WO2004003610A2 - Dispositif de couplage optique directionnel et selectif en longueur d’onde - Google Patents

Dispositif de couplage optique directionnel et selectif en longueur d’onde Download PDF

Info

Publication number
WO2004003610A2
WO2004003610A2 PCT/FR2003/001840 FR0301840W WO2004003610A2 WO 2004003610 A2 WO2004003610 A2 WO 2004003610A2 FR 0301840 W FR0301840 W FR 0301840W WO 2004003610 A2 WO2004003610 A2 WO 2004003610A2
Authority
WO
WIPO (PCT)
Prior art keywords
waveguides
waveguide
coupling
photonic crystal
mode
Prior art date
Application number
PCT/FR2003/001840
Other languages
English (en)
Other versions
WO2004003610A3 (fr
Inventor
Henri Benisty
Ségolène OLIVIER
Claude Weisbuch
Original Assignee
Centre National De La Recherche Scientifique
Ecole Polytechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Ecole Polytechnique filed Critical Centre National De La Recherche Scientifique
Priority to JP2004516846A priority Critical patent/JP2005531036A/ja
Priority to AU2003267488A priority patent/AU2003267488A1/en
Priority to EP03748175A priority patent/EP1516212A2/fr
Priority to CA002490287A priority patent/CA2490287A1/fr
Publication of WO2004003610A2 publication Critical patent/WO2004003610A2/fr
Publication of WO2004003610A3 publication Critical patent/WO2004003610A3/fr
Priority to US11/020,688 priority patent/US7110641B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12164Multiplexing; Demultiplexing

Definitions

  • the invention relates to a directional and wavelength selective optical coupling device, the coupling being carried out between two neighboring and substantially parallel waveguides.
  • waveguides in photonic crystals, which are two-dimensional components made up of a plurality of periodically distributed elements, such as parallel columns of dielectric material or parallel cylindrical holes of a dielectric substrate , the waveguides being formed in photonic crystals by one or more missing rows of holes or columns.
  • a device for optical directional and selective wavelength coupling between two waveguides characterized in that it comprises a planar component with photonic crystal structure made up of a plurality of elements. with periodic distribution, this component comprising two parallel waveguides separated by a coupling zone, the coupling zone being formed by parallel and adjacent rows of said periodic distribution elements and the waveguides being formed by parallel and adjacent rows without of these elements or comprising such elements whose dimensions, positions, or refractive index have been substantially modified, the longitudinal edges of the waveguides having a periodic structure ensuring, for given frequencies, on the one hand a local coupling between a mode guided in one of the waveguides and a higher order mode of this waveguide, on the other share a coupling between this higher order mode and a higher order mode of the other waveguide through the coupling zone and a coupling between the higher order mode of the other waveguide and a guided mode of this other waveguide, so that said frequencies can be extracted from a signal guided in a first waveguide and injected into the
  • the photonic crystal mentioned above is a two-dimensional system without vertical structure, or a system of thin suspended membranes where the light is confined vertically, or a system of the type described in the cited documents cited above. above, that is to say in which a photonic crystal is etched through a single-mode planar dielectric guide in one or both of the optical polarizations TE or TM.
  • the guided mode is essentially propagative in the longitudinal direction, with a speed of group and a propagation constant which are roughly of the same order as their counterparts in the dielectric substrate of the photonic crystal.
  • the transfer of energy between the two waveguides takes place via the higher order mode of each waveguide, which makes it possible to considerably reduce the length required for the coupling zone for the transfer to be complete.
  • the guided mode of each waveguide is the fundamental mode and the coupling takes place in each waveguide between the fundamental mode and a higher order mode.
  • the coupling zone which extends between the two waveguides has structural characteristics identical to those of the photonic crystal on either side of the two waveguides.
  • the coupling zone between the waveguides has structural characteristics different from those of the photonic crystal on either side of the waveguides.
  • the dimension, the position, the refractive index of the elements with periodic distribution of the photonic crystal can be different in the coupling zone and in the rest of the photonic crystal.
  • each waveguide of the coupling device is connected to an input waveguide and to an output waveguide, which are of a conventional type or which are formed in a photonic crystal.
  • These input and output waveguides in which there is no coupling between fundamental mode and higher order mode at the frequencies considered, are connected to the coupling waveguides by well-defined passages, adiabatic or abrupt.
  • this intermediate system possibly comprising a local modification of the dimensions, the positions or the index of the periodic elements of the crystal, as already indicated, or a local modification of the photonic crystal period, or a widening or a narrowing of the waveguides in the coupling zone, or a cavity or a structural defect or a set of cavities or structure in the coupling zone, or an intermediate waveguide, etc.
  • the exact operating characteristics of the coupling device according to the invention are determined in coupling wavelength and in selectivity by the parameters of the photonic crystal (period, dimension of the elements, filling factor, etc.), by the parameters coupling waveguides (width), by parameters of the coupling zone (coupling length, coupling force, etc.) and by the nature of the underlying substrate or vertical dielectric guide.
  • the effective index of the fundamental mode of the dielectric guide plays a good approximation the role of the index of a homogeneous substrate in which would be formed holes or columns of photonic crystal having an infinite vertical extension (article by D. Labilloy et al. In Physical Review Letters, vol. 79, number 21, November 24, 1997).
  • Figure 1 is a schematic plan view of a coupling device according to the invention.
  • Figure 2 is a schematic plan view of an alternative embodiment of this device
  • Figures 3 and 4 schematically represent other alternative embodiments of this device;
  • Figure 5 shows the spectrum of the signal transmitted by a waveguide formed in a photonic crystal;
  • Figure 6 shows the spectrum of the signal transmitted by a waveguide of a coupling device according to the invention
  • Figure 7 represents the spectrum of the energy coupled in the adjacent guide.
  • FIG. 1 a first embodiment of an optical coupling device according to the invention is shown diagrammatically, which essentially comprises a planar component 10 with two-dimensional photonic crystal structure 12 comprising two guides of parallel waves 14 and 16, separated by a coupling zone 18 of photonic crystal, which extends between these two waveguides.
  • the photonic crystal 12 is a two-dimensional set of parallel columns 14 of dielectric material or parallel holes of a dielectric component, the columns and the holes being perpendicular to the plane of the drawing, which is the plane of the photonic crystal.
  • the periodicity of the structure of the photonic crystal is comparable to the wavelength of the electromagnetic waves whose propagation is to be prevented.
  • the component 10 comprises a vertical waveguide in which the photonic crystal is formed.
  • the waveguides 14 and 16 are each formed by a few missing rows of elements 20 of the photonic crystal or by a few rows of these elements whose dimensions, positions and / or refractive index have been greatly modified and the area of coupling 18 between the two waveguides is formed by a few rows of these elements 20.
  • each waveguide 14, 16 have a periodic structure of the same period, the widths of the two waveguides can be identical or different.
  • Each waveguide 14, 16 of the component 10 is connected to an input waveguide 22, 24 respectively and to an output waveguide
  • these input and output waveguides being either of a conventional type with index contrast, or of the same type as the waveguides 14, 16 of the coupling device, it is that is to say waveguides produced in a photonic crystal.
  • the characteristics of the photonic crystal forming the input and output waveguides 22, 24, 26, 28 differ slightly from those of the photonic crystal 12 comprising the coupling waveguides 14, 16, so that the coupling used in the latter at the frequencies considered does not manifest itself in the input and output guides.
  • an incident optical beam represented by the arrow 30 when guided in the first waveguide 14 in the fundamental mode, it propagates without disturbance from one end to the other of this waveguide for pass through the output waveguide 26, except at certain frequencies where the fundamental mode is coupled to a higher order mode of the waveguide 14.
  • This higher order mode passes through the coupling zone 18 as shown diagrammatically by arrows 32 and arrives in waveguide 16 where it couples naturally and optimally to the high order mode of this other guide where it is re-coupled in fundamental mode propagating in the direction indicated by arrow 34 for pass through the output waveguide 28.
  • the second coupling device waveguide 16 is the seat of a reciprocal phenomenon of mode coupling which takes place in the first waveguide 14 at the non-transmitted wavelengths of the MSB.
  • the device according to the invention represented in FIG. 1 therefore makes it possible to transfer energy from the fundamental mode from one waveguide to the other via the high order mode of each guide, at the wavelengths of the MSB, which considerably reduces the coupling length necessary between the two guides for the energy transfer to be complete.
  • this coupling length is of the order of 10 spatial periods of the photonic crystal thanks to the coupling by the high order modes, whereas it would be approximately fifty times greater if the coupling took place between the fundamental modes of the two waveguides.
  • the photonic crystal waveguides make it possible to confine the higher order modes in the two waveguides and to ensure excellent coupling efficiency from one waveguide to the other, relative to in the fundamental mode.
  • connections between the coupling component 10 with photonic crystal structure and the input and output waveguides must be well defined so that there is no coupling between fundamental mode and high order mode in the input and output waveguides.
  • the structure of the coupling zone 18 also makes it possible to determine the directionality of the coupling devices according to the invention.
  • the coupling zone 18 has a spatial period substantially equal to that of the surrounding photonic crystal 12
  • the coupling is co-directional, that is to say that the optical signal leaving the second waveguide 16 is oriented in the same direction as the optical signal entering the first waveguide 14.
  • the coupling zone 18 has a single structural defect fairly well located such as for example a cavity
  • the coupling can be bidirectional, it that is to say that the optical fluxes leaving the second waveguide 16 are oriented in the direction of arrow 34 and in the opposite direction.
  • the coupling zone 18 comprises several cavities with multiple spacing of the fundamental period of the crystal, the selectivity and the efficiency of the coupling are increased.
  • At msb is the normalized frequency difference between edges of the MSB
  • - At c is the normalized frequency difference linked to the coupling of the higher order mode of one guide to that of the other guide.
  • Le is most often very low and it is in practice the coupling length Lmsb which determines the coupling length of the device according to the invention.
  • the coupling zone can be defined by a narrowing of the waveguides 14 and 16 of the device (FIG. 3), located between the input waveguides 22, 24 and the output waveguides 26, 28, or by an enlargement 42 of these waveguides 14, 16 ( Figure 4).
  • the coupling zone 18 between the waveguides 14, 16 of the component 10 can differ from the rest of the photonic crystal of this component by the spatial period of the periodic elements of the crystal, by the filling factor, by the dimension or the index of refraction of periodic elements, by the presence of a set of structural defects or cavities with periodic distribution as shown in Figure 2 or by the presence of an intermediate waveguide formed by missing or substantially modified rows of periodic items.
  • the component 10 is a photonic crystal with a triangular pattern defined on a GaAs or InP substrate or also of the SOI (Silicon on Insulator) type, this substrate comprising a vertical structuring (by stacking of layers) forming a guide substantially single mode waveform for the frequency and polarization considered of the incident light signal.
  • the mode of this waveguide has an effective index typically between 2.5 and 4.
  • the photonic crystal has a fill factor f of about 30 to 45%.
  • u 0.26 and it is 0.24 for a guide with five missing rows. Measurements were carried out on a component of this type comprising two photonic crystal waveguides, each formed by five missing rows of holes and separated from each other by a coupling zone comprising five rows of holes.
  • the spectrum of the signal transmitted by the waveguide 14 has a trough for a wavelength of approximately 930 nm and that the spectrum of the light picked up at the output of the other waveguide 16 has a peak for this wavelength. It will be noted that the offset between the wavelength of 920nm not transmitted by the waveguide isolated from the test of FIG. 5 and the wavelength of 930nm of selective coupling between the two waveguides 14, 16 of device 10 is due only to small differences in manufacturing parameters between component 10 used for the measurement of FIGS. 6 and 7 and that used for the measurement of FIG. 5.
  • the selective coupling device is applicable to the routing of optical signals with frequency selection, in particular in the field of telecommunications, and to the mixing of signals of different frequencies, in particular in the field of opto -electronics where optical waves are used as carriers of microwave signals, multi-frequency laser machining, etc.

Abstract

Dispositif de couplage optique directionnel et sélectif en longueur d’onde, formé dans un cristal photonique (12) et comprenant deux guides d’ondes parallèles (14, 16) séparés par une zone de couplage (18), permettant d’extraire une fréquence particulière d’un signal (30) injecté dans le mode fondamental d’un guide d’onde (14) et de récupérer cette fréquence en sortie (34) de l’autre guide d’onde (16), par couplage entre mode fondamental et mode d’ordre élevé de chaque guide d’onde.

Description

DISPOSITIF DE COUPLAGE OPTIQUE DIRECTIONNEL ET SELECTIF
EN LONGUEUR D'ONDE.
L'invention concerne un dispositif de couplage optique directionnel et sélectif en longueur d'onde, le couplage étant réalisé entre deux guides d'ondes voisins et sensiblement parallèles.
Il est connu de former des guides d'onde dans des cristaux photoniques, qui sont des composants bidimensionnels constitués d'une pluralité d'éléments à distribution périodique, tels que des colonnes parallèles de matière diélectrique ou des trous cylindriques parallèles d'un substrat diélectrique, les guides d'ondes étant formés dans les cristaux photoniques par une ou plusieurs rangées manquantes de trous ou de colonnes.
On a montré, dans l'article « Mini-stopbands of a one-dimensional System : the channel waveguide in a two dimensional photonic crystal » de
S. Olivier, M. Rattier, H. Benisty, C. Weisbuch et al., Physical Review B, vol. 63, 1 1331 1 du 1er mars 2001 , que le spectre de transmission d'un guide d'onde en cristal photonique présente une bande étroite de longueurs d'ondes non transmises ou mini-stopband (MSB), qui est due à un couplage entre le mode fondamental et un mode d'ordre supérieur du guide d'onde.
On a également montré, dans l'article « Coupled guide and cavity in a two-dimensional photonic crystal » de C. J. M. Smith, R. M. de la Rue et al., Applied Physics Letters, vol 78, n° 1 1 , 12 mars 2001 , que, dans un cristal photonique comprenant un guide d'onde et une cavité voisine du guide d'onde, on pouvait coupler avec une efficacité importante de l'énergie à travers un nombre relativement élevé de rangées du cristal photonique par couplage du mode de cavité et du mode d'ordre supérieur du guide d'onde, ce mode se couplant à son tour dans le mode fondamental. La présente invention a pour but d'utiliser les résultats des travaux décrits dans ces deux documents antérieurs pour transférer, de façon sélective en fréquence, de l'énergie entre deux guides d'onde formés dans un cristal photonique.
Elle propose, à cet effet, un dispositif de couplage optique directionnel et sélectif en longueur d'onde entre deux guides d'ondes, caractérisé en ce qu'il comprend un composant plan à structure de cristal photonique constitué d'un pluralité d'éléments à répartition périodique, ce composant comprenant deux guides d'ondes parallèles séparés par une zone de couplage, la zone de couplage étant formée de rangées parallèles et adjacentes desdits éléments à répartition périodique et les guides d'ondes étant formés de rangées parallèles et adjacentes dépourvues de ces éléments ou comprenant de tels éléments dont les dimensions, les positions, ou l'indice de réfraction ont été substantiellement modifiés, les bords longitudinaux des guides d'ondes ayant une structure périodique assurant, pour des fréquences déterminées, d'une part un couplage local entre un mode guidé dans l'un des guides d'ondes et un mode d'ordre supérieur de ce guide d'onde, d'autre part un couplage entre ce mode d'ordre supérieur et un mode d'ordre supérieur de l'autre guide d'onde à travers la zone de couplage et un couplage entre le mode d'ordre supérieur de l'autre guide d'onde et un mode guidé de cet autre guide d'onde, de sorte que lesdites fréquences peuvent être extraites d'un signal guidé dans un premier guide d'onde et injectée dans l'autre guide d'onde, ces fréquences étant celles non transmises par le premier guide d'onde.
De façon connue de l'homme du métier, le cristal photonique cité ci-dessus est un système bidimensionnel sans structuration verticale, ou un système de membranes minces suspendues où la lumière est confinée verticalement, ou un système du type décrit dans les documents antérieurs cités ci-dessus, c'est-à-dire dans lequel un cristal photonique est gravé au travers d'un guide diélectrique planaire monomode dans l'une des deux polarisations optiques TE ou TM ou dans les deux. Dans le dispositif selon l'invention, le mode guidé est essentiellement propagatif en direction longitudinale, avec une vitesse de groupe et une constante de propagation qui sont sensiblement du même ordre que leurs contreparties dans le substrat diélectrique du cristal photonique.
Le transfert d'énergie entre les deux guides d'ondes a lieu via le mode d'ordre supérieur de chaque guide d'onde, ce qui permet de réduire considérablement la longueur nécessaire de la zone de couplage pour que le transfert soit complet. On pourrait avoir par exemple une longueur de zone de couplage d'environ 500 périodes spatiales de la structure du cristal photonique si le couplage était réalisé sur le mode fondamental, tandis que cette longueur peut être réduite à 10 périodes spatiales grâce à l'invention.
En outre, du fait du confinement assuré par le cristal photonique, on peut utiliser des modes d'ordre supérieur qui ne fuient pas à l'extérieur des deux guides d'ondes, par exemple des modes de très faible vitesse de groupe ou de constante de propagation très petite devant leurs valeurs dans le substrat diélectrique du cristal photonique. Ces modes seraient en effet couplés au continuum de modes radiatifs du substrat ou de l'air en l'absence de confinement par le cristal photonique. On s'assure ainsi de former un canal de couplage dont les dimensions longitudinales sont les plus petites possible. De préférence, le mode guidé de chaque guide d'onde est le mode fondamental et le couplage a lieu dans chaque guide d'onde entre le mode fondamental et un mode d'ordre supérieur.
Dans une première forme de réalisation de l'invention, la zone de couplage qui s'étend entre les deux guides d'ondes a des caractéristiques de structure identiques à celles du cristal photonique de part et d'autre des deux guides d'ondes.
Dans une variante de réalisation de l'invention, la zone de couplage entre les guides d'ondes a des caractéristiques de structure différentes de celles du cristal photonique de part et d'autre des guides d'ondes. Par exemple, la dimension, la position, l'indice de réfraction des éléments à répartition périodique du cristal photonique peuvent être différents dans la zone de couplage et dans le reste du cristal photonique.
Par ailleurs, chaque guide d'onde du dispositif de couplage est raccordé à un guide d'onde d'entrée et à un guide d'onde de sortie, qui sont d'un type classique ou qui sont formés dans un cristal photonique. Ces guides d'ondes d'entrée et de sortie, dans lesquels il n'y a pas de couplage entre mode fondamental et mode d'ordre supérieur aux fréquences considérées, sont reliés aux guides d'ondes de couplage par des passages bien définis, adiabatiques ou abrupts.
Il est en général avantageux de prévoir un système intermédiaire entre les guides d'ondes de couplage, pour contrôler plus finement le couplage, ce système intermédiaire pouvant comprendre une modification locale des dimensions, des positions ou de l'indice des éléments périodiques du cristal, comme déjà indiqué, ou une modification locale de la période du cristal photonique, ou encore un élargissement ou un rétrécissement des guides d'ondes dans la zone de couplage, ou une cavité ou un défaut de structure ou un ensemble de cavités ou de défauts de structure dans la zone de couplage, ou un guide d'onde intermédiaire, etc.
Les caractéristiques exactes de fonctionnement du dispositif de couplage selon l'invention sont déterminées en longueur d'onde de couplage et en sélectivité par les paramètres du cristal photonique (période, dimension des éléments, facteur de remplissage, ...), par les paramètres des guides d'ondes de couplage (largeur), par des paramètres de la zone de couplage (longueur de couplage, force de couplage, ...) et par la nature du substrat ou guide diélectrique vertical sous-jacent. On sait en effet que l'indice effectif du mode fondamental du guide diélectrique joue en bonne approximation le rôle de l'indice d'un substrat homogène dans lequel seraient formés des trous ou des colonnes de cristal photonique ayant une extension verticale infinie (article de D. Labilloy et al. dans Physical Review Letters, vol. 79, numéro 21 , 24 novembre 1997).
L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement à la lecture de la description qui suit, faite en référence à titre d'exemple aux dessins annexés dans lesquels :
La Figure 1 est une vue schématique en plan d'un dispositif de couplage selon l'invention ;
La Figure 2 est une vue schématique en plan d'une variante de réalisation de ce dispositif ;
Les Figures 3 et 4 représentent schématiquement d'autres variantes de réalisation de ce dispositif ; La Figure 5 représente le spectre du signal transmis par un guide d'onde formé dans un cristal photonique ;
La Figure 6 représente le spectre du signal transmis par un guide d'onde d'un dispositif de couplage selon l'invention ;
La Figure 7 représente le spectre de l'énergie couplée dans le guide adjacent.
On se réfère d'abord à la Figure 1 dans laquelle on a représenté schématiquement une première forme de réalisation d'un dispositif de couplage optique selon l'invention, qui comprend essentiellement un composant plan 10 à structure de cristal photonique 12 bidimensionnel comprenant deux guides d'ondes 14 et 16 parallèles, séparés par une zone de couplage 18 en cristal photonique, qui s'étend entre ces deux guides d'ondes.
De façon connue de l'homme du métier, le cristal photonique 12 est un ensemble bidimensionnel de colonnes parallèles 14 de matériau diélectrique ou de trous parallèles d'un composant diélectrique, les colonnes et les trous étant perpendiculaires au plan du dessin, qui est le plan du cristal photonique. La périodicité de la structure du cristal photonique est comparable à la longueur d'onde des ondes électromagnétiques dont on veut empêcher la propagation. Dans une forme de réalisation préférée, le composant 10 comprend un guide d'onde vertical dans lequel est formé le cristal photonique. Les guides d'ondes 14 et 16 sont formés chacun par quelques rangées manquantes d'éléments 20 du cristal photonique ou par quelques rangées de ces éléments dont les dimensions, les positions et/ou l'indice de réfraction ont été fortement modifiés et la zone de couplage 18 entre les deux guides d'onde est formée par quelques rangées de ces éléments 20.
De ce fait, les bords de chaque guide d'onde 14, 16 ont une structure périodique de même période, les largeurs des deux guides d'ondes pouvant être identiques ou différentes.
Chaque guide d'onde 14, 16 du composant 10 est raccordé à un guide d'onde d'entrée 22, 24 respectivement et à un guide d'onde de sortie
26, 28 respectivement, ces guides d'ondes d'entrée et de sortie étant soit d'un type classique à contraste d'indice, soit du même type que les guides d'ondes 14, 16 du dispositif de couplage, c'est-à-dire des guides d'ondes réalisés dans un cristal photonique. Dans ce dernier cas, les caractéristiques du cristal photonique formant les guides d'ondes d'entrée et de sortie 22, 24, 26, 28 diffèrent légèrement de celles du cristal photonique 12 comprenant les guides d'ondes 14, 16 de couplage, de sorte que le couplage mis à profit dans ces derniers aux fréquences considérées ne se manifeste pas dans les guides d'entrée et de sortie.
Dans ce dispositif, lorsqu'un faisceau optique incident représenté par la flèche 30 est guidé dans le premier guide d'onde 14 dans le mode fondamental, il se propage sans perturbation d'une extrémité à l'autre de ce guide d'onde pour passer dans le guide d'onde de sortie 26, sauf à certaines fréquences où le mode fondamental est couplé à un mode d'ordre supérieur du guide d'onde 14. Ce mode d'ordre supérieur traverse la zone de couplage 18 comme représenté schématiquement par les flèches 32 et parvient dans le guide d'onde 16 où il se couple de façon naturelle et optimale au mode d'ordre élevé de cet autre guide où il est recouplé en mode fondamental se propageant dans le sens indiqué par la flèche 34 pour passer dans le guide d'onde de sortie 28. Le second guide d'onde 16 de dispositif de couplage est le siège d'un phénomène réciproque du couplage de mode qui a lieu dans le premier guide d'onde 14 aux longueurs d'onde non transmises de la MSB.
Le dispositif selon l'invention représenté en Figure 1 permet donc de transférer de l'énergie du mode fondamental d'un guide d'onde à l'autre via le mode d'ordre élevé de chaque guide, aux longueurs d'ondes de la MSB, ce qui permet de réduire considérablement la longueur de couplage nécessaire entre les deux guides pour que le transfert d'énergie soit complet. Par exemple, cette longueur de couplage est de l'ordre de 10 périodes spatiales du cristal photonique grâce au couplage par les modes d'ordre élevé, alors qu'elle serait environ cinquante fois supérieure si le couplage avait lieu entre les modes fondamentaux des deux guides d'ondes.
De plus, les guides d'ondes en cristal photonique permettent de confiner les modes d'ordre supérieur dans les deux guides d'ondes et d'assurer une excellente efficacité de couplage d'un guide d'onde à l'autre, par rapport au mode fondamental. On peut en particulier utiliser des modes de très faible vitesse de groupe ou de constante de propagation très petite devant leurs valeurs dans le substrat diélectrique, qui sont très bien confinés dans les guides d'ondes en cristal photonique alors qu'on constaterait une fuite de ces modes dans des guides d'ondes d'un type classique à contraste d'indice.
Les liaisons entre le composant de couplage 10 à structure de cristal photonique et les guides d'ondes d'entrée et de sortie doivent être bien définies pour qu'il n'existe pas de couplage entre mode fondamental et mode d'ordre élevé dans les guides d'ondes d'entrée et de sortie.
On peut notamment utiliser pour le couplage un cristal photonique 12 ayant une période spatiale et un facteur de remplissage différents de ceux des cristaux photoniques dans lesquels sont formés les guides d'ondes d'entrée 22, 24 et les guides d'ondes de sortie 26, 28.
On peut également, comme cela sera décrit plus en détail ci- dessous, modifier certaines caractéristiques de la zone de couplage 18 par rapport à celles du cristal photonique 12 qui se trouve de part et d'autre des guides d'ondes par rapport à cette zone de couplage, pour contrôler plus finement le couplage par l'adjonction d'un système intermédiaire. On peut par exemple prévoir un guide d'onde intermédiaire, délimité par des rangées manquantes d'éléments périodiques 20 du cristal photonique, entre les guides d'ondes 14 et 16 précités.
La structure de la zone de couplage 18 permet également de déterminer la directionnalité des dispositifs de couplage selon l'invention. Dans le cas où la zone de couplage 18 a une période spatiale sensiblement égale à celle du cristal photonique 12 environnant, le couplage est co-directionnel, c'est-à-dire que le signal optique sortant du second guide d'onde 16 est orienté dans le même sens que le signal optique entrant dans le premier guide d'onde 14. Lorsque la zone de couplage 18 comporte un unique défaut de structure assez bien localisé tel par exemple qu'une cavité, le couplage peut être bidirectionnel, c'est-à-dire que les flux optiques sortant du second guide d'onde 16 sont orientés dans le sens de la flèche 34 et dans le sens opposé. Lorsque la zone de couplage 18 comprend plusieurs cavités à espacement multiple de la période fondamentale du cristal, on augmente la sélectivité et l'efficacité du couplage.
Lorsque la zone de couplage 18 a une structure uniforme ou périodique, la longueur de couplage du dispositif est égale à la somme de la longueur de conversion caractéristique entre mode fondamental et mode d'ordre supérieur de chaque guide d'onde Lmsb et de la longueur de transfert caractéristique d'un mode d'ordre supérieur d'un des guides d'ondes au mode d'ordre supérieur de l'autre guide d'onde Le, soit : L = Lmsb + Le
= a- + a-
(na + nb)Aumsb nbAuc
où :
- a est la période spatiale des éléments périodiques du cristal,
- na est l'indice de groupe du mode fondamental,
- nb est l'indice de groupe du mode d'ordre supérieur,
- Aumsb est l'écart en fréquence normalisé entre bords de la MSB, - Auc est l'écart en fréquence normalisé lié au couplage du mode d'ordre supérieur d'un guide à celui de l'autre guide.
Dans cette formule, Le est le plus souvent très faible et c'est en pratique la longueur de couplage Lmsb qui détermine la longueur de couplage du dispositif selon l'invention.
Comme cela a été représenté très schématiquement aux Figures 3 et 4, la zone de couplage peut être définie par un rétrécissement des guides d'ondes 14 et 16 du dispositif (Figure 3), localisé entre les guides d'ondes d'entrée 22, 24 et les guides d'ondes de sortie 26, 28, ou par un élargissement 42 de ces guides d'ondes 14, 16 (Figure 4). La zone de couplage 18 entre les guides d'ondes 14, 16 du composant 10 peut différer du reste du cristal photonique de ce composant par la période spatiale des éléments périodiques du cristal, par le facteur de remplissage, par la dimension ou l'indice de réfraction des éléments périodiques, par la présence d'un ensemble de défauts de structure ou de cavités à répartition périodique comme représenté en Figure 2 ou encore par la présence d'un guide d'onde intermédiaire formé par des rangées manquantes ou substantiellement modifiées des éléments périodiques. Ces moyens permettent en particulier d'améliorer la sélectivité du couplage en longueur d'onde.
Dans un exemple de réalisation, le composant 10 est un cristal photonique à motif triangulaire défini sur un substrat de GaAs ou InP ou encore de type SOI (Silicon on Insulator), ce substrat comportant une structuration verticale (par empilement de couches) formant un guide d'onde sensiblement monomode pour la fréquence et la polarisation considérées du signal lumineux incident. Le mode de ce guide d'onde a un indice effectif typiquement compris entre 2,5 et 4. Le cristal photonique a un facteur de remplissage f d'environ 30 à 45%. Ces valeurs de l'indice effectif et du facteur de remplissage et le nombre de rangées manquantes du guide d'onde fixent la valeur u de la fréquence centrale de la MSB. Pour un guide à trois rangées manquantes dans un substrat de InP ou GaAs typique, la valeur de u est de 0,26 et elle est de 0,24 pour un guide à cinq rangées manquantes. Des mesures ont été effectuées sur un composant de ce type comprenant deux guides d'ondes en cristal photonique, formés chacun par cinq rangées manquantes de trous et séparés l'un de l'autre par une zone de couplage comprenant cinq rangées de trous.
On a d'abord effectué une mesure de transmission d'un guide d'onde isolé, en injectant de la lumière à l'entrée du guide d'onde dans le mode fondamental comme indiqué dans l'article précité de S. Olivier et al., Physical Review B 2001 , et en captant le signal transmis dans le mode fondamental. Le spectre de ce signal est représenté en Figure 5 en unités arbitraires, en fonction de la longueur d'onde. Dans cet essai, la lumière injectée couvre la bande spectrale 900-1050 nm et la lumière captée à la sortie du guide d'onde a un spectre représenté par la courbe C1 , qui présente un creux de transmission pour une longueur d'onde de 920nm. Cette longueur d'onde correspond à la conversion du mode fondamental en mode d'ordre élevé qui est réfléchi par diffraction sur les bords du guide d'onde. Typiquement, la largeur spectrale de la MSB est de 5 à 40 nm, selon la largeur du guide. Les autres longueurs d'ondes sont transmises normalement.
Ensuite, on a injecté de la lumière dans le mode fondamental à l'entrée du guide d'onde 14 du composant 10 et on a capté la lumière transmise en sortie de chaque guide d'onde 14, 16 , les spectres transmis étant représentés en Figures 6 et 7 respectivement.
On voit que le spectre du signal transmis par le guide d'onde 14 présente un creux pour une longueur d'onde de 930nm environ et que le spectre de la lumière captée en sortie de l'autre guide d'onde 16 présente un pic pour cette longueur d'onde. On notera que le décalage entre la longueur d'onde de 920nm non transmise par le guide d'onde isolé de l'essai de la Figure 5 et la longueur d'onde de 930nm de couplage sélectif entre les deux guides d'ondes 14, 16 de dispositif 10 est dû uniquement à de petites différences de paramètres de fabrication entre le composant 10 utilisé pour la mesure des Figures 6 et 7 et celui utilisé pour la mesure de la Figure 5.
Dans le cas d'un dispositif selon l'invention où les deux guides d'ondes sont identiques et ne sont pas séparés par une cavité intermédiaire, on a montré que la longueur de couplage L du dispositif et les paramètres de couplage Kab entre mode guidé et mode d'ordre supérieur de chaque guide d'onde, et Kbb entre modes d'ordre supérieur vérifient sensiblement les relations Kab = 0,373. Kbb et L = 9,42/Kbb.
De façon générale, le dispositif de couplage sélectif selon l'invention est applicable au routage de signaux optiques avec une sélection en fréquence, notamment dans le domaine des télécommunications, et au mélange de signaux de fréquences différentes, notamment dans le domaine de l'opto-électronique où l'on utilise des ondes optiques comme porteuses de signaux en hyperfréquence, l'usinage laser multi-fréquence, etc.

Claims

REVENDICATIONS
1/ Dispositif de couplage optique directionnel et sélectif en longueur d'onde entre deux guides d'ondes, caractérisé en ce qu'il comprend un composant (10) plan à structure de cristal photonique constitué d'une pluralité d'éléments (20) à répartition périodique, ce composant comprenant deux guides d'ondes parallèles (14, 16) séparés par une zone de couplage (18), la zone de couplage étant formée de rangées parallèles et adjacentes desdits éléments (20) à répartition périodique et les guides d'ondes (14, 16) étant formés de rangées parallèles et adjacentes dépourvues desdits éléments (20) à répartition périodique ou formées de tels éléments dont les dimensions, les positions ou l'indice de réfraction ont été substantiellement modifiés, les bords longitudinaux des guides d'ondes ayant une structure périodique assurant, pour des fréquences déterminées, d'une part un couplage local entre un mode guidé dans l'un (14) des guides d'ondes et un mode d'ordre supérieur de ce guide d'onde, d'autre part un couplage entre ce mode d'ordre supérieur et un mode d'ordre supérieur de l'autre guide d'onde (16) à travers la zone de couplage (18), et un couplage entre le mode d'ordre supérieur de l'autre guide d'onde (16) et le mode guidé de cet autre guide d'onde, de sorte que lesdites fréquences peuvent être extraites d'un signal guidé dans le premier guide d'onde (14) et injectées dans l'autre guide d'onde (16), ces fréquences étant celles non transmises dans le premier guide d'onde.
2/ Dispositif selon la revendication 1 , caractérisé en ce que le mode guidé précité est le mode fondamental du guide d'onde.
3/ Dispositif selon la revendication 1 ou 2, caractérisé en ce que les caractéristiques de structure de la zone de couplage (18) entre les guides d'ondes (14, 16) sont identiques à celles du cristal photonique (12) de part et d'autre des guides d'ondes (14, 16). 4/ Dispositif selon la revendication 1 ou 2, caractérisé en ce que des caractéristiques de structure de la zone de couplage (18) entre les guides d'ondes sont différentes de celles du cristal photonique (12) de part et d'autre des guides d'ondes (14, 16).
5/ Dispositif selon l'une des revendications précédentes, caractérisé en ce que chaque guide d'onde (14, 16) du composant (10) est raccordé à ses extrémités à un guide d'onde d'entrée (22, 24) et à un guide d'onde de sortie (26, 28).
6/ Dispositif selon la revendication 5, caractérisé en ce que les guides d'ondes d'entrée et de sortie (22, 24, 26, 28) sont à structure de cristal photonique.
Il Dispositif selon la revendication 6, caractérisé en ce que les caractéristiques de structure des guides d'ondes (14, 16) du composant (10) sont différentes de celles des guides d'ondes d'entrée et de sortie (22, 24, 26, 28).
8/ Dispositif selon la revendication 7, caractérisé en ce que les périodes des éléments (20) du cristal photonique (12) du composant (10) sont différentes de celles des cristaux photoniques comprenant les guides d'ondes d'entrée et de sortie (22, 24, 26, 28).
9/ Dispositif selon la revendication 7 ou 8, caractérisé en ce que le facteur de remplissage du cristal photonique (12) comprenant les guides d'ondes (14, 16) du composant (10) est différent des facteurs de remplissage des cristaux photoniques comprenant les guides d'ondes d'entrée et de sortie (22, 24, 26, 28). 10/ Dispositif selon l'une des revendications 7 à 9, caractérisé en ce que les largeurs transversales des guides d'ondes (14, 16) du compos (10) sont différentes de celles des guides d'ondes d'entrée et de sortie (22, 24, 26, 28).
11/ Dispositif selon l'une des revendications 4 à 10, caractérisé en ce que la zone de couplage (18) entre les guides d'ondes (14, 16) comprend au moins une cavité (36) ou un défaut de structure.
12/ Dispositif selon la revendication 1 1 , caractérisé en ce que la zone de couplage (18) entre les guides d'ondes (14, 16) du composant (10) comprend plusieurs cavités (36) ou défauts de structure à répartition périodique.
13/ Dispositif selon l'une des revendications précédentes, caractérisé en ce que la zone de couplage (18) entre les guides d'ondes (14, 16) du composant (10) comprend un guide d'onde intermédiaire.
14/ Dispositif selon l'une des revendications 4 à 12, caractérisé en ce que les dimensions des éléments périodiques (20) et/ou la période spatiale de ces éléments ou leur indice de réfraction dans la zone de couplage (18) sont différents de ceux du reste du cristal photonique (12).
15/ Dispositif selon l'une des revendications précédentes, caractérisé en ce que le composant (10) comprend un guide d'onde planaire diélectrique sensiblement monomode aux fréquences précitées.
16/ Dispositif selon l'une des revendications 1 à 10, caractérisé en ce que, quand les deux guides d'ondes (14,16) sont identiques, la longueur de couplage L du dispositif et les paramètres de couplage Kab entre le mode guidé et le mode d'ordre supérieur de chaque guide, et Kbb entre les modes d'ordre supérieur vérifient sensiblement les relations Kab = 0,373. Kbb et L = 9,42/Kbb.
PCT/FR2003/001840 2002-06-26 2003-06-17 Dispositif de couplage optique directionnel et selectif en longueur d’onde WO2004003610A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004516846A JP2005531036A (ja) 2002-06-26 2003-06-17 指向性及び波長選択的な光結合のための装置
AU2003267488A AU2003267488A1 (en) 2002-06-26 2003-06-17 Device for directional and wavelength selective optical coupling
EP03748175A EP1516212A2 (fr) 2002-06-26 2003-06-17 Dispositif de couplage optique directionnel et selectif en longueur d'onde
CA002490287A CA2490287A1 (fr) 2002-06-26 2003-06-17 Dispositif de couplage optique directionnel et selectif en longueur d'onde
US11/020,688 US7110641B2 (en) 2002-06-26 2004-12-22 Device for directional and wavelength-selective optical coupling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/07957 2002-06-26
FR0207957A FR2841658B1 (fr) 2002-06-26 2002-06-26 Dispositif de couplage optique directionnel et selectif en longueur d'onde

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/020,688 Continuation US7110641B2 (en) 2002-06-26 2004-12-22 Device for directional and wavelength-selective optical coupling

Publications (2)

Publication Number Publication Date
WO2004003610A2 true WO2004003610A2 (fr) 2004-01-08
WO2004003610A3 WO2004003610A3 (fr) 2004-04-08

Family

ID=29724912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001840 WO2004003610A2 (fr) 2002-06-26 2003-06-17 Dispositif de couplage optique directionnel et selectif en longueur d’onde

Country Status (7)

Country Link
US (1) US7110641B2 (fr)
EP (1) EP1516212A2 (fr)
JP (1) JP2005531036A (fr)
AU (1) AU2003267488A1 (fr)
CA (1) CA2490287A1 (fr)
FR (1) FR2841658B1 (fr)
WO (1) WO2004003610A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2229918B1 (es) 2003-08-14 2006-08-16 Universidad Politecnica De Valencia Metodo para dividir una señal electromagnetica guiada en dos señales con la mitad de potencia utilizando cristales fotonicos.
JP3763826B2 (ja) * 2003-08-29 2006-04-05 独立行政法人科学技術振興機構 2次元フォトニック結晶分合波器
FR2861854B1 (fr) * 2003-10-30 2006-01-13 Centre Nat Rech Scient Dispositif de couplage-decouplage de lumiere selectif en frequence
ES2235664B1 (es) * 2003-12-23 2006-11-01 Universidad Politecnica De Valencia Metodo y dispositivo para dividir una señal electromagnetica en dos señales de igual o distinta potencia.
WO2009051902A1 (fr) * 2007-10-17 2009-04-23 Bae Systems Information And Electronic Systems Integration Inc. Procédé de fabrication de guides d'ondes optiques couplés sélectivement sur un substrat
FR2942046B1 (fr) 2009-02-12 2011-03-11 Centre Nat Rech Scient Systeme et equipement de detection optique de particules a eventail de decouplage de l'information optique, procede de fabrication correspondant
US9459404B2 (en) * 2009-10-23 2016-10-04 Lumilant, Inc. Optical router using interconnected photonic crystal elements with specific lattice-hole geometry
CN105408786B (zh) * 2013-06-27 2017-05-10 株式会社藤仓 高阶偏振波转换元件、光波导元件以及dp-qpsk调制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483583A (en) * 1981-03-07 1984-11-20 Licentia Patent-Verwaltungs-Gmbh Selective directional coupler for guided waves
US5526449A (en) * 1993-01-08 1996-06-11 Massachusetts Institute Of Technology Optoelectronic integrated circuits and method of fabricating and reducing losses using same
US6130969A (en) * 1997-06-09 2000-10-10 Massachusetts Institute Of Technology High efficiency channel drop filter
US20010026668A1 (en) * 2000-03-29 2001-10-04 Nec Corporation Photonic crystal waveguide and directional coupler using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6834149B1 (en) * 1999-02-09 2004-12-21 Xoetronics, Llc Optically confined birefringent chalcopyrite heterostructure devices and operating methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483583A (en) * 1981-03-07 1984-11-20 Licentia Patent-Verwaltungs-Gmbh Selective directional coupler for guided waves
US5526449A (en) * 1993-01-08 1996-06-11 Massachusetts Institute Of Technology Optoelectronic integrated circuits and method of fabricating and reducing losses using same
US6130969A (en) * 1997-06-09 2000-10-10 Massachusetts Institute Of Technology High efficiency channel drop filter
US20010026668A1 (en) * 2000-03-29 2001-10-04 Nec Corporation Photonic crystal waveguide and directional coupler using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SMITH C J M ET AL: "COUPLED GUIDE AND CAVITY IN A TWO-DIMENSIONAL PHOTONIC CRYSTAL" APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 78, no. 11, 12 mars 2001 (2001-03-12), pages 1487-1489, XP001015020 ISSN: 0003-6951 cité dans la demande *
TOKUSHIMA M ET AL: "Photonic crystal line defect waveguide directional coupler" ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 37, no. 24, 22 novembre 2001 (2001-11-22), pages 1454-1455, XP006017576 ISSN: 0013-5194 cité dans la demande *

Also Published As

Publication number Publication date
FR2841658A1 (fr) 2004-01-02
CA2490287A1 (fr) 2004-01-08
AU2003267488A8 (en) 2004-01-19
US7110641B2 (en) 2006-09-19
JP2005531036A (ja) 2005-10-13
EP1516212A2 (fr) 2005-03-23
FR2841658B1 (fr) 2004-10-22
AU2003267488A1 (en) 2004-01-19
US20050152649A1 (en) 2005-07-14
WO2004003610A3 (fr) 2004-04-08

Similar Documents

Publication Publication Date Title
EP3460547B1 (fr) Dispositif de couplage optique pour un circuit photonique
EP1909080B1 (fr) Détecteur optique ultrasensible à grande résolution temporelle, utilisant un couplage à réseau
CA2467055C (fr) Structure a cristal photonique pour la conversion de mode
EP1752803B1 (fr) Dispositif optoélectronique integré
EP2664949A2 (fr) Coupleur optique séparateur de polarisation
EP0703473B1 (fr) Dispositif optoélectronique intégré pour la séparation de longueurs d'onde différentes et leur détection
EP0736785B1 (fr) Démultiplexeur insensible à la polarisation et procédé de réalisation
FR2626082A1 (fr) Dispositif d'optique integree permettant de separer les composantes polarisees d'un champ electromagnetique guide et procede de realisation du dispositif
WO2004003610A2 (fr) Dispositif de couplage optique directionnel et selectif en longueur d’onde
EP0783118A1 (fr) Démultiplexeur en longueur d'onde
FR2514906A1 (fr) Filtre de longueur d'onde
EP0252565B1 (fr) Dispositif semiconducteur intégré du type dispositif de couplage entre un photodéecteur et un guide d'ond lumineuse
EP1678540B1 (fr) Dispositif de couplage-decouplage de lumiere selectif en frequence
FR2953607A1 (fr) Dispositif de couplage d'une onde electromagnetique entre un guide d'onde et un guide metallique a fente, procede de fabrication dudit dispositif
FR2742882A1 (fr) Demultiplexeur de longueurs d'onde, realise en optique integree
FR2732776A1 (fr) Filtre multilongueur d'onde insensible a la polarisation et procede de realisation
EP0807982A1 (fr) Photodétecteur à structure optique résonnante avec un réseau
EP0812022B1 (fr) Photodétecteur et générateur hyperfréquence
EP0735389A1 (fr) Structure à deux guides optiques insensible à la polarisation et procédé de réalisation
EP0921423A1 (fr) Composant optique à spectrographe à réseau de guides, à géométrie de réseau améliorée
FR2856804A1 (fr) Filtres optiques a reseau resonnant
EP1407303A1 (fr) Structure optique integree
FR2950440A1 (fr) Dispositif de couplage entre une fibre optique et un guide d'ondes nanophotonique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003748175

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2490287

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004516846

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11020688

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003748175

Country of ref document: EP