WO2004005592A1 - Thin sheet manufacturing apparatus and thin sheet manufacturing method - Google Patents

Thin sheet manufacturing apparatus and thin sheet manufacturing method Download PDF

Info

Publication number
WO2004005592A1
WO2004005592A1 PCT/JP2003/008323 JP0308323W WO2004005592A1 WO 2004005592 A1 WO2004005592 A1 WO 2004005592A1 JP 0308323 W JP0308323 W JP 0308323W WO 2004005592 A1 WO2004005592 A1 WO 2004005592A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
immersion
cycle
thin plate
melt
Prior art date
Application number
PCT/JP2003/008323
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Goma
Hirozumi Gokaku
Kozaburo Yano
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to AU2003244200A priority Critical patent/AU2003244200A1/en
Priority to JP2004519221A priority patent/JP4105159B2/en
Publication of WO2004005592A1 publication Critical patent/WO2004005592A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon

Definitions

  • the present invention relates to a thin plate manufacturing apparatus and a thin plate manufacturing method, and more specifically, to a silicon thin plate manufacturing apparatus and a silicon thin sheet manufacturing method.
  • Silicon is used for consumer solar cells.
  • the conversion efficiency of silicon decreases in the order of single crystal, polycrystal, and amorphous, but on the other hand, the cost is lower and the area is easier to increase.
  • amorphous silicon the S i H 4 CVD as a raw material (C h em ical Va por De position) method, glass, plastic, inexpensive because it deposits on such metal substrates, Tsu force It is easy to increase the area.
  • the conversion efficiency is up to about 12%.
  • single-crystal silicon can be manufactured as 150 mm (6 inch) or 200 mm (8 inch) diameter ingots by the CZ (C zochralski) method, and it is possible to increase the size, and the conversion efficiency can exceed 15%. .
  • polycrystalline silicon methods of solidifying and growing from a liquid phase and methods of depositing from a gas phase are being studied.
  • Polycrystalline silicon like amorphous silicon, is likely to have a large area, but the conversion efficiency is located between monocrystalline silicon and amorphous silicon.
  • Japanese Patent Application Laid-Open No. 2001-247396 describes a method and an apparatus for producing a crystal sheet for a solar cell.
  • the movable member for immersing the base plate in the melt moves the base plate one after another along the same track.
  • the base plate is immersed only in the same place in the crucible, and the thin plate is peeled off at the top Since it can be recovered, there is a limit to the manufacturing speed of the thin plate due to the peeling and recovering speed of the thin plate, the rotating speed of the movable member, or the strength of the phenol. Disclosure of the invention
  • the present invention provides a method for manufacturing a silicon thin plate and an apparatus for manufacturing the thin plate, which can increase the manufacturing speed and greatly increase the manufacturing efficiency and can drastically reduce the manufacturing cost per unit area of the solar cell.
  • the purpose is to provide.
  • the thin plate manufacturing apparatus of the present invention can be immersed in a melt of a substance containing at least one of a metal material and a semiconductor material, and mounting and removing the base plate can be performed at substantially the same (one) replacement position.
  • a thin plate made of a material of a melt is formed on the surface of the base plate.
  • the thin plate manufacturing apparatus of the present invention is provided with a plurality of immersion mechanisms, and a replacement position is different for each immersion mechanism.
  • the base plate can be replaced independently for each immersion mechanism.
  • the production speed of the sheet can be made a multiple of the number of the immersion mechanisms without the need for the production. Two immersion mechanisms double the production speed, three immersion mechanisms triple.
  • the thin plate manufacturing apparatus of the present invention is characterized in that the melt is put in one crucible, and a plurality of immersion mechanisms immerse the base plate in the melt of this one crucible.
  • the thin plate manufacturing apparatus is characterized in that a plurality of immersion mechanisms immerse the base plate in the melt substantially near the center of one crucible.
  • the quality of the melt is most stable near the center of the crucible, and as a result, a stable thin plate can be obtained.
  • a plurality of immersion mechanisms are arranged in substantially the same horizontal plane. It is characterized by being placed.
  • the thin plate manufacturing apparatus of the present invention is characterized in that a plurality of immersion mechanisms are arranged at symmetrical positions around a crucible.
  • the base plate can be immersed in a melt of a substance containing at least one of a metal material and a semiconductor material, and the mounting and removing of the base plate are performed at substantially the same replacement position.
  • This is a method of manufacturing a thin plate having a plurality of immersion mechanisms capable of forming a thin plate made of a melt material on the surface of a base plate.
  • the immersion mechanism includes a first immersion mechanism in which the first cycle is performed after the first immersion operation of attaching the first base plate, immersing the base plate in the melt, and then removing the base plate in the first cycle. It consists of a second immersion mechanism with a second cycle consisting of an immersion operation of mounting the base plate and immersing the base plate in the melt, and then removing the base plate in a second cycle.
  • the first cycle and the second cycle are characterized in that they operate symmetrically around the crucible.
  • the thin plate manufacturing method of the present invention is characterized in that the times required for the first cycle and the second cycle are substantially equal.
  • the two immersion mechanisms can be driven at the same timing.
  • the method of manufacturing a thin plate according to the present invention is characterized in that the operation is performed with the second cycle shifted from the first cycle.
  • the thin plate manufacturing method of the present invention is characterized in that the second cycle operates with a half cycle delay with respect to the first cycle.
  • the two immersion mechanisms can be driven alternately, and the production speed can be increased.
  • the method for producing a thin plate according to the present invention is characterized in that a standby step is provided before and / or after mounting and removing the base plate.
  • FIG. 1 and 2 are schematic diagrams of a thin film manufacturing apparatus according to the present invention.
  • FIG. 3 is a schematic diagram of the operation of the immersion mechanism in the thin film manufacturing apparatus of the present invention.
  • FIGS. 4 to 5B are schematic diagrams of the operation of two immersion mechanisms in the thin film manufacturing apparatus of the present invention.
  • FIGS. 6 and 7 are diagrams illustrating the operation of the first immersion mechanism and the second immersion mechanism for explaining the tact time according to the present invention.
  • the thin plate manufacturing apparatus shown in FIG. 1 has a main chamber 1 in which a crucible 2 is arranged, and a plurality of sub-chambers provided adjacent to the main chamber.
  • the crucible 2 stores a high-purity silicon melt 3 containing an appropriate concentration of an impurity that provides conductivity to one side when constituting a solar cell.
  • Two immersion mechanisms 103 and 203 for immersing the surface layers of the base plates C1 and C2 in the silicon melt 3 are arranged between the subchamber and the immersion mechanisms 103 and 203.
  • An inert gas is introduced into the main chamber 1 and maintained at a pressure slightly lower than the atmospheric pressure, that is, a negative pressure.
  • Ar gas is introduced into the thin plate manufacturing apparatus shown in Fig. 1, and the pressure is set to 700 T Torr (about 930 hPa).
  • This Ar gas can be circulated for removal of silicon oxide and other dust through a filter or the like when exhausting. It is desirable to use carbon for the base plate, but it does not have to be made of carbon. By forming regular irregularities on the surface of the base plate, the crystal nucleus generation position can be determined, so that a polycrystalline / single-crystal silicon thin plate having a large grain size can be obtained.
  • a base plate C 1 Adjacent to the main chamber 1, a base plate C 1 (hereinafter referred to as “first The base plate C 2 (hereinafter referred to as “first base plate”) to be supplied to the first charging sub-chamber 5 and the second immersion mechanism 203 for introducing the first base plate from outside the apparatus into the main room. 2) into the main room from outside the machine, and the base plate taken out together with the thin plate S1 from the first immersion mechanism 103.
  • First sub-chamber 7 for unloading C 1 from the main chamber to the outside of the apparatus, and base plate C 2 taken out of the thin plate S 2 from the second immersion mechanism 203 from the main chamber.
  • a second unloading sub-chamber 8 for carrying out of the apparatus and a sub-charging sub-chamber 9 for introducing the raw material for re-charging into the main room are provided.
  • the base plate C1 attached to the first immersion mechanism 103 is transported by the transport mechanism so as to flow from right to left in the figure, that is, in the order of arrows 1A to 1G.
  • the base plate C2 attached to the second immersion mechanism 203 flows from left to right in the figure, that is, flows from the arrow 2A to the arrow 2G.
  • the base plate carried out of the apparatus at arrow 1G can be carried into the apparatus at arrow 2A immediately after appropriate treatment. The same is true for 2 G and 1 A.
  • the appropriate treatment includes, for example, cooling of the thin plate and the base plate, separation of the thin plate and the base plate, counting of the number of times the base plate is used, inspection of the degree of wear of the base plate, and measurement of the thickness of the base plate. Inspection, cleaning of the base plate, processing to restore the base plate to its original shape, disposal of the base plate, replenishment of a new base plate, etc. The same is true for arrows 2G and 1A.
  • the flow of the first base plate C1 may be a flow from left to right, and the second base plate C2 may be a flow of right to left.
  • the flow of the first and second base plates may both be right to left or left to right.
  • the loading subchambers 5 and 6 and the unloading subchambers 7 and 8 do not necessarily have to face each other with the base plate operating line 4 (see Fig. 2).
  • one charging sub chamber may be used.
  • the number of sub chambers for taking out may be one.
  • the sub-chamber has the same atmosphere as the main chamber 1, that is, an inert gas atmosphere and a negative pressure.
  • the base plate C1 carried into the buffer 104 is attached to the entire immersion mechanism 103 while being linked with the operation of the immersion mechanism 103 (arrow 1C).
  • the immersion mechanism 103 transfers the substrate C onto the crucible 2 after grasping the base plate C1.
  • the base plate is lowered, and the surface layer of the base plate is immersed in the silicon melt 3 to form a silicon thin plate S1 on the surface of the base plate.
  • the base plate C 1 on which the silicon thin plate S 1 is attached rises, leaves the crucible 2, returns to the base plate replacement position (arrow 1 D), and is removed from the immersion mechanism (arrow 1 E). ).
  • Polycrystalline 'single crystal' is obtained as the silicon thin plate S1.
  • the base plate C 1 on which the silicon thin plate S 1 is formed passes through the airtight door 72 opened after confirming that the atmosphere in the sub-chamber 7 is the same as that of the main chamber 1, and passes through the sub-chamber 7. It is taken out into chamber 7 (arrow 1F). After that, the airtight door 71 with the outside is opened with the airtight door 72 closed, and the base plate on which the silicon thin plate is formed is carried out. (Arrow 1G).
  • a plurality of base plates be collectively carried out to the sub-chamber 7 and thereafter be carried out collectively to the outside.
  • the unloading operation to the unloading sub-chamber and the immersion operation can be made independent, and the speed of unloading the base plate from the main chamber to the sub-chamber can be prevented, and the tact time can be prevented from deteriorating.
  • a cooling device that accelerates cooling is provided in at least one location of the main chamber, sub-chamber or outside, and the base plate with silicon attached by the cooling device May be cooled.
  • a cooling device there is a method in which a cooling plate with cooling water is installed, and a base plate is brought into contact with the cooling plate for the required time to perform heat removal cooling.
  • the simplest method is to provide a cooling mechanism in the unloading buffer 105.
  • the number of base plates to be retained in the buffer is calculated as (the time required for cooling (seconds)) / (the time required for removing one base plate (seconds)). Needs to be added.
  • the immersion mechanism for transferring the base plate C 1 in the main chamber 1 and immersing it in the silicon melt 3 includes a mechanism using a guide rail, a mechanism using a rotating body, a mechanism using a structure like a robot arm, etc. You can use such a mechanism.
  • Figure 3 illustrates an example of an immersion mechanism that uses guide rails.
  • the dipping mechanism shown in FIG. 3 includes an elevating mechanism 310 integrated with a slide that moves along the horizontal operation rail 302.
  • the lifting mechanism 3 10 is attached to a suspension column 3 1 1 1, a rotation mechanism 3 1 2 installed on the suspension column, a rotation column 3 1 4 operated by the rotation mechanism, and a tip of the rotation column 3 14.
  • a pedestal 316 to which the base plate C is attached is provided at a position connecting the end of the suspension column 311 and the end of the support column 315.
  • the slide body, lifting mechanism, suspension support, rotation mechanism, rotation support, support support, and pedestal are collectively referred to as immersion mechanism 303.
  • To move the base plate horizontally move the slide along the horizontal movement rail 302. This is performed by moving the entire immersion mechanism 303.
  • the vertical movement of the base plate is performed by lifting and lowering the entire mechanism suspended below the suspension column 311 with the lifting mechanism 3110.
  • the rotation of the base plate is performed by a rotation mechanism 312.
  • the horizontal, up, down, and rotation operations can be performed independently of each other.
  • the base plate C is mounted on the pedestal 3 16 of the immersion mechanism 303 at the base plate replacement position 300 (corresponding to positions 106 and 206 in FIG. 2) (arrow 1 C in FIG. 1). ).
  • the pedestal 3 16 has a concave groove and the base plate has a convex groove, so that the pedestal and the base plate are mounted by sliding so that both the grooves fit together. It is. At this time, the surface of the base plate is facing the zenith direction.
  • the rotating mechanism 3 1 2 rotates clockwise, the rotating column 3 1 4 operates, and the supporting column 3 15 descends, so that the horizontal lever L moves about the lower end X of the suspension column 3 1 1 as a fulcrum. Rotate clockwise.
  • position 307 is defined as a position before immersion.
  • the base plate further rotates clockwise while returning to the left from the pre-immersion position 307, and the base plate is immersed in the melt 3 with the base plate surface facing down.
  • the position 308 after the base plate is taken out is defined as the post-immersion position.
  • the base plate rotates clockwise while returning further to the left from the position after immersion, and returns to the replacement position 303 with the base plate surface facing the zenith direction. Thereafter, the base plate on which the thin plate is formed is extruded, and at the same time, a new base plate is mounted.
  • the orientation of the base plate when replacing the base plate is such that the surface is oriented in the zenith direction, but the surface of the base plate may be oriented in any direction, such as sideways or downward.
  • the operation cycle is clockwise, but may be either counterclockwise, or halfway clockwise and halfway counterclockwise, or halfway clockwise halfway and halfway clockwise.
  • the position before immersion is defined as position 307 for convenience of description, but the position before immersion may be any position from the replacement position of the base plate to the position at which the base plate enters the melt. I do not care.
  • any position from the position where the base plate has completely escaped from the melt to the replacement position may be used.
  • the setting of the above operation is usually performed by a personal computer.
  • a personal computer By programming the horizontal movement command, the vertical movement movement command, and the rotation movement command, and sending them to the controller, an arbitrary trajectory according to the program is realized.
  • the silicon melt is at a high temperature of 140 to 150 ° C, and has silicon deposition and adhesion of SiO x powder, it is heat-insulated or cooled to protect the rail immersion mechanism. Place the shield plate (not shown) on the crucible at a position that does not interfere with the dipping mechanism or the operation of the base plate.
  • the operation time in the above case is 1 second for mounting and unloading the base plate (simultaneous operation, hereinafter referred to as “replacement”), 2 seconds for moving to the position before immersion, 2 seconds for immersion operation, and return operation. And the cycle time (the time required for one cycle) was 7 seconds. ⁇ Addition of melt material>
  • the reloading sub-chamber 9 is a sub-chamber for introducing additional raw materials into the main chamber when the melt decreases due to continuous immersion.
  • the airtight door between the sub-room 9 for retrofit and the main room 1 closed, the air-tight door between the sub-room 9 and the outside is opened, and the raw material is carried into the sub-room.
  • the airtight door is closed, the inside of the sub-chamber 9 is evacuated, Ar gas is introduced into the sub-chamber 9, and the pressure is made the same as that of the main chamber 1. Same as 1.
  • the hermetic door between the sub chamber 9 and the main chamber 1 is opened, and the raw material is loaded into the additional mechanism 10 in the main chamber 1.
  • the reloading mechanism 10 reloads the raw material in the crucible 2 by tilting.
  • the additional loading mechanism 10 By providing the additional loading mechanism 10 with a small crucible and a heating device, it is possible to melt the raw material in the additional loading mechanism and add the raw material to the crucible 2 in a molten state.
  • FIG. 2 is a diagram illustrating a thin plate manufacturing apparatus according to Embodiment 2 of the present invention.
  • the main room of the thin plate manufacturing apparatus shown in FIG. 2 is composed of a crucible 2, two dipping mechanisms installed on the crucible, and two base plate transport systems.
  • the first immersion mechanism 103 force is standby at the first base plate replacement position 106, the second immersion mechanism 203, and the second base plate replacement position 206, respectively.
  • FIG. 2 is a top view centering on the immersion mechanism and the crucible, only the horizontal movement is shown with respect to the movement trajectory of the lower base plate and each mechanism in this figure.
  • the first immersion mechanism 103 is installed such that the horizontal operation direction of the base plate C1 is on a straight line passing through the position where the base plate is immersed in the melt in the crucible.
  • the immersion position is between the position where the base plate central part starts immersing in the melt and the position where the base plate central part escapes from the melt.
  • a cylindrical crucible is used, and the immersion position is at the center of the crucible.
  • the second immersion mechanism 203 is also installed such that the horizontal operation direction of the base plate C2 is on a straight line passing through the position where the base plate is immersed in the melt in the crucible.
  • the immersion positions be the same. That is, the horizontal movement of the base plates C1 and C2 constitutes two straight lines that intersect at the immersion position.
  • the two straight lines be the same line (the intersection angle is 0 °). This is because the path for introducing the base plate and the path for unloading are parallel or vertical when designing, manufacturing, installing, and exchanging with peripheral equipment.
  • the horizontal movement straight line 4 in FIG. 2 shows a case where the horizontal movement of the two base plates is constituted by the same straight line.
  • FIG. 4 is a side view illustrating a thin plate manufacturing apparatus in which the first immersion mechanism 103 avoids the second immersion mechanism 203 in the vertical direction. If it is assumed that the second immersion mechanism 203 avoids the first immersion mechanism 103 vertically, the second immersion mechanism 203 is operated by the arrow 2U in the first immersion mechanism 1 You will get over 0 3 and return to the original height by the action of arrow 2D.
  • the second immersion mechanism 203 must provide a long lifting stroke. That is, in the above case, not only cannot the height of the entire apparatus be reduced, but also it is necessary to secure an up-and-down stroke. Since it is necessary to make the suspension column 2 1 1 3 long, this is disadvantageous also from the viewpoint of the durability of the immersion mechanism.
  • the mechanisms and members used for the first and second immersion mechanisms and the control (operation program) for operating these mechanisms be common. By making these common, it is possible to standardize component design, spare component management, and control program creation, and reduce operating costs. In order to use a common mechanism and members, it is desirable to arrange immersion mechanisms of the same design in almost the same horizontal plane and perform the immersion operation in the same operation.
  • the method of avoiding in the vertical direction as described above cannot be used.
  • the operating ranges of the immersion mechanisms arranged in substantially the same horizontal plane need to be different.
  • FIG. 5A shows a case where the first immersion mechanism 103 has moved to a location farther from the replacement position (downward in the figure). At this time, since the second immersion mechanism 203 is waiting at the exchange position 206, the first immersion mechanism 103 can perform the immersion operation without interfering with the second immersion mechanism. It is possible.
  • FIG. 5B the first immersion mechanism 103 returns to the exchange position 106 and stands by. During that time, the second immersion mechanism 203 can move to the farthest position (upward in the figure) from the replacement position and perform the immersion operation.
  • the positional relationship is designed so that when one immersion mechanism moves to the farthest position from one exchange position, it does not interfere with the other immersion mechanism waiting at the other exchange position. This makes it possible to perform the immersion operation in the same place in the crucible without mutual interference between the immersion mechanisms.
  • FIG. 2 A first cycle in which the first immersion mechanism continuously manufactures a thin plate will be described with reference to FIGS. 2 and 3.
  • FIG. The basic mode is the same as the cycle described in the first embodiment.
  • the base plate attached to the first immersion mechanism is removed, and a new base plate is mounted. This operation can be performed simultaneously.
  • the base plate is moved to the position before immersion (corresponding to position 307 in FIG. 3).
  • an immersion operation for immersing the base plate in the melt is performed to grow a thin plate.
  • the base plate is returned from the post-immersion position (corresponding to position 308 in FIG. 3) to the replacement position 106.
  • a series of operations of the first immersion mechanism described above is defined as a first cycle.
  • the second immersion mechanism mounts the base plate at the base plate exchange position 206, moves to the position before immersion, creates a thin plate by immersion operation, and returns to the exchange position 206 from the position after immersion.
  • the operation up to is defined as the second cycle.
  • the transfer, exchange and return times must be as short as possible.
  • the minimum time of these three operations is determined by the hook of the immersion mechanism.
  • the shortest time of the immersion operation is determined by the manufacturing conditions of the thin plate to be manufactured, so that there is a limit to the shortening due to the specifications of the apparatus. That is, the shortest cycle time is determined by the dipping operation.
  • the immersion operation in the present embodiment is the same as in the first embodiment, and the shortest cycle time is 7 seconds.
  • the tact time can be reduced to half by operating both the first cycle and the second cycle in the shortest time.
  • the time required for each operation in the first cycle and the operation in the second cycle must be equal (to the minimum time). Therefore, the cycle times required for the first cycle and the second cycle are equal.
  • the second base In order for the first cycle and the second cycle to operate at the same time, it is necessary for the second base to operate so that the first base is prevented from being immersed while the first base is immersed. It is necessary to stagger the periods of both cycles so as not to perform.
  • the most effective method is to shift both cycles by half a cycle. As a result, when viewed from the melt in the crucible, the interval at which the base plate enters the melt is constant, and the state of the melt when the first base plate and the second base plate enter the melt is constant. And the quality variation of the thin plate can be suppressed.
  • the tact time for producing a thin plate by the above method will be described with reference to FIG.
  • the horizontal direction in Fig. 6 shows the elapsed time (seconds), and the vertical direction shows the operation of the first immersion mechanism and the second immersion mechanism.
  • the arrow in the figure indicates the time during which the operation is being performed.
  • the second immersion mechanism continues the immersion operation for 0.5 second after the first immersion mechanism starts operating toward the pre-immersion position.
  • the first base plate may catch up with the second base plate and cause interference.
  • the first cycle time and the second cycle time are desirably the same. Therefore, it is desirable that the standby time included in the first cycle time is equal to the standby time included in the second cycle time.
  • the second immersion mechanism finishes the immersion operation and the first immersion mechanism moves It can be set to start, and it is possible to avoid interference of the base plate.
  • the first cycle time and the second cycle time are the same time, Therefore, the first immersion mechanism ends the immersion operation and the second immersion mechanism starts moving at the same time. In this way, the two dipping mechanisms can always operate without interfering with each other, even if the two cycles are continued.
  • the base plate will be immersed in the melt every 4 seconds.
  • the tact time can be made in 8 seconds to manufacture two thin plates, and in 4 seconds for one sheet.
  • the immersion operation may be performed after adjusting the temperature (heating or cooling, soaking) of the base plate.
  • the temperature adjustment of the base plate may be performed at any position, but it is preferable to perform the adjustment before the base plate is mounted on the immersion mechanism in order to reduce the cycle time of the immersion mechanism.
  • Specific examples of the temperature control mechanism include a heater capable of heating the base plate to the buffers 104 and 204, a cooling plate for cooling the base plate, and a soot for uniforming the base plate. It is possible to install a constant temperature plate.
  • a one-stage temperature control mechanism for temperature control for 7 seconds was installed in the buffer before the base plate was attached.
  • the number of base plates that stay in the buffer must be at least (number of base plates) loaded from the sub chamber at a time + (the number of stages of the temperature control mechanism). In the present embodiment, the number of sheets that can stay in the buffer is five.
  • the temperature variation range of the base plate varies depending on the growth conditions, but is preferably as small as possible.
  • the temperature adjustment time may vary depending on the condition (surface condition, thickness) of the base plate and individual differences. In this case, it is necessary to replace the base plate after measuring the temperature of the base plate with a thermocouple, radiation thermometer, etc., to reach the specified range. If the temperature reaches within the specified range within the standby time according to the tact time setting mode 2, the cycle time is not affected. If not, it is necessary to delay the mounting of the base plate. At this time, the immersion mechanism of the partner By delaying the ming for the same amount of time, it is possible to prevent interference between the immersion mechanisms and perform continuous operation.
  • each of the above embodiments is of two systems, it may be of three systems, four systems, or more. It is good to arrange each system symmetrically at equal intervals with respect to the crucible, but it is not necessary that they are at equal intervals.
  • the immersion mechanism and the transport mechanism were separated from each other, but the immersion mechanism and the transport mechanism were integrated by extending one end of the immersion mechanism to the sub chamber. can do.
  • the immersion mechanism and the transport mechanism are arranged to be bent, the immersion mechanism and the transport mechanism may be arranged in a straight line.
  • the thin plate manufacturing apparatus of the present invention is capable of immersing a base plate in a melt of a substance containing at least one of a metal material and a semiconductor material, and mounting and removing the base plate at substantially the same exchange position.
  • This is a thin plate manufacturing apparatus having a dipping mechanism for forming a thin plate made of a melt material on the surface of the base plate.
  • the thin plate manufacturing apparatus of the present invention includes a plurality of immersion mechanisms, and the exchange position is different for each immersion mechanism, so that the manufacturing speed of the thin plate can be doubled.
  • the melt is put in one crucible, and a plurality of dipping mechanisms immerse the base plate in the melt of this one crucible, so that the melt of one crucible is divided into a plurality of systems. Since the base plate immersion mechanism is shared, the quality of thin plates manufactured by multiple systems of immersion mechanisms can be the same.
  • the thin plate manufacturing apparatus of the present invention since a plurality of immersion mechanisms immerse the base plate in the melt substantially near the center of one crucible, the thin plate can be manufactured using the most stable quality of the melt. And a stable thin plate can be obtained. Further, in the thin plate manufacturing apparatus of the present invention, since a plurality of systems of immersion mechanisms are arranged in substantially the same horizontal plane, the configurations of the plurality of systems of immersion mechanisms can be the same.
  • the configurations of the plurality of systems of immersion mechanisms can be the same.
  • the base plate can be immersed in a melt of a substance containing at least one of a metal material and a semiconductor material, and the mounting and removing of the base plate can be performed at substantially the same exchange position.
  • This is a method for producing a thin plate having a dipping mechanism for forming a thin plate made of a melt material on the surface of the base plate.
  • the production speed can be doubled.
  • both of the two base plate immersion mechanisms can be driven at the same timing.
  • the thin plate manufacturing method of the present invention operates by shifting the second cycle with respect to the first cycle.
  • the second cycle operates with a half-cycle delay with respect to the first cycle, so that the two base plate immersion mechanisms can be alternately driven, and the manufacturing speed is increased. can do.
  • the method for producing a thin plate of the present invention includes a standby step before and / or after mounting and removing the base plate, so that the two base plate immersion mechanisms can be continuously operated without interference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Silicon Compounds (AREA)

Abstract

An apparatus and method for manufacturing a silicon thin film at a lower manufacturing cost than conventional. The apparatus comprises dipping mechanisms in each of which a base sheet (C1, C2) is dipped in a melt (3) to make a thin sheet made of the material of the melt on the base sheet, and the base sheet is attached/removed in one base sheet change position. The thin sheet manufacturing apparatus is characterized in that the dipping mechanisms (103, 203) having almost the same structures are so arranged that the base sheet change operation in one dipping mechanism does not interfere with the base sheet change operation in any other dipping mechanisms. The thin sheet manufacturing apparatus has a plurality of dipping mechanisms where the exchange positions vary from dipping mechanism to dipping mechanism. Therefore the thin sheet production rate can be increased a plurality of times.

Description

明細書 薄板製造装置および薄板製造方法 技術分野  Description Thin plate manufacturing apparatus and thin plate manufacturing method
本発明は、 薄板製造装置および薄板製造方法に関し、 より具体的にはシリコン 薄板製造装置およびシリコン薄板製造方法に関する。 背景技術  The present invention relates to a thin plate manufacturing apparatus and a thin plate manufacturing method, and more specifically, to a silicon thin plate manufacturing apparatus and a silicon thin sheet manufacturing method. Background art
民生用の太陽電池には、 シリコンが用いられる。 シリコンは、 単結晶、 多結晶、 非晶質の順に変换効率が低下するが、 他方、 前記の順にコストが安く大面積化し やすくなる。 このうち、 非晶質シリコンは、 S i H4を原料として CVD (C h em i c a l Va p o r De p o s i t i o n) 法により、 ガラス、 プラス チック、 金属基板などの上に堆積できるので安価であり、 力っ大面積化しやすい。 変換効率は最高約 1 2 %程度である。 Silicon is used for consumer solar cells. The conversion efficiency of silicon decreases in the order of single crystal, polycrystal, and amorphous, but on the other hand, the cost is lower and the area is easier to increase. Among these, amorphous silicon, the S i H 4 CVD as a raw material (C h em ical Va por De position) method, glass, plastic, inexpensive because it deposits on such metal substrates, Tsu force It is easy to increase the area. The conversion efficiency is up to about 12%.
また、 単結晶シリコンは CZ (C z o c h r a l s k i ) 法により直径 1 50 mm (6インチ) や 200mm ( 8インチ) のインゴットとして製造ざれ、 大型 化も可能であり、 変換効率は 15%を超えることができる。  In addition, single-crystal silicon can be manufactured as 150 mm (6 inch) or 200 mm (8 inch) diameter ingots by the CZ (C zochralski) method, and it is possible to increase the size, and the conversion efficiency can exceed 15%. .
さらに、 多結晶シリコンについては、 液相から凝固成長させる方法や気相から 堆積する方法の検討がなされている。 多結晶シリコンは非晶質シリコンと同様に 大面積化しやすいが、 変換効率は、 単結晶シリコンと非晶質シリコンとの中間に 位置する。  In addition, for polycrystalline silicon, methods of solidifying and growing from a liquid phase and methods of depositing from a gas phase are being studied. Polycrystalline silicon, like amorphous silicon, is likely to have a large area, but the conversion efficiency is located between monocrystalline silicon and amorphous silicon.
また特開 2001— 247396号公報には、 太陽電池用の結晶シートの製造 方法および装置が記載されている。 この技術では、 下地板を融液に浸漬するため の可動部材は下地板をつぎつぎに同一軌道に沿って動かすものであり、 下地板は るつぼの同一の場所にのみ浸漬され、 上部で薄板を剥離回収することができるも ので、 薄板の製造速度には、 薄板の剥離回収速度、 可動部材回転速度もしくはべ ノレトの強度による限界が存在する。 発明の開示 Japanese Patent Application Laid-Open No. 2001-247396 describes a method and an apparatus for producing a crystal sheet for a solar cell. In this technique, the movable member for immersing the base plate in the melt moves the base plate one after another along the same track.The base plate is immersed only in the same place in the crucible, and the thin plate is peeled off at the top Since it can be recovered, there is a limit to the manufacturing speed of the thin plate due to the peeling and recovering speed of the thin plate, the rotating speed of the movable member, or the strength of the phenol. Disclosure of the invention
各種のシリコンの製造方法によって、 太陽電池の大面積化、 変換効率の向上お よび製造コストの低減が実施されている。 しかし、 現状の原子力発電や火力発電 などの大規模な発電方式に比べて、 太陽電池の発電単価は割高であり、 製造コス トを低減する必要がある。  Various silicon manufacturing methods are increasing the area of solar cells, improving conversion efficiency, and reducing manufacturing costs. However, compared to current large-scale power generation methods such as nuclear power generation and thermal power generation, the unit price of photovoltaic power generation is relatively high, and it is necessary to reduce manufacturing costs.
本発明は、 製造速度を速め製造効率を大きく高めることができ、 太陽電池の単 位面積当りの製造コストを画期的に低下させることができる、 シリコンの薄板製 造方法およびその薄板製造装置を提供することを目的とする。  The present invention provides a method for manufacturing a silicon thin plate and an apparatus for manufacturing the thin plate, which can increase the manufacturing speed and greatly increase the manufacturing efficiency and can drastically reduce the manufacturing cost per unit area of the solar cell. The purpose is to provide.
本発明の薄板製造装置は、 金属材料または半導体材料のうち少なくともいずれ か一方を含有する物質の融液に浸すことができ下地板の装着、 取外しをほぼ同じ (一の) 交換位置で行うことのできる浸漬機構を有し、 この下地板の表面に融液 の材料よりなる薄板を形成する。 また本発明の薄板製造装置は、 この浸漬機構を 複数系統備え、 交換位置が各浸漬機構ごとに異なることを特徴とする。  The thin plate manufacturing apparatus of the present invention can be immersed in a melt of a substance containing at least one of a metal material and a semiconductor material, and mounting and removing the base plate can be performed at substantially the same (one) replacement position. A thin plate made of a material of a melt is formed on the surface of the base plate. Further, the thin plate manufacturing apparatus of the present invention is provided with a plurality of immersion mechanisms, and a replacement position is different for each immersion mechanism.
下地板の装着、 取外しをほぼ同じ交換位置で行う浸漬機構を備えることにより、 下地板の装着、 取外しをほぼ同時期に実施することが可能となり、 薄板の製造速 度を向上させることが可能となる。 また、 浸漬機構を複数系統備え、 交換位置が 各浸漬機構ごとに異なることにより、 下地板交換を各浸漬機構ごとに独立で実施 できるために、 下地板交換作業が他の浸漬機構の動作を阻害することなく、 薄板 の製造速度を浸漬機構の数の倍数にすることができる。 浸漬機構が 2つの場合は 製造速度が 2倍、 3つの場合は 3倍になる。  By providing an immersion mechanism that installs and removes the base plate at almost the same replacement position, it is possible to mount and remove the base plate almost at the same time, and it is possible to improve the production speed of thin plates Become. In addition, since a plurality of immersion mechanisms are provided and the replacement position is different for each immersion mechanism, the base plate can be replaced independently for each immersion mechanism. The production speed of the sheet can be made a multiple of the number of the immersion mechanisms without the need for the production. Two immersion mechanisms double the production speed, three immersion mechanisms triple.
また本発明の薄板製造装置は、 融液を一つのるつぼに入れ、 複数系統の浸漬機 構がこの一つのるつぼの融液に下地板を浸すことを特徴とする。  Further, the thin plate manufacturing apparatus of the present invention is characterized in that the melt is put in one crucible, and a plurality of immersion mechanisms immerse the base plate in the melt of this one crucible.
このように、 一つのるつぼ内の融液を複数系統の浸漬機構が共用するので、 複 数系統の各浸漬機構によって製造される薄板の品質を同じにすることができる。 また本発明の薄板製造装置は、 複数系統の浸漬機構が一つのるつぼのほぼ中央 付近で下地板を融液に浸すことを特徴とする。  As described above, since the melt in one crucible is shared by a plurality of immersion mechanisms, the quality of thin plates produced by each of the plurality of immersion mechanisms can be the same. Further, the thin plate manufacturing apparatus according to the present invention is characterized in that a plurality of immersion mechanisms immerse the base plate in the melt substantially near the center of one crucible.
融液の品質は、 るつぼの中央付近で一番安定しており、 結果安定した薄板を得 ることができる。  The quality of the melt is most stable near the center of the crucible, and as a result, a stable thin plate can be obtained.
また本発明の薄板製造装置は、 複数系統の浸漬機構が、 ほぼ同じ水平面内に配 置されることを特徴とする。 Further, in the thin plate manufacturing apparatus of the present invention, a plurality of immersion mechanisms are arranged in substantially the same horizontal plane. It is characterized by being placed.
これにより、 複数系統の浸漬機構の構成を同じにできる。  Thereby, the configurations of the immersion mechanisms of a plurality of systems can be made the same.
また本発明の薄板製造装置は、 複数系統の浸漬機構を、 るつぼを中心にして対 称位置に配置することを特徴とする。  Further, the thin plate manufacturing apparatus of the present invention is characterized in that a plurality of immersion mechanisms are arranged at symmetrical positions around a crucible.
これにより、 複数系統の浸漬機構の構成を同じにできる。  Thereby, the configurations of the immersion mechanisms of a plurality of systems can be made the same.
更に、 本発明の薄板製造方法は、 金属材料または半導体材料のうち少なくとも いずれか一方を含有する物質の融液に下地板を浸すことができ、 下地板の装着、 取外しをほぼ同じ交換位置で行うことのできる複数の浸漬機構を有し、 下地板の 表面に融液の材料よりなる薄板を形成する薄板製造方法である。 また、 浸漬機構 は、 第 1の下地板を装着し、 下地板を融液に浸す浸漬動作後、 下地板を取外す動 作を第 1のサイクルとする第 1の浸漬機構と、 第 2の下地板を装着し、 下地板を 融液に浸す浸漬動作後、 下地板を取外す動作を第 2のサイクルとする第 2の浸漬 機構で構成される。  Further, in the method for producing a thin plate according to the present invention, the base plate can be immersed in a melt of a substance containing at least one of a metal material and a semiconductor material, and the mounting and removing of the base plate are performed at substantially the same replacement position. This is a method of manufacturing a thin plate having a plurality of immersion mechanisms capable of forming a thin plate made of a melt material on the surface of a base plate. The immersion mechanism includes a first immersion mechanism in which the first cycle is performed after the first immersion operation of attaching the first base plate, immersing the base plate in the melt, and then removing the base plate in the first cycle. It consists of a second immersion mechanism with a second cycle consisting of an immersion operation of mounting the base plate and immersing the base plate in the melt, and then removing the base plate in a second cycle.
このように 2つの浸漬機構を 2つのサイクルで駆動するので、 薄板の製造速度 を 2倍にすることができる。  Since the two dipping mechanisms are driven in two cycles in this way, the production speed of the thin plate can be doubled.
第 1のサイクルと第 2のサイクルは、 るつぼを中心にして対称に動作すること を特徴とする。  The first cycle and the second cycle are characterized in that they operate symmetrically around the crucible.
これにより、 複数系統の浸漬サイクルの制御方法、 動作プログラミングを同じ にできる。 また、 同じ位置で同じ動作で浸漬することにより、 得られる薄板の品 質も安定する。  This makes it possible to use the same control method and operation programming for multiple immersion cycles. Also, by immersing in the same operation at the same position, the quality of the obtained thin plate is also stabilized.
また本発明の薄板製造方法は、 第 1のサイクルと第 2のサイクルに要する時間 がほぼ等しいことを特徴とする。  Further, the thin plate manufacturing method of the present invention is characterized in that the times required for the first cycle and the second cycle are substantially equal.
これにより、 2つの浸漬機構を両方同じタイミングで駆動することができる。 また本発明の薄板製造方法は、 第 1のサイクルに対し、 第 2のサイクルをずら して動作することを特徴とする。  Thus, the two immersion mechanisms can be driven at the same timing. Further, the method of manufacturing a thin plate according to the present invention is characterized in that the operation is performed with the second cycle shifted from the first cycle.
また本発明の薄板製造方法は、 第 1のサイクルに対し、 第 2のサイクルが半周 期遅れて動作することを特徴とする。  Further, the thin plate manufacturing method of the present invention is characterized in that the second cycle operates with a half cycle delay with respect to the first cycle.
これにより、 2つの浸漬機構を交互に駆動することができ、 製造速度を速くす ることができる。 また本発明の薄板製造方法は、 下地板の装着、 取外しの前および/もしくは後 に、 待機工程を有することを特徴とする。 As a result, the two immersion mechanisms can be driven alternately, and the production speed can be increased. Further, the method for producing a thin plate according to the present invention is characterized in that a standby step is provided before and / or after mounting and removing the base plate.
これにより、 2つの浸漬機構が干渉することなく連続稼動することができる。 図面の簡単な説明  This allows the two immersion mechanisms to operate continuously without interference. BRIEF DESCRIPTION OF THE FIGURES
図 1および図 2は、 本発明の薄膜製造装置の概略図である。  1 and 2 are schematic diagrams of a thin film manufacturing apparatus according to the present invention.
図 3は、 本発明の薄膜製造装置における浸漬機構の動作の概略図である。 図 4〜図 5 Bは、 本発明の薄膜製造装置における 2つの浸漬機構の動作の概略 図である。  FIG. 3 is a schematic diagram of the operation of the immersion mechanism in the thin film manufacturing apparatus of the present invention. FIGS. 4 to 5B are schematic diagrams of the operation of two immersion mechanisms in the thin film manufacturing apparatus of the present invention.
図 6および図 7は、 本発明のタク トタイムを説明するための第 1浸漬機構と第 2浸漬機構の動作を説明する図である。 発明を実施するための最良の形態  6 and 7 are diagrams illustrating the operation of the first immersion mechanism and the second immersion mechanism for explaining the tact time according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1 )  (Embodiment 1)
ぐ薄板製造装置 > Thin sheet manufacturing equipment>
図 1に示す薄板製造装置は、 るつぼ 2が配置された主室 1と、 その主室に隣接 して設けられた複数の副室とを有する。 るつぼ 2には太陽電池を構成する場合に 一方の導電性を与える適当な濃度の不純物を含む高純度のシリコン融液 3が貯留 されている。 シリコン融液 3に、 下地板 C l、 C 2の表層部を浸漬させる 2つの 浸漬機構 1 0 3、 2 0 3が配置され、 副室と浸漬機構 1 0 3, 2 0 3との間には 下地板を搬送する搬送機構 (図示しない) を備えている。 主室 1には不活性ガス が導入され、 大気圧よりもやや低い圧力、 すなわち負圧に保たれる。 図 1の薄板 製造装置には A rガスが導入され、 圧力 7 0 0 T o r r (約 9 3 0 h P a ) とさ れている。 この A rガスは、 排気に際し、 フィルタ等を通してシリコン酸化物や その他の塵芥を除去し、 循環使用することができる。 下地板にはカーボンを使用 するのが望ましいが、 カーボン製でなくてもよい。 下地板の表面に規則的な凹凸 を形成することにより、 結晶核発生位置を決めることができるので、 粒径の大き い多結晶■単結晶のシリコン薄板を得ることができる。  The thin plate manufacturing apparatus shown in FIG. 1 has a main chamber 1 in which a crucible 2 is arranged, and a plurality of sub-chambers provided adjacent to the main chamber. The crucible 2 stores a high-purity silicon melt 3 containing an appropriate concentration of an impurity that provides conductivity to one side when constituting a solar cell. Two immersion mechanisms 103 and 203 for immersing the surface layers of the base plates C1 and C2 in the silicon melt 3 are arranged between the subchamber and the immersion mechanisms 103 and 203. Has a transport mechanism (not shown) for transporting the base plate. An inert gas is introduced into the main chamber 1 and maintained at a pressure slightly lower than the atmospheric pressure, that is, a negative pressure. Ar gas is introduced into the thin plate manufacturing apparatus shown in Fig. 1, and the pressure is set to 700 T Torr (about 930 hPa). This Ar gas can be circulated for removal of silicon oxide and other dust through a filter or the like when exhausting. It is desirable to use carbon for the base plate, but it does not have to be made of carbon. By forming regular irregularities on the surface of the base plate, the crystal nucleus generation position can be determined, so that a polycrystalline / single-crystal silicon thin plate having a large grain size can be obtained.
主室 1に隣接して、 第 1の浸漬機構 1 0 3に供給する下地板 C 1 (以後、 「第 1の下地板」 という) を装置外から主室へ導入するための、 第 1の装入用副室 5 と、 第 2の浸漬機構 2 0 3に供給する下地板 C 2 (以後、 「第 2の下地板」 とい う) を装置外から主室へ導入するための、 第 2の装入用副室 6と、 第 1の浸漬機 構 1 0 3から薄板 S 1ごと取出された下地板 C 1を主室から装置外へ搬出するた めの、 第 1の取出し用副室 7と、 第 2の浸漬機構 2 0 3から薄板 S 2ごと取出さ れた下地板 C 2を主室から装置外へ搬出するための、 第 2の取出し用副室 8と、 追装用原料を主室に導入するための、 追装用副室 9が設置されている。 Adjacent to the main chamber 1, a base plate C 1 (hereinafter referred to as “first The base plate C 2 (hereinafter referred to as “first base plate”) to be supplied to the first charging sub-chamber 5 and the second immersion mechanism 203 for introducing the first base plate from outside the apparatus into the main room. 2) into the main room from outside the machine, and the base plate taken out together with the thin plate S1 from the first immersion mechanism 103. First sub-chamber 7 for unloading C 1 from the main chamber to the outside of the apparatus, and base plate C 2 taken out of the thin plate S 2 from the second immersion mechanism 203 from the main chamber. A second unloading sub-chamber 8 for carrying out of the apparatus and a sub-charging sub-chamber 9 for introducing the raw material for re-charging into the main room are provided.
装入用副室と取出用副室とを、 下地板動作直線 4をはさんで対面するように位 置させることにより、 下地板の流れが簡単化される。  By arranging the loading sub-chamber and the unloading sub-chamber so as to face each other with the base plate operation straight line 4 interposed therebetween, the flow of the base plate is simplified.
図 1においては、 第 1の浸漬機構 1 0 3に取付けられる下地板 C 1は、 図の右 から左へ、 すなわち矢印 1 Aから矢印 1 Gの順に流れるように搬送機構によって 搬送される。 これに対し、 第 2の浸漬機構 2 0 3に取付けられる下地板 C 2は、 図の左から右へ、 すなわち矢印 2 Aから矢印 2 Gの順に流れる。 この配置におい ては、 矢印 1 Gにて装置外に搬出された下地板を、 適切な処理の後にすぐに矢印 2 Aにて装置に搬入できる。 2 Gと 1 Aにおいても同様である。 ここで、 適切な 処理とは、 例えば、 薄板と下地板との冷却、 薄板と下地板との分離、 下地板への 使用回数のカウント、 下地板の磨耗度の検査、 下地板の厚さの検査、 下地板の清 掃、 下地板を元の形状に戻す加工処理、 下地板の廃棄処理、 新たな下地板の補充 等を意味する。 矢印 2 Gと 1 Aにおいても同様である。  In FIG. 1, the base plate C1 attached to the first immersion mechanism 103 is transported by the transport mechanism so as to flow from right to left in the figure, that is, in the order of arrows 1A to 1G. On the other hand, the base plate C2 attached to the second immersion mechanism 203 flows from left to right in the figure, that is, flows from the arrow 2A to the arrow 2G. In this arrangement, the base plate carried out of the apparatus at arrow 1G can be carried into the apparatus at arrow 2A immediately after appropriate treatment. The same is true for 2 G and 1 A. Here, the appropriate treatment includes, for example, cooling of the thin plate and the base plate, separation of the thin plate and the base plate, counting of the number of times the base plate is used, inspection of the degree of wear of the base plate, and measurement of the thickness of the base plate. Inspection, cleaning of the base plate, processing to restore the base plate to its original shape, disposal of the base plate, replenishment of a new base plate, etc. The same is true for arrows 2G and 1A.
ただし、 第 1の下地板 C 1の流れは、 左から右の流れでも構わないし、 第 2の 下地板 C 2も、 右から左の流れでも構わない。 もちろん、 第 1および第 2の下地 板の流れが、 ともに右から左、 もしくは左から右の流れであっても構わない。 さ らに、 装入用副室 5 , 6と取出し用副室 7, 8は、 必ずしも下地板動作直線 4 (図 2参照) をはさんで対面する必要はない。 また、 副室から搬入される下地板 を、 主室 1内で分岐させ、 第 1の浸漬機構と第 2の浸漬機構に振り分ける機構を 有する場合、 装入用副室は 1つでも構わない。 同様に、 第 1の浸漬機構と第 2の 浸漬機構から副室へ搬出される下地板を、 主室 1内で合流させる機構を有する場 合、 取出し用副室は 1つでも構わない。 副室の雰囲気は、 主室 1と同じ雰囲気、 すなわち不活性ガス雰囲気で負圧とされている。 ぐ薄板製造方法〉 However, the flow of the first base plate C1 may be a flow from left to right, and the second base plate C2 may be a flow of right to left. Of course, the flow of the first and second base plates may both be right to left or left to right. In addition, the loading subchambers 5 and 6 and the unloading subchambers 7 and 8 do not necessarily have to face each other with the base plate operating line 4 (see Fig. 2). Further, when a base plate carried in from the sub chamber is branched in the main chamber 1 and divided into a first immersion mechanism and a second immersion mechanism, one charging sub chamber may be used. Similarly, in the case where there is a mechanism in which the base plates carried out from the first immersion mechanism and the second immersion mechanism to the sub-chamber are merged in the main chamber 1, the number of sub chambers for taking out may be one. The sub-chamber has the same atmosphere as the main chamber 1, that is, an inert gas atmosphere and a negative pressure. Method for manufacturing thin sheet>
次に、 薄板製造方法について図 1および図 2を参照して説明する。 以下、 第 1 の浸漬機構 1 0 3にて浸漬される下地板 C 1についての流れを説明する。 第 2の 浸漬機構 2 0 3にて浸漬される下地板 C 2に関しても、 同様の流れであるため説 明は繰り返さない。 なお第 2の浸漬機構における符号番号は第 1の浸漬機構に対 応して用いているので個々に説明するまでもなく当業者に自明である。  Next, a method of manufacturing a thin plate will be described with reference to FIGS. Hereinafter, the flow of the base plate C1 immersed in the first immersion mechanism 103 will be described. The description will not be repeated for base plate C2 immersed in second immersion mechanism 203, since the flow is the same. Since the reference numerals in the second immersion mechanism are used corresponding to the first immersion mechanism, it is obvious to those skilled in the art that they need not be described individually.
主室 1の稼動中には、 装入用副室 5と主室 1との間の気密性扉 5 2を閉めた状 態で、 外部との気密性扉 5 1を開け、 下地板を副室に搬入する (矢印 1 A) 。 次 いで、 気密性扉 5 1を閉め、 副室 5内を真空排気した後、 A rガスを導入し、 圧 力を主室 1と同じにすることにより、 副室 5の雰囲気を主室 1と同じにする。 こ の後、 主室 1における浸漬機構 1 0 3の稼動にしたがって、 装入用副室 5と主室 1との間の気密性扉 5 2を開け、 下地板 C 1を主室 1に装入する (矢印 1 B ) 。 下地板 C 1は複数枚まとめて副室 5に搬入し、 この後、 複数枚まとめて主室 1 に装入することが望ましい。 これによつて、 装入用副室動作と浸漬動作とを独立 とすることができ、 副室から下地板を供給する速度が遅くなりタクトタイムが悪 化することを防止できる。 この際、 主室側には、 副室から一度に搬入される枚数 分以上の下地板を滞留しておく、 バッファ 1 0 4を設置する必要がある。  While the main room 1 is in operation, with the airtight door 52 between the charging subchamber 5 and the main room 1 closed, the airtight door 51 to the outside is opened, and the base plate is Carry in the room (arrow 1A). Next, the airtight door 51 is closed, the inside of the sub chamber 5 is evacuated, Ar gas is introduced, and the pressure is made the same as that of the main chamber 1. To be the same as Thereafter, in accordance with the operation of the immersion mechanism 103 in the main room 1, the airtight door 52 between the charging sub-room 5 and the main room 1 is opened, and the base plate C1 is mounted in the main room 1. Enter (arrow 1B). It is desirable that a plurality of base plates C1 be carried together into the sub-chamber 5 and then be loaded into the main room 1 together. Thus, the charging sub-chamber operation and the immersion operation can be made independent, and it is possible to prevent the speed at which the base plate is supplied from the sub-chamber to deteriorate the tact time. At this time, it is necessary to install a buffer 104 on the main room side, in which more base plates than the number of substrates to be carried at once from the sub room are retained.
バッファ 1 0 4に搬入された下地板 C 1は、 浸漬機構 1 0 3の動作と連動しな がら、 1枚ずっ浸漬機構 1 0 3に装着される (矢印 1 C ) 。  The base plate C1 carried into the buffer 104 is attached to the entire immersion mechanism 103 while being linked with the operation of the immersion mechanism 103 (arrow 1C).
浸漬機構 1 0 3は、 下地板 C 1を把握した後、 るつぼ 2の上に移送する。 次い で、 下地板を下降させ、 下地板の表層部をシリコン融液 3に浸漬し、 下地板の表 面にシリコン薄板 S 1を形成する。 この後、 シリコン薄板 S 1を付着させた下地 板 C 1が上昇し、 るつぼ 2の上を離れ、 下地板交換位置に戻り (矢印 1 D ) 、 浸 漬機構から取外される (矢印 1 E ) 。 シリコン薄板 S 1として、 多結晶 '単結晶 が得られる。  The immersion mechanism 103 transfers the substrate C onto the crucible 2 after grasping the base plate C1. Next, the base plate is lowered, and the surface layer of the base plate is immersed in the silicon melt 3 to form a silicon thin plate S1 on the surface of the base plate. Thereafter, the base plate C 1 on which the silicon thin plate S 1 is attached rises, leaves the crucible 2, returns to the base plate replacement position (arrow 1 D), and is removed from the immersion mechanism (arrow 1 E). ). Polycrystalline 'single crystal' is obtained as the silicon thin plate S1.
シリコン薄板 S 1が形成された下地板 C 1は、 取出し用副室 7の雰囲気が主室 1と同じになっていることを確認して開けられた気密性扉 7 2を通り、 取出用副 室 7に取り出される (矢印 1 F ) 。 この後、 気密性扉 7 2が閉められた状態で外 部との気密性扉 7 1が開かれ、 シリコン薄板が形成された下地板が外に搬出され る (矢印 1 G) 。 The base plate C 1 on which the silicon thin plate S 1 is formed passes through the airtight door 72 opened after confirming that the atmosphere in the sub-chamber 7 is the same as that of the main chamber 1, and passes through the sub-chamber 7. It is taken out into chamber 7 (arrow 1F). After that, the airtight door 71 with the outside is opened with the airtight door 72 closed, and the base plate on which the silicon thin plate is formed is carried out. (Arrow 1G).
下地板は複数枚まとめて副室 7に搬出し、 この後、 複数枚まとめて外部に搬出 することが望ましい。 これによつて、 取出し用副室への搬出動作と浸漬動作とを 独立とすることができ、 主室から副室へ下地板を搬出する速度が遅くなりタク ト タイムが悪化することを防止できる。 この際、 主室側には、 副室へ一度に搬出さ れる枚数分以上の下地板を滞留しておく、 バッファ 1 0 5を設置する必要がある。 薄板 S 1が形成された下地板 C 1であって浸漬機構 1 0 3から次々とバッファ 1 0 5に搬出されたものの枚数が、 副室へ一度に搬出される枚数分以上に達した ときに、 副室 7へ一度に搬出することが望ましい。  It is desirable that a plurality of base plates be collectively carried out to the sub-chamber 7 and thereafter be carried out collectively to the outside. As a result, the unloading operation to the unloading sub-chamber and the immersion operation can be made independent, and the speed of unloading the base plate from the main chamber to the sub-chamber can be prevented, and the tact time can be prevented from deteriorating. . At this time, it is necessary to install a buffer 105 on the main room side in which at least as many base plates as the number of substrates to be carried out to the sub room at a time are retained. When the number of base plates C1 on which the thin plates S1 are formed and which are successively unloaded from the immersion mechanism 103 to the buffer 105 reaches the number of sheets which are unloaded to the sub-chamber at once. It is desirable to carry it out to sub-chamber 7 at a time.
下地板の表面に形成されたシリコン薄板を冷却するために、 主室、 副室または 外部の少なくとも 1箇所において、 冷却を加速する冷却装置を設け、 その冷却装 置によって、 シリコンを付着した下地板を冷却してもよい。 もっとも単純な冷却 装置として、 冷却水による冷却板を設置し、 その上に下地板を必要時間接触させ ることにより、 抜熱冷却する方法がある。  In order to cool the silicon thin plate formed on the surface of the base plate, a cooling device that accelerates cooling is provided in at least one location of the main chamber, sub-chamber or outside, and the base plate with silicon attached by the cooling device May be cooled. As the simplest cooling device, there is a method in which a cooling plate with cooling water is installed, and a base plate is brought into contact with the cooling plate for the required time to perform heat removal cooling.
主室にて冷却を行う場合、 取出し側のバッファ 1 0 5に冷却機構を備える方法 がもっとも単純である。 この際、 バッファに滞留させる下地板枚数は、 副室に一 度に搬出される枚数に、 (冷却に必要な時間 (秒) ) / (下地板 1枚が取出され る時間 (秒) ) 分の枚数を加える必要がある。  When cooling in the main chamber, the simplest method is to provide a cooling mechanism in the unloading buffer 105. At this time, the number of base plates to be retained in the buffer is calculated as (the time required for cooling (seconds)) / (the time required for removing one base plate (seconds)). Needs to be added.
主室 1において下地板 C 1を移送し、 シリコン融液 3に浸漬する浸漬機構には、 ガイドレールを使用する機構、 回転体を使用する機構、 ロボットアームのような 構造を使用する機構等どのような機構を用いてもよレ、。 図 3に、 ガイ ドレールを 使用する浸漬機構の一例を例示する。 図 3の浸漬機構は、 水平動作レール 3 0 2 に沿って動作するスライド体と一体化した昇降機構 3 1 0を備える。 この昇降機 構 3 1 0は、 懸垂支柱 3 1 1と、 懸垂支柱に設置された回転機構 3 1 2と、 回転 機構によって動作される回転支柱 3 1 4と、 回転支柱 3 1 4の先端に取付けた支 持支柱 3 1 5とを有し、 懸垂支柱 3 1 1の末端と支持支柱 3 1 5の末端とを結ぶ 位置に、 下地板 Cが装着される台座 3 1 6を有する。 スライド体、 昇降機構、 懸 垂支柱、 回転機構、 回転支柱、 支持支柱、 台座を総称して、 浸漬機構 3 0 3とす る。 下地板の水平方向の移送は、 水平動作レール 3 0 2に沿ってスライド体を移 動させ、 浸漬機構 3 0 3全体を動作させることにより行う。 下地板の上下方向の 移送は、 懸垂支柱 3 1 1以下に吊り下がつている機構全体を昇降機構 3 1 0で昇 降させることにより行う。 下地板の回転動作は、 回転機構 3 1 2によって行われ る。 前記の水平 ·上下 ·回転動作は相互に独立に行うことができる。 The immersion mechanism for transferring the base plate C 1 in the main chamber 1 and immersing it in the silicon melt 3 includes a mechanism using a guide rail, a mechanism using a rotating body, a mechanism using a structure like a robot arm, etc. You can use such a mechanism. Figure 3 illustrates an example of an immersion mechanism that uses guide rails. The dipping mechanism shown in FIG. 3 includes an elevating mechanism 310 integrated with a slide that moves along the horizontal operation rail 302. The lifting mechanism 3 10 is attached to a suspension column 3 1 1 1, a rotation mechanism 3 1 2 installed on the suspension column, a rotation column 3 1 4 operated by the rotation mechanism, and a tip of the rotation column 3 14. And a pedestal 316 to which the base plate C is attached is provided at a position connecting the end of the suspension column 311 and the end of the support column 315. The slide body, lifting mechanism, suspension support, rotation mechanism, rotation support, support support, and pedestal are collectively referred to as immersion mechanism 303. To move the base plate horizontally, move the slide along the horizontal movement rail 302. This is performed by moving the entire immersion mechanism 303. The vertical movement of the base plate is performed by lifting and lowering the entire mechanism suspended below the suspension column 311 with the lifting mechanism 3110. The rotation of the base plate is performed by a rotation mechanism 312. The horizontal, up, down, and rotation operations can be performed independently of each other.
次に、 1つの浸漬機構による下地板の動作サイクルを、 図 3を用いて説明する。 <下地板の動作サイクル >  Next, the operation cycle of the base plate by one immersion mechanism will be described with reference to FIG. <Operation cycle of base plate>
下地板 Cは、 下地板交換位置 3 0 6 (図 2の位置 1 0 6、 2 0 6に相当) にて 浸漬機構 3 0 3の台座 3 1 6に装着される (図 1の矢印 1 C ) 。 台座 3 1 6に凹 型あり溝が形成され、 下地板に凸型あり溝が形成されていることにより、 台座と 下地板は、 両方のあり溝を嵌め合わせるようにスライドさせるようにして装着さ れる。 この際、 下地板表面は天頂方向を向いている。 回転機構 3 1 2が時計回り に回転すると、 回転支柱 3 1 4が動作し、 支持支柱 3 1 5が下降することによつ て、 水平レバー Lが懸垂支柱 3 1 1の下端 Xを支点として時計回りに回転する。 これに、 昇降機構 3 1 0による上下方向の動作、 およびスライ ド体が水平動作レ —ル 3 0 2に沿って移動することによる水平方向の動作が組み合わされ、 下地板 は時計回りに回転しながら右方向へ移動する。 ここで、 位置 3 0 7を浸漬前位置 とする。 次いで、 浸漬前位置 3 0 7から左方向に戻りながら、 下地板がさらに時 計回りに回転し、 下地板表面が下を向いた状態で下地板は融液 3に浸漬される。 下地板が取出された後の位置 3 0 8を浸漬後位置とする。 下地板は、 浸漬後位置 からさらに左方向へ戻りつつ、 時計回りに回転し、 下地板表面が天頂方向に向い た形で、 交換位置 3 0 6まで戻る。 その後、 薄板が形成された下地板が押出され ると同時に、 新しい下地板が装着される。  The base plate C is mounted on the pedestal 3 16 of the immersion mechanism 303 at the base plate replacement position 300 (corresponding to positions 106 and 206 in FIG. 2) (arrow 1 C in FIG. 1). ). The pedestal 3 16 has a concave groove and the base plate has a convex groove, so that the pedestal and the base plate are mounted by sliding so that both the grooves fit together. It is. At this time, the surface of the base plate is facing the zenith direction. When the rotating mechanism 3 1 2 rotates clockwise, the rotating column 3 1 4 operates, and the supporting column 3 15 descends, so that the horizontal lever L moves about the lower end X of the suspension column 3 1 1 as a fulcrum. Rotate clockwise. This is combined with the vertical movement of the lifting mechanism 310 and the horizontal movement of the slide body moving along the horizontal movement rail 302, and the base plate rotates clockwise. While moving to the right. Here, position 307 is defined as a position before immersion. Next, the base plate further rotates clockwise while returning to the left from the pre-immersion position 307, and the base plate is immersed in the melt 3 with the base plate surface facing down. The position 308 after the base plate is taken out is defined as the post-immersion position. The base plate rotates clockwise while returning further to the left from the position after immersion, and returns to the replacement position 303 with the base plate surface facing the zenith direction. Thereafter, the base plate on which the thin plate is formed is extruded, and at the same time, a new base plate is mounted.
下地板を交換するときの下地板の姿勢は、 本実施の形態では表面が天頂方向に 向いているが、 下地板の表面は、 横向きや下向きなど、 どの方向を向いていても 構わない。 また、 図 3において、 動作サイクルは時計回りであるが、 半時計回り、 もしくは途中まで時計回りで途中から半時計回り、 もしくは途中まで半時計回り で途中から時計回り、 のいずれでも構わない。 また、 本実施の形態では説明の便 宜上、 浸漬前位置を位置 3 0 7と定義したが、 浸漬前位置は、 下地板交換位置か ら下地板が融液に突入するまでのどの位置でも構わない。 同様に、 浸漬後位置に 関しても、 下地板が融液から脱出し終わった位置から交換位置までのどの位置で も構わない。 In the present embodiment, the orientation of the base plate when replacing the base plate is such that the surface is oriented in the zenith direction, but the surface of the base plate may be oriented in any direction, such as sideways or downward. In FIG. 3, the operation cycle is clockwise, but may be either counterclockwise, or halfway clockwise and halfway counterclockwise, or halfway clockwise halfway and halfway clockwise. Further, in this embodiment, the position before immersion is defined as position 307 for convenience of description, but the position before immersion may be any position from the replacement position of the base plate to the position at which the base plate enters the melt. I do not care. Similarly, in the position after immersion Regardless of the position, any position from the position where the base plate has completely escaped from the melt to the replacement position may be used.
前記の動作の設定は、 通常はパソコンにより行なう。 水平方向移動指令、 昇降 動作移動指令、 および回転動作指令をそれぞれプログラミングし、 それをコント ローラに送信しておくことで、 プログラム通りの任意軌道を実現する。  The setting of the above operation is usually performed by a personal computer. By programming the horizontal movement command, the vertical movement movement command, and the rotation movement command, and sending them to the controller, an arbitrary trajectory according to the program is realized.
シリコン融液は 1 4 0 0〜1 5 0 0 °Cの高温であり、 またシリコンの蒸着や S i O x粉の付着もあるので、 レールゃ浸漬機構を保護するため、 断熱性もしくは 冷却された遮蔽板 (図示せず) を、 るつぼ上の、 浸漬機構や下地板動作と干渉し ない位置に配置する。  Since the silicon melt is at a high temperature of 140 to 150 ° C, and has silicon deposition and adhesion of SiO x powder, it is heat-insulated or cooled to protect the rail immersion mechanism. Place the shield plate (not shown) on the crucible at a position that does not interfere with the dipping mechanism or the operation of the base plate.
前記の場合の各動作時間は、 下地板の装着および取出し (同時動作のため、 以 後 「交換」 という) に 1秒、 浸漬前位置への移動に 2秒、 浸漬動作に 2秒、 戻り 動作に 2秒であり、 サイクルタイム (1サイクルに要する時間) は 7秒であった。 <融液の材料の追装 >  The operation time in the above case is 1 second for mounting and unloading the base plate (simultaneous operation, hereinafter referred to as “replacement”), 2 seconds for moving to the position before immersion, 2 seconds for immersion operation, and return operation. And the cycle time (the time required for one cycle) was 7 seconds. <Addition of melt material>
追装用副室 9は、 連続浸漬により融液が減少した場合に、 追加の原料を主室へ 導入するための副室である。 追装用副室 9と主室 1との間の気密性扉を閉めた状 態で、 副室 9と外部との気密性扉を開け、 原料を副室に搬入する。 次いで、 気密 性扉を閉め、 副室 9内を真空排気した後、 副室 9内に A rガスを導入し、 圧力を 主室 1と同じにすることにより、 副室 9の雰囲気を主室 1と同じにする。 この後、 副室 9と主室 1との間の気密性扉を開け、 主室 1内の追装機構 1 0に原料を装填 する。 原料には融液と同程度あるいはそれ以上の純度の高純度シリコンが使用さ れる。 追装機構 1 0は、 傾動によって、 るつぼ 2に原料を追装する。 追装機構 1 0が小型るつぼと加熱装置を備えることで、 追装機構内で原料を溶融し、 融液状 態でるつぼ 2に原料追加を行うことも可能である。  The reloading sub-chamber 9 is a sub-chamber for introducing additional raw materials into the main chamber when the melt decreases due to continuous immersion. With the airtight door between the sub-room 9 for retrofit and the main room 1 closed, the air-tight door between the sub-room 9 and the outside is opened, and the raw material is carried into the sub-room. Next, the airtight door is closed, the inside of the sub-chamber 9 is evacuated, Ar gas is introduced into the sub-chamber 9, and the pressure is made the same as that of the main chamber 1. Same as 1. Thereafter, the hermetic door between the sub chamber 9 and the main chamber 1 is opened, and the raw material is loaded into the additional mechanism 10 in the main chamber 1. As the raw material, high-purity silicon having a purity equal to or higher than that of the melt is used. The reloading mechanism 10 reloads the raw material in the crucible 2 by tilting. By providing the additional loading mechanism 10 with a small crucible and a heating device, it is possible to melt the raw material in the additional loading mechanism and add the raw material to the crucible 2 in a molten state.
(実施の形態 2 :浸漬機構の一時待機)  (Embodiment 2: Temporary standby of immersion mechanism)
図 2は、 本発明の実施の形態 2における薄板製造装置を説明する図である。 図 2に示す薄板製造装置の主室は、 るつぼ 2と、 そのるつぼに対し設置されている 2つの浸漬機構および 2つの下地板搬送系、 によって構成される。 この図は、 第 1の浸漬機構 1 0 3力 第 1の下地板交換位置 1 0 6に、 第 2の浸漬機構 2 0 3 、 第 2の下地板交換位置 2 0 6に、 それぞれ待機している状態を示す。 図 2は、 浸漬機構とるつぼを中心とした上面図であるため、 この図における下 地板や各機構の動作軌跡については、 水平動作だけが示されている。 FIG. 2 is a diagram illustrating a thin plate manufacturing apparatus according to Embodiment 2 of the present invention. The main room of the thin plate manufacturing apparatus shown in FIG. 2 is composed of a crucible 2, two dipping mechanisms installed on the crucible, and two base plate transport systems. In this figure, the first immersion mechanism 103 force is standby at the first base plate replacement position 106, the second immersion mechanism 203, and the second base plate replacement position 206, respectively. Indicates a state in which Since FIG. 2 is a top view centering on the immersion mechanism and the crucible, only the horizontal movement is shown with respect to the movement trajectory of the lower base plate and each mechanism in this figure.
第 1の浸漬機構 1 0 3は、 下地板 C 1の水平動作方向が、 るつぼ内の融液に下 地板を浸漬する位置を通る直線上となるように設置される。 浸漬する位置とは、 下地板中央部が融液に浸漬し始める位置と、 下地板中央部が融液から脱出する位 置と、 の中間とする。 本実施の形態では、 筒形型るつぼを使用しており、 浸漬位 置はるつぼの中心とする。  The first immersion mechanism 103 is installed such that the horizontal operation direction of the base plate C1 is on a straight line passing through the position where the base plate is immersed in the melt in the crucible. The immersion position is between the position where the base plate central part starts immersing in the melt and the position where the base plate central part escapes from the melt. In the present embodiment, a cylindrical crucible is used, and the immersion position is at the center of the crucible.
第 2の浸漬機構 2 0 3も、 同様に、 下地板 C 2の水平動作方向が、 るつぼ内の 融液に下地板を浸漬する位置を通る直線上となるように設置される。 第 1の浸漬 機構と第 2の浸漬機構とから作製される薄板の品質を合わせるためには、 浸漬す る位置を同一とすることが望ましい。 つまり、 下地板 C 1と C 2の水平動作は、 浸漬位置にて交差する 2本の直線を構成する。  Similarly, the second immersion mechanism 203 is also installed such that the horizontal operation direction of the base plate C2 is on a straight line passing through the position where the base plate is immersed in the melt in the crucible. In order to match the quality of the thin plate produced from the first immersion mechanism and the second immersion mechanism, it is desirable that the immersion positions be the same. That is, the horizontal movement of the base plates C1 and C2 constitutes two straight lines that intersect at the immersion position.
