WO2003106980A1 - Detector universal y cuantitativo de moléculas orgánicas por fluorescencia caracterizado por interacciones ión-dipolo inducido - Google Patents

Detector universal y cuantitativo de moléculas orgánicas por fluorescencia caracterizado por interacciones ión-dipolo inducido Download PDF

Info

Publication number
WO2003106980A1
WO2003106980A1 PCT/ES2003/000296 ES0300296W WO03106980A1 WO 2003106980 A1 WO2003106980 A1 WO 2003106980A1 ES 0300296 W ES0300296 W ES 0300296W WO 03106980 A1 WO03106980 A1 WO 03106980A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
chemical compound
detection
solution
ion
Prior art date
Application number
PCT/ES2003/000296
Other languages
English (en)
French (fr)
Inventor
Vicente Luis Cebolla Burillo
Luis Membrado Giner
María Pilar DOMINGO
Eva María GÁLVEZ
Fernando Pedro COSSÍO
Ana Arrieta
Muriel Matt
Rene Gruber
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Del Pais Vasco
Universite De Metz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Del Pais Vasco, Universite De Metz filed Critical Consejo Superior De Investigaciones Científicas
Priority to AU2003238097A priority Critical patent/AU2003238097A1/en
Publication of WO2003106980A1 publication Critical patent/WO2003106980A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/14Beverages
    • G01N33/146Beverages containing alcohol

Definitions

  • the sector in which the invention is framed is that of Chemical Technology. This invention is of interest for all fields in which chemical compounds (biochemistry, environment, chromatography, organic, inorganic and analytical chemistry, etc.) are detected and quantified.
  • Fluorescence is one of the most sensitive techniques for detecting molecules, which is applied in spectroscopic mode, as a chromatographic detector, or in sensor type devices.
  • berberine chloride when a silica gel plate impregnated with a solution of this salt, and on which the corresponding saturated hydrocarbon was deposited, was irradiated with light ultraviolet at 254 nm and with visible light at 365 nm in a thin layer chromatography system (Mamlok, L. Technical Note: Berberine Hydrochloride for Detection (as a Detector) in Thin-Layer Chromatography. J. Chromatogr. Sel 1981, 19, 53.).
  • Berberine chloride was also used to detect the eluted saturated hydrocarbons at a glance (using natural light) through an open column filled with silica gel (Brockmann, H .; Volpers, F. Zur explicat der cl romatographischen Adsorption, II. Mitteil: Ein 14maschine Kunststoff Kunststoff farbloser Stoffe. Ber. 1947, 80, 77). In both cases, the detection was visual, that is, the emitted fluorescence was not collected by any device.
  • Domingo Berberine Catión A Fluorescent Chemosensor for Alkanes and Other Low-Polarity Compounds An Explanation of This Phenomenon Organic Letters 2000, 2, 2311-2313), who also made contributions to its application in thin layer chromatography for the analysis of saturated hydrocarbons in petroleum and biomass products. These authors demonstrated that the fluorescent emission is due to an ion-induced dipole interaction between the berberine cation and the corresponding saturated hydrocarbon.
  • the fluorescent emission characterized by ion-induced dipole interactions not only allows the detection of saturated hydrocarbons or other point molecules but is a general procedure that allows the detection of each and every one of the chemical compounds.
  • Any of the existing organic cations provided they are fluorescent and with a charge equal to or greater than the unit, behave as universal derivatizers of chemical compounds, by virtue of the mathematical equations that govern this type of fluorescence (Fernando P. Coss ⁇ o, Ana Arrieta , Vicente L. Onion, Luis Membrado, Jes ⁇ s Vela, Rosa Garriga, and Mar ⁇ a P. Domingo.
  • This invention is applicable to a variety of analytical devices that are of interest for the detection of multiple analytes.
  • the industrial exploitation of this invention may come from the commercial development of these detection systems for application to the detection of analytes of interest in the fields of organic chemistry, inorganic chemistry, chromatography, biochemistry, environment.
  • any chemical compound by increasing or decreasing the intensity of the fluorescence emitted at a wavelength, which occurs when a joint solution of the chemical compound to be detected and any salt is irradiated with light in the ultraviolet or visible range of any organic cation that is fluorescent and with a charge equal to or greater than the unit, with respect to the fluorescence of the same solution without the addition of the chemical compound.
  • the emitted fluorescence is characterized by an ion-induced dipole interaction. As a consequence of this interaction, the cation polarizes the chemical compound creating a certain separation of charges in it and producing a fluorescent emission.
  • the increase or decrease in fluorescence occurs, under the conditions mentioned, for all chemical compounds and their absolute value depends on the mass of the chemical compound added and the conditions of addition of the fluorescent cation, in addition to depending on the excitation wavelengths and emission.
  • the sign of fluorescence depends on the solvent used. The only restriction is that both the cation and the chemical compound to be detected are soluble in said solvent.
  • the excitation and emission wavelengths will depend on each particular cation and compound to be detected.
  • the berberine cation is a particular case.
  • the excitation wavelength is preferably between 250 and 400 nm, and the emission wavelength, preferably in the range 350-550 nm.
  • the mentioned wavelength values are indicative.
  • Optimum values are usually given for the berberine cation around 365 nm in terms of excitation and 450-550 nm in terms of emission.
  • This invention allows universal and quantitative detection of any chemical compound, both pure and in mixtures. It claims the use, under the aforementioned conditions, of any fluorescent organic cation, by virtue of the expressions that govern this type of fluorescence.
  • This invention can be carried out in different systems. First, and as described above, it can be applied to the direct detection of any analyte in solution, using systems such as spectroscopy equipment. In this case, the detection can be carried out in the same cuvette in which the spectroscopic measurement is performed. It can also be applied in any sensor type device, for example, associated with optical fiber.
  • the invention can be carried out, by separating the compounds that eventually compose the test sample, in chromatography equipment.
  • High efficiency liquid (HPLC) or in supercritical chromatography equipment.
  • HPLC high efficiency liquid
  • thin layer chromatography systems as well as in electrophoresis and electrochromatography systems.
  • the sample is injected into conventional chromatography equipment equipped with a column or columns of any type of stationary phase and fluorescence detector.
  • an additional pump that drives a flow rate of a solution of any berberine salt should be used.
  • This flow must be mixed with that of the mobile phase before or after the exit of the column and, in any case, before the entrance to the fluorescence detector.
  • Berberine can be added in any suitable solvent, at typical concentrations between 1 and 200 ⁇ g / mL and at a typical flow between 0.1 and 10 mL / min.
  • the baseline fluorescence level corresponds to that of the original fluorescence of the mobile phase.
  • the amount of berberine added and the flow used condition the intensity of the emitted fluorescence and its characteristics (positive or negative).
  • Figure 1 presents a general scheme of fluorescence presented in this patent and which is characterized by ion-induced dipole interaction. Irradiation, with ultraviolet or visible light of any chemical compound dissolved in a solution of any salt of any organic cation (that is fluorescent) leads to a Ion-induced dipole interaction in which the cation polarizes the chemical compound. This interaction produces a fluorescent emission.
  • Figure 2 aims to illustrate the detection of organic molecules of different nature by using the berberine cation as a sensor or detector, using an HPLC equipment with fluorescence detector. Note that the molecules outlined in the present figure do not possess intrinsic fluorescence.
  • Figure 2 represents the fluorescent response of various alcohols (propanol, butanol, octanol, pentanol, decanol and methanol) by fluorescence characterized by ion-induced dipole interaction, using an HPLC system (high efficiency liquid chromatography). The conditions used were those cited below.
  • Mobile phase Dichloromethane with flow of
  • Figure 3 corresponds to an example of spectroscopic detection by fluorescence of n-hexane in solution by using berberine sulfate and excitation with ultraviolet light at 350 nm.
  • the fluorescence intensity is represented on the ordinate axis (in arbitrary units);
  • the wavelength of the fluorescent emission is represented on the abscissa axis.
  • Spectrum A is the fluorescence of the solution of berberine sulfate in acetone.
  • Spectrum B is the fluorescence of the previous solution to which it had been added / ⁇ -hexane.
  • Figure 4 corresponds to an example of spectroscopic detection of a non-fluorescent inorganic compound by fluorescence characterized by ion-induced dipole interaction, of potassium nitrate (8 mg / mi) in solution by using berberine sulfate (16 micrograms / ml) and excitation with ultraviolet light at 350 nm.
  • the fluorescence intensity is represented on the ordinate axis (in arbitrary units);
  • the wavelength of the fluorescent emission is represented on the abscissa axis.
  • Spectrum A is the fluorescence of the solution of berberine sulfate in water.
  • Spectrum B it is the fluorescence of the previous solution to which potassium nitrate had been added.
  • each alcohol depends, as for the rest of the products, on the mobile and berber phase flows used. Although in this case only a response is detected in the case of pentanol, other conditions also allow to clearly detect said compound.
  • the second example corresponds to Figure 3, which represents the increase in fluorescence produced by a hydrocarbon (n-hexane). Said increase in fluorescence makes it possible to detect the presence of this compound. It should be noted that this compound is not fluorescent, nor were the alcohols of the previous example.
  • the procedure is as follows: 2 ml of a solution of berberine in acetone in a concentration of 125 micrograms per milliliter are taken and 23 ml of acetone are added. The fluorescence spectrum with 350 nm wavelength is performed. It is the spectrum called A in the figure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

El uso del catión berberina permite la detección cuantitativa por fluorescencia de cualquier compuesto orgánico, sea o no fluorescente.Nuestra invención se basa en recoger cuantitativamente la fluorescencia emitida cuando se irradia el correspondiente compuesto orgánico que se quiere determinar, con luz ultravioleta o visible, en una disolución de cualquier catión orgánico fluorescente de carga igual o superior a la unidad. La principal novedad de la invención es que todas las moléculas orgánicas son detectadas en estas condiciones. Este tipo de fluorescencia se caracteriza por una interacción ión-dipolo inducido entre el correspondiente compuesto orgánico y el catión utilizado.

Description

DETECTOR UNIVERSAL Y CUANTITATIVO DE MOLÉCULAS ORGÁNICAS POR FLUORESCENCIA CARACTERIZADO POR INTERACCIONES IÓN-DIPOLO INDUCIDO
SECTOR DE LA TÉCNICA
El sector en el que se encuadra la invención es el de la Tecnología Química. Esta invención tiene interés para todos los campos en que se detectan y cuantifican compuestos químicos (bioquímica, medioambiente, cromatografía, química orgánica, inorgánica y analítica, etc.).
ESTADO DE LA TÉCNICA
La fluorescencia es una de las técnicas más sensibles de detección de moléculas, que se aplica en modo espectroscópico, como detector cromatográfico, o en dispositivos de tipo sensor.
No todos los compuestos químicos presentan fluorescencia. Existen muchos que carecen de las características estructurales precisas para ser detectables mediante tal propiedad. Así, sólo son detectados los que poseen fluorescencia intrínseca o bien aquellos compuestos químicos que se pueden convertir en fluorescentes mediante reacción o interacción química con otros compuestos químicos (en adelante, derivatizantes). Éstas reacciones o interacciones involucran derivatizantes que suelen ser eficaces sólo para un compuesto o un conjunto particular de compuestos. Así, pues, no se ha descrito hasta ahora ningún procedimiento, derivatizante o sistema de detección general que sirva para detectar por fluorescencia a todos los compuestos químicos existentes.
Un ejemplo de derivatizante utilizado únicamente desde hace tiempo como detector exclusivo de hidrocarburos saturados es el cloruro de berberina, cuando una placa de silica gel impregnada con una disolución de esta sal, y sobre la que se depositaba el correspondiente hidrocarburo saturado, se irradiaba con luz ultravioleta a 254 nm y con luz visible a 365 nm en un sistema de cromatografía en capa fina (Mamlok, L. Technical Note: Berberine Hydrochloride for Detection (as a Detector) in Thin-Layer Chromatography. J. Chromatogr. Sel 1981, 19, 53.). También se utilizó el cloruro de berberina para detectar a simple vista (usando luz natural) los hidrocarburos saturados eluídos a través de una columna abierta rellenada con silica gel (Brockmann, H.; Volpers, F. Zur Kenntnis der cl romatographischen Adsorption, II. Mitteil: Ein neues Verfahren zur Trennung farbloser Stoffe. Ber. 1947, 80, 77). En ambos casos, la detección era visual, es decir, la fluorescencia emitida no era recogida mediante ningún dispositivo.
Utilizando el mismo procedimiento en cromatografía en capa fina aunque recogiendo la fluorescencia emitida mediante el uso de filtros en un densitómetro, Marsh y Hiekane también detectaron hidrocarburos saturados en un bitumen en 1991 (Marsh, C. M.; Hiekane, C. J. Quantitative Analysis of Bitumen by Conventional High Performance Thin Layer Chromatography. J. Planar Chromatogr. -Mod TLC 1991, 4, 293-298). Las bases de este fenómeno no fueron sistemáticamente estudiadas hasta 1999 por Cebolla et al. (Cebolla, V. L.; Membrado, L.; Domingo, M. P.; Henrion, P.; Garriga, R.; González, P.; Cossio, F. P.; Arrieta, A.; Vela, J. Quantitative Applications of Fluorescence and Ultraviolet Scanning Densitometry for Compositional Analysis of Petroleum Products in Thin-Layer Chromatography. J Chromatogr. Sci. 1999, 37, 219-226, y Cebolla, V.L., Matt, M., Gálvez, E.M., Membrado, L., Domingo, M.P., Vela, j., Beregovtsova, N., Sharypov, V., Kuznetsov, B.N., Marín, N., Weber, J.V. Application of Thin-layer Chromatography with Fluorescence Scanning Densitometry for Analysing Saturates in Heavy Liquids Derived írom Co-pyrolysis of Biomass and Plastics. Chromatographia 2002, 55, 87-93), y Cossío et al. (Fernando P. Cossío, Ana Arrieta, Vicente L. Cebolla, Luis Membrado, María P. Domingo, Patrick Henrion, Jesús Vela. Enhancement of Fluorescence in Thin-Layer Chromatography Induced by the Interaction between n- Alkanes and an Organic Catión. Anal. Chem. 2000, 72, 1759- 1766, y Fernando P. Cossío, Ana Arrieta, Vicente L. Cebolla, Luis Membrado, Jesús Vela, Rosa Garriga, and María P. Domingo. Berberine Catión: A Fluorescent Chemosensor for Alkanes and Other Low-Polarity Compounds. An Explanation of This Phenomenon. Organic Letters 2000, 2, 2311-2313), quienes asimismo realizaron contribuciones a su aplicación en cromatografía en capa fina para el análisis de hidrocarburos saturados en productos de petróleo y biomasa. Estos autores demostraron que la emisión fluorescente es debida a una interacción ión-dipolo inducido entre el catión berberina y el correspondiente hidrocarburo saturado.
El descubrimiento que nos lleva a proponer esta patente es que la emisión fluorescente caracterizada por interacciones ión-dipolo inducido no permite solamente la detección de hidrocarburos saturados u otras moléculas puntuales sino que es un procedimiento general que permite la detección de todos y cada uno de los compuestos químicos. Cualquiera de los cationes orgánicos existentes, con tal que sean fluorescentes y con carga igual o superior a la unidad se comportan como derivatizantes universales de compuestos químicos, en virtud de las ecuaciones matemáticas que rigen este tipo de fluorescencia (Fernando P. Cossío, Ana Arrieta, Vicente L. Cebolla, Luis Membrado, Jesús Vela, Rosa Garriga, and María P. Domingo. Berberine Catión: A Fluorescent Chemosensor for Alkanes and Other Low-Polarity Compounds. An Explanation of This Phenomenon. Organic Letters 2000, 2, 2311-2313). El catión berberina es un caso particular de este fenómeno. El sistema de detección inventado aquí se basa en este tipo de interacción. La parte fundamental del descubrimiento consiste en la generalización del fenómeno a otros cationes y otras técnicas de separación distintas de la cromatografía en capa fina (TLC), sobre la que se ha estudiado hasta el momento la detección de algunos compuestos particulares con berberina, por lo que se excluye en consecuencia su aplicación a la TLC en las reivindicaciones de esta invención, aunque tampoco en el caso de la TLC se ha descrito como detector universal.
Esta invención es aplicable a una variedad de dispositivos analíticos que tienen interés para la detección de múltiples analitos.
DESCRIPCIÓN DE LA INVENCIÓN Explicación de la invención
No se ha descrito hasta ahora ningún procedimiento que permita detectar por fluorescencia todos y cada uno de los compuestos químicos existentes en diversos sistemas analíticos de interés. Nuestra invención permite la detección de todos y cada uno de los compuestos químicos (carácter universal) de modo cuantitativo, lo cual presenta interés en su aplicación a distintos campos de la Química por ser la fluorescencia un modo de detección muy sensible. Asimismo, es posible incorporarla a los diferentes tipos de sistemas comerciales con ligeras modificaciones. Nuestra invención se basa en recoger cuantitativamente la fluorescencia emitida cuando se irradia el correspondiente compuesto químico que se quiere determinar, con luz ultravioleta o visible, en una disolución de cualquier catión orgánico fluorescente de carga igual o superior a la unidad. Así, en las condiciones mencionadas, estos cationes se comportan como detectores o sensores de cualquier compuesto químico. La principal novedad de la invención es que todos los compuestos químicos son detectados en estas condiciones. Este tipo de fluorescencia se caracteriza por una interacción ión-dipolo inducido entre el correspondiente compuesto químico y el catión utilizado.
Otra novedad de nuestra invención es que puede ser llevada a cabo en diferentes sistemas comerciales, con ligeras modificaciones, que se detallan en el apartado siguiente. Todos estos sistemas ya incorporan dispositivos para realizar la irradiación de la muestra con luz ultravioleta o visible.
La explotación industrial de esta invención puede venir por el desarrollo comercial de estos sistemas de detección para su aplicación a la detección de analitos de interés en los campos de la química orgánica, química inorgánica, cromatografía, bioquímica, medioambiente.
Descripción detallada de la invención
Es posible detectar cualquier compuesto químico mediante el aumento o la disminución de la intensidad de la fluorescencia emitida a una longitud de onda, que se produce cuando se irradia con luz en el rango ultravioleta o visible una disolución conjunta del compuesto químico a detectar y cualquier sal de cualquier catión orgánico que sea fluorescente y con carga igual o superior a la unidad, respecto de la fluorescencia de la misma disolución sin adición del compuesto químico. La fluorescencia emitida está caracterizada por una interacción ión-dipolo inducido. Como consecuencia de dicha interacción, el catión polariza al compuesto químico creando una cierta separación de cargas en el y produciendo una emisión fluorescente.
El aumento o disminución de fluorescencia ocurre, en las condiciones mencionadas, para todos los compuestos químicos y su valor absoluto depende de la masa del compuesto químico añadido y de las condiciones de adición del catión fluorescente, además de depender de las longitudes de onda de excitación y emisión. El signo de la fluorescencia depende del disolvente utilizado. La única restricción es que tanto el catión como el compuesto químico a detectar sean solubles en dicho disolvente.
Las longitudes de onda de excitación y de emisión dependerán de cada catión particular y compuesto a detectar. De entre los posibles cationes a utilizar, el catión berberina es un caso particular. En este caso, la longitud de onda de excitación se encuentra preferentemente entre 250 y 400 nm, y la de emisión, preferentemente en el rango 350- 550 nm. Los valores de longitud de onda mencionados son orientativos. Los valores óptimos suelen darse para el catión berberina alrededor de 365 nm en lo referente a excitación y 450-550 nm en cuanto a emisión. Esta invención permite la detección universal y cuantitativa de cualquier compuesto químico, tanto puro como en mezclas. En ella se reivindica el uso, en las condiciones mencionadas, de cualquier catión orgánico fluorescente, en virtud de las expresiones que rigen este tipo de fluorescencia.
Esta invención se puede llevar a cabo en diferentes sistemas. En primer lugar, y tal como se ha descrito anteriormente, puede ser aplicada a la detección directa de cualquier analito en disolución, utilizando sistemas tales como equipos de espectroscopia. En este caso, la detección puede ser llevada a cabo en la misma cubeta en la que se realiza la medida espectroscópica. También puede aplicarse en cualquier dispositivo tipo sensor, por ejemplo, asociado a fibra óptica.
Asimismo, la invención puede llevarse a cabo, mediando separación de los compuestos que eventualmente compongan la muestra problema, en equipos de cromatografía líquida de alta eficacia (HPLC), o en equipos de cromatografía supercrítica. También en sistemas de cromatografía en capa fina, así como en sistemas de electroforesis y electrocromatografía. Se detallan algunas particularidades de la detección de compuestos químicos en dichos sistemas.
La descripción de la invención para el caso de sistemas electroforéticos o electrocromatográficos requiere la impregnación de la capa de gel mediante una disolución del catión, pudiéndose regular la concentración de la disolución del catión y el tiempo de impregnación a voluntad del analista en función de las necesidades de detección.
En el caso de la cromatografía HPLC, la muestra se inyecta en un equipo convencional de cromatografía equipado con columna o columnas de cualquier tipo de fase estacionaria y detector de fluorescencia. En el caso de nuestra patente, se debe utilizar una bomba adicional que impulse un caudal de una disolución de cualquier sal de berberina. Este caudal se deberá mezclar con el de fase móvil antes o después de la salida de la columna y, en todo caso, antes de la entrada al detector de fluorescencia. La berberina puede ser añadida en cualquier disolvente adecuado, en concentraciones típicas entre 1 y 200 μg / mL y a un flujo típico entre 0.1 y 10 mL / min. De este modo, los compuestos separados junto con la fase móvil interaccionan con la berberina y es posible detectarlos de forma cuantitativa por fluorescencia en las condiciones descritas anteriormente. El nivel de fluorescencia de línea base corresponde al de la fluorescencia original de la fase móvil. La cantidad de berberina añadida y el flujo utilizado condicionan la intensidad de la fluorescencia emitida y sus características (positiva o negativa).
Explicación detallada del contenido de las figuras
La figura 1 presenta un esquema general de la fluorescencia presentada en esta patente y que está caracterizada por interacción ión-dipolo inducido. La irradiación, con luz ultravioleta o visible de cualquier compuesto químico disuelto en una disolución de cualquier sal de cualquier catión orgánico (que sea fluorescente) conduce a una interacción ión-dipolo inducido en la que el catión polariza al compuesto químico. Esta interacción produce una emisión fluorescente.
La figura 2 pretende ilustrar la detección de moléculas orgánicas de distinta naturaleza mediante el empleo del catión berberina como sensor o detector, utilizando un equipo de HPLC con detector de fluorescencia. A notar que las moléculas reseñadas en la presente figura no poseen fluorescencia intrínseca. La figura 2 representa la respuesta fluorescente de diversos alcoholes (propanol, butanol, octanol, pentanol, decanol y metanol) mediante fluorescencia caracterizada por interacción ión-dipolo inducido, utilizando un sistema de HPLC (cromatografía líquida de alta eficacia). Las condiciones utilizadas eran las que se citan a continuación. Fase móvil: Diclorometano con flujo de
0'3 ml/min. Concentración de berberina: 200 microgramos/ml en diclorometano
(disuelta en 3 mi de metanol por 100 de la disolución total). Flujo de la disolución de berberina 0'8 ml/min. La respuesta de cada compuesto depende de las condiciones anteriores. Longitud de onda de excitación: 350 nm. Longitud de onda de detección:
520 nm.
La figura 3 corresponde a un ejemplo de detección espectroscópica por fluorescencia de n-hexano en disolución mediante el uso de sulfato de berberina y excitación con luz ultravioleta a 350 nm. En el eje de ordenadas se representa la intensidad de fluorescencia (en unidades arbitrarias); en el eje de abscisas se representa la longitud de onda de la emisión fluorescente. El espectro A es el de fluorescencia de la disolución de sulfato de berberina en acetona. El espectro B es el de fluorescencia de la disolución anterior a la que se había añadido /í-hexano.
La figura 4 corresponde a un ejemplo de detección espectroscópica de un compuesto inorgánico no fluorescente mediante fluorescencia caracterizada por interacción ión- dipolo inducido, de nitrato potásico (8 mg /mi) en disolución mediante el uso de sulfato de berberina (16 microgramos/ml) y excitación con luz ultravioleta a 350 nm. En el eje de ordenadas se representa la intensidad de fluorescencia (en unidades arbitrarias); en el eje de abscisas se representa la longitud de onda de la emisión fluorescente. El espectro A es el de fluorescencia de la disolución de sulfato de berberina en agua. El espectro B es el de fluorescencia de la disolución anterior a la que se había añadido nitrato potásico.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN El primer ejemplo se corresponde con la figura 2, que representa la detección de diferentes alcoholes mediante fluorescencia ión-dipolo inducido, utilizando un sistema de HPLC (cromatografía líquida de alta eficacia).
Se realizaron inyecciones sucesivas de 20 microlitros de propanol (2 inyecciones), butanol (2 inyecciones), octanol (2 inyecciones), pentanol (2 inyecciones), decanol (2 inyecciones) y metanol (3 inyecciones). La fase móvil utilizada fue diclorometano con un flujo de 0.3 ml/min. Se adicionó sulfato de berberina a la salida de la columna en una concentración de 200 microgramos/ml tras haber sido disuelta en diclorometano/metanol (3%de metanol en volumen) con un flujo de 0.8 ml/min. Ambos caudales, el de fase móvil y el de berberina fueron mezclados a la salida de la columna antes de su paso por el detector de fluorescencia. La longitud de onda de excitación fue de 350 nm y la de detección de 520 nm.
La respuesta de cada alcohol depende, como para el resto de productos, de los flujos de fase móvil y berberina empleados. Si bien en este caso apenas se detecta respuesta en el caso del pentanol, otras condiciones permiten detectar también con claridad dicho compuesto.
El segundo ejemplo se corresponde con la figura 3, que representa el aumento de fluorescencia producido por un hidrocarburo (n-hexano). Dicho aumento de fluorescencia permite detectar la presencia de este compuesto. Hay que hacer notar que éste compuesto no es fluorescente como tampoco lo eran los alcoholes del ejemplo anterior. El modo de proceder es el siguiente: se toman 2 mi de una disolución de berberina en acetona en una concentración de 125 microgramos por mililitro y se añaden 23 mi de acetona. Se realiza el espectro de fluorescencia con longitud de onda 350 nm. Es el espectro denominado A en la figura. Posteriormente, se toman 2 mi de la mencionada disolución de berberina en acetona, se añaden 22 mi de acetona y 1 mi de n-hexano. Se realiza el espectro de fluorescencia en las mismas condiciones que en el caso anterior. Es el espectro denominado B en la figura. Se observa, por comparación de ambos espectros, que la adición de rc-hexano ha producido un incremento de la fluorescencia emitida en el rango 400-570 nm.

Claims

REIVINDICACIONES
1) detector universal para la detección de cualquier compuesto químico por fluorescencia, caracterizado por interacciones de tipo ión-dipolo inducido, y basado en el aumento o la disminución de la intensidad de la fluorescencia que provoca la adición del compuesto químico que se quiera detectar, a una disolución de cualquier sal de cualquier catión orgánico, fluorescente y con carga igual o superior a la unidad, cuando el conjunto es irradiado con luz en el rango ultravioleta o visible.
2) detector universal y cuantitativo para la detección de cualquier compuesto químico por fluorescencia, caracterizado por interacciones de tipo ión-dipolo inducido, y basado en el aumento o la disminución cuantitativa de la intensidad de la fluorescencia que provoca la adición del compuesto químico que se quiera detectar, a una disolución de cualquier sal de cualquier catión orgánico, fluorescente y con carga igual o superior a la unidad, cuando el conjunto es irradiado con luz en el rango ultravioleta o visible.
3) procedimiento para la detección de cualquier compuesto químico, según las reivindicaciones anteriores, mediante todo dispositivo de tipo sensor
4) procedimiento para la detección de cualquier compuesto químico, según las reivindicaciones 1 y 2 mediante su incorporación a todo tipo de sistema de cromatografía líquida de alta eficacia (HPLC) y cromatografía supercrítica, mediante adición pre o post-columna de una disolución de cualquier sal de los cationes descritos en dichas reivindicaciones.
5) procedimiento para la detección de cualquier compuesto químico según las reivindicaciones 1 y 2 mediante su incorporación a todo tipo de sistema de electroforesis y electrocromatografía mediante pre o post impregnación con una disolución de cualquier sal de los cationes descritos en dichas reivindicaciones. 6) procedimiento para la detección de cualquier compuesto químico y mezclas compuestas de compuestos químicos según las reivindicaciones anteriores para su uso en cualquier campo de la química y en particular en los campos de bioquímica, medioambiente, etc.
PCT/ES2003/000296 2002-06-14 2003-06-13 Detector universal y cuantitativo de moléculas orgánicas por fluorescencia caracterizado por interacciones ión-dipolo inducido WO2003106980A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003238097A AU2003238097A1 (en) 2002-06-14 2003-06-13 Universal quantitative organic molecule detector using fluorescence, which is characterised by ion-induced dipole interactions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200201377 2002-06-14
ES200201377A ES2211290B1 (es) 2002-06-14 2002-06-14 Detector universal y cuantitativo de moleculas organicas por fluorescencia.

Publications (1)

Publication Number Publication Date
WO2003106980A1 true WO2003106980A1 (es) 2003-12-24

Family

ID=29724731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000296 WO2003106980A1 (es) 2002-06-14 2003-06-13 Detector universal y cuantitativo de moléculas orgánicas por fluorescencia caracterizado por interacciones ión-dipolo inducido

Country Status (3)

Country Link
AU (1) AU2003238097A1 (es)
ES (1) ES2211290B1 (es)
WO (1) WO2003106980A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101113984B (zh) * 2007-08-30 2012-05-02 温州医学院 小檗碱及其衍生物在蛋白质荧光检测中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759374A (en) * 1991-02-28 1998-06-02 Hitachi, Ltd. DNA detector and DNA detection method
US5879528A (en) * 1990-01-30 1999-03-09 Iowa State University Research Foundation Means and method of detection in chemical separation procedures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879528A (en) * 1990-01-30 1999-03-09 Iowa State University Research Foundation Means and method of detection in chemical separation procedures
US5759374A (en) * 1991-02-28 1998-06-02 Hitachi, Ltd. DNA detector and DNA detection method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CEBOLLA V.L. ET AL.: "Application of thin-layer chromatography with fluorescence scanning densitometry for analysing saturates in heavy liquids derived from co-pyrolysis of biomass and plastics", CHROMATOGRPAHIA 2002, vol. 55, no. 1/2, January 2002 (2002-01-01), pages 87 - 93 *
CEBOLLA V.L. ET AL.: "Enhancement of fluorescence in thin-layer chromatography induced by the interaction between n-alkanes and an organic cation", ANAL. CHEM., vol. 72, no. 8, April 2000 (2000-04-01), pages 1759 - 1766 *
CEBOLLA V.L. ET AL.: "Quantitative applications of fluorescence and ultraviolet scanning densitometry for compositional analysis of petroleum products in thin-layer chromatography", JOURNAL OF CHROMATOGRAPHIC SCIENCE, vol. 37, June 1999 (1999-06-01), pages 219 - 226 *
LEONARD K.M.: "Development of a fiber optic chemical sensor for multicontaminant monitoring of environmental systems", SENSORS AND ACTUATORS B, vol. 24-25, April 1995 (1995-04-01), pages 458 - 461, XP026903866, DOI: doi:10.1016/0925-4005(95)01740-2 *
MIKIHITO SAITO ET AL.: "2-(5 Hydrazinocarbonyl-2-oxazolyl)-5,6-dimethoxybenzothiazole as a precolumn fluorescence derivatization reagent for carboxylic acids in high-performance liquid chromatography and its application to the assay of fatty acids in human serum", JOURNAL OF CHROMATOGRAPHY B: BIOMEDICAL APPLICATIONS, vol. 674, December 1995 (1995-12-01), pages 167 - 175, XP004043461, DOI: doi:10.1016/0378-4347(95)00315-0 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101113984B (zh) * 2007-08-30 2012-05-02 温州医学院 小檗碱及其衍生物在蛋白质荧光检测中的应用

Also Published As

Publication number Publication date
ES2211290A1 (es) 2004-07-01
ES2211290B1 (es) 2005-10-16
AU2003238097A1 (en) 2003-12-31
AU2003238097A8 (en) 2003-12-31

Similar Documents

Publication Publication Date Title
Fanali et al. Liquid chromatography: applications
US9091656B2 (en) SERS-active absorbers for the analysis of analytes
Fell et al. Applications of rapid-scanning multichannel detectors in chromatography: Plenary lecture
González et al. Direct determination of diuretic drugs in urine by capillary zone electrophoresis using fluorescence detection
ES2211290B1 (es) Detector universal y cuantitativo de moleculas organicas por fluorescencia.
Verma et al. Improved capillary electrophoresis method for measuring rare-earth elements in synthetic geochemical standards
Sherma Basic TLC techniques, materials, and apparatus
Kupiec et al. High-performance liquid chromatography
McDowell et al. Application of a vidicon tube as a multiwavelength detector for liquid chromatography
Northrop Forensic applications of high-performance liquid chromatography and capillary electrophoresis
Poziomek et al. Solid-phase extraction and solid-state spectroscopy for monitoring water pollution
Saleh et al. Retention behavior of suwannee river fulvic acid components in RP-HPLC
Strain Chromatography
Brown Current high-performance liquid chromatographic methodology in analysis of nucleotides, nucleosides, and their bases. I
Gachanja et al. Determination of polycyclic aromatic hydrocarbons in biomass emissions by liquid chromatography with fluorescence and chemiluminescence detection
Jorgenson Trends in analytical scale separations
Bächmann et al. The use of micro-HPLC and capillary zone electrophoresis for the analysis of individual raindrops
Schill et al. Ion-pairing reactions in analytical chemistry
Majors A special report on HPLC 2000
Gokul Development of Validated Analytical Methods for the Determination of Macitentan from Tablet Dosage Form and its Bioanalytical HPTLC Method in Human Plasma
Badri et al. A review on different types of detectors used in chromatography techniques
Ashok STABILITY INDICATING ANALYTICAL METHOD DEVELOPMENT FOR THE ESTIMATION OF ANTIHYPERTENSIVE DRUGS
Bachhav et al. Review of High Performance Liquid Chromatography and Its Applications
Bednář et al. Capillary electrophoresis/mass spectrometry: a promising tool for the control of some physiologically hazardous compounds. I—Derivatives of 3‐quinuclidinol
Kraak Prospects of miniaturized separation systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP