WO2003106721A1 - Low-thermal expansion alloy thin sheet and its manufacturing method - Google Patents

Low-thermal expansion alloy thin sheet and its manufacturing method Download PDF

Info

Publication number
WO2003106721A1
WO2003106721A1 PCT/JP2003/003047 JP0303047W WO03106721A1 WO 2003106721 A1 WO2003106721 A1 WO 2003106721A1 JP 0303047 W JP0303047 W JP 0303047W WO 03106721 A1 WO03106721 A1 WO 03106721A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass
thermal expansion
steel
cold rolling
Prior art date
Application number
PCT/JP2003/003047
Other languages
French (fr)
Japanese (ja)
Inventor
小林 聡雄
山内 克久
松岡 秀樹
冨田 邦和
村田 宰一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2003106721A1 publication Critical patent/WO2003106721A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/06Screens for shielding; Masks interposed in the electron stream
    • H01J29/07Shadow masks for colour television tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • H01J9/142Manufacture of electrodes or electrode systems of non-emitting electrodes of shadow-masks for colour television tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/0733Aperture plate characterised by the material

Definitions

  • the present invention relates to an Fe—Ni—Co-based low thermal expansion alloy sheet used for a shadow mask of a cathode ray tube and a method for producing the same.
  • Kyogyo CRT shadow masks are made by etching the alloy thin plate of the material to form holes that allow the electron beam to pass through, and softening annealing before press to make it easier to form, and press forming according to the shape of the CRT. After that, it is assembled into a cathode ray tube.
  • Fe-Ni alloy thin plates have been known as a material for a shadow mask of a cathode ray tube. Since this alloy has a lower coefficient of thermal expansion than mild steel, it is heated by electron beam irradiation, causing deformation of the shadow mask due to thermal expansion. The phenomenon that color misregistration occurs because it does not hit the predetermined position is unlikely to occur. Indeed, the present inventors have found that 20 of the Fe- Ni-based alloy sheet:. L00 If the average thermal expansion coefficient in ° C is 0 8 X 10- 6 Pa C or less, de one timing is less likely to occur, further 0 if. 5 X 10_ 6 / ° C or less, it was confirmed that no happening command and ho is de one timing.
  • the Fe-Ni alloy thin plate has a problem that the shadow mask surface is easily dented due to shocks such as vibration when transporting the cathode ray tube, thereby causing color shift.
  • the impact resistance of such shadow masks can be improved by using Fe-Ni-Co alloy thin sheets that provide a lower coefficient of thermal expansion, but cathode ray tubes that use them have insufficient magnetic shielding properties, and There is a problem that a color shift due to the deviation occurs. Also, its impact resistance is not always sufficient.
  • Japanese Patent Application Laid-Open No. 2001-303200 discloses that, by controlling the amount of (, N, Nb), high strength is achieved without impairing the etching property and press punching property, and an improvement in impact resistance can be expected.
  • Fe-Ni-based alloy sheets and Fe-Ni-Co-based alloy sheets specifically: Ni: 24 to 47, Co: 22 or less, C: Hi.013 ⁇ 4 or less, N: 0.002 to Fe-Ni (-Co) alloy thin plate containing 0.02, b: 0.05 to 0.1% and having a balance of 15 or substantially Fe force, and 0.000013 ⁇ NbXN ⁇ 0.002.
  • the rigidity of the shadow mask is improved by a high Young's modulus, but a high magnetic permeability cannot be obtained stably, and the magnetic shielding properties of the shadow mask are insufficient.
  • a b-added Fe-Ni (-Co) alloy recrystallization and subsequent growth of crystal grains are difficult to proceed.
  • the present invention has a sufficiently low coefficient of thermal expansion, and has excellent impact resistance and magnetic shielding properties after soft mask annealing before shaping at a temperature of less than 850 ° C and after shading of a shadow mask. It is an object of the present invention to provide an Fe-Ni-Co-based low thermal expansion alloy sheet and a method for producing the same, which substantially include, by mass, Ni: 30 to 34%, Co: 2 to 6%, C: : 0.02 or less, Si: 0.3 or less, Mn: 0.6% or less, P: 0.01% or less, S: 0.005 or less,: 0.01 or less, A1: 0.1 or less, Cr: 0.08 or less, Ta: 0.01 to 1% Nb: 0.05 to 1%, V: 0.01 to 1%, Ta: 0.01 to 1% ⁇ and at least two elements selected from the group consisting of And it can be achieved by (Nb + V + Ta) ⁇ 1 Ru in which a low thermal expansion alloy sheet.
  • PC leak 47 substantially include, by mass, Ni: 30
  • FIG. 1 is a diagram showing the relationship between 0.2 power resistance (0.2 PS) after soft annealing before press and maximum magnetic permeability ( ⁇ max).
  • FIG. 2 is a diagram showing the relationship between the softening annealing temperature before pressing and 0.2 heat resistance (0.2 PS). MODES FOR CARRYING OUT THE INVENTION The present inventors have studied the impact resistance and magnetic shielding properties of a shadow mask using a Fe-Ni-Co alloy thin plate, and have found the following.
  • the impact resistance and magnetic shielding properties of the shadow mask can be evaluated by the 0.2 resistance after softening and annealing and the maximum magnetic permeability, respectively.
  • the 0.2 maximum magnetic permeability after softening annealing before pressing can be obtained by Ta alone or by adding at least two elements selected from Mb, V and Ta.
  • a larger maximum permeability can be obtained by adding at least one element of B and Sb.
  • Ni, Co are essential elements to obtain low thermal expansion.
  • Ni 30-34, Co: 2-63 ⁇ 4 (It is necessary to rub.
  • C Since C deteriorates the etching property and the low thermal expansion property, the content is set to 0.02% or less, preferably 0.005 or less, and more preferably less than 0.003.
  • Si has a low thermal expansion property, which is not more than 0.3%, preferably not more than 0.09, in order to degrade the blackening property of the shadow mask.
  • Mn is set to 0.6 or less, preferably 0.1 or less, because it deteriorates the low thermal expansion property. Since n is an element effective for deoxidation and hot workability of the alloy, it is preferably 0.01 or more.
  • the content is set to 0.01 or less.
  • S is set to 0.005 or less because it precipitates as sulfide and degrades the hot workability of the alloy.
  • N when contained together with elements such as Al, Nb, and V, precipitates as nitride and degrades the etchability, and also deteriorates the hot workability of the alloy. The following is assumed.
  • A1 precipitates as precipitates such as nitrides and oxides, deteriorating the magnetic shield property of the shadow mask and the low thermal expansion property, and also deteriorating the hot workability of the alloy. Preferably, it is 0.04% or less. A1 also has the effect of reducing inclusions in the alloy during smelting, and is therefore preferably 0.005 or more.
  • Cr precipitates as charcoal debris, nitride, etc. and degrades the magnetic shielding properties of the shadow mask. Since Cr also deteriorates the low thermal expansion property, it is desirable to reduce it as much as possible.
  • Nb improves the impact resistance and magnetic shielding properties of shadow masks when added in combination with the following V and Ta.
  • Nb is required to be 0.05 or more, but is set to 1 or less, and preferably 0.6 or less to deteriorate the low thermal expansion property.
  • V improves the impact resistance and magnetic shielding properties of the shadow mask when added in combination with Nb or Ta.
  • V needs to be 0.01, but is set to 1 or less, preferably 0.6 or less in order to reduce the low thermal expansion property.
  • Ta Ta is the most important element in the present invention, and when added alone or in combination with V or Nb, it improves the impact resistance and magnetic shield property of the shadow mask.
  • Ta needs to be 0.01, but is set to 1 or less, and preferably 0.6 or less, in order to lower the low thermal expansion property.
  • (Nb + V + Ta) is preferably 1% or less. More preferably, it should be 0.6 or less.
  • the balance is substantially Fe. That is, other elements may be contained as long as the effects of the present invention are not impaired.
  • C 0.005% or less
  • Si 0.09 or less
  • Mn 0.01 to 0.1
  • A1 0.005 to 0.04%
  • Nb 0.05 to 0.6
  • V 0.01 to 0.6
  • Ta 0.01 to 0.6%
  • Ru doming Ho Tondo occur such les ⁇ 0.5X10- 6 / less thermal expansion coefficient is obtained.
  • Pre-press softening if at least one of B and Sb, which has the function of homogenizing crystal grains, is added to the above components, at least 0.0005 for B and 0.0015% for Sb A greater maximum permeability is obtained after annealing. At this time, there is a necessary force S to make B less than 0.003, Sb less than 0.010, and (2B + Sb) 0.001 to 0.010 so as not to deteriorate the blackening processability of the shadow mask.
  • the low-thermal-expansion alloy thin sheet of the present invention includes a step of repeating cold rolling and recrystallization annealing at least once or more on a hot-rolled sheet having the above-mentioned components, and a cold-rolling rate of 15% or more after final recrystallization annealing It can be manufactured by a method of manufacturing a low thermal expansion alloy sheet having a step of performing final cold rolling and a step of performing strain relief annealing at 800 ° C. or lower after the final cold rolling.
  • the cold rolling rate of cold rolling was set to 15 ° or more, and the temperature for strain relief annealing was set to 800 ° C or less because of the softening annealing before pressing in Nb-added Fe-Ni alloys where recrystallization and grain growth are difficult to proceed. This is for softening without performing high-temperature annealing of 850 or more.
  • the flow of the method for producing a low thermal expansion alloy sheet according to the present invention is as follows: “hot rolled sheet ⁇ (cold rolling + recrystallization annealing) X n (n ⁇ l) ⁇ final cold rolling ⁇ strain relief annealing
  • the hot rolled sheet is manufactured by melting the alloy of the above components, forming a slab by ingot making method or continuous forming method, and then heating to 900 ° C. or higher and hot rolling.
  • the ingot making method the ⁇ ⁇ ingot is subjected to homogenization heat treatment at 1000 ° C or more as necessary, and then slab-rolled into a slab.
  • the slab manufactured by the continuous manufacturing method is subjected to a homogenizing heat treatment at 1000 or more, if necessary, and then hot-rolled. Hot rolling is performed, for example, at a finishing temperature of 850 950 ° C and a winding temperature of 650 800 ° C.
  • the hot-rolled sheet manufactured in this manner is subjected to pickling or grinding to remove the scale on the surface, and then cold-rolled and recrystallized and annealed at least once as described above to obtain a sheet thickness of 0. It is a thin plate of about 050.5.
  • Steel AH is an example of the present invention, and is a steel in which components such as NbVTaBSb are appropriately adjusted.
  • Steel AB is Nb-V-added steel
  • Steel C is Ta-added steel
  • Steel D is Nb-V-Ta-added steel
  • Steel E is Nb-VB-added steel
  • Steel F is Nb-V-Sb-added steel
  • Steel G is Nb-VB-Sb-added steel
  • Steel H is Ta-B-Sb-added steel.
  • steel ps is a comparative example, and steel p does not contain any Nb V Ta, steel q does not contain Nb and Ta, and steel r does not.
  • Nb V is added to the steel, but the amount of (Nb + V) exceeds 1.0, and Nt V, is added to steel s, but (Nb + V + Ta) Is greater than 1.
  • the slab was heated to 1000 ° C or higher after grinding the entire surface, and hot-rolled at a finishing temperature of 850 950 and a winding temperature of 650 800 ° C to obtain a hot-rolled coil.
  • hot rolled After pickling and removing scale from the surface, cold rolling at a cold rolling rate of 20 to 80% and recrystallization annealing at 750 to llOO are repeated twice, and the final cold rolling at a cold rolling rate of 20 to 25 is performed.
  • Cold rolling was performed and strain relief annealing was performed at 700 to 800 ° C to produce a thin plate having a thickness of 0.12 mm.
  • a JIS No. 5 tensile test specimen, a ring test specimen for evaluating magnetic properties, and a test specimen for measuring thermal expansion coefficient were collected from the center of the thin-sheet coil in the width direction, and were subjected to a heat treatment equivalent to softening annealing before pressing in an Ar atmosphere. Heat treatment at 800-900 ° C for 15 minutes to evaluate the impact resistance, magnetic properties, and coefficient of thermal expansion of the shadow mask.
  • the tensile test was performed according to the tensile test method of JIS Z 2241, and 0.2 resistance was obtained.
  • the magnetic properties were evaluated based on JIS C 2531, and the maximum magnetic permeability at an applied magnetic field of 10 Oe was determined.
  • the coefficient of thermal expansion was measured using an optical interference type thermal expansion measuring apparatus, and the average coefficient of thermal expansion at 20 to: L00 ° C was determined.
  • FIG. 1 shows the relationship between the 0.2 proof stress after soft annealing before press and the maximum magnetic permeability.
  • three results are shown for the same steel, which correspond to the results of softening annealing temperatures before press of 900, 850, and 800 ° C in order from the left.
  • a proof stress of 0.2 to 300 to 350 MPa and a maximum magnetic permeability of 5000 or more can be obtained. Further, these steels also satisfy 0.2 PS + 7 (imax / 1000) ⁇ 350, which is a more preferable relationship in terms of strength-magnetic property balance. From Table 2, the steel A ⁇ H, 0. 8 X lO- 6 / ° C but below a low thermal expansion coefficient is obtained, especially, Mn, Nb, V, Ta or the like is low steel B ⁇ D and F At ⁇ H, a thermal expansion coefficient of 0.5 X 10-s Pa C or less is obtained. In addition, steels E to H to which B and Sb are added in addition to Nb, V, and Ta have higher maximum magnetic permeability.
  • the steel p with no added Nb and V which is a comparative example, has a poor strength-magnetic property balance, and the 0.2 proof stress has not reached the target 300 MPa at any annealing temperature.
  • the strength is improved compared to steel p, but the maximum magnetic permeability is 4300 or less.
  • the (Nb + V + Ta) is and steel r exceeds 1% S, 0. 2% ⁇ Ka is not below 350 MPa, even high thermal expansion coefficient. (mass%)
  • FIG. 2 shows the relationship between the soft annealing temperature before press and the 0.2 proof stress.
  • Nb and V-added steels A-1 to ⁇ -3 are manufactured by setting the strain relief annealing temperature to 750 and changing the cold rolling rate in the final cold rolling.
  • the 0.2% proof stress decreases significantly to 350 MPa or less as the softening annealing temperature before pressing increases.
  • Annealing temperature 0.2 proof stress becomes 3 2 0 MPa or less
  • the steel A-3 in 800 ° C the steel A-2 850 ° (:, is steel A- 1 in 900 ° C.
  • the softening annealing before press is performed at about 800 ° C. Therefore, the steel A-3 of the present invention is a steel A-1 and a steel A-1 of a comparative example having a cold rolling reduction of less than 15 in final cold rolling. And has better softening characteristics than A-2.
  • Nb and V-added steels A-3 to A-5 are manufactured by changing the temperature of the strain relief annealing based on the final cold rolling rate of 25 for cold rolling.
  • the soft anneal temperature before press at which the proof stress is 350 MPa or less is 800 ° C for steels A-3 and A-4, while it is 850 ° C for steel A-5. Therefore, steels A-3 and A-4 of the present invention have better softening properties than steel A-5 of the comparative example.
  • the strain relief annealing temperature was 750. C, and is manufactured by changing the cold rolling rate of the final cold rolling.
  • Steels C-3 and C-5 are manufactured by changing the final cold-rolling rate to 25 and changing the temperature for strain relief annealing.
  • the annealing temperature at which the heat resistance reaches 300 to 350 MPa is 800 ° C for steel C-3, but is 850 or more for steels C-1 and C-5. Therefore, the steel C-3 of the present invention example has better softening properties than the steels C-1 and C-5 of the comparative examples.
  • ND, V, and Ta-free steels P-l, P-3, and P-5 have a strain relief annealing temperature of 800.
  • the 0.2 proof stress is less than 300 MPa, which is outside the preferable range of 300 to 350 MPa.
  • 2 yield strength is in the goal range, the magnetic characteristics was performed to the same tests as in Example 1 When evaluated, the maximum permeability was less than 5000.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

A low-thermal expansion alloy thin sheet wherein the sheet substantially comprises 30 to 34 mass% of Ni, 2 to 6 mass% of Co, 0.02 mass% or less of C, 0.3 mass% or less of Si, 0.6 mass% or less of Mn, 0.01 mass% or less of P, 0.005 mass% or less of S, 0.01 mass% or less of N, 0.1 mass% or less of Al, 0.08 mass% or less of Cr, 0.01 to 1 mass% of Ta or at least two elements selected from {0.05 to 1 mass% of Nb, 0.01 to 1 mass% of V, and 0.01 to 1 mass% of Ta}, and the balance of Fe, and (Nb+V+Ta)≤1 mass%. The sheet has a sufficiently low coefficient of thermal expansion, a 0.2 % offset yield strength of 300 to 350 MPa after it is softened below 850°C before the press, and a maximum permeability of 5,000 or more. Therefore, the sheet is preferable to a shadow mask of a cathode-ray tube.

Description

明細 低熱膨張合金薄板およびその製造方法 技術分野 この発明は、 ブラウン管のシャドウマスク等に使用される Fe-Ni-Co系の低熱膨 張合金薄板およびその製造方法に関する。 景技術 ブラウン管のシャドウマスクは、 素材の合金薄板を電子ビームを通過させる孔を 穿孔するためにエッチング加工し、 成形しやすくするためにプレス前軟化焼鈍を行 つて、 ブラウン管の形状に合わせてプレス成形して作製された後、 ブラウン管に組 込まれる。  TECHNICAL FIELD The present invention relates to an Fe—Ni—Co-based low thermal expansion alloy sheet used for a shadow mask of a cathode ray tube and a method for producing the same. Kyogyo CRT shadow masks are made by etching the alloy thin plate of the material to form holes that allow the electron beam to pass through, and softening annealing before press to make it easier to form, and press forming according to the shape of the CRT. After that, it is assembled into a cathode ray tube.
従来から、 ブラウン管のシャドウマスクの素材として、 Fe-Ni系合金薄板が知ら れている。 この合金では、 熱膨張係数が軟鋼より低いため、 ドーミング、 すなわち、 電子ビームの照射により加熱され、 熱膨張することによってシャドウマスクの変形 が起き、 シャドウマスクの孔を通過した電子ビームが蛍光面の所定位置に当たらな いために色ズレが生じる、 という現象が起こりにくレ 。 実際、 本発明者等は、 Fe- Ni系合金薄板の 20〜: L00°Cにおける平均熱膨張係数が 0 . 8 X 10—6パ C以下であれば、 ド一ミングが起きにくく、 さらに 0 . 5 X 10_6/°C以下であれば、 ド一ミングがほと んど起きないことを確認している。 Conventionally, Fe-Ni alloy thin plates have been known as a material for a shadow mask of a cathode ray tube. Since this alloy has a lower coefficient of thermal expansion than mild steel, it is heated by electron beam irradiation, causing deformation of the shadow mask due to thermal expansion. The phenomenon that color misregistration occurs because it does not hit the predetermined position is unlikely to occur. Indeed, the present inventors have found that 20 of the Fe- Ni-based alloy sheet:. L00 If the average thermal expansion coefficient in ° C is 0 8 X 10- 6 Pa C or less, de one timing is less likely to occur, further 0 if. 5 X 10_ 6 / ° C or less, it was confirmed that no happening command and ho is de one timing.
しかし、 Fe-Ni系合金薄板には、 ブラウン管を搬送する際の振動等の衝撃により シャドウマスク面に凹みが生じやすく、 色ズレが生じるという問題がある。  However, the Fe-Ni alloy thin plate has a problem that the shadow mask surface is easily dented due to shocks such as vibration when transporting the cathode ray tube, thereby causing color shift.
こうしたシャドウマスクの耐衝撃性は、 より低い熱膨張係数が得られる Fe-Ni- Co系合金薄板により改善されるが、 それを使用したブラウン管では、 磁気シール ド性が不十分であり、 電子ビームの偏倚による色ズレが生じるという問題がある。 また、 その耐衝撃性も、 必ずしも十分ではない。 The impact resistance of such shadow masks can be improved by using Fe-Ni-Co alloy thin sheets that provide a lower coefficient of thermal expansion, but cathode ray tubes that use them have insufficient magnetic shielding properties, and There is a problem that a color shift due to the deviation occurs. Also, its impact resistance is not always sufficient.
特開 2001-303200号公報には、 (、 N、 Nb量を制御して、 エッチング性やプレス 打ち抜き性を阻害することなく高強度化が図られており、 耐衝撃性の向上が期待で きる Fe-Ni系合金薄板や Fe-Ni-Co系合金薄板が開示されている。 具体的には、 Ni:24〜47る、 Co:22る以下、 C:ひ.01¾以下、 N: 0.002〜 0.02 、 b:0.05~ 0.1%を含有し、 残咅 15か、実質的に Fe力、らなり、 力つ 0.000013≤NbXN≤0.002で ある Fe-Ni (-Co)系合金薄板である。 しかしながら、 特開 2001-303200号公報に記載の合金薄板では、 高ヤング率に よりシャドウマスクの剛性は向上するが、 安定して高い透磁率が得られず、 シャド ゥマスクの磁気シールド性が不十分である。 また、 このような b添加型の Fe- Ni(-Co)系合金は、 再結晶やその後の結晶粒成長が進みにくい。 したがって、 こ の種の合金を用いた薄板をシャドウマスクに適用する場合、 850°C以上の高温のプ レス前焼鈍が必要となる。 しかしながら、 製造コストの観点から、 850°C未満の温 度域でも軟質化する材料が望まれている。 発明の開示 本発明は、 十分に低い熱膨張係数が得られ、 かつ 850°C未満の温度でプレス前軟 化焼鈍してシャドウマスク成形後に優れた耐衝撃性や磁気シールド性を有する Fe- Ni-Co系の低熱膨張合金薄板およびその製造方法を提供することを目的とする。 この目的は、 実質的に、 質量 で、 Ni: 30〜34%、 Co:2〜6%、 C : 0.02 以下、 Si: 0.3 以下、 Mn: 0.6¾以下、 P: 0.01%以下、 S: 0.005 以下、 : 0.01 以 下、 A1 : 0.1 以下、 Cr:0.08 以下、 Ta: 0.01〜1¾あるレ ま {Nb: 0.05〜1る、 V:0.01〜l 、 Ta:0.01〜l%}の中から選ばれた少なくとも 2種の元素、 および残 部 Feから成り、 かつ(Nb+V+Ta)≤1るである低熱膨張合金薄板によって達成できる。 PC漏删 47 Japanese Patent Application Laid-Open No. 2001-303200 discloses that, by controlling the amount of (, N, Nb), high strength is achieved without impairing the etching property and press punching property, and an improvement in impact resistance can be expected. Disclosed are Fe-Ni-based alloy sheets and Fe-Ni-Co-based alloy sheets, specifically: Ni: 24 to 47, Co: 22 or less, C: Hi.01¾ or less, N: 0.002 to Fe-Ni (-Co) alloy thin plate containing 0.02, b: 0.05 to 0.1% and having a balance of 15 or substantially Fe force, and 0.000013≤NbXN≤0.002. In the alloy thin plate described in JP-A-2001-303200, the rigidity of the shadow mask is improved by a high Young's modulus, but a high magnetic permeability cannot be obtained stably, and the magnetic shielding properties of the shadow mask are insufficient. In addition, in such a b-added Fe-Ni (-Co) alloy, recrystallization and subsequent growth of crystal grains are difficult to proceed. When applying a thin plate to a shadow mask, pre-press annealing at a high temperature of 850 ° C or higher is required, but from the viewpoint of manufacturing cost, a material that can be softened even in a temperature range below 850 ° C is desired. DISCLOSURE OF THE INVENTION The present invention has a sufficiently low coefficient of thermal expansion, and has excellent impact resistance and magnetic shielding properties after soft mask annealing before shaping at a temperature of less than 850 ° C and after shading of a shadow mask. It is an object of the present invention to provide an Fe-Ni-Co-based low thermal expansion alloy sheet and a method for producing the same, which substantially include, by mass, Ni: 30 to 34%, Co: 2 to 6%, C: : 0.02 or less, Si: 0.3 or less, Mn: 0.6% or less, P: 0.01% or less, S: 0.005 or less,: 0.01 or less, A1: 0.1 or less, Cr: 0.08 or less, Ta: 0.01 to 1% Nb: 0.05 to 1%, V: 0.01 to 1%, Ta: 0.01 to 1%} and at least two elements selected from the group consisting of And it can be achieved by (Nb + V + Ta) ≤1 Ru in which a low thermal expansion alloy sheet. PC leak 47
3 Three
これらの低熱膨張合金薄板は、 上記の成分を有する熱延板に冷間圧延と再結晶焼 鈍を少なくとも 1回以上繰り返す工程と、 最終の再結晶焼鈍後にさらに 15 以上の 冷延率で最終の冷間圧延を行う工程と、'最終の冷間圧延後に 800°C以下で歪み取り 焼鈍を行う工程とを有する低熱膨張合金薄板の製造方法によって実現できる。 図面の簡単な説明 図 1は、 プレス前軟化焼鈍後の 0 . 2 耐カ(0 . 2 PS )と最大透磁率( ^max)の関係 を示す図である。  These low-thermal-expansion alloy sheets are subjected to a step of repeating cold rolling and recrystallization annealing at least once or more on a hot-rolled sheet having the above components, and after the final recrystallization annealing, a final cold-rolling rate of 15 or more. The method can be realized by a method of manufacturing a low thermal expansion alloy sheet including a step of performing cold rolling and a step of performing 'strain relief annealing at 800 ° C or less after final cold rolling. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between 0.2 power resistance (0.2 PS) after soft annealing before press and maximum magnetic permeability (^ max).
図 2は、 プレス前軟化焼鈍温度と 0 . 2 耐カ( 0 . 2 PS )の関係を示す図である。 発明を実施するための形態 本発明者等が、 Fe-Ni- Co系合金薄板を用いたシャドウマスクの耐衝撃 ゃ磁気 シールド性について検討したところ、 以下のことが明らかになつた。  FIG. 2 is a diagram showing the relationship between the softening annealing temperature before pressing and 0.2 heat resistance (0.2 PS). MODES FOR CARRYING OUT THE INVENTION The present inventors have studied the impact resistance and magnetic shielding properties of a shadow mask using a Fe-Ni-Co alloy thin plate, and have found the following.
1 )シャドウマスクの耐衝撃性と磁気シールド性は、 それぞれプレス前軟化焼鈍 後の 0. 2 耐カと最大透磁率で評価できる。  1) The impact resistance and magnetic shielding properties of the shadow mask can be evaluated by the 0.2 resistance after softening and annealing and the maximum magnetic permeability, respectively.
2 )プレス前軟化焼鈍後の 0 . 2 耐力が 300MPa以上であれば、 シャドウマスク成 形後の衝撃試験において凹みの発生率が格段に小さくなるが、 0 . 2%耐力が 350MPa を超えるとシャドウマスクのプレス成形自体が困難になる。  2) If the 0.2 proof stress after softening annealing before pressing is 300 MPa or more, the incidence of dents is significantly reduced in the impact test after shadow mask molding, but if the 0.2% proof stress exceeds 350 MPa, shadow Press forming of the mask itself becomes difficult.
3 )最大透磁率が 5000以上であれば、 エッチング加工後の磁気シ一ルド性試験に おいて、 侵入磁束が格段に小さくなる。  3) If the maximum magnetic permeability is 5000 or more, in the magnetic shield test after etching, the infiltration magnetic flux is remarkably small.
4 )こうしたプレス前軟化焼鈍後の 0 . 2 耐カゃ最大透磁率は、 Ta単独あるいは Mb と Vと Taの中から選ばれた少なくとも 2種の元素の添加により得られる。  4) The 0.2 maximum magnetic permeability after softening annealing before pressing can be obtained by Ta alone or by adding at least two elements selected from Mb, V and Ta.
5 ) Bと Sbのうち少なくとも 1種の元素を添加することにより、 より大きな最大透 磁率が得られる。  5) A larger maximum permeability can be obtained by adding at least one element of B and Sb.
以下に、 その詳細について説明する。  The details are described below.
1 . 成分 Ni、 Co : Ni、 Coは低熱膨張性を得るために必須の元素であり、 それには Niを 30〜34 、 Co:2〜6¾ (こする必要力ある。 1. Ingredients Ni, Co: Ni and Co are essential elements to obtain low thermal expansion. Ni is 30-34, Co: 2-6¾ (It is necessary to rub.
C: Cはエッチング性や低熱膨張性を劣化させるため、 0.02%以下、 好ましくは 0.005 以下、 さらに好ましくは 0.003 未満とする。  C: Since C deteriorates the etching property and the low thermal expansion property, the content is set to 0.02% or less, preferably 0.005 or less, and more preferably less than 0.003.
Si: Siは低熱膨張性ゃシャドウマスクの黒化処理性を劣ィ匕させるため、 0.3%以 下、 好ましくは 0.09 以下とする。  Si: Si has a low thermal expansion property, which is not more than 0.3%, preferably not more than 0.09, in order to degrade the blackening property of the shadow mask.
Mn: Mnは低熱膨張性を劣化させるため、 0.6 以下、 好ましくは 0.1 以下とす る。 また、 nは合金の脱酸や熱間加工性に有効な元素であるため、 0.01る以上で あることが好ましい。  Mn: Mn is set to 0.6 or less, preferably 0.1 or less, because it deteriorates the low thermal expansion property. Since n is an element effective for deoxidation and hot workability of the alloy, it is preferably 0.01 or more.
P: Pはエッチング性を劣化させるため、 0.01も以下とにする。  P: Since P deteriorates the etching property, the content is set to 0.01 or less.
S: Sは硫化物として析出して合金の熱間加工性を劣ィ匕させるため、 0.005 以下 とする。  S: S is set to 0.005 or less because it precipitates as sulfide and degrades the hot workability of the alloy.
N : Nは、 Al、 Nb、 V等の元素と一緒に含まれると窒ィ匕物として析出してエッチ ング性を劣化させるとともに、 合金の熱間加工性をも劣ィ匕させるため、 0.01 以下 とする。  N: N, when contained together with elements such as Al, Nb, and V, precipitates as nitride and degrades the etchability, and also deteriorates the hot workability of the alloy. The following is assumed.
A1: A1は窒化物、 酸化物等の析出物として析出してシャドウマスクの磁気シー ルド性ゃ低熱膨張性を劣化させるとともに、 合金の熱間加工性をも劣ィ匕させるため、 0.1 以下、 好ましくは 0.04%以下とする。 また、 A1は溶製時に合金中の介在物を 低減する効果も有しているため、 0.005 以上であることが好ましい。  A1: A1 precipitates as precipitates such as nitrides and oxides, deteriorating the magnetic shield property of the shadow mask and the low thermal expansion property, and also deteriorating the hot workability of the alloy. Preferably, it is 0.04% or less. A1 also has the effect of reducing inclusions in the alloy during smelting, and is therefore preferably 0.005 or more.
Cr: Crは炭ィ匕物、 窒化物等として析出してシャドウマスクの磁気シールド性を 劣化させるため、 0.08る以下とする。 なお、 Crは低熱膨張性も劣化させるため、 できるだけ低減することが望ましい。  Cr: Cr precipitates as charcoal debris, nitride, etc. and degrades the magnetic shielding properties of the shadow mask. Since Cr also deteriorates the low thermal expansion property, it is desirable to reduce it as much as possible.
Nb: Nbは次の Vや Taと複合添加されるとシャドウマスクの耐衝撃性や磁気シー ルド性を改善する。 そのためには、 Nbは 0.05る以上必要であるが、 低熱膨張性を 劣化させるため 1 以下、 好ましくは 0.6る以下とする。  Nb: Nb improves the impact resistance and magnetic shielding properties of shadow masks when added in combination with the following V and Ta. For that purpose, Nb is required to be 0.05 or more, but is set to 1 or less, and preferably 0.6 or less to deteriorate the low thermal expansion property.
V : Vは、 上記のごとく、 Nbや Taと複合添加されるとシャドウマスクの耐衝撃性 や磁気シールド性を改善する。 そのためには、 Vは 0.01 が必要であるが、 低熱膨 張性を劣ィ匕させるため 1 以下、 好ましくは 0.6 以下とする。 Ta:Taは本発明において最も重要な元素であり、 単独にあるいは Vや Nbと複合し て添加されるとシャドウマスクの耐衝撃性や磁気シ一ルド性を改善する。 そのため には、 Taは 0.01 が必要であるが、 低熱膨張性を劣ィ匕させるため 1 以下、 好まし くは 0.6る以下とする。 V: V, as described above, improves the impact resistance and magnetic shielding properties of the shadow mask when added in combination with Nb or Ta. For this purpose, V needs to be 0.01, but is set to 1 or less, preferably 0.6 or less in order to reduce the low thermal expansion property. Ta: Ta is the most important element in the present invention, and when added alone or in combination with V or Nb, it improves the impact resistance and magnetic shield property of the shadow mask. For this purpose, Ta needs to be 0.01, but is set to 1 or less, and preferably 0.6 or less, in order to lower the low thermal expansion property.
さらに、 Nb、 V、 Taを多量に複合添加すると、 プレス前軟化焼鈍後の 0.2%耐カ が 350MPaを超えてプレス成形が困難となるため、 (Nb+V+Ta)を 1%以下、 好まし くは 0.6る以下とする必要がある。  Furthermore, if a large amount of Nb, V, and Ta are added in combination, the 0.2% heat resistance after softening annealing before pressing exceeds 350 MPa, making press forming difficult, so that (Nb + V + Ta) is preferably 1% or less. More preferably, it should be 0.6 or less.
なお、 残部は実質的に Feである。 すなわち、 本発明の効果を阻害しない範囲で、 その他の元素は含有されてもよい。  The balance is substantially Fe. That is, other elements may be contained as long as the effects of the present invention are not impaired.
このようこ、 実質的【こ、 Ni: 30〜34る、 Co:2〜6%、 : 0.02¾以下、 Si: 0.3% 以下、 Mn: 0.6¾以下、 P: 0.01 以下、 S: 0.005 以下、 N: 0.01%以下、 A1: 0.1¾以下、 Cr:0.08%¾T, Ta:0.01〜l あるい ½;{Nb:0.05〜: L%、 V:0.01〜 1 、 Ta:0.01〜l%}の中から選ばれた少なくとも 2種の元素、 およぴ¾部 Feから成 り、 かつ(Nb+V+Ta)≤l%とすることにより、 ドーミングが起こりにくい 0.8X10- 6パ C以下の熱 J3彭張係数が得られる。 さらに、 C : 0.005%以下、 Si : 0.09 以下、 Mn ·· 0.01〜0.1る、 A1: 0.005〜0.04%、 Nb: 0.05〜0.6 、 V:0.01~0.6 , Ta:0.01〜0.6%で、 かつ(Nb+V+Ta)≤0.6るとすることにより、 ドーミングがほ とんど起こらなレゝ 0.5X10- 6 / 以下の熱膨張係数が得られる。 Like this, substantial [Ni, 30 to 34%, Co: 2 to 6%,: 0.02% or less, Si: 0.3% or less, Mn: 0.6% or less, P: 0.01 or less, S: 0.005 or less, N : 0.01% or less, A1: 0.1% or less, Cr: 0.08% {T, Ta: 0.01 to l or ½; {Nb: 0.05 to: L%, V: 0.01 to 1, Ta: 0.01 to 1%} at least one element selected from Ri consists Oyopi ¾ portion Fe, and (Nb + V + Ta) by a ≤L%, doming is unlikely to occur 0.8X10- 6 Pas C following heat J3 Peng Zhang coefficient is obtained. In addition, C: 0.005% or less, Si: 0.09 or less, Mn ··· 0.01 to 0.1, A1: 0.005 to 0.04%, Nb: 0.05 to 0.6, V: 0.01 to 0.6, Ta: 0.01 to 0.6%, and ( with nb + V + Ta) Ru ≤0.6, doming Ho Tondo occur such lesゝ0.5X10- 6 / less thermal expansion coefficient is obtained.
上記の成分に、 さらに、 結晶粒を均一化する作用を有する Bと Sbのうち少なくと も一つを、 Bの場合は 0.0005 以上、 Sbの場合は 0.0015%以上含有させると、 プ レス前軟化焼鈍後により大きな最大透磁率が得られる。 このとき、 シャドウマスク の黒化処理性を劣化させないように、 Bを 0.003 以下、 Sbを 0.010 以下で、 かつ ( 2B+Sb)を 0.001〜0.010るにする必要力 S、ある。  Pre-press softening if at least one of B and Sb, which has the function of homogenizing crystal grains, is added to the above components, at least 0.0005 for B and 0.0015% for Sb A greater maximum permeability is obtained after annealing. At this time, there is a necessary force S to make B less than 0.003, Sb less than 0.010, and (2B + Sb) 0.001 to 0.010 so as not to deteriorate the blackening processability of the shadow mask.
2. 製法  2. Manufacturing method
本発明の低熱膨張合金薄板は、 上記の成分を有する熱延板に冷間圧延と再結晶焼 鈍を少なくとも 1回以上繰り返す工程と、 最終の再結晶焼鈍後にさらに 15%以上の 冷延率で最終の冷間圧延を行う工程と、 最終の冷間圧延後に 800°C以下で歪み取り 焼鈍を行う工程とを有する低熱膨張合金薄板の製造方法によって製造できる。 最終 の冷間圧延の冷延率を 15¾以上、 歪み取り焼鈍の温度を 800°C以下としたのは、 再 結晶や粒成長が進みにくい Nb添加型の Fe-Ni系合金において、 プレス前軟化焼鈍 で 850 以上の高温焼鈍を行わずに軟ィ匕させるためである。 The low-thermal-expansion alloy thin sheet of the present invention includes a step of repeating cold rolling and recrystallization annealing at least once or more on a hot-rolled sheet having the above-mentioned components, and a cold-rolling rate of 15% or more after final recrystallization annealing It can be manufactured by a method of manufacturing a low thermal expansion alloy sheet having a step of performing final cold rolling and a step of performing strain relief annealing at 800 ° C. or lower after the final cold rolling. Final The cold rolling rate of cold rolling was set to 15 ° or more, and the temperature for strain relief annealing was set to 800 ° C or less because of the softening annealing before pressing in Nb-added Fe-Ni alloys where recrystallization and grain growth are difficult to proceed. This is for softening without performing high-temperature annealing of 850 or more.
以上、 まとめると、 本発明である低熱膨張合金薄板の製造方法の流れは、 「熱延 板→ (冷間圧延 +再結晶焼鈍) X n ( n≥l )→最終冷間圧延→歪み取り焼鈍 In summary, the flow of the method for producing a low thermal expansion alloy sheet according to the present invention is as follows: “hot rolled sheet → (cold rolling + recrystallization annealing) X n (n≥l) → final cold rolling → strain relief annealing
」 となる。 It becomes.
熱延板は、 上記成分の合金を溶製し、 造塊法または連続铸造法によりスラブとし た後、 900°C以上に加熱して熱間圧延して製造される。 造塊法では、 铸造インゴッ トに必要に応じて 1000°C以上で均質化熱処理を行った後、 分塊圧延してスラブと する。 また、 連続铸造法で製造したスラブは、 必要に応じて 1000で以上で均質化 熱処理を行った後、 熱間圧延される。 熱間圧延は、 例えば、 850 950°Cの仕上温 度、 650 800°Cの巻取温度にて実施される。  The hot rolled sheet is manufactured by melting the alloy of the above components, forming a slab by ingot making method or continuous forming method, and then heating to 900 ° C. or higher and hot rolling. In the ingot making method, the イ ン ingot is subjected to homogenization heat treatment at 1000 ° C or more as necessary, and then slab-rolled into a slab. Further, the slab manufactured by the continuous manufacturing method is subjected to a homogenizing heat treatment at 1000 or more, if necessary, and then hot-rolled. Hot rolling is performed, for example, at a finishing temperature of 850 950 ° C and a winding temperature of 650 800 ° C.
また、 このように製造された熱延板は、 酸洗または研削により表面のスケールを 除去した後、 前述のように冷間圧延と再結晶焼鈍を少なくとも 1回以上繰り返した 後、 板厚 0 . 05 0 . 5 程度の薄板とされる。 実施例 1  In addition, the hot-rolled sheet manufactured in this manner is subjected to pickling or grinding to remove the scale on the surface, and then cold-rolled and recrystallized and annealed at least once as described above to obtain a sheet thickness of 0. It is a thin plate of about 050.5. Example 1
表 1に示す成分の鋼 A sを電気炉で溶製し、 造塊後、 1200°C以上での均熱処理 して分塊圧延を行ってスラブとした。 鋼 A Hはいずれも本発明例で、 Nb V Ta B Sb等の成分が適正に調整されている鋼である。 このうち、 鋼 A Bは Nb-V添加 鋼、 鋼 Cは Ta添加鋼、 鋼 Dは Nb-V-Ta添加鋼、 鋼 Eは Nb-V-B添加鋼、 鋼 Fは Nb-V- Sb添加鋼、 鋼 Gは Nb-V-B- Sb添加鋼、 鋼 Hは Ta-B- Sb添加鋼である。 一方、 鋼 p sはいずれも比較例で、 鋼 pには Nb V Taがいずれも添加されておらず、 鋼 qには Nbが添加されているカ^、 Taは添加されておらず、 鋼 rには Nb Vともに添加され ているが(Nb+V)の量が 1 . 0 を超えており、 鋼 sには Nt V、 がいずれも添加さ れているが、 (Nb+V+Ta)の量が 1 を超えている。  Steel As with the components shown in Table 1 was melted in an electric furnace, ingot-formed, subjected to soaking at 1200 ° C or higher, and subjected to slab rolling to form a slab. Steel AH is an example of the present invention, and is a steel in which components such as NbVTaBSb are appropriately adjusted. Steel AB is Nb-V-added steel, Steel C is Ta-added steel, Steel D is Nb-V-Ta-added steel, Steel E is Nb-VB-added steel, Steel F is Nb-V-Sb-added steel, Steel G is Nb-VB-Sb-added steel and Steel H is Ta-B-Sb-added steel. On the other hand, steel ps is a comparative example, and steel p does not contain any Nb V Ta, steel q does not contain Nb and Ta, and steel r does not. Nb V is added to the steel, but the amount of (Nb + V) exceeds 1.0, and Nt V, is added to steel s, but (Nb + V + Ta) Is greater than 1.
次に、 スラブを、 その表面全体を研削後、 1000°C以上に加熱し、 仕上温度 850 950 、 巻取温度 650 800°Cで熱間圧延し熱延コイルとした。 そして、 熱延コ ィルを酸洗して表面のスケールを除去後、 冷延率 20〜80%の冷間圧延と 750〜 llOO の再結晶焼鈍を 2回繰り返した後、 冷延率 20〜25 で最終の冷間圧延を行つ て、 700〜800°Cで歪み取り焼鈍を実施し、 板厚 0 . 12mmの薄板を作製した。 Next, the slab was heated to 1000 ° C or higher after grinding the entire surface, and hot-rolled at a finishing temperature of 850 950 and a winding temperature of 650 800 ° C to obtain a hot-rolled coil. And hot rolled After pickling and removing scale from the surface, cold rolling at a cold rolling rate of 20 to 80% and recrystallization annealing at 750 to llOO are repeated twice, and the final cold rolling at a cold rolling rate of 20 to 25 is performed. Cold rolling was performed and strain relief annealing was performed at 700 to 800 ° C to produce a thin plate having a thickness of 0.12 mm.
この薄板コイルの幅方向中央部より、 JIS5号引張試験片、 磁気特性評価用リン グ試験片、 熱膨張係数測定用試験片を採取し、 プレス前軟化焼鈍に相当する熱処理 として、 Ar雰囲気中にて 800〜900°C X 15分均熱の熱処理を行い、 シャドウマスク としての耐衝撃性、 磁気特性、 熱膨張係数を評価した。  A JIS No. 5 tensile test specimen, a ring test specimen for evaluating magnetic properties, and a test specimen for measuring thermal expansion coefficient were collected from the center of the thin-sheet coil in the width direction, and were subjected to a heat treatment equivalent to softening annealing before pressing in an Ar atmosphere. Heat treatment at 800-900 ° C for 15 minutes to evaluate the impact resistance, magnetic properties, and coefficient of thermal expansion of the shadow mask.
引張試験は、 JIS Z 2241の引張試験方法に準じて行い、 0 . 2 耐カを求めた。 磁気特性評価は、 JIS C 2531に基づき行い、 印加磁界 10Oeのときの最大透磁 率を求めた。  The tensile test was performed according to the tensile test method of JIS Z 2241, and 0.2 resistance was obtained. The magnetic properties were evaluated based on JIS C 2531, and the maximum magnetic permeability at an applied magnetic field of 10 Oe was determined.
熱膨張係数測定は、 光干渉式熱膨張測定装置を用いて行い、 20〜: L00°Cでの平均 熱膨張係数を求めた。  The coefficient of thermal expansion was measured using an optical interference type thermal expansion measuring apparatus, and the average coefficient of thermal expansion at 20 to: L00 ° C was determined.
結果を表 2に示す。  Table 2 shows the results.
また、 図 1に、 プレス前軟化焼鈍後の 0 . 2る耐力と最大透磁率の関係を示す。 こ の図では、 同一の鋼について 3つの結果が示されているが、 左から順にプレス前軟 化焼鈍温度 900、 850、 800°Cの結果に対応している。  FIG. 1 shows the relationship between the 0.2 proof stress after soft annealing before press and the maximum magnetic permeability. In this figure, three results are shown for the same steel, which correspond to the results of softening annealing temperatures before press of 900, 850, and 800 ° C in order from the left.
図 1より、 本発明例である鋼 A〜Hでは、 300〜350MPaの 0 . 2も耐力と 5000以上 の最大透磁率が得られる。 さらに、 これらの鋼は、 強度-磁気特性バランスの点か らより好ましい関係である 0 . 2 PS + 7 ( imax/1000 )≥350も満足している。 表 2より、 鋼 A〜Hでは、 0 . 8 X lO-6/°C以下の低い熱膨張係数が得られるが、 特 に、 Mn、 Nb、 V、 Ta等が低い鋼 B〜Dおよび F〜Hでは、 0 . 5 X 10- sパ C以下の熱膨張 係数が得られる。 また、 Nb、 V、 Taに加えて Bや Sbが添加された鋼 E〜Hでは、 より 大きな最大透磁率が得られる。 As shown in FIG. 1, in the steels A to H of the present invention, a proof stress of 0.2 to 300 to 350 MPa and a maximum magnetic permeability of 5000 or more can be obtained. Further, these steels also satisfy 0.2 PS + 7 (imax / 1000) ≥350, which is a more preferable relationship in terms of strength-magnetic property balance. From Table 2, the steel A~H, 0. 8 X lO- 6 / ° C but below a low thermal expansion coefficient is obtained, especially, Mn, Nb, V, Ta or the like is low steel B~D and F At ~ H, a thermal expansion coefficient of 0.5 X 10-s Pa C or less is obtained. In addition, steels E to H to which B and Sb are added in addition to Nb, V, and Ta have higher maximum magnetic permeability.
一方、 比較例である Nb、 Vが無添加の鋼 pでは、 強度-磁気特性バランスが悪く、 いずれの焼鈍温度においても、 0 . 2 耐力が目標とする 300MPaに到達していない。 Nbのみが添加された鋼 gでは、 鋼 pに比べて強度が改善されているが、 最大透磁率 は 4300以下である。 また、 (Nb+V+Ta)が 1%を超えた鋼 rおよび Sでは、 0 . 2%耐カ が 350MPa以下にならず、 熱膨張係数も高い。 (mass%) On the other hand, the steel p with no added Nb and V, which is a comparative example, has a poor strength-magnetic property balance, and the 0.2 proof stress has not reached the target 300 MPa at any annealing temperature. In steel g containing only Nb, the strength is improved compared to steel p, but the maximum magnetic permeability is 4300 or less. Furthermore, the (Nb + V + Ta) is and steel r exceeds 1% S, 0. 2%耐Ka is not below 350 MPa, even high thermal expansion coefficient. (mass%)
Figure imgf000010_0001
Figure imgf000010_0001
下線部:発明範囲外 Underlined: Outside the scope of the invention
Figure imgf000011_0001
実施例 2
Figure imgf000011_0001
Example 2
表 1に示す鋼 A、 C、 pの铸造塊を使用して、 実施例 1と同様な方法で板厚 0 . 12匪 の薄板を製造した。 このとき、 表 3に示すように、 最終の冷間圧延の冷延率と歪み 取り焼鈍の温度を、 鋼 Aについては 5通りに、 鋼 (:、 pについては 3通りに変ィヒさせた。 そして、 この薄板について、 実施例 1の場合と同様な試験を行った。 なお、 プレス 前軟化焼鈍は、 Ar雰囲気中にて 750〜900 X 15分均熱の条件で行った。  Using the steel ingots of steels A, C and p shown in Table 1, thin plates having a thickness of 0.12 were manufactured in the same manner as in Example 1. At this time, as shown in Table 3, the cold rolling rate and the strain relief annealing temperature in the final cold rolling were changed to 5 for steel A and 3 for steel (: and p). Then, the same test was performed on this thin plate as in Example 1. The softening annealing before pressing was performed in an Ar atmosphere under the conditions of 750 to 900 × 15 minutes soaking.
結果を表 3に示す。  Table 3 shows the results.
また、 図 2にプレス前軟ィ匕焼鈍温度と 0 . 2 耐力の関係を示す。  FIG. 2 shows the relationship between the soft annealing temperature before press and the 0.2 proof stress.
Nbと V添加の鋼 A- 1〜Α-3は、 歪み取り焼鈍の温度を 750 とし、 最終の冷間圧 延の冷延率を変えて製造されている。 いずれの場合も、 プレス前軟化焼鈍温度の上 昇とともに、 0 . 2%耐力が大きく低下して 350MPa以下となる。 0. 2 耐力が 320MPa 以下となる焼鈍温度は、 鋼 A-3では 800°Cであるのに対し、 鋼 A-2では 850° (:、 鋼 A- 1では 900°Cである。 通常、 プレス前軟化焼鈍は 800°C前後で行われるため、 本 発明例の鋼 A-3は、 最終の冷間圧延の冷延率が 15も未満の比較例である鋼 A- 1およ び A- 2に比べて良好な軟化特性を有する。 Nb and V-added steels A-1 to Α-3 are manufactured by setting the strain relief annealing temperature to 750 and changing the cold rolling rate in the final cold rolling. In each case, the 0.2% proof stress decreases significantly to 350 MPa or less as the softening annealing temperature before pressing increases. Annealing temperature 0.2 proof stress becomes 3 2 0 MPa or less, whereas the steel A-3 in 800 ° C, the steel A-2 850 ° (:, is steel A- 1 in 900 ° C. Normally, the softening annealing before press is performed at about 800 ° C. Therefore, the steel A-3 of the present invention is a steel A-1 and a steel A-1 of a comparative example having a cold rolling reduction of less than 15 in final cold rolling. And has better softening characteristics than A-2.
Nbと V添加の鋼 A- 3〜A-5は、 最終の冷間圧延の冷延率を 25もとし、 歪み取り焼 鈍の温度を変えて製造されている。 0 . 2 耐力が 350MPa以下となるプレス前軟ィ匕焼 鈍温度は、 鋼 A- 3および A- 4では 800°Cであるのに対し、 鋼 A-5では 850°Cである。 したがって、 本発明例の鋼 A-3および A-4は、 比較例の鋼 A- 5に比べて良好な軟化 特性を有する。  Nb and V-added steels A-3 to A-5 are manufactured by changing the temperature of the strain relief annealing based on the final cold rolling rate of 25 for cold rolling. The soft anneal temperature before press at which the proof stress is 350 MPa or less is 800 ° C for steels A-3 and A-4, while it is 850 ° C for steel A-5. Therefore, steels A-3 and A-4 of the present invention have better softening properties than steel A-5 of the comparative example.
Taのみが添加された鋼 C-l、 p-3は、 歪み取り焼鈍の温度を 750。Cとし、 最終の 冷間圧延の冷延率を変えて製造されている。 また、 鋼 C-3、 C-5は、 最終の冷間圧 延の冷延率を 25 とし、 歪み取り焼鈍の温度を変えて製造されている。 耐カ が 300〜350MPaとなる焼鈍温度は、 鋼 C-3では 800°Cであるのに対し、 鋼 C- 1およ び C- 5では 850 以上である。 したがって、 本発明例の鋼 C-3は、 比較例の鋼 C-1 および C- 5に比べて良好な軟化特性を有する。 For steel Cl and p-3 with only Ta added, the strain relief annealing temperature was 750. C, and is manufactured by changing the cold rolling rate of the final cold rolling. Steels C-3 and C-5 are manufactured by changing the final cold-rolling rate to 25 and changing the temperature for strain relief annealing. The annealing temperature at which the heat resistance reaches 300 to 350 MPa is 800 ° C for steel C-3, but is 850 or more for steels C-1 and C-5. Therefore, the steel C-3 of the present invention example has better softening properties than the steels C-1 and C-5 of the comparative examples.
一方、 ND、 V、 Taが無添加の鋼 P- l、 P- 3、 P- 5は、 歪み取り焼鈍の温度 800。C 以上で 0 . 2 耐力が 300MPa未満となり、 好ましい範囲である 300〜350MPaより外 れている。 なお、 鋼 p- 1、 P- 3では、 プレス前軟化焼鈍温度750°Cで 0 . 2 耐力が目 標範囲に入っているが、 実施例 1と同様の試験を実施して磁気特性を評価したとこ ろ、 最大透磁率は 5000に満たなかった。 On the other hand, ND, V, and Ta-free steels P-l, P-3, and P-5 have a strain relief annealing temperature of 800. When it is C or more, the 0.2 proof stress is less than 300 MPa, which is outside the preferable range of 300 to 350 MPa. Have been. Incidentally, the steel p-1, the P- 3, 0 at the press before anneal temperature 75 0 ° C. Although 2 yield strength is in the goal range, the magnetic characteristics was performed to the same tests as in Example 1 When evaluated, the maximum permeability was less than 5000.
Figure imgf000014_0001
Figure imgf000014_0001

Claims

請求の範囲 The scope of the claims
1. 実質白勺 ίこ、 質量るで、 i: 30~34% Co:2〜6%、 0 : 0.02¾以下、 Si: 0.3%以下、 Mn: 0.6 以下、 P: 0.01 以下、 S: 0· 005%以下、 N: 0.01 以下、 A1: 0.1%以下、 C;r:0.08%以下、 Ta: 0 · 01〜 1%ある^ ま {Nb: 0 · 05〜 1も、 V:0.01〜l 、 Ta:0.01〜l%}の中から選ばれた少なくとも 2種の元素、 および残 部 Feから成り、 かつ(Nb+V+Ta)≤1%である低熱膨張合金薄板。 1. Real white stirrer, mass: i: 30-34% Co: 2-6%, 0: 0.02% or less, Si: 0.3% or less, Mn: 0.6 or less, P: 0.01 or less, S: 0 · 005% or less, N: 0.01 or less, A1: 0.1% or less, C; r: 0.08% or less, Ta: 0 · 01 to 1% ^ N {Nb: 0 · 05 to 1, V: 0.01 to l , Ta: 0.01 to 1%} and a low thermal expansion alloy sheet comprising at least two elements selected from the group consisting of Fe and the balance of (Nb + V + Ta) ≤1%.
2. さらこ、 質量るで、 B:0.0005〜0.003も、 Sb: 0.0015〜0.010 のうち少な くとも 1種の元素を含有し、 かっ(28+513):0.001〜0.010 でぁる請求の範囲1の 低熱膨張合金薄板。 2. Smooth, mass, B: 0.0005 to 0.003, Sb: 0.0015 to 0.010, contains at least one element, and parentheses (28 + 513) : 0.001 to 0.010 1. Low thermal expansion alloy sheet.
3. 請求の範囲 1または 2の成分を有する熱延板に冷間圧延と再結晶焼鈍を少なく とも 1回以上繰り返す工程と、 3. a step of repeating cold rolling and recrystallization annealing on the hot-rolled sheet having the component of claim 1 or 2 at least once or more;
前記最終の再結晶焼鈍後に、 さらに 15も以上の冷延率で最終の冷間圧延を行 工程と、  After the final recrystallization annealing, further performing a final cold rolling at a cold rolling reduction of 15 or more,
前記最終の冷間圧延後に、 800°C以下で歪み取り焼鈍を行う工程と、 を有する低熱膨張合金薄板の製造方法。  Performing a strain relief annealing at a temperature of 800 ° C. or less after the final cold rolling.
4. 請求の範囲 1または 2の低熱膨張合金薄板で製造されたシャドウマスク。 4. A shadow mask made of the low thermal expansion alloy sheet according to claim 1 or 2.
PCT/JP2003/003047 2002-06-18 2003-03-14 Low-thermal expansion alloy thin sheet and its manufacturing method WO2003106721A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002176629A JP2004018959A (en) 2002-06-18 2002-06-18 High-strength low-thermal-expansion alloy thin-sheet superior in strength and magnetic property, and manufacturing method therefor
JP2002-176629 2002-06-18

Publications (1)

Publication Number Publication Date
WO2003106721A1 true WO2003106721A1 (en) 2003-12-24

Family

ID=29728106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003047 WO2003106721A1 (en) 2002-06-18 2003-03-14 Low-thermal expansion alloy thin sheet and its manufacturing method

Country Status (3)

Country Link
JP (1) JP2004018959A (en)
TW (1) TW200400272A (en)
WO (1) WO2003106721A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588555A (en) * 2018-04-17 2018-09-28 全球能源互联网研究院有限公司 A kind of aerial condutor steel alloy, steel alloy preparation method and aerial condutor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116043136A (en) * 2023-01-18 2023-05-02 上海材料研究所有限公司 Low-expansion high-strength alloy steel and manufacturing method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213450A (en) * 1989-02-15 1990-08-24 Hitachi Metals Ltd Shadow mask material excellent in etching characteristic
JPH0384834A (en) * 1989-08-29 1991-04-10 Toshiba Corp Shadow mask and its manufacture
JPH04228546A (en) * 1990-09-11 1992-08-18 Nippon Steel Corp Shadow mask material and its production
JPH04228545A (en) * 1990-09-11 1992-08-18 Nippon Steel Corp Shadow mask material and its production
JPH07188860A (en) * 1993-12-27 1995-07-25 Nkk Corp Thin fe-ni alloy sheet and thin fe-ni-co alloy sheet for color picture tube excellent in workability
JP2001049395A (en) * 1999-08-11 2001-02-20 Hitachi Metals Ltd Iron-nickel-cobalt alloy excellent in etching characteristic and low thermal expansion characteristic, and shadow mask excellent in smoothness of inside peripheral shape of etch pit
KR20020000710A (en) * 2000-06-27 2002-01-05 사카모토 타카시 Fe-Ni ALLOY FOR PRESS F0RMING TYPE FLAT MASK AND FLAT MASK USING THE SAME AND COLOR CATHODE-RAY TUBE
US20020043314A1 (en) * 2000-08-30 2002-04-18 Nippon Mining & Metals Co. , Ltd. Method of manufacturing fe-ni alloy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213450A (en) * 1989-02-15 1990-08-24 Hitachi Metals Ltd Shadow mask material excellent in etching characteristic
JPH0384834A (en) * 1989-08-29 1991-04-10 Toshiba Corp Shadow mask and its manufacture
JPH04228546A (en) * 1990-09-11 1992-08-18 Nippon Steel Corp Shadow mask material and its production
JPH04228545A (en) * 1990-09-11 1992-08-18 Nippon Steel Corp Shadow mask material and its production
JPH07188860A (en) * 1993-12-27 1995-07-25 Nkk Corp Thin fe-ni alloy sheet and thin fe-ni-co alloy sheet for color picture tube excellent in workability
JP2001049395A (en) * 1999-08-11 2001-02-20 Hitachi Metals Ltd Iron-nickel-cobalt alloy excellent in etching characteristic and low thermal expansion characteristic, and shadow mask excellent in smoothness of inside peripheral shape of etch pit
KR20020000710A (en) * 2000-06-27 2002-01-05 사카모토 타카시 Fe-Ni ALLOY FOR PRESS F0RMING TYPE FLAT MASK AND FLAT MASK USING THE SAME AND COLOR CATHODE-RAY TUBE
US20020043314A1 (en) * 2000-08-30 2002-04-18 Nippon Mining & Metals Co. , Ltd. Method of manufacturing fe-ni alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588555A (en) * 2018-04-17 2018-09-28 全球能源互联网研究院有限公司 A kind of aerial condutor steel alloy, steel alloy preparation method and aerial condutor

Also Published As

Publication number Publication date
JP2004018959A (en) 2004-01-22
TW200400272A (en) 2004-01-01

Similar Documents

Publication Publication Date Title
RU2109839C1 (en) Cold-rolled steel sheet for shadow mask and method for its production
EP0627494B1 (en) Alloy sheet for shadow mask and method for manufacturing thereof
JPH07102345A (en) Fe-ni alloy with high young's modulus and low thermal expansion
JP3243240B2 (en) Method of manufacturing thin cold rolled inner shield steel sheet with excellent magnetic field shielding properties
JP3548606B2 (en) Steel plate for aperture frame and method of manufacturing the same
WO2003106720A1 (en) Low-thermal expansion alloy thin sheet and its manufacturing method
WO2003106721A1 (en) Low-thermal expansion alloy thin sheet and its manufacturing method
EP1335034B1 (en) Low-carbon steel sheet for mask of tension type cathode ray tube with bridge and mask and cathode ray tube
US20050067067A1 (en) Method for producing a metal strip from an iron-nickel alloy for tensioned shadow masks
JP3379301B2 (en) Method for producing low thermal expansion alloy thin plate for shadow mask excellent in plate shape and heat shrink resistance
WO2003085148A1 (en) Low-thermal expansion alloy thin sheet and its manufacturing method
JP3353321B2 (en) Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability
JP3892312B2 (en) Method for manufacturing high-strength steel sheet for CRT frame
JP4283425B2 (en) Method for producing ferritic stainless steel sheet with excellent high temperature strength and magnetic properties
JP3346781B2 (en) Original plate for shadow mask and shadow mask
JP3647581B2 (en) Steel plate for mask frame of shadow mask type color picture tube
JP3430926B2 (en) Steel plate for CRT inner frame and method of manufacturing the same
JPH0676650B2 (en) Fe-Ni alloy for shadow mask
JP3410873B2 (en) Manufacturing method of shadow mask master by continuous annealing
JP2001131709A (en) LOW THERMAL EXPANSION Fe-Ni SERIES ALLOY FOR SEMITENSION MASK, SEMITENSION MASK USING THE SAME AND COLOR CATHODE- RAY TUBE
JPH10219409A (en) Inner shielding material for magnetic shielding, and its production
JPH08260051A (en) Production of magnetic shielding material
JP3765222B2 (en) Steel sheet for magnetic shield and manufacturing method thereof
JP3363689B2 (en) Shadow mask material excellent in press formability and method of manufacturing shadow mask
JP3326897B2 (en) Fe-Ni alloy thin plate for shadow mask

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase