WO2003107002A1 - chfrタンパク質により触媒されるオーロラキナーゼA及びオーロラキナーゼBのポリユビキチン化反応 - Google Patents

chfrタンパク質により触媒されるオーロラキナーゼA及びオーロラキナーゼBのポリユビキチン化反応 Download PDF

Info

Publication number
WO2003107002A1
WO2003107002A1 PCT/JP2002/005828 JP0205828W WO03107002A1 WO 2003107002 A1 WO2003107002 A1 WO 2003107002A1 JP 0205828 W JP0205828 W JP 0205828W WO 03107002 A1 WO03107002 A1 WO 03107002A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
aurora kinase
chfr
aurora
kinase
Prior art date
Application number
PCT/JP2002/005828
Other languages
English (en)
French (fr)
Inventor
秀世 安田
Original Assignee
株式会社アクシアバイオサイエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アクシアバイオサイエンス filed Critical 株式会社アクシアバイオサイエンス
Priority to AU2002311176A priority Critical patent/AU2002311176A1/en
Priority to PCT/JP2002/005828 priority patent/WO2003107002A1/ja
Publication of WO2003107002A1 publication Critical patent/WO2003107002A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a composition for measuring the polyubiquitination of Aurora kinase A and / or Aurora kinase B, which comprises Aurora kinase A and / or Aurora kinase B and chfr protein, and polyubiquitin of Aurora kinase which uses the composition.
  • the present invention relates to a method for screening an activation inhibitor and an accelerator.
  • the cell cycle of eukaryotic cells in a dividing state is called the first interphase (G1 phase), the DNA synthesis phase (S phase), the second interphase (G2 phase), and the mitotic phase (M phase). It is classified into four states. Many of the cells that make up the body are in the quiescent phase (GO phase), but when stimulated to proliferate, they transition from the GO phase to the G1 and S phases, and start replicating chromosomal DNA. When replication is completed, the cell progresses from the G2 phase to the M phase, undergoes cell division, and returns to the G1 phase after cell division.
  • G1 phase The cell cycle of eukaryotic cells in a dividing state
  • S phase DNA synthesis phase
  • G2 phase the second interphase
  • M phase mitotic phase
  • checkpoints are monitoring mechanisms that maintain genomic stability during the process of cell replication and division, and are set at key points in the cell cycle, such as the Gl, S, G2, and M phases. If the checkpoint mechanism detects an abnormality, it temporarily stops the progression of the cell cycle and repairs it.
  • the G2 checkpoint is the last checkpoint before cell division, and operates by sensing DNA damage or DNA replication disruption and preventing entry into the M phase of the cell cycle.
  • the checkpoint mechanism is very complex, and the mechanism is not completely understood. Therefore, the therapeutic efficacy of anticancer drugs using this function varies depending on the cancer patient.In addition, even if it is effective at the beginning of treatment, the cancer becomes resistant to the anticancer drug during the treatment and the effectiveness of the anticancer drug is lost The disadvantage was that many cases were accepted.
  • CHFR is a protein that is found as a protein having a forkhead-associated (FHA) domain and a ring finger domain, and is abbreviated as Checkpoint with FHA and ring finger.
  • the chfr protein is composed of 664 amino acids and has a forkhead binding domain in the N-terminal region, a ring finger domain in the center, and a cysteine-rich domain in the C-terminal region (Fig. 1A).
  • the checkpoint protein chfr is a ligase that ubiauitinates Plkl and inhibits Cdc2 at the G2 to M transition.). They produced polyubiquitinated P1k1 by incubating recombinant chfr protein, in vitro translated P1k1 protein, ubiquitin and Xenopus interphase extracts. Detected. However, the present inventor did not detect the production of polyubiquitinated P1k1 even when the partially purified El, E2 (UbcH5), chfr protein, P1k1 and ubiquitin were incubated. In mammals including humans, it is unclear whether chfr protein efficiently catalyzes P1k1 polyubiquitination (unpublished data).
  • aurora kinase in yeast (named Ipll in budding yeast), two types in C. elegans and Drosophila, and three types in mammals. It is also called AIR (Aurora / Ipl related), AIRK (AIR Kinase), AIM (Aurora and Ipl1-1 ike midbody associated protein), IAL, aurora, IAK, and AIK.
  • Human aurora A (GenBank Accession number: AF008551) is also known as aurora 2, BTAK (breast-tumor-activated kinase), STK15, AIK and ARK1, and consists of 403 amino acid residues. And a protein with an estimated molecular weight of 45.8 kDa. Human aurora kinase A mRNA levels, protein levels, and kinase activity are low in the G1ZS phase, accumulate in the G2ZM phase, and decrease rapidly with the end of the M phase. Human Aurora kinase A protein is localized in the centrosome in interphase cells and in the spindle in M-phase cells.
  • RNA interference RNA interference
  • Human Aurora B (Human Aurora B; GenBank Accession number: AF008552), also called aurora 1, AI K2, A IM1, and STK-12, is a protein with 344 amino acid residues and an estimated molecular weight of 39.3 kDa. .
  • the amino acid sequence identity between human Aurora kinase A and human Aurora kinase B is 57% for the entire sequence and 74% for the kinase region, and both are very similar proteins.
  • Aurora kinase B is localized in the centromere during prophase, is concentrated in the centrosome together with INCE NP (Inner centromere protein: required for chromosome segregation and cytoplasmic segregation) until division, and becomes central spindle at the end of mitosis.
  • INCE NP Inner centromere protein: required for chromosome segregation and cytoplasmic segregation
  • Moving. Cells deficient in Aurora kinase B lack phosphorylation of serine 10 at histone H3, It shows only partly climomosome condensation.
  • lip mouth lakinase A the expression level of lip mouth lakinase B is high in the G2 / M phase, and its expression is enhanced in various cancer cells.
  • liposomal lakinase B is required for cytokinesis ( ⁇ ⁇ Terada, M. Tatska, F. Suzuki, Y. Yasuda, S. Fujita, M. Otsu: AIM-1: a mammalian midbody-associated protein required for cytokinesis, EMBO J., 17, 667-676, 1998).
  • Aurora kinases A and B catalyze the phosphorylation of histone H3, which is important for the initiation of division early in the G2 phase, resulting in subsequent chromosomal condensation of the M phase (C. Crosio, GM Fimia, R. Loury , M. Kimura, Y. Okano, H. Zhou, S. Sen, CD All is, P. Sassone-Corsi: Mitotic phosphorylation of histone H3: Spatio-temporal regulation by mammalian Aurora kinases, Mol. Cell. Biol., 22 , 8-74-885, 2002).
  • Human Aurora C (GenBank Accession number: AB017332), which is also called STK13 or AIK3, consists of 309 amino acid residues and is detected in the centrosome only in late M phase (M. Kimura, Y. Matsuda, T. Yoshioka, Y. Okano: Cell cycle-dependent expression and centrosome localization of a third human Aurora / Ip related protein kinase, AIK3, J. Biol. Chem., 274, 7334-7340, 1999)
  • Aurora kinases A and B are known to be important kinases that require strict control of their protein levels during the G2 / M phase to progress mitosis and meiosis.
  • a means capable of controlling the enhancement and suppression of the functions of Aurora kinases A and B has not been developed.
  • phosphorylation inhibitors of Aurora kinases A and B are not yet known, but it is predicted that it will be difficult to find highly specific inhibitors, No specific measures were given.
  • the present inventors have conducted intensive studies to solve the above problems and found that aurora kinases A and B are polyubiquitinated. The inventors have found that quality catalyzes the polyubiquitination of Aurora kinases A and B, and completed the present invention. Disclosure of the invention
  • the present invention provides a new finding in the field of cancer chemotherapy that inhibitors and promoters of polyubiquitination of lipase kinase A and B by chfr protein can be discovered.