さらには、 前記 2本の直線は、 同一線 (交差角度が 0 ° ) であることが望まし レ、。 これは、 装置設計、 製作、 設置、 および周辺装置とのやり取りを行う上で、 下地板を導入する経路や、 搬出する経路が、 平行もしくは垂直となるためである。 図 2における水平動作直線 4は、 2つの下地板の水平動作が同一の直線で構成さ れる場合を示している。  Furthermore, it is desirable that the two straight lines be the same line (the intersection angle is 0 °). This is because the path for introducing the base plate and the path for unloading are parallel or vertical when designing, manufacturing, installing, and exchanging with peripheral equipment. The horizontal movement straight line 4 in FIG. 2 shows a case where the horizontal movement of the two base plates is constituted by the same straight line.
図 2において、 第 1の浸漬機構 1 0 3に取付けられた下地板 C 1と、 第 2の浸 漬機構 2 0 3に取付けられた下地板 C 2との水平動作は同一直線上で行なわれる ため、 垂直方向に避けない限り下地板同士を交差させることは不可能である。 図 4は、 第 1の浸漬機構 1 0 3を第 2の浸漬機構 2 0 3が垂直方向に避けるための、 薄板製造装置を説明する側面図である。 第 2の浸漬機構 2 0 3が、 第 1の浸漬機 構 1 0 3を垂直方向に避けるとした場合、 第 2の浸漬機構 2 0 3は矢印 2 Uの動 作で第 1の浸漬機構 1 0 3を乗り越え、 矢印 2 Dの動作で元の高さに戻ることに なる。 そのため、 第 2の浸漬機構 2 0 3を水平方向に動作させる水平動作レール 2 0 2を、 水平動作レール 1 0 3に対して十分高い位置に設置する必要があり、 装置全体の高さが増大する。 さらに、 第 2の浸漬機構 2 0 3は長い昇降ストロー クを準備しなければならない。 すなわち、 上記の場合には、 装置全体の高さを低 減できないだけでなく、 昇降ストロークを確保する必要上、 第 2の浸漬機構 2 0 3の懸垂支柱 2 1 1を長くする必要があるため、 浸漬機構の耐久性の観点からも 不利となる。 In FIG. 2, the horizontal movement of the base plate C1 attached to the first immersion mechanism 103 and the base plate C2 attached to the second immersion mechanism 203 are performed on the same straight line. Therefore, it is impossible to intersect the base plates unless they are avoided in the vertical direction. FIG. 4 is a side view illustrating a thin plate manufacturing apparatus in which the first immersion mechanism 103 avoids the second immersion mechanism 203 in the vertical direction. If it is assumed that the second immersion mechanism 203 avoids the first immersion mechanism 103 vertically, the second immersion mechanism 203 is operated by the arrow 2U in the first immersion mechanism 1 You will get over 0 3 and return to the original height by the action of arrow 2D. Therefore, it is necessary to install the horizontal operation rail 202 for moving the second immersion mechanism 203 in the horizontal direction at a position sufficiently higher than the horizontal operation rail 103, and the height of the entire apparatus increases. I do. In addition, the second immersion mechanism 203 must provide a long lifting stroke. That is, in the above case, not only cannot the height of the entire apparatus be reduced, but also it is necessary to secure an up-and-down stroke. Since it is necessary to make the suspension column 2 1 1 3 long, this is disadvantageous also from the viewpoint of the durability of the immersion mechanism.
第 1および第 2の浸漬機構に用いる機構、 部材、 およびこれらを動作させるた めの制御 (動作プログラム) は、 共通とすることが望ましい。 これらを共通とす ることで、 部材設計、 予備部材管理、 および制御プログラムの作成を共通化する ことが可能となり、 稼動コストを低減できる。 機構、 部材を共通とするためには、 同じ設計の浸漬機構を、 ほぼ同じ水平面内に配置し、 同じ動作で浸漬動作を行う ことが望ましい。  It is desirable that the mechanisms and members used for the first and second immersion mechanisms and the control (operation program) for operating these mechanisms be common. By making these common, it is possible to standardize component design, spare component management, and control program creation, and reduce operating costs. In order to use a common mechanism and members, it is desirable to arrange immersion mechanisms of the same design in almost the same horizontal plane and perform the immersion operation in the same operation.
この場合、 浸漬機構同士の干渉を避けるためには、 前記のように垂直方向に避 ける方法は使用できない。 すなわち、 ほぼ同じ水平面内に配置した互いの浸漬機 構の動作範囲を、 異なる範囲とする必要がある。  In this case, in order to avoid interference between the immersion mechanisms, the method of avoiding in the vertical direction as described above cannot be used. In other words, the operating ranges of the immersion mechanisms arranged in substantially the same horizontal plane need to be different.
第 1の浸漬機構 1 0 3と、 第 2の浸漬機構 2 0 3の動作について、 図 5 Aおよ び 5 Bを用いて説明する。 図 5 Aは、 第 1の浸漬機構 1 0 3が、 交換位置からも つとも遠い場所 (図中の下方向) に移動した場合を示す。 このとき、 第 2の浸漬 機構 2 0 3は交換位置 2 0 6に待機しているため、 第 1の浸漬機構 1 0 3は第 2 の浸漬機構に干渉することなく浸漬動作を実施することが可能である。 次いで、 図 5 Bでは、 第 1の浸漬機構 1 0 3は交換位置 1 0 6に戻り待機している。 その 間、 第 2の浸漬機構 2 0 3は、 交換位置からもっとも遠い場所 (図中の上方向) に移動し、 浸漬動作を行うことが可能である。  The operation of the first immersion mechanism 103 and the second immersion mechanism 203 will be described with reference to FIGS. 5A and 5B. FIG. 5A shows a case where the first immersion mechanism 103 has moved to a location farther from the replacement position (downward in the figure). At this time, since the second immersion mechanism 203 is waiting at the exchange position 206, the first immersion mechanism 103 can perform the immersion operation without interfering with the second immersion mechanism. It is possible. Next, in FIG. 5B, the first immersion mechanism 103 returns to the exchange position 106 and stands by. During that time, the second immersion mechanism 203 can move to the farthest position (upward in the figure) from the replacement position and perform the immersion operation.
前記のように、 一方の浸漬機構が、 一方の交換位置からもっとも遠い場所に移 動したときに、 他方の交換位置に待機している他方の浸漬機構に干渉しないよう に、 位置関係を設計することで、 互いの浸漬機構が干渉することなく、 るつぼ内 の同じ場所での浸漬動作を実施することが可能となる。  As described above, the positional relationship is designed so that when one immersion mechanism moves to the farthest position from one exchange position, it does not interfere with the other immersion mechanism waiting at the other exchange position. This makes it possible to perform the immersion operation in the same place in the crucible without mutual interference between the immersion mechanisms.
このような構成の薄板作製方法において、 2つの浸漬機構から同品質の薄板を 取出すためには、 2つの浸漬機構が同様の動作を行うことが望ましい。 2つの浸 漬機構が同様の動作を行うためには、 2つの下地板が同一直線上を動作する場合、 各動作の水平動作方向が、 るつぼに対して対称となる必要がある。 そのために、 第 1の浸漬機構と第 2の浸漬機構が等しい設計であり、 るつぼに対して対称に設 置されていることが望ましい。 (タク トタイム設定形態 1 ) In the method of manufacturing a thin plate having such a configuration, it is desirable that the two immersion mechanisms perform the same operation in order to extract a thin plate of the same quality from the two immersion mechanisms. In order for the two immersion mechanisms to perform the same operation, when the two base plates operate on the same straight line, the horizontal operation direction of each operation needs to be symmetric with respect to the crucible. Therefore, it is desirable that the first immersion mechanism and the second immersion mechanism have the same design and are symmetrically disposed with respect to the crucible. (Tact time setting form 1)
図 2と図 3を用いて、 第 1の浸漬機構が薄板を連続作製するための第 1のサイ クルを説明する。 基本的な態様は、 実施の形態 1にて説明したサイクルと同様で ある。  A first cycle in which the first immersion mechanism continuously manufactures a thin plate will be described with reference to FIGS. 2 and 3. FIG. The basic mode is the same as the cycle described in the first embodiment.
まず、 下地板交換位置 1 0 6にて、 第 1の浸漬機構に取付けられている下地板 を取外し、 新たな下地板を装着する。 この動作は、 同時に実施することが可能で ある。 次に、 浸漬前位置まで下地板を移動させる (図 3の位置 3 0 7に対応す る) 。 次に、 下地板を融液に浸すための浸漬動作を行い、 薄板を成長させる。 次 に、 下地板を浸漬後位置 (図 3の位置 3 0 8に対応する) から交換位置 1 0 6に 戻す。 以上までの第 1の浸漬機構の一連の動作を、 第 1のサイクルとする。  First, at the base plate replacement position 106, the base plate attached to the first immersion mechanism is removed, and a new base plate is mounted. This operation can be performed simultaneously. Next, the base plate is moved to the position before immersion (corresponding to position 307 in FIG. 3). Next, an immersion operation for immersing the base plate in the melt is performed to grow a thin plate. Next, the base plate is returned from the post-immersion position (corresponding to position 308 in FIG. 3) to the replacement position 106. A series of operations of the first immersion mechanism described above is defined as a first cycle.
同様に、 第 2の浸漬機構が下地板交換位置 2 0 6にて下地板を装着し、 浸漬前 位置に移動し、 浸漬動作により薄板を作製し、 浸漬後位置から交換位置 2 0 6に 戻るまでの動作を第 2のサイクルとする。  Similarly, the second immersion mechanism mounts the base plate at the base plate exchange position 206, moves to the position before immersion, creates a thin plate by immersion operation, and returns to the exchange position 206 from the position after immersion. The operation up to is defined as the second cycle.
サイクルを可能な限り早く行うためには、 前記の移動、 交換、 戻りの時間を可 能な限り短縮する必要がある。 これら 3つの動作の最短時間は、 浸漬機構のスぺ ックによって決定される。 一方、 浸漬動作の最短時間は、 製造したい薄板の作製 条件によって決定されるため、 装置スペック等による短縮化には限界がある。 つ まり、 サイクルの最短時間は浸漬動作によって決定される。 本実施の形態での浸 漬動作は、 実施の形態 1と同様であり、 サイクルの最短時間は前記の 7秒である。 薄板を製造する場合、 2つの浸漬機構を備えることでタクトタイムを向上する ためには、 第 1のサイクルと第 2のサイクルが同時に動作する必要がある。 この 場合、 第 1のサイクルと、 第 2のサイクルをともに最短時間で稼動することによ り、 タク トタイムは半分にできることが期待される。 そのためには、 第 1のサイ クノレと、 第 2のサイクルの各動作に要する時間を等しく (最短時間に) する必要 がある。 そのため、 第 1のサイクルと、 第 2のサイクルに要するサイクルタイム は等しい。  In order to make the cycle as fast as possible, the transfer, exchange and return times must be as short as possible. The minimum time of these three operations is determined by the hook of the immersion mechanism. On the other hand, the shortest time of the immersion operation is determined by the manufacturing conditions of the thin plate to be manufactured, so that there is a limit to the shortening due to the specifications of the apparatus. That is, the shortest cycle time is determined by the dipping operation. The immersion operation in the present embodiment is the same as in the first embodiment, and the shortest cycle time is 7 seconds. When manufacturing thin plates, it is necessary to operate the first cycle and the second cycle simultaneously in order to improve the tact time by providing two immersion mechanisms. In this case, it is expected that the tact time can be reduced to half by operating both the first cycle and the second cycle in the shortest time. To do so, the time required for each operation in the first cycle and the operation in the second cycle must be equal (to the minimum time). Therefore, the cycle times required for the first cycle and the second cycle are equal.
第 1のサイクノレと第 2のサイクルが同時に動作するためには、 第 1の下地板が 浸潰されている最中に第 2の下地板が第 1の下地板の浸漬を邪魔するような動作 を行わないように、 両サイクルの周期をずらす必要がある。 もっとも効果的な方法は、 両サイクルを半周期ずらす方法である。 これにより、 るつぼ内の融液から見た場合、 下地板が融液に入ってくる間隔は一定となるため、 第 1の下地板と第 2の下地板が融液に入るときの融液状態が等しくなり、 薄板の 品質ばらつきを抑制できる。 In order for the first cycle and the second cycle to operate at the same time, it is necessary for the second base to operate so that the first base is prevented from being immersed while the first base is immersed. It is necessary to stagger the periods of both cycles so as not to perform. The most effective method is to shift both cycles by half a cycle. As a result, when viewed from the melt in the crucible, the interval at which the base plate enters the melt is constant, and the state of the melt when the first base plate and the second base plate enter the melt is constant. And the quality variation of the thin plate can be suppressed.
前記の方法にて薄板を作製する場合のタク トタイムについて、 図 6を用いて説 明する。 図 6の横方向は経過時間 (秒) を示し、 縦方向は第 1浸漬機構と第 2浸 漬機構の動作を示す。 図中矢印が動作を行っている時間であることを表している。 第 2浸漬機構の第 2サイクルを第 1浸漬機構の第 1のサイクルに対し半周期遅ら せることで、 3 . 5秒ごとに、 第 1浸漬機構と第 2浸漬機構との下地板が融液に 交互に浸漬されることになる。 タクトタイムは、 薄板 2枚作製するために 7秒、 1枚につき 3 . 5秒とすることが可能となった。  The tact time for producing a thin plate by the above method will be described with reference to FIG. The horizontal direction in Fig. 6 shows the elapsed time (seconds), and the vertical direction shows the operation of the first immersion mechanism and the second immersion mechanism. The arrow in the figure indicates the time during which the operation is being performed. By delaying the second cycle of the second immersion mechanism by a half cycle with respect to the first cycle of the first immersion mechanism, the base plate between the first immersion mechanism and the second immersion mechanism is melted every 3.5 seconds. It will be alternately immersed in the liquid. The tact time can be reduced to 7 seconds to produce two thin plates, and 3.5 seconds per sheet.
(タク トタイム設定形態 2 )  (Tact time setting form 2)
タクトタイム設定形態 1では、 図 6においてわかるように、 第 1の浸漬機構が 浸漬前位置に向かって動作し始めてから 0 . 5秒間は、 第 2の浸漬機構が浸漬動 作を続けている。  In the tact time setting mode 1, as can be seen in FIG. 6, the second immersion mechanism continues the immersion operation for 0.5 second after the first immersion mechanism starts operating toward the pre-immersion position.
