EP1445421B1 - Apparatus for the ventilation of a high pressure turbine rotor - Google Patents

Apparatus for the ventilation of a high pressure turbine rotor Download PDF

Info

Publication number
EP1445421B1
EP1445421B1 EP04100404A EP04100404A EP1445421B1 EP 1445421 B1 EP1445421 B1 EP 1445421B1 EP 04100404 A EP04100404 A EP 04100404A EP 04100404 A EP04100404 A EP 04100404A EP 1445421 B1 EP1445421 B1 EP 1445421B1
Authority
EP
European Patent Office
Prior art keywords
upstream
downstream
disk
turbine
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04100404A
Other languages
German (de)
French (fr)
Other versions
EP1445421A1 (en
Inventor
Patrick Rossi
Jean-Claude Christian Taillant
Maurice Guy Judet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1445421A1 publication Critical patent/EP1445421A1/en
Application granted granted Critical
Publication of EP1445421B1 publication Critical patent/EP1445421B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc

Definitions

  • the present invention relates generally to the field of ventilation of a high-pressure turbine rotor of a turbomachine.
  • the invention relates to a ventilation device of a high pressure turbine rotor, comprising an upstream turbine disk and a downstream turbine disk.
  • FIG. 1 represents a conventional high-pressure turbine rotor 1 of the prior art, disposed downstream of a combustion chamber 2, and comprising an upstream turbine disk 3 equipped with vanes 4, as well as a disk downstream turbine 5 equipped with vanes 6.
  • the upstream disk 3 is provided on the one hand with an upstream flange 8 ensuring its fixing on a spacer 9 disposed around a rotor shaft 11 of a low-pressure turbine, and on the other hand with a downstream flange 10 fixedly assembled to an upstream flange 12 of the downstream disc 5.
  • an inter-disc seal 14, carried by a hollow structure 16 integral with a stationary distributor stage 18 or stator, is situated at the level of the assembly between the two flanges 10 and 12.
  • the inter-disc seal 14, of the labyrinth seal type thus makes it possible to create a separation between the two rotor stages 20 and 22, arranged on either side of the stage distributor 18.
  • downstream disk 5 comprises a downstream flange 13, also assembled on the spacer 9 surrounding the shaft 11 of the low pressure turbine.
  • a first cooling air flow D1 taken from the bottom of the combustion chamber 2 is delivered into a cavity 26 delimited on the one hand by means of a downstream face.
  • This air flow D1 is actually taken from the bottom of the chamber combustion 2, then conveyed in a cavity 30 in particular delimited by an upstream labyrinth seal 32 and a downstream labyrinth seal 34, via a conduit 28 disposed in an enclosure 29 separating the upstream labyrinth 24 from the bottom of the combustion chamber 2, and using injectors 36 arranged in the extension of the conduit 28 and opening into the cavity 30.
  • the seals 32 and 34 are arranged to be in contact with the upstream labyrinth 24 .
  • cooling air situated in the cavity 30 is able to penetrate into the cavity 26 by passing orifices 38 provided in an upstream part of the upstream labyrinth 24, these orifices 38 being axes substantially perpendicular to the longitudinal axis 40 of the turbine.
  • the cooling air flow D1 flows in the cavity 26 first longitudinally and then radially outwards along the upstream face of the upstream labyrinth 24 in order to cool it, then enters the cells 4a containing the feet of the blades 4 to cool them too.
  • a second cooling air flow D2 also taken from the bottom of the combustion chamber 2, enters the chamber 29 and flows through orifices 44 and 42 respectively provided in the upstream portion of the upstream labyrinth 24, and in the upstream flange 8 of the upstream disk 3.
  • the second cooling air flow D2 borrows an annular chamber 46 internally defined by the spacer 9, and externally delimited successively, from upstream to downstream, the flange 8, an inner bore 48 of the upstream disk 3, the flanges 10 and 12, an inner bore 50 of the downstream disk 5, and the flange 13.
  • a first portion D2a of the second cooling air flow D2 flows through orifices 52 formed in the downstream flange 10 of the upstream disk 3, in order to join the gap 19 located between the fixed distributor stage 18 and the rotor stage 20, as schematically represents the arrow referenced D2a.
  • the air flow of Diagrammatically shown in Figure 1 corresponds to an air leak at the cells 4a.
  • a second portion D2b of the second cooling air flow D2 flows through orifices 54 formed in the downstream flange 13 of the downstream disk 5, to penetrate inside a cavity 56 delimited by a part using an upstream face of a downstream labyrinth 58 disposed near the downstream disk 5, and secondly with the aid of a downstream face of the same downstream disk 5.
  • the second cooling air flow D2b circulates substantially radially in the cavity 56 outwards along the downstream face of the downstream labyrinth 58 in order to cool it, then enters cells 6a containing the roots of the vanes 6 so as to to cool them as well.
  • the rotor ventilation device thus has two separate cooling circuits, each associated with one of the two turbine disks, and respectively powered by the first and second air flow rates. D1 and D2 cooling.
  • the purpose of the invention is therefore to propose a device for ventilating a high-pressure turbine rotor of a turbomachine, the turbine being disposed downstream of a combustion chamber and comprising upstream and downstream turbine disks equipped with vane, the device comprising a cooling circuit provided with injectors arranged upstream of the upstream disk and being fed by a cooling air flow D taken from the bottom of the combustion chamber, the device at least partially overcoming the disadvantages mentioned herein above relative to the achievements of the prior art.
  • the subject of the invention is a device for ventilating a high-pressure turbine rotor of a turbomachine, the turbine being disposed downstream of a combustion chamber and comprising an upstream turbine disk equipped with blades and a downstream turbine disk also equipped with blades, the device comprising a cooling circuit provided with injectors arranged upstream of the upstream disk, the circuit being fed by a cooling air flow D taken from the bottom combustion chamber.
  • the cooling circuit is arranged in such a way that the flow of cooling air D coming from the injectors passes through orifices formed in an upstream flange of the an upstream disk allowing its attachment to an upstream flange of the downstream disk, so that this cooling air flow D flows axially downstream between an internal bore of the upstream disk and an upstream flange of the downstream disk allowing its attachment to a downstream flange a high-pressure compressor and the centering of the upstream disk, the ventilation device further comprising a single labyrinth integral with one of the two turbine disks and being interposed between these two disks, so that the air flow rate cooling circuit D separates into a first flow F1 flowing between a downstream face of the upstream disk and an upstream face of the single labyrinth in the direction of the blades of the upstream disk, and a second flow F2 flowing between an upstream face of the downstream disk and a face downstream of the single labyrinth towards the blades of the downstream disk.
  • the ventilation device no longer has two labyrinths respectively associated with upstream and downstream turbine disks, but has a single inter-disk labyrinth, each of the upstream and downstream faces is intended for guide a flow of cooling air towards the blades.
  • the reduction in the number of parts used consequently makes it possible to considerably reduce the mass, the bulk and the production cost of the rotor.
  • the specific positioning of the single labyrinth leads the latter to be less thermally stressed than a labyrinth arranged upstream of the upstream disk, mainly because of its location relative to the combustion chamber, and to the extent that the temperature of the cooling air flow D drops substantially as it passes through the inner bore of the upstream disk. This characteristic thus gives rise to an increase in the lifetime of this labyrinth, compared to the lifetime that an upstream labyrinth of the prior art could present.
  • the injection of the cooling air upstream of the upstream disk, the bypass of this upstream disk by the inner bore and the possibility of producing constituent elements of the rotor of small dimensions allows, by a single cavity defined jointly by a downstream face of the upstream disk and by an upstream face of the single labyrinth, to obtain sufficient pressure at the blades of the upstream disk.
  • the adjacent cavity delimited jointly by an upstream face of the downstream disk and by a downstream face of the single labyrinth is advantageously used to reduce the supply pressure of the vanes of the downstream disk.
  • the low pressure inside this adjacent cavity effectively avoids having to provide feed holes of the blades of too small dimensions, which are difficult to achieve.
  • the rotor made more compact by reducing the number of constituent elements of the rotor makes it possible to bring the under-chamber bearing of the upstream and downstream disks closer together, so that that it is then possible to obtain a better control of the games at the top of the blades, and therefore a better efficiency of the high pressure turbine.
  • FIG. 2 there is shown a turbine 100 at high pressure of a turbojet engine, comprising a device for ventilating the rotor of the turbine according to a preferred embodiment of the present invention.
  • a turbine 100 at high pressure of a turbojet engine comprising a device for ventilating the rotor of the turbine according to a preferred embodiment of the present invention.
  • the elements bearing the same reference numerals as those attached to the elements shown in Figure 1 correspond to the same or similar elements.
  • FIG. 2 shows a turbine 100 which differs first of all from the turbine 1 of the prior art in that a cooling air flow D, taken from the bottom of the combustion chamber 2 and adapted to passing through the injectors 36, is intended simultaneously to feed the vanes 4 and 6 of the upstream 3 and downstream 5 disks.
  • the cooling air from the combustion chamber 2 passes through the conduit 28 to join the injectors 36, this assembly consisting of the conduit 28 and the injectors 36 being located in a chamber 62 separating the upstream disk 3 bottom of the combustion chamber 2.
  • the cooling air flow D from the injectors 36 then enters a cavity 64 partially delimited by an upstream flange 66 of the upstream turbine disk 3, this upstream flange 66 whose main function is to ensure the attachment of this upstream disk 3 on an upstream flange 78 of the downstream disk 5.
  • this cavity 64 is also delimited jointly by the upstream seal 32 and the downstream seal 34, preferably of the labyrinth seal type, arranged near the injectors 36 respectively upstream and downstream of the latter.
  • the upstream gasket 32 cooperates with a downstream flange 70 of the high pressure turbine, this downstream flange 70 being arranged to be located radially outwardly relative to the upstream flange 66.
  • the upstream seal 32 closes the cavity 64 by marrying the upstream end of the upstream flange 66.
  • the downstream seal 34 cooperates with a secondary upstream flange 72 of the upstream turbine disk 3, arranged so as to be located radially towards the outside with respect to the upstream flange 66.
  • the cooling air escaping from the cavity 64 through the downstream gasket 34 can circulate radially outwards, along the upstream face of the upstream disk 3, by direction of blades 4.
  • Orifices 74 are provided in the upstream flange 66 of the upstream turbine disk 3 so that the flow of cooling air D can be conveyed towards the two turbine disks 3 and 5.
  • the orifices 74 are preferably arranged to be located radially next to the injectors 36.
  • the cooling air flow D enters an annular chamber 76 of axis 40, delimited externally via the upstream flange 66 of the upstream disk 3, and with the aid of the inner bore 48 of this same disc.
  • the annular chamber 76 is delimited internally by the upstream flange 78 of the downstream disc 5, this upstream flange 78 whose main function is to ensure the attachment of this downstream disk 5 to the upstream flange 66 of the upstream disk 3, and to center the assembly of the high-pressure turbine 100 on a downstream flange 79 d a high pressure compressor.
  • the cooling air flow D can then flow axially downstream between the inner bore 48 and the upstream flange 78, so that the upstream turbine disk 3 can be suitably cooled by contacting the cooling air with its internal bore 48.
  • the ventilation device comprises a single labyrinth 80 interposed between the turbine discs 3 and 5, and is integral with one of these two discs.
  • the single labyrinth 80 also called the inter-disk labyrinth, is attached to a secondary upstream flange 82 of the downstream turbine disk 5, the latter being arranged to be located radially outwardly. relative to the upstream flange 78.
  • the labyrinth 80 extends radially to match the fixed distributor stage 18 or stator provided between the two rotor stages 20 and 22, and has an inner bore 83 surrounding the upstream flange 78 of the disk 5, this bore 83 preferably having a diameter substantially identical to the diameter of the inner bore 48 of the disk 3.
  • the first stream F1 therefore flows in a cavity 68 located between the downstream face of the upstream turbine disk 3 and the upstream face of the labyrinth 80 in order to cool the downstream face of the disk 3, then enters cells 4a containing the feet of the blades 4. to cool them too.
  • the second flow F2 flows in a cavity 69 located between the upstream face of the downstream turbine disk 5 and the downstream face of the same labyrinth 80 to cool the upstream face of the disk 5, then enters the cells 6a containing the feet of the blades 6 to also cool them.
  • a plurality of orifices 84 is formed in the secondary upstream flange 82 of the downstream disk 5.
  • the ventilation device is such that the flow of cooling air D taken from the bottom of the combustion chamber 2 and intended to simultaneously feed the blades 4 and 6, borrows a single cooling circuit to the outlet of the passage between the bore 48 of the upstream disk 3 and the upstream flange 78 of the downstream turbine disk 5.
  • This specific characteristic greatly simplifies the design of the turbine 100 with respect to that of the turbine 1 of the prior art, in which two cooling air flows were taken at the bottom of the chamber of combustion 2, in order to borrow two totally separate cooling circuits.
  • the upstream flange 78 of the downstream turbine disk 5 comprises a plurality of orifices 86 able to be traversed by a third flow F3 of the cooling air flow D.
  • This third flow F3 is thus conveyed from the chamber annular 76 to an annular space 88 of the same axis, the space 88 being located between on the one hand the upstream flange 78 of the downstream disk 5 and the inner bore 50 of the same downstream disk 5, and on the other hand the spacer 9 disposed around the rotor shaft 11 of the low pressure turbine.
  • the cooling air flow F3 can flow axially downstream in the annular space 88, in order to cool the downstream disc 5 by contacting the air with its internal bore 50.
  • the third flow F3 is then evacuated downstream of the turbine 100 through the orifices 54 formed on the downstream flange 13 of the downstream turbine disk 5, this downstream flange 13 also participating in the outer delimitation of the annular space 88 and being assembled on the axis spacer 9 40.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention se rapporte de façon générale au domaine de la ventilation d'un rotor de turbine à haute pression d'une turbomachine.The present invention relates generally to the field of ventilation of a high-pressure turbine rotor of a turbomachine.

Plus précisément, l'invention se rapporte à un dispositif de ventilation d'un rotor de turbine à haute pression, comprenant un disque de turbine amont ainsi qu'un disque de turbine aval.More specifically, the invention relates to a ventilation device of a high pressure turbine rotor, comprising an upstream turbine disk and a downstream turbine disk.

ETAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART

La figure 1 représente un rotor de turbine à haute pression 1 classique de l'art antérieur, disposé en aval d'une chambre de combustion 2, et comportant un disque de turbine amont 3 équipé d'aubes 4, ainsi que d'un disque de turbine aval 5 équipé d'aubes 6.FIG. 1 represents a conventional high-pressure turbine rotor 1 of the prior art, disposed downstream of a combustion chamber 2, and comprising an upstream turbine disk 3 equipped with vanes 4, as well as a disk downstream turbine 5 equipped with vanes 6.

Le disque amont 3 est muni d'une part d'une bride amont 8 assurant sa fixation sur une entretoise 9 disposée autour d'un arbre 11 de rotor d'une turbine basse pression, et d'autre part d'une bride aval 10 assemblée fixement à une bride amont 12 du disque aval 5. Il est précisé qu'un joint inter-disque 14, porté par une structure creuse 16 solidaire d'un étage distributeur fixe 18 ou stator, est situé au niveau de l'assemblage entres les deux brides 10 et 12. Le joint inter-disque 14, du type joint à labyrinthe, permet ainsi de créer une séparation entre les deux étages rotoriques 20 et 22, disposés de part et d'autre de l'étage distributeur 18.The upstream disk 3 is provided on the one hand with an upstream flange 8 ensuring its fixing on a spacer 9 disposed around a rotor shaft 11 of a low-pressure turbine, and on the other hand with a downstream flange 10 fixedly assembled to an upstream flange 12 of the downstream disc 5. It is specified that an inter-disc seal 14, carried by a hollow structure 16 integral with a stationary distributor stage 18 or stator, is situated at the level of the assembly between the two flanges 10 and 12. The inter-disc seal 14, of the labyrinth seal type, thus makes it possible to create a separation between the two rotor stages 20 and 22, arranged on either side of the stage distributor 18.

Par ailleurs, le disque aval 5 comporte une bride aval 13, également assemblée sur l'entretoise 9 entourant l'arbre 11 de la turbine basse pression.Furthermore, the downstream disk 5 comprises a downstream flange 13, also assembled on the spacer 9 surrounding the shaft 11 of the low pressure turbine.

Dans ce type de turbine 1 classique de l'art antérieur, un premier débit d'air de refroidissement D1 prélevé en fond de chambre de combustion 2 est délivré dans une cavité 26 délimitée d'une part à l'aide d'une face aval d'un labyrinthe amont 24 disposé à proximité du disque amont 3, et d'autre part à l'aide d'une face amont de ce même disque amont 3. Ce débit d'air D1 est effectivement prélevé dans le fond de la chambre de combustion 2, puis acheminé dans une cavité 30 notamment délimitée par un joint à labyrinthe amont 32 et un joint à labyrinthe aval 34, par l'intermédiaire d'un conduit 28 disposé dans une enceinte 29 séparant le labyrinthe amont 24 du fond de la chambre de combustion 2, ainsi qu'à l'aide d'injecteurs 36 agencés dans le prolongement du conduit 28 et débouchant dans la cavité 30. Notons que les joints 32 et 34 sont agencés de façon à être en contact avec le labyrinthe amont 24.In this type of conventional turbine 1 of the prior art, a first cooling air flow D1 taken from the bottom of the combustion chamber 2 is delivered into a cavity 26 delimited on the one hand by means of a downstream face. an upstream labyrinth 24 disposed near the upstream disk 3, and secondly with the aid of an upstream face of the same upstream disk 3. This air flow D1 is actually taken from the bottom of the chamber combustion 2, then conveyed in a cavity 30 in particular delimited by an upstream labyrinth seal 32 and a downstream labyrinth seal 34, via a conduit 28 disposed in an enclosure 29 separating the upstream labyrinth 24 from the bottom of the combustion chamber 2, and using injectors 36 arranged in the extension of the conduit 28 and opening into the cavity 30. Note that the seals 32 and 34 are arranged to be in contact with the upstream labyrinth 24 .

De plus, l'air de refroidissement se situant dans la cavité 30 est apte à pénétrer dans la cavité 26 en empruntant des orifices 38 prévus dans une partie amont du labyrinthe amont 24, ces orifices 38 étant d'axes sensiblement perpendiculaires à l'axe longitudinal 40 de la turbine.In addition, the cooling air situated in the cavity 30 is able to penetrate into the cavity 26 by passing orifices 38 provided in an upstream part of the upstream labyrinth 24, these orifices 38 being axes substantially perpendicular to the longitudinal axis 40 of the turbine.

De cette façon, le débit d'air de refroidissement D1 circule dans la cavité 26 d'abord longitudinalement puis radialement vers l'extérieur le long de la face amont du labyrinthe amont 24 afin de le refroidir, puis pénètre dans des alvéoles 4a contenant les pieds des aubes 4 afin de refroidir également ces dernières.In this way, the cooling air flow D1 flows in the cavity 26 first longitudinally and then radially outwards along the upstream face of the upstream labyrinth 24 in order to cool it, then enters the cells 4a containing the feet of the blades 4 to cool them too.

En outre, un second débit d'air de refroidissement D2, également prélevé en fond de chambre de combustion 2, pénètre dans l'enceinte 29 et s'écoule à travers des orifices 44 et 42, respectivement prévus dans la partie amont du labyrinthe amont 24, et dans la bride amont 8 du disque amont 3. Une fois les orifices 44 et 42 traversés, le second débit d'air de refroidissement D2 emprunte une chambre annulaire 46 intérieurement délimitée par l'entretoise 9, et extérieurement délimitée par successivement, d'amont en aval, la bride 8, un alésage intérieur 48 du disque amont 3, les brides 10 et 12, un alésage intérieur 50 du disque aval 5, et la bride 13.In addition, a second cooling air flow D2, also taken from the bottom of the combustion chamber 2, enters the chamber 29 and flows through orifices 44 and 42 respectively provided in the upstream portion of the upstream labyrinth 24, and in the upstream flange 8 of the upstream disk 3. Once the orifices 44 and 42 crossed, the second cooling air flow D2 borrows an annular chamber 46 internally defined by the spacer 9, and externally delimited successively, from upstream to downstream, the flange 8, an inner bore 48 of the upstream disk 3, the flanges 10 and 12, an inner bore 50 of the downstream disk 5, and the flange 13.

A partir de la chambre annulaire 46, une première partie D2a du second débit d'air de refroidissement D2 s'écoule à travers des orifices 52 pratiqués dans la bride aval 10 du disque amont 3, afin de rejoindre l'interstice 19 situé entre l'étage distributeur fixe 18 et l'étage rotorique 20, comme le représente schématiquement la flèche référencée D2a. A titre indicatif, il est noté que le débit d'air d représenté schématiquement sur la figure 1 correspond à une fuite d'air au niveau des alvéoles 4a.From the annular chamber 46, a first portion D2a of the second cooling air flow D2 flows through orifices 52 formed in the downstream flange 10 of the upstream disk 3, in order to join the gap 19 located between the fixed distributor stage 18 and the rotor stage 20, as schematically represents the arrow referenced D2a. As an indication, it is noted that the air flow of Diagrammatically shown in Figure 1 corresponds to an air leak at the cells 4a.

De plus, une seconde partie D2b du second débit d'air de refroidissement D2 s'écoule à travers des orifices 54 ménagés dans la bride aval 13 du disque aval 5, pour pénétrer à l'intérieur d'une cavité 56 délimitée d'une part à l'aide d'une face amont d'un labyrinthe aval 58 disposé à proximité du disque aval 5, et d'autre part à l'aide d'une face aval de ce même disque aval 5.In addition, a second portion D2b of the second cooling air flow D2 flows through orifices 54 formed in the downstream flange 13 of the downstream disk 5, to penetrate inside a cavity 56 delimited by a part using an upstream face of a downstream labyrinth 58 disposed near the downstream disk 5, and secondly with the aid of a downstream face of the same downstream disk 5.

Ainsi, le second débit d'air de refroidissement D2b circule sensiblement radialement dans la cavité 56 vers l'extérieur le long de la face aval du labyrinthe aval 58 afin de le refroidir, puis pénètre dans des alvéoles 6a contenant les pieds des aubes 6 afin de refroidir également ces dernières.Thus, the second cooling air flow D2b circulates substantially radially in the cavity 56 outwards along the downstream face of the downstream labyrinth 58 in order to cool it, then enters cells 6a containing the roots of the vanes 6 so as to to cool them as well.

Dans ce type de turbine classique de l'art antérieur, le dispositif de ventilation du rotor présente donc deux circuits de refroidissement distincts, chacun associé à l'un des deux disques de turbine, et respectivement alimentés par les premier et second débits d'air de refroidissement D1 et D2.In this type of conventional turbine of the prior art, the rotor ventilation device thus has two separate cooling circuits, each associated with one of the two turbine disks, and respectively powered by the first and second air flow rates. D1 and D2 cooling.

Néanmoins, cette solution classique de l'art antérieur s'avère contraignante en ce sens que le labyrinthe amont est une pièce de conception extrêmement complexe, de masse importante, et dont le coût de production est grandement élevé, notamment en raison de la nécessité d'utiliser des matériaux spéciaux susceptibles de supporter des sollicitations thermiques de forte intensité.Nevertheless, this conventional solution of the prior art proves to be restrictive in that the upstream labyrinth is a piece of extremely complex design, of large mass, and whose production cost is very high, in particular because of the need to use special materials that can withstand high thermal loads.

En outre, il est précisé que même lorsque les matériaux employés sont de bonne qualité, la durée de vie du labyrinthe amont reste relativement limitée.In addition, it is specified that even when the materials used are of good quality, the lifespan of the labyrinth upstream remains relatively limited.

En outre, il est connu de l'art antérieur le document DE 19854907 A1 qui divulgue l'ensemble des caractéristiques du préambule de la revendication 1, avec un labyrinthe unique positionné à proximité d'une face aval du disque de turbine aval. Cependant, le disque de turbine amont est toujours refroidi sur sa face amont par l'intermédiaire de moyens additionnels du type turbine radiale qui s'ajoutent au labyrinthe unique, ce qui rend le dispositif de refroidissement lourd et encombrant.In addition, it is known from the prior art DE 19854907 A1 which discloses all the features of the preamble of claim 1, with a single labyrinth positioned near a downstream face of the downstream turbine disk. However, the upstream turbine disk is still cooled on its upstream face by means of additional means of the radial turbine type which are added to the single labyrinth, which makes the cooling device heavy and bulky.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

L'invention a donc pour but de proposer un dispositif de ventilation d'un rotor de turbine à haute pression d'une turbomachine, la turbine étant disposée en aval d'une chambre de combustion et comportant des disques de turbine amont et aval équipés d'aubes, le dispositif comportant un circuit de refroidissement muni d'injecteurs disposés en amont du disque amont et étant alimenté par un débit d'air de refroidissement D prélevé en fond de chambre de combustion, le dispositif remédiant au moins partiellement aux inconvénients mentionnés ci-dessus relatifs aux réalisations de l'art antérieur.The purpose of the invention is therefore to propose a device for ventilating a high-pressure turbine rotor of a turbomachine, the turbine being disposed downstream of a combustion chamber and comprising upstream and downstream turbine disks equipped with vane, the device comprising a cooling circuit provided with injectors arranged upstream of the upstream disk and being fed by a cooling air flow D taken from the bottom of the combustion chamber, the device at least partially overcoming the disadvantages mentioned herein above relative to the achievements of the prior art.

Pour ce faire, l'invention a pour objet un dispositif de ventilation d'un rotor de turbine à haute pression d'une turbomachine, la turbine étant disposée en aval d'une chambre de combustion et comportant un disque de turbine amont équipé d'aubes ainsi que d'un disque de turbine aval également équipé d'aubes, le dispositif comportant un circuit de refroidissement muni d'injecteurs disposés en amont du disque amont, le circuit étant alimenté par un débit d'air de refroidissement D prélevé en fond de chambre de combustion. Selon l'invention, le circuit de refroidissement est agencé de manière à ce que le débit d'air de refroidissement D provenant des injecteurs traverse des orifices ménagés dans une bride amont du disque amont autorisant sa fixation sur une bride amont du disque aval, afin que ce débit d'air de refroidissement D circule axialement vers l'aval entre un alésage intérieur du disque amont et une bride amont du disque aval autorisant sa fixation sur une bride aval d'un compresseur haute pression ainsi que le centrage du disque amont, le dispositif de ventilation comportant en outre un labyrinthe unique solidaire de l'un des deux disques de turbine et étant interposé entre ces deux disques, de sorte que le débit d'air de refroidissement D se sépare en un premier flux F1 circulant entre une face aval du disque amont et une face amont du labyrinthe unique en direction des aubes du disque amont, et en un second flux F2 circulant entre une face amont du disque aval et une face aval du labyrinthe unique en direction des aubes du disque aval.For this purpose, the subject of the invention is a device for ventilating a high-pressure turbine rotor of a turbomachine, the turbine being disposed downstream of a combustion chamber and comprising an upstream turbine disk equipped with blades and a downstream turbine disk also equipped with blades, the device comprising a cooling circuit provided with injectors arranged upstream of the upstream disk, the circuit being fed by a cooling air flow D taken from the bottom combustion chamber. According to the invention, the cooling circuit is arranged in such a way that the flow of cooling air D coming from the injectors passes through orifices formed in an upstream flange of the an upstream disk allowing its attachment to an upstream flange of the downstream disk, so that this cooling air flow D flows axially downstream between an internal bore of the upstream disk and an upstream flange of the downstream disk allowing its attachment to a downstream flange a high-pressure compressor and the centering of the upstream disk, the ventilation device further comprising a single labyrinth integral with one of the two turbine disks and being interposed between these two disks, so that the air flow rate cooling circuit D separates into a first flow F1 flowing between a downstream face of the upstream disk and an upstream face of the single labyrinth in the direction of the blades of the upstream disk, and a second flow F2 flowing between an upstream face of the downstream disk and a face downstream of the single labyrinth towards the blades of the downstream disk.

Avantageusement et contrairement aux réalisations de l'art antérieur, le dispositif de ventilation ne comporte plus deux labyrinthes respectivement associés aux disques de turbine amont et aval, mais dispose d'un unique labyrinthe inter-disque dont chacune des faces amont et aval est destinée à guider un flux d'air de refroidissement en direction des aubes. La réduction du nombre de pièces utilisées permet par conséquent de réduire considérablement la masse, l'encombrement et le coût de production du rotor. En outre, le positionnement spécifique du labyrinthe unique conduit ce dernier à être moins sollicité thermiquement qu'un labyrinthe agencé en amont du disque amont, principalement en raison de son emplacement par rapport à la chambre de combustion, et dans la mesure où la température du débit d'air de refroidissement D chute sensiblement lors de son passage dans l'alésage intérieur du disque amont. Cette caractéristique engendre ainsi une augmentation de la durée de vie de ce labyrinthe, par rapport à la durée de vie que pouvait présenter un labyrinthe amont de l'art antérieur.Advantageously and unlike the embodiments of the prior art, the ventilation device no longer has two labyrinths respectively associated with upstream and downstream turbine disks, but has a single inter-disk labyrinth, each of the upstream and downstream faces is intended for guide a flow of cooling air towards the blades. The reduction in the number of parts used consequently makes it possible to considerably reduce the mass, the bulk and the production cost of the rotor. In addition, the specific positioning of the single labyrinth leads the latter to be less thermally stressed than a labyrinth arranged upstream of the upstream disk, mainly because of its location relative to the combustion chamber, and to the extent that the temperature of the cooling air flow D drops substantially as it passes through the inner bore of the upstream disk. This characteristic thus gives rise to an increase in the lifetime of this labyrinth, compared to the lifetime that an upstream labyrinth of the prior art could present.

Par ailleurs, il est indiqué que l'injection de l'air de refroidissement à l'amont du disque amont, le contournement de ce disque amont par l'alésage intérieur ainsi que la possibilité de réaliser des éléments constitutifs du rotor de faibles dimensions, permet, par une cavité simple délimitée conjointement par une face aval du disque amont et par une face amont du labyrinthe unique, d'obtenir une pression suffisante au niveau des aubes de ce disque amont.Furthermore, it is indicated that the injection of the cooling air upstream of the upstream disk, the bypass of this upstream disk by the inner bore and the possibility of producing constituent elements of the rotor of small dimensions, allows, by a single cavity defined jointly by a downstream face of the upstream disk and by an upstream face of the single labyrinth, to obtain sufficient pressure at the blades of the upstream disk.

A cette égard, la cavité adjacente délimitée conjointement par une face amont du disque aval et par une face aval du labyrinthe unique est avantageusement utilisée pour diminuer la pression d'alimentation des aubes du disque aval. La faible pression à l'intérieur de cette cavité adjacente permet effectivement de ne pas avoir à prévoir des trous d'alimentation des aubes de dimensions trop petites, qui sont difficilement réalisables.In this respect, the adjacent cavity delimited jointly by an upstream face of the downstream disk and by a downstream face of the single labyrinth is advantageously used to reduce the supply pressure of the vanes of the downstream disk. The low pressure inside this adjacent cavity effectively avoids having to provide feed holes of the blades of too small dimensions, which are difficult to achieve.

De façon avantageuse, le rotor rendu plus compact par la diminution du nombre d'éléments constitutifs du rotor autorise un rapprochement du palier sous chambre des disques amont et aval, de sorte qu'il est alors possible d'obtenir une meilleure maîtrise des jeux en sommet d'aubes, et donc un meilleur rendement de la turbine haute pression.Advantageously, the rotor made more compact by reducing the number of constituent elements of the rotor makes it possible to bring the under-chamber bearing of the upstream and downstream disks closer together, so that that it is then possible to obtain a better control of the games at the top of the blades, and therefore a better efficiency of the high pressure turbine.

D'autre part, il est noté que le débit d'air de refroidissement D transitant au niveau de l'alésage intérieur du disque de turbine amont est suffisamment important pour permettre à celui-ci de présenter un temps de réponse relativement faible, et donc de prévoir un jeu en sommet d'aubes peu élevé.On the other hand, it is noted that the flow of cooling air D passing through the internal bore of the upstream turbine disk is large enough to allow it to have a relatively short response time, and therefore to provide a game at low peaks of blades.

Enfin, un tel agencement selon l'invention autorise un démontage stator rapide et aisé, dans la mesure où cette tâche ne nécessite qu'un retrait des aubes du disque de turbine aval sans avoir à dissocier les deux disques du rotor, cette dernière opération ayant pourtant toujours été obligatoire avec les réalisations de l'art antérieur.Finally, such an arrangement according to the invention allows fast and easy disassembly of the stator, insofar as this task requires only removal of the vanes of the downstream turbine disk without having to separate the two rotor disks, the latter operation having yet always been mandatory with the achievements of the prior art.

D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.Other advantages and features of the invention will become apparent in the detailed non-limiting description below.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

Cette description sera faite au regard des dessins annexés parmi lesquels ;

  • la figure 1, déjà décrite, représente en demi-coupe une turbine à haute pression d'un turboréacteur selon l'art antérieur, et
  • la figure 2 représente en demi-coupe une turbine à haute pression d'un turboréacteur, comportant un dispositif de ventilation selon un mode de réalisation préféré de la présente invention.
This description will be made with reference to the appended drawings among which;
  • FIG. 1, already described, represents in half-section a high-pressure turbine of a turbojet according to the prior art, and
  • FIG. 2 shows in half section a high-pressure turbine of a turbojet, comprising a ventilation device according to a preferred embodiment of the present invention.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉSDETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

En référence à la figure 2, il est représenté une turbine 100 à haute pression d'un turboréacteur, comportant un dispositif de ventilation du rotor de la turbine selon un mode de réalisation préféré de la présente invention. Notons que sur la figure 2, les éléments portant les mêmes références numériques que celles attachées aux éléments représentés sur la figure 1 correspondent à des éléments identiques ou similaires.With reference to FIG. 2, there is shown a turbine 100 at high pressure of a turbojet engine, comprising a device for ventilating the rotor of the turbine according to a preferred embodiment of the present invention. Note that in Figure 2, the elements bearing the same reference numerals as those attached to the elements shown in Figure 1 correspond to the same or similar elements.

Ainsi, la figure 2 montre une turbine 100 qui se différencie tout d'abord de la turbine 1 de l'art antérieur par le fait qu'un débit d'air de refroidissement D, prélevé en fond de chambre de combustion 2 et apte à traverser les injecteurs 36, est destiné à alimenter simultanément les aubes 4 et 6 des disques amont 3 et aval 5.Thus, FIG. 2 shows a turbine 100 which differs first of all from the turbine 1 of the prior art in that a cooling air flow D, taken from the bottom of the combustion chamber 2 and adapted to passing through the injectors 36, is intended simultaneously to feed the vanes 4 and 6 of the upstream 3 and downstream 5 disks.

En effet, l'air de refroidissement provenant de la chambre de combustion 2 transite par le conduit 28 afin de rejoindre les injecteurs 36, cet ensemble constitué du conduit 28 et des injecteurs 36 étant situé dans une enceinte 62 séparant le disque amont 3 du fond de la chambre de combustion 2.Indeed, the cooling air from the combustion chamber 2 passes through the conduit 28 to join the injectors 36, this assembly consisting of the conduit 28 and the injectors 36 being located in a chamber 62 separating the upstream disk 3 bottom of the combustion chamber 2.

Le débit d'air de refroidissement D provenant des injecteurs 36 pénètre alors dans une cavité 64 partiellement délimitée par une bride amont 66 du disque de turbine amont 3, cette bride amont 66 ayant pour principale fonction d'assurer la fixation de ce disque amont 3 sur une bride amont 78 du disque aval 5. D'autre part, cette cavité 64 est également délimitée conjointement par le joint amont 32 et le joint aval 34, de préférence du type joint à labyrinthe, agencés à proximité des injecteurs 36 respectivement en amont et en aval de ce dernier. A ce titre, il est précisé que le joint amont 32 coopère avec une bride aval 70 de la turbine haute pression, cette bride aval 70 étant ménagée de manière à se situer radialement vers l'extérieur par rapport à la bride amont 66. De plus, le joint amont 32 ferme la cavité 64 en épousant l'extrémité amont de la bride amont 66. En outre, le joint aval 34 coopère avec une bride amont secondaire 72 du disque de turbine amont 3, ménagée de manière à se situer radialement vers l'extérieur par rapport à la bride amont 66. Ainsi, l'air de refroidissement s'échappant de la cavité 64 par le joint aval 34 peut circuler radialement vers l'extérieur, le long de la face amont du disque amont 3, en direction des aubes 4.The cooling air flow D from the injectors 36 then enters a cavity 64 partially delimited by an upstream flange 66 of the upstream turbine disk 3, this upstream flange 66 whose main function is to ensure the attachment of this upstream disk 3 on an upstream flange 78 of the downstream disk 5. On the other hand, this cavity 64 is also delimited jointly by the upstream seal 32 and the downstream seal 34, preferably of the labyrinth seal type, arranged near the injectors 36 respectively upstream and downstream of the latter. As such, it is specified that the upstream gasket 32 cooperates with a downstream flange 70 of the high pressure turbine, this downstream flange 70 being arranged to be located radially outwardly relative to the upstream flange 66. , the upstream seal 32 closes the cavity 64 by marrying the upstream end of the upstream flange 66. In addition, the downstream seal 34 cooperates with a secondary upstream flange 72 of the upstream turbine disk 3, arranged so as to be located radially towards the outside with respect to the upstream flange 66. Thus, the cooling air escaping from the cavity 64 through the downstream gasket 34 can circulate radially outwards, along the upstream face of the upstream disk 3, by direction of blades 4.

Des orifices 74 sont prévus dans la bride amont 66 du disque de turbine amont 3, afin que le débit d'air de refroidissement D puisse être acheminé en direction des deux disques de turbine 3 et 5. Les orifices 74 sont de préférence agencés de manière à se situer radialement en regard des injecteurs 36.Orifices 74 are provided in the upstream flange 66 of the upstream turbine disk 3 so that the flow of cooling air D can be conveyed towards the two turbine disks 3 and 5. The orifices 74 are preferably arranged to be located radially next to the injectors 36.

Une fois les orifices 74 traversés, le débit d'air de refroidissement D pénètre dans une chambre annulaire 76 d'axe 40, délimitée extérieurement par l'intermédiaire de la bride amont 66 du disque amont 3, et à l'aide de l'alésage intérieur 48 de ce même disque. En outre, la chambre annulaire 76 est délimitée intérieurement par la bride amont 78 du disque aval 5, cette bride amont 78 ayant pour principale fonction d'assurer la fixation de ce disque aval 5 sur la bride amont 66 du disque amont 3, et de centrer l'ensemble de la turbine haute pression 100 sur une bride aval 79 d'un compresseur haute pression.Once the orifices 74 are crossed, the cooling air flow D enters an annular chamber 76 of axis 40, delimited externally via the upstream flange 66 of the upstream disk 3, and with the aid of the inner bore 48 of this same disc. In addition, the annular chamber 76 is delimited internally by the upstream flange 78 of the downstream disc 5, this upstream flange 78 whose main function is to ensure the attachment of this downstream disk 5 to the upstream flange 66 of the upstream disk 3, and to center the assembly of the high-pressure turbine 100 on a downstream flange 79 d a high pressure compressor.

Le débit d'air de refroidissement D peut alors circuler axialement vers l'aval entre l'alésage intérieur 48 et la bride amont 78, de sorte que le disque de turbine amont 3 peut être convenablement refroidi par contact de l'air de refroidissement avec son alésage intérieur 48.The cooling air flow D can then flow axially downstream between the inner bore 48 and the upstream flange 78, so that the upstream turbine disk 3 can be suitably cooled by contacting the cooling air with its internal bore 48.

Comme on peut le voir sur la figure 2, le dispositif de ventilation selon l'invention comporte un labyrinthe unique 80 interposé entre les disques de turbine 3 et 5, et est solidaire de l'un de ces deux disques. A titre d'exemple non limitatif, le labyrinthe unique 80, également appelé labyrinthe inter-disque, est fixé à une bride amont secondaire 82 du disque de turbine aval 5, celle-ci étant agencée de manière à se situer radialement vers l'extérieur par rapport à la bride amont 78. De plus, le labyrinthe 80 s'étend radialement jusqu'à épouser l'étage distributeur fixe 18 ou stator prévu entre les deux étages rotoriques 20 et 22, et dispose d'un alésage intérieur 83 entourant la bride amont 78 du disque 5, cet alésage 83 présentant de préférence un diamètre sensiblement identique au diamètre de l'alésage intérieur 48 du disque 3.As can be seen in Figure 2, the ventilation device according to the invention comprises a single labyrinth 80 interposed between the turbine discs 3 and 5, and is integral with one of these two discs. By way of non-limiting example, the single labyrinth 80, also called the inter-disk labyrinth, is attached to a secondary upstream flange 82 of the downstream turbine disk 5, the latter being arranged to be located radially outwardly. relative to the upstream flange 78. In addition, the labyrinth 80 extends radially to match the fixed distributor stage 18 or stator provided between the two rotor stages 20 and 22, and has an inner bore 83 surrounding the upstream flange 78 of the disk 5, this bore 83 preferably having a diameter substantially identical to the diameter of the inner bore 48 of the disk 3.

Par conséquent, le débit d'air de refroidissement D transitant dans la chambre annulaire 76 et arrivant au niveau de la face aval du disque amont 3, se sépare en deux flux F1 et F2, respectivement destinés à alimenter les aubes 4 et les aubes 6 des disques 3 et 5.Therefore, the flow of cooling air D passing through the annular chamber 76 and arriving at the downstream face of the disk upstream 3, separates into two flows F1 and F2, respectively intended to feed the blades 4 and the blades 6 of the discs 3 and 5.

Le premier flux F1 circule donc dans une cavité 68 située entre la face aval du disque de turbine amont 3 et la face amont du labyrinthe 80 afin de refroidir la face aval du disque 3, puis pénètre dans des alvéoles 4a contenant les pieds des aubes 4 afin de refroidir également ces dernières.The first stream F1 therefore flows in a cavity 68 located between the downstream face of the upstream turbine disk 3 and the upstream face of the labyrinth 80 in order to cool the downstream face of the disk 3, then enters cells 4a containing the feet of the blades 4. to cool them too.

De la même façon, le second flux F2 circule dans une cavité 69 située entre la face amont du disque de turbine aval 5 et la face aval du même labyrinthe 80 afin de refroidir la face amont du disque 5, puis pénètre dans des alvéoles 6a contenant les pieds des aubes 6 afin de refroidir également ces dernières. Notons que pour que le second flux F2 atteigne les aubes 6 du disque de turbine aval 5, une pluralité d'orifices 84 est pratiquée dans la bride amont secondaire 82 du disque aval 5.In the same way, the second flow F2 flows in a cavity 69 located between the upstream face of the downstream turbine disk 5 and the downstream face of the same labyrinth 80 to cool the upstream face of the disk 5, then enters the cells 6a containing the feet of the blades 6 to also cool them. Note that for the second flow F2 reaches the vanes 6 of the downstream turbine disk 5, a plurality of orifices 84 is formed in the secondary upstream flange 82 of the downstream disk 5.

Par conséquent, le dispositif de ventilation selon l'invention est tel que le débit d'air de refroidissement D prélevé en fond de chambre de combustion 2 et destiné à alimenter simultanément les aubes 4 et 6, emprunte un circuit de refroidissement unique jusqu'à la sortie du passage entre l'alésage 48 du disque amont 3 et la bride amont 78 du disque de turbine aval 5. Cette caractéristique spécifique simplifie considérablement la conception de la turbine 100 par rapport à celle de la turbine 1 de l'art antérieur, dans laquelle deux débits d'air de refroidissement étaient prélevés en fond de chambre de combustion 2, afin d'emprunter deux circuits de refroidissement totalement séparés.Therefore, the ventilation device according to the invention is such that the flow of cooling air D taken from the bottom of the combustion chamber 2 and intended to simultaneously feed the blades 4 and 6, borrows a single cooling circuit to the outlet of the passage between the bore 48 of the upstream disk 3 and the upstream flange 78 of the downstream turbine disk 5. This specific characteristic greatly simplifies the design of the turbine 100 with respect to that of the turbine 1 of the prior art, in which two cooling air flows were taken at the bottom of the chamber of combustion 2, in order to borrow two totally separate cooling circuits.

D'autre part, la bride amont 78 du disque de turbine aval 5 comporte une pluralité d'orifices 86 aptes à être traversés par un troisième flux F3 du débit d'air de refroidissement D. Ce troisième flux F3 est donc acheminé de la chambre annulaire 76 vers un espace annulaire 88 de même axe, l'espace 88 étant situé entre d'une part la bride amont 78 du disque aval 5 et l'alésage intérieur 50 de ce même disque aval 5, et d'autre part l'entretoise 9 disposée autour de l'arbre 11 de rotor de la turbine basse pression. Ainsi, le flux d'air de refroidissement F3 peut circuler axialement vers l'aval dans l'espace annulaire 88, afin de refroidir le disque aval 5 par contact de l'air avec son alésage intérieur 50. Le troisième flux F3 est ensuite évacué en aval de la turbine 100 par les orifices 54 ménagés sur la bride aval 13 du disque de turbine aval 5, cette bride aval 13 participant également à la délimitation extérieure de l'espace annulaire 88 et étant assemblée sur l'entretoise 9 d'axe 40.On the other hand, the upstream flange 78 of the downstream turbine disk 5 comprises a plurality of orifices 86 able to be traversed by a third flow F3 of the cooling air flow D. This third flow F3 is thus conveyed from the chamber annular 76 to an annular space 88 of the same axis, the space 88 being located between on the one hand the upstream flange 78 of the downstream disk 5 and the inner bore 50 of the same downstream disk 5, and on the other hand the spacer 9 disposed around the rotor shaft 11 of the low pressure turbine. Thus, the cooling air flow F3 can flow axially downstream in the annular space 88, in order to cool the downstream disc 5 by contacting the air with its internal bore 50. The third flow F3 is then evacuated downstream of the turbine 100 through the orifices 54 formed on the downstream flange 13 of the downstream turbine disk 5, this downstream flange 13 also participating in the outer delimitation of the annular space 88 and being assembled on the axis spacer 9 40.

Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à la turbine 100 et à son dispositif de ventilation qui viennent d'être décrits, uniquement à titre d'exemples non limitatifs.Of course, various modifications may be made by those skilled in the art to the turbine 100 and its ventilation device which have just been described, solely by way of non-limiting examples.

Claims (4)

  1. Ventilation device for a high pressure turbine rotor (100) of a turbomachine, the turbine (100) being arranged on the downstream part of a combustion chamber (2) and comprising an upstream turbine disk (3) fitted with blades (4) and a downstream turbine disk (5) fitted with blades (6), said device comprising a cooling circuit fitted with injectors (36) on the upstream side of the upstream disk (3) and supplied with a cooling airflow (D) taken from the back of the combustion chamber (2), said cooling circuit being arranged such that the cooling airflow (D) originating from the injectors (36) passes through orifices (74) formed in an upstream flange (66) of the upstream disk (3) so that it can be fixed on an upstream flange (78) of the downstream disk (5), so that this cooling airflow (D) circulates in the axial downstream direction between an inner reaming (48) in the upstream disk (3) and the upstream flange (78) of the downstream disk (5) so that it can be fixed on a downstream flange (79) of a high pressure compressor and so that the upstream disk (3) can be centred, said ventilation device also comprising a single labyrinth (80) fixed to one of the two turbine disks (3, 5), characterized in that the single labyrinth (80) is inserted between the two disks, such that the cooling airflow (D) is divided into a first flow (F1) circulating between a downstream face of the upstream disk (3) and an upstream face of the single labyrinth (80) towards the blades (4), and into a second flow (F2) circulating between an upstream face of the downstream disk (5) and a downstream face of the single labyrinth (80) towards the blades (6).
  2. Device according to claim 1, characterized in that the injectors (36) penetrate into a cavity (64) partially delimited by the upstream flange (66) of the upstream turbine disk (3), and by an upstream seal (32) and a downstream seal (34), this downstream seal cooperating with a secondary upstream flange (72) of the upstream turbine disk (3).
  3. Device according to claim 1, characterized in that several orifices (86) are formed in the upstream flange (78) of the downstream turbine disk (5), so that a third flow (F3) of the cooling airflow (D) can pass through them, said third flow (F3) circulating in the downstream axial direction within an annular space (88) formed between firstly the upstream flange (78) of the downstream disk (5) and an inner reaming (50) of this downstream disk (5), and secondly a spacer (9) located around a rotor shaft (11) of a low pressure turbine.
  4. Device according to any one of the preceding claims, characterized in that the single labyrinth (80) is fixed to a secondary upstream flange (82) of the downstream turbine disk (5), in which several orifices (84) are formed through which the second flow (F2) of the cooling airflow (D) can circulate towards the blades (6).
EP04100404A 2003-02-06 2004-02-04 Apparatus for the ventilation of a high pressure turbine rotor Expired - Lifetime EP1445421B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0301391 2003-02-06
FR0301391A FR2851010B1 (en) 2003-02-06 2003-02-06 DEVICE FOR VENTILATION OF A HIGH PRESSURE TURBINE ROTOR OF A TURBOMACHINE

Publications (2)

Publication Number Publication Date
EP1445421A1 EP1445421A1 (en) 2004-08-11
EP1445421B1 true EP1445421B1 (en) 2006-01-04

Family

ID=32606008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04100404A Expired - Lifetime EP1445421B1 (en) 2003-02-06 2004-02-04 Apparatus for the ventilation of a high pressure turbine rotor

Country Status (8)

Country Link
US (1) US6916151B2 (en)
EP (1) EP1445421B1 (en)
JP (1) JP4060279B2 (en)
CA (1) CA2456589C (en)
DE (1) DE602004000301T2 (en)
ES (1) ES2255697T3 (en)
FR (1) FR2851010B1 (en)
RU (1) RU2330976C2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2892148B1 (en) * 2005-10-19 2011-07-22 Snecma TURBOREACTOR TREE SHAFT AND TURBOJET COMPRISING THE SAME
US8668437B1 (en) * 2006-09-22 2014-03-11 Siemens Energy, Inc. Turbine engine cooling fluid feed system
US8562285B2 (en) * 2007-07-02 2013-10-22 United Technologies Corporation Angled on-board injector
FR2937371B1 (en) * 2008-10-20 2010-12-10 Snecma VENTILATION OF A HIGH-PRESSURE TURBINE IN A TURBOMACHINE
FR2946687B1 (en) * 2009-06-10 2011-07-01 Snecma TURBOMACHINE COMPRISING IMPROVED MEANS FOR ADJUSTING THE FLOW RATE OF A COOLING AIR FLOW TAKEN AT HIGH PRESSURE COMPRESSOR OUTPUT
US8371127B2 (en) * 2009-10-01 2013-02-12 Pratt & Whitney Canada Corp. Cooling air system for mid turbine frame
FR2960260B1 (en) * 2010-05-21 2014-05-09 Snecma TURBOMACHINE COMPRISING IMPROVED LOW PRESSURE TURBINE VENTILATION CIRCUIT
JP5494457B2 (en) * 2010-12-13 2014-05-14 トヨタ自動車株式会社 Gas turbine engine
US20120308360A1 (en) * 2011-05-31 2012-12-06 General Electric Company Overlap seal for turbine nozzle assembly
US9279341B2 (en) 2011-09-22 2016-03-08 Pratt & Whitney Canada Corp. Air system architecture for a mid-turbine frame module
US9091173B2 (en) * 2012-05-31 2015-07-28 United Technologies Corporation Turbine coolant supply system
US20130327061A1 (en) * 2012-06-06 2013-12-12 General Electric Company Turbomachine bucket assembly and method of cooling a turbomachine bucket assembly
US10167723B2 (en) * 2014-06-06 2019-01-01 United Technologies Corporation Thermally isolated turbine section for a gas turbine engine
US9915204B2 (en) * 2014-06-19 2018-03-13 United Technologies Corporation Systems and methods for distributing cooling air in gas turbine engines
CN104675447A (en) * 2015-01-30 2015-06-03 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Turbine cooling gas circuit of gas turbine
US10634055B2 (en) * 2015-02-05 2020-04-28 United Technologies Corporation Gas turbine engine having section with thermally isolated area
US9920652B2 (en) 2015-02-09 2018-03-20 United Technologies Corporation Gas turbine engine having section with thermally isolated area
JP2018514685A (en) * 2015-04-06 2018-06-07 シーメンス エナジー インコーポレイテッド Two-pressure cooling of turbine blades
US10030519B2 (en) 2015-10-26 2018-07-24 Rolls-Royce Corporation System and method to retain a turbine cover plate between nested turbines with a tie bolt and spanner nut
US10718220B2 (en) * 2015-10-26 2020-07-21 Rolls-Royce Corporation System and method to retain a turbine cover plate with a spanner nut
US10273812B2 (en) 2015-12-18 2019-04-30 Pratt & Whitney Canada Corp. Turbine rotor coolant supply system
US11421597B2 (en) 2019-10-18 2022-08-23 Pratt & Whitney Canada Corp. Tangential on-board injector (TOBI) assembly
CN111946464B (en) * 2020-07-21 2021-09-07 中国科学院工程热物理研究所 Flow guide blocking sealing structure for rear bearing cavity of high-pressure turbine disc

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3043561A (en) * 1958-12-29 1962-07-10 Gen Electric Turbine rotor ventilation system
GB2081392B (en) * 1980-08-06 1983-09-21 Rolls Royce Turbomachine seal
US4462204A (en) * 1982-07-23 1984-07-31 General Electric Company Gas turbine engine cooling airflow modulator
US4882902A (en) 1986-04-30 1989-11-28 General Electric Company Turbine cooling air transferring apparatus
GB2189845B (en) * 1986-04-30 1991-01-23 Gen Electric Turbine cooling air transferring apparatus
FR2712029B1 (en) * 1993-11-03 1995-12-08 Snecma Turbomachine provided with a means for reheating the turbine disks when running at high speed.
US5555721A (en) * 1994-09-28 1996-09-17 General Electric Company Gas turbine engine cooling supply circuit
DE19854907A1 (en) * 1998-11-27 2000-05-31 Rolls Royce Deutschland Cooling air conduction for high pressure axial aviation gas turbines with air flow guided through radial turbine, turbine plate, through ring gap, towards hub cob for cooling
US6468032B2 (en) * 2000-12-18 2002-10-22 Pratt & Whitney Canada Corp. Further cooling of pre-swirl flow entering cooled rotor aerofoils
US6540477B2 (en) * 2001-05-21 2003-04-01 General Electric Company Turbine cooling circuit
US6735956B2 (en) * 2001-10-26 2004-05-18 Pratt & Whitney Canada Corp. High pressure turbine blade cooling scoop

Also Published As

Publication number Publication date
RU2330976C2 (en) 2008-08-10
FR2851010A1 (en) 2004-08-13
ES2255697T3 (en) 2006-07-01
JP4060279B2 (en) 2008-03-12
US6916151B2 (en) 2005-07-12
DE602004000301T2 (en) 2006-08-31
RU2004103479A (en) 2005-07-10
US20040219008A1 (en) 2004-11-04
EP1445421A1 (en) 2004-08-11
CA2456589C (en) 2012-04-24
DE602004000301D1 (en) 2006-03-30
CA2456589A1 (en) 2004-08-06
FR2851010B1 (en) 2005-04-15
JP2004239260A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
EP1445421B1 (en) Apparatus for the ventilation of a high pressure turbine rotor
EP2440746B1 (en) Turbine engine including an improved means for adjusting the flow rate of a cooling air flow extracted at the output of a high-pressure compressor
CA2758175C (en) Double-body gas turbine engine provided with an inter-shaft bearing
EP2337929B1 (en) Ventilation of a high-pressure turbine in a turbomachine
CA2564491C (en) Ventilation device for turbine discs in a gas turbine engine
CA2475404C (en) Exchanger on turbine ventilation system
EP1316675B1 (en) Stator for a turbomachine
CA2641963C (en) Blade tip clearance control for a turbine engine high-pressure turbine
CA2430143C (en) Cooling of upstream flange of high pressure turbine by chamber end twin injectors
BE1023354B1 (en) AXIAL TURBOMACHINE COMPRESSOR DEGIVERANT SEPARATING SPOUT
EP1552111A1 (en) Gas turbine ventilation circuitry
FR2598179A1 (en) COOLING AIR TRANSFER DEVICE FOR A TURBINE
WO2021191523A1 (en) Turbomachine with device for cooling and pressurising a turbine
EP2078822B1 (en) Gas-turbine engine with valve for connecting two enclosures
FR2999249A1 (en) High pressure axial compressor for e.g. turbojet for aircraft, has air draining unit for injecting cooling air between rotating element and static element such that cooling air immerses side of annular sealing ribs
WO2023047055A1 (en) Cooling-air injection casing for a turbomachine turbine
FR2881472A1 (en) Gas turbine engine for propulsion of aircraft, has outer radial seal arranged between conduit and turbine and permitting to withdraw cooling air from enclosure of combustion chamber in downstream of diffuser
FR2960020A1 (en) Device for cooling discs of rotor of aeronautical turbine engine, has sending units sending air injected into cavity on interior surfaces of discs in order to cool discs, and evacuating unit evacuating air that cools discs
FR2557634A2 (en) Sealing device for the movable blade assemblies of a turbo machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050131

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20050527

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060213

REF Corresponds to:

Ref document number: 602004000301

Country of ref document: DE

Date of ref document: 20060330

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2255697

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130207

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160127

Year of fee payment: 13

Ref country code: DE

Payment date: 20160121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160126

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140205

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004000301

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170205

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230121

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240203