WO2004001304A1 - Engine heat pump - Google Patents

Engine heat pump Download PDF

Info

Publication number
WO2004001304A1
WO2004001304A1 PCT/JP2003/007232 JP0307232W WO2004001304A1 WO 2004001304 A1 WO2004001304 A1 WO 2004001304A1 JP 0307232 W JP0307232 W JP 0307232W WO 2004001304 A1 WO2004001304 A1 WO 2004001304A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
engine
heat exchanger
refrigerant
auxiliary compressor
Prior art date
Application number
PCT/JP2003/007232
Other languages
French (fr)
Japanese (ja)
Inventor
Jirou Fukudome
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Priority to AU2003241975A priority Critical patent/AU2003241975A1/en
Publication of WO2004001304A1 publication Critical patent/WO2004001304A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0215Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being used parallel to the outdoor heat exchanger during heating operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Definitions

  • the present invention relates to a device configuration of an engine heat pump, and more particularly, to a technique for minimizing a compression work of a compressor and improving energy efficiency in a full load region.
  • the refrigerant is compressed by a compressor and discharged as a high-temperature, high-pressure refrigerant gas, radiated by an indoor heat exchanger, and then expanded by an expansion valve so that the refrigerant temperature is lower than the outside air temperature.
  • a heating cycle in which the temperature is lowered, the heat is absorbed by an outdoor heat exchanger, evaporated and vaporized, and then sucked into a compressor.
  • the outdoor heat exchanger evaporates the refrigerant by absorbing heat from the outside air and draws the low-temperature, low-pressure refrigerant gas into the compressor.
  • the temperature of the refrigerant supplied to the outdoor heat exchanger is lower than the outside air temperature.
  • the compressor compresses the refrigerant again and discharges it as a high-temperature and high-pressure refrigerant gas.
  • Japanese Patent Application Laid-Open No. 62-293630 discloses an outdoor heat exchanger that evaporates a refrigerant at an outside temperature, and an engine cooling water It discloses a configuration in which an engine waste heat recovery unit that evaporates by the heat of the air is provided in parallel.
  • the outdoor heat exchanger and the engine waste heat recovery device respectively suck the evaporated refrigerant into separate compressors of the same capacity.
  • the refrigerant is circulated to both the outdoor heat exchanger and the engine waste heat recovery unit in the normal heating operation state.
  • the heating capacity can be set lower by circulating the coolant only in the outdoor heat exchanger without circulating the coolant in the engine waste heat recovery unit.
  • the room temperature can be adjusted with low load operation by continuous operation, instead of intermittent operation that repeatedly starts and stops the engine. I'm trying.
  • the Mollier diagram (vertical axis: pressure, horizontal axis: specific enthalpy) of the heating cycle of the engine heat pump in the above configuration is as shown in Figure 16.
  • two heating cycles 10 and 20 are performed by two sets of the heat exchanger and the compressor.
  • compression work refers to the ratio of the compression required by each compressor to increase the refrigerant pressure to the discharge pressure.
  • the compressor performs a compression work AW 1 on the refrigerant having a unit mass flow rate
  • the condensation section BC heat is released by condensing the refrigerant in the indoor heat exchanger.
  • the expansion section CD the refrigerant is expanded by the expansion valve to make the refrigerant liquid lower in pressure and temperature than the outside temperature line G
  • the evaporation section DA the refrigerant is removed from the outside air by the outdoor heat exchanger.
  • the refrigerant is evaporated by heat absorption.
  • the refrigerant is evaporated by absorbing the exhaust heat of the engine in the engine waste heat recovery unit via the evaporation section EF, and the compression work 2 is performed by the compressor. .
  • This reduction in compression work AW 1 ⁇ ⁇ ⁇ 2 is directly linked to the reduction in fuel consumption of the engine that drives the compressor.
  • the coefficient of performance during heating operation heatating capacity / (fuel consumption + electricity consumption) It is also important from the viewpoint of improving
  • the outdoor work heat exchanger was used for the compression work AW1 in the heating cycle 10 of the refrigerant passing through the outdoor heat exchanger. Since the refrigerant must be kept at a lower temperature and lower pressure than the outside temperature line G because the refrigerant evaporates depending on the temperature, the heating cycle 10 cannot be changed and the compression work ZW 1 cannot be reduced. .
  • the refrigerant is evaporated by the temperature of the engine cooling water. It is sufficient that EF is lower temperature and lower pressure than the engine coolant temperature line H. Therefore, it is conceivable to reduce the compression work AW2 by setting the line of the evaporation section EF to a higher position (increase the refrigerant pressure).
  • the conventional engine heat pump has a volume capacity of a compressor that performs a heating cycle 20 passing through an engine waste heat recovery unit (a refrigerant suction volume (or discharge) per cycle (one revolution) of a rotating body provided in the compressor).
  • volume is the same as the volume capacity of the compressor that performs the heating cycle 10 that passes through the outdoor heat exchanger, and the refrigerant suction pressure of the compressor that performs the heating cycle 20 is reduced more than necessary.
  • the EF line was moved away from the engine cooling water temperature line H, and sometimes tended to be lower than the outside temperature line G (evaporation section E 'F'). Disclosure of the invention
  • An object of the present invention is to focus on the volume capacity of each compressor corresponding to an outdoor heat exchanger and an engine waste heat recovery device, and to maintain the refrigerant suction pressure in the compressor as high as possible. To reduce the work of compressing the refrigerant due to the pressure.
  • the present invention provides a main compressor driven by an engine, an indoor heat exchanger, an outdoor heat exchanger, an expansion valve for an indoor heat exchanger, an expansion valve for an outdoor heat exchanger, and an outdoor heat exchanger.
  • An engine waste heat recovery unit, an expansion valve for the engine waste heat recovery unit, and an auxiliary compressor are provided in parallel, and the auxiliary compressor compresses the refrigerant that has passed through the engine waste heat recovery unit during heating.
  • the volume capacity of the auxiliary compressor is smaller than that of the main compressor.
  • the auxiliary compressor having a reduced volumetric capacity the evaporation pressure in the engine waste heat exchanger is maintained at a higher pressure than when evaporating at ambient temperature, and the compression work in the auxiliary compressor is reduced.
  • the total compression work can be reduced as compared with the case where the whole amount is evaporated at the outside temperature and compressed, contributing to energy saving.
  • the auxiliary compressor with a reduced volume capacity can be configured smaller than that of the main compressor, and it is easy to secure the installation space inside the package of the engine heat pump. It is also possible to increase the number of auxiliary compressors and to configure them.
  • the auxiliary compressor may have a volume capacity of the main compressor. And a predetermined ratio of the total capacity of the auxiliary compressor.
  • the main compressor performs compression work for the majority of the circulating refrigerant amount, and prevents a decrease in the suction pressure of the refrigerant to the auxiliary compressor, thereby reducing the compression work by the auxiliary compressor.
  • the driving power (kW) can be reduced.
  • the difference between the suction pressure of the auxiliary compressor and the discharge pressure of the main compressor is kept within a predetermined range.
  • the main compressor and the suction line of the auxiliary compressor are connected by an on-off valve.
  • both compressors can draw in refrigerant from the outdoor heat exchanger and the engine waste heat recovery unit, so that the outdoor heat exchanger and the engine waste heat recovery unit can be used even when performing heating operation with either compressor alone.
  • An auxiliary compressor can be used even during cooling.
  • the auxiliary compressor is driven by an electric motor.
  • the controller can control the rotation speed and the compression ratio of the auxiliary compressor alone independently of the main compressor.
  • the auxiliary compressor of the two compressors is operated alone and the outdoor heat exchanger of the two heat exchangers is operated alone.
  • the main compressor is operated independently, and the outdoor heat exchanger and the engine waste heat recovery unit are operated.
  • both the compressors are operated and the outdoor heat exchanger and the engine waste heat recovery unit are operated. Activate the collector.
  • the auxiliary compressor alone is operated among the two compressors.
  • FIG. 1 is a refrigerant circuit diagram of the engine heat pump of the present invention.
  • FIG. 2 is a block diagram of control devices for an engine heat pump.
  • FIG. 3 is a Mollier diagram of a heating cycle of the engine heat pump according to the configuration of the present invention.
  • FIG. 4 is a graph showing the relationship between the volumetric capacity ratio of the auxiliary compressor and the driving power / refrigerant evaporation pressure.
  • FIG. 5 is a table showing an example of a numerical combination of a volume capacity ratio and a volume capacity.
  • FIG. 6 is a flowchart when the refrigerant temperature is adjusted by controlling the opening of the expansion valve.
  • FIG. 7 is a flow chart when the refrigerant pressure is adjusted by controlling the opening of the B-Peng Zhang valve and controlling the rotation speed of the compressor.
  • FIG. 8 is a refrigerant circuit diagram showing a refrigerant flow when the air conditioning load during heating is low.
  • FIG. 9 is a refrigerant circuit diagram when the air conditioning load is a medium load during heating.
  • FIG. 10 is a refrigerant circuit diagram when the air conditioning load is high during heating.
  • FIG. 11 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning load during cooling is a low / medium load.
  • FIG. 12 is a refrigerant circuit diagram when the air conditioning load during cooling is high.
  • FIG. 13 is a graph showing the level of the air conditioning load according to the present invention.
  • FIG. 14 is a refrigerant circuit diagram showing a refrigerant flow in a pumping operation.
  • FIG. 15 is a graph showing the relationship between the operation time and the auxiliary compressor and engine speed in the pumping operation.
  • FIG. 16 is a Mollier diagram of a heating cycle of an engine heat pump in a conventional configuration.
  • the outdoor unit 1 shown in Fig. 1 is installed outside a room that requires air conditioning, and has a main compressor 2, an auxiliary compressor 3, an engine 4, an outdoor heat exchanger 5, and an outdoor heat exchanger.
  • the engine is equipped with an engine waste heat recovery device 6 and the like provided in parallel with 5.
  • the main compressor 2 is configured to drive an internal rotating body by an engine 4.
  • the auxiliary compressor 3 supplies a commercial power supply 40 to the electric motor, and drives the internal rotating body by the electric motor. That is, the auxiliary compressor 3 is configured as an electric compressor, and has a layout in an outdoor unit. The degree of freedom is high.
  • the indoor unit 7 is installed in a room requiring air conditioning, and includes an indoor heat exchanger 8 and the like. Although not shown, a plurality of indoor units 7 may be provided.
  • the outdoor unit 1 and the indoor unit 7 are connected by the refrigerant line 9, the refrigerant is circulated in the refrigerant line 9, and the flow direction is changed by the four-way valve 24. Or a heating cycle.
  • an expansion valve 21 for an outdoor heat exchanger In the refrigerant line 9, an expansion valve 21 for an outdoor heat exchanger, an expansion valve 22 for an engine waste heat recovery unit, and an expansion valve 2 for an indoor heat exchanger Three are provided.
  • a supply pipe 20a is connected to the discharge port 2a of the main compressor 2, and a supply pipe 30a is connected to the discharge port 3a of the auxiliary compressor 3.
  • the other side of the supply pipe 30a is connected to a connection point 35 upstream of the four-way valve 24 of the supply pipe 20a.
  • the four-way valve 24 and the suction port 2b of the main compressor 2 are connected by a return pipe 2Ob, and the port on the outlet side of the engine waste heat recovery unit 6 is connected to an auxiliary port.
  • the suction port 3 b of the compressor 3 is connected by a return pipe 3 Ob, and the two return pipes 20 b ⁇ 30 b are connected by a bypass pipe 33 provided with an electromagnetic on-off valve 34.
  • the engine 4 and the engine waste heat recovery unit 6 are connected by a cooling water pipe 14, and the exhaust heat of the engine 4 is transmitted to the refrigerant passing through the engine waste heat recovery unit 6.
  • reference numeral 11 denotes a thermostat
  • reference numeral 12 denotes a cooling water pump.
  • FIG. 2 shows a configuration of a detection device, a control device, and the like for controlling the operation of the engine heat pump of the present invention.
  • the controller 25, which is a control device, has a temperature sensor 41 that detects the refrigerant temperature difference at the entrance and exit of the outdoor heat exchanger 5, a temperature sensor 42 that detects the refrigerant temperature difference at the entrance and exit of the engine waste heat recovery unit 6, and the room Temperature sensor 43 for detecting the refrigerant temperature difference at the entrance and exit of the heat exchanger 8, thermostat 11 1, pressure sensor 51 for detecting the discharge pressure of the main compressor 2, pressure sensor for detecting the suction pressure of the auxiliary compressor 3. One and two are connected.
  • the controller 25 opens the expansion valve 21 for the outdoor heat exchanger, the expansion valve 22 for the engine waste heat recovery unit, the expansion valve 23 for the indoor heat exchanger, and the solenoid on-off valve 3 4 based on the detection results of these detection devices. Adjust the degree. Further, the controller 25 also controls the start and stop of the engine 4 (main compressor 2) and the auxiliary compressor 3.
  • auxiliary compressor 3 Since the auxiliary compressor 3 is driven by an electric motor, it does not require direct power supply from the engine, and the controller 25 controls the rotation speed of the auxiliary compressor 3 independently of the main compressor 2 ⁇ The compression ratio can be controlled.
  • the refrigerant compressed by the main compressor 2 and the auxiliary compressor 3 joins at the connection point 35, is sent to the indoor heat exchanger 8 via the four-way valve 24, and After being radiated and condensed by the heat exchanger 8, it is expanded by the expansion valve 21 for the outdoor heat exchanger and the expansion valve 22 for the engine waste heat recovery unit, and absorbed by the outdoor heat exchanger 5 and the engine waste heat recovery unit 6, respectively. After being evaporated and evaporated, it is sucked by the main compressor 2 and the auxiliary compressor 3, and is compressed by these compressors 2 and 3 and then discharged again.
  • the refrigerant compressed by the main compressor 2 and the auxiliary compressor 3 joins at the connection point 35, and is sent to the outdoor heat exchanger 5 via the four-way valve 24.
  • the heat is condensed by the indoor heat exchanger expansion valve 23, absorbed by the indoor heat exchanger 8 and evaporated, and then the main compressor 2 or the bypass It is sucked into the auxiliary compressor 3 through the pipe 33 and compressed by these compressors 2 and 3. After that, the cycle of discharging again is repeated.
  • the volumetric capacity V3 of the auxiliary compressor 3 as shown in the table of FIG. 5 is smaller than the volumetric capacity V2 of the main compressor 2, and the refrigerant suction pressure P of the auxiliary compressor 3 3 to reduce the compression work AW2 (Fig. 3).
  • the evaporating section EF can be set at a high pressure position to reduce the compression work AW2 (narrow the width of the compression work ⁇ " ⁇ ⁇ 2). You can.
  • the volume capacity V2'V3 here is the refrigerant suction volume (ccZ cycle) per one cycle (rotation) of the rotating body provided in each of the compressors 2 and 3.
  • the preferred volume capacity for reducing this compression work AW2 is the volume capacity ratio E (%), that is, the total volume capacity V 2 of the main compressor 2 and the volume capacity V 3 of the auxiliary compressor 3
  • the ratio can be determined based on the ratio of the volume capacity V3 of the auxiliary compressor 3 to the product capacity.
  • the horizontal axis represents the volume capacity ratio E (%)
  • the left vertical axis represents the driving power (kW) of the auxiliary compressor 3
  • the right vertical axis represents the refrigerant evaporation pressure (MPa). %)
  • the table in Fig. 5 shows one of the combinations of the values of the volume capacity V 2 ⁇ V 3 (c cZ cycle) of the main compressor 2 and the auxiliary compressor 3 corresponding to the volume capacity ratio () in the above graph.
  • This shows an example, and also shows the ratio of the corresponding refrigerant mass flow rate F1 (kg / min) of the main compressor 2 and the corresponding refrigerant mass flow rate F2 (kg / min) of the auxiliary compressor 3. I have.
  • the driving power (kW) (bar graph) of the auxiliary compressor 3 rapidly decreases when the volume capacity ratio E (%) is changed from 50% to 25%, and the volume capacity ratio E ( %) To 10%.
  • the volumetric capacity ratio E (%) is set to 10% or less, the suction pressure P 3 of the auxiliary compressor 3 becomes excessive, and the difference between the discharge pressure and the suction pressure becomes extremely small. The compression stroke at does not hold.
  • the fluctuation in the driving power (kW) of the auxiliary compressor 3 follows that the refrigerant evaporation pressure P 6 (MPa) in the engine waste heat recovery unit 6 is increasing, and the volume capacity ratio E (%) Is in the range of 10% to 25%, the main compressor 2 performs the compression work AW1 for the majority of the circulating refrigerant amount, and the refrigerant evaporation pressure P 6 (MPa) is high, and the auxiliary compressor Since the suction pressure P3 of 3 is high, the evaporating section EF shown in Fig. 3 increases, the compression work 2 is reduced, and the driving power (kW) is reduced.
  • volumetric capacity ratio E (%) when the volumetric capacity ratio E (%) is further reduced from 10%, the refrigerant evaporation pressure P 6 (MPa) becomes excessively large, and the compression process in the auxiliary compressor 3 cannot be realized. From the above relationship, by setting the volumetric capacity ratio E (%) from 10% to 25%, a decrease in the suction pressure P3 of the refrigerant into the auxiliary compressor 3 is prevented, and the compression work AW2 is reduced. It can be said that the driving power (kW) can be reduced.
  • An example in which the volume capacity ratio E (%) is set to 10% to 25% is one of the preferred embodiments, and the volume capacity ratio E (%) is set to a predetermined ratio suitable for each device configuration. Doing so does not depart from the inventive concept.
  • the volume capacity V 3 of the auxiliary compressor 3 is set smaller than the volume capacity V 2 of the main compressor 2, and the device can be configured to be small. Since it is easy to secure the installation space inside the facility, it is possible to add and configure the existing equipment design.
  • This configuration is the configuration shown in FIG. 1, in which the temperature of the secondary side is detected by the temperature sensor 41 in the flow of the refrigerant in the outdoor heat exchanger 5 during heating, and the engine waste heat recovery unit 6 The temperature on the downstream side is detected by the temperature sensor 42, and the detection results are recognized by the controller 25.
  • the controller 25 controls the expansion valve 21 for the outdoor heat exchanger and the expansion valve for the engine waste heat recovery unit. By controlling the opening of 22, the suction pressure of the main compressor 2 and the auxiliary compressor 3 is adjusted, and the compression work AW 1 ⁇ AW 2 (FIG. 3) is reduced.
  • the controller 25 as shown in the flowchart of FIG. 6 includes a refrigerant temperature ⁇ ⁇ 1 (° C.) at the entrance and exit of the outdoor heat exchanger 5 and a refrigerant temperature difference ⁇ ⁇ at the entrance and exit of the engine waste heat recovery unit 6.
  • the opening of the expansion valve 21 for the outdoor heat exchanger and the expansion valve 22 for the engine waste heat recovery unit are not made unnecessarily small, so that the refrigerant can evaporate.
  • the pressure of the refrigerant is prevented from dropping as far as it does not occur.
  • a predetermined value ⁇ (> 0) (° C) is set in order to prevent a liquid back.
  • the suction pressure of the refrigerant of the main compressor 2 and the auxiliary compressor 3 can be adjusted, the suction pressure can be kept as high as possible, and the compression work AW 1 ⁇ AW 2 can be reduced.
  • the discharge pressure P 2 of the main compressor 2 is detected by the pressure sensor 51, and the suction pressure P 3 of the auxiliary compressor 3 is similarly detected by the pressure sensor 152.
  • the controller 25 recognizes these detection results, and the controller 25 sets the discharge pressure P 2 and sets the rotation speed R of the main compressor 2 in order to exhibit the desired air-conditioning capacity.
  • the pressure difference ⁇ ⁇ between the suction pressure P 3 and the discharge pressure P 2 is kept within a predetermined range.
  • the predetermined range of the pressure difference ⁇ ⁇ ⁇ here means that the compression process in the auxiliary compressor 3 It is a range that is greater than or equal to the minimum value that holds, and is near the minimum value.
  • the auxiliary compressor 3 is in a state where the operation with low energy efficiency is performed by the large compression work AW 2.
  • the auxiliary compressor 3 is prevented from operating with poor energy efficiency (step 720).
  • Step 70 the pressure in the condensation section BC in the Mollier diagram (FIG. 3), that is, the P2 target value, is compared (Step 70). 3) If the discharge pressure P 2 is smaller than the target value P 2, the number of revolutions R 1 of the main compressor 2 is increased, and the discharge pressure P 2 is increased to the pressure of the condensing section BC to cool the air. On the other hand, if the discharge pressure P 2 is larger than the target value P 2, energy wasted due to excessive compression in the main compressor 2 should be prevented. The number of revolutions R1 of 2 is decreased (step 705).
  • the compression work of the auxiliary compressor 3 can be suppressed and the compression work of the entire engine heat pump can be reduced while exhibiting the desired air conditioning capacity as the engine heat pump.
  • this control is performed during heating, when the air conditioning load is low, the auxiliary compressor 3 of both compressors is operated alone, Of these compressors, the outdoor heat exchanger operates independently.At medium loads, the main compressor of both compressors operates independently, and the outdoor heat exchanger and the engine waste heat recovery unit operate at high loads. The unit is operated and the outdoor heat exchanger and the engine waste heat recovery unit are operated. On the other hand, during cooling, as shown in Fig. 11, when the air-conditioning load is low to medium, the auxiliary compressor operates independently and the outdoor heat exchanger operates independently. Operate the unit and operate the outdoor heat exchanger independently.
  • the level of the air conditioning load mentioned above generally ranges from 0% to 15% when the air conditioning load (%) of the engine heat pump is low, and from 15% to 60%. Is treated as medium load, and the range from 60% to 100% is treated as high load.
  • the controller 25 completely stops the expansion valve 22 for the engine waste heat recovery unit.
  • the solenoid on-off valve 3 4 is opened, and the engine 4 and the main compressor 2 are stopped, while the auxiliary compressor 3 is driven, so that the refrigerant absorbs heat in the outdoor heat exchanger 5 and evaporates. After that, it is sucked into the auxiliary compressor 3 through the bypass pipe 33, compressed and discharged by the auxiliary compressor 3, radiates heat in the indoor heat exchanger 8, and condenses.
  • the controller 25 opens the expansion valve 22 for the engine waste heat recovery unit and the solenoid on-off valve 34, and furthermore, the engine 4 To start the main compressor 2 and stop the auxiliary compressor 3, the refrigerant absorbs heat in both the outdoor heat exchanger 5 and the engine waste heat recovery unit 6 and evaporates.
  • the refrigerant that has passed through the outdoor heat exchanger 5 is drawn into the main compressor 2, and similarly, the refrigerant that passed through the engine waste heat recovery unit 6 is drawn into the main compressor 2 through the bypass pipe 33, and The air is compressed and discharged by the main compressor 2, and is discharged and condensed in the indoor heat exchanger 8.
  • the compression work of the maximum capacity is performed from the middle in the main compressor 2 only by the main compressor 2 without driving the auxiliary compressor 3.
  • the main compressor 2 can perform an energy-efficient heating operation. During heating, when the air-conditioning load is high, as shown in Fig.
  • the controller 25 opens the engine waste heat recovery unit expansion valve 22 and completely closes the solenoid on-off valve 34.
  • the engine 4 is started to drive the main compressor 2 and the auxiliary compressor 3 is driven, the refrigerant absorbed and evaporated in the outdoor heat exchanger 5 is transferred to the main compressor 2 and the engine waste heat
  • the refrigerant that has absorbed heat in the recovery unit 6 and evaporated evaporates into the auxiliary compressor 3, passes through independent flow paths, and is sucked into separate compressors. After being compressed and discharged, and joined at the connection point 35, the heat is radiated and condensed by the indoor heat exchanger 8.
  • both the main compressor 2 and the auxiliary compressor 3 are driven to perform a large-capacity compression work so that it is possible to meet a demand for a high heating capacity. I have.
  • the controller 25 completes the expansion valve 22 for engine waste heat recovery unit and the solenoid on-off valve 34.
  • the refrigerant dissipates heat in the outdoor heat exchanger 5 and condenses, and then expands for the indoor heat exchanger. It is expanded by the valve 23, absorbed and evaporated in the indoor heat exchanger 8, sucked into the main compressor 2, compressed by the main compressor 2 and discharged.
  • energy-efficient cooling operation is performed only with the main compressor 2 without driving the auxiliary compressor 3. be able to.
  • the controller 25 opens the solenoid on-off valve 34 from the operation state between the low load and the medium load, and sets the auxiliary compressor 3 Then, the auxiliary compressor 3 compensates for the compression work of the main compressor 2, and both compressors perform large-capacity compression work. In this way, by supplying the refrigerant to the auxiliary compressor 3 and performing the compression work, it is possible to meet the demand for a high required cooling capacity.
  • the main compressor is used for a predetermined time when the engine heat pump is started.
  • the auxiliary compressor 3 By operating the auxiliary compressor 3 alone and operating independently while keeping the 2 stopped, the auxiliary compressor alone is operated, and the residual liquid refrigerant in the outdoor heat exchanger 5 or the engine waste heat recovery device 6 is pumped up. When the main compressor 2 is started, the suction of the residual liquid soot into the main compressor 2 is prevented.
  • the pumping operation is performed during both heating and cooling.
  • the controller 25 When the pumping operation is described, as shown in FIGS. 14 and 15, the controller 25 generates the outdoor heat. While the expansion valve 21 for the exchanger and the expansion valve 22 for the engine waste heat recovery unit are completely closed, the expansion valve 23 for the indoor heat exchanger is fully opened, and the electromagnetic switching valve 34 is fully opened. Then, without starting the engine 4, the start of the auxiliary compressor 3 is started, and the residual liquid refrigerant in the outdoor heat exchanger 5 and the engine waste heat recovery unit 6 is sucked, that is, pumped.
  • the time for which the auxiliary compressor 3 is operated independently can be set arbitrarily.
  • the compression work of the compressor can be minimized, and the energy efficiency can be improved over the entire load range.

Abstract

An engine heat pump, comprising a main compressor (2) driven by an engine, an indoor heat exchanger (8), an outdoor heat exchanger (5), an expansion valve (23) for the indoor heat exchanger, an expansion valve (21) for the outdoor heat exchanger, an engine waste heat recovery device (6) installed parallel with the outdoor heat exchanger, an expansion valve (22) for the engine waste heat recovery device, and an auxiliary compressor (3), wherein the auxiliary compressor compresses refrigerant passed through the engine waste heat recovery device at the time of heating and the refrigerant discharged from the auxiliary compressor is merged with refrigerant discharged from the main compressor, and the volumetric capacity of the auxiliary compressor is reduced less than that of the main compressor.

Description

明 細 書 エンジンヒー卜ポンプ 技術分野  Description Engine heat pump Technical field
本発明は、 エンジンヒートポンプの装置構成に関するものであり、 より詳しく は、 圧縮機の圧縮仕事を最小限に抑えるとともに、 全負荷域でのエネルギー効率 の向上を図る技術に関する。 背景技術  The present invention relates to a device configuration of an engine heat pump, and more particularly, to a technique for minimizing a compression work of a compressor and improving energy efficiency in a full load region. Background art
エンジンヒートポンプでは、 暖房時には、 冷媒を圧縮機で圧縮して高温高圧の 冷媒ガスとして吐出し、 室内熱交換器にて放熱させた後、 膨張弁にて膨張させる ことで冷媒温度を外気温よりも低温にし、 室外熱交換器にて吸熱させて蒸発 ·気 化させた後に圧縮機に吸引させる、 といった暖房サイクルが行われている。  In an engine heat pump, during heating, the refrigerant is compressed by a compressor and discharged as a high-temperature, high-pressure refrigerant gas, radiated by an indoor heat exchanger, and then expanded by an expansion valve so that the refrigerant temperature is lower than the outside air temperature. There is a heating cycle in which the temperature is lowered, the heat is absorbed by an outdoor heat exchanger, evaporated and vaporized, and then sucked into a compressor.
この暖房サイクルにおいて、 室外熱交換器では、 外気からの吸熱により冷媒を 蒸発させ、 低温低圧の冷媒ガスを圧縮機に吸引させるベく、 室外熱交換器に供給 する冷媒温度を外気温よりも低温として、 熱交換を行うようにしている。 また、 圧縮機は、 この冷媒を再び圧縮して高温高圧の冷媒ガスとして吐出する。  In this heating cycle, the outdoor heat exchanger evaporates the refrigerant by absorbing heat from the outside air and draws the low-temperature, low-pressure refrigerant gas into the compressor.The temperature of the refrigerant supplied to the outdoor heat exchanger is lower than the outside air temperature. As for the heat exchange. The compressor compresses the refrigerant again and discharges it as a high-temperature and high-pressure refrigerant gas.
以上のような暖房サイクルを行うエンジンヒートポンプの構成に関し、 日本国 特開昭 6 2 - 2 9 3 0 6 6号公報は、冷媒を外気温で蒸発させる室外熱交換器と、 冷媒をエンジン冷却水の熱により蒸発させるエンジン廃熱回収器とを並列に設け た構成を開示している。 該室外熱交換器及び該エンジン廃熱回収器は、 蒸発させ た冷媒を、 別個の同一容量の圧縮機にそれぞれ吸入させる。  Regarding the configuration of the engine heat pump that performs the heating cycle as described above, Japanese Patent Application Laid-Open No. 62-293630 discloses an outdoor heat exchanger that evaporates a refrigerant at an outside temperature, and an engine cooling water It discloses a configuration in which an engine waste heat recovery unit that evaporates by the heat of the air is provided in parallel. The outdoor heat exchanger and the engine waste heat recovery device respectively suck the evaporated refrigerant into separate compressors of the same capacity.
このように、 熱交換器と圧縮機の組合せを二つ備えた従来のエンジンヒ一トポ ンプにおいては、 通常の暖房運転状態では、 室外熱交換器とエンジン廃熱回収器 の両方に冷媒を循環させる一方、 所要暖房能力の低い低負荷運転状態では、 ェン ジン廃熱回収器には冷媒を循環させず、 室外熱交換器にのみ冷媒を循環させるこ とで、 暖房能力をより低く設定可能とし、 これにより、 エンジンの発停を繰り返 す断続運転ではなく、 連続運転により、 低負荷運転にて室内温度調整を行えるよ うにしている。 As described above, in the conventional engine heat pump equipped with two combinations of the heat exchanger and the compressor, the refrigerant is circulated to both the outdoor heat exchanger and the engine waste heat recovery unit in the normal heating operation state. On the other hand, in a low load operation state where the required heating capacity is low, the heating capacity can be set lower by circulating the coolant only in the outdoor heat exchanger without circulating the coolant in the engine waste heat recovery unit. As a result, the room temperature can be adjusted with low load operation by continuous operation, instead of intermittent operation that repeatedly starts and stops the engine. I'm trying.
以上の構成におけるエンジンヒートボンプの暖房サイクルのモリエル線図 (縦 軸:圧力、 横軸:比ェンタルピー) は、 図 1 6に示す如くとなる。 この従来構成 では、 熱交換器と圧縮機の二組により、 二つの暖房サイクル 1 0 · 2 0が行われ る。 各圧縮機の圧縮により冷媒圧力を吐出圧まで高めるのに要した比ェン夕ルビ を 「圧縮仕事」 としている。  The Mollier diagram (vertical axis: pressure, horizontal axis: specific enthalpy) of the heating cycle of the engine heat pump in the above configuration is as shown in Figure 16. In this conventional configuration, two heating cycles 10 and 20 are performed by two sets of the heat exchanger and the compressor. The term “compression work” refers to the ratio of the compression required by each compressor to increase the refrigerant pressure to the discharge pressure.
まず、 暖房サイクル 1 0について、 圧縮区間 A Bにおいては、 圧縮機により、 単位質量流量の冷媒にっき、圧縮仕事 AW 1が行われ、凝縮区間 B Cにおいては、 室内熱交換器での冷媒の凝縮による放熱が行われ、 膨張区間 C Dにおいては、 膨 張弁により冷媒を膨張させて外気温線 Gよりも圧力 ·温度の低い冷媒液とし、 蒸 発区間 D Aにおいては、 室外熱交換器にて外気からの吸熱による冷媒の蒸発が行 われる。  First, in the heating cycle 10, in the compression section AB, the compressor performs a compression work AW 1 on the refrigerant having a unit mass flow rate, and in the condensation section BC, heat is released by condensing the refrigerant in the indoor heat exchanger. In the expansion section CD, the refrigerant is expanded by the expansion valve to make the refrigerant liquid lower in pressure and temperature than the outside temperature line G, and in the evaporation section DA, the refrigerant is removed from the outside air by the outdoor heat exchanger. The refrigerant is evaporated by heat absorption.
同様に、 暖房サイクル 2 0については、 蒸発区間 E Fを経由して、 エンジン廃 熱回収器にてエンジン排熱の吸熱による冷媒の蒸発が行われ、 圧縮機により圧縮 仕事 2が行われるものである。  Similarly, for the heating cycle 20, the refrigerant is evaporated by absorbing the exhaust heat of the engine in the engine waste heat recovery unit via the evaporation section EF, and the compression work 2 is performed by the compressor. .
しかし、 上記従来のエンジンヒートポンプでは、 負荷の高低により、 エンジン 廃熱回収器への冷媒循環の有無の切替えを行うに過ぎず、 異なる二つの暖房サイ クル 1 0 · 2 0それぞれにおいて行われる圧縮機の圧縮仕事 AW 1 · AW 2を削 減することについての検討はされていない。  However, in the above-described conventional engine heat pump, the only difference is whether the refrigerant is circulated to the engine waste heat recovery unit depending on the level of the load, and the compressors are operated in two different heating cycles 10 and 20 respectively. No study has been made on reducing the compression work AW 1 and AW 2 of the car.
この圧縮仕事 AW 1 · Δ· 2の削減は、 圧縮機を駆動するエンジンの燃料消費 量の削減に直結するものであり、 暖房運転時の成績係数 (暖房能力/ (燃料消費 量 +電気消費量) を向上させる観点からも重要である。  This reduction in compression work AW 1 · Δ · 2 is directly linked to the reduction in fuel consumption of the engine that drives the compressor. The coefficient of performance during heating operation (heating capacity / (fuel consumption + electricity consumption) It is also important from the viewpoint of improving
そこで、 単位質量流量当たりの圧縮仕事 AW 1 · Δ Υ 2の削減を検討するに、 室外熱交換器を経由する冷媒の暖房サイクル 1 0における圧縮仕事 AW 1につい ては、 室外熱交換器が外気温により冷媒を蒸発させるため、 冷媒を外気温線 Gよ りも低温低圧の状態とする必要があることから、 暖房サイクル 1 0の変更は行え ず、 圧縮仕事 Z W 1の削減を図ることはできない。  Therefore, to study the reduction of the compression work AW1 · ΔΥ2 per unit mass flow rate, the outdoor work heat exchanger was used for the compression work AW1 in the heating cycle 10 of the refrigerant passing through the outdoor heat exchanger. Since the refrigerant must be kept at a lower temperature and lower pressure than the outside temperature line G because the refrigerant evaporates depending on the temperature, the heating cycle 10 cannot be changed and the compression work ZW 1 cannot be reduced. .
一方、 エンジン廃熱回収器を経由する冷房の暖房サイクル 2 0における圧縮仕 事 2においては、 エンジン冷却水温により冷媒を蒸発させるため、 蒸発区間 E Fはエンジン冷却水温線 Hよりも低温低圧であればよいことになる。 従って、 蒸発区間 E Fの線を、 より高い位置とする (冷媒圧力を高くする) ことで圧縮仕 事 AW 2の削減を図ることが考えられる。 しかし、 従来のエンジンヒートポンプ は、 エンジン廃熱回収器を通過させる暖房サイクル 2 0を行う圧縮機の体積容量 (圧縮機に備える回転体の一サイクル (一回転) 当たりの冷媒の吸入体積 (又は 吐出体積))を、室外熱交換器を通過させる暖房サイクル 1 0を行う圧縮機の体積 容量と同一としており、 暖房サイクル 2 0を行う圧縮機の冷媒吸入圧力を必要以 上に低下させ、 蒸発区間 E Fの線をエンジン冷却水温線 Hから遠ざけてしまい、 時には、 外気温線 Gよりも低くなる傾向 (蒸発区間 E ' F ' となる) があった。 発明の開示 On the other hand, in the compression work 2 in the cooling heating cycle 20 via the engine waste heat recovery unit, the refrigerant is evaporated by the temperature of the engine cooling water. It is sufficient that EF is lower temperature and lower pressure than the engine coolant temperature line H. Therefore, it is conceivable to reduce the compression work AW2 by setting the line of the evaporation section EF to a higher position (increase the refrigerant pressure). However, the conventional engine heat pump has a volume capacity of a compressor that performs a heating cycle 20 passing through an engine waste heat recovery unit (a refrigerant suction volume (or discharge) per cycle (one revolution) of a rotating body provided in the compressor). Volume)) is the same as the volume capacity of the compressor that performs the heating cycle 10 that passes through the outdoor heat exchanger, and the refrigerant suction pressure of the compressor that performs the heating cycle 20 is reduced more than necessary. The EF line was moved away from the engine cooling water temperature line H, and sometimes tended to be lower than the outside temperature line G (evaporation section E 'F'). Disclosure of the invention
本発明の目的は、 室外熱交換器とエンジン廃熱回収器に対応するそれぞれの圧 縮機の体積容量に着目し、 圧縮機での冷媒の吸入圧力をできるだけ高圧に保つこ とで、 圧縮機による冷媒の圧縮仕事の低減を図ることである。  An object of the present invention is to focus on the volume capacity of each compressor corresponding to an outdoor heat exchanger and an engine waste heat recovery device, and to maintain the refrigerant suction pressure in the compressor as high as possible. To reduce the work of compressing the refrigerant due to the pressure.
この目的を達成すべく、 本発明では、 エンジンで駆動される主圧縮機、 室内熱 交換器、 室外熱交換器、 室内熱交換器用膨張弁、 室外熱交換器用膨張弁、 該室外 熱交換器と並列に設けられたエンジン廃熱回収器、エンジン廃熱回収器用膨張弁、 補助圧縮機を有し、 該補助圧縮機は、 暖房時に該エンジン廃熱回収器を通過した 冷媒を圧縮するものであり、 該補助圧縮機より吐出された冷媒を該主圧縮機より 吐出された冷媒と合流させる構成としたエンジンヒートポンプにおいて、 該補助 圧縮機の体積容量を該主圧縮機よりも小さくしている。  In order to achieve this object, the present invention provides a main compressor driven by an engine, an indoor heat exchanger, an outdoor heat exchanger, an expansion valve for an indoor heat exchanger, an expansion valve for an outdoor heat exchanger, and an outdoor heat exchanger. An engine waste heat recovery unit, an expansion valve for the engine waste heat recovery unit, and an auxiliary compressor are provided in parallel, and the auxiliary compressor compresses the refrigerant that has passed through the engine waste heat recovery unit during heating. In an engine heat pump configured to combine refrigerant discharged from the auxiliary compressor with refrigerant discharged from the main compressor, the volume capacity of the auxiliary compressor is smaller than that of the main compressor.
このように、 体積容量を小さくした補助圧縮機に応じて、 エンジン廃熱交換器 における蒸発圧は、 外気温で蒸発させる場合に比して高圧に保たれ、 補助圧縮機 における圧縮仕事を低減し、 全量を外気温で蒸発させて圧縮する場合よりも全圧 縮仕事を低減でき、 省エネルギーに貢献する。 又、 体積容量を小さくした補助圧 縮機は、 主圧縮機のものよりも小さく構成でき、 エンジンヒートポンプのパッケ —ジ内での設置スペースの確保も容易であることから、既存の装置設計を踏襲し たままで補助圧縮機を増設して構成することも可能となる。  Thus, in accordance with the auxiliary compressor having a reduced volumetric capacity, the evaporation pressure in the engine waste heat exchanger is maintained at a higher pressure than when evaporating at ambient temperature, and the compression work in the auxiliary compressor is reduced. However, the total compression work can be reduced as compared with the case where the whole amount is evaporated at the outside temperature and compressed, contributing to energy saving. The auxiliary compressor with a reduced volume capacity can be configured smaller than that of the main compressor, and it is easy to secure the installation space inside the package of the engine heat pump. It is also possible to increase the number of auxiliary compressors and to configure them.
また、 前記エンジンヒ一トポンプにおいて、 補助圧縮機の体積容量は主圧縮機 と該補助圧縮機の合計容量の所定の割合に設定されている。 In the engine heat pump, the auxiliary compressor may have a volume capacity of the main compressor. And a predetermined ratio of the total capacity of the auxiliary compressor.
このことにより、 主圧縮機にて循環冷媒量の過半に対し圧縮仕事を行うととも に、 補助圧縮機への冷媒の吸入圧力の低下が防がれ、 該補助圧縮機による圧縮仕 事を削減し、 駆動動力 (kW) を減少させることができる。  As a result, the main compressor performs compression work for the majority of the circulating refrigerant amount, and prevents a decrease in the suction pressure of the refrigerant to the auxiliary compressor, thereby reducing the compression work by the auxiliary compressor. And the driving power (kW) can be reduced.
また、 前記エンジンヒートポンプにおいて、 補助圧縮機の吸入圧力と主圧縮機 の吐出圧力の差を所定範囲内に収めている。  In the engine heat pump, the difference between the suction pressure of the auxiliary compressor and the discharge pressure of the main compressor is kept within a predetermined range.
このことにより、 補助圧縮機での圧縮仕事が抑えられ、 エンジンヒートポンプ 全体の圧縮仕事を低減できる。  As a result, the compression work of the auxiliary compressor is suppressed, and the compression work of the entire engine heat pump can be reduced.
また、 前記エンジンヒートポンプにおいて、 主圧縮機と補助圧縮機の吸入ライ ンを開閉弁にて連通する構成としている。  In the engine heat pump, the main compressor and the suction line of the auxiliary compressor are connected by an on-off valve.
このことにより、 どちらの圧縮機も室外熱交換器及びエンジン廃熱回収器から 冷媒を吸入できるので、 いずれかの圧縮機単独で暖房運転するときでも、 室外熱 交換器及びエンジン廃熱回収器を蒸発器として利用できる。 また、 冷房時におい ても、 補助圧縮機を利用することができる。  As a result, both compressors can draw in refrigerant from the outdoor heat exchanger and the engine waste heat recovery unit, so that the outdoor heat exchanger and the engine waste heat recovery unit can be used even when performing heating operation with either compressor alone. Can be used as evaporator. An auxiliary compressor can be used even during cooling.
また、 前記エンジンヒートポンプにおいて、 補助圧縮機を電動機にて駆動する 構成としている。  Further, in the engine heat pump, the auxiliary compressor is driven by an electric motor.
このことにより、 室外機内における補助圧縮機のレイアウトの自由度が広く、 また、 コントローラにより、 主圧縮機とは独立して、 補助圧縮機単独の回転数 · 圧縮比の制御が可能となる。  As a result, the degree of freedom of the layout of the auxiliary compressor in the outdoor unit is wide, and the controller can control the rotation speed and the compression ratio of the auxiliary compressor alone independently of the main compressor.
また、 前記エンジンヒートポンプにおいて、 暖房時、 低負荷では、 該両圧縮機 のうち補助圧縮機を単独で運転するとともに該両熱交換器のうち室外熱交換器を 単独で作動し、 中負荷では、 該両圧縮機のうち主圧縮機を単独で運転するととも に室外熱交換器とエンジン廃熱回収器とを作動し、 高負荷では、 両圧縮機を運転 するとともに室外熱交換器とェンジン廃熱回収器とを作動させる。  In addition, in the engine heat pump, at the time of heating and at a low load, the auxiliary compressor of the two compressors is operated alone and the outdoor heat exchanger of the two heat exchangers is operated alone. Of the two compressors, the main compressor is operated independently, and the outdoor heat exchanger and the engine waste heat recovery unit are operated. At high load, both the compressors are operated and the outdoor heat exchanger and the engine waste heat recovery unit are operated. Activate the collector.
このことにより、 負荷に応じた最適運転が可能となり、 エネルギー効率の向上 が図られ、また、 暖房能力の高い要求に対応することができる。  This enables optimal operation according to the load, improves energy efficiency, and responds to demands for high heating capacity.
また、 前記エンジンヒートポンプにおいて、 起動の際、 該両圧縮機のうち補助 圧縮機単独の運転を行う構成としている。  Further, in the engine heat pump, at the time of startup, the auxiliary compressor alone is operated among the two compressors.
このことにより、 起動の際において、 主圧縮機への液冷媒の吸入を防止するこ とができる。 図面の簡単な説明 This prevents liquid refrigerant from being drawn into the main compressor during startup. Can be. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明のエンジンヒートポンプの冷媒回路図である。  FIG. 1 is a refrigerant circuit diagram of the engine heat pump of the present invention.
第 2図は、 エンジンヒートボンプの制御機器類のブロック図である。  FIG. 2 is a block diagram of control devices for an engine heat pump.
第 3図は、 本発明の構成によるエンジンヒ一トポンプの暖房サイクルのモリエ ル線図である。  FIG. 3 is a Mollier diagram of a heating cycle of the engine heat pump according to the configuration of the present invention.
第 4図は、 補助圧縮機の体積容量比と駆動動力 ·冷媒蒸発圧力の関係を示すグ ラフである。  FIG. 4 is a graph showing the relationship between the volumetric capacity ratio of the auxiliary compressor and the driving power / refrigerant evaporation pressure.
第 5図は、 体積容量比と体積容量の数値組合せの一例を示す表で示した図であ る。  FIG. 5 is a table showing an example of a numerical combination of a volume capacity ratio and a volume capacity.
第 6図は、 膨張弁の開度制御により冷媒温度調整を行う際のフローチャートで ある。  FIG. 6 is a flowchart when the refrigerant temperature is adjusted by controlling the opening of the expansion valve.
第 7図は、 B彭張弁の開度制御、 圧縮機の回転数制御により冷媒圧力調整を行う 際のフローチヤ一卜である。  FIG. 7 is a flow chart when the refrigerant pressure is adjusted by controlling the opening of the B-Peng Zhang valve and controlling the rotation speed of the compressor.
第 8図は、 暖房時における空調負荷が低負荷の場合の冷媒流れを示す冷媒回路 図である。  FIG. 8 is a refrigerant circuit diagram showing a refrigerant flow when the air conditioning load during heating is low.
第 9図は、 暖房時において空調負荷が中負荷の場合の冷媒回路図である。  FIG. 9 is a refrigerant circuit diagram when the air conditioning load is a medium load during heating.
第 1 0図は、 暖房時において空調負荷が高負荷の場合の冷媒回路図である。 第 1 1図は、 冷房時における空調負荷が低 ·中負荷の場合の冷媒流れを示す冷 媒回路図である。  FIG. 10 is a refrigerant circuit diagram when the air conditioning load is high during heating. FIG. 11 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning load during cooling is a low / medium load.
第 1 2図は、 冷房時における空調負荷が高負荷の場合の冷媒回路図である。 第 1 3図は、 本発明における空調負荷の高低をグラフで示した図である。  FIG. 12 is a refrigerant circuit diagram when the air conditioning load during cooling is high. FIG. 13 is a graph showing the level of the air conditioning load according to the present invention.
第 1 4図は、 汲み上げ運転における冷媒流れを示す冷媒回路図である。  FIG. 14 is a refrigerant circuit diagram showing a refrigerant flow in a pumping operation.
第 1 5図は、 汲み上げ運転における運転時間と補助圧縮機及びエンジン回転数 の関係をグラフで示した図である。  FIG. 15 is a graph showing the relationship between the operation time and the auxiliary compressor and engine speed in the pumping operation.
第 1 6図は、 従来構成におけるエンジンヒートポンプの暖房サイクルのモリエ ル線図である。 発明を実施するための最良の形態 FIG. 16 is a Mollier diagram of a heating cycle of an engine heat pump in a conventional configuration. BEST MODE FOR CARRYING OUT THE INVENTION
図 1に示す、 室外ュニット 1は、 空調を必要とする室の外に設置されるもので あり、 主圧縮機 2、 補助圧縮機 3、 エンジン 4、 室外熱交換器 5、 該室外熱交換 器 5と並列に設けられたエンジン廃熱回収器 6等を備えた構成としている。  The outdoor unit 1 shown in Fig. 1 is installed outside a room that requires air conditioning, and has a main compressor 2, an auxiliary compressor 3, an engine 4, an outdoor heat exchanger 5, and an outdoor heat exchanger. The engine is equipped with an engine waste heat recovery device 6 and the like provided in parallel with 5.
前記主圧縮機 2は、エンジン 4により内部の回転体を駆動する構成としている。 一方、 補助圧縮機 3は、 商用電源 4 0を電動機に供給し、 該電動機にて内部の回 転体を駆動する構成、 即ち、 電動圧縮機に構成されており、 室外ユニット内での レイアウトの自由度が高いものとなっている。  The main compressor 2 is configured to drive an internal rotating body by an engine 4. On the other hand, the auxiliary compressor 3 supplies a commercial power supply 40 to the electric motor, and drives the internal rotating body by the electric motor. That is, the auxiliary compressor 3 is configured as an electric compressor, and has a layout in an outdoor unit. The degree of freedom is high.
これに対し、室内ュニット 7は、空調を必要とする室に設置されるものであり、 室内熱交換器 8等を備えている。 尚、 図示しないが、 室内ユニット 7は複数設け てもよい。  On the other hand, the indoor unit 7 is installed in a room requiring air conditioning, and includes an indoor heat exchanger 8 and the like. Although not shown, a plurality of indoor units 7 may be provided.
そして、 室外ユニット 1と室内ユニット 7とを冷媒管路 9により接続し、 該冷 媒管路 9内に冷媒を循環させるとともに、 四方弁 2 4にて流れ方向を変更するこ とで、 冷房サイクルか暖房サイクルかを択一に行う構成としている。  Then, the outdoor unit 1 and the indoor unit 7 are connected by the refrigerant line 9, the refrigerant is circulated in the refrigerant line 9, and the flow direction is changed by the four-way valve 24. Or a heating cycle.
前記冷媒管路 9において、 前記各熱交換器の入口 Z出口側には、 それぞれ、 室 外熱交換器用膨張弁 2 1、 エンジン廃熱回収器用膨張弁 2 2、 室内熱交換器用膨 張弁 2 3が備えられている。  In the refrigerant line 9, an expansion valve 21 for an outdoor heat exchanger, an expansion valve 22 for an engine waste heat recovery unit, and an expansion valve 2 for an indoor heat exchanger Three are provided.
また、 冷媒管路 9において、 主圧縮機 2の吐出ポ一ト 2 aには供給管 2 0 aを 接続し、 補助圧縮機 3の吐出ポート 3 aには供給管 3 0 aを接続し、 該供給管 3 0 aの他側が、 供給管 2 0 aの前記四方弁 2 4上流の接続点 3 5に接続されてい る。 これにより、 主圧縮機 2 ·補助圧縮機 3から吐出される冷媒は合流し、 四方 弁 2 4を介して、 暖房時においては室内ュニット 7へ供給されるようになってい る。  In the refrigerant line 9, a supply pipe 20a is connected to the discharge port 2a of the main compressor 2, and a supply pipe 30a is connected to the discharge port 3a of the auxiliary compressor 3. The other side of the supply pipe 30a is connected to a connection point 35 upstream of the four-way valve 24 of the supply pipe 20a. As a result, the refrigerant discharged from the main compressor 2 and the auxiliary compressor 3 merges and is supplied to the indoor unit 7 via the four-way valve 24 during heating.
