WO2004005426A1 - Light control device and its manufacturing method - Google Patents

Light control device and its manufacturing method Download PDF

Info

Publication number
WO2004005426A1
WO2004005426A1 PCT/JP2003/008532 JP0308532W WO2004005426A1 WO 2004005426 A1 WO2004005426 A1 WO 2004005426A1 JP 0308532 W JP0308532 W JP 0308532W WO 2004005426 A1 WO2004005426 A1 WO 2004005426A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
liquid crystal
transmittance
light
polymerizable compound
Prior art date
Application number
PCT/JP2003/008532
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Shibuya
Masako Nagashima
Yasuhiro Ikeda
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to AU2003244209A priority Critical patent/AU2003244209A1/en
Priority to JP2004519270A priority patent/JPWO2004005426A1/en
Publication of WO2004005426A1 publication Critical patent/WO2004005426A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction

Definitions

  • the present invention relates to a light control device capable of controlling transmission and absorption of light by changing a voltage. Background technology>
  • the active dimming device has been electochromic device
  • the EC element has a problem that the response speed is slow because the transmittance of light is controlled by a redox reaction.
  • a voltage-driven liquid crystal light control device is attracting attention as an alternative to the EC device.
  • the operation based on the following principle is known as a liquid crystal light control device. That is, when no voltage is applied, the light is reflected and scattered by the liquid crystal molecules, and appears to be milky white. On the other hand, when a voltage is applied, the liquid crystal is oriented in the direction of the external electric field. At this time, since the ordinary light refractive index (N.) of the liquid crystal and the refractive index (N p ) of the polymer are close to each other, light scattering is reduced, and the element appears transparent.
  • the present invention is intended to solve the above-mentioned problems.
  • no voltage is applied, light transmittance is small and scattering is small.
  • voltage is applied, light transmittance is large and scattering is small.
  • An object is to obtain a light control element.
  • a liquid crystal / polymer composite containing a dichroic dye, a liquid crystal, and a polymer is sandwiched between a pair of substrates with electrodes, at least one of which is transparent, and light transmission when no voltage is applied between the electrodes.
  • the transmittance is 40% or less
  • the scattered transmittance (Td) is 30% or less
  • the light transmittance at the time of applying a voltage is 45% or more
  • the scattered transmittance (Td) is 20% or less.
  • a dimming element characterized by having a contrast with no application of 1.2 or more.
  • a mixture containing a dichroic dye, a liquid crystal, and a polymerizable compound is sandwiched between a pair of substrates with electrodes, at least one of which is transparent, and the polymerizable compound is polymerized at a temperature at which the mixture shows a liquid crystal phase.
  • a method for manufacturing a light control element is provided.
  • a liquid crystal mixture containing a dichroic dye, a liquid crystal, and a polymerizable compound is sandwiched between a pair of substrates with electrodes, at least one of which is a transparent substrate, and the electrode is heated at a temperature at which the liquid crystal mixture exhibits a liquid crystal phase.
  • the polymerizable compound is polymerized while applying a voltage in between, so that the light transmittance when no voltage is applied is 40% or less and the scattered transmittance (Td) is 30% or less, and the light
  • the light control element has a transmittance of 45% or more, a scattered transmittance (Td) of 20% or less, and a contrast of 1.2 or more between when a voltage is applied and when no voltage is applied.
  • a manufacturing method is provided.
  • FIG. 1 is a schematic cross-sectional view of an example of the light control device of the present invention.
  • 3 A, 3 B alignment film
  • the liquid crystal Z polymer composite in the present invention is a composite containing a dichroic dye, a liquid crystal, and a polymer.
  • the composite is formed by polymerizing a polymerizable compound at a temperature that indicates a liquid crystal phase in a mixture containing a dichroic dye, liquid crystal, and a polymerizable compound (hereinafter, also referred to as a mixture).
  • the light modulating device of the present invention is a device having a composite of a dichroic dye, a liquid crystal and a polymer.
  • a dichroic dye is a dye having a large difference in light absorption between the major axis direction and the minor axis direction of a molecule.
  • the absorption of the dichroic dye is increased and the light transmittance is reduced by the horizontal alignment with respect to the substrate when no voltage is applied.
  • the alignment state of the liquid crystal changes to a vertical alignment, and the dichroic dye is vertically aligned with the change, so that the absorption of the dichroic dye decreases and the transmittance of the element increases.
  • the dichroic dye in the present invention is not particularly limited, and various dichroic dyes can be used, but dichroic dyes having light fastness and durability, that is, anthraquinone compounds, azo compounds, etc. Is preferably used.
  • the content of the dichroic dye in the present invention is preferably from 0.1 to 12% (based on mass. The% representing the mass ratio is the same hereinafter) based on the total amount of the liquid crystal and the polymer. 0.5 to 10% is more preferred.
  • one kind of dichroic dye may be used, or two or more kinds of dichroic dyes may be used.
  • the liquid crystal in the present invention is a composition comprising one or more liquid crystal compounds.
  • the dielectric constant in the direction perpendicular to the axis.) May be a negative compound, a positive compound, or a compound having no dielectric anisotropy.
  • the entire liquid crystal of the present invention has a positive dielectric anisotropy. If the dielectric anisotropy of the liquid crystal is positive, the liquid crystal is aligned horizontally. 3 008532
  • the dielectric anisotropy of the liquid crystal in the present invention is preferably 1 or more, and particularly preferably 2 to 50. It is preferable that the dielectric anisotropy is 1 or more because the light control device can be driven at a low voltage.
  • the liquid crystal compound is not particularly limited, but in order to obtain a liquid crystal compound having a positive dielectric anisotropy, a compound in which a polar group such as a cyano group or a fluorine atom is bonded to the main chain in the molecular long axis direction. preferable.
  • the refractive index anisotropy of the liquid crystal in the present invention ( ⁇ ⁇ ) ( ⁇ ⁇ - ⁇ ⁇ one eta, and however, n e:... Extraordinary index, n: an ordinary refractive index) is 0 2 or less is preferred, and 0.15 or less is more preferred.
  • the refractive index anisotropy is 0.2 or less, scattering of light of the light control element upon application of a voltage is reduced, which is preferable.
  • the saturated carbocycle is a saturated cyclic compound composed of a carbon atom and a hydrogen atom, and is preferably a cyclohexane ring.
  • the amount of the liquid crystal in the present invention is preferably 50 to 98%, more preferably 55 to 95%, based on the total amount of the liquid crystal and the polymerizable compound.
  • the content is 50% or more, the light control device can be driven at a low voltage, which is preferable.
  • the content is 98% or less, the durability against repeated voltage application and non-application of voltage and the durability against mechanical external force are increased, and the reliability at high temperatures is further improved.
  • the liquid crystal in the present invention preferably contains a chiral agent to be a chiral nematic liquid crystal.
  • a chiral agent to be a chiral nematic liquid crystal.
  • Known chiral agents can be used in the present invention.
  • the amount of the chiral agent is preferably from 0.1 to 30%, more preferably from 0.5 to 20%, based on the total amount of the liquid crystal and the chiral agent.
  • the content is 0.1% or more, the helical pitch of the chiral agent can be reduced, and the direction of the dichroic dye can be rotated for efficient use. Further, it is preferable that the content be 30% or less, since the influence on the liquid crystal temperature range can be reduced.
  • the chiral agent in the present invention one kind of chiral agent may be used, or two or more kinds of chiral agents may be used. 2003/008532
  • the polymer in the present invention refers to a compound having a polymerizable functional group, that is, two or more, preferably five or more, of the polymerizable compounds are reacted by reacting a part or all of the polymerizable functional groups of the polymerizable compound. Means what you do. Further, the liquid crystal / polymer composite of the present invention may contain an unreacted polymerizable compound.
  • the polymer in the present invention is preferably a polymer obtained by polymerizing a polymerizable compound.
  • the polymerizable functional group include an acryloyl group, a methacryloyl group, a vinyl group, an acryl group, and an epoxy group.
  • An acryloyl group and a methacryloyl group are preferable because of high reactivity.
  • the polymerizable compound is a compound having a mesogenic structure. Having a mesogenic structure is preferable because the compatibility between the liquid crystal and the polymerizable compound is increased and the liquid crystal temperature range of the mixture is widened.
  • the mesogen structure a structure having two or more divalent ring groups is preferable. More preferably, the structure has 2 to 5 pieces.
  • the ring groups may be directly bonded to each other, or may be bonded via groups such as 1 O—, 1 OCO—, —COO—, —CH 2 —, and —CH 2 CH 2 —.
  • the divalent ring group a 1,4-phenylene group and a trans-1,4-cyclohexylene group are preferable.
  • the hydrogen atom of the ring group may be substituted with an alkyl group having 1 or 2 carbon atoms, an alkoxy group having 1 or 2 carbon atoms, a cyano group, or a halogen atom. Further, as the mesogen structure, the structures represented by the formulas (1) and (2) are preferable.
  • a 1 to ai 2 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 or 2 carbon atoms, a cyano group, or a halogen atom.
  • One or more of the three 1,4-phenylene groups of formula (1) may be substituted with a 1,1,4-cyclohexylene group.
  • a 1 3 ⁇ a 2 4 each independently, a hydrogen atom, an alkyl group, having 1 or 2 alkoxy group having a carbon of 1 to 6 carbon atoms, Shiano group or a halogen atom.
  • One or more of the three 1,4-phenylene groups in Formula (2) may be substituted with a trans-1,4-cyclohexylene group.
  • the polymerizable compound in the present invention may be a compound having one polymerizable functional group or a compound having two or more polymerizable functional groups. When it has two or more polymerizable functional groups, they may be the same or different polymerizable functional groups.
  • the polymerizable compound of the present invention is preferably a polymerizable compound having two or more polymerizable functional groups.
  • a 1 , A 2 each independently represents an acryloyl group, a methacryloyl group, a glycidyl group, or an aryl group Base
  • R 1 and R 2 each independently represent an alkylene group having 2 to 18 carbon atoms in which one or more of the hydrogen atoms may be substituted with an alkyl group.
  • n and m each independently an integer of 1 to 10.
  • the polymer in the present invention may be one obtained by polymerizing one kind of polymerizable compound, or one obtained by polymerizing two or more kinds of polymerizable compounds. Further, the polymer in the present invention is obtained by polymerizing only a polymerizable compound having a mesogenic structure, It is preferable to polymerize a polymerizable compound having a structure and a polymerizable compound having no mesogen structure.
  • the amount of the polymerizable compound is preferably 2 to 50%, more preferably 5 to 45%, based on the total amount of the liquid crystal and the polymerizable compound.
  • a content of 2% or more is preferable because the durability of the light control element to repeated application and non-application of voltage and the durability to mechanical external force are increased.
  • the driving voltage of the device can be reduced, and the temperature range in which the mixture of the liquid crystal and the polymerizable compound exhibits the liquid crystal phase is widened, which is preferable. It is preferable that the temperature range in which the liquid crystal phase is displayed is widened because the temperature range when polymerizing the compound can be widened.
  • the mixture of the liquid crystal and the polymerizable compound in the invention may contain a polymerization initiator for polymerizing the polymerizable compound.
  • a polymerization initiator for polymerizing the polymerizable compound.
  • the polymerization initiator when photopolymerization is carried out, acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers, benzyldimethyl ketones, benzoylbenzoates, aryl ketone photopolymerization initiators such as ⁇ -acyroxime esters, sulfur-containing yellow photopolymerization initiators such as sulfides and thioxanthones, and acylphosphinoxide photopolymerization initiators such as acyldiarylphosphinoxide Is mentioned.
  • One photopolymerization initiator may be used alone, or two or more photopolymerization initiators may be used in combination.
  • the mixture in the present invention contains a photopolymerization initiator, it can be used even if it further contains a photosensitizer such as an amine.
  • the photopolymerization initiator used in the present invention preferably absorbs light having a wavelength of from 300 to 400 nm.
  • Specific examples of the photopolymerization initiator include the following compounds.
  • Benzenyl 4'-methyldiphenyl sulfide thioxanthone, 2 monoclox thioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4,1 Getylthioxanthone, 2,4-diisopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • a polymerization initiator such as a peroxide or a curing agent such as an amine or an acid anhydride can be used depending on the type of the polymerization site.
  • a curing aid such as an amine, if necessary.
  • the content of the polymerization initiator is preferably 20% or less with respect to the polymerizable compound, and when a high specific resistance is required for the polymer after polymerization, 0.01 to 10% is more preferable. It is good.
  • the mixture in the present invention may contain, if necessary, an antioxidant, a surfactant, a light stabilizer, a non-dichroic dye, a pigment, a chain transfer agent, a cross-linking agent, a defoaming agent, and the like. It can be included as long as the light control function is not impaired.
  • the material of the substrate used for the light control device of the present invention is preferably glass or resin.
  • a transparent resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyarylate, polymethyl methacrylate, polyetherimide, or cellulose triacetate resin is preferable.
  • At least one of the substrates is a transparent substrate, and the transparent substrate is preferably made of these materials.
  • One of the two substrates may be a reflector such as a substrate on which an aluminum-dielectric multilayer film is formed.
  • a transparent electrode is laminated on the substrate in the present invention. Is a transparent electrode, ITO films and S n 0 2 film is preferable. Further, the substrate on which the transparent electrodes are laminated is preferably a transparent substrate.
  • the dimming device of the present invention has a pair of substrates with electrodes, at least one of which is a transparent substrate. At least one of the substrates is formed by laminating a transparent electrode on a transparent substrate.
  • the surface of the substrate with electrodes according to the present invention, which is in contact with the liquid crystal Z-polymer composite, is preferably, but not necessarily, treated for horizontal alignment of the liquid crystal.
  • the treatment method is not particularly limited as long as the liquid crystal is horizontally oriented, and includes a known method. For example, a method of directly polishing the surface of the substrate, a method of rubbing after providing a resin thin film on the surface of the substrate, a method of providing an alignment agent on the surface of the substrate, and the like are exemplified.
  • the distance between the two substrates can be appropriately selected depending on the size of the spacer.
  • the distance between the substrates is preferably from 2 to 50 m, and more preferably from 3 to 30 m. It is preferable that the distance between the substrates is 2 m or more, since the contrast is increased. Further, it is preferable that the distance between the substrates is 50 m or less, since the curing reaction proceeds easily.
  • Examples of the polymerization reaction in the present invention include a commonly used active energy ray polymerization reaction, thermal polymerization reaction and the like.
  • a photopolymerization reaction is preferable, and a polymerization reaction by irradiation with ultraviolet rays is particularly preferable.
  • the active energy rays used are not particularly limited, and may include ultraviolet rays, electron beams, and other active energy rays. 2003/008532
  • ultraviolet rays are preferred.
  • ultraviolet light sources include xenon lamps, pulsed xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, mercury-xenon (HgXe) lamps, chemical lamps, metal halide lamps, power-bon lamps, and tungsten lamps. .
  • the polymerization reaction in the present invention is greatly affected by light irradiation intensity, irradiation temperature, and irradiation time. Particularly, the influence of the irradiation temperature is great.
  • the light irradiation intensity, irradiation temperature, and irradiation time can be appropriately selected depending on the type of dichroic dye, liquid crystal, and polymerizable compound used, and the mixing ratio of each.
  • the polymerization reaction is preferably carried out at a temperature at which the liquid crystal exhibits a liquid crystal phase by laminating the mixture on a substrate in a state where the mixture has been made into a homogeneous solution in advance.
  • the liquid crystal Z polymer composite of the present invention is preferable because the liquid crystal is uniformly aligned with the substrate.
  • the polymerization reaction in the present invention may be performed in a state where a voltage is applied between the electrodes.
  • a liquid crystal having a positive dielectric anisotropy when a voltage is applied, the liquid crystal is oriented perpendicular to the substrate, and the polymerizable compound is oriented perpendicular to the substrate along the liquid crystal.
  • the polymerization reaction proceeds in that state, the resulting polymer becomes a cured product maintaining the vertical orientation. Therefore, the scattered transmittance of the manufactured light control device when a voltage is applied can be significantly reduced.
  • the applied voltage during the polymerization in the present invention is preferably 0.5 V or more and 300 V or less, more preferably 1 V or more and 100 V or less.
  • the voltage is 0.5 V or more, the polymerizable compound can be vertically aligned, and when the voltage is 300 V or less, when the substrate spacing is non-uniform, short-circuiting at a portion where the spacing is narrow is reduced, which is preferable.
  • the power supply characteristics of the voltage applied between the electrodes may be DC or AC, but AC is preferred.
  • the frequency of the alternating current is not particularly limited, but is preferably from 20 Hz to 100 Hz.
  • a voltage may be preliminarily applied.
  • Preliminary application means applying a voltage in advance before the polymerization reaction.
  • the pre-applied voltage varies depending on the substrate interval, the temperature at the time of application, and the like, but is preferably 0.5 V or more and 300 V or less, more preferably 1 V or more and 100 V or less.
  • the pre-applying time also depends on the substrate spacing, although it varies depending on the temperature at the time, it is preferably 30 seconds or more and 1 hour or less. When the time is 30 seconds or longer, most of the polymerizable compound can be vertically aligned with respect to the substrate, which is preferable.
  • the preliminary application time is preferably longer, but the upper limit is preferably 1 hour or less.
  • the provision of the pre-application step is preferable because the polymerizable compound can be completely and uniformly vertically aligned, and as a result, a dimming element having a small scattering transmittance upon application of a voltage can be produced.
  • the method for manufacturing the light modulating element of the present invention is not particularly limited as long as it does not cause uneven injection or pinching, does not mix impurities, and can be laminated with a uniform thickness. Is mentioned.
  • the substrate is made of glass, prepare a glass substrate with two electrodes and perform orientation treatment on the electrode side of the substrate. A spacer such as a resin bead having a diameter of 2 to 50 / m is sprayed on the electrode side of one of the substrates, and the substrates are stacked so that the electrode sides face each other. The outer periphery of the stacked substrates is sealed with a sealant such as epoxy resin to produce a cell.
  • the polymerizable compound is polymerized.
  • an injection port is provided in advance at one location of the sealant on the outer periphery of the substrate at the time of cell production, and the mixture is vacuum-injected from the injection port, and at least two locations of the sealant.
  • a cutout portion is provided, at least one of the cutout portions is immersed in the mixture, and suction is performed from the cutout portion not immersed.
  • the method of fabricating the dimming element is as follows.
  • a resin film substrate with two electrodes, which has been treated with a directing agent facing the electrode side, is sandwiched between two rolls, and at the same time, between the substrates.
  • the mixture in which the spacer is uniformly dispersed is injected.
  • Preferred examples include a method in which the polymerizable compound is continuously polymerized while maintaining a uniform substrate interval using the roll, and a method in which the polymerizable compound is manufactured in the same manner as a glass substrate.
  • the substrate is glass
  • a glass substrate with two electrodes is prepared, and the electrode side of the substrate is subjected to an alignment treatment as necessary.
  • a spacer such as a resin bead having a diameter of 2 to 50 Am is sprayed on the electrode side of one of the substrates, and the substrates are stacked so that the electrode sides face each other. Said layered
  • the outer periphery of the substrate is sealed with a sealant such as an epoxy resin to produce a cell.
  • a metal foil tape with a conductive adhesive is attached to both electrode surfaces, and the electrodes are taken out.
  • a voltage is applied between the electrodes, and the polymerizable compound is polymerized while the voltage is applied.
  • an injection port is provided in advance at one place of a sealant on the outer peripheral portion of the substrate at the time of cell production, and the liquid crystal mixture is vacuum-injected from the injection port.
  • a preferred method is to provide a cutout at two or more locations, immerse one or more of the cutouts in the liquid crystal mixture, and suction from the non-immersed cutout.
  • the method for taking out the electrode from the electrode surface in the present invention is not particularly limited, and a known method can be used.
  • TAB or a conductive wire may be bonded to the electrode surface
  • a metal foil tape with a conductive adhesive may be attached to the electrode surface
  • the conductive wire may be soldered to the electrode surface.
  • the light control device of the present invention in the case of a device having a planar shape or a device having a small area, a good light control device is obtained when the substrate is made of glass because the substrate has a higher light transmittance. Is preferred. However, when fabricating a non-planar element or a large-area element, that is, a dimming element for construction, automobiles, etc., it is preferable to use resin as the substrate material to obtain a lightweight and flexible element. Is preferred. The element of the resin substrate can be used in combination with other members, such as sandwiching it between laminated glasses.
  • the light control device of the present invention is a normal mode light control device. That is, dimming in which light transmittance is low when no voltage is applied and light transmittance is high when voltage is applied Element.
  • the light modulating element of the present invention is a light modulating element in which a composite of a liquid crystal Z polymer is sandwiched between a pair of substrates with electrodes, at least one of which is transparent.
  • FIG. 1 is a diagram showing an example of the light control device of the present invention.
  • the light control device of the present invention has a light transmittance of 40% or less when no voltage is applied, and a scattered transmittance (Td) of 30% or less.
  • the lower limit of the light transmittance is preferably 3% or more, more preferably 5% or more.
  • the lower limit of the scattered transmittance may be 0%.
  • the light transmittance when voltage is applied is 45% or more, and the scattered transmittance (Td) is 20% or less.
  • the upper limit of the light transmittance may be 100%.
  • the lower limit of the scattered transmittance may be 0%.
  • the dimmer of the present invention has a contrast of 1.2 or more between when a voltage is applied and when no voltage is applied, and preferably 1.2 to 50.
  • Examples 1 to 4 and 7 to 10 are Examples, and Examples 5 to 6 and 11 to 13 are Comparative Examples.
  • the transmittance, scattered transmittance, and contrast were measured by the following methods. First, a voltage of a rectangular wave having a frequency of 100 Hz was increased from 0 V to 60 V for 1 minute in the obtained dimming device. Next, it was dropped from 60 V to 0 V for 1 minute. After repeating this operation 10 times, the transmittance and the scattered transmittance were measured.
  • Tp transmittance
  • Td scattered transmittance
  • the polymerizable compound is 20% based on the total amount of the liquid crystal and the polymerizable compound
  • the dichroic dye LSB278 manufactured by Mitsubishi Chemical
  • benzoin isopropyl ether is used.
  • a mixture containing 0.60% of the total amount of the liquid crystal and the polymerizable compound was prepared.
  • two glass substrates (100 mm long, 100 mm wide, 1. lmm thick, surface resistance 30 ⁇ square) with an ITO film formed were prepared.
  • an imide-based aligning agent HL1110 was applied so as to have a solid content of 10 Onm, and was heated and cured at 180 for 30 minutes to perform a rubbing treatment.
  • On the alignment agent layer of one board and 30 Roh mm 2 spraying resin beads having a diameter of 6 m (manufactured by Sekisui Fine Chemical Co.).
  • uncured epoxy resin mixed with 6 ⁇ glass fiber having a width of lmm was printed on four sides (excluding the injection port) of the outer periphery of the substrate. The two substrates were placed so that the rubbing directions were antiparallel, and the ITO sides were placed inside, respectively, and the uncured epoxy resin was heated and cured at 60 for 5 minutes to produce a cell.
  • the mixture A was vacuum-injected into the cell from an injection port provided in the cell. Next, the cell was cooled to 45 ° C. Maintaining the liquid crystal state by keeping mixture A at 45 ° C, the main wavelength is 365! Using an HgXe lamp. ! ! ! ! UV intensity! ! !
  • the light control device was manufactured by irradiating for 10 minutes at / Ji !!! 2 . The appearance of the fabricated light modulating device was transparent, similar to the cell before irradiation.
  • the measurement result of the transmittance of the obtained light control device was 38% at a voltage of 0 V and 66% at a voltage of 60 V.
  • Td is 4% at 0V and 60% at 60V 10%.
  • the contrast was 1.7.
  • the element was transparent both when a voltage was applied and when no voltage was applied.
  • a mixture B was prepared by adding 1% of resin beads (manufactured by Sekisui Fine Chemical Co., Ltd.) having a diameter of 6 zm to the mixture A and 5% of a chiral agent CN (cholesteryl nonanoate) to the liquid crystal.
  • resin beads manufactured by Sekisui Fine Chemical Co., Ltd.
  • CN cholesteryl nonanoate
  • Polyethylene terephthalate film with IT0 film formed on one side (thickness: 125 m, surface resistance: 300 ⁇ / ⁇ )
  • Two rolls of film held at 45 ° C with the ITO film facing each other Supplied.
  • a mixture B in a liquid crystal state maintained at 60 ° C. was injected between the two substrates.
  • the mixture B was laminated, that is, encapsulated between the substrates by passing the two substrates holding the mixture through the roll.
  • the substrate on which the mixture B is sealed, at 45 ° C with irradiation booth by dominant wavelength using a chemical lamp is a UV 352 eta m, irradiated with intensity 3mWZcm 2 10 min, the dimming element was prepared.
  • the transmittance of the obtained dimming device was 25% at a voltage of 0 V and 64% at a voltage of 60 V. Td was 5% at 0V and 12% at 60V. The contrast was 2.6. Transparency was ensured both when voltage was applied and when voltage was not applied. In addition, a high-contrast element was obtained by adding a chiral agent.
  • a mixture C was prepared in the same manner as in Example 2, except that the polymerizable compound was replaced with the compound of the formula (4) and the compound of the formula (5).
  • Example 2 In the same manner as in Example 2, a light control device was produced.
  • the transmittance of the obtained dimming device was 30% at a voltage of 0 V and 70% at a voltage of 60 V.
  • Td was 0.5% at 0V and 0.7% at 60V.
  • the contrast was 2.5. Transparency was ensured both when voltage was applied and when voltage was not applied.
  • a mixture D was prepared in the same manner as in Example 2, except that the polymerizable compound was replaced with the compound of the formula (6) instead of the compound of the formula (4).
  • the transmittance of the obtained light control device was 30% at a voltage of 0 V and 66% at a voltage of 60 V. Td was 0.4% at a voltage of 0V and 0.7% at a voltage of 60V. The contrast was 2.2. Transparency was ensured both when voltage was applied and when voltage was not applied.
  • a light control device was manufactured. The transmittance of the obtained light control device was 67% at a voltage of 0 V and 2% at a voltage of 60 V. Td was 5% at 0V and 91% at 60V. Since a liquid crystal having a large ⁇ was used, light scattering was large when a voltage was applied, and the light control device had low transparency. In addition, since liquid crystal having a negative ⁇ ⁇ was used, the transmissivity was high when no voltage was applied, and the transmissivity was low when the voltage was applied.
  • the photochromic element was prepared in the same manner as in Example 1 except that the mixture ⁇ at the time of UV irradiation was maintained at 25 ° C to be in a crystalline state instead of maintaining the liquid crystal state at 45 ° C. 8532
  • the transmittance of the obtained light control device was 42% at a voltage of 0 V and 46% at a voltage of 60 V. Td was 50% at 0V and 55% at 60V. The contrast was 1.1. Because the polymer was polymerized in the crystalline state, light scattering was strong. (table 1)
  • a mixture A containing 278 (manufactured by Mitsubishi Chemical Corporation) at 5% based on the total amount of the liquid crystal and the polymerizable compound and benzoin isopropyl ether at 0.60% based on the total amount of the liquid crystal and the polymerizable compound was prepared.
  • two glass substrates (100 mm long, 100 mm wide, 1. lmm thick, surface resistance 30 ⁇ / port) on which the ITO film was formed were prepared.
  • an imide-based aligning agent HL1110 was applied to a solid content of 10 Onm, and was heated and cured at 180 ° C for 30 minutes to perform a lapping treatment.
  • 30 beads /: mm 2 of resin beads having a diameter of 6 manufactured by Sekisui Fine Chemical Co., Ltd.
  • the substrate has four sides (injection portion) on the outer periphery of the substrate. except for.
  • An uncured epoxy resin mixed with 6 mm glass fiber with a width of lmm was printed on the).
  • the two substrates were placed so that the rubbing directions were antiparallel, and the ITO sides were placed inside, respectively.
  • the uncured epoxy resin was heated and cured at 60 ° C for 5 minutes to produce a cell.
  • the mixture A was vacuum-injected into the cell from an inlet provided in the cell. Next, the cell was cooled to 45 ⁇ . While maintaining the liquid crystal state by maintaining the mixture A at 45 ° C, a metal foil tape with a conductive adhesive was attached to the electrode surfaces of both substrates of the cell, and a frequency of 50 Hz was applied to the metal foil tape. Preliminary application was performed by applying a voltage of 45 V for 5 minutes using an AC power supply. With the voltage still applied, a dimming element was fabricated by irradiating ultraviolet light having a main wavelength of 365 nm at an intensity of 3 mW / cm 2 for 10 minutes using a HgXe lamp. The fabricated light modulating device was transparent in appearance, similar to the cell before irradiation.
  • the measurement result of the transmittance of the obtained light control device was 35% at a voltage of 0 V and 67% at a voltage of 60 V. Td was 9% at a voltage of 0 V and 4% at a voltage of 60 V. The contrast was 1.9.
  • the element was transparent both when a voltage was applied and when no voltage was applied. In addition, by performing the polymerization reaction while applying a voltage, it was possible to reduce the scattered transmittance of the light control device, particularly when a voltage was applied.
  • a mixture B was prepared by adding 1% of the resin beads having a diameter of 6 (manufactured by Sekisui Fine Chemical Co., Ltd.) to the mixture A and 1% of the chiral agent CN (cholesteryl nonanoate) to the liquid crystal.
  • Two rolls of a polyethylene terephthalate film (thickness: 125 nm, surface resistance: 300 ⁇ / port) with an ITO film formed on one side were prepared.
  • the two rolls of the film were supplied to a roll maintained at 45 ° C. such that the ITO film sides faced each other.
  • a liquid crystal mixture B maintained at 60 ° C. was injected between the two substrates.
  • the two substrates holding the mixture are PT / JP2003 / 008532
  • the mixture B was laminated or encapsulated between the substrates by passing through the substrate.
  • a terminal was brought into contact between the electrodes in which the mixture B was sealed, and a voltage of 45 V was applied for 5 minutes using an AC power supply with a frequency of 50 Hz to perform preliminary application.
  • Irradiation was performed at a temperature of 45 ° C in a radiation booth at a temperature of 45 ° C with a voltage applied, using a chemical lamp for 10 minutes at an intensity of 3 mWZcm 2 with ultraviolet light having a main wavelength of 352 nm.
  • a metal foil tape with conductive adhesive to the electrode surfaces of both film substrates, apply uncured epoxy resin to the outer periphery of the two films and heat cure at 60 ° C for 5 minutes.
  • a dimming device was manufactured.
  • the transmittance of the obtained light control device was 23% at a voltage of 0 V and 66% at a voltage of 60 V. Td was 10% at 0V and 4% at 60V. The contrast was 2.9. Transparency was ensured both when voltage was applied and when voltage was not applied. By performing the polymerization reaction with the voltage applied, the scattered transmittance of the light control device, particularly when a voltage was applied, could be reduced. Also, by adding a chiral agent, a high-contrast element could be obtained.
  • a mixture C was prepared in the same manner as in Example 8, except that the polymerizable compound was changed to the compound of the formula (5) instead of the compound of the formula (4), to thereby prepare a light control device.
  • the transmittance of the obtained light control device was 30% at a voltage of 0 V and 73% at a voltage of 60 V. Td was 5% at 0V and 3% at 60V. The contrast was 2.4. Transparency was secured both when a voltage was applied and when no voltage was applied. By performing the polymerization reaction with the voltage applied, it was possible to reduce the scattering transmittance of the light control device, particularly when the voltage was applied.
  • a mixture D was prepared in the same manner as in Example 8, except that the polymerizable compound was replaced with the compound of the formula (6) instead of the compound of the formula (4), to thereby prepare a light control device.
  • the transmittance of the obtained dimming device was 29% at a voltage of 0 V and 67% at a voltage of 60 V. Td was 5% at 0V and 4% at 60V. The contrast was 2.3. Transparency was ensured both when voltage was applied and when voltage was not applied JP2003 / 008532
  • a dimming element was prepared in the same manner as in Example 7, except that the mixture A was kept in a crystalline state by maintaining it at 25 ° C instead of maintaining the liquid crystal state at 45 ° C during UV irradiation. did.
  • the transmittance of the obtained light control device was 47% at a voltage of 0 V and 41% at a voltage of 60 V. Td was 51% at 0V and 40% at 60V. The contrast was 1.1. Because the polymer was polymerized in the crystalline state, light scattering was strong.
  • the measurement result of the transmittance of the obtained light control device was 38% at a voltage of 0 V and 66% at a voltage of 60 V.
  • Td was 4% at 0V and 10% at 60V.
  • the contrast was 1.7.
  • Td at a voltage of 60 V was larger than that of the light control device manufactured in Example 7.
  • the transmittance of the obtained light control device was 25% at a voltage of 0 V and 64% at a voltage of 60 V. Td was 5% at 0 V and 12% at 60 V. The contrast was 2.6.
  • the light control device of the present invention is a normal mode light control device. That is, it is possible to reduce the light transmittance and the scattering transmittance when no voltage is applied. For example, when the dimming element of the present invention is used for a glass for an automobile, the light transmittance can be kept in a small state when a voltage is not applied such as when the vehicle is parked, which is useful for crime prevention. In addition, even in the event of troubles such as breakdowns, it is possible to see through the vehicle, ensuring visibility from inside the vehicle.
  • the light modulating element of the present invention has a large light transmittance and a small scattered transmittance when a voltage is applied, and has a small light transmittance and a small scattered transmittance when no voltage is applied. be able to.
  • the light control device of the present invention can be used as a partition for a vehicle window glass (a windshield, a rear glass, a side glass, a sunglass, etc.), a window glass of an industrial vehicle such as a train or an aircraft, a shop window, an office or a house. It is useful for a wide range of applications, such as lighting control curtains, reflectors (for offices, windows, lighting, indirect lighting, etc.), interior materials, optical filters, optical shutters, and displays.
  • the dimming device of the present invention when used for glass for automobiles, it is possible to adjust the amount of light entering the automobile by applying a voltage under sunlight and improve the visibility from the interior of the automobile. Can be secured. Also, at night When the outside of the vehicle is dark, it is possible to improve the visibility from inside the vehicle by applying a voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

A light control device in which when no voltage is applied, the light transmittance is small and the scattering is low, and when a voltage is applied, the light transmittance is large and the scattering is low. The light control device comprises a liquid crystal/polymer composite material containing a dichroic dye, a liquid crystal, and a polymer. When no voltage is applied, the light transmittance is 40% or less, and the scattering transmittance is 30% or less. When a voltage is applied, the light transmittance is 45% or more, and the scattering transmittance is 20% or less.

Description

明 細 書 調光素子およびその製造方法  Description Dimming element and method of manufacturing the same
<技術分野 > <Technical field>
本発明は、 電圧の変化により、 光の透過、 吸収を制御できる調光素子に関す る。 ぐ背景技術 >  The present invention relates to a light control device capable of controlling transmission and absorption of light by changing a voltage. Background technology>
ガラスにおける光の透過率を任意に制御したいという要求が高まっている。 特に、 建築用または自動車用などのガラスにおいては、 快適性や省エネルギー の観点から窓から室内への光の流入を制御できるガラスは有用であり、 またプ ラィバシー保護の観点から透視性が制御可能なガラスが有用である。  There is an increasing demand for arbitrarily controlling the light transmittance of glass. In particular, for architectural or automotive glass, glass that can control the inflow of light from windows into the room is useful from the viewpoint of comfort and energy saving, and the transparency can be controlled from the viewpoint of privacy protection. Glass is useful.
従来、 アクティブな調光素子としては、 エレクト口クロミック素子 (以下、 Conventionally, the active dimming device has been electochromic device
E C素子という。 ) が注目されていた。 し力し、 E C素子は、 酸化還元反応に より光の透過率を制御するため、 応答速度が遅いという問題があった。 It is called EC element. ) Was noticed. However, the EC element has a problem that the response speed is slow because the transmittance of light is controlled by a redox reaction.
そこで E C素子に代わる素子として、 電圧駆動型の液晶調光素子が注目され ている。 液晶調光素子としては、 次の原理に基づく動作が知られている。 すな わち、 電圧非印加時では、 光が液晶分子に反射して散乱し、 乳白色に見える。 一方、 電圧印加時では、 液晶が外部電界の方向に配向する。 このとき液晶の常 光屈折率 (N。 ) と重合体の屈折率 (N p ) がー致することにより光の散乱が 少なくなるため、 素子が透明に見える。 該液晶調光素子は、 電圧非印加時に光 が散乱するので、 故障時などの電圧を印加できないときには、 素子は散乱が強 く不透明になる (例えば、 特許第 3 1 3 4 5 2 2号公報参照。 ) 。 したがって 、 自動車用の調光素子として用いる場合などでは、 故障時に、 車内からの良好 な視界を確保できない問題があった。 ぐ発明の開示 > 本発明は、 前述の問題点を解決しょうとするものであり、 電圧非印加時は光 の透過率が小さくかつ散乱が少なく、 一方、 電圧印加時は光の透過率が大きく かつ散乱が少ない、 調光素子を得ることを目的とする。 Therefore, a voltage-driven liquid crystal light control device is attracting attention as an alternative to the EC device. The operation based on the following principle is known as a liquid crystal light control device. That is, when no voltage is applied, the light is reflected and scattered by the liquid crystal molecules, and appears to be milky white. On the other hand, when a voltage is applied, the liquid crystal is oriented in the direction of the external electric field. At this time, since the ordinary light refractive index (N.) of the liquid crystal and the refractive index (N p ) of the polymer are close to each other, light scattering is reduced, and the element appears transparent. Since light is scattered when no voltage is applied to the liquid crystal light control device, the device becomes strongly opaque when a voltage cannot be applied at the time of failure or the like (for example, see Japanese Patent No. 31344522). See.) Therefore, when used as a dimming element for an automobile, there is a problem that a good view from the inside of the automobile cannot be secured at the time of failure. Invention disclosure> The present invention is intended to solve the above-mentioned problems. When no voltage is applied, light transmittance is small and scattering is small.On the other hand, when voltage is applied, light transmittance is large and scattering is small. An object is to obtain a light control element.
本発明は、 少なくとも一方が透明な一対の電極付き基板間に、 二色性色素と 液晶と重合体とを含む液晶/重合体複合体が挟持され、 電極間に電圧非印加時 の光の透過率が 40%以下かつ散乱透過率 (Td) が 30%以下であり、 電圧 印加時の光の透過率が 45%以上かつ散乱透過率 (Td) が 20%以下であり 、 電圧印加時と電圧非印加時とのコントラストが 1. 2以上であることを特徴 とする調光素子を提供する。  According to the present invention, a liquid crystal / polymer composite containing a dichroic dye, a liquid crystal, and a polymer is sandwiched between a pair of substrates with electrodes, at least one of which is transparent, and light transmission when no voltage is applied between the electrodes. The transmittance is 40% or less, the scattered transmittance (Td) is 30% or less, the light transmittance at the time of applying a voltage is 45% or more, and the scattered transmittance (Td) is 20% or less. Provided is a dimming element characterized by having a contrast with no application of 1.2 or more.
本発明は、 少なくとも一方が透明な一対の電極付き基板間に、 二色性色素と 液晶と重合性化合物とを含む混合物を挟持し、 該混合物が液晶相を示す温度で 重合性化合物を重合させることを特徴とする調光素子の製造方法を提供する。 本発明は、 少なくとも一方が透明な基板である一対の電極付き基板間に、 二 色性色素と液晶と重合性化合物とを含む液晶混合物を挟持し、 該液晶混合物が 液晶相を示す温度で電極間に電圧を印加しながら該重合性化合物を重合させて 、 電圧非印加時の光の透過率が 40%以下かつ散乱透過率 (Td) が 30%以 下であり、 電圧印加時の光の透過率が 45%以上かつ散乱透過率 (Td) が 2 0%以下であり、 かつ電圧印加時と電圧非印加時とのコントラストが 1. 2以 上であることを特徴とする調光素子の製造方法を提供する。  In the present invention, a mixture containing a dichroic dye, a liquid crystal, and a polymerizable compound is sandwiched between a pair of substrates with electrodes, at least one of which is transparent, and the polymerizable compound is polymerized at a temperature at which the mixture shows a liquid crystal phase. A method for manufacturing a light control element is provided. According to the present invention, a liquid crystal mixture containing a dichroic dye, a liquid crystal, and a polymerizable compound is sandwiched between a pair of substrates with electrodes, at least one of which is a transparent substrate, and the electrode is heated at a temperature at which the liquid crystal mixture exhibits a liquid crystal phase. The polymerizable compound is polymerized while applying a voltage in between, so that the light transmittance when no voltage is applied is 40% or less and the scattered transmittance (Td) is 30% or less, and the light The light control element has a transmittance of 45% or more, a scattered transmittance (Td) of 20% or less, and a contrast of 1.2 or more between when a voltage is applied and when no voltage is applied. A manufacturing method is provided.
<図面の簡単な説明 > <Brief description of drawings>
図 1 :本発明の調光素子の一例の模式的断面図である。 FIG. 1 is a schematic cross-sectional view of an example of the light control device of the present invention.
符号の説明  Explanation of reference numerals
1 A、 IB :ガラス基板  1 A, IB: Glass substrate
2 A、 2 B :電極膜  2 A, 2 B: Electrode film
3 A、 3 B :配向膜  3 A, 3 B: alignment film
4 :液晶 Z重合体複合体  4: Liquid crystal Z polymer composite
5 :シール剤 6 A、 6 B:電極端子 5: Sealant 6 A, 6 B: Electrode terminals
<発明を実施するための形態 > <Mode for Carrying Out the Invention>
本発明における液晶 Z重合体複合体とは、 二色性色素と液晶と重合体とを含 む複合体である。 該複合体は、 二色性色素と液晶と重合性化合物とを含む混合 物 (以下、 混合物ともいう。 ) において、 液晶相を示す温度で重合性化合物を 重合させて形成されたものである。  The liquid crystal Z polymer composite in the present invention is a composite containing a dichroic dye, a liquid crystal, and a polymer. The composite is formed by polymerizing a polymerizable compound at a temperature that indicates a liquid crystal phase in a mixture containing a dichroic dye, liquid crystal, and a polymerizable compound (hereinafter, also referred to as a mixture).
本発明の調光素子は、 二色性色素と液晶と重合体との複合体を有する素子で ある。  The light modulating device of the present invention is a device having a composite of a dichroic dye, a liquid crystal and a polymer.
二色性色素とは、 分子の長軸方向と短軸方向とで光吸収性に大きな差がある 色素である。 本発明の調光素子においては、 電圧非印加時に基板に対して水平 配向とすることにより二色性色素の吸光が大きくなり、 光の透過率が小さくな る。 また電圧を加えることにより液晶の配向状態が垂直配向へ変化しそれに添 つて二色性色素が垂直配向するため、 二色性色素の吸光が小さくなり、 素子の 透過率が大きくなる。  A dichroic dye is a dye having a large difference in light absorption between the major axis direction and the minor axis direction of a molecule. In the light modulating device of the present invention, the absorption of the dichroic dye is increased and the light transmittance is reduced by the horizontal alignment with respect to the substrate when no voltage is applied. In addition, when a voltage is applied, the alignment state of the liquid crystal changes to a vertical alignment, and the dichroic dye is vertically aligned with the change, so that the absorption of the dichroic dye decreases and the transmittance of the element increases.
本発明における二色性色素としては、 特に限定されず種々の二色性色素が使 用できるが、 耐光性、 耐久性のある二色性色素、 すなわちアントラキノン系化 合物、 ァゾ系化合物などが好ましく用いられる。 本発明における二色性色素の 含有量は、 液晶と重合体の合計量に対して 0 . 1〜1 2 % (質量基準である。 質量の割合を表す%については以下同じ。 ) が好ましく、 0 . 5〜1 0 %がよ り好ましい。 また、 本発明における二色性色素は、 1種の二色性色素を用いて もよく、 2種以上の二色性色素を用いてもよい。  The dichroic dye in the present invention is not particularly limited, and various dichroic dyes can be used, but dichroic dyes having light fastness and durability, that is, anthraquinone compounds, azo compounds, etc. Is preferably used. The content of the dichroic dye in the present invention is preferably from 0.1 to 12% (based on mass. The% representing the mass ratio is the same hereinafter) based on the total amount of the liquid crystal and the polymer. 0.5 to 10% is more preferred. Further, as the dichroic dye in the present invention, one kind of dichroic dye may be used, or two or more kinds of dichroic dyes may be used.
本発明における液晶は、 1種または 2種以上の液晶化合物からなる組成物で ある。 該液晶化合物は、 誘電率異方性 (Δ ε ) ( Δ ε = ( ε || ) — (ε丄) 、 伹 し、 ε II :分子軸 (長軸) 方向の誘電率、 ε丄:分子軸に垂直方向の誘電率で ある。 ) が負の化合物、 正の化合物または誘電率異方性がない化合物でもよい 。 なかでも、 本発明における液晶全体としては、 誘電率異方性が正であること が好ましい。 液晶の誘電率異方性が正であると、 液晶が水平配向をしている調 3 008532 The liquid crystal in the present invention is a composition comprising one or more liquid crystal compounds. The liquid crystal compound has a dielectric anisotropy (Δε) (Δε = (ε ||) — (ε 丄), where IIII is a dielectric constant in a molecular axis (long axis) direction, and ε 丄 is a molecule. The dielectric constant in the direction perpendicular to the axis.) May be a negative compound, a positive compound, or a compound having no dielectric anisotropy. In particular, it is preferable that the entire liquid crystal of the present invention has a positive dielectric anisotropy. If the dielectric anisotropy of the liquid crystal is positive, the liquid crystal is aligned horizontally. 3 008532
4 Four
光素子において、 電圧印加時には液晶と二色性色素が共に垂直配向するため光 の透過率は大きくなる。 また、 本発明における液晶の誘電率異方性は 1以上が 好ましく、 2〜5 0が特に好ましい。 誘電率異方性が 1以上であると、 低い電 圧で調光素子を駆動できるため好ましい。 In an optical element, when a voltage is applied, both the liquid crystal and the dichroic dye are vertically aligned, so that the light transmittance increases. In addition, the dielectric anisotropy of the liquid crystal in the present invention is preferably 1 or more, and particularly preferably 2 to 50. It is preferable that the dielectric anisotropy is 1 or more because the light control device can be driven at a low voltage.
液晶化合物としては、 特に限定されないが、 誘電率異方性が正の液晶化合物 とするためには、 主鎖に対してシァノ基、 フッ素原子などの極性基が分子長軸 方向に結合した化合物が好ましい。  The liquid crystal compound is not particularly limited, but in order to obtain a liquid crystal compound having a positive dielectric anisotropy, a compound in which a polar group such as a cyano group or a fluorine atom is bonded to the main chain in the molecular long axis direction. preferable.
また、 本発明における液晶の屈折率異方性 (Δ η ) (Δ η - η ε 一 η。 、 但 し、 n e :異常光屈折率、 n。 :常光屈折率である。 ) は、 0 . 2以下が好ま しく、 0 . 1 5以下がより好ましい。 屈折率異方性が 0 . 2以下であると電圧 印加時に、 調光素子の光の散乱が少なくなるため好ましい。 屈折率異方性を小 さくするには、 飽和炭素環を有する液晶化合物を少なくとも 1種含む液晶を用 いるのが好ましい。 飽和炭素環とは、 炭素原子と水素原子とからなる飽和の環 状化合物であり、 シクロへキサン環が好ましい。 Further, the refractive index anisotropy of the liquid crystal in the present invention (Δ η) (Δ η - η ε one eta, and however, n e:... Extraordinary index, n: an ordinary refractive index) is 0 2 or less is preferred, and 0.15 or less is more preferred. When the refractive index anisotropy is 0.2 or less, scattering of light of the light control element upon application of a voltage is reduced, which is preferable. In order to reduce the refractive index anisotropy, it is preferable to use a liquid crystal containing at least one liquid crystal compound having a saturated carbon ring. The saturated carbocycle is a saturated cyclic compound composed of a carbon atom and a hydrogen atom, and is preferably a cyclohexane ring.
本発明における液晶の量は、 液晶と重合性化合物の合計量に対して 5 0〜9 8 %であるのが好ましく、 5 5〜9 5 %がより好ましい。 5 0 %以上であると 、 調光素子を低い電圧で駆動できるため好ましい。 9 8 %以下であると、 電圧 印加、 非印加の繰り返しに対する耐久性や、 機械的な外力に対する耐久性が高 くなり、 さらに高温での信頼性が高くなるため好ましい。  The amount of the liquid crystal in the present invention is preferably 50 to 98%, more preferably 55 to 95%, based on the total amount of the liquid crystal and the polymerizable compound. When the content is 50% or more, the light control device can be driven at a low voltage, which is preferable. When the content is 98% or less, the durability against repeated voltage application and non-application of voltage and the durability against mechanical external force are increased, and the reliability at high temperatures is further improved.
本発明における液晶は、 カイラル剤を含むことによりカイラルネマチック液 晶とすることが好ましい。 本発明におけるカイラル剤としては、 既知のものを 使用できる。 カイラル剤の量は、 液晶とカイラル剤の合計量に対して 0 . 1〜 3 0 %であるのが好ましく、 0 . 5〜2 0 %がより好ましい。 0 . 1 %以上で あるとカイラル剤のヘリカルピツチを小さくでき、 二色性色素の向きを回転さ せて効率的に利用することができるため好ましい。 また 3 0 %以下であると、 液晶温度範囲への影響を少なくできるため好ましい。 本発明におけるカイラル 剤は、 1種のカイラル剤を用いてもよく、 2種以上のカイラル剤を用いてもよ い。 2003/008532 The liquid crystal in the present invention preferably contains a chiral agent to be a chiral nematic liquid crystal. Known chiral agents can be used in the present invention. The amount of the chiral agent is preferably from 0.1 to 30%, more preferably from 0.5 to 20%, based on the total amount of the liquid crystal and the chiral agent. When the content is 0.1% or more, the helical pitch of the chiral agent can be reduced, and the direction of the dichroic dye can be rotated for efficient use. Further, it is preferable that the content be 30% or less, since the influence on the liquid crystal temperature range can be reduced. As the chiral agent in the present invention, one kind of chiral agent may be used, or two or more kinds of chiral agents may be used. 2003/008532
5 Five
本発明における重合体とは、 重合性官能基を有する化合物すなわち重合性化 合物の重合性官能基の一部または全部が反応することにより該重合性化合物が 2個以上、 好ましくは 5以上重合したものをいう。 また、 本発明における液晶 /重合体複合体には、 未反応の重合性化合物が含まれていてもよい。  The polymer in the present invention refers to a compound having a polymerizable functional group, that is, two or more, preferably five or more, of the polymerizable compounds are reacted by reacting a part or all of the polymerizable functional groups of the polymerizable compound. Means what you do. Further, the liquid crystal / polymer composite of the present invention may contain an unreacted polymerizable compound.
本発明における重合体は、 重合性化合物を重合させたものが好ましい。 重合 性官能基としては、 ァクリロイル基、 メタクリロイル基、 ビニル基、 ァリル基 、 エポキシ基などが挙げられ、 反応性が高いことから、 ァクリロイル基、 メタ クリロイル基が好ましい。  The polymer in the present invention is preferably a polymer obtained by polymerizing a polymerizable compound. Examples of the polymerizable functional group include an acryloyl group, a methacryloyl group, a vinyl group, an acryl group, and an epoxy group. An acryloyl group and a methacryloyl group are preferable because of high reactivity.
重合性化合物は、 メソゲン構造を有する化合物であるとより好ましい。 メソ ゲン構造を有すると、 液晶と重合性化合物との相溶性が高くなり、 混合物の液 晶温度範囲が広くなるため好ましい。 メソゲン構造としては、 2価の環基を 2 個以上有する構造が好ましい。 より好ましくは、 2〜 5個有する構造である。 該環基は、 それぞれ直接結合していてもよく、 一 O—、 一 O C O—、 - C O O ―、 — C H2 —、 - C H2 C H2 —などの基を介して結合していてもよい。 2 価の環基としては、 1, 4一フエ二レン基、 トランス一 1, 4ーシクロへキシ レン基、 が好ましい。 該環基の水素原子は、 炭素数 1または 2のアルキル基、 炭素数 1または 2のアルコキシ基、 シァノ基、 ハロゲン原子で置換されていて もよい。 また、 メソゲン構造としては、 式 (1 ) 、 (2 ) で表される構造が好 ましい。 More preferably, the polymerizable compound is a compound having a mesogenic structure. Having a mesogenic structure is preferable because the compatibility between the liquid crystal and the polymerizable compound is increased and the liquid crystal temperature range of the mixture is widened. As the mesogen structure, a structure having two or more divalent ring groups is preferable. More preferably, the structure has 2 to 5 pieces. The ring groups may be directly bonded to each other, or may be bonded via groups such as 1 O—, 1 OCO—, —COO—, —CH 2 —, and —CH 2 CH 2 —. As the divalent ring group, a 1,4-phenylene group and a trans-1,4-cyclohexylene group are preferable. The hydrogen atom of the ring group may be substituted with an alkyl group having 1 or 2 carbon atoms, an alkoxy group having 1 or 2 carbon atoms, a cyano group, or a halogen atom. Further, as the mesogen structure, the structures represented by the formulas (1) and (2) are preferable.
Figure imgf000007_0001
a 1 〜a i 2 :それぞれ独立に、 水素原子、 炭素数 1〜6のアルキル基、 炭 素数 1または 2のアルコキシ基、 シァノ基、 またはハロゲン原子。 2003/008532
Figure imgf000007_0001
a 1 to ai 2 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 or 2 carbon atoms, a cyano group, or a halogen atom. 2003/008532
6 6
式 (1) の 3個の 1, 4一フエ二レン基の 1個以上は、 一 1, 4- シクロへキシレン基に置換されていてもよい。  One or more of the three 1,4-phenylene groups of formula (1) may be substituted with a 1,1,4-cyclohexylene group.
Figure imgf000008_0001
a1 3〜a2 4 :それぞれ独立に、 水素原子、 炭素数 1〜 6のアルキル基、 炭素数 1または 2のアルコキシ基、 シァノ基、 またはハロゲン原子。
Figure imgf000008_0001
a 1 3 ~a 2 4: each independently, a hydrogen atom, an alkyl group, having 1 or 2 alkoxy group having a carbon of 1 to 6 carbon atoms, Shiano group or a halogen atom.
式 (2) の 3個の 1, 4—フエ二レン基の 1個以上は、 トランス— 1, 4一 シクロへキシレン基に置換されていてもよい。  One or more of the three 1,4-phenylene groups in Formula (2) may be substituted with a trans-1,4-cyclohexylene group.
本発明における重合性化合物は、 重合性官能基を 1個有する化合物であって も、 2個以上の重合性官能基を有する化合物であってもよい。 2個以上の重合 性官能基を有する場合、 同じ重合性官能基であっても異なる重合性官能基であ つてもよい。 本発明の重合性化合物は、 2個または 3個以上の重合性官能基を 有する重合性化合物であることが好ましい。  The polymerizable compound in the present invention may be a compound having one polymerizable functional group or a compound having two or more polymerizable functional groups. When it has two or more polymerizable functional groups, they may be the same or different polymerizable functional groups. The polymerizable compound of the present invention is preferably a polymerizable compound having two or more polymerizable functional groups.
重合性化合物としては、 以下の式 (3) の化合物が好ましく挙げられる。 A1 一 (OR1 ) n -O-Z-O- (R2 O) m -A2 · · · (3) A1 , A2 :それぞれ独立に、 ァクリロイル基、 メ夕クリロイル基、 グリシジ ル基、 またはァリル基 As the polymerizable compound, a compound represented by the following formula (3) is preferably exemplified. A 1 (OR 1 ) n -OZO- (R 2 O) m -A 2 · · · (3) A 1 , A 2 : each independently represents an acryloyl group, a methacryloyl group, a glycidyl group, or an aryl group Base
R1 、 R2 :それぞれ独立に、 水素原子の 1個以上がアルキル基に置換されて いてもよい、 炭素数 2〜18のアルキレン基 R 1 and R 2 each independently represent an alkylene group having 2 to 18 carbon atoms in which one or more of the hydrogen atoms may be substituted with an alkyl group.
Z :メソゲン構造からなる 2価の基  Z: divalent group having a mesogenic structure
n、 m:それぞれ独立に 1〜 10の整数。 n and m: each independently an integer of 1 to 10.
本発明における重合体は、 1種類の重合性化合物を重合したものでもよく、 2種以上の重合性化合物を重合したものでもよい。 また、 本発明における重合 体は、 メソゲン構造を有する重合性化合物のみを重合させたもの、 メソゲン構 造を有する重合性化合物とメソゲン構造を有さない重合性化合物とを重合させ たものが好ましい。 The polymer in the present invention may be one obtained by polymerizing one kind of polymerizable compound, or one obtained by polymerizing two or more kinds of polymerizable compounds. Further, the polymer in the present invention is obtained by polymerizing only a polymerizable compound having a mesogenic structure, It is preferable to polymerize a polymerizable compound having a structure and a polymerizable compound having no mesogen structure.
重合性化合物の量は、 液晶と重合性化合物との合計量に対して 2〜 5 0 %で あることが好ましく、 5〜4 5 %であることがより好ましい。 2 %以上である と、 調光素子の、 電圧印加、 非印加の繰り返しに対する耐久性や、 機械的な外 力に対する耐久性が高くなるため好ましい。 5 0 %以下であると、 素子の駆動 電圧を低くでき、 さらに、 液晶と重合性化合物との混合物の液晶相を示す温度 範囲が広くなるため好ましい。 液晶相を示す温度範囲が広くなると、 該化合物 を重合させるときの温度範囲を広くとれるため好ましい。  The amount of the polymerizable compound is preferably 2 to 50%, more preferably 5 to 45%, based on the total amount of the liquid crystal and the polymerizable compound. A content of 2% or more is preferable because the durability of the light control element to repeated application and non-application of voltage and the durability to mechanical external force are increased. When the content is 50% or less, the driving voltage of the device can be reduced, and the temperature range in which the mixture of the liquid crystal and the polymerizable compound exhibits the liquid crystal phase is widened, which is preferable. It is preferable that the temperature range in which the liquid crystal phase is displayed is widened because the temperature range when polymerizing the compound can be widened.
本発明における液晶と重合性化合物との混合物は、 重合性化合物の重合のた めの重合開始剤を含有していてもよい。 該重合開始剤としては、 光重合をさせ る場合、 ァセトフエノン類、 ベンゾフエノン類、 アルキルァミノべンゾフエノ ン類、 ベンジル類、 ベンゾイン類、 ベンゾインエーテル類、 ベンジルジメチル ケ夕一ル類、 ベンゾィルベンゾエート類、 α—ァシロキシムエステル類などの ァリールケトン系光重合開始剤、 スルフイド類、 チォキサントン類などの含硫 黄系光重合開始剤、 ァシルジァリールホスフィンォキシドなどのァシルホスフ ィンォキシド系光重合開始剤などが挙げられる。 光重合開始剤は 1種を単独で 用いてもよく、 2種以上を併用してもよい。 また、 本発明における混合物は、 光重合開始剤を含む場合、 アミン類などの光増感剤をさらに含ませても使用で さる。  The mixture of the liquid crystal and the polymerizable compound in the invention may contain a polymerization initiator for polymerizing the polymerizable compound. As the polymerization initiator, when photopolymerization is carried out, acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers, benzyldimethyl ketones, benzoylbenzoates, aryl ketone photopolymerization initiators such as α-acyroxime esters, sulfur-containing yellow photopolymerization initiators such as sulfides and thioxanthones, and acylphosphinoxide photopolymerization initiators such as acyldiarylphosphinoxide Is mentioned. One photopolymerization initiator may be used alone, or two or more photopolymerization initiators may be used in combination. When the mixture in the present invention contains a photopolymerization initiator, it can be used even if it further contains a photosensitizer such as an amine.
本発明における光重合開始剤は、 3 0 0〜4 0 0 n mの波長の光を吸収する ものが好ましい。 具体的な光重合開始剤としては、 例えば以下のような化合物 が挙げられる。  The photopolymerization initiator used in the present invention preferably absorbs light having a wavelength of from 300 to 400 nm. Specific examples of the photopolymerization initiator include the following compounds.
4ーフエノキシジクロロアセトフエノン、 4一 t—プチルージクロロアセト フエノン、 4ー tーブチルートリクロロアセトフエノン、 ジェトキシァセトフ ェノン、 2—ヒドロキシー 2—メチルー 1一フエニルプロパン一 1一オン、 1 ― ( 4一イソプロピルフエニル) 一 2—ヒドロキシー 2 _メチルプロパン一 1 一オン、 1一 (4—ドデシルフェニル) 一 2—メチルプロパン一 1—オン、 1 - { 4 - ( 2—ヒドロキシエトキシ) フエ二ル} 2—ヒドロキシー 2—メチ ループロパン一 1一オン、 1ーヒ ェニルケトン、 2 ーメチルー 1一 { 4一 (メチルチオ) フエ二ル} 2一モルホリノプロパン一 1—オン。 4-phenoxydichloroacetophenone, 4-t-butyldichloroacetophenone, 4-t-butyl-trichloroacetophenone, ethoxyacetophenone, 2-hydroxy-2-methyl-11-phenylpropane-1 1-one, 1- (4-isopropylphenyl) 1-2-hydroxy-2-methylpropane 1-one, 1- (4-dodecylphenyl) 1-2-methylpropane-1-one, 1 -{4- (2-Hydroxyethoxy) phenyl} 2-Hydroxy-2-methylolpropane 1-one, 1-phenylketone, 2-methyl-111 {4- (methylthio) phenyl} 2 Morpholinopropane One 1—on.
ベンジル、 ベンゾイン、 ベンゾインメチルエーテル、 ベンゾインェチルエー ンジルジメチルケタール、 ベンゾフエノン、 ベンゾィル安息香酸、 ベンゾィル 安息香酸メチル、 4—フエニルベンゾフエノン、 ヒドロキシベンゾフエノン、 アクリル化べンゾフエノン、 3 , 3 ' —ジメチルー 4—メトキシベンゾフエノ ン、 3, 3 ' , 4, 4 ' ーテトラキス ( t—ブチルパーォキシカルボニル) ベ ンゾフエノン、 9 , 1 0—フエナントレンキノン、 カンファーキノン、 ジベン ゾスベロン、 2ーェチルアントラキノン、 4, , 4 " ージェチルイソフタロフ ェノン、 α—ァシロキシムエステル、 メチルフエニルダリオキシレート。  Benzyl, benzoin, benzoin methyl ether, benzoinethylenzyl dimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 3, 3 ' —Dimethyl-4-methoxybenzophenone, 3,3 ′, 4,4′-tetrakis (t-butylperoxycarbonyl) benzophenone, 9,10-phenanthrenequinone, camphorquinone, dibenzozoberonone, 2- Ethyl anthraquinone, 4,, 4 "-Jetyl isophthalophenone, α-asiloxime ester, methylphenyldalioxylate.
4一べンゾィルー 4 ' —メチルジフエニルスルフイド、 チォキサントン、 2 一クロ口チォキサントン、 2—メチルチオキサントン、 2 , 4一ジメチルチオ キサントン、 イソプロピルチォキサントン、 2 , 4—ジクロロチォキサントン 、 2 , 4一ジェチルチオキサントン、 2, 4ージイソプロピルチオキサントン 、 2 , 4 , 6—トリメチルベンゾィルジフエニルホスフィンォキシド。  4 Benzenyl 4'-methyldiphenyl sulfide, thioxanthone, 2 monoclox thioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4,1 Getylthioxanthone, 2,4-diisopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
熱重合をさせる場合、 重合部位の種類に応じて、 パーオキサイド系などの重 合開始剤、 アミン系、 酸無水物系などの硬化剤を用いることができる。 本発明 における混合物は、 熱重合をさせる場合、 必要に応じてさらにアミン類などの 硬化助剤を含んでいてもよい。  In the case of performing thermal polymerization, a polymerization initiator such as a peroxide or a curing agent such as an amine or an acid anhydride can be used depending on the type of the polymerization site. When heat polymerization is performed, the mixture in the present invention may further contain a curing aid such as an amine, if necessary.
該重合開始剤の含有量は、 重合性化合物に対して 2 0 %以下が好ましく、 重 合後の重合体に高い比抵抗が要求される場合には、 0 . 0 1〜1 0 %がより好 ましい。  The content of the polymerization initiator is preferably 20% or less with respect to the polymerizable compound, and when a high specific resistance is required for the polymer after polymerization, 0.01 to 10% is more preferable. It is good.
本発明における混合物は、 必要に応じて、 酸化防止剤、 界面活性剤、 光安定 化剤、 非二色性の色素、 顔料、 連鎖移動剤、 架橋剤、 消泡剤などを、 調光素子 の調光機能を損なわない範囲で含むことができる。 本発明の調光素子に用いる基板の材質は、 ガラスまたは樹脂が好ましい。 樹 脂としては、 ポリエチレンテレフ夕レート、 ポリブチレンテレフ夕レート、 ポ リエチレンナフタレート、 ポリカーボネート、 ポリアリレート、 ポリメタクリ ル酸メチル、 ポリエーテルイミド、 セルローストリアセテート系樹脂などの透 明な樹脂が好ましい。 少なくとも一方の基板は透明な基板であり、 この透明基 板はこれらの材質からなることが好ましい。 2枚の基板のうち片方はアルミ二 ゥムゃ誘電体多層膜が形成された基板などの反射板であつてもよい。 The mixture in the present invention may contain, if necessary, an antioxidant, a surfactant, a light stabilizer, a non-dichroic dye, a pigment, a chain transfer agent, a cross-linking agent, a defoaming agent, and the like. It can be included as long as the light control function is not impaired. The material of the substrate used for the light control device of the present invention is preferably glass or resin. As the resin, a transparent resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyarylate, polymethyl methacrylate, polyetherimide, or cellulose triacetate resin is preferable. At least one of the substrates is a transparent substrate, and the transparent substrate is preferably made of these materials. One of the two substrates may be a reflector such as a substrate on which an aluminum-dielectric multilayer film is formed.
本発明における基板には、 透明電極を積層させるのが好ましい。 透明電極と しては、 I T O膜や S n 02 膜が好ましい。 また、 透明電極を積層させる基板 は、 透明基板であることが好ましい。 It is preferable that a transparent electrode is laminated on the substrate in the present invention. Is a transparent electrode, ITO films and S n 0 2 film is preferable. Further, the substrate on which the transparent electrodes are laminated is preferably a transparent substrate.
本発明の調光素子は、 少なくとも一方が透明な基板である一対の電極付き基 板を有する。 少なくとも一方の基板は、 透明な基板に透明な電極を積層させた ものである。  The dimming device of the present invention has a pair of substrates with electrodes, at least one of which is a transparent substrate. At least one of the substrates is formed by laminating a transparent electrode on a transparent substrate.
本発明における電極付き基板の液晶 Z重合体の複合体と接する面には、 必ず しも必要ではないが液晶が水平配向するための処理がなされていることが好ま しい。 該処理方法としては、 液晶を水平に配向させるものであればとくに限定 されず、 既知の方法が挙げられる。 例えば、 基板表面を直接研磨する方法、 基 板表面に樹脂の薄膜を設けた後ラビングする方法、 配向剤を基板表面に設ける 方法などが挙げられる。  The surface of the substrate with electrodes according to the present invention, which is in contact with the liquid crystal Z-polymer composite, is preferably, but not necessarily, treated for horizontal alignment of the liquid crystal. The treatment method is not particularly limited as long as the liquid crystal is horizontally oriented, and includes a known method. For example, a method of directly polishing the surface of the substrate, a method of rubbing after providing a resin thin film on the surface of the substrate, a method of providing an alignment agent on the surface of the substrate, and the like are exemplified.
本発明における、 2枚の基板の間隔は、 スぺーサ一の大きさによって適宜選 択できる。 該基板間隔は、 2〜5 0 mが好ましく、 3〜3 0 mがより好ま しい。 基板間隔が 2 m以上であると、 コントラストが高くなるため好ましい 。 また、 基板間隔が 5 0 m以下であると、 硬化反応が進みやすいため好まし い。  In the present invention, the distance between the two substrates can be appropriately selected depending on the size of the spacer. The distance between the substrates is preferably from 2 to 50 m, and more preferably from 3 to 30 m. It is preferable that the distance between the substrates is 2 m or more, since the contrast is increased. Further, it is preferable that the distance between the substrates is 50 m or less, since the curing reaction proceeds easily.
本発明における重合反応としては、 一般的に用いられる、 活性エネルギー線 重合反応、 熱重合反応などが挙げられる。 活性エネルギー線重合反応の場合、 光重合反応が好ましく、 紫外線照射による重合反応が特に好ましい。 使用する 活性エネルギー線としては、 特に限定されず、 紫外線、 電子線、 他の活性エネ 2003/008532 Examples of the polymerization reaction in the present invention include a commonly used active energy ray polymerization reaction, thermal polymerization reaction and the like. In the case of the active energy ray polymerization reaction, a photopolymerization reaction is preferable, and a polymerization reaction by irradiation with ultraviolet rays is particularly preferable. The active energy rays used are not particularly limited, and may include ultraviolet rays, electron beams, and other active energy rays. 2003/008532
10 Ten
ルギ一線が挙げられるが、 紫外線が好ましい。 紫外線源としては、 キセノンラ ンプ、 パルスキセノンランプ、 低圧水銀灯、 高圧水銀灯、 超高圧水銀灯、 水銀 一キセノン (H g X e ) ランプ、 ケミカルランプ、 メタルハライドランプ、 力 一ボンアーク灯、 タングステンランプなどが挙げられる。 Although a straight line is mentioned, ultraviolet rays are preferred. Examples of ultraviolet light sources include xenon lamps, pulsed xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, mercury-xenon (HgXe) lamps, chemical lamps, metal halide lamps, power-bon lamps, and tungsten lamps. .
本発明における重合反応は、 光重合反応の場合、 光の照射強度、 照射温度、 照射時間の影響を大きく受ける。 特に照射温度の影響が大きい。 光の照射強度 、 照射温度、 照射時間は、 用いる二色性色素、 液晶および重合性化合物などの 種類、. また各々の配合比などによって、 適宜選択されうる。 重合反応は、 混合 物を予め均質な溶液にした状態で基板に積層し、 液晶が液晶相を示す温度で行 うのが好ましい。 該方法で重合させることにより、 本発明における液晶 Z重合 体複合体は、 液晶が基板に対して均一に配向するので好ましい。  In the case of a photopolymerization reaction, the polymerization reaction in the present invention is greatly affected by light irradiation intensity, irradiation temperature, and irradiation time. Particularly, the influence of the irradiation temperature is great. The light irradiation intensity, irradiation temperature, and irradiation time can be appropriately selected depending on the type of dichroic dye, liquid crystal, and polymerizable compound used, and the mixing ratio of each. The polymerization reaction is preferably carried out at a temperature at which the liquid crystal exhibits a liquid crystal phase by laminating the mixture on a substrate in a state where the mixture has been made into a homogeneous solution in advance. By polymerizing by this method, the liquid crystal Z polymer composite of the present invention is preferable because the liquid crystal is uniformly aligned with the substrate.
本発明における重合反応は、 電極間に電圧を印加した状態で行ってもよい。 誘電率異方性が正の液晶を用いた場合、 電圧を印加すると液晶は基板に対して 垂直に配向し、 重合性化合物も液晶にそって基板に対して垂直に配向する。 そ の状態で重合反応が進行すると、 生成する重合体は垂直配向を維持した硬化物 となる。 したがって、 製造された調光素子の電圧印加時の散乱透過率を、 著し く少なくすることができる。  The polymerization reaction in the present invention may be performed in a state where a voltage is applied between the electrodes. When a liquid crystal having a positive dielectric anisotropy is used, when a voltage is applied, the liquid crystal is oriented perpendicular to the substrate, and the polymerizable compound is oriented perpendicular to the substrate along the liquid crystal. When the polymerization reaction proceeds in that state, the resulting polymer becomes a cured product maintaining the vertical orientation. Therefore, the scattered transmittance of the manufactured light control device when a voltage is applied can be significantly reduced.
本発明における重合時の印加電圧は、 0 . 5 V以上 3 0 0 V以下が好ましく 、 1 V以上 1 0 0 V以下がさらに好ましい。 0 . 5 V以上だと重合性化合物が 垂直配向できるため好ましく、 3 0 0 V以下だと基板間隔が不均一な場合、 該 間隔が狭い部分でショ一トすることが少なくなるため好ましい。 電極間に印加 する電圧の電源特性としては、 直流でも交流でもよいが交流の方が好ましい。 交流の場合の周波数は特に制限はないが、 2 0 H z以上 1 0 0 0 H z以下が好 ましい。  The applied voltage during the polymerization in the present invention is preferably 0.5 V or more and 300 V or less, more preferably 1 V or more and 100 V or less. When the voltage is 0.5 V or more, the polymerizable compound can be vertically aligned, and when the voltage is 300 V or less, when the substrate spacing is non-uniform, short-circuiting at a portion where the spacing is narrow is reduced, which is preferable. The power supply characteristics of the voltage applied between the electrodes may be DC or AC, but AC is preferred. The frequency of the alternating current is not particularly limited, but is preferably from 20 Hz to 100 Hz.
本発明の製造方法では、 電圧を予備印加してもよい。 予備印加とは、 重合反 応の前にあらかじめ電圧を印加することである。 予備印加電圧は、 基板間隔、 印加時の温度などにより異なるが、 0 . 5 V以上 3 0 0 V以下が好ましく、 1 V以上 1 0 0 V以下がさらに好ましい。 また予備印加時間も、 基板間隔、 印加 時の温度などにより異なるが、 3 0秒以上 1時間以下が好ましい。 3 0秒以上 であるとほとんどの重合性化合物が基板に対して垂直配向できるため好ましい 。 予備印加時間は、 より長い方が好ましいが、 上限は 1時間以下であることが 好ましい。 予備印加工程を設けることは、 重合性化合物を完全にかつ均一に垂 直配向させることができ、 結果として電圧印加時の散乱透過率の少ない調光素 子が製造できるため好ましい。 In the manufacturing method of the present invention, a voltage may be preliminarily applied. Preliminary application means applying a voltage in advance before the polymerization reaction. The pre-applied voltage varies depending on the substrate interval, the temperature at the time of application, and the like, but is preferably 0.5 V or more and 300 V or less, more preferably 1 V or more and 100 V or less. The pre-applying time also depends on the substrate spacing, Although it varies depending on the temperature at the time, it is preferably 30 seconds or more and 1 hour or less. When the time is 30 seconds or longer, most of the polymerizable compound can be vertically aligned with respect to the substrate, which is preferable. The preliminary application time is preferably longer, but the upper limit is preferably 1 hour or less. The provision of the pre-application step is preferable because the polymerizable compound can be completely and uniformly vertically aligned, and as a result, a dimming element having a small scattering transmittance upon application of a voltage can be produced.
本発明の調光素子の作製方法は、 注入むらや挟持むらが発生せず、 不純物の 混入がなくかつ均一の厚さで積層できる方法であれば特に限定されないが、 例 えば次のような方法が挙げられる。 基板がガラス製である場合、 2枚の電極付 きのガラス基板を用意し、 基板の電極側に配向処理を施す。 一方の基板の電極 側に、 直径 2〜 5 0 / mの樹脂ビーズなどのスぺーサ一を散布し該基板を、 そ れぞれ電極側が向かい合うようにして重ねる。 該重ねた基板の外周部をェポキ シ樹脂などのシール剤で封止してセルを作製する。 次に、 本発明における混合 物をセルに封入した後、 重合性化合物を重合させる。 混合物を封入する方法と しては、 セル作製の際にあらかじめ基板外周部のシール剤の 1ケ所に注入口を 設けて、 該注入口から混合物を真空注入する方法、 該シール剤の 2ケ所以上に 切り抜き部を設け、 該切り抜き部のうちの 1ケ所以上を混合物に浸漬し、 浸漬 していない切り抜き部より吸引する方法が好ましく挙げられる。  The method for manufacturing the light modulating element of the present invention is not particularly limited as long as it does not cause uneven injection or pinching, does not mix impurities, and can be laminated with a uniform thickness. Is mentioned. If the substrate is made of glass, prepare a glass substrate with two electrodes and perform orientation treatment on the electrode side of the substrate. A spacer such as a resin bead having a diameter of 2 to 50 / m is sprayed on the electrode side of one of the substrates, and the substrates are stacked so that the electrode sides face each other. The outer periphery of the stacked substrates is sealed with a sealant such as epoxy resin to produce a cell. Next, after enclosing the mixture in the present invention in a cell, the polymerizable compound is polymerized. As a method for enclosing the mixture, an injection port is provided in advance at one location of the sealant on the outer periphery of the substrate at the time of cell production, and the mixture is vacuum-injected from the injection port, and at least two locations of the sealant. Preferably, there is provided a method in which a cutout portion is provided, at least one of the cutout portions is immersed in the mixture, and suction is performed from the cutout portion not immersed.
基板が樹脂製である場合の調光素子の作製方法は、 電極側が向かい合った配 向剤処理がされた 2枚の電極付きの樹脂フィルム基板を 2本のロールで挟むと 同時に、 該基板間にスぺーサ一が均一に分散した混合物を注入する。 該ロール により、 均一な基板間隔を保持したまま連続的に重合性化合物を重合させて作 製する方法や、 ガラス製基板と同様の方法で作製する方法が好ましく挙げられ る。  When the substrate is made of resin, the method of fabricating the dimming element is as follows. A resin film substrate with two electrodes, which has been treated with a directing agent facing the electrode side, is sandwiched between two rolls, and at the same time, between the substrates. The mixture in which the spacer is uniformly dispersed is injected. Preferred examples include a method in which the polymerizable compound is continuously polymerized while maintaining a uniform substrate interval using the roll, and a method in which the polymerizable compound is manufactured in the same manner as a glass substrate.
本発明の調光素子の別の作製方法としては、 基板がガラスである場合、 2枚 の電極付きのガラス基板を用意し、 基板の電極側に必要に応じて配向処理を施 す。 一方の基板の電極側に、 直径 2〜5 0 A mの樹脂ビーズなどのスぺーサ一 を散布し該基板を、 それぞれ電極側が向かい合うようにして重ねる。 該重ねた 基板の外周部をエポキシ樹脂などのシール剤で封止してセルを作製する。 該セ ルにおいて、 両電極面に導電性粘着剤付き金属箔テープを貼り付け、 電極を取 り出す。 次に、 本発明における液晶混合物をセルに封入した後、 電極間に電圧 を印加し、 電圧を印加した状態で重合性化合物を重合させる。 液晶混合物を封 入する方法としては、 セル作製の際にあらかじめ基板外周部のシール剤の 1ケ 所に注入口を設けて、 該注入口から液晶混合物を真空注入する方法、 該シール 剤の 2ケ所以上に切り抜き部を設け、 該切り抜き部のうちの 1ケ所以上を液晶 混合物に浸漬し、 浸漬していない切り抜き部より吸引する方法が好ましく挙げ られる。 As another manufacturing method of the light control device of the present invention, when the substrate is glass, a glass substrate with two electrodes is prepared, and the electrode side of the substrate is subjected to an alignment treatment as necessary. A spacer such as a resin bead having a diameter of 2 to 50 Am is sprayed on the electrode side of one of the substrates, and the substrates are stacked so that the electrode sides face each other. Said layered The outer periphery of the substrate is sealed with a sealant such as an epoxy resin to produce a cell. In the cell, a metal foil tape with a conductive adhesive is attached to both electrode surfaces, and the electrodes are taken out. Next, after enclosing the liquid crystal mixture in the present invention in a cell, a voltage is applied between the electrodes, and the polymerizable compound is polymerized while the voltage is applied. As a method for sealing the liquid crystal mixture, an injection port is provided in advance at one place of a sealant on the outer peripheral portion of the substrate at the time of cell production, and the liquid crystal mixture is vacuum-injected from the injection port. A preferred method is to provide a cutout at two or more locations, immerse one or more of the cutouts in the liquid crystal mixture, and suction from the non-immersed cutout.
本発明で行う電極面からの電極取り出し方法は、 特に限定されず、 公知の方 法を用いることができる。 例えば T A Bや導線を電極面に接着してもよく、 導 電性粘着剤付き金属箔テープを電極面に貼り付けてもよく、 導線を電極面にハ ンダ付けしてもよい。  The method for taking out the electrode from the electrode surface in the present invention is not particularly limited, and a known method can be used. For example, TAB or a conductive wire may be bonded to the electrode surface, a metal foil tape with a conductive adhesive may be attached to the electrode surface, or the conductive wire may be soldered to the electrode surface.
基板が樹脂製である場合の調光素子の作製方法の一例を次に挙げる。 電極側 が向かい合つた、 必要に応じて配向処理がされた 2枚の電極付きの樹脂フィル ム基板を用意する。 該樹脂フィルム基板を 2本のロールで挟むと同時に、 該基 板間にスぺーサ一が均一に分散した液晶混合物を注入する。 該ロールにより、 均一な基板間隔を保持したまま、 電源の端子を電極表面に接触させて電極間に 電圧を印加しながら、 連続的に重合性化合物を重合させて作製する方法や、 ガ ラス製基板と同様の方法で作製する方法が好ましく挙げられる。  An example of a method for manufacturing a light control element when the substrate is made of resin will be described below. Prepare two resin film substrates with electrodes, with the electrodes facing each other and having been subjected to an orientation treatment as necessary. While the resin film substrate is sandwiched between two rolls, a liquid crystal mixture in which a spacer is uniformly dispersed is injected between the substrates. A method in which a power supply terminal is brought into contact with the electrode surface and a voltage is applied between the electrodes while the uniform substrate spacing is maintained by the rolls to continuously polymerize the polymerizable compound, and a method of manufacturing the glass. Preferably, a method of manufacturing by the same method as the substrate is used.
本発明の調光素子において、 平面形状の素子や小面積の素子などの場合は、 基板の材質はガラスである方が、 基板の光の透過率が高いため、 良好な調光素 子が得られるので好ましい。 しかし、 非平面形状の素子または大面積の素子、 すなわち建築用、 自動車用などの調光素子を作製する場合は、 基板の材質は樹 脂である方が、 軽量かつ柔軟性のある素子が得られるため好ましい。 該樹脂製 基板の素子は、 合わせガラスに挟む等、 他の部材と複合させて使用されうる。 本発明の調光素子は、 ノーマルモードの調光素子である。 すなわち、 電圧非 印加時では光の透過率が小さく、 電圧印加時では光の透過率が大きくなる調光 素子である。 In the light control device of the present invention, in the case of a device having a planar shape or a device having a small area, a good light control device is obtained when the substrate is made of glass because the substrate has a higher light transmittance. Is preferred. However, when fabricating a non-planar element or a large-area element, that is, a dimming element for construction, automobiles, etc., it is preferable to use resin as the substrate material to obtain a lightweight and flexible element. Is preferred. The element of the resin substrate can be used in combination with other members, such as sandwiching it between laminated glasses. The light control device of the present invention is a normal mode light control device. That is, dimming in which light transmittance is low when no voltage is applied and light transmittance is high when voltage is applied Element.
本発明の調光素子は、 少なくとも一方が透明な一対の電極付き基板間に、 液 晶 Z重合体の複合体が狭持された調光素子である。 図 1は、 本発明の調光素子 の一例を示す図である。  The light modulating element of the present invention is a light modulating element in which a composite of a liquid crystal Z polymer is sandwiched between a pair of substrates with electrodes, at least one of which is transparent. FIG. 1 is a diagram showing an example of the light control device of the present invention.
本発明の調光素子は、 電圧非印加時の光の透過率が 40%以下であり、 かつ 、 散乱透過率 (Td) は、 30%以下である。 光の透過率の下限は、 3%以上 が好ましく、 5%以上がより好ましい。 散乱透過率の下限は、 0%であっても よい。  The light control device of the present invention has a light transmittance of 40% or less when no voltage is applied, and a scattered transmittance (Td) of 30% or less. The lower limit of the light transmittance is preferably 3% or more, more preferably 5% or more. The lower limit of the scattered transmittance may be 0%.
本発明の調光素子は、 電圧印加時の光の透過率は、 45%以上であり、 かつ 、 散乱透過率 (Td) は、 20%以下である。 光の透過率の上限は 100%で あってもよい。 散乱透過率の下限は、 0%であってもよい。  In the light modulating device of the present invention, the light transmittance when voltage is applied is 45% or more, and the scattered transmittance (Td) is 20% or less. The upper limit of the light transmittance may be 100%. The lower limit of the scattered transmittance may be 0%.
本発明の調光素子は、 電圧印加時と電圧非印加時とでのコントラストが 1. 2以上であるが、 1. 2〜 50が好ましい。  The dimmer of the present invention has a contrast of 1.2 or more between when a voltage is applied and when no voltage is applied, and preferably 1.2 to 50.
実施例  Example
以下、 実施例を挙げて本発明を具体的に説明するが、 該実施例により本発明 は何ら限定されない。 例 1〜4、 7〜10は実施例であり、 例 5〜6、 1 1〜 13は比較例である。  Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the examples. Examples 1 to 4 and 7 to 10 are Examples, and Examples 5 to 6 and 11 to 13 are Comparative Examples.
透過率、 散乱透過率、 コントラストは、 次の方法により測定した。 得られた 調光素子を、 まず、 矩形波で周波数が 100 H zの電圧を、 0 Vから 60 Vま で 1分間かけて上昇させた。 次に 60 Vから 0 Vまで 1分間かけて降下させた 。 この操作を 10回繰り返した後、 透過率、 散乱透過率を測定した。  The transmittance, scattered transmittance, and contrast were measured by the following methods. First, a voltage of a rectangular wave having a frequency of 100 Hz was increased from 0 V to 60 V for 1 minute in the obtained dimming device. Next, it was dropped from 60 V to 0 V for 1 minute. After repeating this operation 10 times, the transmittance and the scattered transmittance were measured.
透過率 (Tp) および散乱透過率 (Td) の測定方法:電極間の電圧が 0Vと 60 Vである調光素子において、 J I S R 321 に記載の方法にしたがつ てヘーズメータを用いて透過率と散乱透過率を測定した。 Measurement method of transmittance (Tp) and scattered transmittance (Td): For a dimming device where the voltage between the electrodes is 0 V and 60 V, the transmittance and the transmittance are measured using a haze meter according to the method described in JISR 321. The scattering transmittance was measured.
コントラストの計算方法:コントラスト = (電圧 60V時の透過率) / (電圧 0V時の透過率) 。 Contrast calculation method: Contrast = (Transmittance at voltage 60V) / (Transmittance at voltage 0V).
[例 1]  [Example 1]
誘電率異方性が正のネマチック液晶 P (Tc (等方相相転移温度) =109 °C、 Δ ε (誘電率異方性) =3. 35、 Δη (屈折率異方性) =0. 09) を 液晶と重合性化合物の合計量に対して 80%、 式 (4) の重合性化合物を液晶 と重合性化合物の合計量に対して 20 %、 二色性色素 L SB 278 (三菱化学 社製) を液晶と重合性化合物の合計量に対して 5 %、 ベンゾインイソプロピル エーテルを液晶と重合性化合物の合計量に対して 0. 60 %含む混合物 Αを調 製した。 Nematic liquid crystal with positive dielectric anisotropy P (Tc (isotropic phase transition temperature) = 109 ° C, Δ ε (dielectric anisotropy) = 3.35, Δη (refractive index anisotropy) = 0.09) is 80% of the total amount of the liquid crystal and polymerizable compound. The polymerizable compound is 20% based on the total amount of the liquid crystal and the polymerizable compound, the dichroic dye LSB278 (manufactured by Mitsubishi Chemical) is 5% based on the total amount of the liquid crystal and the polymerizable compound, and benzoin isopropyl ether is used. A mixture containing 0.60% of the total amount of the liquid crystal and the polymerizable compound was prepared.
Figure imgf000016_0001
次に、 2枚の、 I TO膜が形成されたガラス基板 (縦 100mm、 横 100 mm、 厚さ 1. lmm、 表面抵抗値 30 ΩΖ口) を準備した。 2枚の基板の I TO面上に、 イミド系配向剤 HL 1 110を固形分で 10 Onmになるように 塗布し、 180でで 30分間、 加熱硬化させラビング処理を行った。 一方の基 板の配向剤層上には、 直径 6 mの樹脂ビーズ (積水ファインケミカル社製) を 30個ノ mm2 散布した。 また該基板には、 基板の外周部の四辺 (注入口部 を除く。 ) に幅 lmmで 6 μπιのガラスファイバーを混ぜた未硬化のエポキシ 樹脂を印刷した。 2枚の基板をラビング方向がアンチパラレルになるように配 置しかつ I TO側がそれぞれ内側になるように重ね、 未硬化のエポキシ樹脂を 60でで 5分間加熱硬化させてセルを作製した。
Figure imgf000016_0001
Next, two glass substrates (100 mm long, 100 mm wide, 1. lmm thick, surface resistance 30 Ω square) with an ITO film formed were prepared. On the ITO surfaces of the two substrates, an imide-based aligning agent HL1110 was applied so as to have a solid content of 10 Onm, and was heated and cured at 180 for 30 minutes to perform a rubbing treatment. On the alignment agent layer of one board, and 30 Roh mm 2 spraying resin beads having a diameter of 6 m (manufactured by Sekisui Fine Chemical Co.). On the substrate, uncured epoxy resin mixed with 6 μπι glass fiber having a width of lmm was printed on four sides (excluding the injection port) of the outer periphery of the substrate. The two substrates were placed so that the rubbing directions were antiparallel, and the ITO sides were placed inside, respectively, and the uncured epoxy resin was heated and cured at 60 for 5 minutes to produce a cell.
混合物 Aを 6 O :で液晶状態を保持させながら、 セルに設けられた注入口か ら、 混合物 Aをセルに真空注入させた。 次に、 セルを 45°Cまで冷却した。 混 合物 Aを、 45°Cに保つことにより液晶状態を保持したまま、 HgXeランプ を用いて、 主波長が 365!!!!!の紫外線を強さ !!! /じ!!!2 で 10分間照射 することにより、 調光素子を作製した。 作製された調光素子は、 照射前のセル と同様、 外観は透明であった。 While maintaining the liquid crystal state of the mixture A with 6 O :, the mixture A was vacuum-injected into the cell from an injection port provided in the cell. Next, the cell was cooled to 45 ° C. Maintaining the liquid crystal state by keeping mixture A at 45 ° C, the main wavelength is 365! Using an HgXe lamp. ! ! ! ! UV intensity! ! ! The light control device was manufactured by irradiating for 10 minutes at / Ji !!! 2 . The appearance of the fabricated light modulating device was transparent, similar to the cell before irradiation.
得られた調光素子の透過率を測定した結果は、 電圧 0 Vでは 38%、 電圧 6 0Vでは 66%であった。 また、 Tdは、 電圧 0Vでは 4%、 電圧 60 Vでは 10%であった。 コントラストは、 1. 7であった。 電圧印加時でも電圧非印 加時でも、 素子は透明であった。 The measurement result of the transmittance of the obtained light control device was 38% at a voltage of 0 V and 66% at a voltage of 60 V. Td is 4% at 0V and 60% at 60V 10%. The contrast was 1.7. The element was transparent both when a voltage was applied and when no voltage was applied.
[例 2]  [Example 2]
混合物 Aに直径 6 zmの樹脂ビーズ (積水ファインケミカル社製) を混合物 Aに対して 1%、 カイラル剤 CN (コレステリルノナノエート) を液晶に対し て 5 %添加して混合物 Bを調製した。  A mixture B was prepared by adding 1% of resin beads (manufactured by Sekisui Fine Chemical Co., Ltd.) having a diameter of 6 zm to the mixture A and 5% of a chiral agent CN (cholesteryl nonanoate) to the liquid crystal.
片面に I T 0膜が形成されたポリエチレンテレフタレートフィルム (厚さ 1 25 m、 表面抵抗値 300 Ω/Π) 2巻のフィルムを、 I TO膜側が向かい 合うようにして、 45°Cに保持したロールに供給した。 フィルムが該ロールに 供給されると同時に、 2枚の基板間に 60 °Cに保持した液晶状態の混合物 Bを 注入した。 該混合物を挟持した 2枚の基板が該ロールを通過することにより、 基板間に混合物 Bをラミネートすなわち封入した。 次に、 混合物 Bが封入され た基板に、 照射ブースで 45°Cで、 ケミカルランプを用いて主波長が 352 η mの紫外線を、 強さ 3mWZcm2 で 10分間照射することにより、 調光素子 を作製した。 Polyethylene terephthalate film with IT0 film formed on one side (thickness: 125 m, surface resistance: 300 Ω / Π) Two rolls of film held at 45 ° C with the ITO film facing each other Supplied. At the same time as the film was supplied to the roll, a mixture B in a liquid crystal state maintained at 60 ° C. was injected between the two substrates. The mixture B was laminated, that is, encapsulated between the substrates by passing the two substrates holding the mixture through the roll. Next, the substrate on which the mixture B is sealed, at 45 ° C with irradiation booth by dominant wavelength using a chemical lamp is a UV 352 eta m, irradiated with intensity 3mWZcm 2 10 min, the dimming element Was prepared.
得られた調光素子の透過率は、 電圧 0Vで 25%、 電圧 60Vで 64%であ つた。 Tdは、 電圧 0Vで 5%、 電圧 60Vで 12%であった。 コントラスト は 2. 6であった。 電圧印加時でも電圧非印加時でも、 透明性は確保されてい た。 また、 カイラル剤を添加することにより、 高コントラストの素子を得るこ とができた。  The transmittance of the obtained dimming device was 25% at a voltage of 0 V and 64% at a voltage of 60 V. Td was 5% at 0V and 12% at 60V. The contrast was 2.6. Transparency was ensured both when voltage was applied and when voltage was not applied. In addition, a high-contrast element was obtained by adding a chiral agent.
[例 3]  [Example 3]
重合性化合物を式 (4) の化合物に代えて式 (5) の化合物にすること以外 は例 2と同様にして、 混合物 Cを調製した。  A mixture C was prepared in the same manner as in Example 2, except that the polymerizable compound was replaced with the compound of the formula (4) and the compound of the formula (5).
Figure imgf000017_0001
例 2と同様にして、 調光素子を作製した。 得られた調光素子の透過率は、 電圧 0Vで 30%、 電圧 60 Vで 70%であ つた。 Tdは、 電圧 0Vで 0. 5%、 電圧 60Vで 0. 7%であった。 コント ラストは 2. 5であった。 電圧印加時でも電圧非印加時でも、 透明性は確保さ れていた。
Figure imgf000017_0001
In the same manner as in Example 2, a light control device was produced. The transmittance of the obtained dimming device was 30% at a voltage of 0 V and 70% at a voltage of 60 V. Td was 0.5% at 0V and 0.7% at 60V. The contrast was 2.5. Transparency was ensured both when voltage was applied and when voltage was not applied.
[例 4]  [Example 4]
重合性化合物を式 (4) の化合物に代えて式 (6) の化合物にすること以外 は例 2と同様にして、 混合物 Dを調製した。
Figure imgf000018_0001
A mixture D was prepared in the same manner as in Example 2, except that the polymerizable compound was replaced with the compound of the formula (6) instead of the compound of the formula (4).
Figure imgf000018_0001
例 2と同様にして、 調光素子を作製した。  In the same manner as in Example 2, a light control device was produced.
得られた調光素子の透過率は、 電圧 0Vで 30%、 電圧 60 Vで 66%であ つた。 Tdは、 電圧 0Vで 0. 4%、 電圧 60Vで 0. 7%であった。 コント ラストは 2. 2であった。 電圧印加時でも電圧非印加時でも、 透明性は確保さ れていた。  The transmittance of the obtained light control device was 30% at a voltage of 0 V and 66% at a voltage of 60 V. Td was 0.4% at a voltage of 0V and 0.7% at a voltage of 60V. The contrast was 2.2. Transparency was ensured both when voltage was applied and when voltage was not applied.
[例 5]  [Example 5]
液晶をネマチック液晶 Pに代えて、 誘電率異方性が負のネマチック液晶 R ( Tc = 98°C、 Δ ε =- 5. 6、 Δη=0. 22) にすること以外は例 1と同 様にして混合物 Εを調製した。 次に、 例 1と同様にして、 調光素子を作製した 得られた調光素子の透過率は、 電圧 0Vで 67%、 電圧 60 Vで 2%であつ た。 Tdは、 電圧 0Vで 5%、 電圧 60 Vで 91 %であった。 Δηの大きな液 晶を用いたため、 電圧印加時の光の散乱が大きく、 調光素子は透明性が低かつ た。 また△ εが負の液晶を用いたため、 電圧非印加時に透過率が高く、 電圧印 加時に透過率が低くなる逆のモードの素子となった。  Same as Example 1 except that the nematic liquid crystal R is replaced by a nematic liquid crystal R with a negative dielectric anisotropy (Tc = 98 ° C, Δε = -5.6, Δη = 0.22). Thus, mixture 様 was prepared. Next, in the same manner as in Example 1, a light control device was manufactured. The transmittance of the obtained light control device was 67% at a voltage of 0 V and 2% at a voltage of 60 V. Td was 5% at 0V and 91% at 60V. Since a liquid crystal having a large Δη was used, light scattering was large when a voltage was applied, and the light control device had low transparency. In addition, since liquid crystal having a negative △ ε was used, the transmissivity was high when no voltage was applied, and the transmissivity was low when the voltage was applied.
[例 6]  [Example 6]
紫外線照射時の混合物 Αを、 45°Cに保つことにより液晶状態を保持するこ とに代えて 25°Cに保ち結晶状態にすること以外は例 1と同様にして、 調光素 8532 The photochromic element was prepared in the same manner as in Example 1 except that the mixture 時 at the time of UV irradiation was maintained at 25 ° C to be in a crystalline state instead of maintaining the liquid crystal state at 45 ° C. 8532
17  17
子を作製した。 A child was made.
得られた調光素子の透過率は、 電圧 0Vで 42%、 電圧 60 Vで 46%であ つた。 Tdは、 電圧 0Vで 50%、 電圧 60Vで 55%であった。 コントラス トは 1. 1であった。 結晶状態のまま重合させたため、 光の散乱が強かった。 (表 1)  The transmittance of the obtained light control device was 42% at a voltage of 0 V and 46% at a voltage of 60 V. Td was 50% at 0V and 55% at 60V. The contrast was 1.1. Because the polymer was polymerized in the crystalline state, light scattering was strong. (table 1)
Figure imgf000019_0001
Figure imgf000019_0001
[例 7] [Example 7]
誘電率異方性が正の市販のネマチック液晶 P (Tc (等方相相転移温度) = 109°C、 Δ ε (誘電率異方性) =3. 35、 Δη (屈折率異方性) =0. 0 9) を液晶と重合性化合物の合計量に対して 80%、 式 (4) の重合性化合物 を液晶と重合性化合物の合計量に対して 20%、 二色性色素 L S Β 278 (三 菱化学製) を液晶と重合性化合物の合計量に対して 5 %、 ベンゾインイソプロ ピルエーテルを液晶と重合性化合物の合計量に対して 0. 60 %含む混合物 A を調製した。  Commercially available nematic liquid crystal with positive dielectric anisotropy P (Tc (isotropic phase transition temperature) = 109 ° C, Δε (dielectric anisotropy) = 3.35, Δη (refractive index anisotropy) = 0.09) with respect to the total amount of the liquid crystal and the polymerizable compound, and 80% with respect to the total amount of the liquid crystal and the polymerizable compound. A mixture A containing 278 (manufactured by Mitsubishi Chemical Corporation) at 5% based on the total amount of the liquid crystal and the polymerizable compound and benzoin isopropyl ether at 0.60% based on the total amount of the liquid crystal and the polymerizable compound was prepared.
次に、 2枚の、 I TO膜が形成されたガラス基板 (縦 100mm、 横 100 mm、 厚さ 1. lmm、 表面抵抗値 30 Ω/口) を準備した。 2枚の基板の I TO面上に、 イミド系配向剤 HL 1110を固形分で 10 Onmになるように 塗布し、 180°Cで 30分間、 加熱硬化させラピング処理を行った。 一方の基 板の配向剤層上には、 直径 6 の樹脂ビーズ (積水ファインケミカル社製) を 30個/: mm2散布した。 また該基板には、 基板の外周部の四辺 (注入口部 を除く。 ) に幅 lmmで 6 zmのガラスファイバーを混ぜた未硬化のエポキシ 樹脂を印刷した。 2枚の基板をラビング方向がアンチパラレルになるように配 置しかつ I TO側がそれぞれ内側になるように重ね、 未硬化のエポキシ樹脂を 60°Cで 5分間加熱硬化させてセルを作製した。 Next, two glass substrates (100 mm long, 100 mm wide, 1. lmm thick, surface resistance 30 Ω / port) on which the ITO film was formed were prepared. On the ITO surfaces of the two substrates, an imide-based aligning agent HL1110 was applied to a solid content of 10 Onm, and was heated and cured at 180 ° C for 30 minutes to perform a lapping treatment. On the alignment agent layer of one substrate, 30 beads /: mm 2 of resin beads having a diameter of 6 (manufactured by Sekisui Fine Chemical Co., Ltd.) were sprayed. In addition, the substrate has four sides (injection portion) on the outer periphery of the substrate. except for. An uncured epoxy resin mixed with 6 mm glass fiber with a width of lmm was printed on the). The two substrates were placed so that the rubbing directions were antiparallel, and the ITO sides were placed inside, respectively. The uncured epoxy resin was heated and cured at 60 ° C for 5 minutes to produce a cell.
混合物 Aを 60°Cで液晶状態を保持させながら、 セルに設けられた注入口か ら、 混合物 Aをセルに真空注入させた。 次に、 セルを 45^まで冷却した。 混 合物 Aを、 45°Cに保つことにより液晶状態を保持したまま、 該セルの両基板 の電極面に導電性粘着剤付き金属箔テープを貼り付け、 その金属箔テープに周 波数 50Hzの交流電源を用いて、 45 Vの電圧を 5分間印加して予備印加を 行った。 引き続き電圧を印加したままの状態で、 HgXeランプを用いて、 主 波長が 36 5 nmの紫外線を強さ 3mW/cm2で 10分間照射することによ り、 調光素子を作製した。 作製された調光素子は、 照射前のセルと同様、 外観 は透明であった。 While maintaining the liquid crystal state of the mixture A at 60 ° C., the mixture A was vacuum-injected into the cell from an inlet provided in the cell. Next, the cell was cooled to 45 ^. While maintaining the liquid crystal state by maintaining the mixture A at 45 ° C, a metal foil tape with a conductive adhesive was attached to the electrode surfaces of both substrates of the cell, and a frequency of 50 Hz was applied to the metal foil tape. Preliminary application was performed by applying a voltage of 45 V for 5 minutes using an AC power supply. With the voltage still applied, a dimming element was fabricated by irradiating ultraviolet light having a main wavelength of 365 nm at an intensity of 3 mW / cm 2 for 10 minutes using a HgXe lamp. The fabricated light modulating device was transparent in appearance, similar to the cell before irradiation.
得られた調光素子の透過率を測定した結果は、 電圧 0Vでは 35%、 電圧 6 0Vでは 67%であった。 また、 Tdは、 電圧 0Vでは 9%、 電氐 60 Vでは 4%であった。 コントラストは、 1. 9であった。 電圧印加時でも電圧非印加 時でも、 素子は透明であった。 また、 電圧を印加した状態で重合反応を行うこ とにより、 特に調光素子の電圧印加時の散乱透過率を少なくすることができた  The measurement result of the transmittance of the obtained light control device was 35% at a voltage of 0 V and 67% at a voltage of 60 V. Td was 9% at a voltage of 0 V and 4% at a voltage of 60 V. The contrast was 1.9. The element was transparent both when a voltage was applied and when no voltage was applied. In addition, by performing the polymerization reaction while applying a voltage, it was possible to reduce the scattered transmittance of the light control device, particularly when a voltage was applied.
[例 8] [Example 8]
混合物 Aに直径 6 の樹脂ビーズ (積水ファインケミカル社製) を混合物 Aに対して 1%、 カイラル剤 CN (コレステリルノナノエ一ト) を液晶に対し て 5 %添加して混合物 Bを調製した。  A mixture B was prepared by adding 1% of the resin beads having a diameter of 6 (manufactured by Sekisui Fine Chemical Co., Ltd.) to the mixture A and 1% of the chiral agent CN (cholesteryl nonanoate) to the liquid crystal.
片面に I TO膜が形成されたポリエチレンテレフ夕レートフィルム (厚さ 1 25 nm, 表面抵抗値 300 Ω /口) 2巻のフィルムを用意した。 該 2巻のフ イルムを I TO膜側が向かい合うようにして、 45°Cに保持したロールに供給 した。 フィルムが該ロールに供給されると同時に、 2枚の基板間に 60°Cに保 持した液晶状態の混合物 Bを注入した。 該混合物を挟持した 2枚の基板が該ロ P T/JP2003/008532 Two rolls of a polyethylene terephthalate film (thickness: 125 nm, surface resistance: 300 Ω / port) with an ITO film formed on one side were prepared. The two rolls of the film were supplied to a roll maintained at 45 ° C. such that the ITO film sides faced each other. At the same time as the film was supplied to the roll, a liquid crystal mixture B maintained at 60 ° C. was injected between the two substrates. The two substrates holding the mixture are PT / JP2003 / 008532
19 19
ールを通過することにより、 基板間に混合物 Bをラミネ一トすなわち封入した 。 次に、 混合物 Bが封入された電極間に端子を接触させ周波数 50Hzの交流 電源を用いて 45 Vの電圧を 5分間印加し予備印加を行った。 電圧を印加した ままの状態で照射ブースで 45 °Cで、 ケミカルランプを用いて主波長が 352 nmの紫外線を、 強さ 3mWZcm2 で 10分間照射した。 続いて両フィルム 基板の電極面に導電性粘着剤付き金属箔テープを貼り付けた後、 2枚のフィル ムの外周部に未硬化のエポキシ樹脂を塗り、 60°Cで 5分間加熱硬化させ、 調 光素子を作製した。 The mixture B was laminated or encapsulated between the substrates by passing through the substrate. Next, a terminal was brought into contact between the electrodes in which the mixture B was sealed, and a voltage of 45 V was applied for 5 minutes using an AC power supply with a frequency of 50 Hz to perform preliminary application. Irradiation was performed at a temperature of 45 ° C in a radiation booth at a temperature of 45 ° C with a voltage applied, using a chemical lamp for 10 minutes at an intensity of 3 mWZcm 2 with ultraviolet light having a main wavelength of 352 nm. Next, after attaching a metal foil tape with conductive adhesive to the electrode surfaces of both film substrates, apply uncured epoxy resin to the outer periphery of the two films and heat cure at 60 ° C for 5 minutes. A dimming device was manufactured.
得られた調光素子の透過率は、 電圧 0 Vで 23%、 電圧 60 Vで 66%であ つた。 Tdは、 電圧 0Vで 10%、 電圧 60Vで 4%であった。 コントラスト は 2. 9であった。 電圧印加時でも電圧非印加時でも、 透明性は確保されてい た。 電圧を印加した状態で重合反応を行うことにより、 特に調光素子の電圧印 加時の散乱透過率を少なくすることができた。 また、 カイラル剤を添加するこ とにより、 高コントラストの素子を得ることができた。  The transmittance of the obtained light control device was 23% at a voltage of 0 V and 66% at a voltage of 60 V. Td was 10% at 0V and 4% at 60V. The contrast was 2.9. Transparency was ensured both when voltage was applied and when voltage was not applied. By performing the polymerization reaction with the voltage applied, the scattered transmittance of the light control device, particularly when a voltage was applied, could be reduced. Also, by adding a chiral agent, a high-contrast element could be obtained.
[例 9]  [Example 9]
重合性化合物を式 (4) の化合物に代えて式 (5) の化合物にすること以外 は例 8と同様にして、 混合物 Cを調製し、 調光素子を作製した。  A mixture C was prepared in the same manner as in Example 8, except that the polymerizable compound was changed to the compound of the formula (5) instead of the compound of the formula (4), to thereby prepare a light control device.
得られた調光素子の透過率は、 電圧 0Vで 30%、 電圧 60 Vで 73%であ つた。 Tdは、 電圧 0Vで 5%、 電圧 60Vで 3%であった。 コントラストは 2. 4であった。 電圧印加時でも電圧非印加時でも、 透明性は確保されていた 。 電圧を印加した状態で重合反応を行うことにより、 特に調光素子の電圧印加 時の散乱透過率を少なくすることができた。  The transmittance of the obtained light control device was 30% at a voltage of 0 V and 73% at a voltage of 60 V. Td was 5% at 0V and 3% at 60V. The contrast was 2.4. Transparency was secured both when a voltage was applied and when no voltage was applied. By performing the polymerization reaction with the voltage applied, it was possible to reduce the scattering transmittance of the light control device, particularly when the voltage was applied.
[例 10 ]  [Example 10]
重合性化合物を式 (4) の化合物に代えて式 (6) の化合物にすること以外 は例 8と同様にして、 混合物 Dを調製し、 調光素子を作製した。  A mixture D was prepared in the same manner as in Example 8, except that the polymerizable compound was replaced with the compound of the formula (6) instead of the compound of the formula (4), to thereby prepare a light control device.
得られた調光素子の透過率は、 電圧 0 Vで 29%、 電圧 60 Vで 67%であ つた。 Tdは、 電圧 0Vで 5%、 電圧 60Vで 4%であった。 コントラストは 2. 3であった。 電圧印加時でも電圧非印加時でも、 透明性は確保されていた JP2003/008532 The transmittance of the obtained dimming device was 29% at a voltage of 0 V and 67% at a voltage of 60 V. Td was 5% at 0V and 4% at 60V. The contrast was 2.3. Transparency was ensured both when voltage was applied and when voltage was not applied JP2003 / 008532
20 20
。 電圧を印加した状態で重合反応を行うことにより、 特に調光素子の電圧印加 時の散乱透過率を少なくすることができた。  . By performing the polymerization reaction with the voltage applied, it was possible to reduce the scattering transmittance of the light control device, particularly when the voltage was applied.
[例 11]  [Example 11]
紫外線照射時の混合物 Aを、 45°Cに保つことにより液晶状態を保持するこ とに代えて 25°Cに保ち結晶状態にすること以外は例 7と同様にして、 調光素 子を作製した。  A dimming element was prepared in the same manner as in Example 7, except that the mixture A was kept in a crystalline state by maintaining it at 25 ° C instead of maintaining the liquid crystal state at 45 ° C during UV irradiation. did.
得られた調光素子の透過率は、 電圧 0 Vで 47%、 電圧 60 Vで 41 %であ つた。 Tdは、 電圧 0Vで 51%、 電圧 60Vで 40%であった。 コントラス トは 1. 1であった。 結晶状態のまま重合させたため、 光の散乱が強かった。  The transmittance of the obtained light control device was 47% at a voltage of 0 V and 41% at a voltage of 60 V. Td was 51% at 0V and 40% at 60V. The contrast was 1.1. Because the polymer was polymerized in the crystalline state, light scattering was strong.
[例 12 ]  [Example 12]
予備印加を省略し、 電圧を印加しないで HgXeランプを用いて主波長が 3 65 nmの紫外線を強さ 3mWZcm2 で 10分間照射すること以外は、 例 7 と同様にして調光素子を作製した。 Omitting preliminary application, except that the main wavelength using HgXe lamp without applying a voltage to irradiate the 3 65 nm of ultraviolet intensity 3mWZcm 2 10 minutes to prepare a to light control device in the same manner as Example 7 .
得られた調光素子の透過率を測定した結果は、 電圧 0Vでは 38%、 電圧 6 0Vでは 66%であった。 また、 Tdは、 電圧 0Vでは 4%、 電圧 60 Vでは 10 %であった。 コントラストは、 1. 7であった。  The measurement result of the transmittance of the obtained light control device was 38% at a voltage of 0 V and 66% at a voltage of 60 V. Td was 4% at 0V and 10% at 60V. The contrast was 1.7.
電圧を印加しないで重合性化合物を重合したため、 電圧 60 Vでの Tdが例 7で作製した調光素子よりも大きくなつてしまった。  Since the polymerizable compound was polymerized without applying a voltage, Td at a voltage of 60 V was larger than that of the light control device manufactured in Example 7.
[例 13 ]  [Example 13]
予備印加を省略し、 電圧を印加しないでケミカルランプを用いて主波長が 3 52 nmの紫外線を強さ 3mW/cm2 で 10分間照射すること以外は、 例 8 と同様にして調光素子を作製した。 Omitting preliminary application, except that the irradiation main wavelength using a chemical lamp without applying a voltage 3 52 nm of ultraviolet intensity 3 mW / cm 2 10 min, was dimming device in the same manner as Example 8 Produced.
得られた調光素子の透過率は、 電圧 0Vで 25%、 電圧 60 Vで 64%であ つた。 Tdは、 電圧 0 Vで 5%、 電圧 60 Vで 12%であった。 コントラスト は 2. 6であった。  The transmittance of the obtained light control device was 25% at a voltage of 0 V and 64% at a voltage of 60 V. Td was 5% at 0 V and 12% at 60 V. The contrast was 2.6.
電圧を印加しないで重合性化合物を重合したため、 電圧 60 Vでの Tdが例 8で作製した調光素子よりも大きくなつてしまった。 表 2 Since the polymerizable compound was polymerized without applying a voltage, the Td at a voltage of 60 V was larger than that of the light control device manufactured in Example 8. Table 2
Figure imgf000023_0001
ぐ産業上の利用可能性 >
Figure imgf000023_0001
Industrial applicability>
本発明の調光素子は、 ノーマルモードの調光素子である。 すなわち、 電圧非 印加時に光の透過率を小さくかつ散乱透過率を小さくすることができる。 例え ば、 自動車用のガラスに本発明の調光素子を用いた場合、 駐車時等の電圧非印 加時に光の透過率を小さい状態で保持することができ、 防犯上有益である。 ま た故障などのトラブル時でも、 透視可能であるため、 車内からの視界を確保で きる。  The light control device of the present invention is a normal mode light control device. That is, it is possible to reduce the light transmittance and the scattering transmittance when no voltage is applied. For example, when the dimming element of the present invention is used for a glass for an automobile, the light transmittance can be kept in a small state when a voltage is not applied such as when the vehicle is parked, which is useful for crime prevention. In addition, even in the event of troubles such as breakdowns, it is possible to see through the vehicle, ensuring visibility from inside the vehicle.
また、 本発明の調光素子は、 電圧印加時には、 光の透過率が大きく、 かつ、 散乱透過率が小さく、 電圧非印加時には、 光の透過率が小さく、 かつ、 散乱透 過率を小さく保つことができる。 したがって、 本発明の調光素子は、 自動車用 窓ガラス (フロントガラス、 リアガラス、 サイドガラス、 サンル一フなど。 ) 、 列車や航空機などの産業用車両の窓ガラス、 ショーウィンドウ、 オフィスや 住宅などの間仕切り、 採光制御カーテン、 反射板 (オフィス用、 窓用、 照明用 、 間接照明用など。 ) 、 インテリア材料、 光学フィルター、 光学シャッター、 ディスプレイなど幅広い用途に有用である。 例えば、 自動車用のガラスに本発 明の調光素子を用いた場合、 太陽光の下では電圧を印加して自動車内に入って くる光の量を調整でき、 かつ車内からの視界を良好に確保できる。 また、 夜な どの車外が暗いときには、 電圧を印加にすることにより車内からの視界を良好 にすることができる。 Further, the light modulating element of the present invention has a large light transmittance and a small scattered transmittance when a voltage is applied, and has a small light transmittance and a small scattered transmittance when no voltage is applied. be able to. Accordingly, the light control device of the present invention can be used as a partition for a vehicle window glass (a windshield, a rear glass, a side glass, a sunglass, etc.), a window glass of an industrial vehicle such as a train or an aircraft, a shop window, an office or a house. It is useful for a wide range of applications, such as lighting control curtains, reflectors (for offices, windows, lighting, indirect lighting, etc.), interior materials, optical filters, optical shutters, and displays. For example, when the dimming device of the present invention is used for glass for automobiles, it is possible to adjust the amount of light entering the automobile by applying a voltage under sunlight and improve the visibility from the interior of the automobile. Can be secured. Also, at night When the outside of the vehicle is dark, it is possible to improve the visibility from inside the vehicle by applying a voltage.

Claims

請求の範囲 The scope of the claims
1. 少なくとも一方が透明な一対の電極付き基板間に、 二色性色素と液晶と重 合体とを含む液晶/重合体複合体が挟持され、 電極間に電圧非印加時の光の透 過率が 40%以下かつ散乱透過率 (Td) が 30%以下であり、 電圧印加時の 光の透過率が 45%以上かつ散乱透過率 (Td) が 20%以下であり、 かつ電 圧印加時と電圧非印加時とのコントラストが 1. 2以上であることを特徴とす る調光素子。 1. A liquid crystal / polymer composite containing a dichroic dye, a liquid crystal, and a polymer is sandwiched between a pair of substrates with electrodes, at least one of which is transparent, and the transmittance of light when no voltage is applied between the electrodes. Is 40% or less and the scattered transmittance (Td) is 30% or less, the light transmittance at the time of applying voltage is 45% or more, and the scattered transmittance (Td) is 20% or less. A dimming element characterized in that the contrast with no voltage applied is 1.2 or more.
2. 液晶の誘電率異方性が、 1以上である請求項 1に記載の調光素子。 2. The light control device according to claim 1, wherein the liquid crystal has a dielectric anisotropy of 1 or more.
3. 液晶の屈折率異方性が、 0. 2以下である請求項 1または 2に記載の調光 素子。 3. The light control device according to claim 1, wherein the liquid crystal has a refractive index anisotropy of 0.2 or less.
4. 重合体が、 メソゲン構造を有する重合体である請求項 1〜3のいずれかに 記載の調光素子。 4. The light modulating device according to claim 1, wherein the polymer is a polymer having a mesogenic structure.
5. 液晶/重合体の複合体が、 カイラル剤を含有する請求項 1〜4のいずれか に記載の調光素子。 5. The light modulating element according to claim 1, wherein the liquid crystal / polymer composite contains a chiral agent.
6. 少なくとも一方が透明な一対の電極付き基板間に、 二色性色素と液晶と重 合性化合物とを含む混合物を挟持し、 該混合物が液晶相を示す温度で上記重合 性化合物を重合させることを特徴とする請求項 1〜 5のいずれかに記載の調光 素子の製造方法。 6. A mixture containing a dichroic dye, a liquid crystal, and a polymerizable compound is sandwiched between a pair of substrates with electrodes, at least one of which is transparent, and the polymerizable compound is polymerized at a temperature at which the mixture exhibits a liquid crystal phase. The method for manufacturing a light control device according to claim 1, wherein
7. 重合性化合物が、 重合性官能基とメソゲン構造とを有する化合物である請 求項 6に記載の製造方法。 7. The production method according to claim 6, wherein the polymerizable compound is a compound having a polymerizable functional group and a mesogenic structure.
8. 混合物に重合開始剤を含む請求項 6または 7に記載の製造方法。 8. The production method according to claim 6, wherein the mixture contains a polymerization initiator.
9. 少なくとも一方が透明な基板である一対の電極付き基板間に、 二色性色素 と液晶と重合性化合物とを含む液晶混合物を挟持し、 該液晶混合物が液晶相を 示す温度で電極間に電圧を印加しながら該重合性化合物を重合させて、 電圧非 印加時の光の透過率が 40%以下かつ散乱透過率 (Td) が 30%以下であり 、 電圧印加時の光の透過率が 45%以上かつ散乱透過率 (Td) が 20%以下 であり、 電圧印加時と電圧非印加時とのコントラストが 1. 2以上であること を特徴とする調光素子の製造方法。 9. A liquid crystal mixture containing a dichroic dye, liquid crystal, and a polymerizable compound is sandwiched between a pair of substrates with electrodes, at least one of which is a transparent substrate, and the liquid crystal mixture is interposed between the electrodes at a temperature at which the liquid crystal mixture shows a liquid crystal phase. The polymerizable compound is polymerized while applying a voltage, the light transmittance when no voltage is applied is 40% or less, the scattering transmittance (Td) is 30% or less, and the light transmittance when voltage is applied is A method for producing a dimming device, comprising: 45% or more, a scattering transmittance (Td) of 20% or less, and a contrast of 1.2 or more between when a voltage is applied and when no voltage is applied.
10. 重合性化合物の重合時に電極間に印加する電圧が 0. 5〜 300 Vであ る請求項 9に記載の調光素子の製造方法。 10. The method according to claim 9, wherein a voltage applied between the electrodes during polymerization of the polymerizable compound is 0.5 to 300 V.
PCT/JP2003/008532 2002-07-05 2003-07-04 Light control device and its manufacturing method WO2004005426A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003244209A AU2003244209A1 (en) 2002-07-05 2003-07-04 Light control device and its manufacturing method
JP2004519270A JPWO2004005426A1 (en) 2002-07-05 2003-07-04 Dimmer element and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-197456 2002-07-05
JP2002197456 2002-07-05
JP2002-241875 2002-08-22
JP2002241875 2002-08-22

Publications (1)

Publication Number Publication Date
WO2004005426A1 true WO2004005426A1 (en) 2004-01-15

Family

ID=30117396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008532 WO2004005426A1 (en) 2002-07-05 2003-07-04 Light control device and its manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2004005426A1 (en)
AU (1) AU2003244209A1 (en)
WO (1) WO2004005426A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070543A (en) * 2008-08-18 2010-04-02 Asahi Glass Co Ltd Bifunctional polymerizable compound, liquid crystal composition, optical anisotropic material and optical element
US7920245B2 (en) 2004-03-04 2011-04-05 Nissan Motor Co., Ltd. Light-modulating material with transmissivity changing in electrified state and vehicle using the same
JP2013072895A (en) * 2011-09-26 2013-04-22 Seiko Electric Co Ltd Liquid crystal dimmer and driving device for liquid crystal dimming element
KR20160030964A (en) * 2013-07-11 2016-03-21 메르크 파텐트 게엠베하 Fail safe mechanism for switchable window
US9976087B2 (en) 2015-08-06 2018-05-22 Asahi Glass Company, Limited Liquid crystal composition and liquid crystal optical device
KR20190028657A (en) * 2016-07-26 2019-03-19 다이니폰 인사츠 가부시키가이샤 A dimming system, a driving method of a dimming film, a vehicle
CN112379546A (en) * 2020-11-23 2021-02-19 珠海兴业新材料科技有限公司 Polymer disperse dye liquid crystal material, electrochromic dimming film and preparation method
WO2022186062A1 (en) * 2021-03-01 2022-09-09 三菱ケミカル株式会社 Liquid crystal element and emulsion composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151167A (en) * 2016-02-22 2017-08-31 大日本印刷株式会社 Dimming film, laminated glass and method for manufacturing dimming film
TWI808221B (en) * 2018-07-25 2023-07-11 日商Dic股份有限公司 Light Scattering Liquid Crystal Device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580311A (en) * 1991-09-20 1993-04-02 Matsushita Electric Ind Co Ltd Liquid crystal panel and production thereof and liquid crystal projection type television
US5206747A (en) * 1988-09-28 1993-04-27 Taliq Corporation Polymer dispersed liquid crystal display with birefringence of the liquid crystal at least 0.23
US5301046A (en) * 1991-09-21 1994-04-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device having a layer comprising an oblate liquid crystal dispersed in a resin and method for forming the same
JPH07110469A (en) * 1993-08-16 1995-04-25 Dainippon Ink & Chem Inc Liquid crystal display element and its production
US5525273A (en) * 1992-09-19 1996-06-11 Semiconductor Energy Laboratory Co., Ltd. Method for forming an electro-optical device
US5726728A (en) * 1993-09-28 1998-03-10 Sharp Kabushiki Kaisha Liquid crystal display device and a production method utilizing surface free energies for the same
EP1154006A1 (en) * 1998-10-20 2001-11-14 Asahi Glass Company Ltd. Liquid crystal optical element and method for preparing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206747A (en) * 1988-09-28 1993-04-27 Taliq Corporation Polymer dispersed liquid crystal display with birefringence of the liquid crystal at least 0.23
JPH0580311A (en) * 1991-09-20 1993-04-02 Matsushita Electric Ind Co Ltd Liquid crystal panel and production thereof and liquid crystal projection type television
US5301046A (en) * 1991-09-21 1994-04-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device having a layer comprising an oblate liquid crystal dispersed in a resin and method for forming the same
US5525273A (en) * 1992-09-19 1996-06-11 Semiconductor Energy Laboratory Co., Ltd. Method for forming an electro-optical device
JPH07110469A (en) * 1993-08-16 1995-04-25 Dainippon Ink & Chem Inc Liquid crystal display element and its production
US5726728A (en) * 1993-09-28 1998-03-10 Sharp Kabushiki Kaisha Liquid crystal display device and a production method utilizing surface free energies for the same
EP1154006A1 (en) * 1998-10-20 2001-11-14 Asahi Glass Company Ltd. Liquid crystal optical element and method for preparing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920245B2 (en) 2004-03-04 2011-04-05 Nissan Motor Co., Ltd. Light-modulating material with transmissivity changing in electrified state and vehicle using the same
JP2010070543A (en) * 2008-08-18 2010-04-02 Asahi Glass Co Ltd Bifunctional polymerizable compound, liquid crystal composition, optical anisotropic material and optical element
JP2013072895A (en) * 2011-09-26 2013-04-22 Seiko Electric Co Ltd Liquid crystal dimmer and driving device for liquid crystal dimming element
KR20160030964A (en) * 2013-07-11 2016-03-21 메르크 파텐트 게엠베하 Fail safe mechanism for switchable window
JP2016525704A (en) * 2013-07-11 2016-08-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Fail-safe mechanism for switchable windows
KR102324925B1 (en) * 2013-07-11 2021-11-15 메르크 파텐트 게엠베하 Fail safe mechanism for switchable window
TWI714509B (en) * 2015-08-06 2020-12-21 日商Agc股份有限公司 Liquid crystal composition and liquid crystal optical device
US9976087B2 (en) 2015-08-06 2018-05-22 Asahi Glass Company, Limited Liquid crystal composition and liquid crystal optical device
CN109643040A (en) * 2016-07-26 2019-04-16 大日本印刷株式会社 Light adjusting system, the driving method of light modulation film, vehicle
KR20190028657A (en) * 2016-07-26 2019-03-19 다이니폰 인사츠 가부시키가이샤 A dimming system, a driving method of a dimming film, a vehicle
JP2022043240A (en) * 2016-07-26 2022-03-15 大日本印刷株式会社 Photochromic system and method for driving photochromic film
CN109643040B (en) * 2016-07-26 2022-04-19 大日本印刷株式会社 Light control system, method for driving light control film, and vehicle
US11320703B2 (en) 2016-07-26 2022-05-03 Dai Nippon Printing Co., Ltd. Photochromic system, method for driving photochromic film, and vehicle
KR102414369B1 (en) * 2016-07-26 2022-06-30 다이니폰 인사츠 가부시키가이샤 dimming system, driving method of dimming film, vehicle
EP3492971B1 (en) * 2016-07-26 2022-11-30 Dai Nippon Printing Co., Ltd. Light modulating system, method for driving a light modulating film, and vehicle
EP4137882A1 (en) * 2016-07-26 2023-02-22 Dai Nippon Printing Co., Ltd. Light modulating system, method for driving a light modulating film, and vehicle
CN112379546A (en) * 2020-11-23 2021-02-19 珠海兴业新材料科技有限公司 Polymer disperse dye liquid crystal material, electrochromic dimming film and preparation method
WO2022186062A1 (en) * 2021-03-01 2022-09-09 三菱ケミカル株式会社 Liquid crystal element and emulsion composition

Also Published As

Publication number Publication date
AU2003244209A1 (en) 2004-01-23
JPWO2004005426A1 (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP2004093873A (en) Light control window
US4834509A (en) Liquid crystal optical device and process for its production and method for its operation
JP4132424B2 (en) Manufacturing method of liquid crystal optical element
JP2010208861A (en) Toning window material
TWI523941B (en) Liquid crystal device and liquid crystal composition
WO2000023539A1 (en) Liquid crystal optical element and method for preparing the same
JPS63271233A (en) Liquid crystal optical element
JP2003255315A (en) Liquid crystal dimmer element and method for manufacturing the same
WO2004005426A1 (en) Light control device and its manufacturing method
JPWO2003057799A1 (en) Dimmer element and manufacturing method thereof
JP3890841B2 (en) LCD light control window for vehicles
JP2569676B2 (en) Liquid crystal optical element, method of manufacturing the same, dimmer, object display, and display device using the same
JP2005017860A (en) Manufacturing method for liquid crystal light control element
JP2004131335A (en) Light control window
EP0523256A1 (en) Liquid crystal display device, and manufacture and application thereof
WO2022220212A1 (en) Anthraquinone compound, liquid crystal composition containing said compound, and dimming element
JP2004347972A (en) Manufacturing method of dimming element
JP2016136247A (en) Manufacturing method of liquid crystal display device
JP7310796B2 (en) liquid crystal display element
JPH03245121A (en) Liquid crystal panel
JP2004157247A (en) Liquid crystal optical element, method for manufacturing the same, and optical device
JP2583880Y2 (en) Tinted glass
JP2550628B2 (en) Liquid crystal optical element manufacturing method
JP2569703B2 (en) Liquid crystal optical element, method of manufacturing the same, dimmer and display device using the same
JP2569677B2 (en) Liquid crystal optical element, method of manufacturing the same, dimmer and display device using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004519270

Country of ref document: JP

122 Ep: pct application non-entry in european phase