  • Cancer cells in which the chfr gene is functioning normally are resistant to cancer drugs acting in the G2 phase, such as taxol and nocodazole, but cancer cells in which the ch'fr gene is mutated, Sensitivity to Therefore, it is possible to efficiently kill cancer cells by using these anticancer drugs and the inhibitor of aurora kinase polyubiquitination in cancer cells in which the chfr gene functions normally. In this case, in order to reduce the effect on normal cells, it is necessary to modify the inhibitor to a compound that is active only on cancer cells.
  • aurora kinase gene is expressed at a high level in cancer tissues and cancer cells.
  • the chfr gene is normal, but the level of Aurora kinase is so high that the chfr protein polyubiquitinates most of the Aurora kinase at the end of the M phase, leading to its degradation.
  • the polyubiquitination promoter of lipase kinase promotes polyubiquitination, and promotes the degradation of aurora kinase by proteasome.
  • aurora kinase levels can be reduced in the G1 / S phase, increased in the G2ZM phase, and lowered at the end of the M phase, which is expected to prevent cancer cell growth. .
  • the present invention provides a composition for measuring the polyubiquitination of Aurora kinase containing Aurora kinase A and / or B and chfr protein, and a screening for an Aurora kinase polyubiquitination inhibitor and accelerator using the composition.
  • a composition for measuring the polyubiquitination of Aurora kinase containing Aurora kinase A and / or B and chfr protein and a screening for an Aurora kinase polyubiquitination inhibitor and accelerator using the composition.
  • Composition and screening method of the present invention By using, specific inhibitors and promoters of polyubiquitination of Aurora kinase can be searched for.
  • FIG. 1A shows the structure of the chfr protein.
  • Ch fr (Checkpoint with FHA and Ring finger) protein consists of 664 amino acid residues.
  • Positions 31 to 103 are the forkhead-associated domain, positions 303 to 346 are the ring finger domains, and positions 476 to 641 are the cysteine litz domain. (Cysteine-rich domain).
  • FIG. 1B shows the amino acid sequence (positions 303 to 346) of the ring finger domain of the chfr protein.
  • FIG. 1C shows the amino acid sequence between positions 303 and 315 of the ring finger region.
  • the amino acid residue at position 307 has been replaced by cysteine to alanine (indicated by an arrow).
  • WT wild-type chfr protein
  • MT mutant chfr protein
  • FIG. 2 shows auto-ubiquitination of the chfr protein.
  • Polyubiquitinated chfr protein is detected when reacted in the presence of ubiquitin activating enzyme (E1), ubiquitin conjugate enzyme Ub cH5 (E2), piotinylated ubiquitin and wild-type chfr protein (WT-chfr) (Lane 4). Arrows indicate the position of the 197 kDa marker protein and the monoubiquitinated chfr protein.
  • Figure 3A shows GST-chfr protein and 6His aurora kinase A or Indicates binding to 6His-Aurorakinase B.
  • Hexahistidine (6His) -tagged Aurora kinases A and B are allowed to react with mouse hexahistidine antibody (primary antibody) and horseradish peroxidase-conjugated mouse antibody (secondary antibody) to produce a reaction. Objects were detected using the ECL kit. Lanes 1 and 2 are untreated Aurora kinase A and Aurora kinase B. Lanes 3 and 4 show 6His-Aurora kinases A and B, showing that Aurora kinase A and Aurora kinase B bind to the GST-chfr protein.
  • FIG. 3B shows the binding between the 6His-chfr protein and GST-Aurora kinase A or GST-Aurora kinase B.
  • the arrow indicates the position of the 6H is-chfr protein.
  • the detection method is the same as in Fig. 3A.
  • Lane 1 shows 6His-chfr
  • Lanes 2-4 show 6His-chfr protein bound to each of GST-fused Aurora kinase 8, GST-fused Aurora kinase B and GST-fused PLK1.
  • FIG. 3C shows that the mutant chfr protein (cysteine at position 307 has been replaced by alanine) binds to Aurora kinases A and B.
  • the position of the 47.5 kDa marker protein is indicated by an arrow.
  • the detection method is the same as in Fig. 3A.
  • FIG. 4 shows polyubiquitination of Aurora kinases A and B by chfr protein.
  • 6 H is — Aurora kinase A (Aurora A) or B When (Aurora B) was incubated in the presence of ubiquitin activating enzyme (El), ubiquitin-conjugating enzyme Ub cH5 (E2), ubiquitin and GST-fused wild-type chfr protein (WT-chfr), polyubiquitination was observed.
  • El ubiquitin activating enzyme
  • Ub cH5 E2
  • WT-chfr wild-type chfr protein
  • Lora kinase A or B is detected.
  • the detection method is the same as in Fig. 3A. Arrows indicate the location of the 47.5 kDa marker protein.
  • Lane 1 Aurora kinase A was polyubiquitinated in the presence of E1, E2 and WT-chfr.
  • Lane 2 Aurora kinase A was not polyubiquitinated in the absence of E2.
  • Lane 3 Aurora kinase A was not polyubiquitinated when chfr protein was mutated.
  • Lane 4 chur protein was mutated and in the absence of E2, Aurora kinase A was not polyubiquitinated.
  • Lane 5 Aurora kinase B was polyubiquitinated in the presence of E1, E2 and WT — ch ⁇ r. Lane 6: In the absence of E2, Aurora kinase B was not polyubiquitinated. Lane 7: Aurora kinase B was not polyubiquitinated when chfr protein was mutated. Lane 8: Aurora kinase B was not polyubiquitinated in the absence of E2 in the mutant form of the chfr protein. Means for solving the problem
  • the present inventors searched for a protein serving as a substrate of a chfr protein having a ring finger domain which is a characteristic of E3 ligase. As a result, they discovered that lipase kinase A and aurora kinase B were polyubiquitinated by chfr protein. Based on this finding, it became possible to construct a high-throughput Atsushi system, and it became possible to efficiently screen for polyubiquitination inhibitors or promoters of Aurora kinase A and Aurora kinase B using the chfr protein.
  • anticancer drugs that act in the G2 phase have a low effect on cancer cells with normal chfr genes.
  • the combined use of Aurora kinase A and B polyubiquitination inhibitors on such cancer cells can be expected to enhance the effects of anticancer agents such as taxol and nocodazole.
  • the ubiquitin activating enzyme (E 1), ubiquitin conjugating enzyme (E 2), ubiquitin ligase chfr (E 3), Aurora kinase A and Aurora kinase B protein of the present invention are used for prokaryotic microorganisms such as Escherichia coli and yeast systems. Insect cells infected with baculovirus, silkworm, and animal cells It can be produced as a recombinant protein and the extract can be used. Further, a protein prepared by partially purifying an extract is more preferable.
  • hexahistidine or GST saltathione-S-transferase gene
  • a protein produced as a fusion with these peptides or proteins This method is called tagging.
  • tags such as Xpress tag, HA tag, myc tag, and maltose binding protein tag can be used.
  • the El, E2, chfr, Aurora kinase A and Aurora kinase B genes are preferably of human origin. In addition to humans, genes derived from animals such as mice, genes derived from yeast, genes derived from plants, and the like can also be used.
  • the E2 gene is preferably UbcH5, but UbcH2a, UbcH2b, UbcH3, UbcH4, UbcH6, UbcH7, UbcH8, UbcHIO, etc., furthermore, mouse, rabbit, E2 genes derived from animals such as guinea pigs, yeasts, and plants can be used.
  • Polyubiquitinated Aurora kinase A and Aurora kinase B can be detected using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting.
  • Polyubiquitinated ubiquitin conjugated with Xpress tag using avidin-horseradish oxidase when using biotinylated ubiquitin as an antibody to detect bite lakinase
  • an anti-Xpress antibody can be used.
  • an ECL western blotting detection reagent (Amersham Bioscience), an AP color development kit (BioRad), an HRP color development kit (BioRad), or the like can be used.
  • Other immunochemical techniques can also be used.
  • a high-throughput assay system such as the Scintillation Proximity Assay (Scintillation Proximity Assay: SPA), Time-Resolved Fluorescence (TRF) and Homogeneous Time-Resolved Fluorescence (HTRF) can be used (N.Yabuki, S. Watanabe, T. Kudoh, S. Niira, C.
  • Miyamoto Application of Homogeneous Time-Resolved Fluorescence (HTRFTM) to Monitor Poly-ubiauitination of Wild-type p53, Combinatorial Chemistry & High Throughput Screening, 2, 279-287, 1999).
  • HTRFTM Homogeneous Time-Resolved Fluorescence
  • a system using a fluorescent label or a radioisotope label can be used.
  • the SPA method performs Poryubikichin reaction and 125 1 _ Yubikichin or 3 H_ Yubikichin and Piochin of the O bite Rakinaze added to the reaction system.
  • Poryubi chitin of Aurora kinase to trap with stress but-avidin label SPA beads
  • 6 line light is emitted from the SPA beads by being irradiated in S PA-bi one's Is done. This light amount is measured for 30 seconds using a measuring device such as MicroBeta (Wallac).
  • ubiquitin labeled with europium cryptate and biotinylated Aurora kinases A and B are added to the reaction system to generate polyubiquitinated Aurora kinases A and B, and then streptavidin-labeled XL 665 is added.
  • XL-665 and polyubiquitinated Aurora kinases A and B form a complex due to the biotin-avidin binding.
  • this complex is irradiated with light of 337 nm using a measuring device such as Discovery (Packard Instrument Company), europium cryptate in the polyubiquitin chain is excited, and the excited energy is transferred to XL665.
  • XL665 emits light at 665 nm. The light intensity is measured, and the measured value is converted into the amount of polyubiquitinated Aurora kinases A and B.
  • an inhibitor can be designed on a computer based on the three-dimensional structure of the chfr protein and Aurora kinase A and Aurora kinase B. This is called in silico drug design.
  • the IC 5D of design compounds can be calculated using the above Atsusi method.
  • Inhibitors identified in vitro can be evaluated at the cellular level (in vivo). That is, transfection of the tagged chfr protein, aurora kinase, and ubiquitin expression plasmid into cells, and detection of the levels of polyubiquitinated aurora kinase and aurora kinase produced in the cells by SDS-PAGE, immunoblotting, etc. Can be.
  • Candidate compounds can be identified by synthesizing various derivatives of inhibitors and evaluating them at the cellular level. Furthermore, the compound can be used in cancer-bearing mouse models, pharmacological tests using animals such as mice and dogs, safety tests such as acute and chronic toxicity tests, stability tests, etc., before proceeding to clinical studies. it can. Industrial applicability
  • the present invention provides a system for accessing polyubiquitination of Aurora kinase A and Aurora kinase B by chfr protein. Therefore, the present system can be used to screen for inhibitors and promoters.
  • the inhibitor is expected to show an effect on cancers in which xyl and the like are not effective when used in combination with anticancer drugs that act in the G2 phase such as taxol.
  • the accelerator Due to the low activity of ubiquitin-protein ligase of chfr protein or overexpression of Aurora kinase gene, it is expected to be effective for cancer cells in which Aurora kinase is accumulated.
  • Human chfr protein (Figs. 1A and B) was inserted into GST-fused pFastBac vector (Gibco-BRL) and recombinant baculovirus was prepared according to the manufacturer's protocol. By infecting insect cells (Spodoptera frugiperda 9: Sf9 cells) with these recombinant baculoviruses, GST-chfr protein was produced in the insect cells. GST (Glutathione-S-Transferase) was fused to the N-terminal of this protein. A mutant chfrr protein (MT-chfrr; FIG. 1C) in which the cysteine at position 307 of the human chfrr protein was replaced with alanine was also prepared in the same manner.
  • MT-chfrr FIG. 1C
  • Ubiquitin activating enzyme (E1) was produced in Sf9 cells infected with baculovirus and purified using a ubiquitin affinity column.
  • the E. coli extract was purified by ammonium sulfate fractionation and chromatography using a MonoS column (Amerslmm Bioscience).
  • Insect cells S infected with baculovirus encoding partially purified ubiquitin activating enzyme (E1), ubiquitin conjugate enzyme Ubc H5 (E2), biotinylated ubiquitin and GST-fused wild-type human chfr protein (WT_chir)
  • E1 partially purified ubiquitin activating enzyme
  • Ubc H5 E2
  • biotinylated ubiquitin and GST-fused wild-type human chfr protein (WT_chir)
  • the f9 extract 5 OmMTris-HC1 pH 7.4, 5 mM MgCl2, 2 mM dithiosyl I and 2 mM ATP were reacted at 25 ° C for 30 minutes.
  • GST-fused WT-chfr protein was pulled down using glutathione-Sepharose 4B and recovered. The eluted sample was electrophoresed on 5% polyacrylamide.
  • the proteins on the gel were transferred to a PVDF (polyvinylidene difluoride) membrane. After blocking the PVDF membrane with 5% skim milk, avidin horseradish peroxidase was added, and polyubiquitinated chfr protein was detected using an ECL kit (Amersham Bioscience) (Fig. 2, lane 4). . When El, E2 or WT-chfr was removed, polyubiquitination of the chfr protein was not observed (Fig. 2, lanes 1-3). Also, when the mutant chfr protein (WT-chfr) was used, polyubiquitinated chfr protein was not detected (Fig. 2, lanes 5-8). The band detected in lane 8 was presumed to be monoubiquitinated chfr protein. Monoubiquitinated proteins are not degraded by proteasomes.
  • Example 2 Example 2
  • Binding of chfr protein to Aurora Kinase A and Aurora Kinase B pFastBac vector with GST fusion or His-tagged cDNA of human wild-type chfr cDNA, human Aurora kinase A and human bite lakinase B cDNA and human PLK cDNA (Gibco-BRL) and a recombinant baculovirus was prepared according to the protocol of Gibco-BRL. These recombinant baculoviruses were transmitted to insect cells (abbreviated as Sf9 cells), and the proteins were produced in the insect cells. The N-terminus of each protein was produced as a protein fused with GST (Glutathione-S-Transferase) and six histidine residues.
  • mouse antibodies primary antibodies recognizing hex-histidine were used to detect His-Auroraquinase A and Hiso-mouth lakinase B, which were bound to GST-chfr protein and co-precipitated.
  • the cells were incubated with a horseradish peroxidase-conjugated anti-mouse antibody, chemiluminescent using an ECL kit (Amersham Bioscience), and developed on an X-ray film.
  • Aurora kinase A and Aurora kinase B were found to bind to the GST-chfr protein (Fig. 3A, lanes 3 and 4).
  • Sf9 extract containing 6His-chfr protein and Sf9 extract containing GST-Aurora kinase and Sf9 extract containing 6His-chfr protein and GST-Aurora kinase B
  • the Sf9 extract containing was mixed and incubated at room temperature.
  • daltathione sepharose 4B was added, and the GST-one bit lakinase A and GST-one part lakinase B complexes were collected with bourdan, and the complexes were eluted from the beads by adding 10 mM daltathione. Collected.
  • the collected sample was subjected to SDS-7.5% PAGE, and the protein on the gel was transferred to a PVDF membrane by Western Bling.
  • the 6His-chfr protein bound to GST-Aurora kinase A and GST-Shiroichi bora kinase B and co-precipitated was detected using the ECL kit as described above. As shown in FIG. 3B, the 6His-chfr protein was found to bind to Aurora kinase A and Aurora kinase B (FIG. 3B, lanes 2 and 3).
  • E1 and E2 enzymes were prepared as in Example 1.
  • E 1 enzyme E l
  • Ub cH5 E 2
  • wild-type GST extract with chfr protein
  • WT_chfr wild-type GST
  • Dal Yu Zhong Sephalow 4B was added.
  • the wild-type GST-chfr protein binds to Aurora kinases A and B and catalyzes the polyubiquitination of both.
  • substituting alanine for cysteine in the consensus sequence of the ring finger region of the chfr protein abolishes this activity.
  • the chfr protein did not bind to PLK1 and did not catalyze PLK1 polyubiquitination (unpublished data).
  • PLK1 in humans is unlikely to be a substrate for polyubiquitination of the chfr protein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

明 細 書 c h f rタンパク質により触媒されるオーロラキナ一ゼ A及びオーロラキナ —ゼ Bのポリュビキチン化反応 技術分野
本発明は、 オーロラキナーゼ A及び/又はオーロラキナーゼ Bと c h f r タンパク質を含む、 オーロラキナーゼ A及び/又はオーロラキナーゼ Bのポ リュビキチン化を測定するための組成物、 及び該組成物を用いるオーロラキ ナーゼのポリュビキチン化阻害剤及び促進剤をスクリーニングする方法に関 する。
分裂状態にある真核細胞の細胞周期は、 第 1間期 (G 1期) 、 D NA合成 期 (S期) 、 第 2間期 (G 2期) 及び分裂期 (M期) とよばれる 4種類の状 態に分類される。 生体を構成するの細胞の多くは、 静止期 (G O期) にある が、 増殖刺激を受けると、 G O期から G 1期そして S期へ移行し、 染色体 D N Aの複製を開始する。 複製が完了すると G 2期から M期へ進行し、 細胞分 裂がおこり、 細胞分裂終了後に再び G 1期に戻る。
正常細胞では、 細胞周期進行を秩序正しく進行させるためのチェックボイ ン卜機構がいくつか存在する。 チェックポイントとは、 細胞の複製や分裂課 程におけるゲノムの安定性を保っための監視機構であり、 G l、 S、 G 2、 M期といった細胞周期の主要な節目に設置されている。 チェックポイント機 構が異常を感知した場合、 細胞周期の進行を一時的に停止させて修復を行う。 例えば、 G 2チェックポイントは、 細胞分裂前の最後のチェックポイントで あり、 D NA損傷や D N A複製中途状態を感知して作動し、 細胞周期の M期 への進入を防ぐ。
癌は、 組織によって又は症例によって、 その発癌及び悪性化に関与する遺 伝子が異なる。 そこで、 チヱックポイントの機能の破綻こそが癌細胞が有す る共通の性質であるという事実に着目して、 チェックポイントを標的とした 治療が考案されてきている。
しかし、 チェックポイント機構は非常に複雑であり、 その機序は完全には 解明されていない。 そのため、 この機能を利用した制癌剤の治療有効性は、 癌患者によって異なり、 さらに、 治療開始当初は有効であっても、 治療の過 程において癌が制癌剤に耐性となり、 制癌剤の有効性が失われるケースも数 多く認められるという欠点があつた。
G 2期チェックポイント機構の 1つとして、 C H F Rの役割が知られて いる。 C H F Rとは、 フォークヘッド結合ドメイン (Forkhead- associated (FHA) domain) 及びリングフィンガードメインを有するタンパク質として見 出され、 Checkpoint wi th FHA and ring f ingerの略称として命名されたタン パク質である。 c h f rタンパク質は 6 6 4アミノ酸からなり、 N末端領域 にフォークヘッド結合ドメイン、 中央にリングフィンガードメイン、 C末端 領域にシスティンに富むドメインを有することを特徴とする (図 1 A)。
Scolnick等は、 c h f r遺伝子は各組織で偏在的に発現されており、 正 常細胞においてタキソ一ル及びノコダゾール等の G 2期に作用する薬剤の存 在下で細胞周期は G 2.期で停止するが、 薬剤の除去によって再びその進行を 開始すること、 これとは対照的に、 c h f r遺伝子が不活化されている癌細 胞では、 細胞周期が G 2期で停止することなく進行するために、 染色体分離 異常を生じ、 細胞の生存率が低下することを報告している (D. M. Scolnick et al. , Nature, 406, 430-435, 2000 : chfr def ines a mitot ic stress checkpoint that delays entry into metaphase. ) 。
また、 Kang等は、 ュビキチン化を触媒する E 3リガ一ゼがリングフィンガ 一を有するタンパク質であることに着目し検討した結果、 c h f rタンパク 質は、 ポロ様キナーゼ (Polo- l ike kinase 1: Plkl) をポリュビキチン化す ることを見出した。 その結果、 ポリュビキチン化した P 1 k lがプロテアソ —ムの作用により分解を受けると、 C d c 2 5 Cホスファターゼの活性化及 び W e e 1キナーゼの不活化を遅延させ、 G 2期から M期への進行に必要な C d c 2の活性化を遅延させることを報告している (J. Cel l. Biol. , 156, 249-260, 2002: The checkpoint protein chfr is a ligase that ubiauitinates Plkl and inhibits Cdc2 at the G2 to M transition. ) 。 彼 等は、 組換型 c h f rタンパク質、 インビトロで翻訳された P 1 k 1タンパ ク質、 ュビキチン及びゼノプス間期エキストラクト (Xenopus interphase extracts) をインキュベートすることによりポリュビキチン化した P 1 k 1 の生成を検出している。 しかし、 本願発明者は、 部分精製された E l、 E 2 (UbcH5) , ch f rタンパク質、 P 1 k 1及びュビキチンをインキュベート してもポリュビキチン化 P 1 k 1の生成を検出できなかったことから、 ヒト を含む哺乳類においては、 c h f rタンパク質が効率良く P 1 k 1のポリュ ビキチン化を触媒するかどうか不明である (未発表データ) 。
オーロラキナーゼは、 酵母では 1種類 (出芽酵母で Ipll と命名) 、 線虫 (C. elegans) 及びショウジヨウバエ (Drosophila) では 2種類、 哺乳類で は 3種類存在することが知られている。 また、 A I R (Aurora/Ipl related) 、 A I RK (AIR Kinase) 、 A I M (Aurora and Ipl 1-1 ike midbody associated protein) 、 IAL、 au r o r a, I AK及び A I K 等とも呼ばれている。
ヒトオーロラキナ一ゼ A (human aurora A; GenBank Accession number: AF008551) は、 aurora 2、 BTAK (breast-tumor- activated kinase) 、 STK15、 A I K及び ARK 1としても知られており、 403アミノ酸残 基からなり、 推定分子量が 45. 8kDaのタンパク質である。 ヒトオーロラキ ナーゼ Aの mRNAレベル、 タンパク質レベル及びキナーゼ活性は、 G1Z S期で低く、 G2ZM期で集積され、 M期の終了と同時に急速に減少する。 ヒトオーロラキナーゼ Aタンパク質は、 間期の細胞では中心体に、 M期の細 胞では紡錘体に局在している。 ヒトオーロラキナーゼ A遺伝子が高レベルで 発現すると、 中心体数の増加、 及び染色体の増加又は減少をもたらす。 その 結果、 細胞死又は腫瘍化細胞の出現という結果にいたる。 実際に、 本遺伝子 は、 大腸癌、 乳癌等の悪性腫瘍において高レベルで発現していることが報告 されている (S. Sen et. al., Oncogene 14, 2195-2200, 1997; H. Zhou et al., Nat. Genet., 20, 189-193, 1998; J. R. Bisc off et. al. , EMBO J, 17, 3052-3065, 1998; M. Kimura et. al. , J. Biol. Chem. , 272, 13766- 13771, 1997) 。 一方、 ヒトオーロラキナーゼ A欠失細胞は、 2極性の分裂紡 錘体を形成することはできるが、 その紡錘体を分裂中期プレートに配向する ことができない。
線虫で RN A干渉 (RNA interference) を用いてオーロラキナーゼ Aの m RN Aの特異的分解を誘導すると、 M期における核膜の消失後、 分離した中 心体が崩壊し、 微小菅の形成が起こらない (E. Hannak, M. Kirk am, A. A. Hyman, K. Oegema: Aurora- A kinase is re uired for centrosome maturation in Caenorhabditis elegans, J. Cell Biol. , 155, 1109-1116, 2001) 。 さらに、 染色体数は、 極端な異数性を示し、 胎性致死 (embryonic lethal) となることが報告されている (JM Schumacher, N Ashcroft, PJ Donovan and A. Golden: A highly conserved centrosomal kinase, AIR - 1 is reauired for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos, Development, 125, 4391-4402, 1998) 。 したがって、 オーロラキナ一ゼ Aは、 染色体分離 (chromosome segregation) に必須なセリン/スレオニンキナーゼであると 考えられる。
ヒトォ一ロラキナーゼ B (Human Aurora B; GenBank Accession number: AF008552) は、 aurora 1、 A I K2、 A IM1、 STK— 12とも呼ばれ、 344アミノ酸残基からなり、 推定分子量が 39. 3kDaのタンパク質である。 ヒトオーロラキナーゼ Aとヒトオーロラキナ一ゼ Bとの間のアミノ酸配列の 同一性は、 全配列で 57%、 キナーゼ領域で 74%であり、 両者は、 非常に 類似したタンパク質である。
オーロラキナーゼ Bは、 分裂前期では動原体に局在し、 分裂まで I NCE NP (Inner centromere protein: 染色体分離及び細胞質分離に必要) と共 に中心体に濃縮され、 分裂終期に中央紡錘体に移動する。 オーロラキナーゼ Bを欠失した細胞は、 ヒストン H3の 10番目のセリンのリン酸化を欠失し、 クロモソ一ム縮合 (cliromosome condensation) を部分的にしか示さない。 ォ 一口ラキナ一ゼ Bは、 ォ一口ラキナーゼ Aと同様に G 2 /M期で発現レベル が高く、 種々の癌細胞で発現が亢進されている。 動物細胞でリン酸化部位を 不活化した変異体の発現実験により、 ォ一口ラキナーゼ Bは細胞質分裂に必 要であることが判明した (Υ· Terada, M. Tatska, F. Suzuki, Y. Yasuda, S. Fujita, M. Otsu: AIM - 1: a mammalian midbody-associated protein required for細胞質分裂, EMBO J. , 17, 667-676, 1998) 。
オーロラキナーゼ Aと Bは、 G2期の初期に分裂の開始に重要なヒストン H 3のリン酸化を触媒し、 その後の M期のクロモソ一ム縮合をもたらす (C. Crosio, G. M. Fimia, R. Loury, M. Kimura, Y. Okano, H. Zhou, S. Sen, C. D. All is, P. Sassone - Corsi : Mitotic phosphorylation of histone H3: Spatio-temporal regulation by mammalian Aurora kinases, Mol. Cell. Biol., 22, 8-74-885, 2002) 。
ヒトォ一ロラキナーゼ C (Human Aurora C; GenBank Accession number: AB017332) は、 STK13、 A I K3とも呼ばれ、 309アミノ酸残基より なり、 M期の後期においてのみ中心体で検出される (M. Kimura, Y. Matsuda, T. Yoshioka, Y. Okano: Cell cycle-dependent expression and centrosome localization of a third human Aurora/Ipト related protein kinase, AIK3, J. Biol. Chem. , 274, 7334-7340, 1999)
オーロラキナーゼ A及び Bは、 有糸分裂及び減数分裂を進行させるために G 2 /M期おいてそれらのタンパク質レベルの厳密な制御が必要な、 重要な キナーゼであることが知られている。 しかし、 かかるオーロラキナーゼ A及 び Bの機能の亢進及び抑制を制御することができる手段は、 開発されてなか つた。 例えば、 オーロラキナーゼ A及び Bのリン酸化阻害剤は、 まだ知られ ていないが、 特異性の高い阻害剤を発見することは困難であると予測され、 また、 この阻害剤を実用化するための具体的手段は示されていなかった。
本発明者は、 上記問題点を解決すべく鋭意研究を重ねた結果、 オーロラキ ナーゼ A及び Bがポリュビキチン化されること、 さらに、 c h f rタンパク 質がオーロラキナーゼ A及び Bのポリュビキチン化を触媒することを見出し、 本発明を完成させた。 発明の開示
本発明は、 癌化学療法の分野において、 c h f rタンパク質によるォ一口 ラキナーゼ A及び Bのポリュビキチン化の阻害剤及び促進剤を発見すること ができるという新たな知見をもたらす。 c h f r遺伝子が正常に機能してい る癌細胞は、 タキソール及びノコダゾ一ル等の G 2期に作用する制癌剤に抵 抗性を示すが、 c h 'f r遺伝子が変異している癌細胞ではこれらの制癌剤に 感受性を示す。 したがって、 c h f r遺伝子が正常に機能している癌細胞を 対象に、 これらの制癌剤とオーロラキナーゼのポリュビキチン化阻害剤とを 併用することにより、 癌細胞を効率良く死滅させることが可能となる。 この 場合、 正常細胞への影響を低く抑えるために、 本阻害剤が癌細胞でのみ活性 を示すような化合物に修飾する必要がある。
一方、 癌組織及び癌細胞においてオーロラキナーゼ遺伝子が高レベルで発 現している例も数多く知られている。 このような場合には、 c h f r遺伝子 は正常であるが、 オーロラキナーゼが著しく高レベルであるために、 c h f rタンパク質は M期終了と同時にオーロラキナーゼの大部分をポリュビキチ ン化し、 分解に至らせることができない。 このような癌細胞においてォ一口 ラキナーゼのポリュビキチン化促進剤は、 ポリュビキチン化を促進し、 そし て、 プロテアソ一ムによるオーロラキナーゼの分解を促進する。 その結果、 オーロラキナ一ゼのレベルを G 1 / S期で低く、 G 2 ZM期で高く、 そして M期の終了と同時に低くさせることが可能となり、 癌細胞の増殖を阻止する ことが期待される。
また、 本発明は、 オーロラキナーゼ A及び/又は Bと c h f rタンパク質 を含むオーロラキナーゼのポリュビキチン化を測定するための組成物及び該 組成物を用いるオーロラキナーゼのポリュビキチン化阻害剤及び促進剤をス クリーニングする方法を提供する。 本発明の組成物及びスクリーニング方法 を用いることによって、 オーロラキナ一ゼのポリュビキチン化の特異的阻害 剤及び促進物質を探索することができる。 図面の簡単な説明 図 1Aは、 c h f rタンパク質の構造を示す。 Ch f r (Checkpoint with FHA and Ring finger) タンパク質は、 664アミノ酸残基からなる。 31位 から 103位までがフォークへッド結合ドメイン (Forkhead- associated domain) であり、 303位から 346位までがリングフィンガードメイン (Ring finger domain) であり、 476位から 641位までがシスティンリ ツチドメイン (Cysteine- rich domain) でめる。 図 1 Bは、 c h f rタンパク質のリングフィンガ一ドメインのアミノ酸配 列 ( 303— 346位) を示す。 図 1 Cは、 リングフィンガー領域の 303位— 315位の間のアミノ酸配 列を示す。 突然変異型 c h f rタンパク質は、 307位のアミノ酸残基がシ スティンからァラニンに置換されている (矢印で表示) 。 WT :野生型 ch f rタンパク質、 MT:突然変異型 c h f rタンパク質 図 2は、 c h f rタンパク質の自己ュビキチン化を示す。 ュビキチン活性 化酵素 (E 1) 、 ュビキチン共役酵素 Ub cH5 (E2) 、 ピオチン化ュビ キチン及び野生型 c h f rタンパク質 (WT- ch f r) の存在下で反応させ るとポリュビキチン化 c h f rタンパク質が検出されることを示す (レーン 4) 。 矢印は、 197kDaのマーカータンパク質とモノュビキチン化 c h f r タンパク質の位置を示す。 図 3 Aは、 GST- c h f rタンパク質と 6 H i s一オーロラキナーゼ A又 は 6H i s—オーロラキナ一ゼ Bとの結合を示す。 へキサヒスチジン (6H i s) タグ付きオーロラキナーゼ A及び Bを、 マウス杭へキサヒスチジン抗 体 (1次抗体) 及び西洋ヮサビパーォキシダーゼ共役マウス抗体 (2次抗 体) と反応させ、 反応生成物を ECLキットを用いて検出した。 レーン 1と 2は、 未処理のオーロラキナーゼ A及びオーロラキナーゼ Bである。 レーン 3と 4は、 6 H i s—オーロラキナーゼ A及び Bであり、 オーロラキナ一ゼ A及びオーロラキナ一ゼ Bが、 GST- c h f rタンパク質と結合することを 示す。 47. 5 kDa は、 マーカ一タンパク質であり、 6His-AuroraAは、 6H i s—オーロラキナーゼ八、 そして、 6His- AuroraB は、 6H i s—オーロラ キナーゼ Bの位置を示す。 図 3Bは、 6H i s - c h f rタンパク質と G S T—オーロラキナーゼ A又 は GS T—ォ一ロラキナーゼ Bとの結合を示す。 矢印は 6H i s - c h f r タンパク質の位置を示す。 検出方法は図 3 Aと同様である。 レーン 1は、 6 H i s— c h f r、 レーン 2— 4は、 G S T融合オーロラキナーゼ八、 GS T融合オーロラキナーゼ B及び GST融合 PLK 1のそれぞれと結合した 6 H i s— c h f r夕ンパク質を示す。 図 3 Cは、 突然変異型 c h f rタンパク質 (307位のシスティンがァラ ニンに置換されている) が、 オーロラキナーゼ A及び Bと結合することを示 す。 47. 5 kDaのマーカータンパク質の位置を矢印で示した。 検出方法は、 図 3 Aと同様である。 レーン 1は、 未処理のオーロラキナーゼ八、 レーン 2 は、 突然変異型 GST- c h f rタンパク質と結合したオーロラキナーゼ 、 レーン 3は、 未処理のオーロラキナ一ゼ8、 レーン 4は、 突然変異型 GST - c h f rタンパク質と結合したオーロラキナーゼ Bを示す。 図 4は、 c h f rタンパク質によるオーロラキナーゼ A及び Bのポリュビ キチン化を示す。 6 H i s —オーロラキナーゼ A (Aurora A) 又は B (Aurora B) を、 ュビキチン活性化酵素 (E l) 、 ュビキチン共役酵素 Ub cH5 (E 2) 、 ュビキチン及び GST融合野生型 c h f rタンパク質 (W T- c h f r) の存在下でインキュベーションすると、 ポリュビキチン化ォ —ロラキナーゼ A又は Bが検出される。 検出方法は、 図 3Aと同様である。 矢印は、 47. 5kDaのマーカータンパク質の位置を示す。 レーン 1 : E 1、 E 2及び WT— c h f rの存在下では、 オーロラキナーゼ Aが、 ポリュビキ チン化された。 レーン 2 : E 2の不在下では、 オーロラキナーゼ Aは、 ポリ ュビキチン化されなかった。 レーン 3 : c h f rタンパク質が突然変異型の 場合には、 オーロラキナ一ゼ Aは、 ポリュビキチン化されなかった。 レーン 4 : c h f rタンパク質が突然変異型であり、 かつ、 E 2不在下では、 ォー ロラキナーゼ Aは、 ポリュビキチン化されなかった。 レーン 5 : E 1、 E 2 及び WT— c h ί rの存在下では、 オーロラキナーゼ Bが、 ポリュビキチン 化された。 レーン 6 : E 2の不在下では、 オーロラキナーゼ Bは、 ポリュビ キチン化されなかった。 レーン 7 : c h f rタンパク質が突然変異型の場合 には、 オーロラキナーゼ Bは、 ポリュビキチン化されなかった。 レーン 8 : c h f rタンパク質が突然変異型であり、 かつ、 E 2不在下では、 オーロラ キナーゼ Bは、 ポリュビキチン化されなかった。 課題を解決するための手段
本発明者等は、 E 3リガ一ゼの特徴であるリングフィンガ一ドメインを有 する c h f rタンパク質の基質となるタンパク質を検索した。 その結果、 ォ 一口ラキナーゼ A及びオーロラキナーゼ Bが c h f rタンパク質によりポリ ュビキチン化されることを見出した。 この知見に基づいてハイスループッ卜 アツセィ系を構築することが可能となり、 c h f rタンパク質を用いるォ一 ロラキナーゼ A及びオーロラキナーゼ Bのポリュビキチン化阻害剤又は促進 剤の効率的なスクリーニングが可能となった。
癌細胞では、 c h f r遺伝子の突然変異によって c h f rタンパク質のュ ビキチン一タンパク質リガーゼ活性の消失や c h f rタンパク質の非発現が 生じることが知られている。 これらの癌細胞では、 オーロラキナーゼ A及び Bがポリュビキチン化されないために、 オーロラキナ一ゼ A及び Bのプロテ ァゾームによる分解が起こらず、 両タンパク質のレベルが高く維持され、 細 胞周期は、 M期において異常をきたしている。 タキソール (Taxol) 及びノコ ダゾ一ル (Nocodazole) のような G 2期に作用する制癌剤はこのような癌細 胞に対して顕著な分裂ストレス (mi tot ic s t ress) を与え、 死滅率を高める。 したがって、 タキソール及びノコダゾール等の G 2期に作用する制癌剤は、 c h f r遺伝子が正常な癌細胞に対して効果が低い。 このような癌細胞に対 して、 オーロラキナーゼ A及び Bのポリュビキチン化阻害剤を併用すること により、 タキソール及びノコダゾール等の制癌剤の効果を高めることが期待 できる。 これらの阻害剤を効果的に使用するためには、 手術により取り出し た癌組織の c h f r遺伝子の変異を調べることが重要である。 c h f r遺伝 子が正常 (野生型) な場合には、 オーロラキナーゼ A及び Bのポリュビキチ ン化阻害剤とタキソ一ル及びノコダゾ一ル等の制癌剤とを併用することによ り、 術後化学療法の効果を高めることが可能である。 この場合に正常細胞に 対する影響を少なくするために、 上記阻害剤が癌組織で活性型になる誘導体 として合成することが重要である。 一方、 c h f rタンパク質によるュビキ チンリガ一ゼ活性は認められるがそのレベルが低いためにオーロラキナーゼ が集積する場合もある。 c h f rタンパク質によるオーロラキナーゼのポリ ュビキチン化促進剤は、 結果的にオーロラキナーゼの分解を促進することに なり、 ォーロラキナーゼのレベルを低下させ G 2 ZM期の細胞周期の異常を 回復する。 発明の実施するための最良の形態
本発明のュビキチン活性化酵素 (E 1 ) 、 ュビキチン共役酵素 (E 2 ) 、 ュビキチンリガ一ゼ c h f r ( E 3 ) 、 オーロラキナーゼ A及びオーロラキ ナーゼ Bタンパク質は、 大腸菌等の原核微生物の系、 酵母の系、 バキュロウ ィルスを感染させた昆虫細胞あるいは蚕の系、 動物細胞を用いた系において 組換型タンパク質として生産させ、 その抽出液を使用することができる。 さ らに、 抽出液から部分精製を行い調製したタンパク質がより好ましい。 この 場合に、 予め遺伝子に、 へキサヒスチジン又は GST (ダルタチオン一 S— トランスフェラ一ゼ) 遺伝子を組み込み、 それらのペプチド又はタンパク質 との融合型として産生したタンパク質を用いることもできる。 この手法を夕 グを付けるというが、 これら以外に Xpressタグ、 HA夕グ、 myc夕グ、 マルト —ス結合タンパク質タグ等種々のタグを使用することができる。
E l、 E 2、 c h f r、 オーロラキナーゼ A及びオーロラキナーゼ B遺伝 子はヒト由来のものが好ましい。 ヒト以外にもマウス等の動物由来の遺伝子、 酵母由来の遺伝子、 植物由来の遺伝子等も使用することができる。 E2遺伝 子は Ub c H 5が好ましいが Ub c H 2 a、 Ub cH2 b、 Ub cH3、 U b cH4、 Ub cH6、 Ub cH7、 Ub cH8、 Ub cHI O等を、 さら に、 マウス、 ラビット、 モルモット等の動物由来、 酵母由来、 植物由来の E 2遺伝子を使用することができる。
ポリュビキチン化オーロラキナーゼ A及びオーロラキナーゼ Bを、 ドデシ ル硫酸ナトリウム—ポリアクリルアミドゲル電気泳動 (SDS— PAGE) 及びィムノブロット法を用いて検出することができる。 ポリュビキチン化ォ 一口ラキナーゼを検出するための抗体としてピオチン化ュビキチンを用いた 場合にはアビジン-西洋ヮサビパ一ォキシダ一ゼを、 HAタグュピキチンを用い た場合には抗 HA抗体を、 Xpressタグの結合したュビキチンあるいはオーロラ キナ一ゼを用いた場合には抗 Xpress抗体を用いることができる。 特異的に結 合した抗体を検出するために、 ECL ウエスタンブロッテイング検出試薬 (Amersham Bioscience社) 、 AP発色キット (BioRad社) 、 HRP発色キット (BioRad社) 等を使用することができる。 また、 その他の免疫化学的手法も 用いることができる。
c h f rタンパク質によるオーロラキナーゼ A及びオーロラキナーゼ Bの ポリュビキチン化の特異的阻害剤をスクリーニングするために、 ハイスル一 プッ 卜アツセィシステム、 例えば、 シンチレ一シヨン近接アツセィ (Scintillation Proximity Assay: SPA) 、 時間分解蛍光法 (Time-Resolved Fluorescence: TRF) 及び均質時間分解蛍光法 (Homogeneous Time-Resolved Fluorescence: HTRF) を使用することができる (N.Yabuki, S. Watanabe, T. Kudoh, S. Ni ira, C. Miyamoto: Application of Homogeneous Time - Resolved Fluorescence (HTRFTM) to Monitor Poly-ubiauitination of Wild-type p53, Combinatorial Chemistry & High Throughput Screening, 2, 279-287, 1999) 。 この他にも、 蛍光標識又は放射性同位元素標識を用いる系 を使用することができる。
SPA法では、 1251 _ュビキチン又は 3H_ュビキチンとピオチン化したォ 一口ラキナーゼとを反応系に加えてポリュビキチン化反応を行う。 ポリュビ キチン化オーロラキナーゼをストレブトアビジン標識の S P Aビーズを用い てトラップすると、 1251—又は 3H—標識ポリュビキチンの |6線が S PAビ一 ズに照射されることにより S P Aビーズから光が放出される。 この光量を 3 0秒間 MicroBeta (Wallac社) 等の測定装置を用いて測定する。
HTRF法では、 ユーロピウムクリプテートで標識したュビキチン及びビ ォチン化したオーロラキナーゼ A及び Bを反応系に加え、 ポリュビキチン化 オーロラキナーゼ A及び Bを生成させ、 その後、 ストレプトアビジン標識 X L 665を添加する。 ピオチン一アビジン結合により XL 665とポリュビ キチン化オーロラキナーゼ A及び Bが複合体を形成する。 この複合体に、 Discovery (Packard Instrument Company) 等の測定装置を使用して 337nm の光を照射すると、 ポリュビキチン鎖中のユーロピウムクリプテ一トが励起 され、 励起されたエネルギーが XL 665に転移する。 その結果、 XL 6 65は、 665nm の光を放出する。 この光の強度を測定し、 この測定値をポ リュビキチン化オーロラキナーゼ A及び Bの量に換算する。
このようなハイスループットスクリーニングを行うことにより、 c h f r 夕ンパク質によるォ一口ラキナ一ゼ A及び Bのポリュビキチン化の阻害剤並 びに促進物質を同定することができる。 スクリーニングのためには、 化合物 のライブラリー、 合成ペプチドライブラリー、 ペプチド発現ファージライブ ラリー、 微生物抽出液 ·培養濾液、 生薬抽出物等のライブラリーを使用する ことができる。
一方、 c h f rタンパク質とオーロラキナーゼ A及びオーロラキナーゼ B の三次元構造からコンピューター上で阻害剤をデザィンすることもできる。 これをインシリコドラッグテサイン (in sil ico drug design) という。 デザ インされた化合物の I C5Dを上記アツセィ法を用いて算出することができる。 インビトロで同定された阻害剤を細胞レベル (in vivo) で評価することが 可能である。 即ち、 タグ付きの c h f rタンパク質、 オーロラキナーゼ、 ュ ビキチン発現プラスミドを細胞にトランスフエクシヨンし、 細胞内で生成し たポリュビキチン化オーロラキナーゼ及びオーロラキナーゼのレベルを S D S— P A G E及びィムノブロット法等により検出することができる。 また、 オーロラキナーゼのポリュビキチン化の阻害剤がオーロラキナーゼの安定化 に寄与しているかどうかについても、 細胞内でのオーロラキナーゼの蓄積を ウエスタンプロッティング解析することにより、 モニタリングできる。 さら に、 タキソール及びノコダゾール等の G 2期に作用する制癌剤と併用するこ とによる癌細胞に対する I C5flの顕著な低下を測定することができる。
阻害剤の多種類の誘導体を合成し、 細胞レベルでの評価を行うことにより、 候補化合物を同定することができる。 さらに、 この化合物を用いて担癌マウ スモデルでの評価、 マウス及び犬等の動物を用いる薬理試験、 急性及び慢性 毒性試験等の安全性試験、 安定性試験等を経て、 臨床試験に進むことができ る。 産業上の利用可能性
本発明は c h f rタンパク質によるオーロラキナーゼ A及びオーロラキナ ーゼ Bのポリュビキチン化をアツセィする系を提供する。 したがって、 本系 を用いて、 その阻害剤及び促進剤をスクリーニングすることができる。 その 阻害剤はタキソール等の G 2期に作用する制癌剤との併用により、 夕キソー ル等が有効でない癌に効果を示すことが期待される。 さらに、 その促進剤は c h f rタンパク質のュビキチン一タンパク質リガーゼの活性が低いため又 はオーロラキナーゼ遺伝子の過剰発現のためにオーロラキナーゼが集積して いる癌細胞に有効であることが期待される。 実施例
本発明を下記の実施例においてさらに具体的に説明するが、 これに限定さ れるものではない。 実施例 1
c h f rタンパク質の自己ュビキチン化
ヒト ch f rタンパク質 (図 1Aと B) を GS T融合 pFastBac ベクタ一 (Gibco-BRL社) に挿入し製造者のプロトコールにしたがって組換えバキュ口 ウィルスを調製した。 それ等の組換えバキュロウィルスを昆虫細胞 (Spodoptera frugiperda 9: Sf9細胞と略称) に感染させることにより、 昆 虫細胞内に GST— c h f rタンパク質を産生させた。 本タンパク質の N末 端には、 GST (Glutathione- S- Transferase) を融合させた。 ヒト ch f r タンパク質の 307位のシスティンをァラニンに換えた突然変異型 c h f r タンパク質 (MT- c h f r ;図 1 C) も同様な方法で調製した。
ュビキチン活性化酵素 (E 1) をバキュロウィルスを感染させた S f 9細 胞で産生させ、 ュビキチンァフィ二ティカラムを用いて精製した。 ュビキチ ン共役酵素 (E2) である Ub cH5の cDNAを pET3ベクタ一に挿入 し、 そのプラスミドを大腸菌 (Esherichia coli) BL21 に導入し、 I PTGを 添加し Ub cH5を産生させた。 大腸菌抽出液を硫安分画及び Mo n o S カラム (Amerslmm Bioscience社) を用いたクロマトグラフィーにより精製 した。
部分精製したュビキチン活性化酵素 (E1) 、 ュビキチン共役酵素 Ubc H 5 (E 2) 、 ピオチン化ュビキチン及び GST融合野生型ヒト c h f r夕 ンパク質 (WT_chir) をコードするバキュロウィルスを感染させた昆虫細胞 S f 9抽出液、 5 OmMT r i s -HC 1 pH7. 4、 5 mMM g C 1 2 , 2mM ジチオスレィ I ル及び 2mMATPを 25°Cで 30分反応させた。 次に、 グ ルタチオン—セファロ一ス 4Bを用いて GST融合 WT— c h f rタンパク 質をプルダウンし回収した。 溶離させた試料を 5 %ポリアクリルアミド上で 電気泳動した。 ゲル上のタンパク質を P VDF (ポリビニリデンジフルオリ ド) 膜に移した。 5 %スキムミルクで PVDF膜をブロッキングした後、 ァ ビジン西洋ヮサビパーォキシダ一ゼを加え、 E C Lキット (Amersham Bioscience社) を使用して、 ポリュビキチン化 c h f rタンパク質を検出し た (図 2レーン 4) 。 E l、 E 2又は WT— c h f rを除いた場合には c h f rタンパク質のポリュビキチン化は認められなかった (図 2レーン 1— 3) 。 また、 突然変異型 c h f rタンパク質 (WT— c h f r) を用いた場 合にも、 ポリュビキチン化 c h f rタンパク質は検出されなかった (図 2レ ーン 5— 8) 。 レーン 8で検出されたバンドはモノュビキチン化 c h f r夕 ンパク質と推定された。 モノュビキチン化タンパク質は、 プロテアゾームに より分解されない。 実施例 2
c h f rタンパク質とオーロラキナーゼ A及びオーロラキナーゼ Bとの結合 ヒト野生型 c h f rの c DNA、 ヒトオーロラキナーゼ A及びヒ卜ォ一口 ラキナーゼ Bの c DNA及びヒト PLKの cDNAを GST融合又は H i s タグ付き pFastBac ベクター (Gibco- BRL社) に挿入し Gibco- BRL社のプロト コールにしたがって組換えバキュロウィルスを調製した。 それ等の組換えバ キュロウィルスを昆虫細胞 (S f 9細胞と略称) に感染させ、 昆虫細胞内に それらのタンパク質を産生させた。 それぞれのタンパク質の N末端は、 GS T (Glutathione- S- Transferase) 及び 6個のヒスチジン残基と融合したタン パク質として産生された。
GST-c h f rタンパク質を含む S f 9抽出液と 6 H i s—オーロラキ ナーゼ Aを含む S f 9抽出液、 及び、 GST_c h f rタンパク質を含む S f 9抽出液と 6 H i s—オーロラキナーゼ Bを含む S f 9抽出液を混合し、 室温でインキュベートした。 次に、 ダルタチオンセファロース 4 Bを加えて GST-c h f rタンパク質複合体をプルダウンし、 それに lOn グル夕チォ ンを添加し、 GST_c h f rタンパク質複合体を回収した。 回収した試料 を SDS— 7. 5%ポリアクリルアミドゲル上で電気泳動した。 ポリアクリ ルアミド上のタンパク質を PVDF膜に移した。 さらに、 GST— c h f r タンパク質と結合し共沈した H i s—オーロラキナ一ゼ A及び H i sーォ一 口ラキナ一ゼ Bを検出するために、 へキサヒスチジンを認識するマウス抗体 (1次抗体) 、 次に西洋ヮサビパーォキシダーゼ共役抗マウス抗体とインキ ュペートし、 ECLキット (Amersham Bioscience社) を使用して化学発光さ せ、 X線フィルムに現像した。 この結果、 オーロラキナーゼ A及びオーロラ キナーゼ Bが GS T— c h f rタンパク質と結合することが判明した (図 3 Aレーン 3と 4) 。
次に、 この結果を再確認するために以下の実験を行った。
6 H i s - c h f rタンパク質を含む S f 9抽出液と G S T—オーロラキ ナ一ゼ Αを含む S f 9抽出液、 及び 6 H i s— c h f rタンパク質を含む S f 9抽出液と GS T—オーロラキナーゼ Bを含む S f 9抽出液を混合し、 室 温でインキュベートした。 次に、 ダルタチオンセファロース 4 Bを加え、 G S T—ォ一口ラキナーゼ A及び G S T—ォ一口ラキナーゼ B複合体をブルダ ゥンにより回収し、 その複合体を 10 mM ダルタチオン添加により、 ビ —ズより溶出させ回収した。 回収した試料を SDS— 7. 5 %P AGEに供 し、 We s t e r n B l o t t i n gによりゲル上のタンパク質を P VD F膜にトランスファ一した。 GST—オーロラキナーゼ A及び GST—才一 ロラキナーゼ Bと結合し共沈した 6H i s— c h f rタンパク質を上記と同 様 ECLキットを用いて検出した。 図 3 Bに示すように、 6H i s— c h f rタンパク質がオーロラキナーゼ A及びオーロラキナーゼ Bと結合すること が判明した (図 3 Bレーン 2と 3) 。
さらに、 ヒト PLK1 (ポロ様キナーゼ 1) 含む S f 9抽出液と GST— オーロラキナーゼ Aを含む S f 9抽出液を室温でインキュベートし同様に処 理した結果、 ヒト 6H i s - c h f rタンパク質は GST— PLKlと結合 しないことが判明した (図 3 Bレーン 4) 。 この結果は c h f rタンパク質 が PLKlと結合せず、 ヒトでは PLK1のポリュビキチン化を触媒する可 能性が低いことを意味している。.
さらに、 突然変異型 c h f rタンパク質がオーロラキナーゼ A及び Bと結 合するかどうかを検討した。 突然変異型 GST-c h f rタンパク質 (図 1 C) を含む S f 9抽出液と 6 H i s—オーロラキナーゼ Aを含む S f 9抽出 液、 及び、 突然変異型 GS T— c h f rタンパク質 (図 1 C) を含む S f 9 抽出液と 6 H i s—オーロラキナーゼ Bを含む S f 9抽出液を混合し、 室温 でインキュベートした。 次に、 グル夕チオンセファロース 4 Bを加えて GS T- c h f rタンパク質をプルダウンし上記と同様な方法で突然変異型 GS T- c h f rタンパク質と結合したオーロラキナーゼ A及び Bを検出した (図 3 Cレーン 2と 4) 。 その結果、 リングフィンガー領域が突然変異した c h f rタンパク質 (図 1 C) は、 オーロラキナーゼと結合する領域は正常 であるために、 オーロラキナーゼと結合できることが判明した。 実施例 3
c h f rタンパク質によるオーロラキナーゼ A及びオーロラキナ一ゼ Bのポ リュビキチン化
部分精製 E 1酵素及び E 2酵素を実施例 1と同様に調製した。 GST_c h f r (野生型及び突然変異型) タンパク質、 6 H i s—オーロラキナーゼ A及び Bを含む S f 9抽出液を実施例 2と同様に調製した。
E 1酵素 (E l) 、 Ub cH5 (E 2) 、 野生型 G S T— c h f rタンパ ク質を有する抽出液 (WT_c h f r) 、 ピオチン化ュビキチン、 6H i s —オーロラキナーゼ Aを有する抽出液 (Aurora A) 、 5 OmM T r i s -HC 1 H7. 4、 5mM MgC l 2、 2mM DTT、 2mMATPからなる反応 液を 25 °Cで 30分間インキュベートした。 次に、 ダル夕チオンセファロー ス 4 Bを添加した。 ダル夕チオンセファロース 4 Bと結合した複合体に 10 mM ダルタチオンを添加し、 遠心分離によりビーズから遊離させ、 遊離した複 合体を SD S - 10 %P AGEに供し、 10% ポリァクリルアミド上の夕 ンパク質を P VD F膜に移した。 へキサヒスチジンを認識するマウス抗体
( 1次抗体) とインキュベートし、 次に西洋ヮサビパーォキシダ一ゼ共役抗 マウス抗体を加え、 ECLキットを使用してダル夕チオンセファロ一ス 4 B によりプルダウンされたポリュビキチン化 6 h i s—オーロラキナーゼ A及 び Bタンパク質を検出した。
その結果、 6 h i s—オーロラキナーゼ A及び Bタンパク質モノマーと同 時にポリュビキチン化 6 h i s—オーロラキナーゼ A及びポリュビキチン化 6 h i s—オーロラキナーゼ Bのスメァバンドが検出された (図 4レーン 1 と 5) 。 この反応液から E 2酵素である Ub c H5を除くとポリュビキチン 化オーロラキナーゼ A及び Bは検出されなかった (図 4レーン 2と 7) 。 こ の反応系で、 野生型 GST— c h f rタンパク質を有する抽出液 (WT_chir) の代わりに突然変異型 GST_ c h f rタンパク質を有する抽出液 (MT- chfr) を用いた場合には、 ポリュビキチン化オーロラキナーゼ A及び Bは、 検出されなかった (図 4レーン 3と 7) 。
以上をまとめると、 野生型 GST— c h f rタンパク質は、 オーロラキナ —ゼ A及び Bと結合し、 両者のポリュビキチン化を触媒する。 しかし、 c h f rタンパク質のリングフィンガー領域のコンセンサス配列のシスティンを ァラニンに置換するとこの活性が消失する。 さらに、 c h f rタンパク質は、 PLK1と結合せず、 PLK 1のポリュビキチン化を触媒しなかった (未発 表データ) 。 したがって、 ヒトにおける PLK 1は、 c h f rタンパク質の ポリュビキチン化の基質である可能性は低い。

Claims

請求の範囲
1 . オーロラキナーゼ A及び Z又は B、 及び c h f rタンパク質を含む、 ォ 一口ラキナーゼ A及び /又は Bのポリュビキチン化を測定するための組成物。
2 . 下記工程:
試験化合物を、 請求の範囲第 1項の組成物と接触させる工程、
試験化合物が、 オーロラキナーゼ A及び/又はオーロラキナーゼ Bを阻害又 は促進するか否かを測定する工程
を含むオーロラキナーゼ A及び Z又はオーロラキナーゼ Bのュビキチン化阻 害剤又は促進剤をスクリーニングするための方法。 ·
PCT/JP2002/005828 2002-06-12 2002-06-12 chfrタンパク質により触媒されるオーロラキナーゼA及びオーロラキナーゼBのポリユビキチン化反応 WO2003107002A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002311176A AU2002311176A1 (en) 2002-06-12 2002-06-12 Chfr protein-catalyzed polyubiquitination of aurora kinase a and aurora kinase b
PCT/JP2002/005828 WO2003107002A1 (ja) 2002-06-12 2002-06-12 chfrタンパク質により触媒されるオーロラキナーゼA及びオーロラキナーゼBのポリユビキチン化反応

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/005828 WO2003107002A1 (ja) 2002-06-12 2002-06-12 chfrタンパク質により触媒されるオーロラキナーゼA及びオーロラキナーゼBのポリユビキチン化反応

Publications (1)

Publication Number Publication Date
WO2003107002A1 true WO2003107002A1 (ja) 2003-12-24

Family

ID=29727342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005828 WO2003107002A1 (ja) 2002-06-12 2002-06-12 chfrタンパク質により触媒されるオーロラキナーゼA及びオーロラキナーゼBのポリユビキチン化反応

Country Status (2)

Country Link
AU (1) AU2002311176A1 (ja)
WO (1) WO2003107002A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713973B2 (en) 2004-10-15 2010-05-11 Takeda Pharmaceutical Company Limited Kinase inhibitors
US8119655B2 (en) 2005-10-07 2012-02-21 Takeda Pharmaceutical Company Limited Kinase inhibitors
US8278450B2 (en) 2007-04-18 2012-10-02 Takeda Pharmaceutical Company Limited Kinase inhibitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009150A2 (en) * 1999-07-29 2001-02-08 The Wistar Institute Of Anatomy & Biology Compositions and methods to enhance sensitivity of cancer cells to mitotic stress

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009150A2 (en) * 1999-07-29 2001-02-08 The Wistar Institute Of Anatomy & Biology Compositions and methods to enhance sensitivity of cancer cells to mitotic stress

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ARLOT-BONNEMAINS Y. ET AL.: "Identification of a functional destruction box in the xenopus lavevis aurora-A kinase pEg2", FEBS LETTERS, vol. 508, no. 1, 2001, pages 149 - 152, XP004322295 *
CHATURVEDI P. ET AL.: "Chfr regulates a mitotic stress pathway through its Ring-finger domain with ubiquitin liage activity", vol. 62, no. 6, March 2002 (2002-03-01), pages 1797 - 1801, XP002954185 *
HONDA K. ET AL.: "Degradation of human aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway", ONCOGENE, vol. 19, no. 24, 2000, pages 2812 - 2819, XP002954183 *
KANG D. ET AL., JOURNAL OF CELL BIOLOGY, vol. 156, no. 2, January 2002 (2002-01-01), pages 249 - 259, XP002954186 *
WALTER A. ET AL.: "The mitotic serine/threonine kinase aurora2/AIK is regulated by phosphorylation and degradation", ONCOGENE, vol. 19, no. 42, 2000, pages 4906 - 4916, XP002954184 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713973B2 (en) 2004-10-15 2010-05-11 Takeda Pharmaceutical Company Limited Kinase inhibitors
US8288536B2 (en) 2004-10-15 2012-10-16 Takeda Pharmaceutical Company Limited Kinase inhibitors
US8119655B2 (en) 2005-10-07 2012-02-21 Takeda Pharmaceutical Company Limited Kinase inhibitors
US8278450B2 (en) 2007-04-18 2012-10-02 Takeda Pharmaceutical Company Limited Kinase inhibitors

Also Published As

Publication number Publication date
AU2002311176A1 (en) 2003-12-31

Similar Documents

Publication Publication Date Title
Vandamme et al. Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells
Sanyal et al. A novel link between Fic (filamentation induced by cAMP)-mediated adenylylation/AMPylation and the unfolded protein response
Yang et al. LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1
Soncini et al. Ras–GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease
Liu et al. Merkel cell polyomavirus large T antigen disrupts lysosome clustering by translocating human Vam6p from the cytoplasm to the nucleus
KR100331363B1 (ko) 사이클린복합체재배열및그것과관련된용도
Huang et al. Caspase activation of mammalian sterile 20-like kinase 3 (Mst3): Nuclear translocation and induction of apoptosis
US7785815B2 (en) COP1 molecules and uses thereof
Wingate et al. The tumor-specific hyperactive forms of cyclin E are resistant to inhibition by p21 and p27
Ohta et al. Bimodal binding of STIL to Plk4 controls proper centriole copy number
Asaoka et al. Identification of a suppressive mechanism for Hedgehog signaling through a novel interaction of Gli with 14-3-3
Nony et al. Stability of the Peutz–Jeghers syndrome kinase LKB1 requires its binding to the molecular chaperones Hsp90/Cdc37
Hoshino et al. A novel protein associated with membrane-type 1 matrix metalloproteinase binds p27kip1 and regulates RhoA activation, actin remodeling, and matrigel invasion
Sasai et al. Aurora-C interactions with survivin and INCENP reveal shared and distinct features compared with Aurora-B chromosome passenger protein complex
Boeke et al. Phosphorylation of SU (VAR) 3–9 by the Chromosomal Kinase JIL-1
Kitevska et al. Caspase-2: controversial killer or checkpoint controller?
Suresh et al. K48‐and K63‐linked polyubiquitination of deubiquitinating enzyme USP44
Bidoia et al. The pleiotropic protein kinase CK2 phosphorylates HTLV-1 Tax protein in vitro, targeting its PDZ-binding motif
AU2001265947B2 (en) Enzymatic assays for screening anti-cancer agents
WO2003107002A1 (ja) chfrタンパク質により触媒されるオーロラキナーゼA及びオーロラキナーゼBのポリユビキチン化反応
Chouhan et al. SHP2 as a primordial epigenetic enzyme expunges histone H3 pTyr-54 to amend androgen receptor homeostasis
JP4422490B2 (ja) Sumo化阻害剤
EP2243033B1 (en) Thermal denaturation screening assay to identify candidate compounds for prevention and treatment of parkinson's disease
WO2017174783A1 (en) Identification of candidate anticancer drugs based on retinoblastoma phosphorylation at ser249/thr252
Kalinichenko et al. Identification of Nedd4 E3 ubiquitin ligase as a binding partner and regulator of MAK-V protein kinase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP