WO2003106204A1 - Controller of variable displacement compressor - Google Patents

Controller of variable displacement compressor Download PDF

Info

Publication number
WO2003106204A1
WO2003106204A1 PCT/JP2003/006267 JP0306267W WO03106204A1 WO 2003106204 A1 WO2003106204 A1 WO 2003106204A1 JP 0306267 W JP0306267 W JP 0306267W WO 03106204 A1 WO03106204 A1 WO 03106204A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
compressor
solenoid
pressure
variable displacement
Prior art date
Application number
PCT/JP2003/006267
Other languages
French (fr)
Japanese (ja)
Inventor
田口 幸彦
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to AU2003234836A priority Critical patent/AU2003234836A1/en
Priority to DE10392799T priority patent/DE10392799B4/en
Publication of WO2003106204A1 publication Critical patent/WO2003106204A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Definitions

  • the present invention relates to a variable displacement compressor control device, and more particularly to a variable displacement compressor control device capable of appropriately controlling the load of a variable displacement compressor used in a vehicle air conditioner.
  • Japanese Patent Application Laid-Open No. H10-22884 has been disclosed as a technique for this kind of variable displacement compressor and its control method.
  • a capacity control valve of a variable capacity compressor for example, Japanese Patent Application Laid-Open No. H11-110790 has been disclosed.
  • a conventional variable displacement compressor and its control are, for example, as shown in FIG.
  • the illustrated variable displacement compressor 120 controls the piston stroke by adjusting the gas pressure in the crank chamber 23.
  • the amount of refrigerant gas discharged to the pseudo-contractor 41 of the external refrigerant circuit 40 in the cooling device is adjusted.
  • a capacity control valve 21 is used for adjusting the gas pressure in the crank chamber 23.
  • the pressure-sensitive mechanism 2 13 constituting the lower part in the drawing of the capacity control valve 21 includes a bellows 22 1, a guide 22 2, a spring 22 3, and an adjusting screw 22 4.
  • the bellows 2 2 1 is evacuated and a spring 2 2 3 is arranged.
  • the guide 222 is fixed to the upper end of the bellows 222 on the drawing.
  • the spring 222 biases the guide 222 upward in the drawing.
  • the adjusting screw 224 adjusts the amount of expansion and contraction of the bellows 221 and forms a part of the case.
  • the displacement control valve 21 further includes a transmission rod 2 16, a valve element 2 12, and a solenoid 2 11.
  • Transmission port 2 1 6 is at the upper end on the drawing of bellows 2 2 1 It is supported so that it can move in the case in contact with it.
  • the valve element 2 12 contacts the other end of the transmission rod 2 16 to open and close the communication path 2 17 between the discharge chamber 22 and the crank chamber 23 according to the expansion and contraction of the bellows 2 21.
  • the solenoid 211 operates as an electromagnetic actuator that generates an electromagnetic force that urges the valve element 212 in the valve closing direction via the plunger 214 and the transmission rod 215.
  • the amount of gas introduced from the discharge chamber 22 to the crank chamber 23 can be adjusted by opening and closing the valve element 212.
  • a variable displacement compressor control device 110 shown in FIG. 1 controls a solenoid 2 11 of a displacement control valve 21. That is, the control device 110 receives the power supply from the power supply line 3 and passes a current to the solenoid 2 1 1 of the capacity control valve 2 1. Power received from the power supply line 3 is supplied to the solenoid driving means 111 and the current detecting means 112 connected to the solenoid 211 in a long line. For example, in the case of a vehicle, this current is a current having a predetermined duty ratio corresponding to a target current value corresponding to the environment.
  • the variable capacity compressor control device 110 drives the compressor control means 1 1 3 force solenoid drive means 1 1 1 to supply the above current to the solenoid 2 1 1 and load the valve 2 1 2 To change the set suction pressure.
  • the current detecting means 1 1 2 detects the value of the current supplied to the solenoid 2 11 and feeds it back to the compressor control means 1 13. As a result, the energized current value can be made to gradually coincide with the target current value. Therefore, the operating point of the valve body 212, that is, the pressure control point of the suction chamber, can be changed by the amount of electricity supplied to the solenoid.
  • variable displacement compressor 120 is one of the auxiliary machines that puts the most load on the power or torque of the vehicle engine 30 and consumes it. Therefore, the variable capacity compressor 120 has a large load on the vehicle engine 30.
  • the discharge amount of the compressor can be reduced by changing the set suction pressure of the displacement control valve to a value higher than the normal set suction pressure.
  • the heat load of the evaporator 42 of the external refrigerant circuit 40 may be excessive in the idling state of the vehicle engine 30 in FIG. In such a state, the suction pressure may exceed the upper limit of the set suction pressure even when the discharge amount is in the maximum displacement state.
  • the target of the capacity control is the suction pressure, the control range is limited. Therefore, there is an area where the capacity control becomes impossible in the actual use range of the vehicle.
  • the controller turns off the power supply to the displacement control valve and operates with the minimum displacement. That is, the above-described conventional control device for a variable displacement compressor is not preferable because load control of the variable displacement compressor cannot be performed, and air conditioning in the vehicle compartment is significantly impaired.
  • an object of the present invention is to provide a variable displacement compressor control device suitable for both air conditioning control and compressor load control. Disclosure of the invention
  • the present invention relates to a control device provided for a variable displacement compressor including a displacement control valve.
  • the displacement control valve has a pressure-sensitive mechanism for transmitting fluctuations in the refrigerant pressure or the refrigerant pressure difference to the valve body, and a pressure-sensitive mechanism that varies the load applied to the valve body in accordance with the input current.
  • a solenoid for changing the pressure.
  • This control device operates so as to control the energization state of the solenoid to adjust the opening of the displacement control valve, and to control the discharge displacement by changing the pressure of the control pressure chamber.
  • the control device which is a feature of the present invention, includes a solenoid drive unit, a current detection unit, and a compressor. It basically comprises a control means, a frequency generation means and a control signal supply means.
  • the solenoid driving means drives the solenoid, and the current detecting means detects the current flowing through the solenoid.
  • the compressor control means receives a plurality of control requirements, and outputs a plurality of command signals based on the received control requirements and a current value received from the current detection means.
  • the plurality of command signals are preset for opening and closing the capacity control valve.
  • the frequency generating means generates and outputs a solenoid drive frequency corresponding to each of the plurality of command signals.
  • the control signal supply means receives one of the plurality of command signals, and selects a solenoid drive frequency corresponding to the received command signal from the output of the frequency generation means. The selected driving frequency is supplied as a control signal to the solenoid driving means.
  • the control device which is a feature of the present invention, further includes a diode connected in parallel with the solenoid to form a flywheel circuit.
  • specific examples of the plurality of solenoid drive frequencies include a first solenoid drive frequency and a second solenoid drive frequency. From the first solenoid drive frequency, a smoothing action of the current supplied by the flywheel circuit can be obtained. The second solenoid drive frequency is lower than the first solenoid drive frequency, and the flywheel circuit cannot obtain a smoothing action of the energizing current.
  • the compressor control means first receives the detected predetermined air conditioning information and vehicle information.
  • the compressor control means outputs a command signal based on each of the received information and an energizing current value received from the current detecting means.
  • This command signal corresponds to the preset conditions of air-conditioning control and compressor load control for opening and closing the capacity control valve.
  • the frequency generator generates and outputs a first solenoid drive frequency and a second solenoid drive frequency.
  • the first solenoid drive frequency corresponds to the air conditioning control command signal.
  • the second solenoid drive frequency has a lower value than the first solenoid drive frequency corresponding to a command signal for compressor load control.
  • the control signal supply means receives command signals for air conditioning control and compressor load control, and selects a control signal corresponding to the received command signal from the output of the frequency generation means. You. This control signal is the first or second solenoid drive frequency and is supplied to the solenoid drive means.
  • the first solenoid drive frequency is set as an on-off valve that operates in response to both the pressure or pressure difference of the refrigerant gas acting on the pressure-sensitive mechanism and the current flowing through the solenoid.
  • the second solenoid drive frequency is set to a frequency that functions as an on-off valve that controls the displacement control valve to two positions, ON and OFF, regardless of the operation of the pressure-sensitive mechanism.
  • the compressor control means When the vehicle information is the engine speed and the vehicle speed, the compressor control means outputs a compressor load control command signal in a state where at least one of the engine speed and the vehicle speed is equal to or less than a predetermined value. Can be. Further, when the vehicle information is the throttle opening, the compressor load control command signal can be output in a state where the throttle opening is a value outside the predetermined range.
  • the compressor control means transmits a compressor load control command signal to the solenoid by driving a solenoid such that a physical quantity representing a compressor load or a compression function force in the variable displacement compressor becomes a predetermined value, or an engine rotation.
  • the number may be output to the control signal supply unit so that the number becomes a predetermined value.
  • FIG. 1 is a diagram showing an example of a function block in a conventional vehicle-mounted device
  • FIG. 2 is a diagram showing an example of a capacity control valve.
  • FIG. 3 is a diagram showing an embodiment of a functional block in the vehicle-mounted device of the present invention.
  • FIG. 4 is a diagram showing details of a part of FIG. 3,
  • FIG. 5 is a diagram showing one form of an energizing current waveform with respect to a solenoid drive frequency of 400 Hz in FIG. 3,
  • FIG. 6 is a view showing one form of a suction pressure characteristic of the variable displacement compressor according to the present invention.
  • FIG. 7 is a flowchart showing an embodiment of a main operation procedure of the control device in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 is a diagram showing an embodiment of a function block in a vehicle-mounted device formed according to the present invention.
  • the illustrated variable displacement compressor control device (hereinafter abbreviated as a control device) 10 receives signals from various sensors 1 and various mode setting switches 2 to optimally control the discharge capacity of the variable displacement compressor 20.
  • the various sensors 1 include, for example, an indoor temperature sensor, a refrigerant temperature sensor, a refrigerant pressure sensor, a vehicle speed detecting unit, an engine speed detecting unit, a throttle opening detecting unit, and the like.
  • the various mode setting switches include, for example, an air conditioning temperature setting switch.
  • a feature of the present invention is that the torque value of the variable displacement compressor 20 is added to the input to the control device 10 and used for controlling the compressor load.
  • the control device 10 includes a solenoid driving unit 11, a current detection unit 12, a compressor control unit 13, a frequency generation unit 14, a control signal supply unit 15, and a diode 16.
  • the compressor control means 13 controls the temperature of a predetermined location, the setting of the air conditioning mode in the variable capacity compressor 20 and the control of the variable capacity compressor 20. Input the torque, the engine speed received from the ECU (engine control unit) 31 and the throttle opening, respectively.
  • the displacement control valve 21 has a valve element 2 12, a pressure-sensitive mechanism 2 13 having a bellows, and a solenoid 2 11.
  • the valve element 212 is provided in the middle of the gas passage, and regulates the flow of gas from the discharge chamber 22 to the crank chamber 23.
  • the pressure sensing mechanism 2 13 detects a change in the gas pressure of the suction chamber 24 with respect to a preset value and transmits the change to the valve element 2 12.
  • the solenoid 211 is provided to change the set value of the pressure-sensitive mechanism 21 to change the load applied to the valve element 212 according to the amount of the supplied current.
  • variable displacement compressor 20 has a torque sensor 25 for detecting its own load. Then, the detected torque value is notified to the compressor control means 13 for compressor load control.
  • variable displacement compressor 20 adjusts the opening of the displacement control valve 21 in response to the control of the energized state of the solenoid 21 1, whereby the crank chamber 2 3 connected to the gas passage is opened.
  • the discharge amount is controlled by changing the pressure of the control pressure chamber as described above.
  • FIG. 1 Details of the control device 10 will be described with reference to FIGS. 3 and 4.
  • FIG. 1 Details of the control device 10 will be described with reference to FIGS. 3 and 4.
  • the solenoid drive means 11 connects the power line 3 of the vehicle to the solenoid 2 1 1 and drives it. That is, the solenoid driving means 11 is constituted by a switching element, and performs an on-Z-off operation of the connection circuit according to the frequency received.
  • the energizing current flowing through the solenoid 211 is adjusted by changing the duty ratio, which is the ON / OFF ratio of this operation. That is, the conduction current is adjusted by the pulse width modulation method (PWM control).
  • the current detecting means 12 is, for example, a resistor having a known resistance value, and detects a current flowing through the solenoid.
  • the compressor control means 13 receives detection values of various sensors including the compressor torque value as shown in FIG. 4 described above, and based on the received value and the energized current value received from the current detection means 12. From the information, a command signal for air-conditioning control or compressor control for opening and closing the capacity control valve 21 is output. That is, when the vehicle is traveling normally, a command signal for air conditioning control is output. On the other hand, for example, when the vehicle stops and the vehicle engine 3 ° is in an idling state, a command signal for compressor load control is output. In this case, the air conditioning control is changed to the compressor load control so as to reduce the load on the vehicle engine 30. Further, the gas discharge amount is controlled so that the load of the variable capacity compressor 20 becomes a predetermined value.
  • the frequency generating means 14 generates and outputs solenoid drive frequencies of 40 OHz for the command signal of the air conditioning control and 10 Hz for the command signal of the compressor load control.
  • the control signal supply means 15 receives a command signal for air conditioning control or a command signal for compressor load control from the compressor control means 13. Further, the control signal supply means 15 selects a solenoid drive frequency corresponding to the received command signal from the output of the frequency generation means 14 and supplies ON / OFF pulses based on the frequency to the solenoid drive means 11.
  • diode Reference numeral 16 denotes a flywheel circuit connected in parallel with the solenoid 211 for smoothing the current flowing through the solenoid 211.
  • the control signal supply means 15 outputs a solenoid drive frequency of 400 Hz corresponding to the air conditioning control signal to the solenoid drive means 11.
  • the solenoid driving means 11 is switched to "OFF” before the current is maximized.
  • the current is returned by the flywheel circuit formed by the diode 16, and the solenoid driving means 11 is switched to "ON” before the energized current becomes “zero”. Therefore, the conduction current is smoothed so as to draw a sawtooth wave as shown in FIG.
  • the ratio of “on” increases, so that the energized current increases. That is, the energizing current can be changed by changing the duty ratio.
  • the valve element 212 functions as an on-off valve that operates in response to the suction pressure acting on the pressure-sensitive mechanism 211 and the current flowing through the solenoid 211 in such a frequency range. That is, as shown in FIG. 6, it functions as a displacement control valve whose control suction pressure is uniquely determined with respect to the supplied current.
  • the solenoid drive frequency is set to “10 Hz”.
  • the current flowing through the solenoid 211 reaches the maximum current determined by the vehicle power supply voltage and the solenoid resistance in the state where the solenoid driving means 11 is in the "ON" state. This state Then, the electromagnetic force of the solenoid 211 becomes maximum, and the valve element 212 of the displacement control valve 21 works in a direction in which it is fully closed regardless of the suction pressure acting on the pressure-sensitive mechanism 213.
  • the valve functions as an open / close valve for two-position control of “on” and “off”, and is a so-called “on / off” duty control valve.
  • the duty control valve when the duty ratio is “zero”, the current flowing through the solenoid 211 becomes “zero”, the valve body 212 is opened, and the discharge capacity of the compressor is minimized.
  • the duty ratio is 100%, the current flowing through the solenoid 211 becomes the maximum value, the valve body 212 is fully closed, and the discharge capacity of the variable displacement compressor 20 becomes the maximum. Therefore, by changing the duty ratio from zero to 100%, the discharge capacity can be changed from the minimum to the maximum and set to a predetermined value.
  • the solenoid driving means 11 receives a pulse having a solenoid driving frequency of 400 Hz selected from the control signal supply means 15.
  • the suction chamber pressure is set to 2 kg / cm 2 G in the normal air-conditioning mode in FIG.
  • the solenoid 211 is driven with a duty ratio that sets the energizing current to the current value i N.
  • the suction pressure determined by the current value i N is maintained.
  • the compressor control means 13 controls the discharge capacity so that the torque value of the variable compressor 20 is within a range that is larger than “T2” and smaller than “ ⁇ 1”.
  • the compressor control means 13 measures the torque value ⁇ of the variable compressor 20 (step S 1 ).
  • step 5 the duty ratio DT being set is not changed (step S17), the output is maintained (step S18), and the current discharge capacity control state is maintained, and the counter ⁇ is incremented by one. (Step S19), and returns to Step S1 above, and the procedure is repeated. If the compressor torque is greater than “ ⁇ 1” in the above procedure S15 Force S “ ⁇ ”, the compressor control means 13 reduces the preset predetermined value ADT from the duty ratio DT being set (procedure S21) Then, proceed to the above step S18. Therefore, the reduced duty ratio D ⁇ is set, so that the displacement is reduced and the compressor torque is also reduced.
  • the compressor control means 13 changes the duty ratio DT being set to the predetermined value ADT. Increase (step S22) and proceed to step S18. Therefore, the increased duty ratio DT is set, so that the displacement is increased and the compressor torque is also increased. Thus, control is performed so that the compressor torque ⁇ falls within a predetermined range.
  • the compressor control means generates a command signal for compressor load control when the vehicle speed is equal to or lower than a predetermined value.
  • the engine speed may be used instead of the vehicle speed. In this case, the load on the vehicle engine during low rotation is reduced, and in this state, stoppage due to overload of the vehicle engine is avoided.
  • a command signal for compressor load control may be generated when both the vehicle speed and the engine speed become equal to or less than predetermined values.
  • the solenoid drive frequency is selectively changed to drive the solenoid of the displacement control valve.
  • the effect is obtained that the characteristics of the control valve can be changed.
  • the solenoid of the displacement control valve forms a flywheel circuit, at the solenoid drive frequency at which the conduction current can be smoothed, the pressure or pressure difference acting on the pressure-sensitive mechanism and the current flowing through the solenoid are different. The effect of being able to function as a suitable capacity control valve for air conditioning control that operates in response to both is obtained.
  • the solenoid of the displacement control valve forms a flywheel circuit, with a low solenoid drive frequency that does not provide a smoothing action of the energizing current, the capacity of the two-position control of on / off independent of the pressure-sensitive mechanism The effect of functioning as a control valve is obtained. Therefore, versatile control can be performed by various sensors or detecting means mounted on the vehicle.
  • the compressor load can be controlled by various sensors or detection means, minimizing the sacrifice of air conditioning control and stabilizing vehicle engine control. The effect that it can be achieved is obtained. Further, since the compressor load control can be performed only in the idling state, the acceleration state, or the deceleration state, there is obtained an effect that there is little area where air conditioning control is sacrificed. Therefore, as described above, the control device for a variable displacement compressor according to the present invention is particularly suitable for mounting on a vehicle in addition to controlling various mode settings for general air conditioning equipment. It is suitable for fine-grained air-conditioning control, taking into account the load of the onboard power supply unit, like the air-conditioning equipment installed. That is, it is easy to set the control conditions such as the vehicle speed, the engine speed, or the degree of opening and closing of the throttle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

A controller of variable displacement compressor being employed in the load control of an air conditioner, especially the air conditioner for vehicle, where various air conditioning modes are set while taking account of such conditions as the operating condition of the engine or the traveling condition of a vehicle. In the controller (10), a control signal providing means (15) provides the solenoid (211) in the capacity control valve (21) of a variable displacement compressor (20) with a pulse signal having a frequency different for air conditioning control and compressor load control based on the determination of a compressor control means (13) receiving various kinds of information. At the time of air conditioning control, the capacity control valve is controlled with a conduction current smoothed by the inductance of the solenoid when it is turned on/off with a high frequency pulse. At the time of compressor load control, the capacity control valve is controlled as a release valve of on/off control with a low frequency pulse regardless of the suction pressure of a pressure sensitive mechanism (213). The set values are determined, respectively, by the duty ratio of a driving frequency pulse and, at the time of compressor load control, the compressor control means controls the compressor torque T to fall within a specified range by altering the duty ratio. Such a controller can properly controls load on a variable displacement compressor used in an on-vehicle air conditioner.

Description

明 細 書 可変容量圧縮機の制御装置 技術分野  Description Control device for variable capacity compressor
この発明は、 可変容量圧縮機の制御装置に関し、 特に、 車両の空調装置に用い られる可変容量圧縮機の負荷制御が適切にできる可変容量圧縮機の制御装置に関 する。 背景技術  The present invention relates to a variable displacement compressor control device, and more particularly to a variable displacement compressor control device capable of appropriately controlling the load of a variable displacement compressor used in a vehicle air conditioner. Background art
従来から、 この種の可変容量圧縮機及びその制御方法に対する技術として、 例 えば、 特開平 1 0— 2 2 8 4号公報が開示されている。 また、 可変容量圧縮機の 容量制御弁については、 例えば、 特開平 1 1一 1 0 7 9 3 0号公報が開示されて いる。  Conventionally, for example, Japanese Patent Application Laid-Open No. H10-22884 has been disclosed as a technique for this kind of variable displacement compressor and its control method. Further, as for a capacity control valve of a variable capacity compressor, for example, Japanese Patent Application Laid-Open No. H11-110790 has been disclosed.
従来の可変容量圧縮機及びその制御については、 例えば第 1図に示されるよう なものがある。  A conventional variable displacement compressor and its control are, for example, as shown in FIG.
図示される可変容量圧縮機 1 2 0はクランク室 2 3内のガス圧力を調整してピ ストンストロークを制御する。 ビストンストロークの制御は、 例えば冷却装置に おける外部冷媒回路 4 0の擬縮器 4 1へ吐出する冷媒ガス量を調整する。 このク ランク室 2 3内のガス圧力の調整には容量制御弁 2 1が使用される。  The illustrated variable displacement compressor 120 controls the piston stroke by adjusting the gas pressure in the crank chamber 23. In controlling the piston stroke, for example, the amount of refrigerant gas discharged to the pseudo-contractor 41 of the external refrigerant circuit 40 in the cooling device is adjusted. A capacity control valve 21 is used for adjusting the gas pressure in the crank chamber 23.
ここで、 第 2図に第 1図を併せ参照して容量制御弁 2 1について説明する。 容量制御弁 2 1の図面で下部を構成する感圧機構 2 1 3は、 ベローズ 2 2 1、 ガイド 2 2 2、 ばね 2 2 3、 および調整ネジ 2 2 4を備える。 ベローズ 2 2 1は 内部を真空にしてばね 2 2 3を配置する。 ガイド 2 2 2はべローズ 2 2 1の図面 上での上端に固定される。 ばね 2 2 3はガイド 2 2 2を図面上で上方向に付勢す る。 調整ネジ 2 2 4は、 ベローズ 2 2 1の伸縮量を調整するものであって、 ケー スの一部を構成する。  Here, the capacity control valve 21 will be described with reference to FIG. 1 and FIG. The pressure-sensitive mechanism 2 13 constituting the lower part in the drawing of the capacity control valve 21 includes a bellows 22 1, a guide 22 2, a spring 22 3, and an adjusting screw 22 4. The bellows 2 2 1 is evacuated and a spring 2 2 3 is arranged. The guide 222 is fixed to the upper end of the bellows 222 on the drawing. The spring 222 biases the guide 222 upward in the drawing. The adjusting screw 224 adjusts the amount of expansion and contraction of the bellows 221 and forms a part of the case.
容量制御弁 2 1は、 更に、 伝達ロッド 2 1 6、 弁体 2 1 2、 およびソレノィド 2 1 1により構成される。 伝達口ッド 2 1 6はべローズ 2 2 1の図面上で上端に 接してケース内で移動可能なように支持される。 弁体 2 1 2は伝達ロッド 2 1 6 の他端に接してベローズ 2 2 1の伸縮に応じて吐出室 2 2とクランク室 2 3との 間の連通路 2 1 7を開閉する。 ソレノイド 2 1 1は弁体 2 1 2をプランジャー 2 1 4及び伝達ロッド 2 1 5を介して閉弁方向に付勢する電磁力を発生させる電磁 ァクチユエ一ターとして稼動する。 The displacement control valve 21 further includes a transmission rod 2 16, a valve element 2 12, and a solenoid 2 11. Transmission port 2 1 6 is at the upper end on the drawing of bellows 2 2 1 It is supported so that it can move in the case in contact with it. The valve element 2 12 contacts the other end of the transmission rod 2 16 to open and close the communication path 2 17 between the discharge chamber 22 and the crank chamber 23 according to the expansion and contraction of the bellows 2 21. The solenoid 211 operates as an electromagnetic actuator that generates an electromagnetic force that urges the valve element 212 in the valve closing direction via the plunger 214 and the transmission rod 215.
このような構成において、 ソレノイド 2 1 1に通電しない状態では、 電磁力は 発生しない。 従って、 圧力のバランス状態で、 弁体 2 1 2に閉弁方向への付勢力 はない。 従って、 吸入室 2 4の圧力が高い場合、 ベローズ 2 2 1は収縮するが、 ばね 2 2 3により図面上で上方へ付勢されているので弁体 2 1 2は常時開弁して いる。 この状態で圧縮機を起動した場合、 吐出室 2 2のガスはクランク室 2 3に 常時導入されるので、 クランク室 2 3と吸入室 2 4との圧力差が増加する。  In such a configuration, no electromagnetic force is generated when the solenoid 211 is not energized. Therefore, in a state where the pressure is balanced, the valve element 2 12 has no urging force in the valve closing direction. Therefore, when the pressure in the suction chamber 24 is high, the bellows 221 contracts, but is urged upward in the drawing by the spring 223, so that the valve element 212 is always open. When the compressor is started in this state, since the gas in the discharge chamber 22 is always introduced into the crank chamber 23, the pressure difference between the crank chamber 23 and the suction chamber 24 increases.
ソレノイド 2 1 1の通電電流が所定値以上の電流領域では、 発生する電磁力が ばね 2 2 3の付勢力より大きくなる。 このため、 弁体 2 1 2は閉弁するのでクラ ンク室 2 3の圧力が低下する。 従って、 クランク室 2 3の圧力が吸入室 2 4の圧 力と同等となり、 吸入室 2 4の圧力が徐々に低下する。 この結果、 弁体 2 1 2は 開く方向に動作する。  In a current region where the current flowing through the solenoid 211 is equal to or greater than a predetermined value, the generated electromagnetic force becomes larger than the biasing force of the spring 223. For this reason, the valve element 212 is closed, and the pressure in the crank chamber 23 is reduced. Therefore, the pressure in the crank chamber 23 becomes equal to the pressure in the suction chamber 24, and the pressure in the suction chamber 24 gradually decreases. As a result, the valve element 2 1 2 moves in the opening direction.
このように弁体 2 1 2の開閉により吐出室 2 2からクランク室 2 3に導入する ガス量を調整することができる。  In this way, the amount of gas introduced from the discharge chamber 22 to the crank chamber 23 can be adjusted by opening and closing the valve element 212.
一方、第 1図に示される可変容量圧縮機制御装置(以後、制御装置と略称する) 1 1 0は容量制御弁 2 1のソレノイド 2 1 1を制御する。 すなわち、 制御装置 1 1 0は、 電源ライン 3から電源供給を受けて容量制御弁 2 1のソレノイド 2 1 1 に電流を流す。 電源ライン 3から受ける電源は、 ソレノイド 2 1 1と長躯列接続 されるソレノィド駆動手段 1 1 1と電流検出手段 1 1 2とに供給される。 この電 流は、 例えば車両の場合、 その環境に応じた目標電流値に対応する所定のデュー ティ比の電流である。  On the other hand, a variable displacement compressor control device (hereinafter abbreviated as a control device) 110 shown in FIG. 1 controls a solenoid 2 11 of a displacement control valve 21. That is, the control device 110 receives the power supply from the power supply line 3 and passes a current to the solenoid 2 1 1 of the capacity control valve 2 1. Power received from the power supply line 3 is supplied to the solenoid driving means 111 and the current detecting means 112 connected to the solenoid 211 in a long line. For example, in the case of a vehicle, this current is a current having a predetermined duty ratio corresponding to a target current value corresponding to the environment.
可変容量圧縮機制御装置 1 1 0では、 圧縮機制御手段 1 1 3力 ソレノィド駆 動手段 1 1 1を駆動して上記電流をソレノィド 2 1 1に供給し、 弁体 2 1 2への 負荷荷重を変化させて設定吸入圧を変更する。 電流検出手段 1 1 2はソレノィド 2 1 1への通電電流値を検出して圧縮機制御手段 1 1 3にフィードバックする。 この結果、 通電電流値を上記の目標電流値に次第に一致させることができる。 したがって、 ソレノィドへの通電量により弁体 2 1 2の動作点.、 すなわち吸入 室の圧力制御点を変化させることができる。 The variable capacity compressor control device 110 drives the compressor control means 1 1 3 force solenoid drive means 1 1 1 to supply the above current to the solenoid 2 1 1 and load the valve 2 1 2 To change the set suction pressure. The current detecting means 1 1 2 detects the value of the current supplied to the solenoid 2 11 and feeds it back to the compressor control means 1 13. As a result, the energized current value can be made to gradually coincide with the target current value. Therefore, the operating point of the valve body 212, that is, the pressure control point of the suction chamber, can be changed by the amount of electricity supplied to the solenoid.
一般に、 車載用の可変容量圧縮機は車両エンジン 3 0から動力供給を受けてい る。 また可変容量圧縮機 1 2 0は車両エンジン 3 0の動力又はトルクに最も負荷 をかけて消耗させる補機の一つである。 従って、 可変容量圧縮機 1 2 0は車両ェ ンジン 3 0にとつて大きな負荷となっている。  Generally, a vehicle-mounted variable displacement compressor is powered by a vehicle engine 30. Further, the variable displacement compressor 120 is one of the auxiliary machines that puts the most load on the power or torque of the vehicle engine 30 and consumes it. Therefore, the variable capacity compressor 120 has a large load on the vehicle engine 30.
上述した従来の可変容量圧縮機の制御装置では、 容量制御弁の設定吸入圧を通 常の設定吸入圧より高い値に変更することにより圧縮機の吐出量を低減すること ができる。 しかし、 例えば、 第 1図における車両エンジン 3 0のアイドリング状 態で外部冷媒回路 4 0の蒸発器 4 2の熱負荷が過大となる場合がある。 このよう な状態では、 吐出量が最大容量状態でも、 吸入圧力が設定吸入圧の上限を越える 場合が生じる。 このように、 容量制御の対象が吸入圧力であるため、 制御範囲が 限定される。従って、車両の実使用範囲で容量制御が不能となる領域が存在する。 このような場合、 圧縮機負荷の低減のため、 制御装置は容量制御弁への通電をォ フとし、 最小容量で運転することになる。 すなわち、 上述する従来の可変容量圧 縮機の制御装置は、 可変容量圧縮機の負荷制御ができず、 車室内の空調が著しく 損なわれるので好ましくない。  In the above-described conventional control device for a variable displacement compressor, the discharge amount of the compressor can be reduced by changing the set suction pressure of the displacement control valve to a value higher than the normal set suction pressure. However, for example, the heat load of the evaporator 42 of the external refrigerant circuit 40 may be excessive in the idling state of the vehicle engine 30 in FIG. In such a state, the suction pressure may exceed the upper limit of the set suction pressure even when the discharge amount is in the maximum displacement state. As described above, since the target of the capacity control is the suction pressure, the control range is limited. Therefore, there is an area where the capacity control becomes impossible in the actual use range of the vehicle. In such a case, in order to reduce the compressor load, the controller turns off the power supply to the displacement control valve and operates with the minimum displacement. That is, the above-described conventional control device for a variable displacement compressor is not preferable because load control of the variable displacement compressor cannot be performed, and air conditioning in the vehicle compartment is significantly impaired.
従って、 本発明は、 空調制御と圧縮機負荷制御との両者に好適な可変容量圧縮 機の制御装置を提供することを目的としている。 発明の開示  Accordingly, an object of the present invention is to provide a variable displacement compressor control device suitable for both air conditioning control and compressor load control. Disclosure of the invention
本発明は、 容量制御弁を備える可変容量圧縮機に対して設けられる制御装置に 関するものである。 この容量制御弁には、 冷媒圧力又は冷媒圧力差の変動を弁体 に伝達するための感圧機構と、 入力電流に応じて上記弁体への付与荷重を変化さ せて感圧機構の設定を変更するためのソレノィドとが備えられている。 この制御 装置は、 上記ソレノイドの通電状態を制御して容量制御弁の開度調整を行い、 制 御圧室の圧力を変更することにより吐出容量を制御するように動作する。  The present invention relates to a control device provided for a variable displacement compressor including a displacement control valve. The displacement control valve has a pressure-sensitive mechanism for transmitting fluctuations in the refrigerant pressure or the refrigerant pressure difference to the valve body, and a pressure-sensitive mechanism that varies the load applied to the valve body in accordance with the input current. And a solenoid for changing the pressure. This control device operates so as to control the energization state of the solenoid to adjust the opening of the displacement control valve, and to control the discharge displacement by changing the pressure of the control pressure chamber.
本発明の特徴となる制御装置は、 ソレノィド駆動手段と電流検出手段と圧縮機 制御手段と周波数発生手段と制御信号供給手段とを基本的に備えている。 The control device, which is a feature of the present invention, includes a solenoid drive unit, a current detection unit, and a compressor. It basically comprises a control means, a frequency generation means and a control signal supply means.
ソレノィド駆動手段は上記ソレノィドを駆動し、 電流検出手段はソレノィドの 通電電流を検出する。 圧縮機制御手段は、 複数の制御要件を受け、 受けた制御要 件及び電流検出手段から受ける通電電流値に基づいて、 複数の指令信号を出力す る。 複数の指令信号は容量制御弁の開閉に対して予め設定されている。 周波数発 生手段は複数の指令信号それぞれに対応するソレノィド駆動周波数を生成し出力 する。 制御信号供給手段は、 複数の指令信号のうちの一つを受け、 受けた指令信 号に対応するソレノィド駆動周波数を上記周波数発生手段の出力から選択する。 選択された駆動周波数は制御信号として上記ソレノィド駆動手段へ供給される。  The solenoid driving means drives the solenoid, and the current detecting means detects the current flowing through the solenoid. The compressor control means receives a plurality of control requirements, and outputs a plurality of command signals based on the received control requirements and a current value received from the current detection means. The plurality of command signals are preset for opening and closing the capacity control valve. The frequency generating means generates and outputs a solenoid drive frequency corresponding to each of the plurality of command signals. The control signal supply means receives one of the plurality of command signals, and selects a solenoid drive frequency corresponding to the received command signal from the output of the frequency generation means. The selected driving frequency is supplied as a control signal to the solenoid driving means.
したがって、 圧縮機制御手段が設定する条件に基づく、 それぞれの用途に対応 するそれぞれが異なるソレノイド駆動周波数が用意されている。 従って、 これら の選択により容量制御弁の特性を変化させることができる。  Therefore, different solenoid drive frequencies corresponding to the respective applications are prepared based on the conditions set by the compressor control means. Therefore, the characteristics of the displacement control valve can be changed by these selections.
本発明の特徴となる制御装置はソレノィドに並列に接続されフライホイール回 路を形成するダイオードを更に備える。 また、 複数のソレノイド駆動周波数とし て具体的なものは、 第 1のソレノィド駆動周波数と第 2のソレノィド駆動周波数 とである。 第 1のソレノィド駆動周波数からはフライホイール回路による通電電 流の平滑作用が得られる。 第 2のソレノイド駆動周波数は、 第 1のソレノイド駆 動周波数より低く、 前記フライホイール回路による通電電流の平滑作用を得るこ とはできない。  The control device, which is a feature of the present invention, further includes a diode connected in parallel with the solenoid to form a flywheel circuit. Further, specific examples of the plurality of solenoid drive frequencies include a first solenoid drive frequency and a second solenoid drive frequency. From the first solenoid drive frequency, a smoothing action of the current supplied by the flywheel circuit can be obtained. The second solenoid drive frequency is lower than the first solenoid drive frequency, and the flywheel circuit cannot obtain a smoothing action of the energizing current.
また、 車両空調装置に用いられる可変容量圧縮機の制御装置では、 圧縮機制御 手段は、 まず、 検出された所定の空調情報及び車両情報を受ける。 圧縮機制御手 段は受けた情報それぞれ及び電流検出手段から受ける通電電流値に基づいて指令 信号を出力する。 この指令信号は、 容量制御弁の開閉に対して予め設定された空 調制御と圧縮機負荷制御との条件に対応している。 周波数発生手段は、 第 1のソ レノィ ド駆動周波数と第 2のソレノィ ド駆動周波数とを生成し出力する。 第 1の ソレノィド駆動周波数は空調制御の指令信号に対応する。 第 2のソレノィド駆動 周波数は圧縮機負荷制御の指令信号に対応する第 1のソレノィド駆動周波数より 低い値を有する。 制御信号供給手段は、 空調制御と圧縮機負荷制御との指令信号 を受け、 受けた指令信号に対応する制御信号を周波数発生手段の出力から選択す る。 この制御信号は、 上記第 1又は第 2のソレノィド駆動周波数であり、 上記ソ レノィ ド駆動手段へ供給される。 In the control device for the variable displacement compressor used in the vehicle air conditioner, the compressor control means first receives the detected predetermined air conditioning information and vehicle information. The compressor control means outputs a command signal based on each of the received information and an energizing current value received from the current detecting means. This command signal corresponds to the preset conditions of air-conditioning control and compressor load control for opening and closing the capacity control valve. The frequency generator generates and outputs a first solenoid drive frequency and a second solenoid drive frequency. The first solenoid drive frequency corresponds to the air conditioning control command signal. The second solenoid drive frequency has a lower value than the first solenoid drive frequency corresponding to a command signal for compressor load control. The control signal supply means receives command signals for air conditioning control and compressor load control, and selects a control signal corresponding to the received command signal from the output of the frequency generation means. You. This control signal is the first or second solenoid drive frequency and is supplied to the solenoid drive means.
また、 好ましくは、 上記第 1のソレノイド駆動周波数は、 容量制御弁が感圧機 構に作用する冷媒ガスの圧力又は圧力差とソレノィドの通電電流値との双方に応 答して動作する開閉弁として機能する周波数に設定される。 また、 第 2のソレノ ィド駆動周波数は容量制御弁を感圧機構の動きとは無関係にオンとオフとの二つ の位置に制御する開閉弁として機能する周波数に設定される。  Preferably, the first solenoid drive frequency is set as an on-off valve that operates in response to both the pressure or pressure difference of the refrigerant gas acting on the pressure-sensitive mechanism and the current flowing through the solenoid. Set to a working frequency. The second solenoid drive frequency is set to a frequency that functions as an on-off valve that controls the displacement control valve to two positions, ON and OFF, regardless of the operation of the pressure-sensitive mechanism.
また、 車両情報がエンジン回転数及ぴ車速である場合、 圧縮機制御手段は、 圧 縮機負荷制御の指令信号を、 エンジン回転数及び車速の少なくとも一方が所定値 以下である状態で出力することができる。 また、 車両情報がスロッ トル開度であ る場合、 圧縮機負荷制御の指令信号を、 スロットル開度が所定範囲外の値である 状態で出力することもできる。  When the vehicle information is the engine speed and the vehicle speed, the compressor control means outputs a compressor load control command signal in a state where at least one of the engine speed and the vehicle speed is equal to or less than a predetermined value. Can be. Further, when the vehicle information is the throttle opening, the compressor load control command signal can be output in a state where the throttle opening is a value outside the predetermined range.
また、 圧縮機制御手段は、 圧縮機負荷制御の指令信号を、 ソレノイドを駆動し て、 可変容量圧縮機における圧縮機負荷又は圧縮機能力を表わす物理量が所定値 になるように、 又はエンジンの回転数が所定値になるように、 前記制御信号供給 手段へ出力してもよい。 図面の簡単な説明  In addition, the compressor control means transmits a compressor load control command signal to the solenoid by driving a solenoid such that a physical quantity representing a compressor load or a compression function force in the variable displacement compressor becomes a predetermined value, or an engine rotation. The number may be output to the control signal supply unit so that the number becomes a predetermined value. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来の車載用装置における機能プロックの一例を示す図であり、 第 2図は、 容量制御弁の一例を示す図であり、  FIG. 1 is a diagram showing an example of a function block in a conventional vehicle-mounted device, and FIG. 2 is a diagram showing an example of a capacity control valve.
第 3図は、 本発明の車載用装置における機能プロックの実施の一形態を示す図 であり、  FIG. 3 is a diagram showing an embodiment of a functional block in the vehicle-mounted device of the present invention,
第 4図は、 第 3図の部分詳細を示す図であり、  FIG. 4 is a diagram showing details of a part of FIG. 3,
第 5図は、 第 3図における 4 0 0 H zのソレノィド駆動周波数に対する通電電 流波形の一形態を示す図であり、  FIG. 5 is a diagram showing one form of an energizing current waveform with respect to a solenoid drive frequency of 400 Hz in FIG. 3,
第 6図は、 本発明による可変容量圧縮機の吸入圧力特性の一形態を示す図であ り、 かつ  FIG. 6 is a view showing one form of a suction pressure characteristic of the variable displacement compressor according to the present invention, and
第 7図は、 第 3図における制御装置の主要動作手順の実施の一形態を示すフロ 一チャートである。 発明を実施するための最良の形態 FIG. 7 is a flowchart showing an embodiment of a main operation procedure of the control device in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 第 3図は本発明により形成される車載用装置における機能プロックの実施の一 形態を示す図である。  The present invention will be described in more detail with reference to the accompanying drawings. FIG. 3 is a diagram showing an embodiment of a function block in a vehicle-mounted device formed according to the present invention.
図示される可変容量圧縮機制御装置 (以後、 制御装置と略称する) 1 0は各種 センサー 1および各種モード設定スィツチ 2から信号を受けて可変容量圧縮機 2 0における吐出容量を最適に制御する。 各種センサー 1には、 例えば、 室内温度 センサー、 冷媒温度センサ、 冷媒圧力センサー、 車速検出手段、 エンジン回転数 検出手段、 スロットル開度検出手段などがある。 各種モード設定スィッチには、 例えば、 空調温度設定スィッチなどがある。 本発明の特徴としては、 制御装置 1 0への入力に可変容量圧縮機 2 0のトルク値を加え、 圧縮機負荷の制御に用いる 点がある。  The illustrated variable displacement compressor control device (hereinafter abbreviated as a control device) 10 receives signals from various sensors 1 and various mode setting switches 2 to optimally control the discharge capacity of the variable displacement compressor 20. The various sensors 1 include, for example, an indoor temperature sensor, a refrigerant temperature sensor, a refrigerant pressure sensor, a vehicle speed detecting unit, an engine speed detecting unit, a throttle opening detecting unit, and the like. The various mode setting switches include, for example, an air conditioning temperature setting switch. A feature of the present invention is that the torque value of the variable displacement compressor 20 is added to the input to the control device 10 and used for controlling the compressor load.
制御装置 1 0は、 ソレノィド駆動手段 1 1、 電流検出手段 1 2、 圧縮機制御手 段 1 3、 周波数発生手段 1 4、 制御信号供給手段 1 5、 及びダイオード 1 6を有 する。  The control device 10 includes a solenoid driving unit 11, a current detection unit 12, a compressor control unit 13, a frequency generation unit 14, a control signal supply unit 15, and a diode 16.
又、 制御装置 1 0では、 第 4図に示されるように、 圧縮機制御手段 1 3が、 所 定個所の温度、 可変容量圧縮機 2 0における空調モードの設定及び可変容量圧縮 機 2 0のトルク、 並びに、 E C U (エンジン制御ユニット) 3 1から受けるェン ジン回転数及びスロットル開度、 それぞれの値を入力する。  Further, in the control device 10, as shown in FIG. 4, the compressor control means 13 controls the temperature of a predetermined location, the setting of the air conditioning mode in the variable capacity compressor 20 and the control of the variable capacity compressor 20. Input the torque, the engine speed received from the ECU (engine control unit) 31 and the throttle opening, respectively.
可変容量圧縮機 2 0は、 従来と同様の構成であるので、 ガスの吐出容量を制御 する容量制御弁 2 1を含め、 構造的な説明は省略する。 容量制御弁 2 1には弁体 2 1 2、 ベローズを有する感圧機構 2 1 3、 及びソレノィド 2 1 1を有する。 弁 体 2 1 2は、 ガス通路途中に備えられ、 吐出室 2 2からクランク室 2 3へのガス の流れを調整する。 感圧機構 2 1 3は予め設定された値に対する吸入室 2 4のガ ス圧力の変動を検出して弁体 2 1 2に伝達する。 ソレノイド 2 1 1は通電電流の 量に応じ弁体 2 1 2への付与荷重を変化させるように感圧機構 2 1 3の設定値を 変更するために備えられる。  Since the variable displacement compressor 20 has the same configuration as the conventional one, the structural description including the displacement control valve 21 for controlling the gas displacement is omitted. The displacement control valve 21 has a valve element 2 12, a pressure-sensitive mechanism 2 13 having a bellows, and a solenoid 2 11. The valve element 212 is provided in the middle of the gas passage, and regulates the flow of gas from the discharge chamber 22 to the crank chamber 23. The pressure sensing mechanism 2 13 detects a change in the gas pressure of the suction chamber 24 with respect to a preset value and transmits the change to the valve element 2 12. The solenoid 211 is provided to change the set value of the pressure-sensitive mechanism 21 to change the load applied to the valve element 212 according to the amount of the supplied current.
また、 可変容量圧縮機 2 0は、 自己の負荷を検出するトルクセンサー 2 5を有 し、 検出したトルク値を圧縮機負荷制御のため圧縮機制御手段 1 3に通知してい る。 The variable displacement compressor 20 has a torque sensor 25 for detecting its own load. Then, the detected torque value is notified to the compressor control means 13 for compressor load control.
制御装置 1 0では、 可変容量圧縮機 2 0が、 ソレノイド 2 1 1における通電状 態の制御を受けて容量制御弁 2 1の開度を調整することにより、 ガス通路に接続 するクランク室 2 3のような制御圧室の圧力を変更して吐出量を制御する。  In the control device 10, the variable displacement compressor 20 adjusts the opening of the displacement control valve 21 in response to the control of the energized state of the solenoid 21 1, whereby the crank chamber 2 3 connected to the gas passage is opened. The discharge amount is controlled by changing the pressure of the control pressure chamber as described above.
次に第 3図及び第 4図を併せ参照して制御装置 1 0における構成要素それぞれ について説明する。  Next, components of the control device 10 will be described with reference to FIGS. 3 and 4. FIG.
ソレノィド駆動手段 1 1は車両の電源ライン 3をソレノィド 2 1 1に接続して これを駆動する。 すなわち、 ソレノイド駆動手段 1 1はスイッチング素子で構成 され、 受ける周波数により接続回路のオン Zオフ動作をする。 この動作のオン Z オフ比率であるデューティ比を変化させてソレノィド 2 1 1に流れる通電電流を 調整している。 すなわち、 通電電流はパルス幅変調方式 (P WM制御) により調 整されている。 電流検出手段 1 2は、 例えば、 既知の抵抗値を有する抵抗体であ り、 ソレノイドの通電電流を検出する。  The solenoid drive means 11 connects the power line 3 of the vehicle to the solenoid 2 1 1 and drives it. That is, the solenoid driving means 11 is constituted by a switching element, and performs an on-Z-off operation of the connection circuit according to the frequency received. The energizing current flowing through the solenoid 211 is adjusted by changing the duty ratio, which is the ON / OFF ratio of this operation. That is, the conduction current is adjusted by the pulse width modulation method (PWM control). The current detecting means 12 is, for example, a resistor having a known resistance value, and detects a current flowing through the solenoid.
圧縮機制御手段 1 3は、 上述した第 4図に示したような圧縮機トルク値を含む 各種センサーの検出値を受け、 受けた値及ぴ電流検出手段 1 2から受ける通電電 流値に基づく情報から、 容量制御弁 2 1の開閉に対する空調制御又は圧縮機制御 の指令信号を出力する。 すなわち、 車両が通常走行の際には空調制御の指令信号 が出力される。 他方、 例えば車両が停止して車両エンジン 3◦がアイドリング状 態の場合には、 圧縮機負荷制御の指令信号が出力される。 この場合、 車両ェンジ ン 3 0の負荷を低減するように、 空調制御が圧縮機負荷制御に変更される。 また 更に、 可変容量圧縮機 2 0の負荷が所定の値になるように、 ガス吐出量が制御さ れる。  The compressor control means 13 receives detection values of various sensors including the compressor torque value as shown in FIG. 4 described above, and based on the received value and the energized current value received from the current detection means 12. From the information, a command signal for air-conditioning control or compressor control for opening and closing the capacity control valve 21 is output. That is, when the vehicle is traveling normally, a command signal for air conditioning control is output. On the other hand, for example, when the vehicle stops and the vehicle engine 3 ° is in an idling state, a command signal for compressor load control is output. In this case, the air conditioning control is changed to the compressor load control so as to reduce the load on the vehicle engine 30. Further, the gas discharge amount is controlled so that the load of the variable capacity compressor 20 becomes a predetermined value.
周波数発生手段 1 4は、 空調制御の指令信号には 4 0 O H z及び圧縮機負荷制 御の指令信号には 1 0 H zそれぞれのソレノィド駆動周波数を生成し出力する。 制御信号供給手段 1 5は圧縮機制御手段 1 3から空調制御の指令信号又は圧縮機 負荷制御の指令信号を受ける。 更に、 制御信号供給手段 1 5は受けた指令信号に 対応するソレノィド駆動周波数を周波数発生手段 1 4の出力から選択しその周波 数によるオン/オフのパルスをソレノィド駆動手段 1 1へ供給する。 ダイオード 1 6はソレノィド 2 1 1と並列にフライホイール回路としてソレノィド 2 1 1の 通電電流の平滑用に接続されている。 The frequency generating means 14 generates and outputs solenoid drive frequencies of 40 OHz for the command signal of the air conditioning control and 10 Hz for the command signal of the compressor load control. The control signal supply means 15 receives a command signal for air conditioning control or a command signal for compressor load control from the compressor control means 13. Further, the control signal supply means 15 selects a solenoid drive frequency corresponding to the received command signal from the output of the frequency generation means 14 and supplies ON / OFF pulses based on the frequency to the solenoid drive means 11. diode Reference numeral 16 denotes a flywheel circuit connected in parallel with the solenoid 211 for smoothing the current flowing through the solenoid 211.
容量制御弁 2 1のソレノイド 2 1 1では、 一方の端子はソレノィド駆動手段 1 1を介して車両の電源ライン 3に接続され、 他方の端子は電流検出回路 1 2を介 してアースラインに接続されている。 この回路構成により上述のフライホイール 回路に流れる電流は、 電流検出手段 1 2により検出され、 圧縮機制御手段 1 3に 通知される。  In the solenoid 2 1 1 of the capacity control valve 2 1, one terminal is connected to the power line 3 of the vehicle via the solenoid driving means 11, and the other terminal is connected to the earth line via the current detection circuit 12. Have been. With this circuit configuration, the current flowing through the above-described flywheel circuit is detected by the current detection means 12 and notified to the compressor control means 13.
次に、 第 3図に第 5図及び第 6図を併せ参照して圧縮機制御手段 1 3が空調制 御の指令信号を生成した際の回路動作について説明する。  Next, a circuit operation when the compressor control means 13 generates a command signal for air-conditioning control will be described with reference to FIG. 3, FIG. 5 and FIG.
この空調制御の場合、 制御信号供給手段 1 5は空調制御信号に対応する 4 0 0 H zのソレノィド駆動周波数をソレノィド駆動手段 1 1 へ出力する。 この周波数 領域ではソレノィド 2 1 1におけるコイルのインダクタンスのため、 ソレノィド 駆動手段 1 1が 「オン」 になった際に、 通電電流が即時に立ち上がらない。 従つ て、 通電電流が最大になる前にソレノィド駆動手段 1 1が 「オフ」 に切り替わる 事態となる。 また 「オフ」 に切り替わっても、 ダイオード 1 6によるフライホイ ール回路により電流が還流され、 通電電流が 「ゼロ」 になる前にソレノイド駆動 手段 1 1カ 「オン」 に切り替わる。 このため、 通電電流は、 第 5図で示されるよ うに、 鋸齒状波を描くように平滑化される。  In the case of this air conditioning control, the control signal supply means 15 outputs a solenoid drive frequency of 400 Hz corresponding to the air conditioning control signal to the solenoid drive means 11. In this frequency region, the current does not rise immediately when the solenoid drive unit 11 is turned “on” because of the inductance of the coil in the solenoid 2 11. Therefore, the solenoid driving means 11 is switched to "OFF" before the current is maximized. Also, even if the current is switched to "OFF", the current is returned by the flywheel circuit formed by the diode 16, and the solenoid driving means 11 is switched to "ON" before the energized current becomes "zero". Therefore, the conduction current is smoothed so as to draw a sawtooth wave as shown in FIG.
更に、 デューティ比を大きくすることにより 「オン」 の割合が大きくなるので 通電電流が大きくなる。 すなわち、 デューティ比を変更することにより、 通電電 流を変更することができる。  Furthermore, by increasing the duty ratio, the ratio of “on” increases, so that the energized current increases. That is, the energizing current can be changed by changing the duty ratio.
従って、 弁体 2 1 2は、 このような周波数領域では感圧機構 2 1 3に作用する 吸入圧力とソレノィド 2 1 1に流れる通電電流とに応答して動作する開閉弁とし て機能する。 すなわち、 第 6図に示されるように、 通電電流に対し制御吸入圧力 が一義的に決まる容量制御弁として機能する。  Therefore, the valve element 212 functions as an on-off valve that operates in response to the suction pressure acting on the pressure-sensitive mechanism 211 and the current flowing through the solenoid 211 in such a frequency range. That is, as shown in FIG. 6, it functions as a displacement control valve whose control suction pressure is uniquely determined with respect to the supplied current.
圧縮機制御手段 1 3が圧縮機負荷制御の指令信号を生成した場合、 ソレノイド 駆動周波数は 「1 0 H z」 に設定される。 すなわち、 このような周波数領域では ソレノィド駆動手段 1 1力 S 「オン」 状態で、 ソレノィド 2 1 1の通電電流は車両 電源電圧とソレノィド抵抗値とで決定される最大電流にまで到達する。 この状態 では、 ソレノイド 2 11の電磁力は最大となり、 容量制御弁 21の弁体 2 1 2は 感圧機構 21 3に作用する吸入圧力に無関係に全閉となる方向に働く。 When the compressor control means 13 generates a command signal for compressor load control, the solenoid drive frequency is set to “10 Hz”. In other words, in such a frequency region, the current flowing through the solenoid 211 reaches the maximum current determined by the vehicle power supply voltage and the solenoid resistance in the state where the solenoid driving means 11 is in the "ON" state. This state Then, the electromagnetic force of the solenoid 211 becomes maximum, and the valve element 212 of the displacement control valve 21 works in a direction in which it is fully closed regardless of the suction pressure acting on the pressure-sensitive mechanism 213.
他方、 ソレノイド駆動手段 1 1力 S 「オフ」 状態に変化した際には、 ソレノイド 2 1 1の通電電流はゼロにまで到達する。 この結果、 ソレノイド 211は消磁さ れるため、 感圧機構 21 3に作用する吸入圧力に無関係にばね 223によって弁 体 21 2が強制開放される。  On the other hand, when the solenoid driving means 11 changes to the "off" state, the current flowing through the solenoid 2 11 reaches zero. As a result, the solenoid 211 is demagnetized, so that the valve body 212 is forcibly opened by the spring 223 regardless of the suction pressure acting on the pressure-sensitive mechanism 213.
すなわち、 このような低周波領域では 「オン」 と 「オフ」 との 2位置制御の開 閉弁として機能し、 いわゆる 「オン/オフ」 のデューティ制御弁となる。 デュー ティ制御弁では、デューティ比 「ゼロ」 でソレノイド 21 1の通電電流が 「ゼロ」 となり、 弁体 21 2が開放されて圧縮機の吐出容量は最小となる。 デューティ比 が 100 %では、 ソレノイド 21 1の通電電流が最大値となり、 弁体 21 2が全 閉となって可変容量圧縮機 20の吐出容量は最大となる。 従って、 デューティ比 をゼロから 1 00%まで変化させることにより吐出容量を最小から最大までの間 で変化させて所定の値に設定することができる。  That is, in such a low frequency region, the valve functions as an open / close valve for two-position control of “on” and “off”, and is a so-called “on / off” duty control valve. In the duty control valve, when the duty ratio is “zero”, the current flowing through the solenoid 211 becomes “zero”, the valve body 212 is opened, and the discharge capacity of the compressor is minimized. When the duty ratio is 100%, the current flowing through the solenoid 211 becomes the maximum value, the valve body 212 is fully closed, and the discharge capacity of the variable displacement compressor 20 becomes the maximum. Therefore, by changing the duty ratio from zero to 100%, the discharge capacity can be changed from the minimum to the maximum and set to a predetermined value.
次に、 第 3図に第 7図を併せ参照して空調装置に用いられる可変容量圧縮機 2 0の制御装置 10における主要動作手順について説明する。  Next, a main operation procedure in the control device 10 of the variable displacement compressor 20 used in the air conditioner will be described with reference to FIG. 3 and FIG.
空調装置の電源がオン (手順 S 1の YES) された際、 制御装置 10は圧縮機 制御手段 1 3が入力情報、 例えば車速から走行中を検知した際には空調制御の指 令信号を生成 (手順 S 2の NO) し制御信号供給手段 1 5に通知する。 従って、 制御信号供給手段 1 5はカウンタ 「N= 0」 の初期状態 (手順 S 3) で、 ソレノ イド駆動周波数 400Hzを選択 (手順 S 4) する。 ソレノイド駆動手段 1 1は 制御信号供給手段 1 5から選択されたソレノィド駆動周波数 400Hzのパルス を受ける。 一方、 第 6図において通常の空調モードで吸入室圧力 2 k g/ cm2 Gを設定する場合、 例えばソレノィド 21 1の通電電流を電流値 i Nに設定する デューティ比で駆動される。 この結果、 上述したように、 可変容量圧縮機 20で は電流値 i Nで決定される吸入圧力が維持される。 When the power of the air conditioner is turned on (YES in step S1), the controller 10 generates an air conditioning control command signal when the compressor control means 13 detects that the vehicle is running based on input information, for example, the vehicle speed. (NO in step S2) Then, the control signal supply means 15 is notified. Therefore, the control signal supply means 15 selects the solenoid drive frequency of 400 Hz (procedure S4) in the initial state of the counter “N = 0” (procedure S3). The solenoid driving means 11 receives a pulse having a solenoid driving frequency of 400 Hz selected from the control signal supply means 15. On the other hand, when the suction chamber pressure is set to 2 kg / cm 2 G in the normal air-conditioning mode in FIG. 6, for example, the solenoid 211 is driven with a duty ratio that sets the energizing current to the current value i N. As a result, as described above, in the variable displacement compressor 20, the suction pressure determined by the current value i N is maintained.
一方、 上記手順 S 2が 「YES」 で、 圧縮機制御手段 1 3が、 例えば車速が所 定値以下であることを検知した際には、 圧縮機負荷制御の指令信号を生成して制 御信号供給手段 1 5に通知する。 従って、 制御信号供給手段 15は 「N=0」 の 初期状態 (手順 S 1 1の YES) で、 ソレノィド駆動周波数 10Hzを選択 (手 順 S 1 2) すると共にデューティ比 DTを予め設定された初期値 DT 0でソレノ ィド駆動手段 1 1へ出力 (手順 S 1 3) する。 ソレノィド駆動手段 11は制御信 号供給手段 1 5から選択されたソレノィド駆動周波数 1 OHzでデューティ比 D Tのパルスにより駆動される。 On the other hand, if the above procedure S2 is "YES" and the compressor control means 13 detects, for example, that the vehicle speed is equal to or lower than a predetermined value, the compressor control means 13 generates a compressor load control command signal and generates a control signal. Notify supply means 15. Therefore, the control signal supply means 15 sets “N = 0”. In the initial state (YES in step S11), select the solenoid drive frequency of 10Hz (step S12) and output the duty ratio DT to the solenoid drive means 11 with the preset initial value DT0 ( Step S13). The solenoid drive means 11 is driven by a pulse having a duty ratio DT at a solenoid drive frequency of 1 OHz selected from the control signal supply means 15.
ここで、 圧縮機制御手段 1 3は、 可変圧縮機 20のトルク値丁が 「T2」 より 大きく 「Τ 1」 より小さいという範囲内になるように吐出容量を制御する。  Here, the compressor control means 13 controls the discharge capacity so that the torque value of the variable compressor 20 is within a range that is larger than “T2” and smaller than “Τ1”.
従って、 圧縮機制御手段 1 3は可変圧縮機 20のトルク値 Τを測定 (手順 S 1 Therefore, the compressor control means 13 measures the torque value の of the variable compressor 20 (step S 1
4) する。 測定の結果、 圧縮機トルク丁が 「Τ 1」 より小さい場合 (手順 S 1 5 の YES) でかつ圧縮機トルク丁が 「T2」 より大きい場合 (手順 S 1 6の ΥΕ4) Yes. As a result of the measurement, when the compressor torque is smaller than “Τ1” (YES in step S15) and when the compressor torque is larger than “T2” (ΥΕ in step S16)
5) には、 設定中のデューティ比 DTを変更せず (手順 S 1 7) そのままの設定 で出力 (手順 S 1 8) し、 現状の吐出容量制御状態を維持すると共にカウンタ Ν を一つ歩進 (手順 S 19) させて上記手順 S 1に戻り、 手順は繰り返される。 上記手順 S 1 5力 S 「ΝΟ」 で圧縮機トルク丁が 「Τ 1」 より大きい場合、 圧縮 機制御手段 1 3は、 設定中のデューティ比 DTから予め設定された所定値 ADT を減少 (手順 S 21) させて上記手順 S 1 8に進む。 従って、 減少されたデュー ティ比 D Τが設定されるので、 吐出容量は減少し圧縮機トルクも減少する。 他方、 上記手順 S 16力 S 「ΝΟ」 で圧縮機トルク丁が 「Τ 2」 より小さい場合 には、 圧縮機制御手段 1 3は、 設定中のデューティ比 DTに予め設定された所定 値 ADTを増加 (手順 S 22) させて上記手順 S 1 8に進む。 従って、 増加され たデューティ比 DTが設定されるので、 吐出容量は増加し圧縮機トルクも増加す る。 こうして圧縮機トルク Τが所定範囲内に収まるように制御される。 In step 5), the duty ratio DT being set is not changed (step S17), the output is maintained (step S18), and the current discharge capacity control state is maintained, and the counter Ν is incremented by one. (Step S19), and returns to Step S1 above, and the procedure is repeated. If the compressor torque is greater than “Τ1” in the above procedure S15 Force S “ΝΟ”, the compressor control means 13 reduces the preset predetermined value ADT from the duty ratio DT being set (procedure S21) Then, proceed to the above step S18. Therefore, the reduced duty ratio D Τ is set, so that the displacement is reduced and the compressor torque is also reduced. On the other hand, if the compressor torque is smaller than “Τ2” in the above procedure S16 force S “ΝΟ”, the compressor control means 13 changes the duty ratio DT being set to the predetermined value ADT. Increase (step S22) and proceed to step S18. Therefore, the increased duty ratio DT is set, so that the displacement is increased and the compressor torque is also increased. Thus, control is performed so that the compressor torque 内 falls within a predetermined range.
上記説明では、 圧縮機制御手段は、 車速が所定値以下の場合に圧縮機負荷制御 の指令信号を生成するとしたが、 車速に代わりエンジン回転数としてもよい。 こ の場合、 低回転時の車両エンジンの負荷が軽減されるので、 この状態で車両ェン ジンの過負荷による停止が回避される。 また、 車速及ぴエンジン回転数の両者共 に所定値以下となった場合に圧縮機負荷制御の指令信号が生成されるとしてもよ い。  In the above description, the compressor control means generates a command signal for compressor load control when the vehicle speed is equal to or lower than a predetermined value. However, the engine speed may be used instead of the vehicle speed. In this case, the load on the vehicle engine during low rotation is reduced, and in this state, stoppage due to overload of the vehicle engine is avoided. Further, a command signal for compressor load control may be generated when both the vehicle speed and the engine speed become equal to or less than predetermined values.
更に、 上記説明では、 指令信号または制御信号として二つのみが取り上げられ ているが、 他の各種センサ一の出力値を所定値に取り上げて制御することもでき るので、 幅広く多くの用途に対して制御が可能となる。 Furthermore, in the above description, only two are taken as command or control signals. However, since the output value of other various sensors can be controlled to a predetermined value, control can be performed for a wide variety of applications.
これまで、 車載用の空調装置に用いられる可変容量圧縮機の負荷制御について 説明したが、 上記機能を満たす限り、 機能のブロック構成及び動作手順の変更は 自由であり、 本発明が上記説明により限定されるものではない。 更に、 上述した ように、 本発明は、 ピストンまたはプランジャーをガスの吐出 ·吸入により運動 させる機器全般に適用することが可能である。 産業上の利用可能性  So far, the load control of the variable displacement compressor used in the vehicle air conditioner has been described. However, as long as the above functions are satisfied, the function block configuration and operation procedure can be freely changed, and the present invention is limited by the above description. It is not what is done. Further, as described above, the present invention can be applied to all devices that move a piston or plunger by discharging and inhaling gas. Industrial applicability
以上説明したように本発明の可変容量圧縮機の制御装置によれば、 ソレノィド 駆動周波数を選択的に変化させて容量制御弁のソレノィドを駆動しているので、 その選択的変化に対応して容量制御弁の特性を変化させることができるという効 果が得られる。  As described above, according to the variable displacement compressor control device of the present invention, the solenoid drive frequency is selectively changed to drive the solenoid of the displacement control valve. The effect is obtained that the characteristics of the control valve can be changed.
また、 容量制御弁のソレノイドがフライホイール回路を形成しているので、 通 電電流の平滑作用が得られるソレノィド駆動周波数では、 感圧機構に作用する圧 力または圧力差とソレノィドに流れる電流との双方に応答して動作する空調制御 に、 好適な容量制御弁として機能できるという効果が得られる。  In addition, since the solenoid of the displacement control valve forms a flywheel circuit, at the solenoid drive frequency at which the conduction current can be smoothed, the pressure or pressure difference acting on the pressure-sensitive mechanism and the current flowing through the solenoid are different. The effect of being able to function as a suitable capacity control valve for air conditioning control that operates in response to both is obtained.
他方、 容量制御弁のソレノイドがフライホイール回路を形成しているが、 通電 電流の平滑作用が得られないような低いソレノィド駆動周波数では、 感圧機構に 無関係なオン ·オフの 2位置制御の容量制御弁として機能するという効果が得ら れる。 従って、 車両に装着される種々のセンサ一または検出手段により多用途の 制御が可能になる。  On the other hand, although the solenoid of the displacement control valve forms a flywheel circuit, with a low solenoid drive frequency that does not provide a smoothing action of the energizing current, the capacity of the two-position control of on / off independent of the pressure-sensitive mechanism The effect of functioning as a control valve is obtained. Therefore, versatile control can be performed by various sensors or detecting means mounted on the vehicle.
すなわち、 オン オフの 2位置制御の容量制御弁では、 種々のセンサーまたは 検出手段により圧縮機負荷の制御ができるので、 空調制御の犠牲を最小限に抑え た上で、 車両エンジン制御の安定化を図ることができるという効果が得られる。 また、 アイドリング状態、 加速状態、 または減速状態のみで圧縮機負荷制御が 実行できるので、 空調制御を犠牲にする領域が少ないという効果も得られる。 したがって、 以上で説明したように、 本発明にかかる可変容量圧縮機の制御装 置は、 一般の空調設備に対する各種モード設定の制御に加えて、 特に、 車両に搭 載する空調設備のように、 車両搭載の電源装置の負荷を勘案した木目の細かい空 調制御に適している。 すなわち、 車両の速度、 エンジン回転数、 またはスロット ルの開閉度などを制御条件とすることが容易である。 In other words, with the on / off two-position control capacity control valve, the compressor load can be controlled by various sensors or detection means, minimizing the sacrifice of air conditioning control and stabilizing vehicle engine control. The effect that it can be achieved is obtained. Further, since the compressor load control can be performed only in the idling state, the acceleration state, or the deceleration state, there is obtained an effect that there is little area where air conditioning control is sacrificed. Therefore, as described above, the control device for a variable displacement compressor according to the present invention is particularly suitable for mounting on a vehicle in addition to controlling various mode settings for general air conditioning equipment. It is suitable for fine-grained air-conditioning control, taking into account the load of the onboard power supply unit, like the air-conditioning equipment installed. That is, it is easy to set the control conditions such as the vehicle speed, the engine speed, or the degree of opening and closing of the throttle.

Claims

請 求 の 範 囲 The scope of the claims
1 . 容量制御弁を備える可変容量圧縮機に対する制御装置であって、 前記容 量制御弁は冷媒圧力又は冷媒圧力差の変動を弁体に伝達するための感圧機構と入 力電流に応じて前記弁体への付与荷重を変化させて前記感圧機構の設定を変更す るためのソレノィドとを有し、 前記制御装置は、 前記ソレノイドの通電状態を制 御して前記容量制御弁の開度調整を行い、 制御圧室の圧力を変更することにより 前記容量制御弁の吐出容量を制御するものであり、 前記制御装置は: 1. A control device for a variable displacement compressor having a displacement control valve, wherein the displacement control valve is configured to transmit a change in refrigerant pressure or a difference in refrigerant pressure to a valve body according to a pressure-sensitive mechanism and an input current. A solenoid for changing a setting of the pressure-sensitive mechanism by changing a load applied to the valve body, wherein the control device controls an energized state of the solenoid to open the capacity control valve. Controlling the discharge capacity of the displacement control valve by changing the pressure of the control pressure chamber.
前記ソレノィドを駆動するソレノィ ド駆動手段と、  A solenoid driving means for driving the solenoid,
前記ソレノィドの通電電流を検出する電流検出手段と、複数の制御要件を受け、 受けた制御要件及ぴ前記電流検出手段から受ける通電電流値に基づレ、て前記容量 制御弁の開閉について予め設定された複数の制御に対する指令信号を出力する圧 縮機制御手段と、  Current detection means for detecting the current flowing through the solenoid; and a plurality of control requirements; presetting the opening and closing of the capacity control valve based on the received control requirements and a current value received from the current detection means. Compressor control means for outputting a command signal for the plurality of controls performed,
複数の指令信号それぞれに対応するソレノィド駆動周波数を生成し出力する周 波数発生手段と、  Frequency generating means for generating and outputting a solenoid drive frequency corresponding to each of the plurality of command signals;
前記複数の指令信号のうちの一つを受け、 受けた指令信号に対応するソレノィ ド駆動周波数を前記周波数発生手段の出力から選択し制御信号として前記ソレノ ィド駆動手段へ供給する制御信号供給手段と  Control signal supply means for receiving one of the plurality of command signals, selecting a solenoid drive frequency corresponding to the received command signal from an output of the frequency generation means, and supplying the selected drive signal as a control signal to the solenoid drive means When
を備えることを特徴とする可変容量圧縮機の制御装置。  A control device for a variable displacement compressor, comprising:
2 . 請求項 1において、 前記ソレノイドに並列に接続されフライホイール回 路を形成するダイォードを更に備え、  2. The device according to claim 1, further comprising a diode connected in parallel to the solenoid to form a flywheel circuit,
前記ソレノィド駆動周波数として、 前記フライホイール回路による通電電流の 平滑作用が得られる第 1のソレノィド駆動周波数と、 前記第 1のソレノィド駆動 周波数より低く、 前記フライホイール回路による通電電流の平滑作用が得られな い第 2のソレノィ ド駆動周波数とを有することを特徴とする可変容量圧縮機の制  As the solenoid drive frequency, a first solenoid drive frequency at which a smoothing action of the current supplied by the flywheel circuit is obtained; and A variable displacement compressor characterized by having a second solenoid drive frequency.
3 . 容量制御弁を備える可変容量圧縮機に対する制御装置であって、 前記容 量制御弁は冷媒圧力又は冷媒圧力差の変動を弁体に伝達するための感圧機構と入 力電流に応じて前記弁体への付与荷重を変化させて前記感圧機構の設定を変更す るためのソレノィドとを有し、 前記制御装置は、 前記ソレノィドの通電状態を制 御して前記容量制御弁の開度調整を行い、 制御圧室の圧力を変更することにより 前記容量制御弁の吐出容量を制御するものであり、 前記制御装置は: 3. A control device for a variable displacement compressor having a displacement control valve, wherein the displacement control valve is configured to transmit a change in refrigerant pressure or a difference in refrigerant pressure to a valve body in accordance with a pressure-sensitive mechanism and an input current. Change the setting of the pressure-sensitive mechanism by changing the load applied to the valve body. The control device controls the energization state of the solenoid to adjust the opening of the capacity control valve, and changes the pressure of the control pressure chamber to control the capacity of the capacity control valve. Controlling the discharge capacity, wherein the control device comprises:
前記ソレノィドを駆動するソレノィ ド駆動手段と、  A solenoid driving means for driving the solenoid,
前記ソレノィドの通電電流を検出する電流検出手段と、  Current detecting means for detecting a current supplied to the solenoid,
検出された所定の空調情報及び車両情報を受け、 受けた情報それぞれ及び前記 電流検出手段から受ける通電電流値に基づいて前記容量制御弁の開閉に対して予 め設定された空調制御と圧縮機負荷制御との条件に対応する指令信号を出力する 圧縮機制御手段と、  Air-conditioning control and compressor load preset for opening and closing the capacity control valve based on the detected predetermined air-conditioning information and vehicle information, and based on each of the received information and an energizing current value received from the current detecting means. Compressor control means for outputting a command signal corresponding to control conditions;
空調制御の指令信号に対応する第 1のソレノィド駆動周波数と圧縮機負荷制御 の指令信号に対応する第 1のソレノィド駆動周波数より低い第 2のソレノィド駆 動周波数とを生成し出力する周波数発生手段と、  Frequency generating means for generating and outputting a first solenoid drive frequency corresponding to a command signal for air conditioning control and a second solenoid drive frequency lower than the first solenoid drive frequency corresponding to a command signal for compressor load control; ,
前記空調制御と圧縮機負荷制御との指令信号を受け、 受けた指令信号に対応す る第 1及び第 2のうちの一つのソレノィド駆動周波数を制御信号として前記周波 数発生手段の出力から選択し前記ソレノィド駆動手段へ供給する制御信号供給手 段と  A command signal for the air conditioning control and the compressor load control is received, and one of the first and second solenoid driving frequencies corresponding to the received command signal is selected as a control signal from the output of the frequency generating means. Means for supplying a control signal to the solenoid driving means;
を備えることを特徴とする可変容量圧縮機の制御装置。  A control device for a variable displacement compressor, comprising:
4 . 請求項 3において、 前記第 1のソレノイ ド駆動周波数は、 前記容量制御 弁が前記感圧機構に作用する冷媒ガスの圧力又は圧力差のいずれかと前記ソレノ ィドの通電電流値との双方に応答して動作する開閉弁として機能する周波数に設 定されており、 かつ前記第 2のソレノィド駆動周波数は、 前記容量制御弁を前記 感圧機構の動きとは無関係にオンとオフとの二つの位置に制御する開閉弁として 機能する周波数に設定されていることを特徴とする可変容量圧縮機の制御装置。  4. In claim 3, the first solenoid drive frequency is determined by both the pressure or the pressure difference of the refrigerant gas acting on the pressure-sensitive mechanism by the displacement control valve and the current flowing through the solenoid. The second solenoid drive frequency is set to a frequency of on and off irrespective of the operation of the pressure-sensitive mechanism. A control device for a variable displacement compressor, characterized in that the control device is set to a frequency that functions as an on-off valve that controls two positions.
5 . 請求項 3又は 4において、 前記車両情報がエンジン回転数及び車速であ り、 前記圧縮機制御手段は、 圧縮機負荷制御の指令信号を、 前記エンジン回転数 及び車速の少なくとも一方が所定値以下である場合に出力することを特徴とする 可変容量圧縮機の制御装置。  5. The vehicle according to claim 3 or 4, wherein the vehicle information is an engine speed and a vehicle speed, and the compressor control unit outputs a command signal for compressor load control, and at least one of the engine speed and the vehicle speed is a predetermined value. A control device for a variable displacement compressor, which outputs when:
6 . 請求項 3又は 4において、 前記車両情報がスロットル開度であり、 前記 圧縮機制御手段は、 圧縮機負荷制御の指令信号を、 前記スロットル開度が所定範 囲外の値である場合に出力することを特徴とする可変容量圧縮機の制御装置。6. The vehicle according to claim 3 or 4, wherein the vehicle information is a throttle opening, and the compressor control means outputs a command signal for compressor load control, and the throttle opening is within a predetermined range. A control device for a variable displacement compressor, which outputs a value when the value is out of range.
7 . 請求項 3から請求項 6までのうちの一つにおいて、 前記圧縮機制御手段 は、 圧縮機負荷制御の指令信号を、 前記ソレノィドを駆動して前記可変容量圧縮 機における圧縮機負荷及び圧縮機能力のいずれかを表わす物理量が所定値になる ように前記制御信号供給手段へ出力することを特徴とする可変容量圧縮機の制御 7. The compressor according to any one of claims 3 to 6, wherein the compressor control means comprises: a compressor load control command signal; and a compressor load and a compression in the variable displacement compressor by driving the solenoid. Controlling the variable displacement compressor so that a physical quantity representing any of the functional capabilities is output to the control signal supply means so as to be a predetermined value.
8 . 請求項 3から請求項 6までのうちの一つにおいて、 前記圧縮機制御手段 は、 圧縮機負荷制御の指令信号を、 前記ソレノイドを駆動してエンジンの回転数 が所定値になるように前記制御信号供給手段へ出力することを特徴とする可変容 量圧縮機の制御装置。 8. The compressor according to any one of claims 3 to 6, wherein the compressor control means outputs a command signal for compressor load control such that the solenoid is driven so that the engine speed becomes a predetermined value. A control device for a variable capacity compressor, which outputs the control signal to the control signal supply means.
PCT/JP2003/006267 2002-06-12 2003-05-20 Controller of variable displacement compressor WO2003106204A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003234836A AU2003234836A1 (en) 2002-06-12 2003-05-20 Controller of variable displacement compressor
DE10392799T DE10392799B4 (en) 2002-06-12 2003-05-20 Control for an adjustable compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002170806A JP4121785B2 (en) 2002-06-12 2002-06-12 Control device for variable capacity compressor
JP2002-170806 2002-06-12

Publications (1)

Publication Number Publication Date
WO2003106204A1 true WO2003106204A1 (en) 2003-12-24

Family

ID=29727775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006267 WO2003106204A1 (en) 2002-06-12 2003-05-20 Controller of variable displacement compressor

Country Status (4)

Country Link
JP (1) JP4121785B2 (en)
AU (1) AU2003234836A1 (en)
DE (1) DE10392799B4 (en)
WO (1) WO2003106204A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9878334B2 (en) 2012-12-27 2018-01-30 Ev Group E. Thallner Gmbh Spray nozzle device and coating method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799252B2 (en) * 2006-04-06 2011-10-26 サンデン株式会社 Air conditioner
JP2008274756A (en) 2007-04-25 2008-11-13 Sanden Corp Control device of variable displacement compressor
KR101308143B1 (en) 2007-08-24 2013-09-12 한국델파이주식회사 Electric Control Valve Controller for a Vehicle and Method for Controlling Electric Control Valve
JP5324858B2 (en) * 2008-08-06 2013-10-23 サンデン株式会社 Control system for variable capacity compressor
KR101348606B1 (en) 2013-09-16 2014-01-08 공주대학교 산학협력단 Method for analyzing crankcase flow characteristics of electromagnetic control valve for compressor of an automobile air conditioning control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930165A1 (en) * 1998-07-01 2000-01-13 Unisia Jecs Corp Brake fluid pressure control system
US6033189A (en) * 1997-05-14 2000-03-07 Kabushikki Kaisha Toyoda Jidoshokki Seisakusho Control valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031568B2 (en) * 1982-06-28 1985-07-23 川崎製鉄株式会社 O press mold changing device
JPS60162087A (en) * 1984-02-02 1985-08-23 Sanden Corp Capacity-control type compressor
US5199855A (en) * 1990-09-27 1993-04-06 Zexel Corporation Variable capacity compressor having a capacity control system using an electromagnetic valve
JP3862380B2 (en) * 1997-10-06 2006-12-27 サンデン株式会社 Volume control valve for variable capacity compressor
JP4118414B2 (en) * 1998-10-29 2008-07-16 サンデン株式会社 Control circuit for capacity control valve of variable capacity compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033189A (en) * 1997-05-14 2000-03-07 Kabushikki Kaisha Toyoda Jidoshokki Seisakusho Control valve
DE19930165A1 (en) * 1998-07-01 2000-01-13 Unisia Jecs Corp Brake fluid pressure control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9878334B2 (en) 2012-12-27 2018-01-30 Ev Group E. Thallner Gmbh Spray nozzle device and coating method

Also Published As

Publication number Publication date
JP2004010023A (en) 2004-01-15
AU2003234836A1 (en) 2003-12-31
DE10392799T5 (en) 2005-06-09
JP4121785B2 (en) 2008-07-23
DE10392799B4 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
US6526771B2 (en) Freezing cycle apparatus
US6786055B2 (en) Air conditioning systems for vehicles comprising such air conditioning systems, and methods for driving hybrid compressors of such air conditioning systems
US6385982B1 (en) Air conditioning apparatus
KR20070039221A (en) The control method of electronic control valve for variable capacity compressor of air conditioner
WO2003106204A1 (en) Controller of variable displacement compressor
US4841736A (en) Method for controlling the operation of a variable displacement refrigerant compressor for a car air-conditioner
JP4616103B2 (en) Variable displacement compressor and control method of variable displacement compressor
JP2006249969A (en) Controller for variable displacement compressor
KR100432225B1 (en) Air conditioner and operation method thereof
JP3961108B2 (en) Clutch control device for externally controlled variable displacement compressor
JP2008274756A (en) Control device of variable displacement compressor
JP2006250203A (en) Control device for solenoid valve
JPH04344073A (en) Controlling method for drive of cooling circuit
JP3961107B2 (en) Torque prediction device for externally controlled variable displacement compressor and automobile engine control device using the same
EP3312425B1 (en) System and method for feeding and controlling a variable capacity compressor and a cooler comprising a variable capacity compressor
JP2988078B2 (en) Vehicle air conditioner equipped with hydraulic fan
JP4706671B2 (en) Solenoid valve control device
JP2019065754A (en) Variable displacement compressor
JP4886159B2 (en) Air conditioner
JP2005188290A (en) Control device of variable displacement compressor
KR20190063137A (en) A Electrical Expanding Control Valve for A Refrigerator Vehicle to Applying Various Refrigerants
JP4933064B2 (en) Electromagnetic clutch control device
KR100559582B1 (en) Variable swash type compressor for automobile
KR100595549B1 (en) Compressor driving apparatus and method of refrigerator with reciprocating compressor
JP2004232491A (en) Engine controller

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
RET De translation (de og part 6b)

Ref document number: 10392799

Country of ref document: DE

Date of ref document: 20050609

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10392799

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607