また、冷媒管路 9において、前記四方弁 2 4と主圧縮機 2の吸入ポート 2 bは、 戻り管 2 O bで接続されており、 前記エンジン廃熱回収器 6の出口側のポートと 補助圧縮機 3の吸入ポート 3 bは戻り管 3 O bで接続され、 さらに、 両戻り管 2 0 b · 3 0 bは、 電磁開閉弁 3 4を備えるバイパス管 3 3にて接続されている。 また、 前記エンジン 4とエンジン廃熱回収器 6とを冷却水管路 1 4により接続 し、 エンジン 4の排熱を、 エンジン廃熱回収器 6を通過する冷媒に伝達させる構 成としている。 この冷却水管路 1 0において、 1 1はサーモスタット、 1 2は冷 却水用ポンプである。 Further, in the refrigerant line 9, the four-way valve 24 and the suction port 2b of the main compressor 2 are connected by a return pipe 2Ob, and the port on the outlet side of the engine waste heat recovery unit 6 is connected to an auxiliary port. The suction port 3 b of the compressor 3 is connected by a return pipe 3 Ob, and the two return pipes 20 b · 30 b are connected by a bypass pipe 33 provided with an electromagnetic on-off valve 34. Further, the engine 4 and the engine waste heat recovery unit 6 are connected by a cooling water pipe 14, and the exhaust heat of the engine 4 is transmitted to the refrigerant passing through the engine waste heat recovery unit 6. And In the cooling water pipe 10, reference numeral 11 denotes a thermostat, and reference numeral 12 denotes a cooling water pump.
図 2は、 本発明のエンジンヒートポンプの運転を制御するための検出機器 ·制 御機器等の構成を示すものである。 制御装置であるコントローラ 2 5に、 室外熱 交換器 5の出入り口の冷媒温度差を検出する温度センサー 4 1、 エンジン廃熱回 収器 6の出入り口の冷媒温度差を検出する温度センサー 4 2、 室内熱交換器 8の 出入り口の冷媒温度差を検出する温度センサー 4 3、 前記サーモスタット 1 1、 主圧縮機 2の吐出圧力を検出する圧力センサー 5 1、 補助圧縮機 3の吸入圧力を 検出する圧力センサ一 5 2が接続されている。 コントローラ 2 5は、 これら検出 機器の検出結果を元に、 室外熱交換器用膨張弁 2 1、 エンジン廃熱回収器用膨張 弁 2 2、 室内熱交換器用膨張弁 2 3、 電磁開閉弁 3 4の開度調整を行う。 更に、 コントローラ 2 5は、 エンジン 4 (主圧縮機 2 ) や補助圧縮機 3の発停をも制御 する。  FIG. 2 shows a configuration of a detection device, a control device, and the like for controlling the operation of the engine heat pump of the present invention. The controller 25, which is a control device, has a temperature sensor 41 that detects the refrigerant temperature difference at the entrance and exit of the outdoor heat exchanger 5, a temperature sensor 42 that detects the refrigerant temperature difference at the entrance and exit of the engine waste heat recovery unit 6, and the room Temperature sensor 43 for detecting the refrigerant temperature difference at the entrance and exit of the heat exchanger 8, thermostat 11 1, pressure sensor 51 for detecting the discharge pressure of the main compressor 2, pressure sensor for detecting the suction pressure of the auxiliary compressor 3. One and two are connected. The controller 25 opens the expansion valve 21 for the outdoor heat exchanger, the expansion valve 22 for the engine waste heat recovery unit, the expansion valve 23 for the indoor heat exchanger, and the solenoid on-off valve 3 4 based on the detection results of these detection devices. Adjust the degree. Further, the controller 25 also controls the start and stop of the engine 4 (main compressor 2) and the auxiliary compressor 3.
補助圧縮機 3は、 電動機にて駆動する構成のため、 エンジンからの直接の動力 供給が必要なく、 コントローラ 2 5によって、 主圧縮機 2とは独立して、 補助圧 縮機 3単独の回転数 ·圧縮比の制御が可能となっている。  Since the auxiliary compressor 3 is driven by an electric motor, it does not require direct power supply from the engine, and the controller 25 controls the rotation speed of the auxiliary compressor 3 independently of the main compressor 2 · The compression ratio can be controlled.
以上の如き構成のエンジンヒートポンプにより行う暖房サイクルについて説明 する。 図 1に示すごとく、 主圧縮機 2及び補助圧縮機 3にて圧縮された冷媒は、 接続点 3 5にて合流し、 四方弁 2 4を介して室内熱交換器 8に送られ、 該室内熱 交換器 8で放熱して凝縮した後、 室外熱交換器用膨張弁 2 1、 エンジン廃熱回収 器用膨張弁 2 2により膨張し、 それぞれ室外熱交換器 5、 エンジン廃熱回収器 6 にて吸熱して蒸発した後、 主圧縮機 2、 補助圧縮機 3に吸引され、 これら圧縮機 2 · 3により圧縮された後に再び吐出される、 というサイクルを繰り返すもので ある。  A heating cycle performed by the engine heat pump configured as described above will be described. As shown in FIG. 1, the refrigerant compressed by the main compressor 2 and the auxiliary compressor 3 joins at the connection point 35, is sent to the indoor heat exchanger 8 via the four-way valve 24, and After being radiated and condensed by the heat exchanger 8, it is expanded by the expansion valve 21 for the outdoor heat exchanger and the expansion valve 22 for the engine waste heat recovery unit, and absorbed by the outdoor heat exchanger 5 and the engine waste heat recovery unit 6, respectively. After being evaporated and evaporated, it is sucked by the main compressor 2 and the auxiliary compressor 3, and is compressed by these compressors 2 and 3 and then discharged again.
また、 冷房サイクルについて説明すると、 主圧縮機 2及び補助圧縮機 3にて圧 縮された冷媒は、 接続点 3 5にて合流し、 四方弁 2 4を介して室外熱交換器 5に 送られ、 該室外熱交換器 5で放熱して凝縮した後、 室内熱交換器用膨張弁 2 3に より膨張し、 室内熱交換器 8にて吸熱して蒸発した後、 主圧縮機 2、 又はバイパ ス管 3 3を通って補助圧縮機 3に吸引され、 これら圧縮機 2 · 3により圧縮され た後に再び吐出される、 というサイクルを繰り返すものである。 Explaining the cooling cycle, the refrigerant compressed by the main compressor 2 and the auxiliary compressor 3 joins at the connection point 35, and is sent to the outdoor heat exchanger 5 via the four-way valve 24. After being radiated and condensed by the outdoor heat exchanger 5, the heat is condensed by the indoor heat exchanger expansion valve 23, absorbed by the indoor heat exchanger 8 and evaporated, and then the main compressor 2 or the bypass It is sucked into the auxiliary compressor 3 through the pipe 33 and compressed by these compressors 2 and 3. After that, the cycle of discharging again is repeated.
次に、 以上のように構成したエンジンヒートポンプにおける主圧縮機 2と補助 圧縮機 3の体積容量の関係について説明する。  Next, the relationship between the volume capacities of the main compressor 2 and the auxiliary compressor 3 in the engine heat pump configured as described above will be described.
本発明のエンジンヒートポンプでは、図 5の表に示すごとぐ補助圧縮機 3の体 積容量 V 3を主圧縮機 2の体積容量 V 2よりも小さいものとし、 補助圧縮機 3の 冷媒吸入圧力 P 3の低下を防ぎ、 圧縮仕事 AW2 (図 3) の低減を図る構成とし ている。 これにより、 暖房時には、 図 3に示すモリエル線図のごとく、 蒸発区間 EFを圧力の高い位置として、 圧縮仕事 AW 2の削減を図る (圧縮仕事 Δ"\¥2の 幅を狭くする) ことができるのである。  In the engine heat pump of the present invention, the volumetric capacity V3 of the auxiliary compressor 3 as shown in the table of FIG. 5 is smaller than the volumetric capacity V2 of the main compressor 2, and the refrigerant suction pressure P of the auxiliary compressor 3 3 to reduce the compression work AW2 (Fig. 3). As a result, during heating, as shown in the Mollier diagram shown in Fig. 3, the evaporating section EF can be set at a high pressure position to reduce the compression work AW2 (narrow the width of the compression work Δ "\ ¥ 2). You can.
即ち、 冷媒の一部を、 外気温で蒸発させる場合に比して蒸発圧を高圧に保ち、 本冷媒の圧縮仕事 AW2を低減することにより、 全量を外気温で蒸発させて圧縮 する場合と比較して、 全圧縮仕事 (AW1+AW2) を低減できる。  In other words, by maintaining the evaporation pressure at a higher pressure than when evaporating a part of the refrigerant at ambient temperature and reducing the compression work AW2 of the refrigerant, it is possible to evaporate the entire amount at ambient temperature and compress it. Thus, the total compression work (AW1 + AW2) can be reduced.
尚、 ここにいう体積容量 V2 ' V3とは、 それぞれの圧縮機 2 · 3に備える回 転体の一サイクル (一回転) 当たりの冷媒の吸入体積 (c cZサイクル) のこと である。  The volume capacity V2'V3 here is the refrigerant suction volume (ccZ cycle) per one cycle (rotation) of the rotating body provided in each of the compressors 2 and 3.
この圧縮仕事 AW2を削減させるための好適な体積容量については、 体積容量 比 E (%)、 即ち、主圧縮機 2の体積容量 V 2と補助圧縮機 3の体積容量 V 3を合 計した全体積容量に対する、 補助圧縮機 3の体積容量 V 3の割合を基準として決 定できる。  The preferred volume capacity for reducing this compression work AW2 is the volume capacity ratio E (%), that is, the total volume capacity V 2 of the main compressor 2 and the volume capacity V 3 of the auxiliary compressor 3 The ratio can be determined based on the ratio of the volume capacity V3 of the auxiliary compressor 3 to the product capacity.
CE (%) =V3/ (V2+V3) X 100〕  CE (%) = V3 / (V2 + V3) X 100
図 4のグラフは、 体積容量比 E (%) として横軸とし、 左縦軸を補助圧縮機 3 の駆動動力 (kW)、 右縦軸を冷媒蒸発圧 (MP a) として、 体積容量比 (%) を 50、 25、 10、 8とした場合での補助圧縮機 3の駆動動力 (kW)、 及びェン ジン廃熱回収器 6と室外熱交換器 5のそれぞれの冷媒蒸発圧 P 6 · P 5 (MP a) の測定結果を示すものである。  In the graph of Fig. 4, the horizontal axis represents the volume capacity ratio E (%), the left vertical axis represents the driving power (kW) of the auxiliary compressor 3, and the right vertical axis represents the refrigerant evaporation pressure (MPa). %) As 50, 25, 10, and 8, the driving power (kW) of the auxiliary compressor 3 and the refrigerant evaporation pressure P 6 of the engine waste heat recovery unit 6 and the outdoor heat exchanger 5 respectively. It shows the measurement result of P 5 (MPa).
また、 比較のために、 補助圧縮機 3を備えないエンジンヒートポンプの場合に おける冷媒蒸発圧 P 6 · P 5 (MP a) ついても表記している。  For comparison, the refrigerant evaporation pressures P 6 and P 5 (MPa) in the case of an engine heat pump without the auxiliary compressor 3 are also shown.
また、 図 5の表は、 上記グラフの体積容量比 ( ) に対応する主圧縮機 2 ·補 助圧縮機 3それぞれの体積容量 V 2 · V 3 (c cZサイクル) の値の組合せの一 例を示すものであり、 合わせて、 対応する主圧縮機 2の冷媒質量流量 F 1 (kg /mi n) 及び補助圧縮機 3の冷媒質量流量 F 2 (kg/mi n) の比を示して いる。 The table in Fig. 5 shows one of the combinations of the values of the volume capacity V 2 · V 3 (c cZ cycle) of the main compressor 2 and the auxiliary compressor 3 corresponding to the volume capacity ratio () in the above graph. This shows an example, and also shows the ratio of the corresponding refrigerant mass flow rate F1 (kg / min) of the main compressor 2 and the corresponding refrigerant mass flow rate F2 (kg / min) of the auxiliary compressor 3. I have.
図 4のグラフを説明すると、 補助圧縮機 3の駆動動力 (kW) (棒グラフ) は、 体積容量比 E (%) を 50 %から 25 %とした場合に急激に減少し、 体積容量比 E (%)を 10 %とする場合にまで減少傾向を呈する。そして、体積容量比 E (%) を 10%以下とした場合は、 補助圧縮機 3の吸入圧力 P 3が過大となって、 吐出 圧力と吸入圧力の差が極端に小さくなり、 補助圧縮機 3における圧縮行程が成立 しなくなる。  Explaining the graph of FIG. 4, the driving power (kW) (bar graph) of the auxiliary compressor 3 rapidly decreases when the volume capacity ratio E (%) is changed from 50% to 25%, and the volume capacity ratio E ( %) To 10%. When the volumetric capacity ratio E (%) is set to 10% or less, the suction pressure P 3 of the auxiliary compressor 3 becomes excessive, and the difference between the discharge pressure and the suction pressure becomes extremely small. The compression stroke at does not hold.
この補助圧縮機 3の駆動動力 (kW) の変動は、 エンジン廃熱回収器 6での冷 媒蒸発圧 P 6 (MP a) が増加傾向であることに追従するものであり、 体積容量 比 E (%) が 10%から 25%の範囲では、 主圧縮機 2にて循環冷媒量の過半に 対し圧縮仕事 AW1が行われ、また、 冷媒蒸発圧 P 6 (MP a) が高く、 補助圧縮 機 3の吸入圧力 P 3が高い状態であるので、図 3に示す蒸発区間 E Fが高くなり、 圧縮仕事 2が削減され、 駆動動力 (kW) が減少する。  The fluctuation in the driving power (kW) of the auxiliary compressor 3 follows that the refrigerant evaporation pressure P 6 (MPa) in the engine waste heat recovery unit 6 is increasing, and the volume capacity ratio E (%) Is in the range of 10% to 25%, the main compressor 2 performs the compression work AW1 for the majority of the circulating refrigerant amount, and the refrigerant evaporation pressure P 6 (MPa) is high, and the auxiliary compressor Since the suction pressure P3 of 3 is high, the evaporating section EF shown in Fig. 3 increases, the compression work 2 is reduced, and the driving power (kW) is reduced.
一方、 体積容量比 E (%) を 10%から更に減少させた場合には、 冷媒蒸発圧 P 6 (MP a)が過大となって、補助圧縮機 3での圧縮工程が成り立たなくなる。 以上の関係から、 前記体積容量比 E (%) を 10%から 25%とすることによ り、 補助圧縮機 3への冷媒の吸入圧力 P 3の低下が防がれ、 圧縮仕事 AW2を削 減し、 駆動動力 (kW) を減少させることができるといえる。 尚、 体積容量比 E (%) を 10 %から 25 %とする例は、 好適な実施例の一つであり、 該体積容量 比 E (%) を装置構成毎に好適な所定の割合に構成することは、 本発明の概念を 逸脱するものではない。  On the other hand, when the volumetric capacity ratio E (%) is further reduced from 10%, the refrigerant evaporation pressure P 6 (MPa) becomes excessively large, and the compression process in the auxiliary compressor 3 cannot be realized. From the above relationship, by setting the volumetric capacity ratio E (%) from 10% to 25%, a decrease in the suction pressure P3 of the refrigerant into the auxiliary compressor 3 is prevented, and the compression work AW2 is reduced. It can be said that the driving power (kW) can be reduced. An example in which the volume capacity ratio E (%) is set to 10% to 25% is one of the preferred embodiments, and the volume capacity ratio E (%) is set to a predetermined ratio suitable for each device configuration. Doing so does not depart from the inventive concept.
さらに、 上記構成において、 補助圧縮機 3の体積容量 V 3は、 主圧縮機 2の体 積容量 V 2よりも小さく設定され、 装置も小型に構成することが可能であり、 ェ ンジンヒートポンプのパッケージ内での設置スペースの確保も容易であることか ら、既存の装置設計を踏襲したままで増設して構成することも可能である。  Further, in the above configuration, the volume capacity V 3 of the auxiliary compressor 3 is set smaller than the volume capacity V 2 of the main compressor 2, and the device can be configured to be small. Since it is easy to secure the installation space inside the facility, it is possible to add and configure the existing equipment design.
次に、 室外熱交換器用膨張弁 21とエンジン廃熱回収器用膨張弁 22の開度の 制御により圧縮仕事 AW1 · AW2の削減を図る構成について説明する。 この構成は、 図 1に示す構成で、 暖房時において、 前記室外熱交換器 5の冷媒 の流れにおいて二次側の温度を温度センサー 4 1にて検出し、 同じくエンジン廃 熱回収器 6の二次側の温度を温度センサー 4 2にて検出し、 これら検出結果をコ ントローラ 2 5にて認識し、 該コントローラ 2 5が、 これら室外熱交換器用膨張 弁 2 1、 エンジン廃熱回収器用膨張弁 2 2の開度を制御する構成とすることによ り、 主圧縮機 2及び補助圧縮機 3の吸入圧力を調整し、 圧縮仕事 AW 1 · AW 2 (図 3 ) を削減させるものである。 Next, a configuration for reducing the compression work AW1 and AW2 by controlling the opening degrees of the outdoor heat exchanger expansion valve 21 and the engine waste heat recovery unit expansion valve 22 will be described. This configuration is the configuration shown in FIG. 1, in which the temperature of the secondary side is detected by the temperature sensor 41 in the flow of the refrigerant in the outdoor heat exchanger 5 during heating, and the engine waste heat recovery unit 6 The temperature on the downstream side is detected by the temperature sensor 42, and the detection results are recognized by the controller 25.The controller 25 controls the expansion valve 21 for the outdoor heat exchanger and the expansion valve for the engine waste heat recovery unit. By controlling the opening of 22, the suction pressure of the main compressor 2 and the auxiliary compressor 3 is adjusted, and the compression work AW 1 · AW 2 (FIG. 3) is reduced.
上記構成において、図 6のフローチャートに示すごとぐコントローラ 2 5は、 室外熱交換器 5の出入り口の冷媒温度さ Δ Τ 1 (°C) 及びエンジン廃熱回収器 6 の出入り口の冷媒温度差 Δ Τ 2 (°C) をモニターし、 これら冷媒温度差 Δ Τ 1 · Δ Τ 2 (°C) が、 それぞれ所定の正の値である場合には、 冷媒が蒸発していると 認識し、 冷媒温度差 Δ Τ 1 · Δ Τ 2 CC) が所定の正の値を維持する範囲内で、 室外熱交換器用膨張弁 2 1及びエンジン廃熱回収器用膨張弁 2 2の開度を大きく し、 冷媒圧力の低下を防止するのである。  In the above configuration, the controller 25 as shown in the flowchart of FIG. 6 includes a refrigerant temperature Δ Τ 1 (° C.) at the entrance and exit of the outdoor heat exchanger 5 and a refrigerant temperature difference Δ Τ at the entrance and exit of the engine waste heat recovery unit 6. 2 (° C), and when the refrigerant temperature differences Δ Τ 1 and Δ Τ 2 (° C) are each a predetermined positive value, it is recognized that the refrigerant is evaporating, and the refrigerant temperature As long as the difference Δ Δ 1 ΔΔ CC 2 CC) maintains a predetermined positive value, the degree of opening of the expansion valve 21 for the outdoor heat exchanger and the expansion valve 22 for the engine waste heat recovery unit is increased, and the refrigerant pressure is increased. It is to prevent the decrease.
つまりは、 室外熱交換器用膨張弁 2 1、 エンジン廃熱回収器用膨張弁 2 2の開 度を必要以上に小さくせず、 冷媒の蒸発が可能な範囲、 即ち、 圧縮機への液バッ クが生じない範囲で、 冷媒圧力低下を防ぐのである。そして、本実施例では、液バ ックを防ぐべく、 それぞれ、 所定値 α (> 0 ) (°C) を設定している。  In other words, the opening of the expansion valve 21 for the outdoor heat exchanger and the expansion valve 22 for the engine waste heat recovery unit are not made unnecessarily small, so that the refrigerant can evaporate. The pressure of the refrigerant is prevented from dropping as far as it does not occur. Then, in the present embodiment, a predetermined value α (> 0) (° C) is set in order to prevent a liquid back.
このようにして、 主圧縮機 2及び補助圧縮機 3の冷媒の吸入圧力の調整が可能 となり、 吸入圧力を極力高い状態に維持し、 圧縮仕事 AW 1 · AW 2を削減する ことができる。  In this way, the suction pressure of the refrigerant of the main compressor 2 and the auxiliary compressor 3 can be adjusted, the suction pressure can be kept as high as possible, and the compression work AW 1 · AW 2 can be reduced.
さらに、 以上の構成に加え、 暖房時において、 前記主圧縮機 2の吐出圧 P 2を 圧力センサ一 5 1にて検出し、 同じく補助圧縮機 3の吸入圧力 P 3を圧力センサ 一 5 2にて検出し、 これら検出結果をコントローラ 2 5にて認識し、 該コント口 ーラ 2 5が、 所望の空調能力を発揮すべく、 吐出圧力 P 2を設定して主圧縮機 2 の回転数 R 1を制御すると共に、補助圧縮機 3の回転数 R 2を制御することによ り、 吸入圧力 P 3と吐出圧力 P 2の圧力差 Δ Ρを所定範囲内に収める構成として いる。  Further, in addition to the above configuration, at the time of heating, the discharge pressure P 2 of the main compressor 2 is detected by the pressure sensor 51, and the suction pressure P 3 of the auxiliary compressor 3 is similarly detected by the pressure sensor 152. The controller 25 recognizes these detection results, and the controller 25 sets the discharge pressure P 2 and sets the rotation speed R of the main compressor 2 in order to exhibit the desired air-conditioning capacity. By controlling the rotation speed R 2 of the auxiliary compressor 3 while controlling the pressure 1, the pressure difference Δ の between the suction pressure P 3 and the discharge pressure P 2 is kept within a predetermined range.
尚、 ここにいう圧力差 Δ Ρの所定範囲とは、 補助圧縮機 3において圧縮工程が 成り立つ最小値以上であつて、 その最小値の近傍の範囲である。 The predetermined range of the pressure difference Δ い う here means that the compression process in the auxiliary compressor 3 It is a range that is greater than or equal to the minimum value that holds, and is near the minimum value.
以上の構成において、 図 7のフローチャートに示すごとく、 圧力差 Δ Ρが所定 範囲内の値、 即ち、 目標値よりも小さい場合では、 吸入圧力 P 3が高く、 補助圧 縮機 3では小さな圧縮仕事△ W 2によるエネルギー効率のよい運転ができる状態 であるので、 補助圧縮機 3の回転数を増加させ、 補助圧縮機 3の冷媒吸入量を増 加させることにより、 より多くの冷媒をエネルギー効率のよい運転で圧縮するこ とができる (ステップ 7 0 1 )。  In the above configuration, as shown in the flowchart of FIG. 7, when the pressure difference ΔΡ is within a predetermined range, that is, when the pressure difference Δ 差 is smaller than the target value, the suction pressure P 3 is high, and the auxiliary compressor 3 has a small compression work. △ Since energy-efficient operation by W2 is possible, increasing the rotation speed of the auxiliary compressor 3 and increasing the refrigerant suction amount of the auxiliary compressor 3 allows more refrigerant to increase energy efficiency. Compression can be performed with good operation (Step 701).
一方、 圧力差 Δ Ρが目標値よりも大きい場合では、 吸入圧力 P 3が低く、 補助 圧縮機 3では、 大きな圧縮仕事 AW 2によるエネルギー効率の悪い運転が行われ る状態であるので、 補助圧縮機 3の回転数を減少させ、 補助圧縮機 3の冷媒吸入 量を減少させることにより、 補助圧縮機 3にてエネルギー効率の悪い運転をしな いようにしている (ステップ 7 0 2 )。  On the other hand, when the pressure difference Δ よ り is larger than the target value, the suction pressure P 3 is low, and the auxiliary compressor 3 is in a state where the operation with low energy efficiency is performed by the large compression work AW 2. By reducing the number of revolutions of the compressor 3 and reducing the refrigerant suction amount of the auxiliary compressor 3, the auxiliary compressor 3 is prevented from operating with poor energy efficiency (step 720).
他方、 圧力差 Δ Ρが目標値に一致する場合には、 エネルギー効率が良好となる か否かの境界にある状態であるので、 補助圧縮機 3の回転数は維持される。  On the other hand, when the pressure difference Δ 一致 matches the target value, the state is on the boundary of whether or not the energy efficiency is good, so that the rotation speed of the auxiliary compressor 3 is maintained.
そして、 補助圧縮機 3の回転数を維持したままの状態で、上述のモリエル線図 (図 3 ) の凝縮区間 B Cの圧力、 即ち、 P 2目標値との大小比較を行い (ステツ プ 7 0 3 )、吐出圧力 P 2が P 2目標値よりも小さい場合には、主圧縮機 2の回転 数 R 1を増加させ、 吐出圧力 P 2を凝縮区間 B Cの圧力まで上昇させて冷房 ·暧 房サイクルを成り立たせる一方(ステップ 7 0 4 )、吐出圧力 P 2が P 2目標値よ りも大きい場合には、 主圧縮機 2での過剰な圧縮によるエネルギー浪費を防止す ベく、 主圧縮機 2の回転数 R 1を減少させるのである (ステップ 7 0 5 )。  Then, while maintaining the rotation speed of the auxiliary compressor 3, the pressure in the condensation section BC in the Mollier diagram (FIG. 3), that is, the P2 target value, is compared (Step 70). 3) If the discharge pressure P 2 is smaller than the target value P 2, the number of revolutions R 1 of the main compressor 2 is increased, and the discharge pressure P 2 is increased to the pressure of the condensing section BC to cool the air. On the other hand, if the discharge pressure P 2 is larger than the target value P 2, energy wasted due to excessive compression in the main compressor 2 should be prevented. The number of revolutions R1 of 2 is decreased (step 705).
このようにして、 エンジンヒートポンプとして所望の空調能力を発揮しつつ、 補助圧縮機 3での圧縮仕事を抑制してエンジンヒートポンプ全体の圧縮仕事を軽 減できる。  In this way, the compression work of the auxiliary compressor 3 can be suppressed and the compression work of the entire engine heat pump can be reduced while exhibiting the desired air conditioning capacity as the engine heat pump.
次に、 以上のエンジンヒートポンプの構成において、 空調負荷の大小に応じた 主圧縮機 2及び補助圧縮機 3の運転 ·停止、 及び電磁開閉弁 3 4の開閉の制御に より、 エネルギー効率の向上を図る構成について説明する。  Next, in the configuration of the engine heat pump described above, energy efficiency is improved by controlling the operation of the main compressor 2 and the auxiliary compressor 3 according to the size of the air conditioning load, and the control of the opening and closing of the solenoid on-off valve 34. The configuration to be achieved will be described.
この制御は、 図 8乃至図 1 0に示すごとく、 暖房時において、 空調負荷が低負 荷では、 両圧縮機のうち補助圧縮機 3を単独で運転するとともに、 両熱交換器の うち室外熱交換器を単独で作動し、 中負荷では、 両圧縮機のうち主圧縮機を単独 で運転するとともに室外熱交換器とェンジン廃熱回収器とを作動し、高負荷では、 両圧縮機を運転するとともに室外熱交換器とェンジン廃熱回収器とを作動する。 他方、 冷房時においては、 図 1 1に示すごとく、 空調負荷が低負荷から中負荷 では、 補助圧縮機を単独で運転するとともに室外熱交換器を単独で作動し、 高負 荷では、 両圧縮機を運転するとともに室外熱交換器を単独で作動する。 As shown in FIGS. 8 to 10, this control is performed during heating, when the air conditioning load is low, the auxiliary compressor 3 of both compressors is operated alone, Of these compressors, the outdoor heat exchanger operates independently.At medium loads, the main compressor of both compressors operates independently, and the outdoor heat exchanger and the engine waste heat recovery unit operate at high loads. The unit is operated and the outdoor heat exchanger and the engine waste heat recovery unit are operated. On the other hand, during cooling, as shown in Fig. 11, when the air-conditioning load is low to medium, the auxiliary compressor operates independently and the outdoor heat exchanger operates independently. Operate the unit and operate the outdoor heat exchanger independently.
尚、 以上にいう空調負荷の高低は、 図 1 3に示すごとく、 概ねエンジンヒート ポンプの空調負荷 (%) が 0 %から 1 5 %の範囲を低負荷、 1 5 %から 6 0 %の 範囲を中負荷、 6 0 %から 1 0 0 %の範囲を高負荷として扱っている。  As shown in Fig. 13, the level of the air conditioning load mentioned above generally ranges from 0% to 15% when the air conditioning load (%) of the engine heat pump is low, and from 15% to 60%. Is treated as medium load, and the range from 60% to 100% is treated as high load.
以上の構成につき、 まず、 暖房時の運転について詳述すると、 空調負荷が低負 荷では、 図 8に示すごとく、 コント口一ラ 2 5は、 エンジン廃熱回収器用膨張弁 2 2を完全に閉じるとともに、 電磁開閉弁 3 4を開き、 さらに、 エンジン 4と主 圧縮機 2を停止させる一方、 補助圧縮機 3を駆動させることにより、 冷媒は、 室 外熱交換器 5にて吸熱して蒸発した後、 バイパス管 3 3を通って補助圧縮機 3に 吸入され、 該補助圧縮機 3により圧縮されて吐出され、 室内熱交換器 8にて放熱 して凝縮する。 このように、 所要暖房能力の低い低負荷運転においては、 補助圧 縮機 3だけで少容量の圧縮仕事がされるので、 エンジン 4を駆動して主圧縮機 2 を運転させる場合と比べて、エネルギー効率のよい暖房運転を行うことができる。 また、 暖房時において、 空調負荷が中負荷では、 図 9に示すごとく、 コント口 ーラ 2 5は、 エンジン廃熱回収器用膨張弁 2 2及び電磁開閉弁 3 4を開き、 さら に、 エンジン 4を起動して主圧縮機 2を駆動させる一方、 補助圧縮機 3を停止さ せることにより、 冷媒は、 室外熱交換器 5及びエンジン廃熱回収器 6の両熱交換 器にて吸熱して蒸発した後、 室外熱交換器 5を通過した冷媒は主圧縮機 2へ、 同 じく、 エンジン廃熱回収器 6を通過した冷媒はバイパス管 3 3を通って主圧縮機 2に吸入され、 該主圧縮機 2により圧縮されて吐出され、 室内熱交換器 8にて放 熱して凝縮する。このように、所要暖房能力が中間となる中負荷運転においては、 補助圧縮機 3を駆動することなく、 主圧縮機 2のみで、 主圧縮機 2における中間 から最大容量の圧縮仕事がされるので、 主圧縮機 2においてエネルギー効率のよ い暖房運転を行うことができる。 また、 暖房時において、 空調負荷が高負荷では、 図 1 0に示すごとく、 コント ローラ 2 5は、 エンジン廃熱回収器用膨張弁 2 2を開く一方で電磁開閉弁 3 4を 完全に閉じ、 さらに、 エンジン 4を起動して主圧縮機 2を駆動させるとともに、 補助圧縮機 3を駆動させることにより、 室外熱交換器 5にて吸熱して蒸発した冷 媒は主圧縮機 2へ、 エンジン廃熱回収器 6にて吸熱して蒸発した冷媒は補助圧縮 機 3へ、 それぞれ独立の流路を通過してそれぞれ別の圧縮機に吸入され、 それぞ れ主圧縮機 2 ·補助圧縮機 3にて圧縮されて吐出され、 接続点 3 5にて合流した 後、 室内熱交換器 8にて放熱して凝縮する。 このように、 所要暖房能力の高い高 負荷運転においては、 主圧縮機 2及び補助圧縮機 3の両者を駆動させ、 大容量の 圧縮仕事を行い、 暖房能力の高い要求に対応できるようになつている。 For the above configuration, first, the operation during heating will be described in detail. When the air conditioning load is low, as shown in Fig. 8, the controller 25 completely stops the expansion valve 22 for the engine waste heat recovery unit. At the same time, the solenoid on-off valve 3 4 is opened, and the engine 4 and the main compressor 2 are stopped, while the auxiliary compressor 3 is driven, so that the refrigerant absorbs heat in the outdoor heat exchanger 5 and evaporates. After that, it is sucked into the auxiliary compressor 3 through the bypass pipe 33, compressed and discharged by the auxiliary compressor 3, radiates heat in the indoor heat exchanger 8, and condenses. As described above, in low load operation with a low required heating capacity, a small amount of compression work is performed only by the auxiliary compressor 3, so that compared to the case where the engine 4 is driven to operate the main compressor 2, Energy-efficient heating operation can be performed. During heating, when the air conditioning load is medium, as shown in Fig. 9, the controller 25 opens the expansion valve 22 for the engine waste heat recovery unit and the solenoid on-off valve 34, and furthermore, the engine 4 To start the main compressor 2 and stop the auxiliary compressor 3, the refrigerant absorbs heat in both the outdoor heat exchanger 5 and the engine waste heat recovery unit 6 and evaporates. After that, the refrigerant that has passed through the outdoor heat exchanger 5 is drawn into the main compressor 2, and similarly, the refrigerant that passed through the engine waste heat recovery unit 6 is drawn into the main compressor 2 through the bypass pipe 33, and The air is compressed and discharged by the main compressor 2, and is discharged and condensed in the indoor heat exchanger 8. As described above, in the medium load operation in which the required heating capacity is intermediate, the compression work of the maximum capacity is performed from the middle in the main compressor 2 only by the main compressor 2 without driving the auxiliary compressor 3. In addition, the main compressor 2 can perform an energy-efficient heating operation. During heating, when the air-conditioning load is high, as shown in Fig. 10, the controller 25 opens the engine waste heat recovery unit expansion valve 22 and completely closes the solenoid on-off valve 34. When the engine 4 is started to drive the main compressor 2 and the auxiliary compressor 3 is driven, the refrigerant absorbed and evaporated in the outdoor heat exchanger 5 is transferred to the main compressor 2 and the engine waste heat The refrigerant that has absorbed heat in the recovery unit 6 and evaporated evaporates into the auxiliary compressor 3, passes through independent flow paths, and is sucked into separate compressors. After being compressed and discharged, and joined at the connection point 35, the heat is radiated and condensed by the indoor heat exchanger 8. As described above, in a high-load operation with a high required heating capacity, both the main compressor 2 and the auxiliary compressor 3 are driven to perform a large-capacity compression work so that it is possible to meet a demand for a high heating capacity. I have.
尚、 このように、 主圧縮機 2及び補助圧縮機 3の両者を駆動させる場合には、 上述した室外熱交換器用膨張弁 2 1とエンジン廃熱回収器用膨張弁 2 2の開度の 調整を行うことで、 圧縮仕事 AW 1 · 2の削減が図れる。  When both the main compressor 2 and the auxiliary compressor 3 are driven as described above, the opening degrees of the outdoor heat exchanger expansion valve 21 and the engine waste heat recovery expansion valve 22 described above must be adjusted. By doing so, compression work AW 1.2 can be reduced.
他方、 冷房時の運転について説明すると、 図 1 1に示すごとく、 空調負荷が低 負荷から中負荷では、 コントローラ 2 5は、 エンジン廃熱回収器用膨張弁 2 2及 び電磁開閉弁 3 4を完全に閉じるとともに、 さらに、 補助圧縮機 3を停止させる 一方、 エンジン 4と主圧縮機 2を駆動させることにより、 冷媒は、 室外熱交換器 5にて放熱して凝縮した後、 室内熱交換器用膨張弁 2 3により膨張し、 室内熱交 換器 8にて吸熱して蒸発され、 主圧縮機 2に吸入された後、 該主圧縮機 2により 圧縮されて吐出される。 このように、 所要冷房能力が低い又は中間となる低負荷 力 ら中負荷にかけての運転においては、 補助圧縮機 3を駆動することなく、 主圧 縮機 2のみでエネルギー効率のよい冷房運転を行うことができる。  On the other hand, as for the operation during cooling, as shown in Fig. 11, when the air-conditioning load is low to medium, the controller 25 completes the expansion valve 22 for engine waste heat recovery unit and the solenoid on-off valve 34. When the auxiliary compressor 3 is stopped and the engine 4 and the main compressor 2 are driven, the refrigerant dissipates heat in the outdoor heat exchanger 5 and condenses, and then expands for the indoor heat exchanger. It is expanded by the valve 23, absorbed and evaporated in the indoor heat exchanger 8, sucked into the main compressor 2, compressed by the main compressor 2 and discharged. As described above, in the operation from low load power to middle load where the required cooling capacity is low or intermediate, energy-efficient cooling operation is performed only with the main compressor 2 without driving the auxiliary compressor 3. be able to.
そして、 冷房時において、 高負荷では、 図 1 2に示すごとく、 コントローラ 2 5は、 上記低負荷から中負荷の間の運転状態から、 電磁開閉弁 3 4を開くととも に、 補助圧縮機 3を起動し、 補助圧縮機 3にて主圧縮機 2の圧縮仕事を補うよう にして、 両圧縮機にて大容量の圧縮仕事を行う。 このように、 補助圧縮機 3にも 冷媒を供給し、 圧縮仕事をさせることで、 高い所要冷房能力の要求に対応できる ようになつている。  At the time of cooling, when the load is high, as shown in FIG. 12, the controller 25 opens the solenoid on-off valve 34 from the operation state between the low load and the medium load, and sets the auxiliary compressor 3 Then, the auxiliary compressor 3 compensates for the compression work of the main compressor 2, and both compressors perform large-capacity compression work. In this way, by supplying the refrigerant to the auxiliary compressor 3 and performing the compression work, it is possible to meet the demand for a high required cooling capacity.
次に、 上記構成のエンジンヒートポンプにおいて行う汲み上げ運転について説 明する。 Next, the pumping operation performed by the engine heat pump with the above configuration is explained. I will tell.
該汲み上げ運転は、 エンジンヒートポンプの起動の際の所定時間は、 主圧縮機 In the pumping operation, the main compressor is used for a predetermined time when the engine heat pump is started.
2を停止させたままで、 補助圧縮機 3を起動して単独で運転させる補助圧縮機単 独運転を行い、 室外熱交換器 5又はエンジン廃熱回収器 6内の残留液冷媒を汲み 上げることで、 主圧縮機 2の起動の際に、 主圧縮機 2への残留液冷煤の吸入を防 ぐものである。 By operating the auxiliary compressor 3 alone and operating independently while keeping the 2 stopped, the auxiliary compressor alone is operated, and the residual liquid refrigerant in the outdoor heat exchanger 5 or the engine waste heat recovery device 6 is pumped up. When the main compressor 2 is started, the suction of the residual liquid soot into the main compressor 2 is prevented.
該汲み上げ運転は、 暖房時 ·冷房時のいずれにおいても行われるものであり、 この内の暖房時について説明すると、 図 1 4及び図 1 5に示すごとく、 コント口 ーラ 2 5は、 室外熱交換器用膨張弁 2 1及びエンジン廃熱回収器用膨張弁 2 2を 完全に閉じる一方、 室内熱交換器用膨張弁 2 3を全開とし、 また、 電磁開閉弁 3 4を全開とする。 そして、 エンジン 4を起動することなく、 補助圧縮機 3の起動 を開始し、 室外熱交換器 5及びエンジン廃熱回収器 6内の残留液冷媒を吸引、 即 ち、 汲み上げを行う。  The pumping operation is performed during both heating and cooling. When the pumping operation is described, as shown in FIGS. 14 and 15, the controller 25 generates the outdoor heat. While the expansion valve 21 for the exchanger and the expansion valve 22 for the engine waste heat recovery unit are completely closed, the expansion valve 23 for the indoor heat exchanger is fully opened, and the electromagnetic switching valve 34 is fully opened. Then, without starting the engine 4, the start of the auxiliary compressor 3 is started, and the residual liquid refrigerant in the outdoor heat exchanger 5 and the engine waste heat recovery unit 6 is sucked, that is, pumped.
この補助圧縮機 3の単独運転を行う時間は、 任意に設定可能とするものであり The time for which the auxiliary compressor 3 is operated independently can be set arbitrarily.
(本実施例では、 二分間 (図 1 5 ) としている)、 その後、 エンジン 4を起動して 主圧縮機 2と補助圧縮機 3とを合わせた運転を行なった後、 補助圧縮機 3を停止 させて、 主圧縮機 2のみによる運転を行う。 そして、 この補助圧縮機 3の単独運 転開始から、 補助圧縮機 3の停止までの所定時間 (本実施例では、 四分間として いる) を汲み上げ運転とし、 エンジンヒートポンプの起動時に実行することで、 主圧縮機 2の起動の際に、主圧縮機 2への残留液冷媒の吸入を防ぐことができる。 産業上の利用可能性 (In this embodiment, it is two minutes (Fig. 15).) After that, the engine 4 is started, the main compressor 2 and the auxiliary compressor 3 are operated together, and then the auxiliary compressor 3 is stopped. Then, only the main compressor 2 is operated. Then, a predetermined time (in this embodiment, four minutes) from the start of the independent operation of the auxiliary compressor 3 to the stop of the auxiliary compressor 3 is set as a pumping operation, and is executed when the engine heat pump is started. When the main compressor 2 is started, the suction of the residual liquid refrigerant into the main compressor 2 can be prevented. Industrial applicability
以上の構成をエンジンヒートポンプに適用することにより、 圧縮機の圧縮仕事 を最小限に抑えることができるとともに、 全負荷域でのエネルギ一効率の向上を 図ることができる。  By applying the above configuration to the engine heat pump, the compression work of the compressor can be minimized, and the energy efficiency can be improved over the entire load range.

Claims

請 求 の 範 囲 駆動される主圧縮機 (2 )、 室内熱交換器 (8 )、 室外熱交換器 ( 5 )、 室内熱交換器用膨張弁 (2 3 )、 室外熱交換器用膨張弁 (2 1 )、 該室外熱 交換器と並列に設けられたエンジン廃熱回収器(6 )、エンジン廃熱回収器用膨張 弁 (2 2 )、 補助圧縮機 (3 ) を有し、 該補助圧縮機は、 暖房時に該エンジン廃熱 回収器を通過した冷媒を圧縮するものであり、 該補助圧縮機より吐出された冷媒 を該主圧縮機より吐出された冷媒と合流させる構成としたエンジンヒートポンプ において、 該補助圧縮機の体積容量を該主圧縮機よりも小さいものとすることを 特徴とするエンジンヒートポンプ。  Scope of request Main compressor driven (2), indoor heat exchanger (8), outdoor heat exchanger (5), expansion valve for indoor heat exchanger (23), expansion valve for outdoor heat exchanger (2) 1), an engine waste heat recovery unit (6), an expansion valve for an engine waste heat recovery unit (22), and an auxiliary compressor (3) provided in parallel with the outdoor heat exchanger. An engine heat pump configured to compress the refrigerant that has passed through the engine waste heat recovery unit during heating, and to combine the refrigerant discharged from the auxiliary compressor with the refrigerant discharged from the main compressor. An engine heat pump wherein the volume capacity of the auxiliary compressor is smaller than that of the main compressor.
2 . 前記補助圧縮機の体積容量は、 前記主圧縮機と該補助圧縮機との合計容量 の所定の割合とすることを特徴とする請求項 1に記載のエンジンヒートポンプ。 2. The engine heat pump according to claim 1, wherein the volume capacity of the auxiliary compressor is a predetermined ratio of the total capacity of the main compressor and the auxiliary compressor.
3 . 前記補助圧縮機の吸入圧力と前記主圧縮機の吐出圧力の差を所定範囲内に 収めることを特徴とする請求項 2に記載のエンジンヒートポンプ。 3. The engine heat pump according to claim 2, wherein a difference between a suction pressure of the auxiliary compressor and a discharge pressure of the main compressor falls within a predetermined range.
4. 前記主圧縮機の吸入ラインと前記補助圧縮機の吸入ラインとを開閉弁 (3 4 ) を介して連通可能とすることを特徴とする請求項 2又は請求項 3に記載のェ ンジンヒー卜ポンプ。 4. The engine heat according to claim 2, wherein the suction line of the main compressor and the suction line of the auxiliary compressor can be communicated via an on-off valve (34). pump.
5. 前記補助圧縮機を電動機にて駆動することを特徴とする請求項 2乃至請求 項 4のいずれか一項に記載のエンジンヒ一トポンプ。 5. The engine heat pump according to claim 2, wherein the auxiliary compressor is driven by an electric motor.
6 . 暖房時、 低負荷では、 前記両圧縮機のうち前記補助圧縮機を単独で運転す るとともに前記両熱交換器のうち前記室外熱交換器を単独で作動し、中負荷では、 該両圧縮機のうち前記主圧縮機を単独で運転するとともに該室外熱交換器及び前 記エンジン廃熱回収器を作動し、 高負荷では、 該両圧縮機を運転するとともに該 室外熱交換器と該エンジン廃熱回収器とを作動することを特徴とする請求項 5に 記載のエンジンヒートポンプ。 6. During heating, when the load is low, the auxiliary compressor among the two compressors is operated alone, and the outdoor heat exchanger among the heat exchangers is operated alone. Among the compressors, the main compressor alone is operated and the outdoor heat exchanger and the engine waste heat recovery unit are operated. At a high load, both the compressors are operated and the outdoor heat exchanger and the Claim 5 characterized by operating the engine waste heat recovery unit The described engine heat pump.
7 . 起動の際、 前記両圧縮機のうち前記補助圧縮機を単独で運転することを特 徴とする請求項 5又は請求項 6に記載のエンジンヒートポンプ。 7. The engine heat pump according to claim 5, wherein at the time of starting, the auxiliary compressor is operated independently of the two compressors.
PCT/JP2003/007232 2002-06-20 2003-06-06 Engine heat pump WO2004001304A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003241975A AU2003241975A1 (en) 2002-06-20 2003-06-06 Engine heat pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002179848A JP2004020153A (en) 2002-06-20 2002-06-20 Engine heat pump
JP2002-179848 2002-06-20

Publications (1)

Publication Number Publication Date
WO2004001304A1 true WO2004001304A1 (en) 2003-12-31

Family

ID=29996577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007232 WO2004001304A1 (en) 2002-06-20 2003-06-06 Engine heat pump

Country Status (3)

Country Link
JP (1) JP2004020153A (en)
AU (1) AU2003241975A1 (en)
WO (1) WO2004001304A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661289B2 (en) * 2005-03-23 2011-03-30 アイシン精機株式会社 Engine driven air conditioner
JP2007147213A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
JP4902585B2 (en) * 2008-04-04 2012-03-21 三菱電機株式会社 Air conditioner
KR101178945B1 (en) * 2010-10-22 2012-09-03 고려대학교 산학협력단 Heat Pump System Using Dual Heat Sources for Electric Vehicle
JP6103181B2 (en) * 2012-09-26 2017-03-29 アイシン精機株式会社 Engine-driven air conditioner
CN105466063A (en) * 2015-12-16 2016-04-06 珠海格力电器股份有限公司 Heat pump system
DE112017005948T5 (en) * 2016-11-24 2019-09-05 Panasonic Intellectual Property Management Co., Ltd. Air conditioning device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293066A (en) * 1986-06-12 1987-12-19 ヤンマーディーゼル株式会社 Engine drive type heat pump type air conditioner
JP2519409B2 (en) * 1985-10-08 1996-07-31 ヤンマーディーゼル 株式会社 Waste heat recovery system for engine heat pump
JPH11101526A (en) * 1997-09-26 1999-04-13 Tokyo Gas Co Ltd Ghp system with denitrating and deodorizing catalyst
JP3011513B2 (en) * 1991-11-27 2000-02-21 スター精密株式会社 Print head for wire dot printer
JP2000283594A (en) * 1999-03-31 2000-10-13 Sanyo Electric Co Ltd Gas heat pump air conditioner
JP2001330291A (en) * 2000-05-23 2001-11-30 Sanyo Electric Co Ltd Air conditioning unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284272A (en) * 1985-10-08 1987-04-17 ヤンマーディーゼル株式会社 Accumulator structure of engine heat pump
JPS6262174U (en) * 1985-10-08 1987-04-17
JPH09206596A (en) * 1996-02-07 1997-08-12 Tokyo Gas Co Ltd Oxidation catalyst for minute amount of aldehyde in combustion exhaust gas and deodorizing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2519409B2 (en) * 1985-10-08 1996-07-31 ヤンマーディーゼル 株式会社 Waste heat recovery system for engine heat pump
JPS62293066A (en) * 1986-06-12 1987-12-19 ヤンマーディーゼル株式会社 Engine drive type heat pump type air conditioner
JP3011513B2 (en) * 1991-11-27 2000-02-21 スター精密株式会社 Print head for wire dot printer
JPH11101526A (en) * 1997-09-26 1999-04-13 Tokyo Gas Co Ltd Ghp system with denitrating and deodorizing catalyst
JP2000283594A (en) * 1999-03-31 2000-10-13 Sanyo Electric Co Ltd Gas heat pump air conditioner
JP2001330291A (en) * 2000-05-23 2001-11-30 Sanyo Electric Co Ltd Air conditioning unit

Also Published As

Publication number Publication date
AU2003241975A1 (en) 2004-01-06
JP2004020153A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
EP2325577B1 (en) Heat pump
CN102072559B (en) Heat pump type hot water supply apparatus
US8671706B2 (en) Heat pump
EP2381180B1 (en) Heat pump type hot water supply apparatus
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
CN103597296A (en) Freezing cycle
JP2007010282A (en) Two-stage compression type refrigeration cycle device
KR20040050477A (en) An air-condition system
US20040107709A1 (en) Method for operating compressors of air conditioner
CN212538209U (en) Heat pump system, heat pump air conditioner comprising same and heat pump water heater
EP1334852B1 (en) Air conditioner having engine cooling apparatus
KR100822432B1 (en) Air conditioner having auxiliary exchanger
WO2004001304A1 (en) Engine heat pump
CN111251812B (en) Thermal management system of vehicle and vehicle
WO2019171600A1 (en) Refrigeration cycle device
CN205980418U (en) Integral type high temperature frequency conversion heat pump heating air conditioning system
AU2020360865B2 (en) A heat pump
CN112628895B (en) Direct expansion type air conditioning unit and control method thereof
EP2716999A1 (en) Refrigeration cycle device
JP3617742B2 (en) Scroll compressor and air conditioner
CN111251810A (en) Thermal management system of vehicle and vehicle
WO2009098900A1 (en) Refrigeration system
CN114087798B (en) Control method of direct expansion type fresh air conditioning system
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JPH04263742A (en) Refrigerator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase