JPH0496216A - Manufacture of polycrystalline film - Google Patents

Manufacture of polycrystalline film

Info

Publication number
JPH0496216A
JPH0496216A JP2205955A JP20595590A JPH0496216A JP H0496216 A JPH0496216 A JP H0496216A JP 2205955 A JP2205955 A JP 2205955A JP 20595590 A JP20595590 A JP 20595590A JP H0496216 A JPH0496216 A JP H0496216A
Authority
JP
Japan
Prior art keywords
substrate
polycrystalline
film
polycrystalline silicon
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2205955A
Other languages
Japanese (ja)
Inventor
Yoshinori Okayasu
良宣 岡安
Takeshi Ishimura
石村 猛
Kumiko Tsuji
久美子 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP2205955A priority Critical patent/JPH0496216A/en
Publication of JPH0496216A publication Critical patent/JPH0496216A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Recrystallisation Techniques (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To grow a polycrystalline film of a quality able to realize a desired performance of a solar battery on a hetergeneous substrate by a plasma CVD method by forming a surface polycrystalline layer on the substrate by a separation from molten liquid and thereon growing an upper layer crystal film by the plasma CVD method. CONSTITUTION:Quartz glass is used for a silicon wafer as a substrate, and a polycrystalline silicon film is formed as a buffer layer. In this case, the whole of a tank is crystallized at falling temperature of molten liquid concentration Si:Al=2:8, molten liquid temperature 800 deg.C, temperature gradient on a substrate 0.5 to 20 deg.C/min, however, the same result can be expected by providing a furnace with a temperature gradient and sliding a slide boat to bring to falling speed. The polycrystalline silicon film of the obtained buffer layer is recognized to have a grain diameter of about 100mum according to TEM observation. No difference according to a kind of a substrate is recognized. Next, a polycrystalline silicon thin film is grown on this polycrystalline silicon film by a plasma CVD method.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は多結晶膜の作製法に係わる。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a polycrystalline film.

〔従来の技術〕[Conventional technology]

多結晶シリコン薄膜を用いた太陽電池は発電効率が比較
的高く、また、多結晶シリコン薄膜の製膜も比較的低コ
ストであることから、有望視され、開発が進められてい
る。
Solar cells using polycrystalline silicon thin films have relatively high power generation efficiency, and the production cost of polycrystalline silicon thin films is also relatively low, so they are viewed as promising and are being developed.

多結晶シリコン薄膜の製膜法として、本発明者らはプラ
ズマCVD法の開発を進めている。プラズマCVD法は
低温で良質の結晶薄膜を製膜できる利点がある。
The present inventors are currently developing a plasma CVD method as a method for forming polycrystalline silicon thin films. The plasma CVD method has the advantage of being able to form a high-quality crystalline thin film at low temperatures.

また、熔融析出法は、化合物半導体の成長や、Si と
Snとの合金から31を析出させてシリコン膜を形成す
ることなどに利用されている。SiとSnとの合金を用
いる理由は析出したSi膜の電気的特性が乱されないか
らである。
Further, the melt precipitation method is used for growing compound semiconductors and for forming silicon films by depositing 31 from an alloy of Si and Sn. The reason for using an alloy of Si and Sn is that the electrical characteristics of the deposited Si film are not disturbed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

多結晶シリコン薄膜を用いた太陽電池を実用化するため
には、安価な基板上に良質で結晶粒径の大きい多結晶シ
リコン薄膜を製膜する必要がある。
In order to put a solar cell using a polycrystalline silicon thin film into practical use, it is necessary to form a high-quality polycrystalline silicon thin film with a large crystal grain size on an inexpensive substrate.

しかしながら、プラズマCVD法は低温で製膜できる点
で基板に耐熱性を要求しない点で有利であるが、実際に
、プラズマCVD法で結晶粒径の大きい多結晶シリコン
薄膜を製膜できる基板は限られている。例えば、ステン
レス鋼は安価な耐久性の基板であるが、ステンレス鋼の
ような異質基板上に結晶粒径の大きい多結晶シリコン薄
膜を製膜することは実際上極めて困難である。
However, although the plasma CVD method is advantageous in that it can form films at low temperatures and does not require heat resistance on the substrate, there are actually a limited number of substrates on which polycrystalline silicon thin films with large crystal grain sizes can be formed using the plasma CVD method. It is being For example, although stainless steel is an inexpensive and durable substrate, it is actually extremely difficult to form a polycrystalline silicon thin film with a large crystal grain size on a foreign substrate such as stainless steel.

そこで、本発明は、異質な基板上に多結晶シリコン1l
llを製膜するヘテロ成長方法を提供し、多結晶シリコ
ン薄膜を用いた太陽電池の実用化に寄与することを目的
とする。
Therefore, the present invention provides 1l of polycrystalline silicon on a heterogeneous substrate.
The purpose of this study is to provide a heterogeneous growth method for forming ll, and to contribute to the practical application of solar cells using polycrystalline silicon thin films.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、基板上に溶融析
出法で下地多結晶層を形成し、その上にプラズマCVD
法で上層多結晶膜を成長することを特徴とする多結晶膜
のヘテロ成長方法を提供する。
In order to achieve the above object, the present invention forms a base polycrystalline layer on a substrate by a melt deposition method, and then deposits a base polycrystalline layer on the base polycrystalline layer by plasma CVD.
The present invention provides a method for heterogeneous growth of a polycrystalline film, which is characterized by growing an upper polycrystalline film by a method.

すなわち、本発明は、太陽電池の所望性能を実現できる
品質の多結晶膜を異質な基板上にプラズマCVD法で成
長できるようにするために、基板上に先ず下地多結晶層
即ちバッファー層を形成し、このバッファー層の形成を
溶融析出法で行うものである。
That is, the present invention first forms a base polycrystalline layer, that is, a buffer layer, on a substrate in order to grow a polycrystalline film of a quality that can realize the desired performance of a solar cell on a heterogeneous substrate by plasma CVD. However, this buffer layer is formed by a melt precipitation method.

本発明でプラズマCVD法で成長する多結晶膜の典型例
は、シリコン、ゲルマニウム、シリコン・ゲルマニウム
などである。
Typical examples of polycrystalline films grown by the plasma CVD method in the present invention include silicon, germanium, and silicon-germanium.

下地多結晶膜は上層多結晶膜と格子定数が同じか近い必
要がある。すなわち、上層多結晶膜と同一材料の他、こ
れと格子定数の近い材料でも良い。
The underlying polycrystalline film must have the same or similar lattice constant as the upper polycrystalline film. That is, in addition to the same material as the upper polycrystalline film, it may be made of a material with a lattice constant similar to that of the upper polycrystalline film.

例えば、上層多結晶膜としてシリコンを成長する場合、
下地層はシリコンの他、ゲルマニウム、シリコン・ゲル
マニウム、フン化カルシウムなどで形成することができ
る。格子定数が近いとは格子定数の差が5%以内をいう
For example, when growing silicon as the upper polycrystalline film,
The base layer can be formed of germanium, silicon/germanium, calcium fluoride, etc. in addition to silicon. Close lattice constants mean that the difference in lattice constants is within 5%.

本発明において基板の種類は限定されないが、太陽電池
用基板としては、例えばアルミナのようなセラミックス
基板あるいはステンレス綱のような金属基板への適用が
望まれる。
Although the type of substrate is not limited in the present invention, it is desirable to apply the present invention to a ceramic substrate such as alumina or a metal substrate such as stainless steel as a solar cell substrate.

バッファー層を形成する溶融析出法は析出させるべき元
素(化合物)とその元素(化合物)よりも低い融点をも
つ元素(化合物)との合金融液を冷却することにより、
基板表面に目的の元素(化合物)を析出させる方法であ
る。これにより、目的の元素(化合物)をその融点より
低い温度で析出させることができる。バ・7フア一層を
形成する目的は上層多結晶膜の結晶性を高めることにあ
るので、下地層の多結晶は王として結晶性(粒径)だけ
に着目すればよく、上層の結晶品質(電気的特性など)
は2次的に考慮すれば足りる。そこで、例えば、シリコ
ンを成長する場合、太陽電池に使用するためには、電気
的特性の考慮からSi とSnの合金から析出させられ
てきたが、バッファー層にする場合には、結晶性を第一
とし、低コスト、太陽電池のBSF効果が期待できる、
Affiとの合金を好ましく用いることができる。また
、バッファー層上に形成する活性層を成す上層多結晶膜
はプラズマCVD法によって低温で成長するので、バッ
ファー層の純度は低くてもよい。
The melt precipitation method for forming a buffer layer involves cooling a liquid mixture of an element (compound) to be precipitated and an element (compound) that has a lower melting point than that element (compound).
This is a method in which a target element (compound) is deposited on the surface of a substrate. Thereby, the target element (compound) can be precipitated at a temperature lower than its melting point. Since the purpose of forming a single layer of B.7 is to improve the crystallinity of the upper polycrystalline film, it is only necessary to focus on the crystallinity (grain size) of the polycrystalline layer of the underlayer, and the crystal quality of the upper layer ( electrical characteristics, etc.)
It is sufficient to consider it secondarily. For example, when growing silicon, it has been deposited from an alloy of Si and Sn for use in solar cells due to electrical characteristics. It is possible to expect low cost and BSF effect of solar cells.
An alloy with Affi can be preferably used. Furthermore, since the upper polycrystalline film constituting the active layer formed on the buffer layer is grown at low temperature by plasma CVD, the purity of the buffer layer may be low.

第1図に水平スライド式溶融析出装置を示す。Figure 1 shows a horizontal slide type melting and precipitation apparatus.

同図中、1は成長基板、2は融液のスライダー、3は熱
転対、4は電気炉、5はヒーター、6は真空ポンプ、7
はガス入口である。例えば、第2図を参照すると、Si
 とA1の合金融液は900°Cから700°Cまで冷
却するとき、液相線に沿ってSiが析出する。そこで、
700℃の5i−A/!合金組成よりも多くの5i−t
−溶かした5i−A1合金融液をスライダー2に入れ、
冷却しながら基板1上をスライドさせると、基板1上に
Siが析出し、膜が形成される。
In the figure, 1 is a growth substrate, 2 is a melt slider, 3 is a heat converter, 4 is an electric furnace, 5 is a heater, 6 is a vacuum pump, and 7
is the gas inlet. For example, referring to FIG.
When the alloy liquid of A1 and A1 is cooled from 900°C to 700°C, Si precipitates along the liquidus line. Therefore,
5i-A/! at 700℃! More 5i-t than alloy composition
-Pour the melted 5i-A1 alloy liquid into slider 2,
When the substrate 1 is slid while being cooled, Si is deposited on the substrate 1 to form a film.

〔作 用〕[For production]

溶融析出法で結晶性のバッファー層を形成したことによ
り、異質基板上に高品質の多結晶薄膜を成長することが
できるようになる。
By forming a crystalline buffer layer using a melt deposition method, it becomes possible to grow high-quality polycrystalline thin films on heterogeneous substrates.

〔実施例〕〔Example〕

実施■1 基板として、シリコンウェーハ、石英ガラスを用い、バ
ッファー層として第1図の装置で多結晶シリコン膜を形
成した。
Implementation 1 A silicon wafer and quartz glass were used as the substrate, and a polycrystalline silicon film was formed as a buffer layer using the apparatus shown in FIG.

融液濃度   Sj:Affi=2:8融液塩度   
  800°C 基板上の温度勾配    0.5〜20°C/minこ
の実施例では、槽全体を上記の鋒温速度で析出させてい
るが、炉に温度勾配を設け、スライドボートをスライド
させ、上記の陵温速度にすることにより同様の結果が期
待できる。
Melt concentration Sj:Affi=2:8 Melt salinity
800°C Temperature gradient on the substrate 0.5 to 20°C/min In this example, the entire tank was deposited at the above temperature rate, but a temperature gradient was provided in the furnace and the slide boat was slid. Similar results can be expected by using the above-mentioned temperature rate.

得られたバッファー層の多結晶シリコン膜は、TEM観
察によると、100,1ull程度の粒径であることが
認められた。基板の種類のよる差は認められなかった。
According to TEM observation, the obtained polycrystalline silicon film of the buffer layer had a grain size of about 100.1 μll. No difference was observed depending on the type of substrate.

次いで、この多結晶シリコン股上にプラズマCVD法で
多結晶シリコン薄膜を成長した。その条件は下記の通り
とした。
Next, a polycrystalline silicon thin film was grown on this polycrystalline silicon layer by plasma CVD. The conditions were as follows.

供給ガス SiH40,5〜20  scc+w Hz          O〜100sccm1005
c  〜50  secm 圧力        0.1〜I  Torn電力密度
      10〜500w1W/cシこうして得られ
た多結晶シリコン薄膜は、TEM観察によると100庫
程度の粒径であり、また結晶の品質は良好であることが
認、められた。
Supply gas SiH40,5~20scc+w Hz O~100sccm1005
c ~ 50 sec Pressure 0.1 ~ I Torn Power Density 10 ~ 500 W/c According to TEM observation, the polycrystalline silicon thin film thus obtained has a grain size of about 100 cm, and the crystal quality is good. This was recognized.

ことができ、多結晶薄膜を用いた太陽電池の実用化に寄
与する。
This will contribute to the practical application of solar cells using polycrystalline thin films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融析出装置の模式図、第2図はA1−3i合
金の状態図 である。 1・・・基板、      2・・・スライダー3・・
・熱転対、    4・・・電気炉、5・・・ヒーター
    6・・・真空ポンプ、7・・・ガス入口。 〔発明の効果] 以上の如く、本発明によれば、良質でかつ結晶粒径の大
きい多結晶薄膜を異質基板上に成長するS+*千% 第1図 Af −5l系平衡状態図 隼2図
FIG. 1 is a schematic diagram of a melting precipitation apparatus, and FIG. 2 is a state diagram of the A1-3i alloy. 1... Board, 2... Slider 3...
- Heat converter, 4... Electric furnace, 5... Heater, 6... Vacuum pump, 7... Gas inlet. [Effects of the Invention] As described above, according to the present invention, a polycrystalline thin film of good quality and large crystal grain size can be grown on a heterogeneous substrate.

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に溶融析出法で下地多結晶層を形成し、その
上にプラズマCVD法で上層多結晶膜を成長することを
特徴とする多結晶膜のヘテロ成長方法。
1. A method for heterogeneous growth of a polycrystalline film, which is characterized in that a base polycrystalline layer is formed on a substrate by a melt deposition method, and an upper polycrystalline film is grown thereon by a plasma CVD method.
JP2205955A 1990-08-04 1990-08-04 Manufacture of polycrystalline film Pending JPH0496216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2205955A JPH0496216A (en) 1990-08-04 1990-08-04 Manufacture of polycrystalline film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2205955A JPH0496216A (en) 1990-08-04 1990-08-04 Manufacture of polycrystalline film

Publications (1)

Publication Number Publication Date
JPH0496216A true JPH0496216A (en) 1992-03-27

Family

ID=16515471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2205955A Pending JPH0496216A (en) 1990-08-04 1990-08-04 Manufacture of polycrystalline film

Country Status (1)

Country Link
JP (1) JPH0496216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212119A (en) * 1990-11-28 1993-05-18 Hyundai Electronics Industries Co., Ltd. Method for maintaining the resistance of a high resistive polysilicon layer for a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212119A (en) * 1990-11-28 1993-05-18 Hyundai Electronics Industries Co., Ltd. Method for maintaining the resistance of a high resistive polysilicon layer for a semiconductor device

Similar Documents

Publication Publication Date Title
CN100433257C (en) Process for producing monocrystal thin film and monocrystal thin film device
CN107287578B (en) A kind of chemical gas-phase deposition process for preparing of a wide range of uniformly double-deck molybdenum disulfide film
Aberle et al. Formation of large-grained uniform poly-Si films on glass at low temperature
Romeo et al. Growth of large-grain CuInSe2 thin films by flash-evaporation and sputtering
JPS61272922A (en) Semiconductor device wafer substrate and manufacture thereof
US7175706B2 (en) Process of producing multicrystalline silicon substrate and solar cell
JPH0496216A (en) Manufacture of polycrystalline film
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
JPH04132677A (en) Production of thin plate-shaped single crystal by melt-pressure method
CN112647047B (en) Preparation method and application of cesium tin iodine film
JPH1154433A (en) Method for forming silicon film
JPH101392A (en) Formation of crystalline silicon thin film
JPH06191814A (en) Production of silicon sheet
JPH0487325A (en) Manufacture of polycrystalline film
JPH0118575B2 (en)
JPH0487326A (en) Manufacture of p0lycrystalline film
JP2000026199A (en) Production of silicon carbide single crystal and silicon carbide single crystal produced therewith
Wang et al. Influence of growth temperature and cooling rate on the growth of Si epitaxial layer by dropping-type liquid phase epitaxy from the pure Si melt
Fabre et al. Ribbons and sheets as an alternative to ingots in solar cell technology
JPS5893228A (en) Preparation of semiconductor single crystal thin film
KR20000001232A (en) Crystallization method of amorphous film
JP2556159B2 (en) Method for manufacturing semiconductor crystal
JPH06191815A (en) Production of silicon thin plate
JPH02174218A (en) Manufacture of semiconductor device