated steam with small steam particles.
( 4 ) 前記実施形態における処理室 9 0, 2 1 0, 3 5 0, 4 2 2なども一 例であり、 必要に応じて適宜変更してよい。 例えば、 処理室 9 0内部に処理 対象 9 4をのせるコンベアなどを設けて、各種処理を施すようにしてもよい。 また、 前記実施形態 2においては 3つの処理室を設けることとしたが、 過熱 蒸気発生装置 1 0の容量に応じて、 処理室の数は増減可能である。 また、 こ れら複数の処理室も前記形態では直列に配置することとしたが、 必要に応じ て並列配置としてもよい。 更に、 前記形態 4では、 過熱蒸気の導入管 3 5 2 に滞留部 3 5 4を形成することにより、 射出する過熱蒸気を加圧することと したが、 同様の効果を奏するものであれば、 他の各種の加圧機構を利用して よい。 (4) The processing chambers 90, 210, 350, 422, and the like in the above embodiment are also examples, and may be appropriately changed as necessary. For example, processing inside 90 A conveyor or the like on which the object 94 is placed may be provided to perform various processes. In the second embodiment, three processing chambers are provided. However, the number of processing chambers can be increased or decreased according to the capacity of the superheated steam generator 10. In addition, although the plurality of processing chambers are arranged in series in the above embodiment, they may be arranged in parallel if necessary. Further, in the fourth embodiment, the staying portion 354 is formed in the superheated steam introduction pipe 352 so as to pressurize the superheated steam to be injected. Various pressurizing mechanisms may be used.
( 5 ) 前記実施形態 1では、 2つの温度センサ 3 2及び 1 0 0を用いて過熱 蒸気の温度制御を行ったが、 更に多数の温度センサを用いることを妨げるも のではない。 また、 最終的に処理室 9 0において所望の温度の過熱蒸気を得 ることができれば、 上述した温度制御手法に限定されるものではない。  (5) In the first embodiment, the temperature control of the superheated steam is performed using the two temperature sensors 32 and 100. However, this does not prevent the use of more temperature sensors. The method is not limited to the above-described temperature control method as long as superheated steam at a desired temperature can be finally obtained in the processing chamber 90.
( 6 ) 前記形態では、 処理後の過熱蒸気を回収したが、 この回収処理は必要 に応じて行えばよい。 また、 前記形態 1では、 回収した蒸気中に含まれる油 成分を除去するための油水分離室 1 6 0を設けることとしたが、 これも蒸気 が汚損するおそれがないときは、 必ずしも分離室 1 6 6は必要ではなく、 貯 水室 1 6 4のみを設ければよい。  (6) In the above embodiment, the superheated steam after the treatment is recovered, but this recovery processing may be performed as needed. In the first embodiment, the oil / water separation chamber 160 for removing the oil component contained in the recovered steam is provided. However, when the steam is not likely to be contaminated, the separation chamber 1 is not necessarily provided. It is not necessary to provide 6 and only the water storage chambers 16 need to be provided.