下地板のサイズを大きく した場合や、 移動や戻りのストロークを小さくして動 作時間をさらに短縮する場合などは、 第 1の下地板が第 2の下地板に追いつき、 干渉する場合がある。  When the size of the base plate is increased, or when the movement time or return stroke is reduced to further reduce the operation time, the first base plate may catch up with the second base plate and cause interference.
そのため、 下地板を装着、 取外しする前およびノもしくは後に、 待機時間を設 定する必要がある。 ただし、 前記のように、 第 1のサイクルタイムと、 第 2のサ ィクルタイムは同一であることが望ましい。 そのため、 第 1のサイクルタイムに 含ませる待機時間は、 第 2のサイクルタイムに含ませる待機時間と等しい時間で あることが望ましい。  Therefore, it is necessary to set a waiting time before, after, or after attaching and removing the base plate. However, as described above, the first cycle time and the second cycle time are desirably the same. Therefore, it is desirable that the standby time included in the first cycle time is equal to the standby time included in the second cycle time.
前記の方法にて薄板を作製する場合の、 タクトタイムを、 図 7を用いて説明す る。  The takt time when a thin plate is manufactured by the above method will be described with reference to FIG.
第 2のサイクルを第 1のサイクルに対し半周期遅らせ、 下地板交換の前に待機 工程を設置することで、 第 2の浸漬機構が浸漬動作を終了すると同時に、 第 1の 浸漬機構が移動を開始するように設定でき、 下地板の干渉を避けることが可能で ある。 また、 第 1のサイクルタイムと第 2のサイクルタイムは同時間であり、 か つ半周期ずれているため、 第 1の浸漬機構が浸漬動作を終了すると同時に、 第 2 の浸漬機構が移動を開始することとなる。 この方法によって、 2つのサイクルを 継続する際も、 2つの浸漬機構が常に互いに干渉することなく稼動できる。 下地 板は 4秒ごとに融液に浸潰されることになる。 タクトタイムは、 薄板 2枚作製す るために 8秒、 1枚につき 4秒で作製することが可能となった。 By delaying the second cycle by a half cycle with respect to the first cycle, and installing a standby process before replacing the base plate, the second immersion mechanism finishes the immersion operation and the first immersion mechanism moves It can be set to start, and it is possible to avoid interference of the base plate. Also, the first cycle time and the second cycle time are the same time, Therefore, the first immersion mechanism ends the immersion operation and the second immersion mechanism starts moving at the same time. In this way, the two dipping mechanisms can always operate without interfering with each other, even if the two cycles are continued. The base plate will be immersed in the melt every 4 seconds. The tact time can be made in 8 seconds to manufacture two thin plates, and in 4 seconds for one sheet.
(タク トタイム設定形態 3 )  (Tact time setting form 3)
薄板成長条件によっては、 下地板の温度調整 (加熱もしくは冷却、 均熱) を実 施してから、 浸漬動作を行う場合がある。 下地板の温度調整は、 どの位置で行つ ても構わないが、 浸漬機構のサイクルタイムを低減するためには、 下地板が浸漬 機構に装着される前に実施することが望ましい。 温度調整機構として具体的には、 たとえば、 ノ ッファ 1 0 4、 2 0 4に下地板を加熱することができるヒーターや、 下地板を冷却するための冷却板、 下地板を均熱するための定温板などを設置する ことが可能である。  Depending on the growth conditions of the thin plate, the immersion operation may be performed after adjusting the temperature (heating or cooling, soaking) of the base plate. The temperature adjustment of the base plate may be performed at any position, but it is preferable to perform the adjustment before the base plate is mounted on the immersion mechanism in order to reduce the cycle time of the immersion mechanism. Specific examples of the temperature control mechanism include a heater capable of heating the base plate to the buffers 104 and 204, a cooling plate for cooling the base plate, and a soot for uniforming the base plate. It is possible to install a constant temperature plate.
図 1では、 下地板装着前のバッファ内に、 7秒間温度調整を行うための、 温度 調整機構を 1段設置した。  In Fig. 1, a one-stage temperature control mechanism for temperature control for 7 seconds was installed in the buffer before the base plate was attached.
温度調整時間は、 薄板成長条件によって異なるが、 与えられる最大時間は、 (サイクルタイム (秒) ) 一 (装着時間 (秒) ) であり、 タク トタイム設定形態 2の例だと、 8秒一 1秒 = 7秒となる。 7秒で不足の際は、 さらに前に、 必要段 数分の温度調整機構を設置する必要がある。 バッファ内に温度調整機構を設置す る場合、 バッファに滞留する下地板枚数は、 一度に副室から搬入される (下地板 枚数) + (温度調整機構の段数) 以上とする必要がある。 本実施形態では、 バッ ファに滞留できる枚数を 5枚とした。  The temperature adjustment time varies depending on the growth conditions of the thin plate, but the maximum time given is (cycle time (seconds))-one (mounting time (seconds)). Seconds = 7 seconds. If the time is insufficient in 7 seconds, it is necessary to install temperature control mechanisms for the required number of stages before that. When a temperature control mechanism is installed in the buffer, the number of base plates that stay in the buffer must be at least (number of base plates) loaded from the sub chamber at a time + (the number of stages of the temperature control mechanism). In the present embodiment, the number of sheets that can stay in the buffer is five.
また、 下地板の温度ばらつき範囲は、 成長条件によって異なるが、 小さい方が 望ましい。 しかしながら、 下地板の状態 (表面状態、 厚み) や個体差によって、 温度調整時間が異なる場合がある。 この場合、 下地板の温度を、 熱電対や放射温 度計などで測温し、 規定値範囲以内に達してから下地板交換を行う必要がある。 タクトタイム設定形態 2による待機時間内に温度が規定^ ί範囲以内に達した場 合は、 サイクルタイムに影響はない。 そうではない場合は、 下地板装着タイミン グを遅らせる必要がある。 この際、 相手の浸漬機構が次に下地板を装着するタイ ミングも同じ時間遅らせることで、 浸漬機構同士の干渉を防止し、 連続操業を行 うことが可能となる。 Further, the temperature variation range of the base plate varies depending on the growth conditions, but is preferably as small as possible. However, the temperature adjustment time may vary depending on the condition (surface condition, thickness) of the base plate and individual differences. In this case, it is necessary to replace the base plate after measuring the temperature of the base plate with a thermocouple, radiation thermometer, etc., to reach the specified range. If the temperature reaches within the specified range within the standby time according to the tact time setting mode 2, the cycle time is not affected. If not, it is necessary to delay the mounting of the base plate. At this time, the immersion mechanism of the partner By delaying the ming for the same amount of time, it is possible to prevent interference between the immersion mechanisms and perform continuous operation.
前記の各実施の形態で説明した浸潰機構は 2系統の場合であるが、 3系統、 4 系統、 それ以上であってもよい。 各系統の配置はるつぼに対して等間隔に対称に 配置するのがよいが、 等間隔である必要はない。  Although the immersion mechanism described in each of the above embodiments is of two systems, it may be of three systems, four systems, or more. It is good to arrange each system symmetrically at equal intervals with respect to the crucible, but it is not necessary that they are at equal intervals.
また、 前記の各実施の形態では、 浸漬機構と搬送機構を分けて構成した例を説 明したが、 浸漬機構の一方の端を副室まで延長することにより、 浸漬機構と搬送 機構を一体化することができる。 また浸漬機構と搬送機構を折れ曲がるように配 置したが、 湾曲するような配置でも良いし、 浸漬機構と搬送機構を一直線に配置 しても良い。  Also, in each of the above embodiments, an example was described in which the immersion mechanism and the transport mechanism were separated from each other, but the immersion mechanism and the transport mechanism were integrated by extending one end of the immersion mechanism to the sub chamber. can do. Further, although the immersion mechanism and the transport mechanism are arranged to be bent, the immersion mechanism and the transport mechanism may be arranged in a straight line.
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて特許請求の範 囲によって示され、 特許請求の範囲と均等の意味および範囲内でのすべての変更 が含まれることが意図される。 産業上の利用可能性  The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. Industrial applicability
本発明の薄板製造装置は、 金属材料または半導体材料のうち少なくともいずれ か一方を含有する物質の融液に下地板を浸すことができ、 該下地板の装着、 取外 しをほぼ同じ交換位置で行う浸漬機構を有し、 この下地板の表面に融液材料より なる薄板を形成する薄板製造装置である。 本発明の薄板製造装置は、 浸漬機構を 複数系統備え、 交換位置が各浸漬機構ごとに異なることにより、 薄板の製造速度 を複数倍にすることができる。  The thin plate manufacturing apparatus of the present invention is capable of immersing a base plate in a melt of a substance containing at least one of a metal material and a semiconductor material, and mounting and removing the base plate at substantially the same exchange position. This is a thin plate manufacturing apparatus having a dipping mechanism for forming a thin plate made of a melt material on the surface of the base plate. The thin plate manufacturing apparatus of the present invention includes a plurality of immersion mechanisms, and the exchange position is different for each immersion mechanism, so that the manufacturing speed of the thin plate can be doubled.
また本発明の薄板製造装置は、 融液を一つのるつぼに入れ、 複数系統の浸漬機 構がこの一つのるつぼの融液に下地板を浸すことで、 一つのるつぼの融液を複数 系統の下地板浸漬機構が共用するので、 複数系統の浸漬機構によって製造される 薄板の品質を同じにすることができる。  Further, in the thin plate manufacturing apparatus of the present invention, the melt is put in one crucible, and a plurality of dipping mechanisms immerse the base plate in the melt of this one crucible, so that the melt of one crucible is divided into a plurality of systems. Since the base plate immersion mechanism is shared, the quality of thin plates manufactured by multiple systems of immersion mechanisms can be the same.
また本発明の薄板製造装置は、 複数系統の浸漬機構が一つのるつぼのほぼ中央 付近で下地板を融液に浸すので、 一番安定した品質の融液を使用して薄板を製造 することができ、 安定した薄板が得られる。 また本発明の薄板製造装置は、 複数系統の浸漬機構が、 ほぼ同じ水平面内に配 置されるので、 複数系統の浸漬機構の構成を同じにできる。 Further, in the thin plate manufacturing apparatus of the present invention, since a plurality of immersion mechanisms immerse the base plate in the melt substantially near the center of one crucible, the thin plate can be manufactured using the most stable quality of the melt. And a stable thin plate can be obtained. Further, in the thin plate manufacturing apparatus of the present invention, since a plurality of systems of immersion mechanisms are arranged in substantially the same horizontal plane, the configurations of the plurality of systems of immersion mechanisms can be the same.
また本発明の薄板製造装置は、 複数系統の浸漬機構を、 るつぼを中心にして対 称位置に配置されるので、 複数系統の浸漬機構の構成を同じにできる。  Further, in the thin plate manufacturing apparatus of the present invention, since a plurality of systems of immersion mechanisms are arranged at symmetrical positions around the crucible, the configurations of the plurality of systems of immersion mechanisms can be the same.
更に、 本発明の薄板製造方法は、 金属材料または半導体材料のうち少なくとも いずれか一方を含有する物質の融液に下地板を浸すことができ、 該下地板の装着、 取外しをほぼ同じ交換位置で行う浸漬機構を有し、 この下地板の表面に融液材料 よりなる薄板を形成する薄板製造方法である。 浸漬機構は、  Further, according to the thin plate manufacturing method of the present invention, the base plate can be immersed in a melt of a substance containing at least one of a metal material and a semiconductor material, and the mounting and removing of the base plate can be performed at substantially the same exchange position. This is a method for producing a thin plate having a dipping mechanism for forming a thin plate made of a melt material on the surface of the base plate. The immersion mechanism
第 1の下地板を装着し、 該下地板を融液に浸す浸漬動作後、 下地板を取外す動作 を第 1のサイクルとする第 1の浸漬機構と、 第 2の下地板を装着し、 該下地板を 融液に浸す浸潰動作後、 下地板を取外す動作を第 2のサイクルとする第 2の浸漬 機構で構成したため製造速度を 2倍にすることができる。 After mounting the first base plate, immersing the base plate in the melt, and then removing the base plate as a first cycle, mounting a first immersion mechanism and a second base plate, After the immersion operation of immersing the base plate in the melt and the second cycle of removing the base plate as the second cycle, the production speed can be doubled.
また本発明の薄板製造方法は、 第 1のサイクルと第 2のサイクルに要する時間 がほぼ等しいことにより、 2つの下地板浸漬機構を両方同じタイミングで駆動す ることができる。  Further, in the method of manufacturing a thin plate according to the present invention, since the times required for the first cycle and the second cycle are substantially equal, both of the two base plate immersion mechanisms can be driven at the same timing.
また本発明の薄板製造方法は、 第 1のサイクルに対し、 第 2のサイクルをずら して動作する。 また本発明の薄板製造方法は、 第 1のサイクルに対し、 第 2のサ ィクルが半周期遅れて動作するので、 2つの下地板浸漬機構を交互に駆動するこ とができ、 製造速度を速くすることができる。  Further, the thin plate manufacturing method of the present invention operates by shifting the second cycle with respect to the first cycle. In the method of manufacturing a thin plate according to the present invention, the second cycle operates with a half-cycle delay with respect to the first cycle, so that the two base plate immersion mechanisms can be alternately driven, and the manufacturing speed is increased. can do.
また本発明の薄板製造方法は、 下地板の装着、 取外しの前および/もしくは後 に、 待機工程を有することにより、 2つの下地板浸漬機構が干渉することなく連 続稼動することができる。  In addition, the method for producing a thin plate of the present invention includes a standby step before and / or after mounting and removing the base plate, so that the two base plate immersion mechanisms can be continuously operated without interference.

Claims

請求の範囲 The scope of the claims
1 . 金属材料または半導体材料のうち少なくともいずれか一方を含有する物質 の融液に、 下地板を浸すことで該下地板の表面に前記融液の材料よりなる薄板を 形成し、 一の下地板交換位置で下地板の装着と取外しを行なう浸漬機構を装備し た薄板製造装置であって、 1. A base plate is immersed in a melt of a substance containing at least one of a metal material and a semiconductor material to form a thin plate made of the melt material on the surface of the base plate. A thin plate manufacturing device equipped with an immersion mechanism for mounting and removing the base plate at the replacement position,
ほぼ同一構成の浸漬機構を複数系統備え、 一の浸漬機構における下地板交換動 作が他の浸漬機構における下地板交換動作に干渉しないように、 上記複数系統の 浸漬機構を配置したことを特徴とする薄板製造装置。  The system is characterized by having a plurality of immersion mechanisms of almost the same configuration, and arranging the immersion mechanisms of the above multiple systems so that the base plate replacement operation in one immersion mechanism does not interfere with the base plate replacement operation in another immersion mechanism. Thin plate manufacturing equipment.
2 . 前記融液は一つのるつぼに入れられ、 前記複数系統の浸漬機構が前記一つ のるつぼ内の融液に下地板を浸すことを特徴とする請求項 1に記載の薄板製造装 置。 2. The thin plate manufacturing apparatus according to claim 1, wherein the melt is put in one crucible, and the plurality of immersion mechanisms immerse the base plate in the melt in the one crucible.
3 · 前記複数系統の浸漬機構が前記一つのるつぼのほぼ中央付近で前記下地板 を融液に浸すことを特徴とする請求項 1に記載の薄板製造装置。  3. The thin plate manufacturing apparatus according to claim 1, wherein the plurality of immersion mechanisms immerse the base plate in the melt near the center of the one crucible.
4 . 前記複数系統の浸漬機構は、 ほぼ同じ水平面内に配置されることを特徴と する請求項 1に記載の薄板製造装置。 4. The thin plate manufacturing apparatus according to claim 1, wherein the plurality of immersion mechanisms are arranged in substantially the same horizontal plane.
5 . 前記複数系統の浸漬機構は、 前記るつぼを中心にして対称位置に配置され ることを特徴とする請求項 1に記載の薄板製造装置。  5. The thin plate manufacturing apparatus according to claim 1, wherein the plurality of immersion mechanisms are arranged symmetrically with respect to the crucible.
6 . 金属材料または半導体材料のうち少なくともいずれか一方を含有する物質 の融液に下地板を浸すことができ、 該下地板の装着と、 取外しをほぼ同じ交換位 置で行うことのできる複数の浸漬機構を有し、 該下地板の表面に前記融液の材料 よりなる薄板を形成する薄板製造方法であって、 前記浸漬機構は、 第 1の下地板 を装着し、 該下地板を前記融液に浸し、 この浸漬動作後、 下地板を取外す動作を 第 1のサイクルとする第 1の浸漬機構と  6. A plurality of base plates that can be immersed in a melt of a substance containing at least one of a metal material and a semiconductor material, and the base plate can be mounted and removed at almost the same replacement position. A method for manufacturing a thin plate comprising a dipping mechanism, wherein a thin plate made of the material of the melt is formed on the surface of the base plate, wherein the dipping mechanism includes mounting a first base plate, Immersion in liquid, and after this immersion operation, the first immersion mechanism with the operation of removing the base plate as the first cycle
第 2の下地板を装着し、 該下地板を前記融液に浸し、 この浸漬動作後、 下地板を 取外す動作を第 2のサイクルとする第 2の浸漬機構で構成したことを特徴とする 薄板製造方法。 A thin plate comprising: a second base plate mounted thereon; a base plate immersed in the melt; and a second cycle including an operation of removing the base plate after the immersion operation as a second cycle. Production method.
7 . 前記第 1のサイクルと、 前記第 2のサイクルは、 前記るつぼを中心にして 対称に動作することを特徴とする請求項 6に記載の薄板製造方法。 7. The thin plate manufacturing method according to claim 6, wherein the first cycle and the second cycle operate symmetrically around the crucible.
8 . 前記第 1のサイクルと第 2のサイクルに要する時間がほぼ等しいことを特 徴とする、 請求項 6に記載の薄板製造方法。 8. The method of manufacturing a thin plate according to claim 6, wherein the time required for the first cycle and the time required for the second cycle are substantially equal.
9 . 前記第 1のサイクルに対し、 第 2のサイクルをずらして動作することを特 徴とする、 請求項 8に記載の薄板製造方法。  9. The thin plate manufacturing method according to claim 8, wherein the operation is performed with a second cycle shifted from the first cycle.
1 0 . 前記第 1のサイクルに対し、 第 2のサイクルが半周期遅れて動作するこ とを特徴とする、 請求項 8に記載の薄板製造方法。  10. The method of manufacturing a thin plate according to claim 8, wherein the second cycle operates with a delay of a half cycle with respect to the first cycle.
1 1 . 前記下地板の装着、 取外しの前および Zもしくは後に、 待機工程を有す ることを特徴とする、 請求項 6に記載の薄板製造方法。  11. The method for producing a thin plate according to claim 6, further comprising a standby step before, after, or after the mounting and removal of the base plate.
PCT/JP2003/008323 2002-07-03 2003-06-30 Thin sheet manufacturing apparatus and thin sheet manufacturing method WO2004005592A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003244200A AU2003244200A1 (en) 2002-07-03 2003-06-30 Thin sheet manufacturing apparatus and thin sheet manufacturing method
JP2004519221A JP4105159B2 (en) 2002-07-03 2003-06-30 Thin plate manufacturing apparatus and thin plate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002194284 2002-07-03
JP2002-194284 2002-07-03

Publications (1)

Publication Number Publication Date
WO2004005592A1 true WO2004005592A1 (en) 2004-01-15

Family

ID=30112300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008323 WO2004005592A1 (en) 2002-07-03 2003-06-30 Thin sheet manufacturing apparatus and thin sheet manufacturing method

Country Status (4)

Country Link
JP (1) JP4105159B2 (en)
AU (1) AU2003244200A1 (en)
TW (1) TWI244769B (en)
WO (1) WO2004005592A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290914A (en) * 2006-04-25 2007-11-08 Sharp Corp Apparatus for supplying molten raw material and apparatus for manufacturing polycrystal substance or single-crystal substance
JP2009054769A (en) * 2007-08-27 2009-03-12 Sharp Corp Sheet manufacturing apparatus and sheet manufacturing method
WO2014001886A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and orienting/undercooling molds therefor, and electronic device
WO2014001888A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and undercooling molds therefor, and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113096A1 (en) * 1999-12-27 2001-07-04 Sharp Kabushiki Kaisha Method of producing a crystal sheet, apparatus for use in producing the same, and solar cell
JP2002175996A (en) * 2000-12-05 2002-06-21 Sharp Corp Apparatus and method for manufacturing crystalline sheet
JP2002289544A (en) * 2001-03-26 2002-10-04 Shinko Electric Co Ltd Semiconductor base material producing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113096A1 (en) * 1999-12-27 2001-07-04 Sharp Kabushiki Kaisha Method of producing a crystal sheet, apparatus for use in producing the same, and solar cell
JP2002175996A (en) * 2000-12-05 2002-06-21 Sharp Corp Apparatus and method for manufacturing crystalline sheet
JP2002289544A (en) * 2001-03-26 2002-10-04 Shinko Electric Co Ltd Semiconductor base material producing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007290914A (en) * 2006-04-25 2007-11-08 Sharp Corp Apparatus for supplying molten raw material and apparatus for manufacturing polycrystal substance or single-crystal substance
JP2009054769A (en) * 2007-08-27 2009-03-12 Sharp Corp Sheet manufacturing apparatus and sheet manufacturing method
WO2014001886A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and orienting/undercooling molds therefor, and electronic device
WO2014001888A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and undercooling molds therefor, and electronic device

Also Published As

Publication number Publication date
JPWO2004005592A1 (en) 2005-11-04
JP4105159B2 (en) 2008-06-25
TW200409371A (en) 2004-06-01
TWI244769B (en) 2005-12-01
AU2003244200A1 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
US7572334B2 (en) Apparatus for fabricating large-surface area polycrystalline silicon sheets for solar cell application
US7485477B2 (en) Thin plate manufacturing method and thin plate manufacturing apparatus
US9111980B2 (en) Gas exhaust for high volume, low cost system for epitaxial silicon deposition
KR101760667B1 (en) The system for depositing a atomic layer
KR101044772B1 (en) Fast downward-type evaporation system for large-sized CIGS solar cell manufacturing and method thereof
WO2004005592A1 (en) Thin sheet manufacturing apparatus and thin sheet manufacturing method
KR200486487Y1 (en) Indexed gas jet injector for substrate processing system
CN102738261A (en) Substrate processing apparatus, method for manufacturing solar battery, and method for manufacturing substrate
JP7147551B2 (en) Vapor deposition apparatus and carrier used therefor
JP7188256B2 (en) Vapor deposition method and vapor deposition apparatus
US6279506B1 (en) Reactor for coating plane substrates and method for producing said substrates
JP7279630B2 (en) Vapor deposition equipment
JP4105163B2 (en) Thin plate manufacturing apparatus and thin plate manufacturing method
JP2003054932A (en) Manufacturing device of semiconductor substrate, semiconductor substrate and manufacturing method thereof and solar cell
JP2809450B2 (en) Thin film forming method and thin film forming heat treatment apparatus
JP2006342019A (en) Thin plate manufacturing apparatus and thin plate manufacturing method
JP2003059844A (en) Apparatus and method for chemical vapor deposition
JP2004331429A (en) Apparatus and method for manufacturing thin sheet
JP2003059849A (en) Device and method for manufacturing sheet metal
JPH0496216A (en) Manufacture of polycrystalline film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004519221

Country of ref document: JP

122 Ep: pct application non-entry in european phase