WO2004003347A1 - Gas turbine ventilation circuitry - Google Patents

Gas turbine ventilation circuitry Download PDF

Info

Publication number
WO2004003347A1
WO2004003347A1 PCT/FR2003/001958 FR0301958W WO2004003347A1 WO 2004003347 A1 WO2004003347 A1 WO 2004003347A1 FR 0301958 W FR0301958 W FR 0301958W WO 2004003347 A1 WO2004003347 A1 WO 2004003347A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
upstream
labyrinth
injectors
labyrinths
Prior art date
Application number
PCT/FR2003/001958
Other languages
French (fr)
Inventor
Sylvie Coulon
Jean-Philippe Maffre
Jean-Claude Taillant
Original Assignee
Snecma Moteurs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma Moteurs filed Critical Snecma Moteurs
Priority to CA002490619A priority Critical patent/CA2490619A1/en
Priority to US10/517,613 priority patent/US20050201859A1/en
Priority to JP2004516864A priority patent/JP2005530956A/en
Priority to AU2003253082A priority patent/AU2003253082A1/en
Priority to EP03761639A priority patent/EP1552111A1/en
Publication of WO2004003347A1 publication Critical patent/WO2004003347A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • F01D5/3015Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type with side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to the field of ventilation of the high pressure turbine of an aviation turbomachine. More specifically, it relates to a turbomachine comprising a sealing device between the turbine rotor and the interior casing of the combustion chamber, said turbine rotor comprising, on the one hand, a turbine disc having an upstream flange for fixing to the downstream cone of a compressor and, on the other hand, a flange disposed upstream of said disc and separated from the latter by a cavity, said flange having an internal bore traversed by the upstream flange of said disc and an upstream flange for fixing it on said downstream cone, a first air circuit secured to said casing for delivering a first flow of cooling air into said cavity via main injectors and holes made in said flange, said sealing device comprising a discharge labyrinth between the downstream cone and said inner casing, a labyrinth of main sub-injectors disposed between the flange and the inner wall of the first circuit air and at least one labyrinth
  • FIG. 1 shows such a high pressure turbine rotor 1, arranged downstream of a combustion chamber 2, and which comprises a turbine disc 3 equipped with blades 4, and a flange 5 arranged upstream of the disc 3.
  • the disc 3 and the flange 5 each have an upstream flange, referenced 3a for the disc 3 and 5a for the flange 5, for their attachment to the downstream end 6 of the downstream cone 7 of the high pressure compressor driven by the rotor 1.
  • the disc 3 has an internal bore 8 through which the shaft 9 of a low pressure turbine passes, and the flange 5 has an internal bore 10 surrounding the flange 3a of the disc 3, and ventilation holes 11 through which a first flow cooling air Cl taken from the bottom of the chamber is delivered into the cavity 12 separating the downstream face of the flange 5 of the upstream face of the disc 3.
  • This cooling air flow C1 circulates radially outward and enters the cells 4a containing the feet of the blades 4 in order to cool the latter.
  • This air flow is taken from the chamber bottom, circulates in a duct 13 disposed in the enclosure 14 separating the flange 5 from the chamber bottom and is rotated by injectors 15 in order to lower the temperature of the air delivered to the cavity 12.
  • a second cooling air flow C2 taken from the chamber bottom circulates downstream in the enclosure 16 separating the downstream cone 7 of the high pressure compressor from the inner casing 17 of the combustion chamber 2.
  • This air flow C2 flows through a discharge labyrinth 18 and enters the enclosure 14 from which part C2a flows through orifices 19 formed in the upstream flange 5a of the flange 5, passes through the bore 10 of the flange 5 in order to cool the radially inner part of the latter and rejoins the air flow C1 for cooling the blades 4.
  • Another part C2b of the second air flow C2 cools the upstream face of the flange 5, bypasses the injectors 15 and is discharged into the upstream purge cavity 20 of the turbine rotor 1.
  • a third part C2c of the third air flow C2 serves to ventilate the upper upstream face 21 of the flange 5 through a second labyrinth 22 located under the injectors 15.
  • This third part C2c enters the enclosure 23 located at downstream of the second labyrinth 22, between the flange 5 and the injectors 15, and is discharged into the upstream purge cavity 20 of the turbine rotor 1 through a third labyrinth 24 located above the injectors 15, or comes to mix with the first air flow Cl.
  • the second air flow C2 serves to cool the downstream cone 7, the barrel connecting the high pressure compressor to the high pressure turbine, and the flange 5.
  • This second air flow circulating axially in an annular space delimited by fixed walls integral with the chamber and movable walls in rotation integral with the rotor, undergoes heating due to the powers dissipated between the rotor and the stator.
  • the air flow C2c used to cool the flange downstream of the second labyrinth 22 located under the injectors 15, is difficult to control because it undergoes the changes in the games of the discharge labyrinth 18, the second labyrinth 22 and the third labyrinth 24 located above the injectors 15, during operation and during the life of the engine.
  • the latter comprises three successive wipers formed on a bent portion 25 of the flange 5, which cooperate with sealing elements 26 integral with an annular structure 27 interposed between the outer wall 28 of the duct 13 and the upstream part 29 of the inner casing 27.
  • This type of labyrinth with three wipers has an appreciable mass, and due to centrifugal forces requires the flange 5 to be attached to the upstream face of the disc turbine 3 by means of a dog clutch 30.
  • the first object of the invention is to modify the sealing device upstream of the main injectors, in order to allow a reduction in the upstream flange.
  • a second object of the invention is to allow a reduction in the purge flow upstream of the rotor and thereby a specific consumption gain.
  • a third object of the invention is to increase the pressure levels in the cooling air supply circuit of the turbine wheel, which is favorable for the cooling of the blades.
  • the first object of the invention is achieved by the fact that the sealing device comprises downstream of the main injectors in the direction of circulation of the second cooling air flow, at least three radially spaced labyrinths arranged between the flange and the annular structure.
  • said three labyrinths each have a single wiper.
  • Each of these labyrinths has a light structure, which allows the elimination of dog clutching.
  • the second and third objects of the invention are achieved by the fact that one of the annular cavities between two consecutive labyrinths among said three labyrinths is supplied by cooling air taken from the second circuit upstream of the labyrinth of sub-injectors. This third flow rate is advantageously rotated in the direction of rotation of the rotor by secondary injectors.
  • these secondary injectors are produced in the form of inclined bores, formed in the annular structure.
  • FIG. 1 is an axial half-section of a high-pressure turbine rotor of a turbojet engine, which shows the cooling air circuits and the various sealing labyrinths according to the prior art, and
  • FIG. 2 is an axial half-section of a turbojet turbine rotor which shows the arrangement of the flange and labyrinths, according to the invention, upstream of the main injectors.
  • FIG 2 there is shown by reference 1 a high pressure turbine rotor disposed downstream of a combustion chamber 2, which comprises a turbine disc 3 equipped at its periphery with blades 4, and a flange 5 disposed upstream of the disc 3.
  • the disc 3 and the flange 5 delimit between them a cavity 12 supplied with cooling air via main injectors 15 and holes 11 formed in the flange 5 in view of the main injectors 15.
  • the main injectors 15 are inclined relative to the axis of rotation of the turbine in order to direct the air supplied in the direction of rotation of the turbine rotor 1.
  • the main injectors 15 are supplied with air taken from the bottom of the combustion chamber by means of an annular duct 13 which has a radially inner wall 13a and a radially outer wall 28.
  • a second labyrinth is arranged under the main injectors, between the radially inner wall 13a and the flange 5.
  • An annular structure 27 is interposed between the radially outer wall 28 of the duct 13 and the upstream part 29 of the inside casing of the combustion chamber 2.
  • These three labyrinths 31, 32 and 33 each have a single wiper, and define between the enclosure 23, in which the main injectors 15 and the upstream purge cavity 2 emerge, two intermediate cavities 34 and 35.
  • the labyrinths 31, 32 and 33 could be replaced by other rotor / stator sealing systems, such as brush seals and one could also have a mixture of labyrinths and brush seals without departing from the scope of the invention. .
  • Bypass 36 formed through the annular conduit 13 connect the chamber 14 chamber bottom disposed downstream of the second labyrinth located under the main injectors with the chamber 37 located radially outside the annular conduit 13.
  • Holes inclined 38 relative to the axis of rotation of the turbine rotor 1 are formed in the annular structure 27 between the enclosure 36 and the cavity 35 located immediately upstream of the purge cavity 20.
  • the holes 38 are inclined in the direction of rotation of the turbine rotor 1 in order to decrease the temperature of the cooling air of the radially outer wall of the flange 5. Because the air entering the cavity 35 through the holes 38 is taken upstream of the sub-injector labyrinth, the pressure in the cavity 35 is increased and the leakage rate through the labyrinths 31 and 32 is reduced. This results in an increase in the pressure in the cavities 23 and 12, which is favorable for the cooling of the blades 4.
  • the holes 38 are calibrated so as to reduce the leakage rate in the purge cavity 20, which makes it possible to reduce the specific consumption by about 0.1%.
  • the holes 38 constitute a system of secondary injectors allowing most of the air in the chamber cavity to be used, via the branches 36 for cooling the top of the upstream flange. This air flow crosses the cooling air of the blades, which is why it is commonly called shunt.
  • the inclined holes 38 can be replaced by injectors with vanes or inclined tubes, mounted in the wall of the annular structure 27 without departing from the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

The invention concerns the ventilation circuitry of a gas turbine rotor (1) comprising a turbine disc (3) an upstream side-plate (5) arranged upstream of a combustion chamber and separated therefrom by a cavity (12). A first cooling air circuit delivers air into the cavity (12) via main injectors (15) and holes provided in the side-plate (5). A second cooling air circuit delivers air through chambers delimited by the inner housing of the combustion chamber and the rotor via a discharge labyrinth, a sub-injector labyrinth and at least one labyrinth arranged downstream of the main injectors between an annular structure (27) and the side-plate (5). The invention is characterized in that there are provided three labyrinths (31, 32, 33) comprising each a leak-prevention unit downstream of the main injectors, and which define two cavities (34, 35) upstream of the purging cavity (20) of the turbine disc (3). One of said cavities (34, 35) is supplied with air tapped from the second circuit upstream of the sub-injector labyrinth through perforations (38) sloping tangentially in the rotational direction of the rotor and arranged in the annular structure (27).

Description

Circuits de ventilation de la turbine d'une turbomachine Turbine engine turbine ventilation circuits
L'invention concerne le domaine de la ventilation de la turbine à haute pression d'une turbomachine d'aviation. Elle concerne plus précisément une turbomachine comportant un dispositif d'étanchéité entre le rotor de turbine et le carter intérieur de la chambre de combustion, ledit rotor de turbine comportant, d'une part, un disque de turbine présentant une bride amont pour sa fixation sur le cône aval d'un compresseur et, d'autre part, un flasque disposé en amont dudit disque et séparé de ce dernier par une cavité, ledit flasque présentant un alésage intérieur traversé par la bride amont dudit disque et une bride amont pour sa fixation sur ledit cône aval, un premier circuit d'air solidaire dudit carter pour délivrer un premier débit d'air de refroidissement dans ladite cavité via des injecteurs principaux et des trous ménagés dans ledit flasque, ledit dispositif d'étanchéité comportant un labyrinthe de décharge entre le cône aval et ledit carter intérieur, un labyrinthe sous-injecteurs principaux disposé entre le flasque et la paroi intérieure du premier circuit d'air et au moins un labyrinthe sur-injecteurs disposé entre le flasque et une structure annulaire prévue entre la paroi extérieure du premier circuit d'air et ledit carter intérieur, un deuxième débit d'air de refroidissement circulant dans un deuxième circuit défini par les enceintes délimitées par ledit carter intérieur et ledit rotor via lesdits labyrinthes, et s'évacuant en partie dans la cavité de purge amont dudit disque. La figure 1 montre un tel rotor de turbine 1 à haute pression, disposé en aval d'une chambre de combustion 2, et qui comporte un disque de turbine 3 équipé d'aubes 4, et un flasque 5 disposé en amont du disque 3. Le disque 3 et le flasque 5 comportent chacun une bride amont, référencée 3a pour le disque 3 et 5a pour le flasque 5, pour leur fixation à l'extrémité aval 6 du cône aval 7 du compresseur à haute pression entraîné par le rotor 1.The invention relates to the field of ventilation of the high pressure turbine of an aviation turbomachine. More specifically, it relates to a turbomachine comprising a sealing device between the turbine rotor and the interior casing of the combustion chamber, said turbine rotor comprising, on the one hand, a turbine disc having an upstream flange for fixing to the downstream cone of a compressor and, on the other hand, a flange disposed upstream of said disc and separated from the latter by a cavity, said flange having an internal bore traversed by the upstream flange of said disc and an upstream flange for fixing it on said downstream cone, a first air circuit secured to said casing for delivering a first flow of cooling air into said cavity via main injectors and holes made in said flange, said sealing device comprising a discharge labyrinth between the downstream cone and said inner casing, a labyrinth of main sub-injectors disposed between the flange and the inner wall of the first circuit air and at least one labyrinth on injectors disposed between the flange and an annular structure provided between the outer wall of the first air circuit and said inner casing, a second cooling air flow circulating in a second circuit defined by the enclosures delimited by said inner casing and said rotor via said labyrinths, and partially discharging into the purge cavity upstream of said disc. FIG. 1 shows such a high pressure turbine rotor 1, arranged downstream of a combustion chamber 2, and which comprises a turbine disc 3 equipped with blades 4, and a flange 5 arranged upstream of the disc 3. The disc 3 and the flange 5 each have an upstream flange, referenced 3a for the disc 3 and 5a for the flange 5, for their attachment to the downstream end 6 of the downstream cone 7 of the high pressure compressor driven by the rotor 1.
Le disque 3 comporte un alésage intérieur 8 traversé par l'arbre 9 d'une turbine à basse pression, et le flasque 5 présente un alésage intérieur 10 entourant la bride 3a du disque 3, et des trous de ventilation 11 par lesquels un premier débit d'air Cl de refroidissement prélevé en fond de chambre est délivré dans la cavité 12 séparant la face aval du flasque 5 de la face amont du disque 3. Ce débit d'air Cl de refroidissement circule radialement vers l'extérieur et pénètre dans les alvéoles 4a contenant les pieds des aubes 4 afin de refroidir ces dernières. Ce débit d'air est prélevé dans le fond de chambre, circule dans un conduit 13 disposé dans l'enceinte 14 séparant le flasque 5 du fond de chambre et est mis en rotation par des injecteurs 15 afin d'abaisser la température de l'air délivré dans la cavité 12.The disc 3 has an internal bore 8 through which the shaft 9 of a low pressure turbine passes, and the flange 5 has an internal bore 10 surrounding the flange 3a of the disc 3, and ventilation holes 11 through which a first flow cooling air Cl taken from the bottom of the chamber is delivered into the cavity 12 separating the downstream face of the flange 5 of the upstream face of the disc 3. This cooling air flow C1 circulates radially outward and enters the cells 4a containing the feet of the blades 4 in order to cool the latter. This air flow is taken from the chamber bottom, circulates in a duct 13 disposed in the enclosure 14 separating the flange 5 from the chamber bottom and is rotated by injectors 15 in order to lower the temperature of the air delivered to the cavity 12.
Un deuxième débit d'air C2 de refroidissement prélevé en fond de chambre circule vers l'aval dans l'enceinte 16 séparant le cône aval 7 du compresseur à haute pression du carter intérieur 17 de la chambre de combustion 2. Ce débit d'air C2 s'écoule à travers un labyrinthe de décharge 18 et pénètre dans l'enceinte 14 d'où une partie C2a s'écoule à travers des orifices 19 ménagés dans la bride amont 5a du flasque 5, passe à travers l'alésage 10 du flasque 5 afin de refroidir la partie radialement intérieure de ce dernier et rejoint le débit d'air Cl de refroidissement des aubes 4. Une autre partie C2b du deuxième débit d'air C2 refroidit la face amont du flasque 5, contourne les injecteurs 15 et est évacuée dans la cavité de purge amont 20 du rotor de turbine 1.A second cooling air flow C2 taken from the chamber bottom circulates downstream in the enclosure 16 separating the downstream cone 7 of the high pressure compressor from the inner casing 17 of the combustion chamber 2. This air flow C2 flows through a discharge labyrinth 18 and enters the enclosure 14 from which part C2a flows through orifices 19 formed in the upstream flange 5a of the flange 5, passes through the bore 10 of the flange 5 in order to cool the radially inner part of the latter and rejoins the air flow C1 for cooling the blades 4. Another part C2b of the second air flow C2 cools the upstream face of the flange 5, bypasses the injectors 15 and is discharged into the upstream purge cavity 20 of the turbine rotor 1.
Enfin, une troisième partie C2c du troisième débit d'air C2 sert à ventiler la face supérieure amont 21 du flasque 5 au travers d'un deuxième labyrinthe 22 situé sous les injecteurs 15. Cette troisième partie C2c pénètre dans l'enceinte 23 située en aval du deuxième labyrinthe 22, entre le flasque 5 et les injecteurs 15, et est évacuée dans la cavité de purge amont 20 du rotor de turbine 1 à travers un troisième labyrinthe 24 situé au-dessus des injecteurs 15, ou vient se mélanger au premier débit d'air Cl.Finally, a third part C2c of the third air flow C2 serves to ventilate the upper upstream face 21 of the flange 5 through a second labyrinth 22 located under the injectors 15. This third part C2c enters the enclosure 23 located at downstream of the second labyrinth 22, between the flange 5 and the injectors 15, and is discharged into the upstream purge cavity 20 of the turbine rotor 1 through a third labyrinth 24 located above the injectors 15, or comes to mix with the first air flow Cl.
Le deuxième débit d'air C2 sert à refroidir le cône aval 7, le fût de liaison du compresseur à haute pression à la turbine à haute pression, et le flasque 5. Ce deuxième débit d'air circulant axialement dans un espace annulaire délimité par des parois fixes solidaires de la chambre et des parois mobiles en rotation solidaires du rotor, subit des échauffements liés aux puissances dissipées entre le rotor et le stator.The second air flow C2 serves to cool the downstream cone 7, the barrel connecting the high pressure compressor to the high pressure turbine, and the flange 5. This second air flow circulating axially in an annular space delimited by fixed walls integral with the chamber and movable walls in rotation integral with the rotor, undergoes heating due to the powers dissipated between the rotor and the stator.
Pour abaisser la température du flasque amont suivant les spécifications de sa tenue mécanique, il est donc nécessaire d'augmenter le débit d'air C2 traversant le labyrinthe de décharge 18 situé en aval du compresseur à haute pression, et de le rejeter soit dans le circuit de refroidissement des aubes, soit dans la veine en amont de la roue de turbine à haute pression. Cette augmentation de débit génère une augmentation de la température de l'air de refroidissement des aubes du fait du rejet d'un air réchauffé dans le circuit de refroidissement des aubes, et une chute des performances de la turbine du fait du rejet dans la veine.To lower the temperature of the upstream flange according to the specifications of its mechanical strength, it is therefore necessary to increase the air flow C2 passing through the discharge labyrinth 18 located downstream of the high pressure compressor, and to reject it either in the circuit blade cooling, either in the stream upstream of the high pressure turbine wheel. This increase in flow generates an increase in the temperature of the air cooling the blades due to the rejection of heated air in the cooling circuit of the blades, and a drop in the performance of the turbine due to the rejection in the vein. .
En outre le débit d'air C2c servant au refroidissement du flasque en aval du deuxième labyrinthe 22 situé sous les injecteurs 15, est peu maîtrisable car il subit les évolutions des jeux du labyrinthe de décharge 18, du deuxième labyrinthe 22 et du troisième labyrinthe 24 situé au- dessus des injecteurs 15, au cours du fonctionnement et au cours de la vie du moteur.In addition, the air flow C2c used to cool the flange downstream of the second labyrinth 22 located under the injectors 15, is difficult to control because it undergoes the changes in the games of the discharge labyrinth 18, the second labyrinth 22 and the third labyrinth 24 located above the injectors 15, during operation and during the life of the engine.
Pour éviter des fuites importantes à travers le troisième labyrinthe 24 situé au-dessus des injecteurs 15, ce dernier comporte trois lechettes successives formées sur une portion coudée 25 du flasque 5, qui coopèrent avec des éléments d'étanchéité 26 solidaires d'une structure annulaire 27 interposée entre la paroi extérieure 28 du conduit 13 et la partie amont 29 du carter intérieur 27. Ce type de labyrinthe à trois lechettes a une masse appréciable, et du fait des forces centrifuges nécessite un accrochage du flasque 5 sur la face amont du disque de turbine 3 au moyen d'un crabotage 30.To avoid significant leaks through the third labyrinth 24 located above the injectors 15, the latter comprises three successive wipers formed on a bent portion 25 of the flange 5, which cooperate with sealing elements 26 integral with an annular structure 27 interposed between the outer wall 28 of the duct 13 and the upstream part 29 of the inner casing 27. This type of labyrinth with three wipers has an appreciable mass, and due to centrifugal forces requires the flange 5 to be attached to the upstream face of the disc turbine 3 by means of a dog clutch 30.
L'état de la technique est illustré également par FR 2 541 371 et FR 2 744 761. Ces deux documents enseignent la présence de deux labyrinthes en aval des injecteurs principaux, et le croisement du premier débit d'air par le deuxième débit d'air grâce à des dérivations traversant le circuit du premier débit d'air.The state of the art is also illustrated by FR 2 541 371 and FR 2 744 761. These two documents teach the presence of two labyrinths downstream of the main injectors, and the crossing of the first air flow with the second air flow. air through branches passing through the circuit of the first air flow.
Le premier but de l'invention est de modifier le dispositif d'étanchéité en amont des injecteurs principaux, afin de permettre un allégement du flasque amont. Un deuxième but de l'invention est de permettre une diminution du débit de purge en amont du rotor et par le fait un gain de consommation spécifique.The first object of the invention is to modify the sealing device upstream of the main injectors, in order to allow a reduction in the upstream flange. A second object of the invention is to allow a reduction in the purge flow upstream of the rotor and thereby a specific consumption gain.
Un troisième but de l'invention est d'augmenter les niveaux de pression dans le circuit d'alimentation en air de refroidissement de la roue de turbine, ce qui est favorable au refroidissement des aubes. Le premier but de l'invention est atteint par le fait que le dispositif d'étanchéité comporte en aval des injecteurs principaux dans le sens de circulation du deuxième débit d'air de refroidissement, au moins trois labyrinthes radialement espacés disposés entre le flasque et la structure annulaire.A third object of the invention is to increase the pressure levels in the cooling air supply circuit of the turbine wheel, which is favorable for the cooling of the blades. The first object of the invention is achieved by the fact that the sealing device comprises downstream of the main injectors in the direction of circulation of the second cooling air flow, at least three radially spaced labyrinths arranged between the flange and the annular structure.
Très avantageusement, lesdits trois labyrinthes comportent chacun une seule léchette.Very advantageously, said three labyrinths each have a single wiper.
Chacun de ces labyrinthes a ainsi une structure légère, ce qui permet l'élimination du crabotage. Les deuxième et troisième buts de l'invention sont atteints par le fait que l'une des cavités annulaires comprises entre deux labyrinthes consécutifs parmi lesdits trois labyrinthes est alimentée par un air de refroidissement prélevé dans le deuxième circuit en amont du labyrinthe sous-injecteurs. Ce troisième débit est avantageusement mis en rotation dans le sens de rotation du rotor par des injecteurs secondaires.Each of these labyrinths has a light structure, which allows the elimination of dog clutching. The second and third objects of the invention are achieved by the fact that one of the annular cavities between two consecutive labyrinths among said three labyrinths is supplied by cooling air taken from the second circuit upstream of the labyrinth of sub-injectors. This third flow rate is advantageously rotated in the direction of rotation of the rotor by secondary injectors.
De préférence, ces injecteurs secondaires sont réalisés sous la forme de perçages inclinés, ménagés dans la structure annulaire.Preferably, these secondary injectors are produced in the form of inclined bores, formed in the annular structure.
D'autres avantages et caractéristiques de l'invention ressortiront à la lecture de la description suivante faite à titre d'exemple et en référence aux dessins annexés dans lesquels :Other advantages and characteristics of the invention will emerge on reading the following description given by way of example and with reference to the appended drawings in which:
- la figure 1 est une demi-coupe axiale d'un rotor de turbine à haute pression d'un turboréacteur, qui montre les circuits d'air de refroidissement et les différents labyrinthes d'étanchéité selon l'art antérieur, etFIG. 1 is an axial half-section of a high-pressure turbine rotor of a turbojet engine, which shows the cooling air circuits and the various sealing labyrinths according to the prior art, and
- la figure 2 est une demi-coupe axiale d'un rotor de turbine de turboréacteur qui montre la disposition du flasque et des labyrinthes, selon l'invention, en amont des injecteurs principaux.- Figure 2 is an axial half-section of a turbojet turbine rotor which shows the arrangement of the flange and labyrinths, according to the invention, upstream of the main injectors.
L'état de la technique illustré par la figure 1 a été discuté dans l'introduction et ne nécessite pas d'autres explications.The state of the art illustrated in Figure 1 has been discussed in the introduction and does not require further explanation.
Sur la figure 2, on a représenté par la référence 1 un rotor de turbine à haute pression disposé en aval d'une chambre de combustion 2, qui comporte un disque de turbine 3 équipé à sa périphérie d'aubes 4, et un flasque 5 disposé en amont du disque 3. Le disque 3 et le flasque 5 délimitent entre eux une cavité 12 alimentée en air de refroidissement via des injecteurs principaux 15 et des trous 11 ménagés dans le flasque 5 en regard des injecteurs principaux 15. Les injecteurs principaux 15 sont inclinés par rapport à l'axe de rotation de la turbine afin de diriger l'air fourni dans le sens de rotation du rotor de turbine 1.In Figure 2, there is shown by reference 1 a high pressure turbine rotor disposed downstream of a combustion chamber 2, which comprises a turbine disc 3 equipped at its periphery with blades 4, and a flange 5 disposed upstream of the disc 3. The disc 3 and the flange 5 delimit between them a cavity 12 supplied with cooling air via main injectors 15 and holes 11 formed in the flange 5 in view of the main injectors 15. The main injectors 15 are inclined relative to the axis of rotation of the turbine in order to direct the air supplied in the direction of rotation of the turbine rotor 1.
Les injecteurs principaux 15 sont alimentés en air prélevé dans le fond de la chambre de combustion au moyen d'un conduit annulaire 13 qui comporte une paroi radialement intérieure 13a et une paroi radialement extérieure 28.The main injectors 15 are supplied with air taken from the bottom of the combustion chamber by means of an annular duct 13 which has a radially inner wall 13a and a radially outer wall 28.
Un deuxième labyrinthe, non montré sur la figure 2, est disposé sous les injecteurs principaux, entre la paroi radialement intérieure 13a et le flasque 5. Une structure annulaire 27 est interposée entre la paroi radialement extérieure 28 du conduit 13 et la partie amont 29 du carter intérieur de la chambre de combustion 2.A second labyrinth, not shown in FIG. 2, is arranged under the main injectors, between the radially inner wall 13a and the flange 5. An annular structure 27 is interposed between the radially outer wall 28 of the duct 13 and the upstream part 29 of the inside casing of the combustion chamber 2.
Ainsi que cela se voit sur la figure 2, il est prévu, selon l'invention, entre la cavité 23 située en amont du deuxième labyrinthe, et la cavité de purge amont 20 du rotor de turbine 1, au-dessus des injecteurs principaux 15, trois labyrinthes radialement espacés, 31, 32 et 33, en lieu et place du troisième labyrinthe 24 selon l'état de la technique. Ces trois labyrinthes 31, 32 et 33 comportent chacun une seule léchette, et définissent entre l'enceinte 23, dans laquelle émergent les injecteurs principaux 15 et la cavité de purge amont 2, deux cavités intermédiaires 34 et 35.As can be seen in FIG. 2, according to the invention, provision is made between the cavity 23 located upstream of the second labyrinth, and the upstream purge cavity 20 of the turbine rotor 1, above the main injectors 15 , three radially spaced labyrinths, 31, 32 and 33, in place of the third labyrinth 24 according to the prior art. These three labyrinths 31, 32 and 33 each have a single wiper, and define between the enclosure 23, in which the main injectors 15 and the upstream purge cavity 2 emerge, two intermediate cavities 34 and 35.
Les labyrinthes 31, 32 et 33 pourraient être remplacés par d'autres systèmes d'étanchéité rotor/stator, tels que des joints à brosses et on pourrait également avoir un panachage de labyrinthes et de joints à brosse sans sortir du cadre de l'invention.The labyrinths 31, 32 and 33 could be replaced by other rotor / stator sealing systems, such as brush seals and one could also have a mixture of labyrinths and brush seals without departing from the scope of the invention. .
Des dérivations 36 ménagées à travers le conduit annulaire 13 mettent en communication l'enceinte 14 de fond de chambre disposée en aval du deuxième labyrinthe situé sous les injecteurs principaux avec l'enceinte 37 située radialement à l'extérieur du conduit annulaire 13. Des perçages inclinés 38 par rapport à l'axe de rotation du rotor de turbine 1 sont ménagés dans la structure annulaire 27 entre l'enceinte 36 et la cavité 35 située immédiatement en amont de la cavité de purge 20. Les perçages 38 sont inclinés dans le sens de rotation du rotor de turbine 1 afin de diminuer la température de l'air de refroidissement de la paroi radialement extérieure du flasque 5. Du fait que l'air pénétrant dans la cavité 35 à travers les perçages 38 est prélevé en amont du labyrinthe sous-injecteurs, la pression dans la cavité 35 est augmentée et le débit de fuite à travers les labyrinthes 31 et 32 est diminué. Ceci se traduit par une augmentation de la pression dans les cavités 23 et 12, ce qui est favorable au refroidissement des aubes 4.Bypass 36 formed through the annular conduit 13 connect the chamber 14 chamber bottom disposed downstream of the second labyrinth located under the main injectors with the chamber 37 located radially outside the annular conduit 13. Holes inclined 38 relative to the axis of rotation of the turbine rotor 1 are formed in the annular structure 27 between the enclosure 36 and the cavity 35 located immediately upstream of the purge cavity 20. The holes 38 are inclined in the direction of rotation of the turbine rotor 1 in order to decrease the temperature of the cooling air of the radially outer wall of the flange 5. Because the air entering the cavity 35 through the holes 38 is taken upstream of the sub-injector labyrinth, the pressure in the cavity 35 is increased and the leakage rate through the labyrinths 31 and 32 is reduced. This results in an increase in the pressure in the cavities 23 and 12, which is favorable for the cooling of the blades 4.
Le fait que l'invention remplace un labyrinthe sur-injecteurs 24 selon l'état de la technique, qui comporte trois lechettes, par trois labyrinthes 31, 32, 33 radialement espacés et ayant chacun une seule léchette, permet de simplifier la structure de la partie radialement extérieure du flasque 5. Cette partie se présente sous la forme d'un voile dont l'extrémité radialement extérieure est en appui sur le pied des aubes 4 et sur les dents du disque. Cette disposition permet de diminuer la masse du flasque 5 et supprime le crabotage du flasque 5 sur le disque 3, ce qui augmente la durée de vie du flasque 5 et du disque 3.The fact that the invention replaces a labyrinth on injectors 24 according to the state of the art, which comprises three wipers, by three labyrinths 31, 32, 33 radially spaced and each having a single wiper, simplifies the structure of the Radially outer part of the flange 5. This part is in the form of a veil, the radially outer end of which rests on the foot of the blades 4 and on the teeth of the disc. This arrangement makes it possible to reduce the mass of the flange 5 and eliminates the clutching of the flange 5 on the disc 3, which increases the life of the flange 5 and of the disc 3.
Les perçages 38 sont calibrés de manière à réduire le débit de fuite dans la cavité de purge 20, ce qui permet de réduire la consommation spécifique de 0,1 % environ.The holes 38 are calibrated so as to reduce the leakage rate in the purge cavity 20, which makes it possible to reduce the specific consumption by about 0.1%.
Les perçages 38 constituent un système d'injecteurs secondaires permettant d'utiliser la majeure partie de l'air de la cavité sous chambre, via les dérivations 36 pour le refroidissement du sommet du flasque amont. Ce débit d'air croise l'air de refroidissement des aubages, c'est pourquoi on l'appelle couramment shunt. Les perçages inclinés 38 peuvent être remplacés par des injecteurs à palettes ou à tubes inclinés, montés dans la paroi de la structure annulaire 27 sans sortir du cadre de l'invention. The holes 38 constitute a system of secondary injectors allowing most of the air in the chamber cavity to be used, via the branches 36 for cooling the top of the upstream flange. This air flow crosses the cooling air of the blades, which is why it is commonly called shunt. The inclined holes 38 can be replaced by injectors with vanes or inclined tubes, mounted in the wall of the annular structure 27 without departing from the scope of the invention.

Claims

REVENDICATIONS
1. Turbomachine comportant un dispositif d'étanchéité entre le rotor de turbine (1) et le carter intérieur de la chambre de combustion, ledit rotor de turbine comportant, d'une part, un disque de turbine (3) présentant une bride amont pour sa fixation sur le cône aval d'un compresseur et, d'autre part, un flasque (5) disposé en amont dudit disque et séparé de ce dernier par une cavité (12), ledit flasque présentant un alésage intérieur traversé par la bride amont dudit disque et une bride amont pour sa fixation sur ledit cône aval, un premier circuit d'air solidaire dudit carter intérieur pour délivrer un premier débit d'air de refroidissement dans ladite cavité (12) via des injecteurs principaux (15) et des trous (11) ménagés dans ledit flasque, ledit dispositif d'étanchéité comportant un labyrinthe de décharge entre le cône aval et ledit carter intérieur, un labyrinthe sous-injecteurs principaux disposé entre le flasque et la paroi intérieure du premier circuit d'air et au moins un labyrinthe sur- injecteurs disposé entre le flasque et une structure annulaire (27) prévue entre la paroi extérieure du premier circuit d'air et ledit carter intérieur, un deuxième débit d'air de refroidissement circulant dans un deuxième circuit défini par les enceintes délimitées par ledit carter intérieur et ledit rotor, via lesdits labyrinthes, et s'évacuant en partie dans la cavité de purge (20) dudit disque, caractérisée par le fait que le dispositif d'étanchéité comporte en aval des injecteurs principaux, dans le sens de circulation du deuxième débit d'air de refroidissement, au moins trois labyrinthes (31, 32, 33) radialement espacés disposés entre le flasque (5) et la structure annulaire (27).1. Turbomachine comprising a sealing device between the turbine rotor (1) and the inner casing of the combustion chamber, said turbine rotor comprising, on the one hand, a turbine disc (3) having an upstream flange for its attachment to the downstream cone of a compressor and, on the other hand, a flange (5) disposed upstream of said disc and separated from the latter by a cavity (12), said flange having an internal bore traversed by the upstream flange of said disc and an upstream flange for fixing it to said downstream cone, a first air circuit secured to said inner casing to deliver a first flow of cooling air into said cavity (12) via main injectors (15) and holes (11) formed in said flange, said sealing device comprising a discharge labyrinth between the downstream cone and said inner casing, a main sub-injector labyrinth disposed between the flange and the inner wall of the first c air circuit and at least one labyrinth of over-injectors disposed between the flange and an annular structure (27) provided between the outer wall of the first air circuit and said inner casing, a second cooling air flow circulating in a second circuit defined by the enclosures delimited by said inner casing and said rotor, via said labyrinths, and partly discharging into the purge cavity (20) of said disc, characterized in that the sealing device comprises downstream main injectors, in the direction of circulation of the second cooling air flow, at least three radially spaced labyrinths (31, 32, 33) disposed between the flange (5) and the annular structure (27).
2. Turbomachine selon la revendication 1, caractérisée par le fait que lesdits trois labyrinthes comportent chacun une seule léchette. 2. Turbomachine according to claim 1, characterized in that said three labyrinths each have a single wiper.
3. Turbomachine selon l'une des revendications 1 ou 2, caractérisée par le fait que l'une des cavités (35) annulaires comprises entre deux labyrinthes consécutifs (32, 33) parmi lesdits trois labyrinthes est alimentée par un air de refroidissement prélevé dans le deuxième circuit en amont du labyrinthe sous-injecteurs. 3. Turbomachine according to one of claims 1 or 2, characterized in that one of the annular cavities (35) between two consecutive labyrinths (32, 33) among said three labyrinths is supplied by cooling air taken from the second circuit upstream of the sub-injector labyrinth.
4. Turbomachine selon la revendication 3, caractérisée par le fait que le débit d'air de refroidissement est délivré par des injecteurs secondaires qui le mettent en rotation dans le sens de rotation du rotor.4. Turbomachine according to claim 3, characterized in that the cooling air flow is delivered by secondary injectors which set it in rotation in the direction of rotation of the rotor.
5. Turbomachine selon la revendication 4, caractérisée par le fait que les injecteurs secondaires sont réalisés sous la forme de perçages (38) inclinés ménagées dans la structure annulaire (27). 5. A turbomachine according to claim 4, characterized in that the secondary injectors are produced in the form of inclined bores (38) formed in the annular structure (27).
PCT/FR2003/001958 2002-06-27 2003-06-25 Gas turbine ventilation circuitry WO2004003347A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002490619A CA2490619A1 (en) 2002-06-27 2003-06-25 Gas turbine ventilation circuitry
US10/517,613 US20050201859A1 (en) 2002-06-27 2003-06-25 Gas turbine ventilation circuitry
JP2004516864A JP2005530956A (en) 2002-06-27 2003-06-25 Gas turbine ventilation circuit
AU2003253082A AU2003253082A1 (en) 2002-06-27 2003-06-25 Gas turbine ventilation circuitry
EP03761639A EP1552111A1 (en) 2002-06-27 2003-06-25 Gas turbine ventilation circuitry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0207979A FR2841591B1 (en) 2002-06-27 2002-06-27 VENTILATION CIRCUITS OF THE TURBINE OF A TURBOMACHINE
FR02/07979 2002-06-27

Publications (1)

Publication Number Publication Date
WO2004003347A1 true WO2004003347A1 (en) 2004-01-08

Family

ID=29724922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001958 WO2004003347A1 (en) 2002-06-27 2003-06-25 Gas turbine ventilation circuitry

Country Status (9)

Country Link
US (1) US20050201859A1 (en)
EP (1) EP1552111A1 (en)
JP (1) JP2005530956A (en)
AU (1) AU2003253082A1 (en)
CA (1) CA2490619A1 (en)
FR (1) FR2841591B1 (en)
MA (1) MA27255A1 (en)
RU (1) RU2005101887A (en)
WO (1) WO2004003347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963377A2 (en) 2014-06-30 2016-01-06 Marc Hartmann Apparatus for releasing fluid to the atmosphere

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1508672A1 (en) 2003-08-21 2005-02-23 Siemens Aktiengesellschaft Segmented fastening ring for a turbine
FR2861129A1 (en) * 2003-10-21 2005-04-22 Snecma Moteurs Labyrinth seal device for gas turbine device, has ventilation orifices provided at proximity of fixation unit, and compressor with last stage from which upward air is collected immediately
FR2869094B1 (en) * 2004-04-15 2006-07-21 Snecma Moteurs Sa ANNULAR COMBUSTION CHAMBER OF INTERNAL FLANGE TURBOMACHINE WITH IMPROVED FASTENING
GB0412476D0 (en) 2004-06-04 2004-07-07 Rolls Royce Plc Seal system
US20090238683A1 (en) * 2008-03-24 2009-09-24 United Technologies Corporation Vane with integral inner air seal
EP3124742B1 (en) * 2015-07-28 2018-11-07 MTU Aero Engines GmbH Gas turbine
JP6209199B2 (en) * 2015-12-09 2017-10-04 三菱日立パワーシステムズ株式会社 Seal fin, seal structure, turbomachine and method of manufacturing seal fin
US10408077B2 (en) * 2017-01-26 2019-09-10 United Tehnologies Corporation Gas turbine seal
CN107131009B (en) * 2017-05-16 2019-02-15 中国科学院工程热物理研究所 A kind of self-locking seal structure of turbomachine and the engine with it
CN108716423B (en) * 2018-05-08 2020-06-02 中国科学院工程热物理研究所 Sealing structure for fish mouth between turbine rotor and stator of gas turbine
FR3101670B1 (en) 2019-10-08 2021-10-08 Safran Aircraft Engines Injector for a high pressure turbine
US11421597B2 (en) 2019-10-18 2022-08-23 Pratt & Whitney Canada Corp. Tangential on-board injector (TOBI) assembly
US11415016B2 (en) * 2019-11-11 2022-08-16 Rolls-Royce Plc Turbine section assembly with ceramic matrix composite components and interstage sealing features
FR3115562A1 (en) 2020-10-26 2022-04-29 Safran Aircraft Engines Turbomachinery Turbine Cooling Air Injector
FR3118891B1 (en) 2021-01-15 2023-03-24 Safran Aircraft Engines Manufacture of a turbine injector by laser fusion on a powder bed
US11598265B2 (en) * 2021-02-03 2023-03-07 Pratt & Whitney Canada Corp. Tangential on-board injector
FR3126140B1 (en) 2021-08-11 2024-04-26 Safran Aircraft Engines Sealing flange for turbomachine turbine
FR3127521B1 (en) 2021-09-24 2023-12-15 Safran Aircraft Engines COOLING AIR INJECTION HOUSING FOR TURBOMACHINE TURBINE
FR3127518A1 (en) 2021-09-28 2023-03-31 Safran Helicopter Engines TURBOMACHINE STAGE INCLUDING AT LEAST ONE SEAL RING
FR3127979B1 (en) * 2021-10-11 2024-05-31 Safran Aircraft Engines Axial lip seal for turbomachine
FR3129426B1 (en) 2021-11-19 2024-08-30 Safran Aircraft Engines Turbomachine with passive regulation of the ventilation flow of the turbine injectors
CN116537895B (en) * 2023-07-04 2023-09-15 中国航发四川燃气涡轮研究院 Pre-rotation air supply system with comb gap control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2541371A1 (en) * 1983-02-22 1984-08-24 Gen Electric COOLING CIRCUIT FOR GAS TURBINE ENGINE
EP0501066A1 (en) * 1991-02-28 1992-09-02 General Electric Company Turbine rotor disk with integral blade cooling air slots and pumping vanes
US5402636A (en) * 1993-12-06 1995-04-04 United Technologies Corporation Anti-contamination thrust balancing system for gas turbine engines
FR2744761A1 (en) * 1996-02-08 1997-08-14 Snecma LABYRINTH DISK WITH INCORPORATED STIFFENER FOR TURBOMACHINE ROTOR
EP1211381A1 (en) * 2000-11-30 2002-06-05 Snecma Moteurs Cover plate for a bladed rotor disk

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984630A (en) * 1997-12-24 1999-11-16 General Electric Company Reduced windage high pressure turbine forward outer seal
FR2831918B1 (en) * 2001-11-08 2004-05-28 Snecma Moteurs STATOR FOR TURBOMACHINE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2541371A1 (en) * 1983-02-22 1984-08-24 Gen Electric COOLING CIRCUIT FOR GAS TURBINE ENGINE
EP0501066A1 (en) * 1991-02-28 1992-09-02 General Electric Company Turbine rotor disk with integral blade cooling air slots and pumping vanes
US5402636A (en) * 1993-12-06 1995-04-04 United Technologies Corporation Anti-contamination thrust balancing system for gas turbine engines
FR2744761A1 (en) * 1996-02-08 1997-08-14 Snecma LABYRINTH DISK WITH INCORPORATED STIFFENER FOR TURBOMACHINE ROTOR
EP1211381A1 (en) * 2000-11-30 2002-06-05 Snecma Moteurs Cover plate for a bladed rotor disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963377A2 (en) 2014-06-30 2016-01-06 Marc Hartmann Apparatus for releasing fluid to the atmosphere

Also Published As

Publication number Publication date
FR2841591B1 (en) 2006-01-13
RU2005101887A (en) 2005-06-27
JP2005530956A (en) 2005-10-13
US20050201859A1 (en) 2005-09-15
EP1552111A1 (en) 2005-07-13
CA2490619A1 (en) 2004-01-08
FR2841591A1 (en) 2004-01-02
MA27255A1 (en) 2005-03-01
AU2003253082A1 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
WO2004003347A1 (en) Gas turbine ventilation circuitry
EP1785588B1 (en) Ventilation device for a turbine disk in a gas turbine engine
EP1367221B1 (en) Double injector arrangement for cooling of the sideplate of a high pressure turbine
CA2764408C (en) Turbine engine including an improved means for adjusting the flow rate of a secondary air flow sampled at the output of a high-pressure compressor
EP1316675B1 (en) Stator for a turbomachine
CA2758175C (en) Double-body gas turbine engine provided with an inter-shaft bearing
CA2475404C (en) Exchanger on turbine ventilation system
EP1445421B1 (en) Apparatus for the ventilation of a high pressure turbine rotor
FR2772835A1 (en) Flow transfer system for transferring flow of coolant from a static element to rotor of gas turbine
FR2577280A1 (en) GAS TURBINE ENGINE
FR3030614A1 (en) TURBOMACHINE HIGH PRESSURE TURBINE ASSEMBLY
FR2464363A1 (en) TURBINE ROTOR FOR TURBOMACHINES WITH COOLANT TRANSFER SYSTEM
EP1504178B1 (en) Gas turbine with stator shroud in the cavity beneath the chamber
FR2688271A1 (en) PROPULSION ENGINE, PARTICULARLY FOR SUPERSONIC AIRCRAFT.
FR2881472A1 (en) Gas turbine engine for propulsion of aircraft, has outer radial seal arranged between conduit and turbine and permitting to withdraw cooling air from enclosure of combustion chamber in downstream of diffuser
FR2883926A1 (en) Air cooler for aircraft gas turbine engine high-pressure rotor has valve-controlled circuit drawing air in advance of combustion chamber
WO2023047034A1 (en) High-pressure gas turbine for a turbine engine and turbine engine
FR3127519A1 (en) HIGH PRESSURE GAS TURBINE FOR TURBOMACHINE
WO2018215718A1 (en) Blade for a turbomachine turbine, comprising internal passages for circulating cooling air
FR2712918A1 (en) Turbomachine with combustion and turbine assembly

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003253082

Country of ref document: AU

Ref document number: 4019/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2490619

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10517613

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004516864

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003761639

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005101887

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2003761639

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003761639

Country of ref document: EP