( 7 ) 処理対象 9 4, 3 6 0としては、 上述したパンなどの食品のほか、 例 えば、 廃水, 工業製品, それらの部品, 衣料品, 薬品, 各種原材料, 廃棄物, 医療用品及び医療廃棄物など、 各種のものが適用可能であり、 固体や液体の ほか、 粉末などでもよい。 また、 処理の形態としては、 上述した加熱のほか、 乾燥, 冷却, 洗浄, 焼結, 解凍, 除湿, 蒸煮, 炊飯, 殺菌, 暖房など、 各種 の態様が可能である。  (7) The objects to be treated 94 and 360 are, in addition to the food products such as bread mentioned above, for example, wastewater, industrial products, their parts, clothing, chemicals, various raw materials, waste, medical supplies and medical supplies. Various materials such as waste can be applied, and solids and liquids as well as powders may be used. In addition to the above-described heating, various forms of processing such as drying, cooling, washing, sintering, thawing, dehumidifying, steaming, cooking, sterilizing, and heating are possible.
( 8 ) 前記実施形態では、 過熱処理時に空気を利用したが、 空気以外のもの, 例えば酸素を利用してもよい。 酸素を利用することで, 食品に焦げ目を付け る, 処理対象を焼却する, 処理対象を殺菌するなどの処理を効率的におこな うことができる。 更に、 ガス供給装置 1 8 0によって供給するガスも一例で あり、 窒素や炭酸ガス以外のガスを処理時に供給するようにしてもよい。 ( 9 ) 前記形態を組み合わせるようにしてもよい。 例えば、 実施形態 4のポ イラ室 3 0 2で水蒸気を生成する代わりに、 実施形態 1の一次加熱室 1 2と 同様のものを用いて過熱蒸気を生成することにより、 気水分離室 3 1 0によ る過熱蒸気の気水分離を 2回行うようにしてもよい。 (8) In the above embodiment, air is used at the time of the superheat treatment. However, other than air, for example, oxygen may be used. By using oxygen, it is possible to efficiently perform processes such as browning food, incinerating the object to be treated, and sterilizing the object to be treated. Further, the gas supplied by the gas supply device 180 is also an example, and a gas other than nitrogen or carbon dioxide may be supplied at the time of processing. (9) The above embodiments may be combined. For example, instead of generating steam in the boiler chamber 302 of the fourth embodiment, a superheated steam is generated using the same one as the primary heating chamber 12 of the first embodiment, so that the steam-water separation chamber 31 The steam-water separation of superheated steam by zero may be performed twice.
「産業上の利用可能性」 "Industrial applicability"
以上説明したように、 本発明によれば、 水, 温水または水蒸気を加熱して 生成した過熱蒸気を気水分離し、 これによつて得た微細な蒸気粒子のみを再 加熱することとしたので、 温度低下を伴うことなく安定して微細な過熱蒸気 を供給することができるとともに、 これを利用して短時間で効率的に処理対 象に処理を施すことができる。 また、 複数箇所で過熱蒸気の温度を測定して 制御することとしたので、 過熱蒸気の温度を良好に所望の値に保持すること ができる。 更に、 必要に応じて処理時に酸素, 窒素, 炭酸ガスのいずれかの 気体を供給することとしたので、 これら気体の供給量により処理加減を調整 することができる。  As described above, according to the present invention, superheated steam generated by heating water, hot water or steam is separated into steam and water, and only the fine steam particles obtained thereby are reheated. In addition, it is possible to stably supply fine superheated steam without lowering the temperature, and to use the superheated steam for processing in a short time and efficiently. In addition, since the temperature of the superheated steam is measured and controlled at a plurality of locations, the temperature of the superheated steam can be satisfactorily maintained at a desired value. Further, any one of oxygen, nitrogen, and carbon dioxide gas is supplied at the time of processing as required, so that the processing rate can be adjusted by the supply amount of these gases.

Claims

請求の範囲 The scope of the claims
1 . 水, 温水または水蒸気を加熱手段で加熱して過熱蒸気を生成する過熱蒸 気生成手段, 1. Superheated steam generating means for generating superheated steam by heating water, hot water or steam with a heating means,
該過熱蒸気生成手段によって生成した過熱蒸気のうち、 微細な蒸気粒子の みを通過させる気水分離手段,  Steam-water separation means for passing only fine steam particles out of the superheated steam generated by the superheated steam generation means,
該気水分離手段を通過した過熱蒸気を加熱する再加熱手段,  Reheating means for heating the superheated steam passed through the steam / water separation means,
を備えたことを特徴とする過熱蒸気発生装置。 A superheated steam generator comprising:
2 . 前記再加熱手段を複数設けるとともに、 前記過熱蒸気生成手段によって 生成した過熱蒸気を、 前記気水分離手段と前記複数の再加熱手段を交互に通 過させることを特徴とする請求項 1記載の過熱蒸気発生装置。  2. The method according to claim 1, wherein a plurality of the reheating means are provided, and the superheated steam generated by the superheated steam generation means is alternately passed through the steam / water separation means and the plurality of reheating means. Superheated steam generator.
3 . 前記再加熱手段が、  3. The reheating means comprises:
複数の熱伝導性の隔壁,  Multiple thermally conductive bulkheads,
該複数の隔壁によってつづら折り状に形成された過熱蒸気の通路, を備えるとともに、 前記隔壁の間隔を、 蒸気の導入側から排出側に行くに従 つて拡大したことを特徴とする請求項 1又は 2記載の過熱蒸気発生装置。 3. A superheated steam passage formed in a zigzag shape by the plurality of partition walls, and an interval between the partition walls is increased from a steam introduction side to a steam introduction side. The superheated steam generator according to the above.
4. 前記過熱蒸気生成手段は、 4. The superheated steam generation means,
水または温水を貯留する貯留タンク,  Storage tank for storing water or hot water,
該貯留タンクの外周に巻回されており、 水または温水が供給される熱伝導 性の加熱管,  A heat conductive heating tube wound around the outer periphery of the storage tank and supplied with water or hot water;
を含むとともに、 前記加熱手段によって前記加熱管を加熱して過熱蒸気を生 成することを特徴とする請求項 1〜 3のいずれかに記載の過熱蒸気発生装 The superheated steam generator according to any one of claims 1 to 3, wherein the heating means heats the heating tube to generate superheated steam.
5 . 前記加熱管の管径を、 水または温水の供給側から過熱蒸気の排出側に行 くに従つて拡大したことを特徴とする請求項 4記載の過熱蒸気発生装置。5. The superheated steam generator according to claim 4, wherein a diameter of the heating pipe is increased from a supply side of water or hot water to a discharge side of superheated steam.
6 . 前記気水分離手段は、 6. The steam-water separation means,
前記過熱蒸気生成手段から供給された過熱蒸気の通路,  A passage for the superheated steam supplied from the superheated steam generation means,
該通路の周囲を冷却媒体で冷却する冷却槽, を含むことを特徴とする請求項 1〜 5のいずれかに記載の過熱蒸気発生装 置。 A cooling tank for cooling the periphery of the passage with a cooling medium, The superheated steam generator according to any one of claims 1 to 5, further comprising:
7 . 前記冷却媒体が水であるときに、 前記冷却槽から排出された冷却水を、 前記貯留夕ンク又は加熱管に供給する循環手段,  7. When the cooling medium is water, circulating means for supplying the cooling water discharged from the cooling tank to the storage tank or the heating pipe,
, を備えたことを特徴とする請求項 6記載の過熱蒸気発生装置。 7. The superheated steam generator according to claim 6, comprising:
8 . 請求項 1〜 7のいずれかに記載の過熱蒸気発生装置を備えており、 前記過熱蒸気発生装置によって生成された過熱蒸気によって、 処理対象に 必要な処理を行う処理手段,  8. A processing means comprising the superheated steam generator according to any one of claims 1 to 7, and performing a process necessary for a processing target by using the superheated steam generated by the superheated steam generator,
を少なくとも一つ備えたことを特徴とする過熱蒸気処理装置。  A superheated steam treatment device comprising at least one of the following.
9 . 前記過熱蒸気発生装置によって生成された過熱蒸気を再加熱して前記処 理手段に供給する予備加熱手段,  9. Preheating means for reheating the superheated steam generated by the superheated steam generator and supplying the reheated steam to the processing means;
を備えたことを特徴とする請求項 8記載の過熱蒸気処理装置。  9. The superheated steam treatment device according to claim 8, comprising:
1 0 . 前記処理手段に酸素, 窒素, 二酸化炭素の少なくともいずれかのガス を供給する気体供給手段,  10. Gas supply means for supplying at least one of oxygen, nitrogen and carbon dioxide to the treatment means,
を備えたことを特徴とする請求項 8又は 9記載の過熱蒸気処理装置。  The superheated steam treatment device according to claim 8 or 9, further comprising:
1 1 . 複数の温度センサを設けるとともに、  1 1. With multiple temperature sensors,
これらの温度センサによる検知結果に基づいて、 前記過熱蒸気発生装置に よって生成される過熱蒸気の温度又は前記予備加熱手段で再加熱される過熱 蒸気の温度を制御する温度制御手段,  Temperature control means for controlling the temperature of the superheated steam generated by the superheated steam generator or the temperature of the superheated steam reheated by the preheating means based on the detection results by these temperature sensors;
を備えたことを特徴とする請求項 8〜 1 0のいずれかに記載の過熱蒸気処理  Superheated steam treatment according to any one of claims 8 to 10, characterized by comprising:
1 2 . 前記処理手段は、 1 2. The processing means:
前記過熱蒸気発生装置から供給された過熱蒸気を加圧するための加圧手 段,  A pressurizing means for pressurizing the superheated steam supplied from the superheated steam generator,
を備えたことを特徴とする請求項 8 ~ 1 1のいずれかに記載の過熱蒸気処理  Superheated steam treatment according to any one of claims 8 to 11, characterized by comprising:
3 . 前記処理手段は、 3. The processing means
前記処理対象に対して過熱蒸気が直接あたるのを防止するための多孔性の 囲い枠, Porous to prevent superheated steam from directly hitting the processing object Frame,
を備えたことを特徴とする請求項 8〜 1 2のいずれかに記載の過熱蒸気処理 Superheated steam treatment according to any one of claims 8 to 12, characterized by comprising:
1 4. 前記処理手段によって処理を行った後の蒸気を回収して液化する冷却 手段, 1 4. Cooling means for recovering and liquefying the steam after processing by the processing means,
該冷却手段によって液化した回収水中の油と水を分離する油水分離手段, を備えたことを特徴とする請求項 8〜1 3のいずれかに記載の過熱蒸気処理  The superheated steam treatment according to any one of claims 8 to 13, further comprising: oil / water separation means for separating oil and water in the recovered water liquefied by the cooling means.
1 5 . 前記処理手段によって処理を行った後の蒸気の熱量を再利用する再利 用手段, 15. Reuse means for reusing the calorific value of the steam after being processed by the processing means,
を備えたことを特徴とする請求項 8〜 1 4のいずれかに記載の過熱蒸気処理 Superheated steam treatment according to any one of claims 8 to 14, characterized by comprising:
1 6 . 前記処理手段は、 前記処理対象に、 加熱, 乾燥, 冷却, 洗浄, 焼却, 解凍, 除湿, 蒸煮, 炊飯, 殺菌, 防鑌, 焼なましのいずれかの処理を行うこ とを特徴とする請求項 8〜1 5のいずれかに記載の過熱蒸気処理装置。 16. The processing means is characterized in that the processing target is subjected to any one of heating, drying, cooling, washing, incineration, thawing, dehumidification, steaming, rice cooking, sterilization, protection, and annealing. The superheated steam treatment apparatus according to any one of claims 8 to 15, wherein
1 7 . 水, 温水または水蒸気を加熱手段で加熱して過熱蒸気を生成する過熱 蒸気生成工程,  17. Superheated steam generation process in which water, hot water or steam is heated by a heating means to generate superheated steam,
該過熱蒸気生成手段によつて生成した過熱蒸気のうち、 微細な蒸気粒子の みを通過させる気水分離工程,  A steam-water separation step of passing only fine steam particles out of the superheated steam generated by the superheated steam generation means,
該気水分離手段を通過した過熱蒸気を加熱する再加熱工程,  A reheating step of heating the superheated steam that has passed through the steam / water separation means,
を備えたことを特徴とする過熱蒸気発生方法。 A method for generating superheated steam, comprising:
PCT/JP2003/005536 2002-07-09 2003-04-30 Method and device for generating superheated steam and superheated steam processing device WO2004005798A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004519200A JP3980595B2 (en) 2002-07-09 2003-04-30 Superheated steam treatment method and apparatus
AU2003234776A AU2003234776A1 (en) 2002-07-09 2003-04-30 Method and device for generating superheated steam and superheated steam processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002200018 2002-07-09
JP2002-200018 2002-07-09

Publications (1)

Publication Number Publication Date
WO2004005798A1 true WO2004005798A1 (en) 2004-01-15

Family

ID=30112498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005536 WO2004005798A1 (en) 2002-07-09 2003-04-30 Method and device for generating superheated steam and superheated steam processing device

Country Status (3)

Country Link
JP (1) JP3980595B2 (en)
AU (1) AU2003234776A1 (en)
WO (1) WO2004005798A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137418A1 (en) * 2005-06-21 2006-12-28 Tomoda Selling & Sailing Co., Ltd. Superheated steam generating device, and methods of manufacturing and heating food using superheated steam
WO2007126197A1 (en) * 2006-04-28 2007-11-08 Jaeyoung Solutec Co., Ltd Heating, sterilizing and drying appliance using superheated steam generator
CN100398906C (en) * 2006-01-25 2008-07-02 程洪亮 High pressure nano vapor generation method and generator therefor
WO2009141995A1 (en) * 2008-05-23 2009-11-26 日清フーズ株式会社 Frozen food thawing device
US8168132B2 (en) 2006-07-07 2012-05-01 Scican Ltd. Apparatus and method for drying instruments using superheated steam
JP2013063032A (en) * 2011-09-16 2013-04-11 Univ Of Tsukuba Chemical-free fumigation method using superheated steam and chemical-free fumigation device using superheated steam
KR101481554B1 (en) * 2008-05-13 2015-01-13 엘지전자 주식회사 Apparatus for Treating Cloth
JP2015081751A (en) * 2013-10-24 2015-04-27 信越化学工業株式会社 Superheated steam processing device
JP2015218968A (en) * 2014-05-19 2015-12-07 パナソニックIpマネジメント株式会社 Superheated steam processing method and device
JP2017044384A (en) * 2015-08-25 2017-03-02 中部電力株式会社 High-temperature fluid generation device
JP2017045615A (en) * 2015-08-26 2017-03-02 京都和光純薬株式会社 Heating device
JP2017044402A (en) * 2015-08-26 2017-03-02 京都和光純薬株式会社 Heating apparatus
JP2017048976A (en) * 2015-09-03 2017-03-09 京都和光純薬株式会社 Heating device
JP2017161198A (en) * 2016-03-11 2017-09-14 アズビル株式会社 Dryness adjusting device and dryness adjustment method
EP2500547A3 (en) * 2011-03-18 2018-04-11 General Electric Company Apparatus for starting up combined cycle power systems and method for assembling same
JP7323145B1 (en) 2022-12-23 2023-08-08 有限会社ティエスエンジニアリング Hot water boiler equipment using superheated steam

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256031B1 (en) * 2011-11-09 2013-04-18 (주)귀뚜라미동광보일러 Steam separation means of one through boiler
KR102105208B1 (en) * 2018-08-07 2020-04-28 홍인선 Food waste disposal unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496478A (en) * 1978-01-17 1979-07-30 Toshiba Corp Vapor trap
JPS58205023A (en) * 1982-05-21 1983-11-29 マルコス・ヒメネス Steam type movable heating apparatus
WO1998041336A1 (en) * 1997-03-17 1998-09-24 Kabushiki Kaisha Seta Giken Cleaning apparatus and cleaning method
JP2001021108A (en) * 1999-07-02 2001-01-26 Hiroyoshi Hiramatsu Superheated steam generator and superheated steam treatment device
JP2002168401A (en) * 2000-12-01 2002-06-14 Katsumi Shibata Superheated steam generator
DE10062320A1 (en) * 2000-12-14 2002-06-20 Borsig Gmbh Heat recovery boiler for cooling hot synthesis gas
JP2002181306A (en) * 2000-12-14 2002-06-26 Thermo Electron Kk Superheated system generating device and superheated steam treatment equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496478A (en) * 1978-01-17 1979-07-30 Toshiba Corp Vapor trap
JPS58205023A (en) * 1982-05-21 1983-11-29 マルコス・ヒメネス Steam type movable heating apparatus
WO1998041336A1 (en) * 1997-03-17 1998-09-24 Kabushiki Kaisha Seta Giken Cleaning apparatus and cleaning method
JP2001021108A (en) * 1999-07-02 2001-01-26 Hiroyoshi Hiramatsu Superheated steam generator and superheated steam treatment device
JP2002168401A (en) * 2000-12-01 2002-06-14 Katsumi Shibata Superheated steam generator
DE10062320A1 (en) * 2000-12-14 2002-06-20 Borsig Gmbh Heat recovery boiler for cooling hot synthesis gas
JP2002181306A (en) * 2000-12-14 2002-06-26 Thermo Electron Kk Superheated system generating device and superheated steam treatment equipment

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006137418A1 (en) * 2005-06-21 2009-01-22 友田セーリング株式会社 Superheated steam generator, food production method and heating method using superheated steam
JP4620732B2 (en) * 2005-06-21 2011-01-26 友田セーリング株式会社 Superheated steam generator, food production method and heating method using superheated steam
WO2006137418A1 (en) * 2005-06-21 2006-12-28 Tomoda Selling & Sailing Co., Ltd. Superheated steam generating device, and methods of manufacturing and heating food using superheated steam
CN100398906C (en) * 2006-01-25 2008-07-02 程洪亮 High pressure nano vapor generation method and generator therefor
WO2007126197A1 (en) * 2006-04-28 2007-11-08 Jaeyoung Solutec Co., Ltd Heating, sterilizing and drying appliance using superheated steam generator
KR100780575B1 (en) 2006-04-28 2007-11-30 재영솔루텍 주식회사 Heating , sterilizing and drying appliance using superheated steam apparatus
US8168132B2 (en) 2006-07-07 2012-05-01 Scican Ltd. Apparatus and method for drying instruments using superheated steam
KR101481554B1 (en) * 2008-05-13 2015-01-13 엘지전자 주식회사 Apparatus for Treating Cloth
WO2009141995A1 (en) * 2008-05-23 2009-11-26 日清フーズ株式会社 Frozen food thawing device
JP2011078314A (en) * 2008-05-23 2011-04-21 Yoshida Kinzoku Seisakusho:Kk Device for thawing frozen food
JPWO2009141995A1 (en) * 2008-05-23 2011-09-29 日清フーズ株式会社 Frozen food thawing device
EP2500547A3 (en) * 2011-03-18 2018-04-11 General Electric Company Apparatus for starting up combined cycle power systems and method for assembling same
JP2013063032A (en) * 2011-09-16 2013-04-11 Univ Of Tsukuba Chemical-free fumigation method using superheated steam and chemical-free fumigation device using superheated steam
WO2015060140A1 (en) * 2013-10-24 2015-04-30 信越化学工業株式会社 Superheated steam processing device
JP2015081751A (en) * 2013-10-24 2015-04-27 信越化学工業株式会社 Superheated steam processing device
US9989245B2 (en) 2013-10-24 2018-06-05 Shin-Etsu Chemical Co., Ltd. Superheated steam treatment apparatus
JP2015218968A (en) * 2014-05-19 2015-12-07 パナソニックIpマネジメント株式会社 Superheated steam processing method and device
JP2017044384A (en) * 2015-08-25 2017-03-02 中部電力株式会社 High-temperature fluid generation device
JP2017045615A (en) * 2015-08-26 2017-03-02 京都和光純薬株式会社 Heating device
JP2017044402A (en) * 2015-08-26 2017-03-02 京都和光純薬株式会社 Heating apparatus
JP2017048976A (en) * 2015-09-03 2017-03-09 京都和光純薬株式会社 Heating device
JP2017161198A (en) * 2016-03-11 2017-09-14 アズビル株式会社 Dryness adjusting device and dryness adjustment method
JP7323145B1 (en) 2022-12-23 2023-08-08 有限会社ティエスエンジニアリング Hot water boiler equipment using superheated steam

Also Published As

Publication number Publication date
AU2003234776A1 (en) 2004-01-23
JPWO2004005798A1 (en) 2005-11-04
JP3980595B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
WO2004005798A1 (en) Method and device for generating superheated steam and superheated steam processing device
JP4386950B2 (en) Garbage disposal apparatus and garbage disposal method
US5765546A (en) Direct contact water heater with dual water heating chambers
KR101229156B1 (en) Complex type food waste disposer
KR101871791B1 (en) The hot water boiler of a vacuum type
EP2469206A1 (en) Method and device for drying bulk capillary-porous materials
JP5252796B2 (en) Absorption type water heater
RU2442086C2 (en) Method and device for thermal treatment of the material
CN107549407A (en) A kind of solar-assisted heat pump vacuum couplings steam beating chrysanthemum drying device
KR101739442B1 (en) The hot water boiler of a vacuum type
KR101562509B1 (en) Vacuum hot water boiler
US3010832A (en) Method and apparatus for continuous heat-treatment of heat-sensitive liquids
KR101530909B1 (en) System for Reducing Quantity of Low Level Radioactive Waste using Superheated Vapor
JP2005201606A (en) Heating device
WO1997007373A1 (en) Method and device of cooling for use in connection with hot drying/heat treatment of lumber
JP6980325B1 (en) Infrared furnace
JP2003253268A (en) Method for heating organic compound and heating apparatus
US763388A (en) Method of drying substances.
CN114508904A (en) Belt type vacuum pulsation drying device
JP2006308199A (en) Cooker
JP3698194B2 (en) Sludge treatment method and apparatus
CN105190173B (en) Heat exchanger, boiler and the system including them
CA2612787A1 (en) Heating apparatus
KR101506915B1 (en) Reheat Steam Generator in System for Reducing Quantity of Low Level Radioactive Waste using Superheated Vapor
US849645A (en) Apparatus for recovering benzin, &amp;c.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004519200

Country of ref document: JP

122 Ep: pct application non-entry in european phase